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ABSTRACT 

Results of the Acoustic Thermometry of Ocean Climate (ATOC) project’s 

experiments have shown that at 75 Hz, the Rytov acoustic scattering theory using the 

Garrett-Munk (GM) internal wave spectrum may be used for predicting the variations of 

log-amplitude and phase. Using Monte Carlo methods, this paper is focused on 

establishing the regimes of validity of the Rytov theory within the 75–400 Hz acoustic 

frequency range and for propagation ranges up to 200 km. Ray paths corresponding to 

grazing angles of 0°, 5°, 10° and 14° are considered, thus spanning the range of possible 

ray geometry from surface reflection to axial propagation. Investigations show that the 

Rytov and simulation spectra are in very good agreement in the frequency range from the 

buoyancy frequency up to a grazing-angle-dependent transition frequency between 1 and 

0.2 cph. For frequencies less than the transition frequency, the Rytov spectra are in fairly 

good agreement with the simulations for all ranges and grazing angles between 0º and 

10º. For the 14º beam, the Rytov theory dramatically underpredicts the spectral energy at 

frequencies less than 1 cph. When there is strong variability in phase and log-amplitude, 

analysis shows significant spectral energy can exist at frequencies greater than the 

buoyancy frequency. This energy is not predicted by the Rytov model and represents the 

effect of strong interference and scattering not treated in the weak fluctuation approach of 

the Rytov theory. This study increases the relevance of the weak fluctuation theory 

(WFT) as an acoustic prediction tool. 
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EXECUTIVE SUMMARY 

The objective of this thesis is to examine efficient reduced physical models for 

estimating acoustic propagation through the fluctuating ocean. This research is a study to 

predict acoustic propagation statistics using “simple” analytical models rather than doing 

intensive and time-consuming Monte Carlo computations. 

The theory of wave propagation through random media was pioneered by Soviet 

workers in the 1950s and 1960s in an effort to understand optical propagation through the 

atmosphere. Using the important results of Kolmogorov’s homogenous isotropic 

turbulence model, a perturbation approach developed by Rytov was applied successfully 

in many experiments in which the optical fluctuations were weak. Inspired by these 

results, ocean acousticians spent many unsuccessful years trying to apply the 

homogenous isotropic theory to the ocean. In the 1970s oceanographers finally started 

talking with ocean acousticians, and it was discovered that internal gravity waves in the 

ocean are the primary cause of random sound speed fluctuations: internal waves are 

neither homogenous nor isotropic. Furthermore, internal waves have their own intrinsic 

wave-like time dependence, existing between the local buoyancy and Coriolis 

frequencies. In addition, in the ocean sound travels along curved ray paths rather than 

straight-line paths. With the advent of the Garret-Munk (GM) internal wave spectrum and 

the adaptation of the Rytov method to the ocean by Munk and Zachariasen, the prediction 

of ocean acoustic fluctuations were on a much firmer footing.  

The MATE experiment using frequencies of 2–13 kHz showed that the Rytov 

theory can accurately predict the frequency spectrum of phase variations, but it also 

showed that the Rytov theory was not working for the frequency spectrum of intensity 

fluctuations. In a later experiment as part of the Acoustic Thermometry of Ocean Climate 

(ATOC) project’s Acoustic Engineering Test (AET), 75 Hz signals were transmitted to a 

range of 87 km with a bandwidth of 30 Hz. Colosi and Xu (2007) examined the acoustic 

variability in the AET experiment. Assuming the ocean sound speed fluctuation spectrum 

had the GM (Garrett-Munk) form, they computed the intensity spectrum using the Rytov 

theory of Munk and Zachariasen (1976), and found that the theory matched the 
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observations fairly well.  Following this success, this thesis will investigate the limits of 

applicability of the Rytov theory for low acoustic frequencies and a variety of ray 

geometries. This research addresses the important problem of characterizing the acoustic 

uncertainty in the ocean sound channel.  

Rytov theory for random ocean media describes the mechanism of weak, multiple 

forward scattering. In this regime, phase fluctuations lead to intensity fluctuations.  Phase 

fronts are distorted, leading to focusing and defocusing. The Rytov theory describes an 

important resonance condition in which only internal waves whose crests are aligned with 

the sloping ray path will contribute to the scattering. The alignment of the crests means 

that only internal waves whose wave numbers are perpendicular to the acoustic ray will 

contribute to the scattering. This theory therefore treats all of the complications in ocean 

acoustic propagation through internal waves, namely ray paths whose angle changes 

gradually with range, and inhomogeneous and anisotropic internal-wave-induced sound 

speed perturbations.  

This thesis uses the acoustic observable of the frequency spectrum of phase and 

log-amplitude for the analysis, since many other acoustic observables, namely amplitude 

and phase correlation functions and coherence, can be derived from these spectra directly. 

Using Monte Carlo parabolic equation numerical simulation methods with random 

realizations of GM internal waves, this study established the acoustic propagation range 

and acoustic frequency limitations of the theory, as a function of ray path geometry. 

Monte Carlo methods are accurate but very time consuming; the Rytov theory, on the 

other hand, has a regime where it is very accurate and computationally efficient.  The 

Monte Carlo numerical simulations were carried out at acoustic frequencies of 75, 200, 

and 400 Hz, and for the range evolutions of four acoustic ray paths up to a maximum 

range of 200 km. Ray paths correspond to grazing angles of 0°, 5°, 10° and 14°, thus 

spanning the range of possible ray geometry from surface reflection to axial propagation. 

At a series of different ranges from the source, frequency spectra have been computed 

and compared to the theory to establish regimes of validity and the mechanism by which 

the theory breaks down.  

 



 xvii

For all acoustic frequencies and beam grazing angles, results show that the Rytov 

and simulation spectra are in very good agreement in the frequency range from the 

buoyancy frequency up to a grazing-angle-dependent transition frequency between 1 and 

0.2 cph. In this frequency range the slope of the spectra is nearly -3. However, the spectra 

of log-amplitude at the longer ranges and higher acoustic frequencies show some 

weakening of the -3 slope. The Rytov resonance with perpendicular wave numbers limits 

the influence of low-frequency internal waves for the frequencies less than the transition 

frequency. The Rytov theory spectra are in fairly good agreement with the simulations for 

all ranges and grazing angles between 0º and 10º. For the 14º beam, in which there is 

significant surface interaction, the Rytov theory dramatically underpredicts the spectral 

energy at frequencies less than 1 cph, demonstrating a breakdown in the Rytov resonance 

condition. When there is strong variability in phase and log-amplitude, we also find that 

significant spectral energy can exist at frequencies greater than the buoyancy frequency 

(the maximum internal wave frequency). This energy is not predicted by the Rytov model 

and represents the effect of strong interference and scattering not treated in the weak 

fluctuation approach. 

These results help to establish the regimes of validity of the Rytov theory at low 

frequencies, and show that in these regions there is an efficient method for predicting the 

space-time scales of acoustic phase and intensity fluctuations. These results need to be 

further validated with ocean experiments so that better sonar system algorithms can be 

established.  
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I. INTRODUCTION 

Ocean acoustics is a rather simple topic in principle: if one specifies the space-

time structure of the ocean sound speed field, one can in principle compute, using the 

wave equation, the acoustic pressure field for any arrangement of sources and receivers. 

However in practice, ocean acousticians have rather incomplete information about the 

space-time structure of the ocean sound speed field. Furthermore, the ocean has many 

dynamic and complex fluid motions that can only be treated stochastically and not 

deterministically. Thus ocean acoustic propagation is in essence statistical in nature, as 

has been revealed by decades of experiments since the 1960’s (Flatte et al., 1979; Munk 

et al., 1996). Characterization of the statistics of ocean acoustic signals is therefore an 

important prerequisite to the design of useful systems for ocean remote sensing, 

communication, and navigation.  

The primary motivation of this thesis is to find regimes of acoustic frequency, 

propagation range, and acoustic ray path geometry where computationally efficient 

reduced physics models of sound transmission through the fluctuating ocean can be 

accurately applied to estimate the space-time scales of acoustic variability.  

A. SOUND TRANSMISSION THROUGH A FLUCTUATING OCEAN 

Sound transmission through a fluctuating ocean is an active area of research that 

has matured with the studies of Stanley M. Flatte (1975), Roger Dashen (1979), Walter 

H. Munk (1976), Kenneth M. Watson (1979), Fredrik Zachariasen (1976), B.J. Uscinski, 

T.E. Ewart (1998), John A. Colosi (2007), and many other researchers from all over the 

world.  

An understanding of acoustic fluctuations and variability is important because 

these effects impose the ultimate limits on acoustical remote sensing.  

The theory of wave propagation through random media was pioneered by Soviet 

workers in the 1950s and 1960s in an effort to understand optical propagation through the 

atmosphere. Using the important results of Kolmogorov’s homogenous isotropic 

turbulence model, a perturbation approach developed by Rytov was applied successfully 
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in many experiments in which the optical fluctuations were weak. Inspired by these 

results, ocean acousticians spent many unsuccessful years trying to apply the 

homogenous isotropic theory to the ocean. In the 1970s oceanographers finally started 

talking with ocean acousticians, and it was discovered that internal gravity waves in the 

ocean are the primary cause of random sound speed fluctuations: internal waves are 

neither homogenous nor isotropic. Furthermore, internal waves have their own intrinsic 

wave-like time dependence, existing between the local buoyancy and Coriolis 

frequencies. In addition, in the ocean sound travels along curved ray paths, rather than 

straight-line paths. With the advent of the Garret-Munk (GM) internal wave spectrum and 

the adaptation of the Rytov method to the ocean by Munk and Zachariasen, the prediction 

of ocean acoustic fluctuations were on a much firmer footing.  

The Rytov theory describes an important resonance condition in which only 

internal waves whose crests are aligned with the sloping ray path will contribute to the 

scattering. The alignment of the crests means that only internal waves whose wave 

numbers are perpendicular to the acoustic ray will contribute to the scattering. This 

theory therefore treats all of the complications in ocean acoustic propagation through 

internal waves, namely ray paths whose angle changes gradually with range, and 

inhomogeneous and anisotropic internal-wave-induced sound speed perturbations.  

During the last decade researchers have used computer modeling and simulation 

as a tool to analyze and compare the theories as well as to validate them with ocean 

experiments. These efforts have developed better theories to estimate many ocean 

acoustic observables like coherence, scintillation, and signal spectra (Colosi and Xu, 

2007).Garrett and Munk developed an internal wave spectrum model in the 1970s, and 

this model has been used by many oceanographers and acousticians. This model is called 

the Garrett-Munk, or GM, model. Sound speed fluctuations due to internal waves are the 

dominant source of high-frequency variability of acoustic wave fields in the ocean 

(Flatte, 1975). 

One of the early experiments to study sound-speed fluctuations was the MATE 

experiment, where the observed statistics were compared to acoustic predictions by Ewart 

(1984). A view of this experiment is shown in Figure (1) and Figure (2). MATE was 
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conducted in June and July 1977. For the MATE experiment, two receivers were placed 

on Cobb Seamount and one transmitter was placed on a sister seamount about 20 km 

from Cobb Seamount. Cobb Seamount is a volcano 275 miles west of Grays Harbor, 

Washington. 

The MATE results involved frequencies of 2, 4, 8, and 13 kHz. Sound 

transmissions were sent from a single tower on one seamount to two receiving towers on 

Cobb Seamount over an 18.1 km range. Ewart (1984) found that the weak fluctuation 

theory worked well for the phase but not the intensity statistics. Spectra of the moored 

displacement and travel time measured during MATE are shown in Figure (3). The 

internal wave displacements have a frequency spectrum with power law ω-1.7 (Henvey 

and Ewart, 2006).  Also the predicted spectrum of travel time has a power law of ω -2.7. 

The factor of ω difference in the power laws is a result of the Rytov theory that only IW 

(internal waves) whose wave numbers are perpendicular to the ray contribute to the 

scattering. An earlier study which was a single path experiment on Cobb Seamount had 

been conducted by Ewart, where observed and computational phase and intensity were 

within a factor of 2 (Munk and Zachariasen, 1976), but the frequency spectrum of 

intensity showed discrepancies. In general, early experiments conducted in the kHz 

region showed good agreement with phase and poor agreement with intensity. The 

MATE experiment results showed disagreement with Rytov theory intensity spectra in 

the kHz region as shown in Figure (8). 

Much later, as a part of the Acoustic Thermometry of Ocean Climate (ATOC) 

project’s Acoustic Engineering Test (AET), 75 Hz signals were transmitted to a range of 

87 km with a band with of 30 Hz. Colosi and Xu (2007) examined the acoustic variability 

in the AET experiment, and assuming a GM (Garrett-Munk) ocean spectrum, they 

computed the frequency spectrum of intensity using the Rytov theory of Munk and 

Zachariasen (1976). The AET frequency spectrum of log-amplitude is shown in Figure 

(4) along with the theoretical results. The red curve is a ray angle of 10º, and the black 

curve is a ray angle of 5º. The solid curves are the theoretical values (Colosi and Xu , 

2007). This experiment showed that the Rytov theory works at 75 Hz for the frequency  
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spectrum of intensity because of the weaker scattering at lower frequencies. This result 

provided the motivation for further study of frequencies of 75 to 400 Hz and ranges of 50 

to 200 km. 

The success of the weak fluctuation theory (WFT) in this low-frequency 

experiment has generated renewed interest in the weak fluctuation theory (WFT) as an 

acoustic prediction tool. This thesis addresses the limits of applicability of the Munk and 

Zachariasen (1976) model as a function of acoustic frequency and ray path geometry. 

B. STATEMENT OF RESEARCH 
The objective of this thesis is to examine efficient reduced physical models for 

estimating acoustic propagation through the fluctuating ocean. In particular, the goal is to 

be able to put error bounds on acoustic TL (transmission loss) and phase, and to predict 

the space-time scales of the variability for acoustic frequencies in the 75–400 Hz range. 

The primary research focus of this thesis is the establishment of the regimes of validity of 

the Rytov model as adapted by Munk and Zachariasen (Munk and Zachariasen, 1976). 

This addresses the important problem of characterizing the acoustic uncertainty in the 

ocean sound channel. For this analysis the acoustic observable of the frequency spectrum 

of phase and log-amplitude will be used, since many other acoustic observables, namely 

amplitude and phase correlation functions and coherence, can be directly derived from 

these spectra.  Using Monte Carlo numerical simulation methods utilizing canonical 

models of sound speed and buoyancy frequency, this study establishes the acoustic 

propagation range and acoustic frequency limitations of the theory, as a function of ray 

path geometry.  

Further, this thesis elucidates the physics leading to the breakdown of the theory. 

This research is a study to predict acoustic propagation statistics using “simple” analytic 

models rather than doing intensive and time-consuming Monte Carlo computations.  

Observations of acoustic fluctuations in the ocean have been made for a number 

of propagation ranges, acoustic frequencies, and ray path geometry. In some cases 

acoustic fluctuation behavior displays features reminiscent of the weak fluctuation 

(Rytov) theory and in others it does not. The cause of the discrepancies in the 

observations may be acoustical or oceanographic in origin, that is to say the discrepancy 
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may be due to the fact that we do not have the correct acoustic scattering model, or it may 

be due to the fact that we do not have the correct ocean spectrum for sound speed 

fluctuations. Therefore, we have conducted a numerical experiment with a known ocean 

spectrum (the Garrett-Munk spectrum), and compared the full physics parabolic equation 

Monte Carlo simulation data to the weak fluctuation theory which also uses the GM 

(Garrett-Munk) spectrum. This approach directly tests the acoustic scattering model since 

both the numerical model and the theory have the same ocean spectrum.  

Monte Carlo methods are accurate but very time-consuming; the Rytov theory, on 

the other hand, has a regime where it is very accurate and computationally efficient. This 

study provides a model for the phase and log-amplitude frequency spectra that can be 

used to obtain estimates of the coherence function for time separations. Important 

components of the coherence function are the correlation functions of the phase and log-

amplitude which are related to the spectra of those quantities by Fourier Transform. This 

study will help to use the Rytov theory as an acoustic prediction tool and the results of 

this thesis will help to improve the long-range underwater communications at low 

acoustic frequencies. 

This study focuses on internal wave effects because of the decades of strong 

evidence towards internal wave dominance in acoustic scattering (Colosi and Brown, 

1998). 

Monte Carlo numerical simulations of acoustic propagation through random fields 

of internal waves were carried out at acoustic frequencies of 75, 200, and 400 Hz, and we 

have studied the range evolutions of four acoustic ray paths to a maximum range of 200 

km. Ray paths corresponding to grazing angles of 0°, 5°, 10° and 14° are considered, thus 

spanning the range of possible ray geometry from surface reflection to axial propagation. 

At a series of different ranges from the source, frequency spectra have been computed 

and compared to the theory to establish regimes of validity and the mechanism by which 

the theory breaks down. This study is limited to the effects of ocean internal waves. This 

study does not examine other processes like mesoscale eddies, ocean turbulence, or ocean 

fine structure. This study is also limited in the fact that we choose simple canonical  
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profiles of sound speed and buoyancy frequency: Acoustic fluctuations are known to be 

enhanced or degraded by various details of the background sound-speed profile (Flatte, 

1983). 

C. SUMMARY 
This chapter introduced some of the important researchers along with their 

research and development in the areas of sound wave propagation through random ocean 

media and internal-wave-induced sound speed perturbation fields. This chapter also 

introduced the objective of this thesis that is to examine efficient reduced physical 

models for estimating acoustic propagation through the fluctuating ocean. The 

information that might be reached upon this study will lead to acoustic coherence 

information and it will be an important input for the underwater communication and 

sonar systems engineering studies to increase the signal-to-noise ratio and form the sonar 

arrays with a better understanding of the ocean sound speed field. At last, the limitations 

of this study are introduced.  

In Chapter II, methods of analysis will be introduced. This chapter will cover the 

theoretical background about the internal waves (IW), Garrett-Munk (GM) spectrum and 

the standard parabolic equation (SPE). Chapter III will present the weak fluctuation 

theory of Rytov, and Chapter IV will introduce the Monte Carlo numerical simulation 

and split-step Fourier algorithm as a reliable tool to validate the Rytov theory. Recall that 

this thesis is interested in the Rytov theory of internal waves because of the dominant 

effects of internal waves on the sound propagation paths, and the computation speed of 

this theory is significantly faster than the time-consuming Monte Carlo simulations. 

Chapter V will present the results obtained from both the simulation and the theory and 

shows the theory breakpoints as the reliable regime where the theory works. 
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II. METHODS OF ANALYSIS  

A. INTRODUCTION 
This chapter presents the methods of analysis used in the computer simulations to 

validate the Rytov theory. We perform Monte Carlo parabolic equation simulations of 

sound propagation through time-evolving random realizations of internal-wave-induced 

sound speed field fluctuations. Some statistical quantities from these Monte Carlo 

calculations are compared with the Rytov theory.  

The first section describes the phenomenon of ocean sound speed fluctuations 

induced by internal wave vertical displacements. The mathematical model developed by 

Garrett and Munk (C. Garrett and W. Munk, 1972) is used to characterize the internal 

waves in terms of their frequency/wave number spectrum. This GM (Garrett-Munk) 

spectrum is used to generate random realizations of internal-wave-induced sound speed 

fluctuations. In section B we introduce the parabolic equation method for sound 

propagation through arbitrary profiles of sound speed. 

Before we start the theoretical development it is important to point out that this 

thesis uses a complex notation to present acoustic field quantities and Fourier transforms 

of time and space. There are some confusing quantities that have a different usage in 

different scientific areas, as a quantity has a different meaning in an electrical engineering 

text than an oceanography text. This thesis will describe its usage of these quantities 

mostly consistent with underwater acoustics texts. One of the quantities that differs 

between the electrical engineering and the underwater acoustics or oceanography texts is 

the direction of propagation. This thesis takes the primary direction of propagation to be 

in the x direction, leaving the coordinate z to be in the ocean depth direction. The y 

coordinate is considered to be in the transverse direction, out of the primary (x,z) plane of 

propagation. Another convention that has a different usage is the complex quantity 

i= 1− , differing from the standard electrical engineering symbol j. In this thesis the 

lower case j is used to define the internal wave mode number.  
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B. INTERNAL WAVES AND THE GARRETT - MUNK (GM) SPECTRUM 

In the ocean the dominant source of the variability of acoustic fields is the sound 

speed fluctuations caused by internal waves (Munk and Zachariasen, 1976). Internal 

waves are geophysical wave motions that oscillate due to the buoyancy and Coriolis 

forces. Internal waves cause sound speed changes of order 1 m/s with time scales 

between the Coriolis period (i.e., about one day) and the buoyancy period (i.e., 10 to 20 

minutes). The special scales of internal waves are of order 10 km in the horizontal and 

100 m in the vertical. 

Thirty-five years ago Garrett and Munk (C. Garrett and W. Munk, 1972) proposed 

a model synthesizing the existing observations into a model spectrum describing the 

distribution of observed internal wave energy in wave number and frequency space. This 

model has found a wide application since it is in excellent agreement with experimental 

observations. Energy levels generally vary by a factor of 2 and spectral slopes may vary 

by 10 to 20 percent. 

At the basis of this theory is the fact that the ocean is stratified by density. Less 

dense water tends to be at deep layers of the ocean, while higher density water tends to be 

at shallower layers. As a consequence of this density stratification, a water parcel 

displaced vertically to a new depth is surrounded by a fluid with a different density, and 

the interplay of the buoyancy and gravity forces on the parcel leads to oscillatory motion. 

The character of this oscillatory motion is dictated by the buoyancy (Brunt-Väisälä) 

frequency N(z),  defined as 

  
0

( )
pot

gN z
z
ρ

ρ
− ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠

  ,              (1) 

where g is the acceleration of gravity (g=9.8 ms-2), 0ρ  is the reference density, and 

potz
ρ∂⎛ ⎞

⎜ ⎟∂⎝ ⎠
is the potential gradient of density. The potential gradient of density is an 

important quantity due to the adiabaticity of internal wave motions. The other force that 

acts on internal waves is the Coriolis pseudo-force whose effect is described through the  
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Coriolis frequency f=2Ω sin(latitude) , where Ω  is the Earth’s angular velocity. Internal 

waves have frequencies σ  between the Coriolis frequency f and the buoyancy frequency 

N. 

Internal waves cause sound speed perturbations by vertically displacing density 

surfaces.  Thus we can relate the sound speed c of a fluid parcel at depth z, displaced by 

ζ using the Taylor expansion to give 

( , , ( , )) ( ) ( , ) ( ) ( , )
pot

cc x y z r t c z r t c z c r t
z

ζ ζ δ
⎛ ⎞∂

+ ≈ + = +⎜ ⎟∂⎝ ⎠

v v v
,          (2) 

where x and y are horizontal coordinates, r
v

 is the position vector, ( )c z  is the mean sound 

speed profile, and t is time. Importantly, the sound speed perturbation cδ  is proportional 

to the potential sound speed gradient 
pot

c
z

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

because of the adiabaticity of internal wave 

vertical displacement. The potential sound speed gradient profile can be expressed in 

terms of the buoyancy frequency so that the fractional sound speed fluctuation becomes  

2

0

( , )( , ) c r tr t N
c g

δ αµ ζ
⎛ ⎞

= ≈ ⎜ ⎟
⎝ ⎠

v
v

 ,              (3) 

where α  is a dimensionless constant ( 24.5α ≈ ) related to the temperature and salinity 

relationship, c0 is a reference sound speed equal to 1500 m/s, and N is the buoyancy 

frequency. 

 Equation (3) can be used to understand the statistics of internal wave induced 

sound speed fluctuations. The variance of ( , )r tµ
v

 can be written as (Flatte et al., 1979) 

3
2 2

0 3
0

( )( ) N zz
N

µ µ= ,               (4) 

where 2
0µ  is a reference fractional sound speed variance taken to be 2 8

0 6.26 10µ −= ×   and 

N0 is a reference buoyancy frequency taken to be 3 cph (cycles per hour). This equation 

gives us an important result. It shows that internal-wave-induced sound speed  
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fluctuations are inhomogeneous in depth. Since in the upper ocean the buoyancy 

frequency is much larger than in the deep ocean, internal-wave-induced sound speed 

fluctuations are much larger in the upper ocean. 

Internal waves in the ocean can be represented as horizontally propagating 

vertical modes. Therefore the internal wave displacement field ζ  can be considered as a 

sum over all possible internal waves with wave numbers kx, ky and vertical mode number 

j, such that (Colosi, 2005) 

( ( ) )

1

( , , , ) R e[ ( , , ) ( , ) ]x y j hi k x k y k t
x y x y j h

j
x y z t dk dk g j k k A z k e σ

∞ ∞ ∞
+ −

=−∞ −∞

ζ = ∑∫ ∫ , (5) 

where 2 2
h x yk k k= +  is the horizontal wave number, Aj is the jth mode function, and 

( )j hkσ  is the dispersion relation. The amplitudes of each of these internal waves 

( , , )x yg j k k  are considered to be complex random variables whose statistics are described 

by the Garrett-Munk (GM) spectrum. According to the GM spectrum, the internal wave 

amplitudes are independent zero mean complex Gaussian random variables such that 

* ' ' ' ' '( , , ) ( , , ) ( , , ) ( ) ( ) ( ')x y x y x y x x y yg j k k g j k k G j k k k k k k j jζ δ δ δ〈 〉 = − − − ,            (6)

where ( , , )x yG j k kζ  is the internal wave (IW) spectrum and * denotes the conjugate 

operation.  

The Garrett-Munk spectrum as a function of mode number and frequency is given 

by 

2 2
2 0
0 3 2 2

*

( )4 1 1( , )
( )

f fNG j
M N z j jζ

σ
σ ζ

π σ
−

=
+

,           (7) 

where the mode bandwidth *j  =3 is a constant, and 2 2
1 *

1
j

M
j j

∞

=

=
+∑  is a normalization. 

The spectrum is normalized such that 
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2 2 0
0

1
( , ) ( )

( )j f

NG j d z
N zζ σ σ ζ ζ

∞∞

=

= =∑∫ ,                   (8)

where 0ζ is a reference internal wave displacement. Particularly important is the spectrum 

ofµ , thus modifying the normalization the spectrum of µ  is 

2 23
2
0 3 3 2 2

0 *

( )4 1 ( ) 1( , )
f fN zG j

M N j jµ
σ

σ µ
π σ

−
=

+
.          (9) 

 To get a random realization of µ  via Equation (5), the spectrum must be given in 

terms of the mode number j and horizontal wave numbers kx and ky. The coordinates have 

been changed in Equation (9) using the WKB dispersion relation (Colosi and Xu, 2007), 

( )2 2
2 2 2

2 ( )x y

z

k k
f N z

k
σ

+
= + ,            (10)

where
0

( )
z

jN zk
N B

π
= ,  0

0

( )
D

N B N z dz= ∫  and D is the water depth. The result is 

( )

2 23
2
0 23 2 2 2 2 2 2

0 *

( ) 1 1 2( , , ) ,j x y
x y

x y j

k k kN zG j k k
N M j j k k k

µ µ
π

+
=

+ + +
                       (11)

where  
0

j
f jk
N B
π

=  . 

In the ocean, the buoyancy frequency is approximately /( ) z B
sN z N e−≈ , where the 

surface buoyancy frequency is 5sN cph�  and thermo cline depth is 1000B m� . As 

previously noted, internal waves are inhomogeneous in depth since the variance 2µ  of 

the relative speed change is larger near the ocean surface. Also of importance, the 

spectrum given by Equation (11) is isotropic in the horizontal direction (i.e., only 

depends on 2 2
x yk k+ ). On the other hand, internal waves are anisotropic in the vertical-

horizontal direction. Vertical scales are roughly 0.1 km, while horizontal scales are 

roughly 10 km. 

 



 12

C.  PARABOLIC EQUATION 

The method of parabolic wave equations was first introduced by Leontovich and 

Fock (1946) and applied to a radio wave propagation problem in the atmosphere (Jensen, 

Kuperman, Porter & Schmidt, 2000). The parabolic equation (PE) method has found 

wide application in the field of underwater acoustics after Hardin and Tappert (1973) 

devised an efficient model based on Fourier transforms. The PE method has become the 

most popular method to solve range-dependent ocean wave propagation problems. 

In this thesis, the derivation of the parabolic equation follows the treatment by 

Jensen, Kuperman, Porter & Schmidt (2000).  There are different kinds of parabolic 

equations, but this thesis will be using the so-called standard parabolic equation, which is 

the crudest approximation for small angle forward scattering. This is also the 

approximation made in the Rytov theory. 

1. Standard Parabolic Equation 
Sound propagation through a spatially variable and time-evolving ocean is 

described by the acoustic wave equation given by 

2
2

22

1( , )
( , )

pp r t
tc r t

∂
∇ =

∂

v
v .            (12)  

 However, the ocean time scales of variability are much longer than an acoustic 

wave period and thus the sound speed can be considered frozen in time during the 

passage of an acoustical wave. Therefore, in Equation (12) the time dependence of the 

sound speed ( , )c r t
v

 can be neglected, and the Helmholtz equation can be examined for a 

harmonic point source of time dependency (exp (-iωt)) in cylindrical coordinates (r, ϕ ,z) 

where two-dimensional propagation is assumed in the (r,z) plane. The time evolution of 

the internal wave sound speed field will be treated by specifying the individual frozen 

sound speed fields as c(r,z,tm), where tm is the internal wave evolution time. The 

Helmholtz equation is therefore 

2 2 2
2 2 2

02 2 2

1 0p p pp p k n p
c r r r z
ω ∂ ∂ ∂

∇ + = + + + =
∂ ∂ ∂

 ,  (Cylindrical coordinates).       (13) 
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where p(r,z,tm) is the acoustic pressure, ω is the radial frequency, 0
0

wk
c

=   is a reference 

wave number, and 0 0( , , ) ( , , )
( , , ) c( )m m

m

c cn r z t r z t
c r z t z

µ= ≈ −  is the index of refraction. The 

sound speed is 

m mc(r,z,t )=c( ) (r,z,t )z cδ+ .            (14) 

The acoustic pressure can be written as 

(1)
0 0( , ) ( , ) ( )p r z r z H k rψ= ,                                           (15) 

where ψ  is the complex wave amplitude, (1)
0 0( )H k r  is a Hankel function of the first kind, 

and (1) ( / 4)
0 0

2( ) i krH k r e
kr

π

π
−�  . Substituting Equation (12) into Equation (11) and making 

the small angle approximation, 

2

02 2ik
r r
ψ ψ∂ ∂

∂ ∂
� ,                       (16)     

gives the standard parabolic equation (Hardin and Tappert,1973): 

2
2 2

0 022 ( 1) 0ik k n
r z
ψ ψ ψ∂ ∂

+ + − =
∂ ∂

,                       (17) 

where n is the index of refraction. 

This equation will be used with random realizations of internal waves to perform 

Monte Carlo numerical simulations. 

D. SUMMARY 

This chapter introduced the basic physical concepts such as the definition of 

internal waves and the Garrett-Munk spectrum and also the parabolic equation. This 

thesis focuses on finding the regions of validity of the Rytov theory using Monte Carlo 

simulations. In the next chapter, weak fluctuation theory (Rytov theory) for the random 

ocean media will be presented, and the following chapter will describe the Monte Carlo 

numerical simulation. 
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III. WEAK FLUCTUATION THEORY (RYTOV THEORY) 

A. INTRODUCTION 
This chapter presents the Rytov theory applied to ocean acoustic propagation 

through random internal-wave-induced sound speed perturbations obeying the GM 

(Garrett-Munk) internal wave spectrum. The theory gives the spectra of log-amplitude 

and phase for individual ray paths that traverse the ocean waveguide at various grazing 

angles (i.e., ray angle at the sound channel axis). The physical model under consideration 

is that of weak, small-angle, multiple forward scattering.  The parameters used to analyze 

the regimes of validity of the weak fluctuation theory of Rytov will be described. When 

the regions of validity of the weak fluctuation theory are defined and the physics behind 

the breakdown points described, the Rytov theory will help ocean acousticians better 

understand the stability of ocean acoustic wave fields. This effort will aid in the 

development of new and better systems for acoustic remote sensing, communications, 

and navigation.  

B. RYTOV THEORY 
The Rytov theory treats the physical situation of weak, small-angle forward 

scattering, where phase fluctuations lead to intensity fluctuations. Figure (5) shows how 

phase fronts are distorted by sound speed heterogeneities leading to focusing and 

defocusing. Conceptually, the Rytov theory reveals a resonance condition such that only 

internal waves whose wave numbers are perpendicular to the sloping ray contribute to the 

scattering. Figure (6) shows the geometry of this ray internal wave interaction. In this 

figure, (+) indicates the areas with higher speed and (-) indicates the areas with lower 

speed. In this case the acoustic wave front is distorted, leading to focusing and 

defocusing. On the other hand, internal waves whose wave numbers are parallel to the ray 

phase front do not lead to wave front distortion and thus do not contribute strongly to the 

acoustic scattering [See Figure (7)]. An example of the effect of internal waves on 

acoustic beam propagation is shown in Figure (9). This figure shows an unperturbed ray 

beam at 200 Hz and 5º launch angles in the upper plot and the perturbed ray beam in the 

lower plot. The beam is distorted, leading to focusing and defocusing. We also see that 
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the unperturbed beam is broken up into many smaller beams and that interference effects 

can be strong. 

This paper uses the treatment of Munk and Zachariasen (1976) and also Colosi 

and Xu (2007) in applying the Rytov method to internal-wave-induced acoustic 

fluctuations in an ocean waveguide. Background buoyancy frequency and sound speed 

profiles are dependent only on the depth coordinate z where c=c(z) and N=N(z). An 

important aspect of ocean acoustic propagation with an ocean waveguide with c=c(z)  is 

that the unperturbed ray paths are curved. The Rytov theory was originally developed to 

describe optical propagation through a turbulent atmosphere. In this case the unperturbed 

ray paths are straight lines. The Rytov formulations of Munk and Zachariasen (1976) and 

Colosi and Xu (2007) are shown to be local applications of the straight ray results; thus 

the theory can break down if the ray has significant curvature. The results of this thesis 

will show aspects of this breakdown for the steepest rays considered.  

Weak fluctuation theory is known to be valid for small intensity fluctuations 

where the variance of log-amplitude 2 1χ �  scintillation index (SI) is approximately 

less than or equal to 0.3 0.4− , and ln Iσ  is approximately less than or equal to 1 to 2 dB. 

Phase statistics are expected to be valid where variance of phase is 2 2(2 )φ π≥ . 

Following the derivations from Colosi and Xu (2007), the frequency wave 

number spectra of phase φ  and log-amplitude χ  at range R for a given ray path г are  

2 2
2

, 0

( )
( , , ( )) (0, , ( ); ) 1 cos

2
z fz

z z

k R x
F R k j k R dsG k j zφ χ µω π ω

πΓ

⎡ ⎤⎛ ⎞
= ±⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫ ,             (18) 

where  (+) corresponds to  φ  and (-)  corresponds to χ  in the second term of the 

integral. In other words, this integral will give the frequency wave number spectrum of 

phase if (+) is used in the second term, and it will give frequency wave number spectrum 

of log-amplitude if (-) is used in the second term. This integral shows the relation 

between frequency spectrum of phase and frequency spectrum of log-amplitude. 

Importantly, the integral in Equation (18) is along a specific ray path of the unperturbed 
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sound speed profile; the parameter Γ  then gives the coordinates of the ray path zr(x). 

Integration over specific ray paths is significant here, because the distinct ray paths 

sample the inhomogeneous and anisotropic internal wave field differently; a ray traveling 

down the sound channel axis at zero grazing angle will see a different internal wave field 

than one that reflects off the sea surface and has a relatively large grazing angle. This 

integral has two important terms that will be discussed next. There is a spectral term 

denoted by G(0,w,kz) and a diffraction term given by 
2 2 ( )

1 cos
2

z fzk R x
π

⎡ ⎤⎛ ⎞
±⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

. 

 The first term is the spectrum of sound speed fluctuations, where the 

perpendicular wave number constraint has been applied. The GM (Garrett and Munk) 

spectrum with perpendicular wave number constraint is given by 

*

*

1/ 22 3 2 2
0

3 3 2 2 3 2 2
0

8(0, , ( ); ) ,
( )

z
z

z z z L

kN Nf fG k j z
N k k kµ

µ ωω
π ω ω ω

⎛ ⎞−
= ⎜ ⎟+ −⎝ ⎠

 ωL < ω  <N,          (19)

where it is valid for the frequencies ω between the cutoff frequency ωL (the lower limit) 

and the buoyancy frequency N. The origin of the lower frequency cutoff ωL is discussed 

in what follows. The component of the internal wave perpendicular to a ray with slope 

( ( ))rz xθ  is 

( ( )) ( tan ( ( )), , )r z r y zk z x k z x k kθ⊥ = − ,                      (20) 

where (rz x ) is the depth of the unperturbed ray path. The internal wave dispersion 

relation in the WKB limit with the perpendicular wave number constraint is (Colosi and 

Xu, 2007) 

  2 2 2 2 2 1/ 2

0

tan ( ) ( )h z y
jk k k f

N B
πθ ω= + −�  ,                                                    (21) 

where ω is the internal wave frequency and f is the Coriolis parameter. If we solve this 

equation for ky then 

2 2

0

( ),y L
jk

N B
π ω ω= −                        (22) 
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2 2 2 2tanL f Nω θ= + ,                                             (23) 

where ωL is IW lower frequency (cutoff) limit. This equation shows that if Lω ω≤  then ky 

cannot be a real number and dispersion relation cannot be satisfied for internal wave 

frequencies less than ωL. Thus, internal waves whose frequencies are less than the lower 

frequency limits ωL do not interact with the acoustic field locally.  

The second term in Equation (18), which is in square brackets, is the Fresnel 

filter. 2 ( )fzR x  is the vertical Fresnel zone (Flatte et al., 1979). The Fresnel filter can be 

considered as a weighting function on the spectrum which controls the contributions to 

the phase and log-amplitude variances at each wave number kz. This filter function 

accounts for effects of diffraction. The spectra , ( , , )F R w kzφ χ  mirrors the ocean spectrum 

of sound speed except for the action of the filter function.  The Fresnel filter has its 

maximum at kz=0 for phase. Considering the fact that the internal wave spectrum at 

perpendicular wave number is approximately 3
zk − , variance of phase is most sensitive to 

large scales of the spectrum (i.e., where kz is small). The Fresnel filter has its first 

maximum for when 

2 2 ( )
cos 1

2
fk R x

π
⊥

⎛ ⎞
⎜ ⎟ −
⎜ ⎟
⎝ ⎠

�    or       (24)    

2 2

2
fk R

π
π

⊥ � ,  2

f

k
R
π

⊥ �  .            (25)       

Thus log-amplitude fluctuations are most sensitive to internal wave scales near 

the Fresnel zone. For the situation in which there is no waveguide, the Fresnel zone is 

given by 2 ( )( )f
R xR x x

R
λ −

= , where λ  is the acoustic wavelength, and R is the range.  

Conceptually, the Fresnel zone describes a diffractive region or zone around a geometric 

ray path (Flatte et al., 1979).  In this thesis the Fresnel zone in the ocean waveguide is  
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computed using the methods in Colosi and Xu (2007). It is important to note that this 

computation does not handle the Fresnel zone properly when the ray gets near the ocean 

surface. 

Important acoustic observables are the frequency spectrum of phase and the phase 

variance  

2( ) ( , ) , ( , )
L

N

z z
w

F w F k dkz F k dkzdφ φ φω φ ω ω
∞ ∞

−∞ −∞

= =∫ ∫ ∫  .        (26) 

We will use this equation to calculate the phase spectra and variance for the Rytov 

theory, and, importantly, we will analyze the phase variance from the Rytov theory with 

the phase variance from Monte Carlo numerical simulations as shown in Figure (13). 

The log-amplitude frequency spectrum and variance is 

2( ) ( , ) , ( , )
L

N

z z
w

F w F k dkz F k dkzdχ χ χω χ ω ω
∞ ∞

−∞ −∞

= =∫ ∫ ∫   .                   (27) 

Equation (27) will be used to calculate the log-amplitude frequency spectrum and 

variance for the Rytov theory, and importantly, we will analyze the log-amplitude 

variance from the Rytov theory with the log-amplitude variance from Monte Carlo 

numerical simulations as shown in Figure (14). Log-amplitude variance is important to 

calculate the transmission loss in the ocean. 

The main approximations of the Rytov theory are:  

1) Ray curvature is small; equations assume a locally straight ray. That is to 
say the ray cannot change orientation within an internal wave correlation 
length. This condition breaks down for all rays at the turning point of 
maximum curvature. 

2) Single scattering (perturbation theory is only taken to first order). 

3) Expansion about the unperturbed ray. This study integrates the Rytov 
equations over the unperturbed ray path. Internal waves do make the 
unperturbed ray path unstable, but the instability range seems to be in the 
range 200–500 km. 

4) Fresnel zone: This study Computes the Fresnel zone, again using the 
unperturbed ray. Internal waves may in fact modify the Fresnel zone. We 
also do not take into account the ocean surface boundary condition when 
we compute the Fresnel zone. 
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C. SUMMARY 

This chapter described the weak fluctuation theory of internal waves and the 

important parameters that will be used for analyzing the Monte Carlo simulation with the 

Rytov theory. In this chapter the findings of earlier studies about Rytov theory were 

given. One of the important points described in this chapter was the usage of the Munk 

and Zachariasen (1976) treatment. In this approach, straight ray formulas are used 

locally, and this approximation breaks down for significant curvatures. Dispersion 

relation cannot be used for frequencies of variability less than cutoff frequency ωL.  The 

Rytov theory says that only internal waves with perpendicular wave numbers contribute 

to the scattering. Phase is most sensitive to large scales of the spectrum. Log-amplitude is 

most sensitive to the scales near the Fresnel zone. The approximations used in this theory 

were given at the end of this chapter. 

This thesis uses the approximations given in this chapter, and the results chapter 

will show where the Rytov theory breaks down due to these approximations. In the 

conclusions chapter, the reasons for the theory’s breakdown points and future 

recommendations for follow-on work will be discussed. 

The next chapter will present the Monte Carlo numerical simulation. It is the most 

reliable method, but is very time consuming.  
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IV. MONTE CARLO NUMERICAL SIMULATION 

A. INTRODUCTION 
This chapter presents the Monte Carlo numerical simulation, which is known to be 

the most reliable and accurate method to validate the weak fluctuation theory of Rytov. 

The Garrett-Munk ocean spectrum is used for both the Monte Carlo numerical simulation 

and the Rytov theory and was presented in Section 2. This chapter introduces the sound 

speed field and the model parameters chosen for the simulation and the split-step Fourier 

algorithm. One simulation was made for the phase variance and log-amplitude variance 

calculated with independent random realizations. Another simulation was made for phase 

and log-amplitude spectra executed with time evolution of 1 realization. The results from 

the simulation will be presented in the next chapter. 

B. SOUND SPEED FIELD AND MODEL PARAMETERS 
In this thesis the background environment is a Munk canonical profile (Munk, 

1974) as seen in Figure (11). The analytic form of the Munk profile is 

2( ) /
0( ) 1 ( 2( ) / 1)az z B

ac z c e z z Bε − −⎡ ⎤= + + − −⎣ ⎦  ,        (28)       

where B is the thermo cline depth scale, the minimum mean sound speed c0 is 1500 (m/s), 

the sound channel axial depth za is 1000 m, the total water depth is 5000 m, and 

0.005515 ε =  is the perturbation coefficient, which is a dimensionless constant.  

The sound speed field used in this paper is a two-dimensional sound speed field 

dependent on x and z coordinates consisting of a mean sound speed profile and sound 

speed perturbations dependent on the location and time such that 

( , ) ( ) ( , , )c x z c z c x z tδ= +  .                       (29)  

Realizations of sound speed perturbations are generated by the method of Brown 

and Colosi (1996), as described in Section 2. 
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C. PARABOLIC EQUATION METHOD 

1. Split-Step Fourier Algorithm 

Since Hardin and Tappert (1973) introduced the split-step Fourier method for 

solving the parabolic equation to the underwater acoustic community, this method has 

found wide application. This study uses the split-step Fourier algorithm shown by Jensen 

et al., (2000): 
2 20

00
( , ) 121 2

0( , ) ( , )
z

i r ikk n r z rkr z F e F e r z
∆

− ⎡ ⎤− ∆⎣ ⎦−
⎧ ⎫⎧ ⎫⎪ ⎪Ψ = Ψ⎨ ⎨ ⎬⎬
⎪ ⎪⎩ ⎭⎩ ⎭

,                 (30) 

where r0 and r are two different ranges separated by the increment 0r r r∆ = −   at each 

step, the capital letter “F ” is the Fourier transform from the z domain to the kz domain, 

and the symbol “F-1” is the inverse Fourier transform. This algorithm starts with 

marching the solution out in range with a phase screen. This phase screen takes the 

refractive effects into account. The next step is advancing the solution for a homogeneous 

medium to include diffraction (Jensen et al.,, 2000). The split-step Fourier algorithm 

parameters are given in the first three columns of Table 1: 

 

Frequency 

(Hz)  

dx (m.) dz (m.) , (N) 1θ  (deg) 2θ  (deg) Maximum 

time evolution

75 50  2.4414 , (2048) 0.75 (0,5,10,14) 10 days 

200 20  2.4414 , (2048) 3.75 (0,5,10,14) 20 days 

400 10  1.2207 , (4096) 3.75 (0,5,10,14) 7.5 days 

Table 1.   Split-step algorithm parameters 
 

where dx is the split-step range interval length, dz is the depth grid spacing, and N is the 

number of depth grids. 

The values for dx and dz were chosen to compromise between accuracy and 

simulation time. For greater values of dx and dz the Monte Carlo numerical simulation 

runs faster while loosing accuracy, while for smaller values of dx and dz the simulation 

yields more accurate results at the expense of a considerable increase in simulation time.  
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Different values of dx and dz were tested in a number of short realizations in order 

to set the parameters for the right accuracy. Then the number of grids was set based on 

the fact that the maximum depth is 5000 m and the number of grids is equal to the 

maximum depth divided by the depth grid spacing (N=5000/dz). Furthermore, the 

accuracy of the results is influenced by the beam width. Since waves at 200 and 400 Hz  

have a wider beam than waves at  75 Hz, the latter  yields results with better  resolution. 

Two different simulations were carried out. The first one was for phase variance 

and log-amplitude variance, which was executed with independent random realizations. 

And the second simulation was for phase and log-amplitude spectra executed with time 

evolution of 1 realization. 

2.  Boundary and Initial Conditions 
This study used the parabolic equation method to simulate an image ocean. An 

image ocean is simulated to treat the ocean surface as a reflecting boundary (pressure 

release) which translates to the boundary condition ( , ) 0r zΨ = . 

The boundary condition can be satisfied by subtracting the image source, which is 

created in the reflected image ocean, from the source at depth zs (Jensen et al.,, 2000). 

(0, ) (0, ) (0, )s sz z z z zΨ = Ψ − −Ψ +            (31)    

The boundary condition at the bottom of the ocean is treated by an attenuation 

function, or “sponge layer” due to the periodic boundary conditions of FFT (Fast Fourier 

Transform) solution. This absorption layer is used to prevent the waves from entering the 

domain at the top after they exit from bottom. If there weren’t any absorption layer, the 

periodic FFT solutions would be mistaken by the waves which should be absorbed. 

Colosi and Flatte (1996) produced a sponge layer to avoid this wrap-around problem, 

expressed as 

2

( ) exp exp b

b

z zL z dx
z

β
α

⎧ ⎫⎛ ⎞⎛ ⎞−⎪ ⎪⎜ ⎟= − × −⎨ ⎬⎜ ⎟⎜ ⎟⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
 ,         (32) 
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where zb is the bottom depth of computational domain, β  is the relative strength of the 

loss and chosen to be 0.04β = , and α  is the loss relative to the bottom and chosen to be 

0.05α = .  

For the narrowband simulation, a directional source is modeled (Colosi, 2007) as 

( )
0

2 2
1/ 2 0 1

1 0 2
tan ( ( ))( 0, ) tan( ) exp exp sin ( )

2
s

s
k z zx z k ik z zθψ θ θ

⎛ ⎞− −
= = −⎜ ⎟

⎝ ⎠
,      (33)      

where k0 is the reference wave number,  zs is the source depth, 1θ is the beam width, and 

2θ  is the beam angle. Table 1 gives the beam parameters for the various simulations that 

were done. 

3. Phase and Amplitude Fluctuations 
In this section the symbol  '   is used for defining perturbed quantities, and the 

subscript  0  is used to define the unperturbed quantities. For example, the quantity 'a  is 

the perturbed amplitude with sound speed fluctuations, and 0a  is the unperturbed 

amplitude. The perturbed field pressure is thus written  

 ' ' '' ' i ia e eφ χ φ+Ψ = =  ,            (34) 

and the unperturbed field pressure is 

 0 0 0
0

i ia e eφ χ φ
∧

+Ψ = = ,            (35)  

where the log-amplitude is defined as ln aχ = , 0φ  is the unperturbed phase, and the 

perturbed phase is 0'φ φ φ= + . The phase fluctuation and log-amplitude fluctuation can be 

found by dividing the perturbed field pressure by the unperturbed field, 

0 0' ( ' )

0

' 'i iae e e
a

χ χ φ φ φψ

ψ

− −
∧ = = ,           (36)  

which will lead to the phase fluctuation taking the imaginary part of the natural log of the 

ratio of perturbed field over unperturbed, 
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'Im lnψφ
ψ
∧

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

,             (37) 

and the log-amplitude fluctuation is the difference between the perturbed log-amplitude 

'χ  and unperturbed log-amplitude 0χ . Log-amplitude fluctuation can be defined as the 

real part of the ratio of the perturbed sound speed field divided by the unperturbed field, 

0
0

' '' Re ln ln a
a

ψχ χ
ψ
∧

⎛ ⎞
⎜ ⎟− = =
⎜ ⎟
⎝ ⎠

 .           (38) 

It is important to note that in the simulation, which is not broadband, the phase  φ  will be 

between 0 and 2π . To compute phase statistics, the phase must be unwrapped. For the 

time-evolving internal wave simulations, this is possible because there is phase 

information as a function of both range and time along the beam; that is ( , )x tφ . In this 

case a two-dimensional phase unwrapping technique can be applied (Colosi et al., 2004).  

For the Monte Carlo simulations with independent internal wave realization used to 

quantify phase variance, there are independent realizations of phase as a function of range 

only; that is ( )xφ . Hence the phase may only be unwrapped in the x direction. In 1-D 

phase unwrapping, problems can occur when the intensity gets small and phase becomes 

ill defined.  

D.  SUMMARY 
In this chapter, two different Monte Carlo numerical simulations were carried out 

to find the validity regions of the Rytov theory. The first simulation was to investigate 

both  phase and log-amplitude variances by executing independent random realizations of 

the numerical simulation. The second, larger simulation was to compute phase and log-

amplitude frequency spectra from time series of complex pressure. Here the acoustic 

pressure field was simulated every two minutes for multiple days. Due to the time-

consuming nature of this calculation, only one realization of the internal wave random 

amplitudes was time-evolved. As previously mentioned these simulations are very time 

consuming. For example, for the 200 Hz calculation, it was necessary to simulate 20 days 

of internal wave time evolution, and this calculation took close to 20 days! The 75 Hz 
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calculation took a little less time, while the 400 Hz calculation took slightly more time. 

By comparison, the use of the Rytov theory reduced the computation time to a few 

minutes in all cases.  

The simulations also were very memory intensive and disk space intensive; the 

random internal wave realizations required 2 GB of RAM, while almost 500 GB of hard 

drive space was used. On the other hand, the computational requirements for the Rytov 

theory are inconsequential.  

In the next chapter the regions of validity and the breakpoints of the Rytov theory 

will be presented. This will introduce new regions where the time and computer memory 

could be saved. 
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V. RESULTS 

This chapter presents the results for the phase and intensity variance, and the 

phase and intensity spectra. Beam angles of 0º, 5º, 10º, and 14º and acoustic frequencies 

of 75, 200 and 400 Hz are considered. The results are illustrated with the figures showing 

the Monte Carlo numerical simulation and the Rytov theory results in the same display. 

These results will extend the usage of the weak fluctuation theory of Rytov. The success 

of the weak fluctuation theory at low acoustic frequencies will increase the interest of this 

theory. These results show the validity limits of the Rytov theory where many 

applications in underwater communications and signal processing for underwater 

acoustics can be used. 

A. PHASE VARIANCE 
In this paper we start analyzing the results by looking at the phase variance and 

comparing the Rytov theory with simulation. Figure (13) shows the results with subplots 

for each launch angle (0º, 5º, 10º, 14º )  that we are analyzing in this paper. Each subplot 

has different colors for different frequencies. 75 Hz is shown with red, 200 Hz is shown 

as green, and 400 Hz is shown with blue. The simulation data is shown with solid lines 

and the theory is shown with dashed lines. Rms values of phase variance (rad) are plotted 

for up to 200 km range. For many of the phase statistics at higher frequencies and longer 

ranges, estimates could not be made because fade-outs prevented accurate phase 

unwrapping as discussed in Chapter V.  

At 0º launch angles the Rytov theory works very well for 75 Hz, but it gets worse 

for higher frequencies. All results show the same pattern with an increasing rms value 

changing like R1/2. 

The theory also works very well for 5º launch angles at 75 Hz up to the maximum 

simulated range of 200 km. At about 50 km the error is almost 25%, but the difference  

from the simulation results gets larger with range.  At 200 km the difference is more than 

50% of the simulation. At 400 Hz the standard deviation of the phase increases faster 

than it does at 75 Hz and 200 Hz. The simulation is almost twice the theory on average. 

The theory for 400 Hz is better at 50 km and it gets worse with increasing range.   
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At 10º and 75 Hz the theory is still giving a very good estimate close to the 

simulation and the estimation error is less than 20%. The theory is also working well at 

200 Hz and a 10º launch angle. Theoretical values are increasing parallel to the simulation 

values with less than 30% difference. At 400 Hz the theory is almost 50% of the 

simulation, although both the theory and simulation show increasing error with increasing 

range. 

At 14º all the results for phase variance show that the theory cannot predict 

accurately at this higher launch angle. It can be generalized that the theory breaks down 

after 10º for these frequencies. The theory breaks down because of the surface interaction. 

B. INTENSITY VARIANCE 
This analysis continues by examining the rms fluctuation of log-intensity. Figure 

(14) shows the intensity fluctuations in dB for 75, 200, and 400 Hz acoustic frequencies 

for beam angles of 0º, 5º , 10º and 14º. As in Figure (13), different acoustic frequencies are 

separated with different colors, and solid lines show simulation data while dashed lines 

show theoretical results. 

At 0º  , theoretical results at 200 Hz and 400 Hz match the simulation with a very 

small difference. Although the theoretical data for 200 Hz and 400 Hz is in good 

agreement with simulation, the data at 75 Hz data is not as good. Here the difference is 

less than 1 dB and the shapes of the curves are very similar. 

At 5º, the theory predicts 75 Hz data better than at 0º , but this time the theoretical 

results are less than 0.5 dB higher than simulation data. At 5º , the theory also predicts the 

200 Hz data quite well. The theory does not predict the 400 Hz data quite as well as data 

for 75 and 200 Hz, but the error is still less than 40%. The theory predicts the intensity 

fluctuations adequately out to the maximum range of 200 km. 

For the 10º beam, the theory predicts the 75 Hz data very well, except for the large 

spikes. The spikes occur at turning points where the mean intensity is low. The 10º results 

are worse at 200 Hz and the 400 Hz results are worse still. Thus, the theory seems to 

break down for higher frequencies at 10º. 
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The results for the 14º beam in Figure (14) clearly show that the theory breaks 

down at this high angle. 

In summary, these results for the intensity fluctuations show that the Rytov theory 

provides a good prediction up to 5º for all three frequencies. The theory also gives a good 

prediction at 10º and 75 Hz . The theory breaks down after 10º for all three frequencies. 

C. PHASE SPECTRA 

In this section we will analyze the frequency spectra of phase. The next section 

will discuss the frequency spectra of log-amplitude. As before, the analysis is made for 

12 cases, with 3 different frequencies of 75, 200, and 400 Hz, and for each frequency, 4 

different grazing angles of 0º, 5º, 10º and 14º. Results are plotted for the 12 cases, starting 

from Figure (15) for 75 Hz and 0º grazing angle and ending with Figure (26) for 400 Hz 

and 14º angle. In this section the important idea is to compare the shapes of the spectra, as 

the variances were already discussed in sections A and B.  

In these figures, the red curves are the spectra of phase sφ  from the Monte Carlo 

simulation, and the blue curves are spectra from the Rytov theory. The green curve is the 

µ  spectra from the internal wave simulation. The spectra of µ  are shown to demonstrate 

the cutoffs at f and N and to show the ω-2 form. We will compare the theoretical results 

with the Monte Carlo simulation. Each figure has the theoretical value for phase variance 

on the title. Ranges used for different launch angles are given in Table 2. These ranges 

were chosen to be very nearly after the beam traversed an upper turning point. 

 

Launch Angle Range (km.)  

1st subplot 

Range (km.)  

2nd subplot 

Range (km.) 

3rd subplot 

Range (km.) 

4th subplot 

0º 50 100 150 200 

5º 62 106 152 200 

10º 68 120 172 200 

14º 70 130 190 200 

Table 2.   Ranges used for different launch angles in each subplot 
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1. Spectral Energy at 75 Hz 

Figure (15) shows the phase spectrum of the theory and the simulation at 75 Hz 

and 0º launch angles at the predefined ranges seen in Table 2. The theory is in good 

agreement with the simulation except for 200 km at low frequencies of variability, where 

theory predicts more energy than observed in the simulation. 

Figure (16) shows the phase spectrum of the theory and the simulation at 75 Hz 

and 5º launch angles at the predefined ranges seen in Table 2. The theory is generally in 

good agreement with the simulation, but at the lowest frequencies of variability the 

theory slightly overpredicts the level of the spectrum. Importantly, both the theory and 

simulation show a change in spectral slope at roughly 0.2 cph. For frequencies greater 

than 0.2 cph, the slope is very nearly ω -3, whereas for lower frequencies of variability the 

slope is less. This break in slope is caused by the Rytov resonance condition in which 

internal waves whose wave numbers are perpendicular to the ray limit the influence of 

low-frequency internal waves. 

Figure (17) shows the phase spectrum of the theory and simulation at 75 Hz and 

10º launch angles at the predefined ranges seen in Table 2. The spectral comparisons for 

the 10º ray are very similar to the ones for the 5º ray. The theory predicts the spectrum of 

the phase very well at all ranges and frequencies of variability (cph) at 75 Hz and 10º. As 

before, the theory slightly overpredicts the spectral energy at lower frequencies of 

variability.  In this case, however, because we have a steeper ray, the change in slope of 

the spectrum occurs at about 0.5 cph. 

Figure (18) shows the phase spectrum of the theory and simulation at 75 Hz and 

14º launch angles at the predefined ranges seen in Table 2. We see dramatic differences 

between the theory and the simulation for the 14º ray. Recall that the 14º ray beam has 

significant surface interaction and thus it has more complex ray geometry. The theory 

significantly underpredicts the spectral energy level at frequencies of variability less than 

1 cph. At the same time, the theory is relatively accurate for frequencies of variability 

greater than 1 cph. In this frequency of variability range the spectrum very nearly has ω -3 

shape. At the 14º ray we observed a very significant effect of ω L (cutoff frequency) on 

the spectrum for frequencies less than 1 cph. Recall that ω L limits the spectral 
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contributions from the low-frequency internal waves. The simulation shows more 

spectral energy at low frequencies of variability than the theory, because the surface 

interaction seems to have modified the Rytov resonance condition in which only 

perpendicular wave numbers contribute. An important further study would be to 

understand the breakdown of the theory in this regime. 

2. Spectral Energy at 200 Hz 

Figure (19) shows the phase spectrum of the theory and simulation at 200 Hz and 

0º launch angles at the predefined ranges seen in Table 2. We observed very good 

agreement with the Rytov theory between the buoyancy frequency and the inertial 

frequency in which ω -3 spectral form is readily observed. However, for the larger ranges 

there is significant spectral energy at the frequencies of variability greater than the 

buoyancy frequency. In particular, at 200 km range the ω -3 shape continues all the way 

to the highest frequency of variability of 20 cph. The appearance of this energy at high 

frequency is due to interference effects. The Rytov theory does not predict this energy, 

because the Rytov theory is based on the internal wave dominance, and the highest 

possible frequency of internal wave is the buoyancy frequency. Because of this approach, 

the interference and scattering where ω  >N is not treated in the weak fluctuation theory 

(Rytov theory). This effect should be a further study to investigate. 

Figure (20) shows the phase spectrum of the theory and simulation at 200 Hz and 

5º launch angles at the predefined ranges seen in Table 2. The theory and simulation 

comparisons at 200 Hz and 5º look fairly good, except the theory slightly overpredicts the 

spectral energy at lower frequencies. Similar to the 75 Hz case, the slope changes at 0.2 

cph, in agreement with the theory. Comparing with the 0º ray at 200 Hz however, we see 

much less spectral energy for frequencies of variability greater than N. 

Figure (21) shows the phase spectrum of the theory and simulation at 200 Hz and 

10º launch angles at the predefined ranges seen in Table 2. Comparisons for the 10º ray 

are similar to the 5º ray. Again, the theory overpredicts the spectral energy at low 

frequencies of variability. We see a clear shift in spectral slope at about 0.5 cph. Spectral 

energy is also seen to extend to the frequencies of variability greater than N at larger 

ranges. 



 32

Figure (22) shows the phase spectrum of the theory and simulation at 200 Hz and 

14º launch angles at the predefined ranges seen in Table 2. The 14º ray shows a similar 

situation to the 75 Hz calculation. The theory underpredicts the spectral energy for 

frequencies lower than 1 cph and does a relatively good job matching the theory and 

simulation for the frequencies of variability greater than 1 cph. Here the spectral energy 

at frequencies of variability greater than N is quite small. So it is clear that energy 

penetrating into frequencies of variability greater than N seems to diminish with 

increasing beam angle. This means that interference effects which cause the extension at 

high frequencies of variability diminish with increasing beam angle. 

3. Spectral Energy at 400 Hz 
Figure (23) shows the phase spectrum of the theory and simulation at 400 Hz and 

0º launch angles at the predefined ranges seen in Table 2.  Comparisons are similar to the 

75 Hz and 0º case. We observed that the Rytov theory and the simulation results are in 

good agreement between buoyancy frequency and inertial frequency in which ω -3 

spectral form is observed. However, the spectral energy at frequencies greater than 

buoyancy frequency is higher at lower ranges than for the 200 Hz case. We observed that 

interference effects are significant past the 100 km range, where the ω -3 shape continues 

until the highest frequency of variability of 20 cph. Also, at higher ranges the theory 

slightly overpredicts the spectral energy at lower frequencies of variability. 

Figure (24) shows the phase spectrum of the theory and simulation at 400 Hz and 

5º launch angles at the predefined ranges seen in Table 2. The comparisons at 5º look 

good, except the theory slightly overpredicts the spectral energy at the lowest frequencies 

of variability. As observed in both the 75 Hz and 200 Hz calculations, the change in slope 

occurs at 0.2 cph. Comparing with the 400 Hz and 0º calculations, the spectral energy at 

frequencies of variability higher than buoyancy frequency is much less, except at 200 km 

where the ω -3 form extends up to the highest frequency of variability of 20 cph. 

Figure (25) shows the phase spectrum of the theory and simulation at 400 Hz and 

10º launch angles at the predefined ranges seen in Table 2. The theory and the simulation 

are in agreement between the buoyancy frequency and inertial frequency. The theory 

slightly overpredicts at lower frequencies of variability, and spectral energy extends to 
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the frequencies of variability greater than N at lower ranges than for 200 Hz. Spectral 

energy for the frequencies of variability greater than N is lower than the spectral energy 

at 5º and much less than the spectral energy at 0º.  

Figure (26) shows the phase spectrum of the theory and simulation at 400 Hz and 

14º launch angles at the predefined ranges seen in Table 2. The comparisons for 400 Hz 

and 14º beam are very similar to the earlier comparisons for 14º at 75 Hz and 200 Hz. The 

theory significantly underpredicts the spectral energy for the frequencies of variability 

lower than 1 cph, and it works well after 1 cph. Also, energy penetrating into the region 

where frequencies of variability are greater than N is much less than that at lower beam 

angles. 

D.  LOG-AMPLITUDE SPECTRA 
In this section we will analyze the frequency spectrum of log-amplitude. As 

before, the analysis is made for 12 cases, with 3 different frequencies of 75, 200, and 400 

Hz, and for each frequency 4 different launch angles of 0º, 5º, 10º , and 14º. Analysis 

results are plotted for 12 cases starting from Figure (27) for 75 Hz and 0º launch angle 

and ending with Figure (38) for 400 Hz and 14º angle. 

The red curves are the spectra of phase sχ  from the simulation, and the blue 

curves are spectra of log-amplitude from the theory. The green curve is the spectrum of 

µ  from the internal wave simulation. In this section we will compare the theoretical 

results with the simulation for log-amplitude spectra. Each figure has the theoretical 

value for log-amplitude variance in the title. Ranges used for different launch angles in 

each subplot are given in Table 2. 

1.    Spectral Energy at 75 Hz 

Figure (27) shows the log-amplitude spectrum of the theory and the simulation at 

75 Hz and 0º launch angles. For log-amplitude at 75 Hz and 0º launch angles, the theory 

overpredicts for frequencies less than 0.2 cph. At the higher frequencies where the ω -3 

form is observed, the theory predicts very well. For frequencies greater than buoyancy 

frequency, the theory and the simulation are in agreement. 
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Figure (28) shows the log-amplitude spectrum of the theory and the simulation at 

75 Hz and 5º launch angles. For the log-amplitude at 75 Hz and 5º beam at lower 

frequencies of variability (ω <0.2 cph), the theory overpredicts. We observe the slope 

change at 0.2 cph in agreement with the theory. For ω >N the theory is still in agreement 

with the simulation. 

Figure (29) shows the log-amplitude spectrum of the theory and the simulation at 

75 Hz and 10º launch angles. The theory works very well at 75 Hz and 10º launch angles. 

As a result of being a much steeper ray, the change in the spectrum slope occurs at 0.5 

cph. Importantly, the slope before the cutoff frequency is in agreement between the 

theory and the simulation. In general, the shape of the spectra is excellent.  

Figure (30) shows the log-amplitude spectrum of the theory and the simulation at 

75 Hz and 14º launch angles. For the log-amplitude prediction at 75 Hz and 14º beam, the 

theory breaks down for the frequencies of variability lower than 1 cph. The theory 

significantly underpredicts the spectral energy for the frequencies lower than 1 cph.  

However, the theory is relatively accurate at higher frequencies of variability where the 

spectral slope very nearly has the ω -3 shape. At 75 Hz we do not observe high spectral 

energy for frequencies greater than the buoyancy frequency (ω >N). 

2.    Spectral Energy at 200 Hz 
Figure (31) shows the log-amplitude spectrum of the theory and the simulation at 

200 Hz and 0º launch angles. In general, the theory slightly overpredicts at lower 

frequencies of variability. At the 100 km range, the 3ω− spectral slope form extends up to 

the highest frequency of variability, past the buoyancy frequency. Past the 100 km range, 

the theory does not predict the energy at frequencies greater than buoyancy frequency. 

Figure (32) shows the log-amplitude spectrum of the theory and the simulation at 

200 Hz and 5º launch angles. At 106 km, the theory predicts the log-amplitude very well 

at frequencies of variability greater than 0.2 cph, while it still slightly overpredicts the 

spectral energy at lower frequencies of variability. At longer ranges the theory is not 

good at very low and high frequencies.  We observe a slope change at 0.2 cph in 

agreement with the theory. At longer ranges the simulation shows spectral energy  
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extending to the highest frequency of variability of 20 cph. We observed spectral energy 

where ω >N at longer ranges. Importantly, at 200 km the spectral slope is slightly 

flattened, so it does not quite show the ω -3 form. 

Figure (33) shows the log-amplitude spectrum of the theory and the simulation at 

200 Hz and 10º launch angles. The theory slightly overpredicts for the 68 km range and 

ω <0.5 cph. At higher ranges the theory slightly overpredicts below 0.1 cph, and the 

theory slightly underpredicts after 0.1 cph. We do not observe the ω -3 form above 0.5 

cph; instead we observe the flattening of the spectral slope due to the effects of ωL. At 

higher ranges the ω-3 form extends up to the highest frequency of variability of 20 cph. 

Figure (34) shows the log-amplitude spectrum of the theory and the simulation at 

200 Hz and 14º launch angles. As in all the other cases for 14º, the theory breaks down 

for frequencies lower than 1 cph, where the theory dramatically underpredicts the spectral 

energy. For frequencies greater than 1 cph, the theory works well and the spectral energy 

at higher frequencies of variability observed at the lower beams is diminished. 

3.    Spectral Energy at 400 Hz 

Figure (35) shows the log-amplitude spectrum of the theory and the simulation at 

400 Hz and 0º launch angles. At 400 Hz and 0º launch angles, the theory slightly 

overpredicts for frequencies of variability lower than 0.2 cph. For frequencies of 

variability greater than 0.2 cph at low ranges the theory works well. Also, the theory does 

not predict the spectral energy at higher frequencies of variability, whereas the simulation 

results are extended up to the highest frequency of variability. 

Figure (36) shows the log-amplitude spectrum of the theory and the simulation at 

400 Hz and 5º launch angles. For the 400 Hz and 5º beam, the theory slightly overpredicts 

at frequencies of variability lower than 0.2 cph. For frequencies of variability greater than 

0.2 cph, the spectral slope changes and takes the ω -3 form where the results are much 

better than lower frequencies of variability and the 400 Hz 0º beam. The theory does not 

predict the spectral energy at higher frequencies than the buoyancy frequency, whereas 

the simulation results show spectral energy up to the highest frequency of variability of 

20 cph. 
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Figure (37) shows the log-amplitude spectrum of the theory and the simulation at 

400 Hz and 10º launch angles. For the 400 Hz and 10º beams, the theory works very well 

between the buoyancy frequency and inertial frequency. The theory underpredicts the 

spectral energy at lower frequencies. Both the theory and the simulation show a change in 

spectral slope at 0.5 cph. For frequencies of variability greater than 0.2 cph the slope is 

nearly ω -3 where the theory and the simulation are in agreement. At 200 km the spectral 

slope form of ω -3 continues until the highest frequency of variability of 20 cph. 

Figure (38) shows the log-amplitude spectrum of the theory and the simulation at 

400 Hz and 14º launch angles. For 400 Hz and 14º launch angles, the theory breaks down 

for frequencies lower than 1 cph, where the theory significantly underpredicts the spectral 

energy. At frequencies greater than 1 cph, the theory is working relatively accurately. The 

spectral energy at higher frequencies of variability past the buoyancy frequency, observed 

at the lower beams, is diminished for the 14º beam. 

E. SUMMARY 
In this chapter we analyzed the phase variance, intensity variance, phase spectra, 

and the intensity spectra for 0º, 5º, 10º and 14º beams and the acoustic frequencies of 75, 

200, and 400 Hz. The analysis results are given in Figure (13) through Figure (38). 

1. Spectral Comparisons for f< ω <0.2-1.0 cph 

For the internal wave frequencies between the Coriolis frequency f and the 

transient frequencies of 0.2-1.0 cph, the Rytov resonance with perpendicular internal 

wave (IW) wave numbers limits the influence of low-frequency internal waves. In this 

low frequency of variability regime, the Rytov theory results are in good agreement with 

the simulations for the grazing angles between 0º and 10º. However, at the 14º grazing 

angle, the Rytov theory dramatically underpredicts the spectral energy, demonstrating a 

breakdown in the Rytov resonance condition. 

2. Spectral Comparisons for 0.2-1.0cph< ω<N 

For the frequencies of variability between the transient frequency and the 

buoyancy frequency N, the Rytov theory and the Monte Carlo numerical simulation 

spectra are in very good agreement at all acoustic frequencies and beam grazing angles.  
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In this frequency region the slope of the spectra is nearly -3. However, the spectral slope 

of log-amplitude is slightly weakened at the longer ranges and higher acoustic 

frequencies. 

3. Spectral Comparisons for ω >N 
When there is significant variability in phase and log-amplitude, significant 

spectral energy can exist at frequencies greater than the buoyancy frequency (the 

maximum internal wave frequency). This energy is not predicted by the Rytov model and 

represents the effect of strong interference and scattering not treated in the weak 

fluctuation approach of the Rytov theory. 
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VI. CONCLUSIONS AND FUTURE WORK 

The objective of this thesis was to examine efficient reduced physics models for 

estimating acoustic propagation through the fluctuating ocean. This research is a study to 

predict acoustic propagation statistics using “simple” analytic models rather than doing 

intensive and time-consuming Monte Carlo computations. 

The primary research focus of this thesis was the establishment of the regimes of 

validity of the Rytov theory. This addresses the important problem of characterizing the 

acoustic uncertainty in the ocean sound channel. The acoustic observable of the 

frequency spectrum of phase and log-amplitude was used for this analysis, since many 

other acoustic observables, namely amplitude and phase correlation functions and 

coherence, can be directly derived from these spectra.  Using Monte Carlo numerical 

simulation methods utilizing canonical models of sound speed, buoyancy frequency, and 

internal wave spectra, this analysis established the acoustic propagation range and 

acoustic frequency limitations of the Rytov theory, as a function of ray path geometry.  

Monte Carlo numerical simulations of acoustic propagation through random fields 

of internal waves were carried out at acoustic frequencies of 75, 200, and 400 Hz, and the 

range evolutions of four acoustic ray paths were studied to a maximum range of 200 km.  

Ray paths corresponding to grazing angles of 0°, 5°, 10° , and 14° were considered, 

thus spanning the range of possible ray geometry from surface reflection to axial 

propagation. At a series of different ranges from the source, frequency spectra were 

computed and compared to the Rytov theory to establish regimes of validity and the 

mechanism by which the theory breaks down.  

A. CONCLUSIONS 
For all acoustic frequencies and beam grazing angles, we observed that the 

spectral slopes from the Rytov theory and the Monte Carlo numerical simulation are in 

very good agreement in the frequency range from the buoyancy frequency up to a 

grazing-angle-dependent transition frequency between 0.2 and 1 cph. In this frequency  
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range the slope of the spectra is nearly -3. However, the spectra of log-amplitude at the 

longer ranges and higher acoustic frequencies show some weakening of the -3 slope. The 

theory breakdown point seems different for these two observables. 

For frequencies less than the transition frequency, where the Rytov resonance 

with perpendicular (internal wave) IW wave numbers limits the influence of low-

frequency internal waves, the Rytov theory spectra are in fairly good agreement with the 

simulations for all ranges and grazing angles between 0º and 10º. For the 14º beam in 

which there is surface interaction, the Rytov theory dramatically underpredicts the 

spectral energy at frequencies less than 1 cph, demonstrating a breakdown in the Rytov 

resonance condition.  

For high frequencies of variability in phase and log-amplitude, we also find that 

significant spectral energy can exist at frequencies greater than the buoyancy frequency. 

The Rytov theory does not predict this energy. This breakdown represents the effect of 

strong interference and scattering not treated in the weak fluctuation approach of the 

Rytov theory. 

These results establish the validity regimes of Rytov theory, and show the regions 

in which we can save time and memory to predict the phase and intensity variations or 

spectral energy of phase and log-amplitude. 

B. RECOMMENDATIONS FOR FUTURE WORK 
Further study should be done to validate these simulation results with ocean 

experiments. As an example, there is an upcoming experiment which will be conducted 

in the Philippines Sea in 2009. This experiment will use 75 Hz and 250 Hz as their 

transmission frequencies. Following these simulations and the ocean experiments, the 

theory breakpoints and the influences behind them should be analyzed. At higher acoustic 

frequencies in the kHz region, phase spectra results are much better than the intensity 

spectra results. This study showed that the Rytov theory and simulation results are very 

close to each other at lower acoustic frequencies. The reasons for better phase spectra 

results at higher acoustic frequencies should be investigated. Another study should be  
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undertaken to calculate the coherence function. This phase coherence information could 

be used to design useful systems, such as the sonar array algorithms, to predict long-

range and low-frequency signals. 

This study showed the regions where the Rytov theory works well for the 

maximum frequency or range limit used in this study. Further study should be extended 

to higher acoustic frequencies and longer ranges to determine the breakdown point at 

these regions. In the future, work should be done to understand the physics behind the 

strong interference and scattering at frequencies of variability greater than the buoyancy 

frequency. This thesis study showed that the theory worked well at 10 º grazing angles, 

but it broke down at 14º. Further study should be done to analyze the grazing angles 

between 10º and 14º to find a more accurate breakdown point. 

The spectrum information can be used in the signal processing algorithms to 

improve the signal to noise ratio (SNR) for underwater communication systems. This 

thesis study used the Munk’s canonical sound-speed profile in the Monte Carlo numerical 

simulation. The sound-speed field could have a much more complex profile than this 

study used, and testing should be repeated for these sound-speed profiles. 
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APPENDIX.  FIGURES 

 

 

 

 

 

 
 

Figure 1.   Diagrammatic overview of MATE (From: Ewart and Reynolds, 1984). 
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Figure 2.   (Color online)  Local bathymetry from the precision depth recorder, upper 

path and lower path eigen rays traced using the mean sound speed profile, and 
potential density contours taken with an autonomous  vehicle, SPURV, depth  
cycling over the lower ray. The gray scale are equally spaced, with a total 
range of 0.2 Kg/ m3 . (From: Henvey and Ewart, 2006). 

 
 
 
 
 
 
 
 
 



 45

 
 
 
 

 
 

Figure 3.   (Color online) Spectra of the moored displacement and travel time measured 
during MATE (normalized to integral one). The fit of the model to the moored 
spectrum and its prediction for the travel time spectrum are shown. (From: 
Frank and Terry E. Ewart, 2006). 
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Figure 4.   AET frequency spectrum of log-amplitude. The red curve is a ray angle of 10º, 
and the black curve is a ray angle of 5º. The solid curves are the theory. 
(From: Colosi and Xu , 2007). 
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Figure 5.   Weak, multiple forward scattering. 
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Figure 6.   Internal waves whose wave numbers are perpendicular to the ray contribute to 
the scattering. + shows higher speed  and  - shows lower speed.  
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Figure 7.   Internal waves whose wave numbers are parallel to ray phase    front do not 
contribute to the scattering. 
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Figure 8.   Spectra of Log-Amplitude taken from MATE experiment  (From: Ewart, 
Reynolds, 1984). 

 
 
 
 
 
 
 
 
 
 
 
 



 51

 
 
 
 
 
 

 
 

Figure 9.   Sound propagation at 200 Hz and 5º  launch angle (a)Unperturbed ray and (b) 
Perturbed ray. 
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Figure 10.   Sound speed fluctuation from the deterministic sound channel 

( 0
0

( 1000 ., , )c z m r t
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δ

= ). 
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Figure 11.   Background sound speed profile and buoyancy frequency profile used in the 
simulation. 
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Figure 12.   The fractional sound speed variation 
1/ 22 ( )zµ . 
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Figure 13.   The rms value of phase variance

1/ 22φ  (rad). 
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Figure 14.   Intensity fluctuations. 
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Figure 15.   Phase spectra at 75 Hz and 0θ = °  {Simulation results are plotted with red and 

theory is plotted with blue, µ  spectra is plotted with green}. 
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Figure 16.   Phase spectra at 75 Hz and 5θ = ° . 
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Figure 17.   Phase spectra at 75 Hz and 10θ = ° . 
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Figure 18.   Phase spectra at 75 Hz and 14θ = ° . 
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Figure 19.   Phase spectra at 200 Hz and 0θ = ° . 
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Figure 20.   Phase spectra at 200 Hz and 5θ = ° . 
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Figure 21.   Phase spectra at 200 Hz and 10θ = ° . 
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Figure 22.   Phase spectra at 200 Hz and 14θ = ° . 
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Figure 23.   Phase spectra at 400 Hz and 0θ = ° . 
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Figure 24.   Phase spectra at 400 Hz and 5θ = ° . 
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Figure 25.   Phase spectra at 400 Hz and 10θ = ° . 
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Figure 26.   Phase spectra at 400 Hz and 14θ = ° . 
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Figure 27.   Log-amplitude spectra at 75 Hz and 0θ = ° . 

 
  
 
 
 
 
 
  



 70

 
 
 
 
 
 

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-10

10
-5

10
0

10
5

 Frequency (cph)

 S
pe

ct
ra

l E
ne

rg
y 

(1
/c

ph
) 

at
75

H
z.

 θ
=

5 °

r=62(km) , <χ2> = 0.176 (rad2) 

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-10

10
-5

10
0

10
5

 Frequency (cph)
 S

pe
ct

ra
l E

ne
rg

y 
(1

/c
ph

) 
at

75
H

z.
 θ

=
5 °

r=106(km) , <χ2> = 0.071843 (rad2) 

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-10

10
-5

10
0

10
5

 Frequency (cph)

 S
pe

ct
ra

l E
ne

rg
y 

(1
/c

ph
) 

at
75

H
z.

 θ
=

5 °

r=152(km) , <χ2> = 0.071187 (rad2) 

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-10

10
-5

10
0

10
5

 Frequency (cph)

 S
pe

ct
ra

l E
ne

rg
y 

(1
/c

ph
) 

at
75

H
z.

 θ
=

5 °

r=200(km) , <χ2> = 0.10635 (rad2) 

 

 

 S
χ
simulation

 S
χ
theory

1000*S
δc

 
Figure 28.   Log-amplitude spectra at 75 Hz and 5θ = ° . 
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Figure 29.   Log-amplitude spectra at 75 Hz and 10θ = ° . 
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Figure 30.   Log-amplitude spectra at 75 Hz and 14θ = ° . 
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Figure 31.   Log-amplitude spectra at 200 Hz and 0θ = ° . 
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Figure 32.   Log-amplitude spectra at 200 Hz and 5θ = ° . 
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Figure 33.   Log-amplitude spectra at 200 Hz and 10θ = ° . 
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Figure 34.   Log-amplitude spectra at 200 Hz and 14θ = ° . 
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Figure 35.   Log-amplitude spectra at 400 Hz and 0θ = ° . 
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Figure 36.   Log-amplitude spectra at 400 Hz and 5θ = ° . 
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Figure 37.   Log-amplitude spectra at 400 Hz and 10θ = ° . 
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Figure 38.   Log-amplitude spectra at 400 Hz and 14θ = ° . 
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