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Abstract

Methods that can screen large databases to retrieve a structurally

diverse set of compounds with desirable bioactivity properties are

critical in the drug discovery and development process. This pa-

per presents a set of such methods, which are designed to find com-

pounds that are structurally different to a certain query compound

while retaining its bioactivity properties (scaffold hops). These

methods utilize various indirect ways of measuring the similarity

between the query and a compound that take into account addi-

tional information beyond their structure-based similarities. Two

sets of techniques are presented that capture these indirect simi-

larities using approaches based on automatic relevance feedback

and on analyzing the similarity network formed by the query and

the database compounds. Experimental evaluation shows that many

of these methods substantially outperform previously developed ap-

proaches both in terms of their ability to identify structurally diverse

active compounds as well as active compounds in general.

Keywords: descriptor-space, ranked-retrieval, scaffold-hopping,

virtual screening.

1 Introduction

Discovery, design, and development of new drugs is an ex-

pensive and challenging process. Any new drug should not

only produce the desired response to the disease but should

do so with minimal side effects. One of the key steps in the

drug design process is the identification of the chemical com-

pounds (hit compounds or just hits) that display the desired

and reproducible activity against the specific biomolecular

target [23]. This represents a significant hurdle in the early

stages of drug discovery.

A popular approach for finding these hits is to use a com-

pound, known to possess some of the desired activity prop-

erties, as a reference and identify other compounds from a

large compound database that have a similar structure. This is

nothing more than a ranked-retrieval using the reference com-

pound as a query. This approach relies on the well-known

fact that compounds sharing key structural features will most

likely have similar activity against a biomolecular target. This

is referred to as the structure activity relationship (SAR) [9].

The similarity between the compounds is usually computed

by first representing their molecular graph as a vector in a

particular descriptor-space and then using a variety of vector-

based methods to compute their similarity [8, 9].

However, the task of identifying hit compounds is compli-

cated by the fact that the query might have undesirable prop-

erties such as toxicity, bad ADME (absorption, distribution,

metabolism and excretion) properties, or may be promiscu-

ous [17, 26]. These properties will also be shared by most

of the highest ranked compounds as they will correspond to

very similar structures. In order to overcome this problem,

it is important to rank high as many chemical compounds

as possible that not only show the desired activity for the

biomolecular target but also have different structures (come

from diverse chemical classes or chemotypes). Finding novel

chemotype using the information of already known bioactive

small molecules is termed as scaffold-hopping [17, 27, 32].

In this paper we address the problem of scaffold-hopping

by developing a set of techniques that measure the similar-

ity between the query and a compound that take into account

additional information beyond their structure-based similar-

ities. These indirect ways of measuring similarity enables

the retrieval of compounds that are structurally different from

the query but at the same time possess the desired bioactivity

properties. We present two sets of techniques to capture such

indirect similarities. The first set, contains techniques that are

based on automatic relevance feedback, whereas the second

set, derives the indirect similarities by analyzing the similar-

ity network formed by the query and the database compounds.

Both of these sets of techniques operate on the descriptor-

space representation of the compounds and are independent

of the of selected descriptor-space.

We experimentally evaluate the performance of these

methods using three different descriptor-spaces and six dif-

ferent datasets. Our results show that most of these meth-

ods are quite effective in improving the scaffold-hopping per-

formance over standard ranked-retrieval. Among them, the

methods based on the similarity-network perform the best

and substantially outperform previously developed scaffold-

hopping schemes. Moreover, even though these methods

were created to improve the scaffold-hopping performance,

our results show that many of them are quite effective in im-

proving the ranked-retrieval performance as well.

The rest of the paper is organized as follows. Section 2

describes the problems addressed in this paper. Section 3 in-

troduces the definitions and notations used in this paper. Sec-

tion 4 introduces the various descriptor-spaces for this prob-

lem. Section 5 describes the methods developed in this paper.

Section 6 gives an overview of the related work in this field.

Section 7 describes the materials used in our experimental

methodology. Section 8 compares and discusses the results

obtained. Finally, Section 9 summarizes the results of this

paper.
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2 Problem Statement and Motivation

The ranked-retrieval and the scaffold-hopping problems that

we consider in this paper are defined as follows:

Definition 1 (Ranked-Retrieval Problem). Given a query com-

pound, rank the compounds in the database based on how

similar they are to the query in terms of their bioactivity.

Definition 2 (Scaffold-Hopping Problem). Given a query com-

pound and a parameter k, retrieve the k compounds that are

similar to the query in terms of their bioactivity but their

structure is as dissimilar as possible to that of the query.

The solution to the ranked-retrieval problem relies on the

well known fact that chemical structure of a compound relates

to its activity (SAR) [9]. As such, effective solutions can be

devised that rank the compounds on the database based on

how structurally similar they are to the query.

However, for scaffold-hopping, the compounds retrieved

must be structurally sufficiently similar to possess similar

bioactivity but at the same time must be structurally dissim-

ilar enough to be a novel chemotype. This is a much harder

problem than simple ranked-retrieval as it has the additional

constraint of maximizing dissimilarity that runs counter to

SAR.

Methods that have the ability to rank higher the com-

pounds that are structurally different (different chemotypes)

have advantages over methods that do not. They improve the

odds of being able to find a compound that is not only ac-

tive for a biomolecular target but also has all the other de-

sired properties (non-toxicity, good ADME properties, target

specificity, etc. [8, 17]) that the reference structure and com-

pounds with similar structures might not possess. One of such

compounds is then more likely to become a true drug candi-

date. Furthermore, scaffold-hopping is also important from

the point of view of un-patented chemical space. Many im-

portant lead compounds and drug candidates have been al-

ready patented. In order to find new therapies and offer al-

ternative treatments it is important for a pharmaceutical com-

pany to discovery novel leads away from the existing patented

chemical space. Methods that perform scaffold-hopping can

achieve those objectives.

3 Definitions and Notations

Throughout the paper we will use D to denote a database of

chemical compounds, q to denote a query compound, and c
to denote a chemical compound present in the database.

Given two compounds ci and cj , we will use sim(ci, cj)
to denote their (direct) similarity which is computed with

respect to their descriptor-space representation by a suitable

similarity measure.

Given a compound ci and a set of compounds A, we will

use sim(ci, A) to denote the average pairwise similarity be-

tween ci and all the compounds in A.

Given a query compound q, a database D, and a parameter

k, we define top-k to be the k compounds in D that are most

similar to q.

Given a compound c, a set of compounds A, and a similar-

ity measure, its k-nearest-neighbor list contains the k com-

pounds in A that are most similar to c.

Finally, throughout the paper we will refer to the task of

retrieving active compounds as ranked-retrieval and the task

of retrieving scaffold-hops as scaffold-hopping.

4 Descriptor Spaces for Ranked-Retrieval

The similarity between chemical compounds is usually com-

puted by first transforming them into a suitable descriptor-

space representation [8,9]. A number of different approaches

have been developed to represent each compound by a set of

descriptors. These descriptors can be based on physiochemi-

cal properties as well as topological and geometric substruc-

tures (fragments) [1, 3, 12, 18, 25, 29, 31].

In this study we use three descriptor-spaces that have

been shown to be very effective in the context of ranked-

retrieval and/or scaffold-hopping. These descriptor-spaces

are the graph fragments (GF) [29], extended connectivity fin-

gerprints (ECFP) [18, 25], and the extended reduced graph

(ErG) descriptors [27].

GF is a 2D topology-based descriptor-space [29] that is

based on all the graph fragments of a molecular graph up to

a predefined size. ECFP is also a 2D topological descriptor-

space and many flavors of these descriptors have been de-

scribed by several authors [18, 25]. The idea behind this

descriptor-space is to capture the topology around each atom

in the form of shells whose radius (number of bonds) ranges

from 1 to l, where l is a user defined parameter. We use the

ECZ3 variation of ECFP in which each atom is assigned a

label corresponding to its atomic number and the maximum

shell radius is set to three. Both extended connectivity finger-

prints (ECFP) and GF have been shown to be highly effective

for the ranked-retrieval of chemical compounds [18, 29].

Extended reduced graph descriptors (ErG) is a pharma-

cophoric descriptor-space. A pharmacophore is defined as a

critical 3D or 2D arrangement of molecular fragments form-

ing a necessary but not sufficient condition for biological

activity. The descriptors that rely only on 2D information

are called 2D pharmacophoric descriptors whereas descrip-

tors that utilize 3D information are called 3D pharmacophoric

descriptors. ErG is a 2D pharmacophoric descriptor-space

that combines the reduced graphs [14, 15] and binding prop-

erty pairs [22] to generate pharmacophoric descriptor-space.

A detailed description on the generation of these pharma-

cophoric descriptors can be found in [27].

5 Methods

In order to improve the scaffold-hopping performance we de-

veloped a set of techniques that measure the similarity be-

tween the query and a compound by taking into account ad-

ditional information beyond their descriptor-space-based rep-

resentation. These methods are motivated by the observation

that if a query compound q is structurally similar to a database

compound ci and ci is structurally similar to another database

compound cj , then q and cj could be considered as being sim-

ilar or related even though they may have zero or very low di-
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rect similarity. This indirect way of measuring similarity can

enable the retrieval of compounds that are structurally differ-

ent from the query but at the same time, due to associativity,

possess the same bioactivity properties with the query.

We developed two sets of techniques to capture such in-

direct similarities that were inspired by research in the fields

of information retrieval and social network analysis. The first

set, contains techniques that use various forms of automatic

relevance feedback to identify a set of compounds to be used

for creating an indirect similarity measure, whereas the sec-

ond set, derives the indirect similarities by analyzing the net-

work formed by a k-nearest-neighbor graph representation

of the query and the database compounds. Both of these

sets of techniques operate on the descriptor-space representa-

tion of the compounds and are independent of the of selected

descriptor-space.

5.1 Relevance-Feedback-based Methods

5.1.1 Top-k Weighting This approach, which is based

on the Rochio [24] scheme for automatic relevance feedback,

first retrieves the top-k compounds for a given query q and

then uses these compounds to derive an indirect similarity be-

tween q and each of the compounds in the database. Specifi-

cally, if A is the initial set of top-k compounds, the new sim-

ilarity, simA(q, c), between q and a compound c is given by

simA(q, c) = α sim(q, c) + (1 − α) sim(c, A), (1)

where 0 ≤ α ≤ 1 is a user-specified parameter that controls

the degree to which the new similarity is affected by the com-

pounds in A. We will refer to this method as TOPKAVG.

The motivation behind this approach is that for reasonably

small values of k, the set A will contain a relatively large

number of active compounds. Thus, by modifying the simi-

larity between q and a compound c to also include how similar

c is to the compounds in A, we obtain a similarity measure

that is re-enforced by A’s active compounds. This enables

the retrieval of active compounds that are similar to the com-

pounds present in A even if their similarity to the query is not

very high; thus, enabling scaffold-hopping

5.1.2 Cluster Weighting This method is similar in

spirit to TOPKAVG, but employs a clustering-based approach

to identify the set of compounds to use for automatic rele-

vance feedback. We will refer to this scheme as CLUSTWT

and consists of the following four steps. First, it finds the

top-k most similar compounds to a query q. Second, it clus-

ters these compounds into l = k/m sets {S1, . . . , Sl} each of

size m (assuming that k is a multiple of m). Third, it selects

among these sets, the set S∗ that has the highest similarity to

the query. Fourth, it uses Equation 1 to re-rank all the com-

pounds in the database using S∗ as the relevance feedback set

(i.e., A = S∗).

The clustering is computed using a fixed-capacity heuris-

tic min-cut partitioning algorithm on the complete weighted

graph whose nodes are the k compounds and the edge-

weights are the similarities between them [20, 21]. Conse-

quently, the inter-cluster compound-to-compound similarities

are explicitly minimized leading to clusters in which the intra-

cluster similarities are implicitly maximized (i.e., each cluster

will end-up containing similar compounds).

By using for relevance feedback the set S∗, which contains

compounds that are most similar to the query, CLUSTWT se-

lects the cluster that will most likely have a large number of

active compounds. This is similar in spirit to the method that

TOPKAVG uses to select its own relevance feedback set A.

However, since S∗ contains compounds that are also very

similar to each-other, the number of active compounds that

it contains will tend to be higher than that contained in A
(assuming that both A and S∗ have the same size). In fact,

S∗ has already incorporated some form of automatic rele-

vance feedback, since all pairwise similarities between its

compounds were taken into account during the clustering pro-

cess. The fact that objects that are relevant to a query tend to

cluster together is well-known within the document retrieval

community and is usually referred to as the clustering hypoth-

esis [16].

5.1.3 Sum-based Search The performance of TOP-

KAVG and CLUSTWT depends on selecting a reasonable

value for the size of the set used to provide automatic rele-

vance feedback. If that set is too small, it may not incorpo-

rate a sufficiently large number of active compounds and thus

lead to limited (if any) performance improvements, whereas

if the set is too large, it may degrade the performance by in-

corporating a relatively large number of inactive compounds.

Unfortunately, our initial experiments showed that the right

size of the relevance feedback set is dataset dependent.

Motivated by this observation we developed a scheme for

automatic relevance feedback, which instead of using a fixed

number of compounds, it does so in a progressive fashion.

Specifically, if A is the set of compounds that have been re-

trieved thus far, then the compound selected next, cnext, is the

one that has the highest average similarity to the set A∪ {q}.

That is,

cnext = arg max
ci∈D−A

{sim(ci, A ∪ {q})}. (2)

This compound is added in A and the overall process is re-

peated until the desired number of compounds is retrieved

or all the compounds in D have been ranked. Thus, in this

scheme, as soon as a compound is retrieved it is used to ex-

pand the set of compounds used to provide relevance feed-

back. We will refer to this method as BESTSUMDESCSIM.

5.1.4 Max-based Search A common characteristic to

the three schemes described so far is that the final ranking of

each compound is computed by taking into account all the

similarities between the compound and the compounds in the

relevance feedback set. Since the compounds in the relevance

feedback set will tend to be structurally similar to the query

compound (with the CLUSTWT potentially being an excep-

tion), this approach is rather conservative in its attempt to

identify active compounds that are structurally different from

the query (i.e., scaffold-hops).

To overcome this problem, we developed a best-search

scheme that is based on the BESTSUMDESCSIM approach
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but instead of selecting the next compound based on its aver-

age similarity to A ∪ {q}, it selects the compound that is the

most similar to one of the compounds in A∪{q}. That is, the

next compound is given by

cnext = arg max
ci∈D−A

{ max
cj∈A∪{q}

sim(ci, cj)}. (3)

In this approach, if a compound cj other than q has the

highest similarity to some compound ci in the database, ci is

chosen as cnext and added to A irrespective of its similarity to

q. Thus, the query-to-compound similarity is not necessarily

included in every iteration as in the other schemes, allowing

BESTMAXDESCSIM to identify compounds that are struc-

turally different from the query. We will refer to this schemes

as BESTMAXDESCSIM.

5.2 Nearest-Neighbor Graph-based Methods

These methods, motivated by the field of social (relational)

network analysis, determine the similarity between a pair of

compounds by taking into account any other compounds that

are very similar to either or both of them. Thus, the similarity

depends on the structure of the network formed by all highly

similar pairs of compounds.

The network linking the database compounds with each

other and with the query is determined by using a k-

nearest-neighbor (NG) and a k-mutual-nearest-neighbor

(MG) graph. Both of these graphs contain a node for each

of the compounds as well as a node for the query. How-

ever, they differ on the set of edges that they contain. In the

k-nearest-neighbor graph there is an edge between a pair of

nodes corresponding to compounds ci and cj , if ci is in the

k-nearest-neighbor list of cj or vice-versa. In the k-mutual-

nearest-neighbor graph, an edge exists only when ci is in

the k-nearest-neighbor list of cj and cj is in the k-nearest-

neighbor list of ci. As a result of these definitions, each node

in NG will be connected to at least k other nodes (assuming

that each compound has a non-zero similarity to at least k
other compounds), whereas in MG, each node will be con-

nected to at most k other nodes.

Since the neighbors of each compound in these graphs cor-

respond to some of its most structurally similar compounds

and due to the relation between structure and activity, each

pair of adjacent compounds will tend to have similar activity.

Thus, these graphs can be considered as the network struc-

tures for capturing bioactivity relations.

A number of different approaches have been developed for

determining the similarity between nodes in social networks

that take into account various topological characteristics of

the underlying graphs [13, 28]. In our work, we determine

the similarity between a pair of nodes as a function of the

intersection of their adjacency lists, which takes into account

all two-edge paths connecting these nodes. Specifically, the

similarity between ci and cj with respect to graph G is given

by

simG(ci, cj) =
adjG(ci) ∩ adjG(cj)

adjG(ci) ∪ adjG(cj)
, (4)

where adjG(ci) and adjG(cj) are the adjacency lists of ci and

cj in G, respectively. This measure assigns a high similarity

value to a pair of compounds if both are very similar to a large

set of common compounds. Since a pair of active compounds

will be more similar to other active compounds than an active-

inactive pair, their similarity according to Equation 4 will be

high. Also, since Equation 4 can potentially assign a high

similarity value to a pair of compounds even if their direct

similarity is very low (as long as they have a large number of

common neighbors), it facilitates scaffold-hopping.

For each of the NG and MG graphs we developed two re-

trieval schemes that use Equation 4 as the similarity measure

in the sum- and max-based search strategies represented in

Equations 2 and 3. For example, in the case of the NG graph

and the sum-based search strategy, the next compound cnext

to be retrieved is given by

cnext = arg max
ci∈D−A

{simNG(ci, A ∪ {q})}, (5)

where simNG(ci, A ∪ {q}) is the average pairwise similarity

between ci and the compounds in A computed using Equa-

tion 4 for the NG graph. The equations for the other schemes

are derived in a similar fashion. We will refer to these four

schemes as BESTSUMNG, BESTMAXNG, BESTSUMMG,

and BESTMAXMG, respectively.

6 Related Work

Many methods have been proposed for ranked-retrieval and

scaffold-hopping. These can be divided into two groups. The

first contains methods that rely on better designed descriptor-

space representations, whereas the second contains methods

that are not specific to any descriptor-space representation but

utilize different search strategies to improve the overall per-

formance.

Among the first set of methods, 2D descriptors such as

path-based fingerprints [1,4], dictionary based keys [2,3] and

more recently Extended Connectivity fingerprints (ECFP)

[18], Graph Fragments (GF) [29] have all been successfully

applied for the retrieval problem. Pharmacophore based de-

scriptors such as ErG [27] have been shown to outperform

simple 2D topology based descriptors for scaffold-hopping

[27, 33]. Lastly, descriptors based on 3D structure or confor-

mations of the molecule have also been applied successfully

for scaffold-hopping [26, 33].

The second set of methods include the turbo search

schemes (TURBOSUMFUSION and TURBOMAXFU-

SION) [17] and the structural unit analysis based tech-

niques [32] all of which utilize relevance feedback [6]

ideas. These have been shown to be effective for both

scaffold-hopping and ranked-retrieval. The turbo search

techniques operate as follows. Given a query q, they start by

retrieving the top-k compounds from the database. Let A be

the (k + 1)-size set that contains q and the top-k compounds.

For each compound c ∈ A, all the compounds in the database

are ranked in decreasing order based on their similarity to

c, leading to k + 1 ranked lists. These lists are used to

obtain the final similarity of each compound with respect

to the initial query. In particular, in TURBOMAXFUSION,

the similarity between q and a compound c is equal to the

similarity corresponding to the maximum ranking of c in the
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k + 1 lists, whereas in TURBOSUMFUSION, the similarity

is equal to the sum of all the similarities in these rankings.

Similar methods based on consensus scoring, rank averaging,

and voting have been investigated in [33].

The TURBOSUMFUSION approach is similar to that of the

TOPKAVG described in Section 5.1.1 as it utilizes relevance

feedback mechanism to re-rank a database with respect to

a query. However, the TURBOSUMFUSION approach treats

every compound in the top-k set as equally important along

with the query, whereas in TOPKAVG, each compound in A
is given a weight of (1 − α)(1/|A|α) relative to q.

7 Materials

7.1 Datasets

We used datasets that contain compounds that bind to six

different biomolecular targets: COX2 (cyclooxygenase 2),

CDK2 (cyclin-dependent kinase 2), FXa (coagulation factor

Xa), PDE5 (phosphodiesterase 5), A1A (alpha-1A adreno-

ceptor), and MAO (Monoamineoxidase). Each of these sets

represent a different activity class.

The datasets for the first five targets are obtained from

[5, 19]. The entire set consists of 2142 compounds and there

are 50 active compounds for each one of the targets (250 in

total). The rest of the compounds are “decoys” (inactive) ob-

tained from the National Cancer Institute diversity set. For

each target, we constructed a dataset that contains its 50 ac-

tive compounds and all the decoys. These datasets are termed

as COX2, CDK2, PDE5, FXa and A1A.

The dataset of the sixth target was derived from [11, 29]

and after removing compounds with impossible Kekule forms

and valence errors it contains 1458 compounds. The com-

pounds in this dataset have been categorized into four differ-

ent classes, 0, 1, 2, and 3 based on their levels of activity,

with 0 indicating no activity. For our experiments we treat all

the compounds that have non-zero activity level (268 com-

pounds) as active.

7.2 Definition of Scaffold-Hopping Com-
pounds

Molecular scaffold is a widely cited concept and is used

to evaluate the performance of a method with respect to

its scaffold-hopping ability. However the definition of a

scaffold-hop is highly subjective with numerous papers us-

ing different criteria to define what constitutes a scaffold-

hop [10, 17, 32, 33].

In this paper we use an objective way of defining which

compounds can be considered as scaffold-hops by using an

approach that directly relies on the scaffold-hopping prob-

lem definition (Section 3). In particular, for a given query

q, the active compounds are ranked based on their structural

similarity to q, and the lowest 50% of them are defined to

be the scaffold-hops for q. Thus, this approach identifies a

set of scaffold-hopping compounds that are specific to each

query and represent the 50% most dissimilar active com-

pounds to the query. We use the 2048-bit path-based finger-

print generated by Chemaxon’s screen program [4] for mea-

suring the structural similarity between a query and an active

compound. These fingerprints are well-designed to capture

structural similarity between two compounds [27].

7.3 Experimental Methodology

All the experiments were performed on dual core AMD

Opterons with 4 GB of memory. We used the descriptor-

spaces GF, ECZ3, and ErG (described in Section 4) for the

evaluating the methods introduced in this paper. Each method

is tested against six datasets (Section 7.1) using three different

descriptor-spaces (Section 4) leading to a total of 18 different

combinations of datasets and descriptor-spaces. We will refer

to them as 18 different problems.

We use the Tanimoto similarity [8, 30, 31] for all direct

similarity calculations. The Tanimoto similarity function is

given by

sim(ci, cj) =

n
P

k=1

cikcjk

n
P

k=1

(cik)2 +
n

P

k=1

(cjk)2 −
n

P

k=1

cikcjk

, (6)

where cik and cjk are the values for the kth dimension in the

n-dimensional descriptor-space representation for the com-

pounds ci and cj , respectively. This similarity function was

selected because it has been shown to be an effective way

of measuring the similarity between chemical compounds

[30,31] for ranked-retrieval and is the most widely-used sim-

ilarity function in cheminformatics.

For each dataset we used each of its active compounds as a

query and evaluated the extent to which the various methods

lead to effective retrieval of the other active compounds and

scaffold-hops. For CLUSTWT we used hMETIS [20, 21] to

perform the clustering into fixed sized clusters.

We varied the parameter values for the methods described

in Section 5 and obtained results by averaging over four dif-

ferent sets of values. For TOPKAVG, which depends on the

number of compounds k used in relevance feedback, we used

k = 5, 10, 15, and 20. For CLUSTWT, which depends on the

cluster size m and the number of compounds k on which the

clustering was performed, we used m = 25 and 40 and k =
200 and 400. These parameter values were selected because

they gave the best results in our experiments. For the nearest-

neighbor methods which depend on the number of neighbors,

we used k = 4, 6, 8, and 10 for the BESTSUMNG and BEST-

MAXNG, and k = 12, 16, 20, and 24 for the BESTSUMMG

and BESTMAXMG schemes. These values were chosen be-

cause they gave good results. Moreover, for NG the value

of k less than 4 leads to graphs with many connected compo-

nents whereas for MG this value is 12. Hence, we decided not

to use values below these thresholds. Note that the threshold

for NG is less than that of MG because the criterion for an

edge to exist between two nodes of the neighborhood graph

is stricter for MG as opposed to NG (Section 5.2).

We also compared our schemes against TURBOMAXFU-

SION and TURBOSUMFUSION [17]. For both these methods,

we used k = 5, 10, 15, and 20. These values gave the best

results and the results degraded as k was further increased.
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7.4 Standard Retrieval

For each problem, we obtain a baseline performance by rank-

ing all the compounds with respect to each active compound

using the Tanimoto similarity. We call this Standard Retrieval

and denote it by STDRET.

7.5 Performance Assessment Measures

We measure ranked-retrieval and scaffold-hopping perfor-

mance using uninterpolated precision [16]. This is calculated

as follows. For each active that appears in the top 50 retrieved

compounds we compute the precision value. For ranked-

retrieval this is defined as the ratio of the number of actives

retrieved over the number of compounds retrieved thus far.

For scaffold-hopping it is defined as the number of scaffold-

hops retrieved over the number of compounds retrieved thus

far. For both ranked-retrieval and scaffold-hopping we sum

all their precision values and normalized them by dividing

them with 50. This is called the total uninterpolated precision

for a query. Similar values are obtained for all the queries for

a dataset and the total uninterpolated precision is the average

of all these values. Note that the total uninterpolated precision

captures the number of active compounds (scaffold-hops) for

each query as well as the position (rank) information of the

actives (scaffold-hops).

To compare the ranked-retrieval or scaffold-hopping per-

formance of two methods, we evaluate their relative perfor-

mance over all the 18 problems. This is achieved as fol-

lows. Let ri and qi represent the ranked-retrieval or scaffold-

hopping performance achieved by methods r and q on the ith
problem respectively. We calculate the log-ratio, log2(ri/qi),
for every problem and take the average of these values. We

call this quantity the Average Relative Performance or ARP

of r with respect to q. On the average, if the ARP is less

than zero, r performs worse than q whereas if the ARP is

greater than zero, r performs better than q. Note that the rea-

son that we use log-ratios as opposed to simply the ratios is

that the distribution of the ratios of two random variables is

not symmetric whereas the distribution of their log-ratios is

normally distributed. This allows us to compute their aver-

age and compare them in an unbiased way. We also assess

whether the ARP for a given pair of methods is statistically

significant using the student’s t-test [7], which is well-suited

to assess statistical significance of a sample of values drawn

out of a normal distribution.

8 Results

8.1 Overall Performance Assessment

Tables 1 and 2 compare the performance of all the methods in

a pairwise fashion for scaffold-hopping and ranked-retrieval,

respectively. In each of these tables we present two statistics.

The first is the ARP of the row method (r) with respect to the

column method (q) as described in Section 7.5. The second

statistic, shown immediately below the ARP value in paren-

thesis, is its p-value obtained from the student’s t-test. Note

that for the remainder of this section we will define the ARP

of the two methods to be statistically significant if p ≤ 0.01.

The rest of this section highlights some of the key observa-

tions that can be made by analyzing the results in these tables.

8.1.1 Performance of Relevance Feedback Meth-

ods Comparing the performance of the four relevance-

feedback-based methods described in Section 5.1 against

STDRET, we see that all of them lead to better scaffold-

hopping results. Among them, the results achieved by

CLUSTWT and BESTSUMDESCSIM are 63% and 94% better

than STDRET, respectively and also these improvements are

statistically significant. However, all four of these methods

achieve somewhat worse ranked-retrieval performance (3%

to 15%). Moreover, these differences are statistically signifi-

cant for BESTSUMDESCSIM and BESTMAXDESCSIM.

Comparing the four methods against TURBOSUMFUSION

and TURBOMAXFUSION, we observe that the relative perfor-

mance of most of these methods varies, with some methods

doing better for scaffold-hopping and others doing better for

ranked-retrieval. However, with the exception of TOPKAVG,

which is statistically better than the two fusion-based scheme

for ranked-retrieval, all other differences are not statistically

significant.

Comparing the four relevance-feedback-based methods

against each other we see that most of them perform the same

for both scaffold-hopping and ranked-retrieval and whatever

differences that exist are not statistically significant. De-

spite of this, the average performance of BESTSUMDESC-

SIM is better than BESTMAXDESCSIM, indicating that the

sum-based search strategy leads to better results. The results

also show that the CLUSTWT is better than TOPKAVG for

scaffold-hopping and that this difference is statistically sig-

nificant.

8.1.2 Performance of Nearest-Neighbor Graph-

Based Methods Comparing the performance of the

nearest-neighbor methods, we observe that all of these

schemes show good performance for scaffold-hopping as

well as ranked-retrieval. Among them, the best perform-

ing method is BESTSUMNG. It achieves the best balance

between the ranked-retrieval and scaffold-hopping perfor-

mance. Furthermore, similar to the relevance feedback-based

methods, the sum-based search methods outperform the cor-

responding max-based methods. However, these differences

are not statistically significant.

The results also show that the nearest-neighbor methods

performs significantly better than all the other methods for

scaffold-hopping and most of these differences are statisti-

cally significant (BESTSUMDESCSIM and BESTMAXDESC-

SIM are the two exceptions). In particular, the performance

of the nearest-neighbor methods are 62% to 300% better than

the STDRET and the fusion-based methods and 46% to 244%

better than the relevance-feedback-based methods.

The nearest-neighbor methods also achieve better perfor-

mance than all of the methods for ranked-retrieval, although

most of these differences are not statistically significant.

BESTSUMNG is a clear exception as its ranked-retrieval per-

formance is also significantly and statistically better than all

the other non graph-based techniques. For example, com-
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pared to the fusion-based techniques its ranked-retrieval per-

formance is 62% to 209% better.

8.2 Performance of Descriptor-Spaces and
Datasets

Our discussion so far focused on evaluating the average

performance of the different methods across the various

descriptor-space representations and datasets. In this sec-

tion we analyze the performance of the methods on the in-

dividual descriptor-spaces and datasets. We limit our eval-

uation to only the CLUSTWT and the BESTSUMNG meth-

ods as these methods achieve the best scaffold-hopping and

ranked-retrieval performance among the relevance-feedback-

and graph-based methods, respectively.

The results of these evaluations are shown in Fig-

ures 1 and 2, which compare the performance of STDRET

against CLUSTWT and BESTSUMNG, respectively. In these

figures, the left Y-axis represents uninterpolated precision

values for ranked-retrieval, whereas the right Y-axis repre-

sents uninterpolated precision values for scaffold-hopping.

For CLUSTWT and BESTSUMNG we also show error bars

that correspond to the standard deviation of the results ob-

tained for the four sets of parameter values used for these

schemes.

These results show that for scaffold-hopping, CLUSTWT

outperforms STDRET in most dataset and descriptor-space

combinations. However, the actual performance gains

are dataset and descriptor-space dependent. For example,

CLUSTWT achieves significant gains on the A1A and FXa

datasets for the ErG and ECZ3 descriptor-spaces, whereas

the gains for the other datasets and/or descriptor-spaces are

not as dramatic. In terms of ranked-retrieval performance,

these results show that in the case of the GF descriptor-

space, CLUSTWT performs consistently better than STDRET

across all datasets. However, CLUSTWT’s ranked-retrieval

performance for the other two descriptor-spaces is somewhat

mixed.

Finally, the results in Figure 2 show that for scaffold-

hopping, BESTSUMNG performs consistently better than

STDRET for all the descriptor-space and dataset combina-

tions. However, similarly to CLUSTWT, the actual gains

are dataset and descriptor-space dependent. For example,

the gains are particularly high for the FXa, A1A, and COX2

datasets and for the ErG descriptor space. Similar trends

can be observed with the ranked-retrieval results, with BEST-

SUMNG outperforming STDRET. Moreover, the perfor-

mance gains achieved on some problems by BESTSUMNG

are usually much higher than the performance degradations

in others.

9 Conclusion

In this paper we introduced a number of methods based on

relevance feedback and social (relational) network analysis

to improve scaffold-hopping and ranked-retrieval. Our re-

sults showed that among these methods, the ones based on

social network analysis consistently and substantially outper-

form the standard retrieval as well as previously introduced

methods for these problems.
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(0.024) (0.298) (0.835) (0.177) (0.645) (0.754) (0.109) (0.140) (0.053) (0.071)

BESTSUMNG 1.51 1.07 0.69 1.2 0.8 0.55 0.62 -0.01 -0.1 -0.08
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Table 2: Performance for Ranked-Retrieval.
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STDRET 0.14 0.21 0.04 0.06 0.17 0.27 -0.25 -0.12 -0.18 -0.08

(0.019) (0.001) (0.332) (0.415) (0.009) (0.002) (0.015) (0.179) (0.151) (0.434)

TURBOSUMFUSION -0.14 0.07 -0.1 -0.08 0.03 0.13 -0.39 -0.26 -0.32 -0.22

(0.019) (0.156) (0.001) (0.113) (0.502) (0.137) (0.001) (0.003) (0.016) (0.037)

TURBOMAXFUSION -0.21 -0.07 -0.17 -0.15 -0.04 0.06 -0.46 -0.33 -0.39 -0.29

(0.002) (0.156) (0.001) (0.101) (0.426) (0.419) (0.001) (0.002) (0.013) (0.028)

TOPKAVG -0.04 0.1 0.17 0.02 0.13 0.23 -0.29 -0.16 -0.22 -0.12

(0.332) (0.001) (0.001) (0.725) (0.017) (0.016) (0.004) (0.054) (0.080) (0.226)

CLUSTWT -0.06 0.08 0.15 -0.02 0.11 0.21 -0.31 -0.18 -0.24 -0.14

(0.415) (0.113) (0.101) (0.725) (0.168) (0.071) (0.009) (0.027) (0.047) (0.158)

BESTSUMDESCSIM -0.17 -0.03 0.04 -0.13 -0.11 0.1 -0.42 -0.29 -0.35 -0.25

(0.009) (0.502) (0.426) (0.017) (0.168) (0.121) (0.001) (0.004) (0.021) (0.051)

BESTMAXDESCSIM -0.27 -0.13 -0.06 -0.23 -0.21 -0.1 -0.52 -0.39 -0.45 -0.35

(0.002) (0.137) (0.419) (0.016) (0.071) (0.121) (0.001) (0.002) (0.008) (0.019)

BESTSUMNG 0.25 0.39 0.46 0.29 0.31 0.42 0.52 0.13 0.07 0.17

(0.015) (0.001) (0.001) (0.004) (0.009) (0.001) (0.001) (0.148) (0.519) (0.079)

BESTMAXNG 0.12 0.26 0.33 0.16 0.18 0.29 0.39 -0.13 -0.06 0.04

(0.179) (0.003) (0.002) (0.054) (0.027) (0.004) (0.002) (0.148) (0.484) (0.591)

BESTSUMMG 0.18 0.32 0.39 0.22 0.24 0.35 0.45 -0.07 0.06 0.1

(0.151) (0.016) (0.013) (0.080) (0.047) (0.021) (0.008) (0.517) (0.484) (0.036)

BESTMAXMG 0.08 0.22 0.29 0.12 0.14 0.25 0.35 -0.17 -0.04 -0.1

(0.434) (0.037) (0.028) (0.226) (0.158) (0.051) (0.019) (0.079) (0.591) (0.036)

The top entry in each cell corresponds to the average of the log
2

ratios of the uninterpolated precision of the row method to the column method for the

18 problems. The number below this entry, in parenthesis, corresponds to the p-value obtained from the student’s t-test for that entry.
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Figure 1: StdRet versus ClustWt.
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Figure 2: StdRet versus BestSumNG.
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