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Abstract— For a team of unmanned aerial vehicles (UAVs) to
deceive a radar network by generating a phantom track requires
a high degree of cooperation due to: 1) dynamic constraints
imposed mainly by the UAVs and 2) strong coupling caused by
the phantom. We first review three works that have addressed
this problem, namely two one-step look-ahead algorithms and
an optimal solution with full time horizon; original simulations
of each are included. Second, since the one-step algorithms do
not satisfy the UAV and/or phantom constraints in many cases,
we design a new algorithm that does, as shown by simulation.
Finally, we add a multi-step look-ahead for the UAV constraints
and modify the algorithm so that an operator can dynamically
add objective waypoints for the phantom.

I. INTRODUCTION

This work addresses the problem thoroughly introduced in
[1]. Figure 1 illustrates what is desired: A team of unmanned
aerial vehicles (UAVs) to deceive an enemy radar network
by electronically generating a phantom track of a nonexistent
vehicle. A UAV with such a capability will be called an
Electronic Combat Air Vehicle (ECAV) throughout.

Due to the task of generating a phantom track and the state-
dependent nonlinear constraints on the ECAVs and phantom,
there exists a strong coupling between the ECAVs. In other
words, the actions of one drastically affect the allowable
actions of almost all the others. In the midst of this coupling,
our goal is to develop a cooperative control algorithm to guide
the ECAVs and phantom that will: 1) readily permit online
implementation, 2) satisfy all constraints, and 3) allow the
ECAVs to influence the phantom based on local objectives.

Two other algorithms have already been designed for this
problem, [2]-[3] and [4], and so we first review these and
compare them with a benchmark optimal solution based on
[5]. We then design a new and improved algorithm, which is
simulated for comparison with the previous ones. Finally, we
add a multi-step look-ahead for the ECAV constraints based
on solutions to an ODE model of what the algorithm is doing.

II. PRELIMINARIES

We consider, as in [1], a constant-elevation scenario. Some
of the key variables are shown in Fig. 2a. Two other important
variables are φ := ϕ−θ and φT := ϕT −θ. For the deception
tactic to work, we need one ECAV per radar, and each ECAV
must stay on the line of sight (LOS) and between its radar

ECAVs

Radars

t2

t1

LOS

Phantom Track

Fig. 1. Deception of a four-radar network by phantom track generation.

and the phantom target. Moreover, the ECAV and phantom
are constrained in speed:

υmin ≤ υ(r, ϕ, θ̇) ≤ υmax (1)
υTmin ≤ υT ≤ υTmax (2)

For a given value of θ, which is determined by the phantom
track, Fig. 2b represents (1) as feasible heading sectors for the
ECAV, which change dramatically with r, θ̇, and the speed
limits. Contrary to [1], [5] but like [2], [3], [4], we plan not
to explicitly incorporate the antenna constraints on the ECAV:

φmin ≤ ϕ− θ(t) ≤ φmax (3)

However, since (3) is generally only violated when the
phantom heads approximately toward/away from a radar, we
suggest that to satisfy (3), the phantom line of direction be
kept sufficiently away from all radars. Finally, the ECAV and
phantom are also constrained in acceleration and turn rate; for
our algorithm, we decouple the two by constraining speed rate
instead of acceleration. The phantom’s constraints are imposed
to make it believable to the radar network and to keep it from
outmaneuvering the ECAVs. This plethora of limitations poses
a challenge to finding even a feasible phantom track in many
situations, let alone an “optimal” one.
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Fig. 2. Illustrations for the deception problem.

III. A REVIEW OF PREVIOUS ALGORITHMS

A. Maithripala and Jayasuriya

The main idea used in [2] is to project the ECAV speed
constraints onto the phantom and intersect these projections
with the phantom’s speed constraints annulus to get the next-
step feasible region for the phantom. To simplify computation
and guarantee feasibility, each ECAV’s projection is converted
to a critical phantom angle, which further reduces the feasible
region if the ECAV comes too close to the phantom; however,
this guarantee no longer holds once the ECAV dynamics
are considered. The phantom heading and speed are then
determined by taking the point in its feasible region nearest
the desired waypoint. The communication required is each
ECAV’s critical phantom angle with orientation. Turn rates
for the ECAVs and phantom are later incorporated in [3] by
altering the projections and annulus described above, but this
comes after the main development of the algorithm since it
ruins the feasibility guarantee.

The approach of using a critical phantom angle is simple,
but too conservative. As soon as an ECAV’s projection does
not allow the phantom to take any heading at maximum
speed, the critical phantom angle begins restricting the feasible
region. This simplification neglects the freedom allowed if
instead the phantom’s minimum speed were used when check-
ing with the ECAV’s projection. Consequently, the relative
ranges r

R at which an ECAV can fly parallel with the phantom
are reduced from [ υmin

υTmax
, υmax

υTmin
] to [ υmin

υTmax
, υmax

υTmax
], which is

significantly less than half of the first set for ±20% variation
in both the ECAV and phantom speeds.

Since the phantom guidance law always chooses the heading
and speed bringing it closest to the desired waypoint, the
phantom will generally travel at (constant) maximum speed
until the last step, which translates to further loss of freedom
in adjusting to meet the ECAV constraints.

The ECAV guidance law suffers from a high gain. Given
its feasible headings for the next step, the ECAV tries to
move as close as permitted to r

R = υnom
υT

, where υnom is the
nominal/average ECAV speed. Although tracking this relative
range is a good idea, moving straight toward it at the next
step is not prudent and can produce large overshoot given

the ECAV’s turn rate, which causes unnecessary infeasible
situations. Also, the ECAV acceleration is not limited.

Overall, Maithripala and Jayasuriya’s algorithm is too con-
servative giving poor performance, does not have a good
ECAV guidance law, and does not incorporate the ECAV
acceleration, which is actually more limiting than its turn rate
for this problem. However, the useful contribution here is to
project the ECAV constraints onto the phantom and so obtain
a next-step feasible region for the phantom.

B. Mears and Akella

In [4], the authors use an optimization approach with the
phantom heading as the global decision variable and each
ECAV’s speed as a local decision variable; the phantom speed
is assumed constant. The cost function is composed of six
terms to: 1) penalize changes in the phantom heading, 2) keep
the phantom headed toward the desired waypoint, 3) minimize
ECAV speed, 4) maximize the time an ECAV can generate the
phantom track with given heading, 5) minimize rapid ECAV
maneuvers, and 6) penalize switching between dynamical
systems. Each ECAV computes this cost—optimized over its
feasible speeds. The cost functions are then communicated
and combined to find the optimal phantom heading for the
next step. The fourth term in the cost is actually computed
by integrating ahead for an ECAV trajectory until some
constraints are violated. Thus, a multi-step look-ahead to help
each ECAV stay feasible is buried in the cost function.

Perhaps most disconcerting is the fact that the phantom and
ECAV turn rates as well as the ECAV acceleration cannot
be limited. Some of these constraints are addressed indirectly
in the cost, but this provides no guarantee that they will be
even close to satisfied. Furthermore, with so many terms and
corresponding weights in the cost function, it is unclear what
is really being optimized.

Some freedom is also taken away by constraining the
phantom speed to a constant, which could otherwise be helpful
in accommodating the ECAV constraints.

Overall, Mears and Akella’s algorithm seems impractical
since vehicle dynamics can be violated by an arbitrary amount
and the heading of the phantom track depends unpredictably
on a complex cost function. A useful contribution is the
concept of a multi-step look-ahead for avoiding constraints.

C. Purvis, Åström, and Khammash

In [5], the problem is set up as one of Optimal Control and
converted into a finite dimensional constrained optimization
problem using control parametrization. The horizon is the final
time (currently fixed), so the whole phantom track and all
vehicle trajectories are determined given the initial conditions,
which must be communicated. The control variables are turn
rate for the ECAVs and turn rate and linear acceleration for the
phantom. The controls can easily be constrained if necessary;
explicit constraints can also be added for (3). The integrated
cost weights ECAV range and turn rate as well as phantom
turn rate, and a final cost is included to make the phantom
track terminate near the desired waypoint.

2
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Fig. 3. Simulation results for Maithripala and Jayasuriya’s algorithm, with
ECAV and phantom turn rate limits set to approximately 5◦/s.
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Fig. 4. Simulation results for Mears and Akella’s algorithm, with no ECAV
or phantom turn rate limits available.

If used as an online algorithm, this method would require
that each ECAV communicate its position and heading, and
cooperatively follow its trajectory given by the results of
the team optimization. This structure does not allow for any
feedback based on local “disturbances” to an ECAV, i.e. it does
not permit an ECAV to influence the phantom track through
its own local cost function.

Overall, since Purvis, Åström, and Khammash’s solution
is optimal over the entire time interval, it provides a nice
benchmark to compare more heuristic one-step look-ahead
algorithms like those described above. It may also be used
online if the information structure is acceptable.

D. Simulations

Upon acquiring and debugging the code for the first two
algorithms, we were able to produce verifiable and comparable
simulations. Although the algorithms were designed for multi-
ple radars/ECAVs, one radar/ECAV was enough to excite most
of the interesting behaviors. The first simulation scenario has
the ECAV starting close to the radar, and the second has the
ECAV starting close to the phantom. Since it is strategically
desirable, the phantom range rate is toward the radar in both
scenarios. The ECAV and phantom speeds are both allowed to
vary by ±20% unless otherwise constrained by the algorithm.

The simulations for Maithripala and Jayasuriya’s algorithm
in Fig. 3 ran quite fast (one or two seconds). On the left,
the phantom is forced to curve in toward the radar until it
crosses the ECAV. This failure could have been avoided if the
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Fig. 5. Benchmark optimal solution from Purvis, Åström, and Khammash’s
work, with unconstrained ECAV and phantom turn rates well below 5◦/s.

ECAV had started out at a slower speed and the phantom had
decreased its speed as the ECAV approached. Note also the
rapid unlimited ECAV deceleration. On the right, the phantom
does reach the waypoint, but only after an extreme unnecessary
diversion from the nominal course. This poor performance is
due to the conservative nature of the critical phantom angles
and the phantom guidance law as discussed earlier.

The simulations for Mears and Akella’s algorithm in Fig. 4
ran slow (several minutes). On the left, the ECAV heading is
basically discontinuous toward the end of its trajectory. On the
right, the phantom heading and ECAV speed are discontinuous
or have extremely large unattainable rates. As stated earlier, it
is difficult to interpret the behavior of the phantom and ECAV
in light of the cost function because of its complexity.

The simulations for the optimal solution in Fig. 5 ran
moderately fast (15 to 30 seconds), though not configured for
an optimal solve time. Both solutions look reasonable. On
the left, the phantom track is almost straight, and the ECAV
trajectory has just enough curvature. The ECAV and phantom
speeds fluctuate to help the ECAV get turned around within
its constraints. On the right, the phantom actually does not
have to turn at all. Again, the ECAV and phantom speeds are
appropriate to help the ECAV move away from the phantom.

IV. A NEW AND IMPROVED
ALGORITHM—FIRST GENERATION

After reviewing the previous cooperative control algorithms
for this problem, it became clear that a new algorithm was
needed with a better chance of working in reality. This one-
step look-ahead algorithm is a first attempt.

A. An Overview of the Structure

The algorithm runs in MATLAB R© and consists of one main
program, which has all the inputs such as radar positions,
starting point and waypoint for the phantom, and initial ECAV
ranges. The program calls four subroutines to: 1) compute
for each ECAV the information it would communicate to the
others, 2) compute the feasible region for the phantom, 3)
decide ϕT and υT for the phantom, and 4) decide ϕ for each
ECAV. These decisions are then used to update the phantom
and ECAV positions inside a while loop. The loop runs until
the phantom reaches the waypoint or one of several breaking
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conditions are met, such as the feasible region becomes empty.
In practice, an identical copy of the whole program would run
on each vehicle with communication between ECAVs as the
only interface.

Assuming that feasible regions have been determined, the
general idea is to first choose the phantom heading to go
toward the waypoint, except when an ECAV gets too close,
which activates “gamma mode.” Secondly, choose the phantom
speed to suit the min and max ECAV ranges. Finally, choose
a preferred sector for the ECAV heading, and aim toward
a secondary waypoint in line with the radar and phantom
waypoint.

B. Communication and Construction of the Feasible Region

Based on its speed and angle limits for the next time step
(these limits come from respective speed rate and turn rate
constraints), an ECAV computes the sector—referenced to its
radar—where it can get to in the next step. The sector is
characterized by a pair of angles, θmin and θmax, which are
communicated to the other ECAVs. If the ECAV is too close
to the phantom or r

R ≥
υmax
υTmin

, it also computes and sends an
angle γ < π with reference to θ, where

γ = arcsin
(

υmax

ῡTmin

R

r

)
+ arcsin

(
υmaxdt

r

)
(4)

(the bar over a speed limit means it is a limit for the next
step as opposed to an absolute limit). This angle defines an
additional sector for the phantom, [θ − γ, θ + γ], which must
be intersected with its feasible region. The basic function of
γ is to keep the phantom headed away from any ECAVs that
get too close to it. The condition for sending a restricting γ
means that, without any speed or angle limits, the ECAV’s
sector defined by θmin and θmax does not permit the phantom
to take certain headings. If this condition is not activated, then
the ECAV simply sends γ = π. Assuming that, in gamma
mode, the phantom takes heading θ ± γ, it is beneficial to
allow the ECAV a small sector of feasible headings instead
of just that corresponding to υmax. Therefore, a relaxation is
made for the above mathematics:

υmax → sυυmin + (1− sυ)υmax =: υs, 0 ≤ sυ ≤
1
2

(5)

Given θmin, θmax, and γ for each ECAV, the feasible
region for the phantom is determined by using computational
geometry to intersect the ECAV sectors, the phantom’s annulus
defined by its next-step speed limits (from speed rate con-
straints), the phantom’s sector defined by its next-step angle
limits (from turn rate constraints), and any sectors coming
from restrictive γ’s. The phantom’s turn rate and speed rate
limits are required to be less than or equal to those for each
ECAV so that the phantom cannot outmaneuver the ECAVs.
Figure 6 illustrates how the feasible region for the phantom is
composed, without considering γ. This idea comes from [2],
[3], although the authors did not consider incremental speed
limits as a way to incorporate speed rate constraints.

Feasible Region

Fig. 6. Composition of the feasible region for the phantom given its next-step
speed limits (annulus) and angle limits (sector) and those for two ECAVs.

C. The Phantom Guidance Law

Both the phantom’s speed and heading must be chosen.
First, a heading is chosen that crosses the feasible region,
and then a speed is chosen from those feasible according to
the chosen heading. Choice of these variables, ϕT and υT ,
within the feasible limits is made as close as possible to some
optimal values, ϕ∗T and υ∗T . The optimal heading points from
the phantom’s current position to the desired waypoint. The
optimal speed is set so that, for the min and max ECAV ranges
r
R , there are equal ranges on both sides that permit flight
parallel to the phantom. However, this speed must not exceed
that necessary for the ECAV with the largest range to have a
small sector of headings allowing it to decrease its range as
needed; this sector should correspond to that provided by γ at
the transition out of gamma mode. Therefore,

υ∗T = min
[

υmin + υmax

(r/R)min + (r/R)max
,

υs

(r/R)max

]
, (6)

where υs is defined by (5). This part of the guidance law
ensures that υT is chosen to best accommodate all the
ECAVs, with special attention given to the ECAV closest to
the phantom. However, this well-performing law comes at a
cost: each ECAV needs to know the ranges of the others.
Providing this information through communication may not
be desirable; an alternative would be to use the information
already communicated to estimate the ECAV ranges, similar
to the concept in [6].

D. The ECAV Guidance Law

Once the phantom heading and speed are decided, each
ECAV must then choose its own heading. Since the phantom
is aiming for a waypoint, Tf , it seems natural to guide the
ECAV using a waypoint as well, which would provide lo-gain
tracking with less overshoot than that used by Maithripala and

4
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Fig. 7. Division of the ECAV flyable range into six regions, used to determine
the preferred ECAV sector to choose from.

TABLE I
ECAV PREFERRED SECTORS FOR THE REGIONS IN FIGURE 7

Region(s) Condition(s) Preferred ECAV Heading Sector

1©
υmin
υT

≤ r
R
≤ υmax

υT

cos φT < 0
closer to radara

2© γ < πb conservative: further from radar
aggressive: closer to radar

3©– 5© not 1© or 2© further from radar

6© nonec not applicable

a See Fig. 2b to understand the designations “closer” and “further.”
b Since γ < π whenever r

R
≥ υmax

υTmin
or the ECAV is in regions 2© or

6©, and since the sector defined by γ essentially maps 6© to 2©, this
condition corresponds to region 2© (exact when υs = υmax).

c Region 6© won’t be occupied because gamma mode maps 6© to 2©.

Jayasuriya’s algorithm. The waypoint we use is

Ef =
υmin + υmax

υTmin + υTmax
(Tf −O), (7)

where O is the radar position. The optimal heading ϕ∗ points
from the ECAV’s current position to Ef , unless gamma mode
is active for any ECAV; in this case, ϕ∗ = ϕT , i.e. the
ECAV should try to fly parallel with the phantom to follow
its maneuvers. Moving toward Ef should make the ECAV
approach the range that, when flying parallel to the phantom
moving at nominal speed, would have the ECAV fly at its
nominal speed. Thus, ϕ∗ should guide the ECAV to the middle
of its speed constraints over time.

In general, an ECAV will have a feasible sector of headings
on both sides of the heading corresponding to rθ̇ as shown in
Fig. 2b, so a preferred sector is chosen that should be used
if possible. This choice is based on R, ϕT , and υT of the
phantom, as well as the ECAV speed constraints. The idea
here is to try to help the ECAV stay within its constraints in
the future and to keep it from getting sucked in to the radar.
Figure 7 shows the six regions used in deciding what sector
to prefer. The regions, conditions used to identify them, and
the preferred ECAV sectors are organized in Table I.

Using its preferred sector of headings defined by its next-
step speed limits (coming from speed rate constraints), the
ECAV picks the heading closest to ϕ∗, which points at Ef .

Ef need not be at the left end of region 3© in Fig. 7; it can
be pretty much anywhere when gamma mode is activated,
which provides part of the motivation for the preferred sector.
If the preferred sector does not intersect with its next-step
angle limits (coming from turn rate constraints), then the
ECAV has no choice but to try the other sector. Note that, in
Table I, two choices are given for region 2©; the conservative
option guarantees that the ECAV will not get sucked in to the
radar, but the aggressive option provides better performance
on average, i.e. the phantom track does not have to turn away
from the waypoint as sharply. Observing Fig. 7, it is best to
keep the ECAV in regions 1© and 3© because this corridor or
“sweet spot” is the only area that will allow the ECAV to fly
parallel with the phantom in the long term.

In the case that the phantom heads exactly toward or away
from the radar, ϕ is still well chosen based on Table I. If the
phantom heads toward the radar, then the ECAV will be in
regions 1© or 5©. From the table, ϕ = π + θ if in 1©, and
ϕ = θ if in 5©. If the phantom heads away from the radar, then
the ECAV will be in regions 2©, 3©, or 4©, and the table gives
ϕ = θ for all three regions when the conservative choice is
used for 2© (the aggressive choice is not too bad either, since
the ECAV would be heading toward the radar but starting at a
large distance from it). However, in this special case, it is not
enough to choose ϕ; υ must also be chosen, and it is based
here on whether the phantom and ECAV are aimed toward or
opposing each other:

υ =
{

min
[
ῡmax,max

(
ῡmin, r

RυT

)]
cos(ϕ− ϕT ) < 0

ῡmin cos(ϕ− ϕT ) > 0
(8)

In the general case, once ϕ is chosen, υ may be calculated
using

υ =
r sin dθ

dt sin(φ− dθ)
(9)

provided dθ := θ+ − θ 6= 0 or mod(φ, π) 6= 0. Equation (9)
is analogous to υ = rθ̇/ sinφ for continuous time.

In working toward a guarantee that the ECAV will never
get sucked in to the radar with this guidance law, it is useful
to consider what happens in the transitions between regions.
This analysis is ongoing. However, one thing is clear: the
γ-mapping from 6© to 2© is discontinuous after t = 0. In
other words, if an ECAV enters region 6© from 1©, it will
switch from γ = π to something given by (4) and generally
less than π

2 . Hence, gamma mode will fail in most cases to
redirect the phantom track because the sector [θ − γ, θ + γ]
won’t intersect with that defined by the phantom’s turn rate
constraints. One situation already apparent where this would
come up is when an ECAV starts in region 5© and has to
make a large turnaround before it can fly parallel with the
radar. One way to address this problem would be to calculate
multiple steps ahead and see if the ECAV would be able to
reach parallel flight with the phantom in the sweet spot without
hitting any constraints.
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Fig. 8. Simulation results for the new algorithm, with ECAV and phantom
turn rate limits set to 5◦/s and ECAV and phantom speed rates set to 0.05 g’s.

E. Simulations

For completeness, the new algorithm is applied to the same
two scenarios in Fig.’s 3, 4, and 5, and the simulations are
shown in Fig. 8. Comparing the figures, the new algorithm
performs much better than the previous one-step look-ahead
algorithms in Fig.’s 3 and 4, even with all pertinent dynamic
constraints included; indeed, the simulations in Fig. 8 appear
very similar to the optimal solution in Fig. 5.

V. A LOOK-AHEAD FOR AN ECAV CLOSE TO ITS RADAR

A multi-step look-ahead is now developed for an ECAV
starting close to its radar when the phantom range rate is
toward the radar. To begin, we seek to understand and model
in continuous time what the ECAV actually does using its
guidance law above when starting in region 5© of Fig. 7.

A. General Analysis

Given a phantom track, a simple model that describes an
ECAV’s free motion in terms of its speed is

ṙ =

 +
√

υ2 − (rθ̇)2

−
√

υ2 − (rθ̇)2
, (10)

where only the + or − is solved at a given time, and switching
between solutions requires the quantity inside the root to be
zero—see [1] for details. This model is relevant because an
ECAV trying to make a turnaround will generally be limited
by its speed rate as opposed to its turn rate. For a straight
constant-speed phantom track, we have:

θ̇ =
1
R

υT sinφT (11)

Ṙ = υT cos φT (12)

To reduce the three-state system given by (10)–(12), first
substitute (11) for θ̇ in (10):

ṙ =

 +
√

υ2 −
(

r
RυT

)2 sin2 φT =: f+

−
√

υ2 −
(

r
RυT

)2 sin2 φT =: f−
(13)

Next, define the new state r
RυT and differentiate:

d
dt

( r

R
υT

)
=

[
1
R

ṙ − r

R2
Ṙ

]
υT +

r

R
υ̇T (14)

Using (12), f+ from (13), υ̇T = 0 (constant speed phantom),
and R = Rmin

sin φT
(straight phantom track) in (14), we get

d
dt

( r

R
υT

)
=

υT

Rmin
sinφT

[
f+ −

( r

R
υT

)
cos φT

]
, (15)

and since φ̇T = −θ̇ (straight phantom track), (11) becomes

dφT

dt
= − υT

Rmin
sin2 φT . (16)

Finally, dividing (15) by (16) yields

d
dφT

( r

R
υT

)
= − csc φT

[
f+ −

( r

R
υT

)
cos φT

]
, (17)

which is a one-dimensional dynamical system with state
r
RυT , independent variable φT , and control υ that completely
describes the evolution of the ECAV’s relative range (scaled
by υT ) in space when its range rate is toward the phantom.

B. A Model for the Actual ECAV Guidance Law

The actual ECAV guidance law turns the ECAV as sharply
as permitted at all times until parallel flight with the phan-
tom is reached; first, this is limited by υmin and then by
υ̇max. Figure 9 makes this idea more concrete by showing
an ECAV trajectory, which is a solution of three different
ODEs modeling what the guidance law actually dictates (for a
straight constant-speed phantom track). In addition, the ECAV
trajectory shown is critical in the sense that any trajectory
starting with a larger range would not be able to make a
successful turnaround. Segment A of the trajectory solves

d
dφT

( r

R
υT

)
= − csc φT

[
f+(υmin)−

( r

R
υT

)
cos φT

]
(18)( r

R
υT

)
(φT0) =

( r

R
υT

)
0

(19)( r

R
υT

)
(φT1) =

υmin

sinφT1
, (20)

where f+(υmin) is just f+ from (13) with υ = υmin, and
the end condition (20) corresponds to rθ̇ = υmin. The ODE
for segment A is just (17) with υ = υmin. Segment B of the
trajectory solves

d
dφT

( r

R
υT

)
= − csc φT

[
f−(ῡ)−

( r

R
υT

)
cos φT

]
(21)

ῡ(φT ) = υ̇max
Rmin

υT
(cot φT − cot φT1) + υmin (22)( r

R
υT

)
(φT2) = ῡ(φT2), (23)

where f−(ῡ) is just f− from (13) with υ = ῡ(φT ),
which comes from integrating υ̇/φ̇T with φ̇T given by (16).
Observing (21)–(22), we see that segment B depends on the
initial value φT1. Note that if the quantity under the root in
f− ever goes negative, then the integration stops because of
infeasibility (υ̇max is not sufficient to match the increasing rate
of rθ̇). Segment C of the trajectory solves

d
dφT

( r

R
υT

)
= 0 (24)( r

R
υT

)
(φT f =

π

2
) = υmax. (25)
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Fig. 9. Trajectory an ECAV would follow using its guidance law for a given
initial range and angle that start it below the “sweet spot.”

What makes this whole pursuit worthwhile is that any ECAV
trajectory defined by the above model and having a lesser
range than the critical trajectory for some φT is feasible.
This fact follows from the existence and uniqueness of the
solutions described by (18)–(25), which must be shown. It
is straightforward to show that the right-hand sides of (18),
(21), and (24) are Lipschitz continuous for relevant r

RυT

and φT ∈ [ε, π − ε] (except at transition points), which is
required by the Existence and Uniqueness Theorem. Careful
examination of the transitions also shows that no trajectory
crossovers are possible.

Assuming that the ECAV’s speed and speed rate constraints
are fixed, observe that (18)–(25) depend only on r

RυT , φT ,
and Rmin

υT
. In fact, only segment B depends on the last term;

this time parameter matters only when υ̇max plays a role or is
limiting. Using shooting, (18)–(25) can be integrated to get the
critical ECAV trajectories for a variety of Rmin

υT
values—see

Fig. 10. This figure was used to predict critical ECAV tra-
jectories for the actual algorithm, and the results agreed quite
accurately—within half a degree or better. Using standard 2-
D interpolation, an ECAV can determine for a given φT and
Rmin
υT

whether or not it will make a successful turnaround. If
infeasibility is predicted, then the phantom heading should be
modified by slightly decreasing φT . This change will move
the ECAV to the left in Fig. 10 and to a higher Rmin

υT
-curve.

However, decreasing φT may not be possible when the ECAV
is on segment B because the increased speed rate required may
be outside the constraints (in this case, the best course is no
action).

Observing Fig. 10, the critical ECAV trajectories for lower
Rmin
υT

values do not even achieve υmax at φT = 90◦. This
result is caused by the small bound on υ̇. Physically, what
happens is that when the ECAV transitions to segment B (see
Fig. 9), υ̇ begins to have a tug-of-war with d

dt (rθ̇) while θ̇ is
significantly increasing. The requirement for feasibility is

υ̇ ≥ d
dt

(rθ̇) = ṙθ̇ + rθ̈. (26)
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Fig. 10. r
R

υT versus φT of the critical ECAV trajectories for different
values of Rmin

υT
, with υ̇max = 0.05 g’s.

Since r is nonincreasing after segment A, we have ṙ ≤ 0. This
implies a simple requirement on the ECAV’s speed rate limit:

υ̇max ≥ rθ̈ (27)

The right-hand term has a complicated dependence on both the
phantom track and the ECAV motion, which depends on its
guidance law. Therefore, rmax and θ̈max are found separately
to get an upper bound. First, θ̈ is determined by differentiating
(11) with ϕT and υT constant:

θ̈ =
−Rθ̇υT cos φT − ṘυT sinφT

R2

= −2
υ2

T

R2
min

sin3 φT cos φT (28)

Differentiating again and setting equal to zero gives φTmax =
2π
3 for φT ∈ [0, π]. Plugging φTmax back into (28) yields

θ̈max =
3
√

3
8

υ2
T

R2
min

(29)

To find rmax given that the ECAV is starting in region 5© of
Fig. 7, Fig. 9 suggests that on segment B the largest possible
range is where υmax

υT
= υmin

θ̇
. Solving this equation,

rmax =
υ2

max

υmin

Rmin

υT
. (30)

Using rmax and θ̈max in (27) and rearranging now gives(
Rmin

υT

)
min

=
3
√

3
8

υmax

υ̇max

υmax

υmin
, (31)

which is the (conservative) minimum value of Rmin
υT

that will
not cause infeasibility due to υ̇max (infeasibility could still
occur due to υmax). Using the same ECAV constraints as
specified in Fig. 10, (31) gives 120 as the minimum for Rmin

υT
;

as expected, this is a little high since the curve for Rmin
υT

= 100
still achieves υmax in the figure.
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VI. THE SECOND-GENERATION ALGORITHM

A. Changes to the Existing Design

The first change to our algorithm is that the initial relative
ranges an ECAV can start from are now bounded above by

υs

υTmin
so that the old gamma mode based on (4) is no longer

needed (it is only useful when activated at t = 0 as discussed
earlier). Our reasoning is that little is gained by placing an
ECAV closer to the phantom, which then causes the phantom
to veer off on a long gradual curve before heading toward the
waypoint. If an ECAV can start close to the phantom, then it
should be able to turn slightly, fly down closer to its radar, and
begin generating a nice straight phantom track a few seconds
later. In addition, infeasible configurations can be created when
multiple ECAVs are too close to the phantom and their LOS’s
are significantly spread apart in angle. Thus, placing an upper
bound on where an ECAV can start makes the problem simpler
and sacrifices little in terms of realistic limitations.

The second change to the algorithm is the determination of
υ∗T , which before required knowledge of the ECAV ranges.
Now, each ECAV communicates its choice for υT , and the
minimum of these values is taken for υ∗T . This change de-
creases the performance somewhat but has the advantage that
the ECAVs have some direct influence over the phantom speed.

B. Addition of the Look-Ahead

Using data similar to that in Fig. 10 but with a finer grid, a
2-D interpolation now allows an ECAV starting in region 5© of
Fig. 7 to check whether the current phantom heading and speed
will allow a successful turnaround into the sweet spot. If not,
then the ECAV computes and sends a new γ, which is just the
current φT decreased by a fraction of the phantom’s next-step
angle limits. There are a few situations where the ECAV’s γ
may not be feasible for other ECAVs in the same predicament.
In this case, the current solution is to then disregard all γ’s in
constructing the feasible region for the phantom.

C. Addition of Dynamic Objective Waypoints

An operator can now dynamically update the objective way-
point for the phantom. Objective waypoint is stressed because,
as these points are added, the phantom immediately focuses on
the newest point without regard for previous “waypoints.” This
construction is similar to a receding horizon, where the current
objective waypoint is the horizon. To allow the ECAVs to
follow the phantom’s maneuver to a new objective waypoint,
ϕ∗ is temporarily set to ϕT . The ECAVs must then wait until
all are flying parallel with the phantom (and have communi-
cated so) before the phantom can begin turning toward the new
objective waypoint. When the algorithm begins, this wait time
can be several time steps, but later on it’s immediate since the
ECAVs have converged to their optimal ranges given by Ef .

D. Simulations

An example of the second-generation algorithm in action for
3 radars is given in Fig. 11. Two dynamic objective waypoints
are specified. For the first, the look-ahead is activated by the
ECAV on the right, which turns the phantom to a less acute
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Fig. 11. Simulation results for the new algorithm—second generation—for
a 3-radar scenario, with the nominal phantom speed set to 4x the ECAVs’.

heading until that ECAV can accommodate the phantom head-
ing directly toward the objective waypoint. As time increases,
the speeds begin approaching their nominal values.

VII. CONCLUSIONS AND FUTURE WORK

Given the complexity and high coupling of the phantom
track problem, the new algorithm developed herein is quite
robust and provides a solid base for future development. The
next pressing addition should be a tracking controller that
would guide any ECAV forced off its LOS by constraints
to track back onto the LOS in minimum time. Given this
capability, a better decision process should be implemented
to deal with the case when one ECAV’s γ is not feasible for
another ECAV. Adding an estimator for the ECAV states based
on communicated information would also aid the algorithm’s
performance—specifically by providing better information for
selecting the phantom speed. Finally, analysis should be con-
ducted to determine what happens and what can be done when
one of the ECAVs experiences a communication outage.
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