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ABSTRACT 

Unmanned Underwater Vehicles (UUVs) are becoming ubiquitous in the 

framework of U.S. Navy operations.  According to the U.S. Navy’s UUV Master Plan 

(2004), research and development will expand UUV capabilities that enable diverse roles 

from Intelligence, Surveillance, and Reconnaissance (ISR) and Mine Countermeasures to 

Anti-Submarine Warfare (ASW) and Information Operations (IO).  However, typical 

UUVs are severely limited in operational characteristics such as endurance and range 

which prevents their use conducting certain missions. 

A novel UUV is currently being designed that is projected to support significantly 

greater endurance and range characteristics.  This UUV is called Seadiver and is being 

designed by Institute of Engineering Science of Toulon, France with support from Naval 

Postgraduate School.  It is a low-cost glider UUV which generates propulsion not with 

propellers or jet pumps, but rather by controlling its buoyancy.  This method of 

propulsion is quite efficient and maybe capable of autonomous operation up to 30 days 

with a range of around 700 nautical miles.  A UUV with such endurance and range 

exposes military missions previously impractical for UUVs especially when used in 

concert as an array of many UUVs. 

This thesis creates a simulation using NPS-produced software simulation tools 

Simkit, Viskit and AUV Workbench that analyzes the capabilities and effectiveness of 

Seadiver UUVs conducting missions of tactical interest. 
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I. INTRODUCTION  

A. OVERVIEW  

This thesis supports the ongoing design and development of the Seadiver 

Unmanned Underwater Vehicle (UUV) at Naval Postgraduate School (NPS).  Seadiver is 

a unique UUV in a relatively new class of underwater vehicles called gliders.  Gliders 

have a unique set of characteristics such as high endurance and variable payload that 

might allow it to perform missions not suitable for UUVs in the past. 

Capabilities of complex machines such as autonomous vehicles cannot be fully 

known prior to field tests.  They can only be projected based on design and intent.  

Simulation can reduce that uncertainty inherent in design by virtually testing capabilities 

and configurations against environmental constraints prior to construction completion.  

This thesis creates a high fidelity simulation consisting of the Seadiver UUV and related 

entities, in combination with mission rehearsal and statistical analysis tools, to predict the 

value and accuracy of projected missions. 

B. PROBLEM STATEMENT  

This thesis creates simulations based on projected missions of the Seadiver UUV 

for the purpose of answering the following questions in an attempt to validate the 

designed capabilities of Seadiver.  The research questions are:  

• Can a Discrete Event Simulation (DES) be constructed with the Simkit 
and Viskit tools to simulate these missions? 

• Can high-fidelity simulation be used to visualize and validate the new 
missions for probability of success and provide insight into other advanced 
uses of a glider UUV? 

• Can missions be validated as physically realistic using AUVW? 

• Is operator control of numerous robots feasible using AUVW? 

• What are the tactical capabilities of the Glider UUV, and what new 
missions are exposed by these novel capabilities? 
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C. MOTIVATION 

The interest and growing use in the U.S. military for unmanned systems is high 

and growing at an increasing rate.  Recent uses in unmanned vehicles by the military are 

demonstrating their ability establish and maintain maritime superiority.    UUVs are 

attractive over other methods because they are force multipliers and risk-reducing agents.  

Additionally, they can be cost effective and their novel capabilities enable unique mission 

capabilities.  The U.S. Navy’s UUV Master Plan published in 2004 lists nine missions 

that support Sea Power 21 strategy.  These missions are: 

• Intelligence, Surveillance, and Reconnaissance (ISR)   

• Mine Countermeasures (MCM)   

• Anti-Submarine Warfare (ASW)   

• Inspection / Identification   

• Oceanography   

• Communication / Navigation Network Nodes (CN3)   

• Payload Delivery   

• Information Operations (IO)   

• Time Critical Strike (TCS) 

In the realm of Undersea Warfare (USW), there are a number of available or 

upcoming UUVs that are being designed to fill these missions.  The most significant 

limitation with UUVs is typically the power source.  Most currently use batteries as their 

source of power and hence are severely limited.  This is because as the size of the UUV 

increases, the amount of power required for propulsion increases at a greater proportion.  

As more batteries are installed into the UUV to extend its range, the power requirement 

also increases and quickly becomes an untenable situation.  Therefore, the bottom line is 

that UUVs are severely limited in size, speed, and endurance due to the aforementioned 

relationship. 

At Naval Postgraduate School (NPS), a UUV is currently being designed that will 

partially uncouple that relationship.  It is a type of UUV known as a glider.  Gliders are a 

recent innovation and work on the principle that changes in buoyancy create forward 

motion through the water.  Implementations such as this are energy efficient allowing for 

endurance times on the order of weeks compared to hours for a typical UUV.  
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Additionally, what makes this glider unique is that most of its internal capacity is free-

flood.  This allows for a vehicle of arbitrary size with other aspects such as endurance 

and speed remaining constant, thus allowing for large payloads and an expanded range of 

missions for which it is suited. 

D. OBJECTIVES 

This thesis applies Modeling and Simulation (M&S) concepts with multiple 

complimentary NPS software projects to explore the tactical capabilities of the Seadiver 

UUV.  The objective of this research is to create a simulation using Discrete Event 

Simulation (DES) methodology and NPS simulation software tools.  The simulation is 

designed based on the projected physical characteristics of the Seadiver UUV and other 

moving entities such as surface ships and submarines in the context of UUV missions.  

Simulation runs will then be conducted to determine the probability of Seadiver 

conducting exemplar missions such as barrier search or mobile minefield.  Validation of 

mission results will be accomplished through evaluation of Seadiver behavior against 

environmental forces in the Autonomous Unmanned Vehicle Workbench (AUVW). 

E. THESIS ORGANIZATION 

Chapter II reviews background technologies and related work used during this 

research effort.  For each section, a short description is provided to give the reader a 

baseline understanding of topics that are referenced throughout the remainder of the 

thesis.  Chapter III discusses the type of simulation framework (DES) along with the 

software products and Application Programming Interfaces (API) used in construction 

and validation of the simulation.  Chapter IV outlines in detail the simulation design 

process using DES methodology and implementing model behaviors.  Chapter V outlines 

in detail the creation of the Seadiver and other mover entity models and mission 

simulations.  Chapter VI discusses the tactical considerations encountered using UUVs in 

novel mission contexts.  Chapter VII discusses the results and analysis of the simulation.  

Chapter VIII is the conclusion of the thesis along with recommendation for further 

research. 
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II. BACKGROUND AND RELATED WORK 

A. INTRODUCTION 

This chapter provides a conceptual overview of the technologies and related work 

utilized for this research.  The following sections are intended to provide the reader with 

a basic understanding of these resources and how they were utilized in this thesis.  Most 

sections provide links to these resources when appropriate. 

B. SEADIVER GLIDER 

Seadiver is a prototype UUV (Figure 1) being jointly designed by The Institute of 

Engineering Science of Toulon (ISITV), France with support from NPS.  In the past 

decade, there have been many UUVs constructed, but what makes Seadiver unique and 

interesting for certain military applications is its combination of long autonomous 

operation time, relative inexpensiveness, and variable payload at virtually no extra 

operational cost. 

 
Figure 1.   Seadiver Glider 3D model. (from Dumonteil, Gassier, and Rebello 2006) 
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Seadiver is a type of UUV known as a glider.  Gliders are unique in that they 

generate propulsion by managing vehicle buoyancy and therefore have no propellers or 

thrusters as shown in Figure 1.  Propulsion is generated by hydrodynamic lift and drag.  

Seadiver moves from location to location by continuously adjusting buoyancy and angle 

of attack as shown in Figure 2.  This has the effect of diving then ascending to generate 

speed over ground. 

 
Figure 2.   Simplified plan of Seadiver’s underwater behavior. (from Dumonteil, 

Gassier, and Rebello 2006) 
 

Hydrodynamic properties are optimized by using an airfoil shape profile seen in 

Figure 3.  This type of propulsion is very power efficient, but has the drawback of low 

speed across ground and maneuverability.  Also, sensor position relative to the horizontal 

changes significantly from ascent to decent and must be accounted for in the design. 

 
Figure 3.   Airfoil Shape (NACA0022). (from Dumonteil, Gassier, and Rebello 2006) 
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The main advantage of operating a glider is its ability to operate continuously for 

relatively long periods of time without recharging/refueling.  This coupled with 

Seadiver’s autonomy will allow it to remain on station operating independently for an 

estimated 30 days and travel approximately 700 NM depending upon payload power 

requirements. 

Another major benefit of the Seadiver derived from its mode of propulsion and 

shape is that potential payload sizes are virtually limitless.  The outer shape can be 

enlarged to accommodate many different size or use objects without having to redesign 

the entire UUV.  This is because most of the interior is free-flood area where any inserted 

payload displaces water and therefore has a reduced effect on Seadiver’s buoyancy and 

center of gravity. 

C. AUVW 

The Autonomous Unmanned Vehicle Workbench (AUVW) is an open source 

software project designed and created at NPS that provides the ability to plan, rehearse, 

and replay missions for arbitrary unmanned vehicles (UV).  It is designed to allow 

dissimilar vehicles to be evaluated on a common software platform which is normally 

difficult since most UVs use proprietary vehicle specific data formats and mission 

planning systems (Davis and Brutzman, 2005).  Figure 4 depicts 2D mission planning 

and Figure 5 depicts 3D mission playback in AUVW.  As shown, AUVW provides a 

tightly coupled 2D/3D interface that simplifies UV testing and operation. 
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Figure 4.   2D mission planning in AUVW. 
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Figure 5. 3D mission playback in AUVW. 

 

The AUVW is used in this thesis to provide validation for the output missions 

(discussed in detail later) of the Seadiver simulation.  This is accomplished in two ways.  

First, output missions are visually verified to be true in the context of operating area 

dimensions, vehicle area dimensions, vehicle waypoint placement, and proper search 

pattern implementation as defined in the simulation initial conditions (event graph 

parameters).  Second, AUVW has the ability to simulate the environment and physical 

characteristics of the vehicle in six degrees of freedom.  This allows validation of entity 

movement and physical performance in a virtual environment based on the real world 

physical conditions and constraints.  Figure 6 depicts the AUVW dataflow model. 
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Figure 6.   AUVW dataflow. 

 

The AUVW also contains an extensive help system which can be used as a 

resource for thesis students and other users.  The help system is accessed from the menu 

bar and contains tutorials and menu descriptions for users new to the workbench along 

with all theses and dissertations that have utilized it previously.  The AUVW help system 

is a valuable resource for operation and research. 

D. PROGRAMMING CONSTRUCTS 

1. JAVA 

Java is an object-orientated programming language developed by Sun 

Microsystems.  Java was designed to be platform independent so a developer could write 

a program once and run it on any arbitrary set of computer hardware.  Java is used 

extensively at NPS for that reason and because most Java development tools are free.  

Java is primarily used for Modeling and Simulation because of its platform independent 

design, its multi-threaded capability, and the multitude of available related open-source 

code such as JSIM, X3D, etc. 

2. JAXB  

JAXB is an open-source API created by SUN Microsystems.  It provides a 

convenient way to bind XML schemas to java source-code representations.  JAXB makes 

it easy for developers to incorporate XML data and processing into applications.  As part 

of this process, XML documents are either marshaled to java classes or unmarshaled into 

a JDOM tree for use by the program. 
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VISKIT stores event graph models as XML documents.  Figure 7 depicts a simple 

event graph, the Arrival Process, and Figure 8 is the XML representation of it in Viskit.  

JAXB enables the XML structures used by Viskit to store event graphs to be transformed 

into executable java source (Figure 9) that can then be utilized by Simkit and Diskit.  

This allows developers to create DES models quickly using only standard event graph 

notation and methodology without having to master the Java programming language. 

 
Figure 7.   Arrival Process event graph. 
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Figure 8.   Viskit event graph XML structure.  The top pane is a more human-

readable tree-view, while the bottom pane shows source XML file. 
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Figure 9.   Automatic source-code generation in Viskit from source XML event graph 

in Figure 6 above. 

3. Document Object Model (DOM)  

The Document Object Model (DOM) is a platform and language-neutral interface 

and World Wide Web Consortium specification that allows programs and scripts to 

dynamically access and update the content, structure and style of documents.  Sun 

Microsystems has implemented the DOM interface a component API of JAXP in the 

org.w3c.dom Package.  It allows programmers to create, modify, access, and write XML 

documents using the Java programming language.  Additional information is available at 

Sun’s website at http://java.sun.com/j2se/1.4.2/docs/api/org/w3c/dom/package-
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summary.html (accessed March 2007).  The DOM is used in this thesis to create AUVW 

mission files in Autonomous Vehicle Command Language (AVCL) format for validation 

of the Seadiver simulation. 

4. Extensible Markup Language (XML) 

Extensible Markup Language (XML) is a general purpose, text based markup 

language developed by the World Wide Web Consortium (W3C) as a subset of Standard 

Generalized Markup Language (SGML).  Like all markup languages, it was created as a 

protocol for structuring data.  It is not a programming language but it makes it easy for a 

computer to generate data, read data, and ensure that the data structure is unambiguous.  

XML is easy to create and process and designed to be platform independent and shared 

across the internet.  Other characteristics of XML include human readability, extensible, 

verbose, modular, and license free.  More information can be found at 

www.w3.org/XML/1999/XML-in-10-points (accessed March 2007). 

XML is used in Viskit as the format for saving Event Graphs and assemblies, and 

in the AUVW to store UUV mission files.  These mission files are in Autonomous 

Vehicle Control Language (AVCL) format which is valid XML syntax.  Figure 10 is an 

example XML representation of a notional restaurant price list. 

 
Figure 10.   Simple XML file. 

 



15 

E. SUMMARY 

This chapter has provided the reader with an overview of the technologies and 

related work utilized for this research.  Section B detailed the novel glider UUV that 

provides the inspiration for this thesis.  Section C describes the simulation and virtual 

reality program (AUVW) which is used for mission validation.  Finally, Section D 

describes the main programming constructs leveraged by the software APIs and programs 

employed in this thesis. 
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III. SIMULATION AND PROGRAMMING CONSIDERATIONS 

A. INTRODUCTION 

This chapter describes in detail the simulation framework and software programs 

and APIs that leverage this framework.  Section B defines Discrete-Event Simulation 

(DES) as the theoretical framework in which this thesis creates a model of the Seadiver 

UUV and other entities.  Section C and D describe the Simkit and Diskit APIs and how 

they are leveraged in this research.  Finally, Section E explains the functionality of Viskit 

as the main simulation environment of this thesis. 

B. DISCRETE-EVENT SIMULATION (DES) 

1. Modeling Characteristics 

Models are created to study complex dynamic systems and examine their 

performance, reliability, or other properties to improve either their initial design or 

operation.  Simulation is the means of executing these models to mimic the behavior of 

actual systems.  Simulations employ many repetitive runs to obtain relevant statistical 

output for insight into the actual operation of the modeled system without real-world 

testing that is often impractical and costly.  In general, if a model uses an equation to 

define a characteristic, then a simulation is the behavior or trajectory of that function over 

time. 

There are two defining characteristics when creating a model.  The first, fidelity, 

measures the level to which the model reflects the characteristics of the real system like 

how similar it is in shape/dimensions, physical characteristics/constraints, or 

performance.  The second, abstractness, measures the lack of level of detail.  This is 

required not simply because it is impossible to capture every detail of a real-world system 

which may or may not be known, but also because it allows for generality.  Generality is 

beneficial since it possibly allows for the design and analysis of multiple models simply 

by changing parameters.  (Miller 2007) 
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The ideal model has high both abstractness and high fidelity.  Unfortunately this 

is impossible and therefore a compromise must be struck that usually depends upon the 

needs of the modeler.  This thesis is highly abstract because the modeled system is still in 

the design phase and not much is yet known about its real-world characteristics. 

2. Simulation Approaches for Handling Time 

There are two broad types of simulation modeling primarily characterized by how 

they handle the passage of time.  The first is Continuous Systems Simulation (CSS).  CSS 

is creating a model that can be represented by differential or difference equations.  In 

essence, it breaks the time domain into quantized chunks of small (usually the same) size.  

This approach is used by the AUVW which serves as a validation tool for this thesis.  The 

second is DES and is also the focus of this thesis.  It differs from CSS because it divides 

the time domain by events.  According to Professor Arnold Buss of NPS, DES has three 

main world views; Event-Scheduling, Process-Interaction, and Activity Scanning.  The 

Event-Scheduling approach is based on the use of event lists to organize future events.  

This is the world-view utilized in Simkit, and therefore is utilized in this thesis. 

3. Methodology 

Events are actions defined by the modeler to represent basic functionality of the 

simulation.  They represent changes in state that typically takes some amount of time to 

occur such as an object arriving to the queue or a server completing a job.  The event list 

is simply a container that holds the list of events that are scheduled to happen and the 

time at which they will happen.  Buss describes the event list as: 

The Event List amounts to a “to do” list for the simulated world.  At any 
simulated time epoch it is simply a list of what is scheduled to occur and 
when.  Each item of the list corresponds to an event that contains 
information about which event is to occur and when it is to occur.  (Buss 
2000) 

The scheduling and manipulation of the event list is the engine driving a DES.  

Every action that comprises the model will be scheduled on the event list.  Time advances 

only in intervals defined by the time difference between the current event time and the 

event on the event list with the smallest time duration.  This process continues throughout 
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the duration of the simulation, that is each event is drawn off the event list one at a time 

ordered by the time the event is scheduled to occur, until the event list is empty or an 

event is scheduled that explicitly stops the simulation.  Note that it is possible for two 

events to be scheduled for exactly the same time and therefore it is necessary to 

implement an order of precedence procedure in the event list. 

4. Notation 

An event graph is a structured, formal representation of a DES model.  Event 

graph notation was defined in work by Schruben in 1992.  This notation is minimalist in 

that it uses only those entities that are required, but in doing so add a level of abstractness 

not seen in other DES world views such as Process-Interaction (Buss 2001).  The 

advantages of adhering to this notation are that virtually any model can be constructed 

with it and the modeler can spend more time on model creation vice paradigm constructs.  

Using the following notation conventions, the modeler can graphically depict all logic 

and behavior contained in the model. 

The most basic event graph is depicted in Figure 11.  The two objects 

fundamental to every event graph are the event nodes represented by circles with labels 

and scheduling edges represented by directed lines or arcs.  In Figure 11, event node A is 

an event that can appear on the event list.  The directed arc above event A is the 

scheduling edge (in this case a self-scheduling edge since it re-schedules itself).  In 

essence, this event graph depicts an event A that will continuously re-schedule itself 

unless interrupted by an outside event.  Additionally, this event graph provides no 

method to begin the initial event A and therefore it must be initialized by a foreign event 

either programmatically or through a listener pattern (described later).  Normally every 

event graph contains a Run event from which other events are propagated and to reset all 

state variables when a simulation run is completed. 
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Figure 11.   Simplest Event Graph. 

 

Two optional components of scheduling edges that greatly extend the 

functionality of event graphs are edge conditions and time delays.  Represented in Figure 

12, edge conditions are conditional expressions defined by the modeler that prevents the 

edge from being invoked until said condition is true.  Edge conditions are represented by 

logic functions above the wavy line in the middle of the scheduling edge.  Time delays, 

represented in Figure 12 by (t) located at the start of the scheduling edge, control exactly 

when from execution of event A that event B is to be scheduled.  Therefore, this event 

graph depicts that once event A is scheduled, event B will be scheduled (t) amount of 

time later if expression (i) is true. 

 
Figure 12.  Figure of next event graph ‘A’ and ‘B’ connected by a scheduling edge 

with  time delay (t) and conditional expression (i). 
 

Two final and necessary components of complex event graphs are parameters and 

state variables.  Parameters area variables defined at the start of each simulation run and 

represent constructs such as total number of servers or number of targets to be created.  

State variables on the other hand are variables designed to change throughout the 

simulation run.  As the name suggests, state variables are updated to reflect the changed 
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state of the model such as the number of people in the queue at a particular time or if an 

UUV is currently surfaced or submerged.  Using this notation, it is possible to construct 

models of limitless complexity.  Figure 13 depicts a more complex model of a transfer 

line process where a component is passed from one server to another and is finished only 

when processed by all servers.  In this model, Q and S represent state variables and (i) 

represent a passed parameter.  

 
Figure 13.   Complex Event Graph of a Transfer Line Process (from Buss 2001) 

 

C. SIMKIT 

Simkit is an open source Java API written by Professor Arnold Buss of Naval 

Postgraduate School.  It was designed to enable the creation of DES using event graph 

methodology.  In short, a simulation can be created programmatically using Simkit 

because it provides the base framework for controlling the simulation, namely control 

and maintenance of the Event List.  This frees the modeler to work directly on 

implementing the conceptual event graph model.  Simkit also provides other helper 

classes necessary to create simulations.  These include random variate generators that 

produce random numbers in the required distributions, and classes that facilitate 

movement and detection among others.  Simkit is the foundation upon which Diskit and 

Viskit are built.  It is possible to create complex DES using Simkit and the following 

website lists the NPS Master’s Thesis work that has been completed using Simkit 

(http://diana.nps.edu/~ahbuss/#Students accessed on March 2007). 
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D. DISKIT 

Diskit is another open source Java API that extends the functionality of Simkit.  It 

was created for two primary reasons.  First, there was a need to extend the movement and 

detection capabilities of Simkit to 3D.  This is because 2D usually doesn’t provide the 

level of fidelity required for a model that simulates movement.  Secondly, Diskit provides 

classes that implement the Distributed Interactive Simulation (DIS) protocol.  DIS allows 

for transmitting the state of a simulation over a network.  DIS coupled with the extension 

to a 3D environment enable the visualization of the simulation as a 3D virtual 

environment.   

E. VISKIT 

Viskit is an open source program in development at NPS written in the Java 

programming language.  Viskit was created to provide a graphical user interface (GUI) 

for creating simulations using Simkit.    Typically, creating complex simulations is 

programmatically intensive.  A modeler usually needs an extensive knowledge of a 

programming language and the associated APIs that enable the simulation.  This is no 

different for Simkit and Diskit, and is exactly why Viskit was developed.  By reducing 

the amount of programming expertise required, Viskit has made simulation more 

accessible to non-programmers. 

Viskit uses a tabbed window with four tabs.  The first provides a visual interface 

that allows for easily creating, modifying, and saving event graphs called the event graph 

editor.  Figure 14 provides an example of a simple event graph in Viskit’s event graph 

editor.  It demonstrates that event graphs produced in Viskit faithfully adhere to the event 

graph methodology presented earlier in Chapter II.  This ensures that if event graph 

methodology is understood, Viskit can represent it and others who have no familiarity 

with Simkit or Diskit can understand it.  Additionally, because the source code is 

automatically produced by Viskit, it allows for more complex event graphs to be created 

without being increasingly encumbered with programming complexity that might quickly 

become unmanageable. 



23 

 
Figure 14.   Viskit’s Event Graph Editor Panel depicting a basic example. 

 

Creation of the event graph representation of a model alone does not create a run 

able discrete-event simulation.  Viskit provides a means to create, modify, and save 

simulations using event graphs in a panel called the Assembly editor located in the 

second tab.  Figure 15 depicts a simple simulation setup in the assembly editor.  Event 

graphs that were created in the event graph editor (or any event graph created that 

extends Simkit’s SimEntityBase) show up on the left panel and are drag and dropped to 

the right workspace.  They are then connected using listener patterns (discussed later).  

Finally, statistics-counting objects are listed in the lower left panel and drag and dropped 

to the workspace on the right as required where they are connected to the event graphs 

with PropertyChangeListeners (discussed later).  This will produce applicable and 

repeatable statistics as required of the simulation. 
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Figure 15.   Viskit’s Assembly Editor Panel depicting a basic example. 

 

The Assembly Run is the third tab and provides a location to run the simulation.  

Figure 16 depicts the Assembly Run panel after a run of an exemplar simulation.  On the 

left are controls to modify run parameters of the simulation such as length of time to run 

and how many times to run the simulation.  The top right of the Assembly Run panel 

contains the text output of the simulation that can be inspected after each run.  The 

bottom right of the panel provides an error report generated during the run. 



25 

 
Figure 16.   Viskit’s Assembly Run Panel. 

 

The last tab is the Analyst Report Editor.  It provides an interface to enter detailed 

information about the model and simulation runs that can be saved in XML format.  This 

combined with the simulation output generate a standardized report of the simulation 

quickly and easily.  The Analyst Report panel is itself composed of a number of tabs each 

detailing with an aspect of the simulation and report.  Figure 17 depicts the Analyst 

Report Editor panel at the beginning tab called ‘Heading’ that collects information on the 

simulation such as title and author.  In general, each section of the analyst report has two 

parts.  First the analyst records what behaviors and results are expected to be produced by 

the model.  Second, the analyst assesses what was actually produced.  The tool is set up 

to encourage incremental analysis and testing, saving intermediate analysis each time.  

Once each required tab is documented, a complete analyst report is generated in HTML 

format to match.  Appendix A is an example analyst report of a Seadiver mission. 



26 

 
Figure 17.   Viskit's Analyst Report Editor panel excerpt. 

 

F. SUMMARY 

This chapter detailed the simulation framework along with the software programs 

and APIs leveraged by this framework.  This thesis utilizes DES methodology and 

notation for creation of the Seadiver model.  This is accomplished by employing Viskit 

which is a program that provides a GUI for the creation of DES event graphs and 

simulations.  Viskit enables efficient creation of DES models by leveraging the Simkit 

and Diskit APIs. 



27 

IV. DES AUTHORING – CREATING A SIMULATION WITH 
VISKIT 

A. INTRODUCTION 

This chapter describes in detail how to create a DES in Viskit.  Every modern 

programming language enables a construct called inheritance which facilitates code reuse 

while decoupling form from function.  Inheritance and how it is leveraged in this thesis is 

the subject of Section B.  Section C details event graph authoring in Viskit.  Event graphs 

are the main logical constructs in DES and define entity behavior.  Section D explains 

how event graphs are integrated into an assembly in Viskit to produce a simulation.  

Finally, Section E illuminates how movement and detection functionality is implemented 

in Simkit/Diskit. 

B. SIMKIT/DISKIT API LIBRARY INHERITANCE STRUCTURE AND USE 
IN VISKIT 

Computer programs are complex constructs that if coded in a single container 

would extend many lines and pages.  Java and indeed most programming languages 

provide mechanisms to organize and reuse code as much as possible.  Viskit simulation 

architecture utilizes all those inherent to Java, but one is of particular interest in Viskit 

called inheritance.  Inheritance allows for many implementing objects to contain all the 

inherited characteristics of the superclass while allowing for the addition of a new 

functionality in the current class.  Additionally, the current class could then be used as the 

superclass for another class, etc, etc.  In effect, inheritance provides the ability to create 

multiple entities that are primarily equivalent, yet have unique functionality. 

The concept of inheritance is especially important to entity creation in Viskit.  As 

entities become more complex thru the process of implementation of features, the event 

graphs can become overwhelmingly complex as shown in Figure 18.  While Figure 18 is 

a fully functioning Viskit entity, it is clearly difficult to decipher, modify, or test for 

desired behavior.  Figure 18 is an attempt to implement tactical behavior in Viskit 

without inheritance. 
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Figure 18.   Complex event graph without inheritance (from Sullivan 2006). 

 

Viskit allows for the use of inheritance and it has been demonstrated that its 

judicious use is essential to producing a maintainable model and is a ‘best practice’ and 

simply a good design pattern that should be followed.  Viskit provides this ability thru the 

event graph settings dialog box that allows for specifying which class to extend.  It is 

important to note that to be used in Viskit, at some point one of the super classes must be 

SimEntityBase.  The benefits to adhering to this best practice include event graphs that 

are more readable, focused on implementing only what is different from the superclass, 

and easier to debug. 
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1. SimEntityBase 

SimEntityBase is the fundamental component of Simkit simulations.  Recall from 

Chapter 2 that there are just two constructs of event graphs: the event and the scheduling 

edge.  SimEntityBase is the class that controls interactions with the event list.  Each event 

on an event graph is placed or removed from the event list according to its scheduling 

edge.  Every event graph in a simulation or one of its super classes must inherit from 

SimEntityBase at some point otherwise it cannot interact with the event list.  A more 

detailed discussion of SimEntityBase is provided in (Buss 2002). 

2. Mover3D 

Mover3D is a Java interface that ensures implementing classes meet the minimum 

requirements for a 3D mover in Diskit.  It is essential that all movers in Simkit requiring 

interactions such as detection and its inverse, undetection, implement Mover3D.  This is 

because of how the sensor classes are constructed since they fire ‘doDetection’ and 

‘doUndetection’ events as specified by Mover3D.  By convention, implementing classes 

are named with Mover3D appended such as DISMover3D. 

3. DISMover3D 

DISMover3D implements the Mover3D interface and extends SimEntityBase, 

thus it provides the minimum constructs for a Simkit simulation as well as ensuring it 

will interact properly with the sensor library.  Additionally, it provides all the 

functionality required for a moving entity along with exposing that entity to the DIS 

protocol.  Essentially, DISMover3D provides all the functionality required of a simple 3D 

mover that can detect other object and output its state as DIS packets across a network.  

The Seadiver and Target event graphs in this simulation use DISMover3D as its moving 

entities.  Figure 19 depicts the event graph representation of DISMover3D. 
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Figure 19.   DISMover3D Event Graph (from Sullivan 2006). 

 

4. Seadiver Model Inheritance Structure 

The Seadiver simulation implements inheritance to the fullest extent possible.  

Figure 20 is a diagram depicting the simulation inheritance structure.  Notice that all 

entities are at some point descendants of SimEntityBase.  This is a requirement of Viskit 

which enables all descendants to be observable, selectable, and able to be integrated into 

assemblies.  Along with extending SimEntityBase, all movers and sensors implement the 

Mover3D interface represented by the dashed line.  This is required to enable movement 

and detection functionality through Diskit.  Similarly, if only 2D movement and detection 

is required, Simkit has a corresponding Mover interface that must be implemented. 
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Figure 20.   Diagram of Seadiver inheritance structure. 

 

C. EVENT GRAPH EDITOR – CREATING A MODEL 

Event graphs define a DES and control the behavior of the entities and their 

relationships to other entities.  Producing a productive simulation requires creating event 

graphs that encompass behaviors of sufficient fidelity while maintaining some requisite 

amount of generality. 

This discussion demonstrates how the event graphs in the Seadiver simulation 

were created in Viskit.  It is not a full tutorial for Viskit, but does show how event-graph 

methodology was used to create the Seadiver event graph for the model in Viskit. 

1. Event Graph Parameters 

In Simkit DES methodology, event-graph parameters are variables that are set at 

simulation run time and do not change during the run.  The exact value of parameters 

must be entered in the Assembly Panel prior to the start of the simulation or an error will 

occur.  Parameters also represent performance characteristics of a model such as sensor 

range or maximum speed.  These must be available as changeable parameters to maintain 

a sufficient level of abstractness to allow for multiple simulation runs without modifying 

hard-coded values. 
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Viskit provides for view and modification of event-graph parameters in the Event 

Graph Editor panel.  Figure 21 depicts the Seadiver event graph parameter list as 

displayed in Viskit.  The plus and minus buttons at the bottom allow for addition or 

removal of parameters.  To modify an existing parameter, simply double click the 

parameter line.  These parameters will be discussed fully in a later section. 

 
Figure 21.   Seadiver event graph parameters in Viskit.  Event-graph parameters are 

initialized at setup time. 
 

2. State Variables 

A state variable is a mathematical variable that defines an important aspect of the 

system.  State variables change throughout the simulation and that change is called the 

state trajectory.  The state trajectory is the graph of change in a state variable over time or 

“evolution of the model in time.” (Buss 2000)  Each state trajectory is piecewise constant 

and therefore only changes at events.  In a typical non-moving entity simulation, most 

events represented on event graphs contain state changes.  This is not true for tactical 

models where decisions and behaviors by an entity are captured.  Most of the events on 

the Seadiver event graph do not generate state changes.  In Viskit, state variables are 

entered and listed on the Event Graph Editor panel as depicted in Figure 22. 
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Figure 22.   Seadiver event-graph state variables in Viskit.  State variables can change 

as simulation time progresses, thus representing model state. 
 

3. Events 

Events are one of the two fundamental components of event-graph methodology 

(the other being the scheduling edge).  They are graphically depicted as circles on the 

Event Graph Editor panel.  When creating an event graph, empty events are placed on the 

graph and then information about that event is entered into the Event Inspector that is 

accessed by double-clicking that event.  Figure 23 depicts the event graph for the 

Seadiver model. 
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Figure 23.   Seadiver event graph shows the logical flow of information while 

modeling robot behaviors. 
 

The Event Inspector is used to define events and consists of four main 

components: Event Arguments, Local Varibles, Code Block, and State Transitions.  

Figure 24 depicts the Event Inspector of the Start Moving event and its main components. 
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Figure 24.   Event Inspector for the StartMoving event in the Seadiver event graph. 

 

Beginning with the Event Arguments section, the functions of the sections are 

explained.  Arguments of events are incoming values and are directly analogous to the 

signature of a Java method.  The composition and position of arguments determine the 

signature.  Any call to that event from a waitDelay() method must be spelled correctly 

and have the exact same signature or nothing will happen.  If an event has arguments then 

any attached upstream scheduling edges must provide the value of that argument. 



36 

All sections on the Event Inspector have plus and minus buttons used to add or 

remove elements.  Clicking the plus button adds an empty argument and double clicking 

it brings up the Event Argument dialog box shown in Figure 24.  The event argument 

dialog box is used to define the argument’s name and type.  Figure 25 for example 

depicts the event argument dialog box for ProcessWaypoints event. 

 
Figure 25.   Event arguments dialog box for ProcessWaypoints event. 

 

The Locals Variables section provides a location to define variables whose scope 

is limited to that event.  They can be defined for any function, but are typically used to 

supply values to scheduling edges without referencing the original object.  Local 

variables are added by clicking the appropriate plus button in the local variables section.  

Double click the new entry to define a new local variable in the resulting Local variables 

dialog box that appears.  The new variable is defined by its name, type, and initial value 

as shown in Figure 26 which is of a Seadiver event local variable. 

 
Figure 26.   Local Variables dialog box for a Seadiver event. 

 

The Code Block section in the Event Inspector is a free form code entry area.  It is 

used to enter any required code whose function cannot be performed by one of the other 

sections.  The code must adhere to Java language programming syntax and rules.  Unlike 
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previous sections, code is entered directly on the provided line or if more space is needed, 

in the box accessed thru the ellipse notation to the right demonstrated in Figure 27.  The 

most common functions for code in the Code Block are print statements used for debug 

purposes and helper classes for data collection. 

 
Figure 27.   Code Block for a Seadiver event allows insertion of special-handling 

source code into the Viskit-defined event graph. 
 

The final section is for state transitions.  Similar to previous sections’ add and 

remove state transition entries with the plus and minus buttons.  Double clicking an entry 

brings up the State Transition dialog box.  In the dialog box, select the appropriate state 

variable that needs modification and then give it a new value directly or through a 

function.  Note that only state variables previously entered in the Event Graph Editor are 

available for change.  Figure 28 depicts the State Transition dialog box using an arbitrary 

Seadiver event having a state transition. 
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Figure 28.   State Transition dialog box for a Seadiver event. 

 

All event graphs are basically linear programs that move sequentially from one 

event to the next thru scheduling edges.  Most event graphs start with a Run event that 

initializes all state variables and resets then upon multiple simulation runs. 

Following the Run event, the system moves systematically to the next event as 

directed by the scheduling edges.  In the case of Seadiver, information is passed to the 

ZoneMap event graph which creates individual operating areas for each mover and passes 

that information back to the RegisterMap event. 

From there, Seadiver diverges from typical Viskit processes when it creates the 

required amount of mover entities as specified by the numberDivers parameter in the 

Seadiver event graph.  This adds complexity since each Seadiver entity is independent of 

the event graph.  Behaviors for all Seadivers can be constructed on the Seadiver event 

graph but individual control is severely limited.  For the purposes of this model, this was 

considered acceptable when many movers must be created and would have the same 

properties.  Normally, each SimEntity would have an independent event graph. 

After each mover is created, they are registered as sensors and movers with the 

Scenario Manager, individual waypoints are generated based on operating area, and 

ordered to begin movement.  As the movers progress through waypoints, the Scenario 

Manager will manage detections and undetections.  When one occurs it fires an internal 

‘doDetection’ event that Seadiver hears (the exact mechanism is performed by  
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PropertyChangeListeners which will be discussed later) and initiates its Detection event.  

Based upon what type of detection is heard, follow-on events are fired down stream of 

the Detection event for data keeping only. 

4. Scheduling Edges 

The second main component in event graph methodology is the scheduling edge.  

Scheduling edges connect two events together, and as their name implies, serves as a 

method to transition from one event to the next.  In Simkit, edges are implemented by 

waitDelay() methods.  Figure 29 depicts a Simkit waitDelay() method.  The waitDelay() 

has four components: the scheduled event name as a String, the time delay from 

completion for scheduling (source) event to scheduled (target) event, the priority of 

events if there are two or more on the event list scheduled at the exact same time, and the 

target event parameters. 

 
Figure 29.   Simkit waitDelay() method. 

 

In Viskit, the waitDelay() method and therefore the scheduling edge is depicted 

by an arc ending in an arrow from the source event to the target event in the Event Graph 

Editor.  The edge is defined in the Edge Inspector dialog box accessed by double clicking 

the graphical edge.  Figure 30 depicts the Edge Inspector and illustrates that the four 

components of the waitDelay() method are implemented. 
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Figure 30.   Edge Inspector. 

 

Figure 30 is the scheduling edge in the Seadiver event graph (Figure 23) that 

connects the Detection event and the RegisterTargetDetection event.  As shown, the 

source and target events are listed, the priority is selectable from seven preset 

enumerations and is Default in this example, the time delay is settable to any number or 

function, and the passed parameter is definable and is a Mover3D called contact. 

One additional property of the scheduling edge is the conditional expression.  It 

lists the conditions that are required to be met prior to the target event being scheduled.  

This determines if the edge will schedule the target event.  In this example, the 

RegisterTargetDetection event will only be scheduled if the contacts ID number is greater 

than 399 and has not previously been placed in the container. 
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D. ASSEMBLY EDITOR – CREATING A SIMULATION 

Viskit defines a construct called the assembly that it uses to create the simulation.  

An assembly is constructed in the Assembly Editor panel of Viskit.  An assembly is a 

collection of event graphs and the connections between them called SimEventListeners.  

The relationship between event graphs and the information passed between them via the 

SEL defines the foundation of the simulation.  Figure 31 depicts the Assembly Editor 

panel with a Seadiver mission assembly open for editing.  

 
Figure 31.   Assembly Editor panel. 

 

1. Scenario Manager 

The Scenario Manager is a required element of simulations utilizing Diskit 

components.  It provides all the functionality required to implement movement and 
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detection as well as the DIS protocol.  This allows the modeler to create movers with 

sensors easily by connecting the Scenario Manager and the mover event graph with a 

SimEventListener (displayed in Figure 31 as the line with a small cup at the end 

symbolically representing an ear listening to the event graph).  Additionally, 

implementation of the DIS protocol enables the simulation to publish DIS packets to a 

network enabling distributed simulation and graphics. 

The parameters of Scenario Manager are listed in Table 1.  Parameters are 

accessed through a dialog box called the Event Graph Inspector by double clicking the 

event graph representation in the Assembly Editor panel.  The speedScale parameter is 

used to modify the speed of the simulation necessary when viewing the output of the 

simulation in a virtual environment.  The clearOnReset parameter enables the statistical 

values to be reset for each repetition of the simulation allowing for correct reporting of 

confidence intervals.  The last four parameters deal with details of the DIS protocol and 

the network interface. 

 

Parameter Type Description 

speedScale double Determines the speed of the simulation in a 
X3D viewer. 

clearOnReset boolean Enables the statistical values to be reset for 
each repetition of the simulation 

multicastIPAddress String The IP address of the network interface on the 
host computer used to transmit DIS packets. 

port integer The port of the network interface on the host 
computer used to transmit DIS packets. 

siteID integer DIS protocol setting. 

appID integer DIS protocol setting. 

Table 1.   Initialization Parameters for Scenario Manager. 
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2. SimEntity 

Once even graph models of SimEntities and objects have been created either in 

the Event Graph Editor or as native Simkit Java classes, they then can appear in the event 

graphs section of the Assembly Editor.  If they appear in this list then they meet the 

requirements of Viskit and can be used in the assembly o create a simulation.  To use the 

event graph, simply drag and drop it onto the assembly to create an instance of it as 

represented by a SimEntity Node.  Figure 32 depicts an assembly of a Seadiver mission 

with the event graph library to the left.  Note that Scenario Manager is not an event 

graph, but can be accessed and used in the assembly since it is a Java class that extends 

SimEntityBase. 



44 

 
Figure 32.   Seadiver assembly depicting the model library to the left. 

 

Several event graphs and multiple helper classes were created for the Seadiver 

thesis.  Seadiver thesis assemblies are designed around Seadiver missions and several 

assemblies have been created, one for each mission.  All assemblies use the Seadiver 

model and the ZoneMap object and either the Minefield or Target event graph.  The 

SimEntity nodes can be named anything, but for the purpose of Seadiver thesis their 

names remain similar to the actual event graphs. 
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3. Parameter Entry 

As discussed previously, event graph parameters are values that will not change 

throughout the simulation and are set at runtime from entries in the SimEntity nodes of an 

assembly.  Parameters are accessed via the Event Graph Inspector dialog box by double 

click.  Parameters can be simple numerical values like integers or doubles, or can be any 

other Java function that returns an object or value.  The following section describes the 

parameters for the event graphs used in the Seadiver thesis to illustrate this functionality. 

4. SimEventListener  

Lines connecting SimEntity nodes in the Assembly Editor represent Simkit 

constructs called SimEventListeners.  SimEventListeners connect two SimEntity nodes 

together and allow them to share information between them.  To connect nodes via a 

SimEventListener connection, each event graph must contain an identical event (same 

name and signature).  The source event fires then as a result the target event is fired.  This 

has the effect of one event listening to the other event, hence the name SimEventListener.   

SimEventListener connections are very beneficial to the Simkit methodology of 

creating simulations because they allow for passing of information between event graphs.  

This enables the componentization or breaking up of complex event graphs into small 

chunks of functionality that allow for extensive re-use and simpler debugging.  The 

concept benefits are therefore similar to the use of inheritance.   

An example of events taking advantage of SimEventListeners is the CreateMap 

events in both the Seadiver and ZoneMap event graphs.  Figure 33 depicts the 

SimEventListener Connection dialog box that supplies information about a connection.  

In this case, the event in Seadiver passes the number of Seadiver movers that will be 

created and the first ID number that will be used to the ZoneMap event graph.  It uses this 

information to create individual operating areas for each Seadiver mover based on this 

information and its own parameters (that determine the total size of the area).  This 

passing of information is enabled by SimEventListener connections and would be 

difficult to accomplish otherwise. 
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Figure 33.   SimEventListener Connection dialog box of connection from Seadiver 

node to ZoneMap node in the xxxx assembly. 
 

5. Property Change Listener (PCL) 

The Property Change Listener (PCL) is similar to the SimEventListener in that it 

is a construct that can be programmed to listen to a SimEntity node.  Unlike the 

SimEventListener connections that listen for events, PCL connections listen for changes 

in state variables.  By convention in Simkit, every time a state variable changes, a method 

called firePropertyChange() is initiated that has the effect of broadcasting that change to 

the simulation environment.  Figure 34 depicts the firePropertyChange() method of the 

Run event in the Seadiver event graph. 

 
Figure 34.   The firePropertyChange() method of the Run event in the Seadiver event 

graph. 
 

PCL connections are created to listen for specific state variable changes then 

perform preset operations with them.  Typically, these operations are for the collection, 

calculation and display of statistics.  Simkit has a number of built-in data collection and 

analysis objects that can easily be incorporated into a simulation.  Figure 31 depicts the 

Assembly Editor panel for a Barrier Search assembly.  In the bottom left display resides 

the expanded list of included PCL connections and the assembly depicts one PCL 

connection node (colored pink) called Target Detections Total.  New data collection 

objects that implement PCL connections can be created and easily incorporated into a 

Viskit simulation via the plus button. 
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To incorporate a PCL into a simulation, a PCL is selected from the list (or created 

in Java if one in the list does not fill all requirements) based on the type of property being 

collected such as an integer or a collection and the property’s state as a function of time.  

Once the appropriate PCL is selected, simply drag and drop it onto the assembly and 

connect it to the SimEntity node with the correct state variable.  Finally, select the 

appropriate state variable from the list accessed by double clicking the connector as 

shown in Figure 35. 

 
Figure 35.   Property Change Connection dialog box with state variable list expanded. 
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E. MODELING FOR TACTICAL SCENARIOS 

Movement is essential to the Seadiver simulation since its primary intent is to 

simulate the changing spatial relationship between Seadiver entities and other moveable 

objects such as surface/submerged targets or mines.  Traditionally, DES has been used 

for simulating non-moving relationships as in queuing theory.  This excludes simulations 

requiring movement and is due to the mistaken belief that the discrete event paradigm is 

impractical for this use.  Additionally, it has been shown that in some cases using DES is 

desirable to other methods such as the time-step world view.  (Buss and Sanchez, 2005) 

1. Movement 

Movement in this thesis is accomplished by object event graphs such as Seadiver 

implementing the Mover3D interface (or extending a class that implements Mover3D 

such as DISMover3D).  Implementing Mover3D ensures that the proper methods are 

included to enable movement functionality. 

The Seadiver simulation exclusively uses DISMover3D for 3D movement 

capability.  DISMover3D is simply an extension of 2D movement in the Simkit API.  

(Buss and Sanchez, 2005) provide a basic explanation of movement and detection in 

Simkit.  In its simplest form, an object starts at position one at time one with a specific 

velocity.  Using well known position functions, these three variables are all that is 

required to calculate future positions. 

In Simkit, the initial position and calculated final position are modeled as events 

called the StartMove and EndMove events respectively.  Every movement from one 

position to another begins with a StartMove an EndMove event as depicted in Figure 36.  

As shown, every StartMove event schedules a corresponding EndMove event with a time 

delay of that amount of time required to move from one position to the next based on the 

objects speed and distance between locations.  If there are additional movement 

requirements, the EndMove event once fired will reschedule another StartMove event 

immediately.  This process continues moving an object through locations as long as the 

movement requirement remains the same. 
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Figure 36.   Basic movement process in Simkit. 

 

Entity movement is managed by an appropriately named Mover Manager.  Mover 

Managers control the scheduling of StartMove and EndMove events.  Mover Managers 

enable dynamic changing of entity behaviors such as changing from an object following a 

preset waypoint list to avoiding an obstacle or loitering in an area.  This is accomplished 

by providing a mechanism to dynamically change the Mover Manager based on preset 

conditions. 

Simkit and Diskit provide several previously created Mover Managers that can br 

readily incorporated into simulations.  Additionally, Mover Managers can be created to 

meet additional movement requirements such as the Path Deviation Mover Manager in 

this thesis.  Table x provides a summary of available Mover Managers. 

 

Path Mover Manager Moves an entity through waypoints. 

Random Mover Manager Moves an entity though random waypoints of 
which the distribution can be set. 

Avoidance Mover Manager Intermediate mover manager which moves an 
entity around an obstacle at a preset standoff 
distance between preset waypoints.  The initial 
mover manager is restored once past the 
obstacle. 

Intercept Mover Manager Intermediate mover manager which moves an 
entity from a preset path to an intercept 
position.  The initial mover manager is restored 
once intercept complete. 
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Zone Mover Manager Moves an entity through preset zones of 
operation based on probability or A-Star search 
(best path) algorithms. 

Path Deviation Mover Manager Intermediate mover manager which interrupts a 
preset path causing the entity to dwell in a 
location for an amount of time.  The time 
duration is of a preset distribution. 

Table 2.   List of Mover Managers available in Simkit and Diskit. 
 

2. Detection 

Implementation of entity behaviors that require interaction between entities 

cannot be achieved by movement alone.  A method is required to allow entities 

knowledge of other entity positions, its environmental limitations, and to react to them.  

This is accomplished in Simkit and Diskit by the sensor implementation. 

The simplest and most practical sensor is the cookie cutter sensor implemented in 

Simkit.  Figure 37 depicts the notional concept of the sensor.  In this example, there is 

one 2D sensor attached and coincident to entity A.  The sensor moves with entity A and 

has a radius R in which other entities will be detected if the circle prescribed by R around 

entity A is entered.  Similarly, when the entities achieve a distance greater than R apart, 

the sensor does not detect the other entity. 
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Figure 37.  Cookie-Cutter sensor.  The basic scenario. 

 

In Simkit and Diskit, this process is modeled by the Detection and UnDetection 

events.  Figure 38 depicts the DES methodology for the sensor Detection and 

UnDetection events.  These events correspond to the instance one entity enters within the 

radius of a sensor and is projected to leave that radius respectively.  Specifically, 

Detection events are placed on the event list when it is calculated that entity B will enter 

range of the sensor.  Similarly, an UnDetection event is scheduled at the same time when 

entities change velocity vectors, recalculation of enter and exit range values and 

rescheduling of Detection and UnDetection events is performed. 

 
Figure 38.   Sensor DES methodology. 

 

The Seadiver model implements the spherical cookie cutter sensor provided by 

Diskit.  It expands the 2D cookie cutter sensor in Simkit to three dimensions.  

Functionally it operates the same as the sensor described above.  These sensors can be 
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extended to provide advanced functionality such as implementation of non-circular range 

or detection ranges based on probabilities, but the spherical cookie cutter sensor is 

adequate for this proof of concept thesis. 

F. STATISTICAL RESULTS 

The output of a stochastic simulation is typically statistics of static or time-

varying nature.  Each run of a simulation produces another set of statistics called a 

repetition.  A number of repetitions are produced which are used to generate confidence 

intervals.  Confidence intervals are then used to analyze the model for expected behavior 

and to generate logical inferences from unexpected behavior.     

The Assembly Run panel is the location where each repetition and calculated 

confidence intervals are viewed.  Section C of Chapter III discussed the basic 

functionality of the Assembly Run panel.  Additionally, it is the location where the 

simulation is initiated and its control settings adjusted.  Table 3 lists the simulation 

settings and their descriptions. 

Setting Description 

Sim Stop Time Determines when the simulation will stop.  Simulation can also be 
stopped programmatically based on preset events. 

# Replications Determines the amount of replications the simulation will 
complete.  This automatically allows for computation of 
confidence intervals for stochastic simulations. 

Verbose Output Determines how much information is written to the output panel 
on the upper right.  Primarily used for simulation debug purposes.  
If verbose is selected, every entry in the event list is written to the 
output panel. 

Save Replication Data Determines if the statistical data output of the simulation is written 
to file.  This file is in XML format and is used in generation of the 
Analyst Report. 

Print Replication Reports Determines if the statistical replication data output of the 
simulation is written to the output panel. 

Print Summary Reports Determines if the summary report is written to the output panel. 

Table 3.   Assembly Run panel settings and descriptions. 
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G. SUMMARY 

This chapter described in detail how to create a DES simulation in Viskit.  Using 

this chapter as a guide, the reader has the basic knowledge required to construct a basic 

event graph in Viskit’s Event Graph Editor and then integrate that event graph into a 

simulation in the Assembly Editor.  Additionally, this chapter provided the conceptual 

framework for implementing moving entities with detection capability and why DES is a 

suitable framework for such. 
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V. TACTICAL CONSIDERATIONS FOR SIMULATION GOALS 
AND REQUIREMENTS 

A. INTRODUCTION 

This chapter discusses the logic and methodology behind why modeling and 

simulation was used to analyze the Seadiver UUV.  First, the benefits and advantages of 

modeling and simulation are previewed for the design and construction of complex 

robots.  The process of creating the two simulated missions of this thesis is then 

explained in detail.  Finally, the communication requirements for UUVs performing these 

types of missions are described. 

B. NEEDS AND REQUIREMENTS FOR ROBOT MODELING 

Modeling and Simulation (M&S) is beneficial and probably essential for the 

creation of complex moving entities such as autonomous UUVs.  It enables realistic 

evaluation of scenarios of interest while identifying discrepancies and deficiencies prior 

to their becoming problematic in the construction or testing phases.  The following 

sections describe how creating a model optimizes production while minimizing risk, cost, 

and time to deployment. 

1. Robot Design and Construction 

Creation of a 3D model during design and construction allows for accurate 

identification of physical characteristics of the UUV.  Characteristics such as dimensions, 

density, weight, and center of gravity and buoyancy are now exposed for modification.  

Designers can experiment with alternate products and materials to determine how they 

affect the system as a whole.  An example would be changing the structural material from 

steel to a composite and its affects on properties such as the center of gravity or 

buoyancy.  In effect, modeling and simulation enables shifting a typically iterative 

process from the construction phase (when errors are costly or fatal) to the design phase 

(when they are more easily addressed). 



56 

2. Predicted Dynamics Response 

Modeling enables determination of a vehicle’s predicted dynamic response.  This 

allows for accurate estimation of operational characteristics such as speed and turning 

radius which in turn enable insight regarding how a particular UUV might be employed. 

3. Robot Control and Mission Planning 

One complex issue inherent in all UUVs is the method of operator planning and 

then transferring a mission to a robot for execution.  The mission itself must be capable 

of achieving the desired objectives and be in a format the robot can understand.  

Modeling and simulation enables mission construction in a 3D virtual environment such 

as AUVW.  This allows for visual and interactive mission planning producing the best 

case scenario for completion of mission objectives. 

A mission is constructed and saved in AUVW as an AVCL file.  Using an open-

standards based XML file language such as AVCL allows for simple conversion and 

mapping to a proprietary robot command language through use of an XSL 

transformation.  A single virtual simulation program such as AUVW can now 

comparably plan and control many diverse robots, even when each utilizes a different 

proprietary command language. 

4. Sensor Characteristics 

There are a multitude of sensors available for robot use.  Determining which 

sensor (or combination of sensors) is acceptable for a certain mission can be difficult.  

Modeling and simulation allows for evaluation of various sensor characteristics and 

packages prior to deployment which increase the probability of a successful mission. 

5. Power Budget  

A major driving factor behind UUV design is endurance.  Endurance is controlled 

by the power budget which is affected by the power requirements for propulsion 

(buoyancy control for the Seadiver), communications, and sensors.  Modeling and 

simulation can optimize the endurance robots by enabling the selection of the best 

combination of components. 
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C. CHALLENGING TACTICAL SCENARIOS 

This thesis researches the ability of robots with long endurance to perform two 

historically difficult naval missions:  Minefield Search and Barrier Search.  According to 

the U.S. Department of the Navy’s Mine Warfare Plan, 

The sea mine remains today- as it has throughout history- an exceptionally 
powerful and cost-effective tactical weapon that deserves a prominent 
position within any naval arsenal. (Johnson and Jones, 2000) 

Indeed, many navies around the world maintain the capability to utilize sea mines 

for littoral protection/denial or sea lane denial.  Mine warfare is a serious threat to U.S. 

power projection.  Mines have been responsible for seriously damaging 14 U.S. Navy 

ships since the Korean War.  In a single 3 year stretch from 1988 to 1991, 3 U.S. Navy 

ships hit mines resulting in over $121 million in damages while the total cost of the mines 

were $13,000. (Goure 2002) 

Mines are problematic for the U.S. Navy not only due to their low cost and 

widespread proliferation, but also because of their difficulty in being located and 

removed.  There is a need to perform mine countermeasures operations quickly and 

covertly without exposing assets to potentially hostile action. Removal of mines remains 

time intensive, highly observable, and requires the use of many assets.   

Barrier search is another particularly difficult mission.  Barrier search is defined 

in this thesis as the covert detection and location of enemy vessels, either surfaced or 

submerged, over a large area.  Early detection and warning of the presence of hostile 

forces such as submarines is an essential prerequisite for many of the advanced 

operational concepts of operations.  Additionally, a barrier search mission can be 

employed to locate enemy combatants exiting port or converging on an attack location.  

Thus mine warfare and barrier search are significant challenges which might reveal 

special value in a SeaDiver glider UUV. 

1. Minefield Search 

The first mission simulated by the Seadiver model is minefield search.  It 

endeavors to determine if many Seadiver robots can operate collectively to effectively 

search a notional minefield.  The results of the simulation are then intended to be 
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processed to determine metrics for use in analysis either against existing mine-

countermeasure solutions or also to re-initialize the simulation with modified parameters 

to produce an optimized solution. 

The notional minefield used for this research is a shallow area of length, width, 

and depth dimensions.  A select number of mines are dispersed over the area in 

configurable 3D distributions along the length, width, and depth.  In effect, the product is 

a 3D rectangular volume with mines dispersed randomly inside. 

The minefield is then divided into separate Seadiver operation zones, one per 

UUV.  When the simulation begins, all robots start searching their respective zones in a 

lawn-mower search pattern depicted in Figure 39.  Each parallel leg is at a distance apart 

equal to the sensor range.  Such an exhaustive cooperative-search pattern ensures 100 

percent coverage of the area in the length and width dimensions. 

 
Figure 39.   Seadiver search pattern over a 20 km by 14 km zone.  Sensor range is 500 

meters. 
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Each mine is detected as a Seadiver moves within a specific sensor range.  Upon 

detection, the UUV then simulates taking a GPS fix and records mine location in an 

internal database.  Each GPS fix observation causes the Seadiver to delay at the mine 

location for an amount of time determined by a configurable distribution.  Upon 

completion of the GPS fix, the Seadiver continues the search indefinitely.  The simulation 

is configured to stop when all mines are located. 

2. Barrier Search 

The second mission simulated by the Seadiver model is the barrier search.  It 

simulates an array of Seadivers spread across a notional area.  It attempts to analyze the 

probability of this array of UUVs detecting surfaced or submerged targets traversing the 

area.  The results of this simulation are to be used to determine if an array of Seadiver 

UUVs can be deployed in such a way as to effectively detect and localize an approaching 

hostile vessel. 

The notional area is constructed and Seadivers are dispersed in the same manner 

as in the minefield search mission described above.  Each target traverses the area from 

East to West bisecting randomized waypoints.  The number of targets, number of 

waypoints, waypoint distribution, and then Seadiver and target speeds are specified as 

configurable parameters.  Figure 40 depicts the barrier search mission setup. 
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Figure 40.   Barrier search mission setup.  Mission includes 10 Seadivers and 2 

Targets. 
 

When the simulation begins, each Seadiver commences the search of its zone in 

the same lawn-mower search pattern depicted in Figure 40 and the targets commence 

their traversal of the area.  As targets approach within Seadiver sensor range they are 

detected.  All detections are logged for later analysis.  The simulation ends when all 

targets have traversed the area.  Data is collected on time to detect all targets and total 

number of target detections. 

D. COMMUNICATIONS PERIODICITY CONSIDERATIONS AND 
REQUIREMENTS 

The ability to communicate and obtain accurate fix information is essential to 

these two missions.  All the raw sensor data in the world is useless if it can’t be placed in 

the hands of those who need and can act on it.  Similarly, it is good to know the number 

of mines in a minefield, but extremely more useful to know where those mines are 

located.  Therefore it is a requirement for Seadiver UUVs to have the capability to 

communicate with satellites for contact reporting and GPS data, and this simulation 

assumes they have this capability.  Table 4 outlines these requirements for each mission. 
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 Minefield Search Barrier Search 

GPS fix 1) Mine located 

2) Start of each leg 

1) Contact located 

2) Start of each leg 

Contact Report 1) Weekly 

2) When commanded 

3) Upon first contact 

1) Contact located 

2) When commanded 

Status Report 1) Weekly 1) Weekly 

Table 4.   Communication requirements for each mission. 
 

E. SUMMARY 

This chapter discussed the logic and methodology behind why modeling and 

simulation was used to analyze the Seadiver UUV.  The benefits and advantages of 

modeling and simulation are presented for design and construction of complex robots.  

The process of creating two simulated missions for this thesis is described in detail.  

Finally, the communication requirements of UUVs performing these types of missions 

are assessed. 
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VI. SIMULATION SCENARIO DESIGN AND DESCRIPTION 

A. INTRODUCTION 

Every model strikes a balance between generality and fidelity.  This research is no 

exception.  The prevailing conditions such as current design progress and required level 

of reuse necessitate this model to be highly general.  Section B details the assumptions 

this model requires for this condition. 

Section C details how entity behaviors are captured in this research during the 

creation of the four event graphs that compose this thesis.  The event graphs represent 

three moving entities (Seadiver, Target, and Minefield) and one area knowledge object 

(ZoneMap). 

Simulations are created in a Viskit construct called an assembly using event 

graphs and SimEventListener connections.  Section D details how the aforementioned 

event graphs along with Scenario Manager were integrated into the functional 

simulations.  This thesis constructs two functional assemblies and therefore two 

simulations which mimic the ability of the Seadiver to conduct relevant military 

missions. 

Simulations constructed in Viskit are effectively programming constructs.  The 

output of this environment is statistical data and therefore makes it difficult to determine 

the validity of such data.  Disparity in statistical data could be in the best case typical 

stochastic variation or in the worst case model inaccuracy or fault.  Section E describes 

how AUVW is employed to validate the simulation results. 

B. ASSUMPTIONS 

Every simulation must strike a balance between fidelity and abstraction 

(generalization) to enable observation of results of interest while at the same time 

ensuring those results are adequately representative of real-world conditions to promote 

logical conclusions.  For the purpose of this thesis, this simulation is highly abstract and 

very general.  This was necessary for two reasons.  First, the vehicle has not been 

completely constructed yet, and therefore most of its operating characteristics can only be 
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surmised at this point.  Second, this thesis focuses strictly on the vehicles ability to 

perform certain missions such as minefield or barrier search, and therefore a higher 

fidelity for other characteristics is not required.   In that context, many assumptions were 

made constructing the simulation and Table 5 below summarizes them. 

 

Assumption Rationalization 

Mover speeds All mover speeds are constant from start to finish.  Seadiver 
speed is set to 3 knots.  Target speed is set to 12 knots. 

Mover turning 
characteristics 

Seadivers and Targets turn instantaneously. 

Seadiver endurance Seadiver is speculated to have 30 day endurance.  Endurance 
is limited based on vehicle power requirements which 
include sensor suit power requirements.  Longer duration 
may be possible. 

Sensor characteristics Cookie cutter spherical sensor used.  All movers are detected 
when entering range and undetected when exiting range.  A 
nominal sensor range is set as a parameter which can be 
changed to evaluate tradeoffs between endurance, range, and 
number of movers to adequately accomplish a mission. 

Navigation capabilities There is no navigational error correction required for 
Seadivers.  Seadivers pass through all waypoints.  

Neglect set/drift Environmental factors that affect Seadiver motion are 
neglected for simplification in the DES.  Set and drift 
analysis on missions can be conducted in AUVW. 

Non-random starting 
positions. 

All Seadivers start at the origin of their respective zones at 
position (000) relative. 

Table 5.   Major assumptions of the Seadiver simulation. 
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C. TACTICAL DEFINITION:  EVENT GRAPHS 

In the context of creating a simulation based on a UUV of assumed realistic 

capabilities conducting undersea autonomous missions, a list of required model 

functionality was generated.  The identified minimum requirements are: 

• Entities must be capable of 3D movement along a path. 

• Entities must be capable of sensing and reacting to other entities. 

• Entity paths must be automatically generated based on supplied operating 
area. 

• Key parameters of entities must be adjustable such as speed, operating 
depth, and time delays. 

• The operating area must be variable with individual entity operating zones 
automatically generated. 

• There must be a method to collect relevant statistics of operational 
characteristics. 

• The simulation must be capable of creating and managing many moving 
entities (design goal: 100) simultaneously. 

• The simulation must produce a mission specifying entity movement in 
AVCL format for validation in AUVW. 

The following sections describe the methodology used to enable this functionality 

through event graph (model) and assembly (simulation) design. 
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1. Seadiver Event Graph 

 
Figure 41.   Seadiver event graph. 

 

The Seadiver model depicted in Figure 41 above is an event graph that extends 

SimEntityBase and hence can be used in Viskit.  It is designed to model an arbitrary 

group of moving Seadiver UUV entities.  This event graph can be divided into three 

separate functional sections that control the behavior of the model. 
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The first region consists of the Run and Create Map events.  Every event graph 

requires a Run event by convention in Simkit.  The Run event allows for initialization of 

each variable upon commencement of multiple repetitions.  Once the event graph and its 

variables have been initialized, the Create Map event is fired which passes two 

parameters, numberDivers and firstMoverID, to the ZoneMap event graph for processing. 

The second section, consisting of the events between the Register Map and Start 

Moving events, is responsible for proper creation and initialization of the amount of 

Seadiver moving entities specified by the numberDivers parameter.  This process begins 

with the Register Map event which is fired by the ZoneMap event graph as it passes an 

array of zones to the Seadiver event graph.  Register Map schedules Create Diver event 

with firstMoverID as a passed parameter which, along with the self-scheduling edge, is 

analogous to a programmatic FOR loop.  The result of this construct is that all events 

downstream until the Start Moving event are conducted an amount equal to the number of 

Seadivers to be created. 

The Register Diver event handles the actual creation of the DISMover3D entities.  

A unique entity is created each time Register Diver is fired.  The Register Sensor and 

Register Target events fire, once for each moving entity, and are required to register each 

entity as a mover and sensor with the Scenario Manager in each assembly. 

Next, the Process Waypoints event creates unique waypoints for each mover in a 

lawn-mower search pattern via the LawnMowerWaypointCreator class.  These waypoints 

are then used to create an instance of pathMoverManager which controls Seadiver 

progression of movement through the waypoints.  Finally, the process fires the Start 

Moving event which initiates movement for each Seadiver DISMover3D entity. 

The third functional section senses object detection and un-detection, defines the 

behavior of the mover after those events, and provides the logic for simulating GPS fix 

collection.  The Detection event fires every time a Seadiver entity detects another entity, 

including another Seadiver.  The following events such as Register Mine Detection, 

Register Target Detection, and All Target Detection control filtering and registering 

individual entity detections for use in statistic gathering by iterating appropriate state 

variables.  Detected objects that move beyond sensor range are Undetected.  Upon 
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Undetection, Seadivers simulate taking a GPS fix by loitering in the area of undetection 

of an amount of time determined by the fixDelayTime parameter.  This is accomplished 

by switching mover managers from pathMoverManager to fixMoverManager.  Once this 

delay is complete, fixMoverManager is replaced by pathMoverManager and movement 

commences where it was interrupted. 

The following sections detail the parameters and state variables for the Seadiver 

event graph in detail.  Note that all units are in meters and seconds. 

a. Seadiver Parameters 

 
Figure 42.   Seadiver initialization parameters as shown in the assembly Event Graph 

Inspector. 
 

Figure 42 depicts the Event Graph Inspector of the Seadiver model.  Table 

6 lists and defines each parameter. 
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Initialization 

Parameter 
Type, Units Description 

maximumSpeed double, m/s Determines the maximum speed of the mover. 

firstMoverID int Determines the starting number for mover ID 
numbers.  Each Seadiver will be issued an ID 
starting at this number as required by the DIS 
protocol that each entity have a unique number. 

numberDivers int Determines how many Seadiver movers will be 
created and used in the simulation. 

sensorRange double, m Determines the range of the sensor for the Seadiver.  
All Seadiver sensor ranges will be equal. 

fixDelayTime Random Variate, s Determines the amount of time required to take a 
GPS fix.  It is based on the random distribution 
selected in the constructor. 

inputFileTemplate String File name and path to the template used to create 
AVCL mission files.  Note that path is relative to the 
Viskit Behavior Libraries directory and forward 
slashes (/) are required. 

outputFileName String File name and path to write created AVCL mission 
files.  Note that path is relative to the Viskit 
Behavior Libraries directory and forward slashes (/) 
are required. 

operatingDepth double, m Determines the nominal operating depth of the 
Seadiver. 

Table 6.   Seadiver initialization parameters defined. 
 

b. Seadiver State Variables 

State Variable Type Description 

sensorObject diskit.Sensor Spherical cookie cutter sensor attached to each 
Seadiver.  Any object coming within the 
sensorRange parameter will be detected. 

submerged boolean Indicates if the mover is submerged or not.  The 
only time a move is not submerged is during a 
fix. 
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State Variable Type Description 

gpsFixNeeded boolean Indicates when a GPS fix is needed which is after 
a new detection. 

detectionData HashMap Container used to collect detection data. 

mineDetections int Counter to collect statistics on the number of 
mines detected. 

fixMoverManager seadiver. 

PathDeviation 

MoverManager 

Mover manager that controls the actions of the 
mover when taking a fix.  Specifically, the mover 
loiters in the same area for an amount of time 
equal to fixDelayTime parameter. 

activeMoverManager seadiver. 

MoverManager 

Mover manager helper that simply holds the 
current mover manager. 

wpsCreator seadiver. 

LawnMower 

WaypointCreator 

Generates waypoints in a lawn-mower search 
pattern in a specific zone and creates AVCL 
mission files from created waypoints. 

zone seadiver. 

SymmetricZoneMap

Creates equal sized operating areas for Seadiver 
movers, one for each Seadiver in a pattern that 
uniformly distributes movers over an entire area. 

targetCollector LinkedList Collection that holds unique target detections.  
Used to determine if a target has been previously 
detected. 

mineCollector LinkedList Collection that holds unique mine object 
detections.  Used to determine if a mine has been 
previously detected. 

targetDetections int Counter to collect statistics on the number of 
mines detected. 

numberOfTargets int The number of targets created by the simulation.  
Passed parameter from the target event graph.  
Used by targetCollector to determine if all 
movers were detected. 

totalNumberOfTarget 

Detections 

int Counter to collect statistics on the amount targets 
were detected.  These are not unique.  Used to 
determine how many times an individual target 
was detected. 

Table 7.   Seadiver State Variables. 
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2. ZoneMap Event Graph 

Figure 43 depicts the ZoneMap event graph.  ZoneMap is a helper object that 

collects information on the size of the operations area and uses it to provide info to the 

other SimEntities such as Seadiver and Target.  This info is required for the simulation 

and used to perform tasks such as providing individual operating areas for each Seadiver 

or waypoint generation for Targets.  It also is broken into three functional areas. 

 
Figure 43.   ZoneMap event graph. 

 

The first section controls initialization of the ZoneMap SimEntity.  It consists of 

the Run and Create Area events.  The Run event is responsible for initialization and reset 

of event graph state variables each repetition.  The Create Area event creates the total 

operating area for the simulation based on the parameters length, width, and height.  It 

stores this area as a diskit.ZoneGeometry object that exposes methods to work directly 

with the area. 
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The second section consists of the Create Map and Register Map events.  It 

contains the functionality required by the Seadiver event graph.  The Create Map event 

receives the number of Seadiver entities as an initialization parameter from the Seadiver 

event graph and creates individual zones for each Seadiver entity using the 

seadiver.SymmetricZoneMap class.  This class divides the total zone into a number of 

zones equal to the number of Seadiver entities.  It uses 100 percent of the area with no 

overlap and keeps the number of movers along the length and width equal if possible.  Its 

algorithm works best with a large number of Seadivers.  Figure 44 below is a 

representation of an area 100 by 60 kilometers long, sectioned into 24 individual zones 

corresponding to 24 individual Seadivers. 

 
Figure 44.   Notional operating area sectioned into individual operating zones, one for 

each Seadiver. 
 

The third section consists of the events Determine Targets, Create Zones, and 

Register Zones.  This section creates zones for the Target event graph use in creating 

waypoints.  The Determine Targets event receives the number of target entities that are 

created and the number of waypoints that are created for each target from the Target 
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event graph.  Using this information, it sections the total area into equally sized zones.  In 

the Create Zone event, the zones are created for each target in an amount equal to the 

number of waypoints each target can navigate through.  The zones are individually added 

to a collection (zoneList) that is passed to the Target event graph in the Register Zones 

event.  Figure 45 represents an arbitrary area sectioned into individual waypoint zones. 

 
Figure 45.   Operating area sectioning performed ZoneMap for the creation of 

waypoints in Target event graph.  The blue area is the total operating area.  The red area 
indicates where targets start and end traversal of area (outside area). 
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a. ZoneMap Parameters 

 
Figure 46.   ZoneMap parameters as shown in the assembly Event Graph Inspector. 

 

Figure 46 depicts the Event Graph Inspector of the ZoneMap object.  

These are the parameters defined to enable specific functionality of the model while 

maintaining an adequate level of generality.  Table 8 lists and defines each ZoneMap 

parameter. 

 

Initialization 

Parameter 
Type, Units Description 

origin X3Dcoordinate Determines the origin or reference point for the 
coordinate system used by the simulation. 

length double, m Determines the length (x value) of the area. 

width double, m Determines the width (y value) of the area. 

height double, m Determines the height (z value) of the area. 

Table 8.  ZoneMap initialization parameters defined. 
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b. ZoneMap State Variables 

State Variable Type Description 

moverID int Passed parameter from Seadiver event graph.  
Used to match created zones to movers. 

numberOfTargets int Passed parameter from Target event graph.  
Passed to Seadiver event graph for use is 
statistics collection. 

centerPoint diskit. X3DCoordinate A 3D location generated from individual zone 
dimensions.  Used in the construction of zone 
object. 

zones seadiver. 

SymmetricZoneMap 

Creates an equal and symmetric amount of 
zones from the total area bases on the amount 
of Seadiver movers. 

axisAngle diskit.Vec4D Variable used to construct the area state 
variable.  Used to determine rotation about the 
vertical axis of the zone. 

area diskit.ZoneGeometry A 3D volume object which determines the 
individual operating areas for each Seadiver. 

numberOfWaypoints int Determines the amount of waypoints created 
for a target as it navigates through the 
operating area.  Passed parameter from Target 
event graph.   

zoneList LinkedList Collection object used to hold all created 
ZoneGeometry areas to be passed to Seadiver. 

Table 9.   ZoneMap State Variables. 
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3. Minefield Event Graph 

 
Figure 47.   Minefield event graph. 

 

Figure 47 depicts the Minefield event graph.  Its purpose is to create an arbitrary 

number of mines specified by the numberMines parameter and disperse them in some 

arbitrary area with some specified distribution.  The Run event initializes and resets all 

state variables then passes control to the Create Mine event.  As its name suggests, the 

Create Mine event creates an amount of DISMover3D mine objects equal to the 

numberMines parameter.  Each mine has a 3D location generated from the three random 

variate parameters called mineDistributionWidth, mineDistributionLength, and 

mineDistributionDepth.  Each mine is then registered as a mover with the Scenario 

Manager in the Register Target event.  Additionally, a SphereCutterSensor is created for 

each mine and registered with Scenario Manager in the Register Sensor event.  Finally, as 

all Detection events function, it fires each time a mover object enters within the  
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sensorRange parameter of the sensor created by this event graph.  This sequence of 

events enables the Register Detection to iterate the numberOfDetectionsByMine state 

variable allowing for collection of statistics on objects detected by mines. 

a. Minefield Parameters 

 
Figure 48.   Minefield parameters as shown in the assembly Event Graph Inspector. 

 

Figure 48 depicts the Event Graph Inspector of the Minefield model.  The 

minefield is simply a number of static movers dispersed over an area in a certain 

distribution.  Each mine is a mover3D object to enable detection capabilities.  Table 10 

lists and defines each Minefield parameter. 

 

 

 

 



78 

Initialization Parameter Type, Units Description 

sensorRange double, m Determines the range of the sensor for each 
mine.  All mine sensor ranges are equal. 

numberMines int Determines the number of mine objects that will 
be created. 

firstMoverID int Determines the range of individual ID numbers 
required by DISMover3D objects. 

minefieldWidth double, m Determines the width (y value) of the minefield. 

minefieldLength double, m Determines the length (x value) of the minefield. 

minefieldDepth double, m Determines the depth (z value) of the minefield. 

mineDistributionWidth simkit.random. 

RandomVariate 

Determines the distribution of mines over the 
width of the minefield. 

mineDistributionLength simkit.random. 

RandomVariate 

Determines the distribution of mines over the 
length of the minefield. 

mineDistributionDepth simkit.random. 

RandomVariate 

Determines the distribution of mines over the 
depth of the minefield. 

Table 10.   Minefield initialization parameters defined. 
 

b. Minefield State Variables 

State Variable Type Description 

numberOfDetectionsByMine int Counter to collect statistics on mover 
objects detected by mines. 

Table 11.   Minefield State Variables. 
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4. Surface/Submerged Target Event Graph 

 
Figure 49.   Surfaced or submerged Target event graph. 

 

The Target event graph is similar to the Seadiver event graph and also has three 

functional sections:  Initialization, Creation of DISMover3D objects, and Detection and 

Statistics.  It simulates a moving surface or submerged vessel such as a destroyer or 

submarine which also has the capability to detect other mover objects.  Currently, Target 

event graph contains no behavioral logic in the event of a detection event other than 

logging the detection for statistical calculations. 

In the initialization section of Target event graph, the Run event initializes all 

parameters and state variables then fires the Determine Target Zones event.  This event 

passes the numberOfWaypoints and numberOfTargets parameters to the ZoneMap event 

graph which uses that information to create zones required for target waypoint 

generation. 

The next section is involved with creation and initialization of the DISMover3D 

objects.  First, the Register Zones event receives the list of zones created by the ZoneMap 

event graph.  A graphical depiction of this zone list is in Figure 45.  An instance of 

TargetWaypointCreator is then created with the zoneList and waypointDistribution in the 
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signature.  Next, an instance of DISMover3D is created for each target mover with an ID 

beginning at 400 in the Register Mover event.  Exactly like the Seadiver event graph, the 

Register Target and Register Sensor events register the DISMover3D mover and the 

sensor with the Scenario Manager.  Finally, the Process Waypoints event instantiates 

PathMoverManager with the TargetWaypointCreator created earlier, which generates 

unique waypoints for each mover and the Start Moving event initiates the movement 

sequence. 

The third section senses and logs detection events by Target movers to allow for 

collection of statistics.  All sensors created in this event graph (one per DISMover3D) are 

able to be listened to by creation of a SimEventListener connection.  This ensures that 

any appropriate sensor detection events can fire the Detection event in this event graph, 

which allows for iteration of the numberOfSeadiverDetections state variable and 

therefore the collection of statistics. 

a. Target Parameters 

 
Figure 50.   Target initialization parameters as shown in the assembly Event Graph 

Inspector. 
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Figure 50 depicts the Event Graph Inspector of the Target model.  The 

Target model is based on the Seadiver model, minus some functionality not required of 

targets, and therefore the parameters are similar.  Table 12 lists and defines each Target 

initialization parameters. 

 
Initialization 

Parameter 
Type, Units Description 

speed double, m/s Determines the speed of the mover. 

numberOfTargets int Determines the number of target movers that will 
be created. 

numberOfWaypoints int Determines the number of waypoints the target 
traverses.  Zero means the target traverses the area 
in a straight line. 

waypointDistribution simkit.random. 

Random Variate 

Defines the random distribution of placement of 
numberOfWaypoints in the area. 

inputFileTemplate String File name and path used as a template to create 
AVCL mission files.  Note that path is relative to 
the Viskit Behavior Libraries directory and fwd 
slashes (/) are required. 

outputFileName String File name and path to write created AVCL mission 
files.  Note that path is relative to the Viskit 
Behavior Libraries directory and fwd slashes (/) 
are required. 

operatingDepth double, m Determines the nominal operating depth of the 
Target.  Note that this can represent a surfaced or 
submerged target. 

sensorRange double, m Determines the range of the SphereCutterSensor 
attached to each target. 

Table 12.   Target initialization parameters defined. 
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b. Target State Variables 

State Variable Type Description 

zoneList LinkedList Collection of zones created and passed by 
ZoneMap event graph.  Used by 
TargetWaypointCreator to generate 
waypoints. 

active 

MoverManager 

diskit.MoverManager Mover manager helper that simply holds the 
current mover manager. 

yRandomVariate Simkit.random. 

RandomVariate 

Random number generation object which 
generates random numbers in the width 
direction. Used by 
seadiver.RandomNumberGenerator class to 
generate a set of unique random numbers 
used in generating waypoints. 

zRandomVariate Simkit.random. 

RandomVariate 

Random number generation object which 
generates random numbers in the height 
direction.  Used by 
seadiver.RandomNumberGenerator class to 
generate a set of unique random numbers 
used in generating waypoints. 

random 

VariateArray 

Simkit.random. 

RandomVariate[3] 

Array that holds 3 random numbers passed 
to TargetWaypointCreator for generation of 
target waypoints. 

random 

NumberGenerator 

seadiver.Random 

NumberGenerator 

Seadiver class which is used to generate 
unique waypoints for each simulation 
repetition. 

target 

WaypointGenerator 

seadiver.Target 

WaypointGenerator 

Generates unique target waypoints through 
an area. 

numberOf 

SeadiverDetections 

int Counter to collect statistics on the amount of 
Seadiver detections. 

Table 13.   Target State Variables. 
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D. SIMULATION DEFINITION:  ASSEMBLIES 

In Viskit, simulations are constructed as assemblies in the Assembly Panel 

depicted previously in Figure 31.  Assemblies are simply simulation definitions which 

enable visual representation of the interactions between specific-instance event graphs.  

Prior to Viskit, the simulation was assembled in a main class which handled the 

SimEventListener and PropertyChangeListener connections manually.  Viskit enables 

creation of simulations using existing event graphs quickly and easily with drag and drop 

simplicity. 

Event graphs are connected together via SimEventListener connections that allow 

the listening event graph knowledge of specific events in the listened to event graph.  

This allows for information to flow between event graphs, enabling behaviors such as one 

entity reacting to another entity, and is accomplished by simply drawing a line between 

one event to the next with a SimEventListener connector selected.  Similarly, assemblies 

allow for the easy collection of statistics by connecting specific event graphs and 

PropertyChangeListeners.   

Despite the simplicity exposed in assemblies for creating SimEventListener and 

PropertyChangeListener connections, a detailed knowledge of the event graphs used is 

required.  In fact, except for the simplest event graphs, any simulation requiring advanced 

behaviors demands that the event graphs be created with the intent of being integrated 

into a specific assembly from the beginning.  For example, the Seadiver simulation is 

designed around reusing proven diskit components such as Scenario Manager and 

DISMover3D.  In that context, the Seadiver and Target event graphs must have Register 

Target and Register Sensor events, and a SimEventListener connection must be 

established from Scenario Manager to the other event graphs or the simulation will not 

start.  In short, the conceptual design of behavior models, the creation of event graphs 

based on those behaviors, and the integration of those event graphs into an assembly must 

be conducted with each in mind. 
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1. Minefield Search Assembly 

 
Figure 51.   Minefield Search Assembly. 

 

The Minefield Search Assembly consists of four event graphs and two 

PropertyChangeListeners as shown in Figure 51.  The mediator between movers and 

sensors, Scenario Manager, listens to the Register Target and Register Sensor events in 

both the Seadiver and Minefield event graphs via a SimEventListener connection.  The 

Seadiver and ZoneMap event graphs listen to each other with ZoneMap listening for the 

Create Map event in Seadiver while Seadiver listens for the Register Map event in 

ZoneMap.  As discussed earlier, these connections are required to sectionalize the entire 

operating area into the appropriate amount of zones, and to assign each Seadiver to an 
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area.  The Minefield event graph is independent of the ZoneMap event graph and no 

limitations are set for the Minefield size, which enables the Minefield to be arbitrarily 

larger or smaller than the Seadiver operating area. 

The PropertyChangeListeners associated with the Minefield Search assembly are 

Mine Detections and Seadiver Detections which are of type SimpleStatsTally.  

SimpleStatsTally simply keeps a running total of property changes and calculates 

statistical values such as minimum, maximum, mean, variance and standard deviation at 

the end of a repetition.  They are connected via PropertyChangeListener connections to 

the event graphs that expose the appropriate state variables, namely mineDetections and 

numberOfDetectionsByMine respectively.  Establishing PropertyChangeListeners in this 

manner allows for Viskit to automatically display repetition and summary statistics which 

are displayed in the Assembly Run panel.  Further analysis support is also provided by 

the Analyst Report tabbed panes. 
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2. Barrier Search Assembly 

 
Figure 52.   Barrier Search Assembly. 

 

The Barrier Search Assembly consists of four event graphs and two 

PropertyChangeListeners as shown in Figure 52.  The mediator between movers and 

sensors, Scenario Manager, listens to the Register Target and Register Sensor events in 

both the Seadiver and Minefield event graphs via a SimEventListener connection.  

Seadivers and ZoneMap event graphs listen to each other with ZoneMap listening for the 

Create Map event in Seadiver while Seadiver listens for the Register Map event in 

ZoneMap.  As discussed earlier, these connections are required to sectionalize the entire 

operating area into the appropriate amount of zones and to expose Seadiver to an area  
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without requiring prior knowledge of it in the event graph.  Similarly, the Target and 

ZoneMap event graphs listen to each other with ZoneMap listening to Determine Target 

Zones event and Target listening to the Register Zones event. 

The PropertyChangeListeners associated with the Barrier Search assembly are 

Target Detections and Seadiver Detections which are of type SimpleStatsTally.  

SimpleStatsTally simply keeps a running total of property changes and calculates 

statistical values such as minimum, maximum, mean, variance and standard deviation at 

the end of a repetition.  They are connected via PropertyChangeListener connections to 

the event graphs that expose the appropriate state variables, namely mineDetections and 

numberOfSeadiverDetections respectively.  Establishing PropertyChangeListeners in this 

manner allows for Viskit to automatically display repetition and summary statistics which 

are displayed in the Assembly Run panel. 

E. MISSION VALIDATION WITH AUVW 

This thesis leverages the Autonomous Unmanned Vehicle Workbench (AUVW), 

a virtual environment simulation program detailed in Chapter II, to validate mission 

generation and entity behavior for conducting missions.  When designing complex 

simulations in a programming environment, it becomes increasingly difficult to ensure 

moving entities are operating as desired.  This is especially true of this simulation 

because many moving entities are required to work in concert over a large area 

simultaneously. 

The AUVW is used in this case to visually verify that each moving entity is 

correctly positioned in its assigned operating zone and that waypoint generation for that 

entity was successful.  Specifically the Viskit classes produce AVCL mission scripts for 

the respective targets and Seadiver vehicles to follow.  Improper movement of entities 

leads to difficult or faulty analysis of statistical results that can be difficult to diagnose.  

Figure 53 demonstrates visual validation of a notional simulation consisting of ten 

Seadiver entities and two Target entities. 
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Figure 53.   Visual path validation with AUVW, displaying 10 Seadiver entities 

searching and 2 Target entities transiting. 
 

The Seadiver simulation makes several assumptions about the physical operating 

characteristics of the Seadiver entity for simplification that could invalidate the statistical 

results if not determined to have negligible effect of the simulation.  For example, it is 

assumed that Seadiver vector changes are instantaneous, which is obviously incorrect 

since every moving entity has some turning radius.  On a small-enough scale as with 

search legs within a short distance, this assumption becomes non-negligible.  Validation 

using AUVW to run the AVCL missions can determine proper production of missions. 

In AUVW, the Seadiver UUV has been physically and dynamically modeled.  

This enables not only validation of generated search paths, but validation that the 

Seadiver UUV can physically navigate this path with realistic physical characteristics, 

such as diving or rising to generate forward propulsion, or the ability to navigate a turn 

successfully.  By running Seadiver AVCL missions in The AUVW generated by the 

Seadiver simulation and observing correct behavior, validation of Seadiver operating 

characteristics in the context of mission generated by the Seadiver simulation is 

established. 
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F. SUMMARY 

This chapter describes in detail the logic and methods employed including 

required assumptions to create event graph models and simulation assemblies for this 

research.  Beginning with Section B, the assumptions and logic behind them are detailed 

to produce a fairly abstract model.  Section C detailed how entity behaviors are captured 

in this research during the creation of the four event graphs that compose this thesis.  The 

event graphs represent three moving entities (Seadiver, Target, and Minefield) and one 

area knowledge object (ZoneMap).  Section D detailed how the aforementioned event 

graphs along with Scenario Manager were integrated into the functional simulations.  

Section D also explains how this thesis constructs two functional assemblies and 

therefore two simulations which mimic the ability of the Seadiver to conduct relevant 

military missions.  Finally, Section E describes how AUVW is employed to validate 

simulation results and why that is required in this thesis. 
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VII. SIMULATION RESULTS 

This simulation not intended to be analytically rigorous.  That is, the statistics 

generated do not represent that the Seadiver can perform these missions, only that a DES 

can be made with Viskit to model the Seadiver UUV and its hypothetical missions.  This 

simulation can however be used as a framework for follow-on simulations that are 

analytically rigorous.   

Simulation results and analysis are contained in Appendices A and B for the 

Barrier Search and Minefield Search missions respectively. 
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VIII. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

1. Discrete Event Model Creation 

This research has created DES event graph models of various moving entities 

defined by specific behaviors.  These models, Seadiver, Target, Minefield, and ZoneMap 

are scalable, repeatable, re-useable, and modifiable.  This thesis has explained in detail 

the process of creating Discrete Event simulations from the start by creation of entity 

definitions via event graphs to execution of simulations and result generation.  Using this 

thesis as a guide, new models can be created and implemented with the programs and 

APIs outlined.  Additionally, the models and supporting classes can be used as is or 

modified and used in new simulations. 

2. Mission-Structured Simulations 

The event graphs and supporting Java classes created during this research are used 

to create two simulations structured around the unique capabilities of the Seadiver UUV.  

These missions are the Barrier Search and the Minefield Search, both implemented over 

large areas with numerous Seadiver UUVs.  These simulations can be used as a 

repeatable framework to analyze in detail the capabilities of the Seadiver UUV in 

performance of these missions or as a platform for creation of additional simulations 

based on missions. 

3. Simulation Validation with AUVW 

Validation of simulation mission structure and dynamic constraints is required 

and demonstrated for this research.  Validation is accomplished in AUVW through the 

implementation of missions that are automatically generated during Viskit simulation 

initialization by a Java class designed to produce mission files in AVCL format from a 

Discrete Event simulation.  Individual and small group can be validated coherently, but 

large scale missions incorporating many entities (threshold: 20) are not feasible in 

AUVW at this time due to limited computational resources of recent desktop computers.  

This limitation can be worked around satisfactorily by using multiple computers, since all 



94 

results are networked and sharable.  Further AUVW software development to improve 

threading and resource allocation is expected to provide significant improvements in 

computational efficiency and mission capacity. 

B. RECOMMENDATIONS FOR FUTURE WORK 

1. Real-World Classified Study 

This thesis provides the framework and approach for conducting a real-world 

classified study of Seadiver performing difficult missions.  The two mission simulations 

created in this thesis are an exemplar to other unique and currently infeasible UUV 

missions that can be constructed in Viskit based on this research.  These missions include 

a Mobile Minefield or Large-Area Moving Underwater Communication Network.  To 

enable a real-world study, more research is required to determine Seadiver physical 

capabilities and specifics of available sensor capabilities. 

2. Increased Sensor Fidelity 

To generate realistically accurate results from these mission simulations, there is a 

need to expand the Diskit sensor library both in capability and fidelity.  Sensor objects 

need to be created for all expected sensor packages on UUVs performing these missions 

to evaluate the most appropriate sensor or combination of sensors.  Additionally, these 

sensor objects need to accurately reflect the capabilities of the modeled sensor to provide 

for realistic mission results.   

3. Finish Design, Construction and Validation Testing of Seadiver 

The Seadiver UUV has not been physically completed nor tested in a water 

environment.  Therefore it is difficult to accurately predict the hydrodynamic and 

behavioral characteristics of Seadiver.  These characteristics include turning radius, speed 

through the water, and rate of change of depth, and are required to create simulations of 

higher fidelity.  Additionally, the process of construction and testing will validate some 

assumptions made in this thesis such as Seadiver’s low cost of construction and speed. 
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4. Implement Advanced Search Techniques 

Currently, this thesis implements a lawn-mower search pattern for each mission 

type.  This is adequate for a minefield search since 100 percent of the area must be 

searched, but is inefficient for a barrier search.  There is a need to implement advanced 

search techniques such as the A-Star search path optimization or other heuristic search 

methods to reduce these inefficiencies.  Additionally, providing more search options 

allows the researcher to test optimum combinations of parameters applicable to search 

patters. 

5. Implement Inheritance for Viskit Event Graph Models 

Inheritance is used extensively in this research to simplify event graphs based on 

behaviors.  This allowed the event graphs of entities to only define the behaviors unique 

to each.  Currently, Viskit event graphs cannot extend other event graphs because of the 

nature of the XML format in which they are saved.  Therefore, all parent classes of the 

event graph models that were created in this thesis had to be defined as Java code.  To 

allow for easier implementation of inheritance, there is a need for native Viskit event 

graphs to extend each other. 

6. Programmatically Load Viskit Assemblies for Large Simulations 

This thesis employed special techniques to create multiple moving entities in a 

single event graph.  This created difficulties during the simulation phase due to the 

method of repetition implementation in Simkit, necessitating special programming 

measures to overcome.  It is recommended that many entities not be created on a single 

event graph to allow for focus to be maintained on entity behavior alone.  Instead, a 

programmatic method for loading multiple (tens to hundreds) entities into assemblies 

should be researched to separate entity mechanics and behaviors when implementing 

large arrays or lists of identical entities in a given assembly. 
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APPENDIX A. 

 THIS REPORT IS: UNCLASSIFIED  
 

Barrier Search Simulation  
 

Analyst: LT John M. Seguin  
Analysis date: 3/19/07 2:17 PM  

 
Executive Summary  
A novel UUV is currently being designed that is projected to support significantly greater 
endurance and range characteristics. This UUV is called Seadiver and is being designed 
by Institute of Engineering Science of Toulon, France with support from Naval 
Postgraduate School. It is a low-cost glider UUV which generates propulsion not with 
propellers or jet pumps, but rather by controlling its buoyancy. This method of propulsion 
is quite efficient and maybe capable of autonomous operation up to 30 days with a range 
of around 700 nautical miles. A UUV with such endurance and range exposes military 
missions previously impractical for UUVs especially when used in concert as an array of 
many UUVs 
 
This simulation models the ability of Seadiver UUV to perform the Barrier Search 
mission. The Barrier Search mission's purpose is to detect hostile contacts moving across 
the barrier. The barrier is comprised of 100 searching Seadiver UUVs spread 
symmetrically across the area. As the hostile contacts traverse from one side of the area 
to the other, they are detected by Seadiver UUVs if they come within the sensor range of 
the UUV. All unique detections are logged and statistical results are generated.  

 
Simulation Location  
Description of Location Features. This mission takes place in a generic littoral ocean area 
200 km long, 200 km wide, and 100 m deep.  
 
Post-Experiment Analysis of Significant Location Features. This was a generic area.  The 
area can be modified to meet the needs of the analyst.  

 
Assembly Configuration for Viskit Simulation  
Assembly Design Considerations. This assembly is designed around the Barrier Search 
mission. The ZoneMap node takes the total area dimensions and creates individual 
operating zones for each Seadiver UUV, and waypoint zones for the hostile contacts 
(Target entities). This information is passed to the SeaDivers and Targets nodes 
respectively through simEventListener connections. Scenario Manager controls and 
manages movement and detection between all entities. There are two statistics collecting 
nodes called TargetDetections and SeadiverDetections connected to the applicable entity 
nodes containing the State Variables with Property Change Listeners.  
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Post-Experiment Analysis of Simulation Assembly Design. Simulation works as designed, 
but behavior implementation was problematic due to creation of many moving entities in 
a single node. A possible solution could be to programmatically generate the assembly 
and have one moving entity per node.  
 

Summary of Simulation Entities  
Entity Name Behavior Definition
SeaDivers seadiver.SeaDiver 
ZoneMap seadiver.ZoneMap 
Targets seadiver.Target 

 

 
 

Entity Parameters  
Entity Parameters Overview. Entity parameters are initialization values used to define 
new event graphs.  These values are pulled directly from the assembly. 
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Behavior Definitions  
Description of Behavior Design. Seadiver: Seadiver is modeled after the SeaDiver glider 
UUV. Its main behavior is to conduct a search in a Lawn-mower pattern over an area. In 
the Barrier Search mission, the entities search their respective areas for other moving 
entities (Targets). Upon detection, the UUV immediately takes a GPS fix (simulated) 
then continues the search indefinitely.  
Target: Target is modeled after a moving submerged or surfaced contact that is traversing 
an area patrolled by Seadiver UUV. Targets have the ability to detect Seadiver UUVs, but 
take no action upon detection.  
 
Post-Experiment Analysis of Entity Behaviors. Possible future behavior would be to 
incorporate behavior for Targets upon detection of Seadiver UUVs.  

 
Statistical Results  
Description of Expected Results. This simulation initiated 50 repetitions displayed below. 
This is used as an exemplar to indicate the correct application of detection in a DES, and 
the ability to produce representative statistics from that behavior. SeadiverDetections 
statistic indicates the amount of Seadivers that were detected by Targets. 
TargetDetections statistic indicates that all Targets were detected each repetition.  
 
Analysis of Experimental Results. As an exemplar, no analysis was performed. Other 
potential useful statistics would be time to detect all targets or the amount of detections 
per target.  



100 

Replication Report  
Entity: Target 
Property: SeadiverDetections  

 
Run# Count  Min Max  Mean StdDev Variance 
1 14.000 0.000 13.000 6.500 4.183 17.500 
2 4.000 0.000 3.000 1.500 1.291 1.667 
3 10.000 0.000 9.000 4.500 3.028 9.167 
4 6.000 0.000 5.000 2.500 1.871 3.500 
5 6.000 0.000 5.000 2.500 1.871 3.500 
6 4.000 0.000 3.000 1.500 1.291 1.667 
7 5.000 0.000 4.000 2.000 1.581 2.500 
8 8.000 0.000 7.000 3.500 2.449 6.000 
9 4.000 0.000 3.000 1.500 1.291 1.667 
10 5.000 0.000 4.000 2.000 1.581 2.500 
11 4.000 0.000 3.000 1.500 1.291 1.667 
12 4.000 0.000 3.000 1.500 1.291 1.667 
13 14.000 0.000 13.000 6.500 4.183 17.500 
14 7.000 0.000 6.000 3.000 2.160 4.667 
15 6.000 0.000 5.000 2.500 1.871 3.500 
16 16.000 0.000 15.000 7.500 4.761 22.667 
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Run# Count  Min Max  Mean StdDev Variance 
17 3.000 0.000 2.000 1.000 1.000 1.000 
18 5.000 0.000 4.000 2.000 1.581 2.500 
19 5.000 0.000 4.000 2.000 1.581 2.500 
20 9.000 0.000 8.000 4.000 2.739 7.500 
21 18.000 0.000 17.000 8.500 5.339 28.500 
22 5.000 0.000 4.000 2.000 1.581 2.500 
23 8.000 0.000 7.000 3.500 2.449 6.000 
24 6.000 0.000 5.000 2.500 1.871 3.500 
25 5.000 0.000 4.000 2.000 1.581 2.500 
26 4.000 0.000 3.000 1.500 1.291 1.667 
27 5.000 0.000 4.000 2.000 1.581 2.500 
28 5.000 0.000 4.000 2.000 1.581 2.500 
29 10.000 0.000 9.000 4.500 3.028 9.167 
30 1.000 0.000 0.000 0.000 0.000 0.000 
31 6.000 0.000 5.000 2.500 1.871 3.500 
32 6.000 0.000 5.000 2.500 1.871 3.500 
33 7.000 0.000 6.000 3.000 2.160 4.667 
34 7.000 0.000 6.000 3.000 2.160 4.667 
35 6.000 0.000 5.000 2.500 1.871 3.500 
36 9.000 0.000 8.000 4.000 2.739 7.500 
37 5.000 0.000 4.000 2.000 1.581 2.500 
38 6.000 0.000 5.000 2.500 1.871 3.500 
39 9.000 0.000 8.000 4.000 2.739 7.500 
40 7.000 0.000 6.000 3.000 2.160 4.667 
41 3.000 0.000 2.000 1.000 1.000 1.000 
42 6.000 0.000 5.000 2.500 1.871 3.500 
43 7.000 0.000 6.000 3.000 2.160 4.667 
44 6.000 0.000 5.000 2.500 1.871 3.500 
45 5.000 0.000 4.000 2.000 1.581 2.500 
46 5.000 0.000 4.000 2.000 1.581 2.500 
47 8.000 0.000 7.000 3.500 2.449 6.000 
48 6.000 0.000 5.000 2.500 1.871 3.500 
49 9.000 0.000 8.000 4.000 2.739 7.500 
50 14.000 0.000 13.000 6.500 4.183 17.500 
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Replication Report  
Entity: Seadivers 
Property: TargetDetections  

 
Run# Count  Min Max  Mean StdDev Variance 
1 10.000 0.000 9.000 4.500 3.028 9.167 
2 12.000 0.000 11.000 5.500 3.606 13.000 
3 11.000 0.000 10.000 5.000 3.317 11.000 
4 9.000 0.000 8.000 4.000 2.739 7.500 
5 8.000 0.000 7.000 3.500 2.449 6.000 
6 11.000 0.000 10.000 5.000 3.317 11.000 
7 10.000 0.000 9.000 4.500 3.028 9.167 
8 11.000 0.000 10.000 5.000 3.317 11.000 
9 9.000 0.000 8.000 4.000 2.739 7.500 
10 8.000 0.000 7.000 3.500 2.449 6.000 
11 9.000 0.000 8.000 4.000 2.739 7.500 
12 10.000 0.000 9.000 4.500 3.028 9.167 
13 10.000 0.000 9.000 4.500 3.028 9.167 
14 10.000 0.000 9.000 4.500 3.028 9.167 
15 11.000 0.000 10.000 5.000 3.317 11.000 
16 10.000 0.000 9.000 4.500 3.028 9.167 
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Run# Count  Min Max  Mean StdDev Variance 
17 9.000 0.000 8.000 4.000 2.739 7.500 
18 11.000 0.000 10.000 5.000 3.317 11.000 
19 9.000 0.000 8.000 4.000 2.739 7.500 
20 10.000 0.000 9.000 4.500 3.028 9.167 
21 10.000 0.000 9.000 4.500 3.028 9.167 
22 10.000 0.000 9.000 4.500 3.028 9.167 
23 9.000 0.000 8.000 4.000 2.739 7.500 
24 10.000 0.000 9.000 4.500 3.028 9.167 
25 10.000 0.000 9.000 4.500 3.028 9.167 
26 9.000 0.000 8.000 4.000 2.739 7.500 
27 8.000 0.000 7.000 3.500 2.449 6.000 
28 8.000 0.000 7.000 3.500 2.449 6.000 
29 11.000 0.000 10.000 5.000 3.317 11.000 
30 10.000 0.000 9.000 4.500 3.028 9.167 
31 11.000 0.000 10.000 5.000 3.317 11.000 
32 10.000 0.000 9.000 4.500 3.028 9.167 
33 10.000 0.000 9.000 4.500 3.028 9.167 
34 9.000 0.000 8.000 4.000 2.739 7.500 
35 9.000 0.000 8.000 4.000 2.739 7.500 
36 11.000 0.000 10.000 5.000 3.317 11.000 
37 10.000 0.000 9.000 4.500 3.028 9.167 
38 8.000 0.000 7.000 3.500 2.449 6.000 
39 10.000 0.000 9.000 4.500 3.028 9.167 
40 10.000 0.000 9.000 4.500 3.028 9.167 
41 10.000 0.000 9.000 4.500 3.028 9.167 
42 11.000 0.000 10.000 5.000 3.317 11.000 
43 9.000 0.000 8.000 4.000 2.739 7.500 
44 8.000 0.000 7.000 3.500 2.449 6.000 
45 10.000 0.000 9.000 4.500 3.028 9.167 
46 11.000 0.000 10.000 5.000 3.317 11.000 
47 9.000 0.000 8.000 4.000 2.739 7.500 
48 9.000 0.000 8.000 4.000 2.739 7.500 
49 9.000 0.000 8.000 4.000 2.739 7.500 
50 8.000 0.000 7.000 3.500 2.449 6.000 
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Summary Report  
 
Entity  Property  Count Min Max Mean StdDev Variance 
Seadiver TargetDetections 50.000 3.500 5.500 4.350 0.508 0.258 
Target SeadiverDetections 50.000 0.000 8.500 2.930 1.693 2.867 

 
Conclusions and Recommendations  
Conclusions. This simulation was a good exemplar for testing Barrier Search missions for 
the SeaDiver UUV.  For specific conclusions, see Chapter 8.  
 
Recommendations for Future Work. As an exemplar simulation, the behaviors and 
capabilities of moving entities are very general.  More work is required refining the 
model definitions and search patterns to generate relevant statistics.  See Chapter 8 for 
other specific recommendations for future work.  
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APPENDIX B. 

THIS REPORT IS: UNCLASSIFIED  
 

Minefield Search  
 

Analyst: LT John M. Seguin  
Analysis date: 3/20/07 12:45 PM  

 
Executive Summary  
Analyst Executive Summary. A novel UUV is currently being designed that is projected to 
support significantly greater endurance and range characteristics. This UUV is called 
Seadiver and is being designed by Institute of Engineering Science of Toulon, France 
with support from Naval Postgraduate School. It is a low-cost glider UUV which 
generates propulsion not with propellers or jet pumps, but rather by controlling its 
buoyancy. This method of propulsion is quite efficient and maybe capable of autonomous 
operation up to 30 days with a range of around 700 nautical miles. A UUV with such 
endurance and range exposes military missions previously impractical for UUVs 
especially when used in concert as an array of many UUVs. 
 
This simulation models the ability of Seadiver UUV to perform the Minefield Search 
mission. The Minefield Search mission's purpose is to detect all mines in a minefield, 
then report all locations of mines for later removal. The search is comprised of 100 
Seadiver UUVs spread symmetrically across the minefield. The minefield is comprised of 
200 mines randomly distributed across the minefield. The Seadiver UUVs conduct the 
search using a lawn-mower search pattern.  All unique mine detections are logged and 
statistical results are generated.   

 
Simulation Location  
Description of Location Features. This mission takes place in a generic littoral ocean area 
200 km long, 200 km wide, and 100 m deep.  
 
Post-Experiment Analysis of Significant Location Features. This was a generic area.  The 
area can be modified to meet the needs of the analyst.  
 

 
Assembly Configuration for Viskit Simulation  
Assembly Design Considerations. This assembly is designed around the Minefield Search 
mission. The ZoneMap node takes the total area dimensions and creates individual 
operating zones for each Seadiver UUV.  This information is passed to the SeaDivers 
node through simEventListener connections. Scenario Manager controls and manages 
movement and detection between all entities. There are two statistics collecting nodes 
called MineDetections and DetectionsByMines connected to the applicable entity node 
containing the State Variable with Property Change Listeners.  
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Post-Experiment Analysis of Simulation Assembly Design. Simulation works as designed, 
but behavior implementation was problematic due to creation of many moving entities in 
a single node. A possible solution could be to programmatically generate the assembly 
and have one moving entity per node. 
 

Summary of Simulation Entities  
Entity Name Behavior Definition
ZoneMap seadiver.ZoneMap 
SeaDivers seadiver.SeaDiver 
MineField seadiver.MineField
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Entity Parameters  
Entity Parameters Overview. Entity parameters are initialization values used to define 
new event graphs.  These values are pulled directly from the assembly. 

 
Behavior Definitions  
Description of Behavior Design. Seadiver: Seadiver is modeled after the SeaDiver glider 
UUV.  Its main behavior is to conduct a search in a lawn-mower pattern over its section 
of the minefield. In the Minefield Search mission, the entities search their respective 
areas for mines. Upon detection, the UUV immediately takes a GPS fix (simulated) then 
continues the search indefinitely.  
Minefield: Mines are stationary objects capable of detecting other moving entities. Mines 
have the ability to detect Seadiver UUVs, but take no action upon detection.  
 
Post-Experiment Analysis of Entity Behaviors. Possible future behavior would be to 
incorporate behavior for mines upon detection of Seadiver UUVs such as explode. 

 
Statistical Results  
Description of Expected Results. This simulation initiated 50 repetitions displayed below. 
This is used as an exemplar to indicate the correct application of detection in a DES, and 
the ability to produce representative statistics from that behavior. MineDetections statistic 
indicates the amount of mines that were detected by Seadivers. DetectionsByMines 
statistic indicates the number of Seadivers that were detected each repetition by mines.  
 
Analysis of Experimental Results. As an exemplar, no analysis was performed. Other 
potential useful statistics would be time to detect all mines. 
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Replication Report  
Entity: Seadivers 
Property: MineDetections  

 
Run# Count  Min Max  Mean StdDev Variance 
1 189.000 0.000 188.000 94.000 54.704 2992.500 
2 184.000 0.000 183.000 91.500 53.260 2836.667 
3 177.000 0.000 176.000 88.000 51.240 2625.500 
4 189.000 0.000 188.000 94.000 54.704 2992.500 
5 184.000 0.000 183.000 91.500 53.260 2836.667 
6 190.000 0.000 189.000 94.500 54.992 3024.167 
7 179.000 0.000 178.000 89.000 51.817 2685.000 
8 187.000 0.000 186.000 93.000 54.126 2929.667 
9 189.000 0.000 188.000 94.000 54.704 2992.500 
10 188.000 0.000 187.000 93.500 54.415 2961.000 
11 180.000 0.000 179.000 89.500 52.106 2715.000 
12 181.000 0.000 180.000 90.000 52.394 2745.167 
13 188.000 0.000 187.000 93.500 54.415 2961.000 
14 187.000 0.000 186.000 93.000 54.126 2929.667 
15 193.000 0.000 192.000 96.000 55.858 3120.167 
16 182.000 0.000 181.000 90.500 52.683 2775.500 
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Run# Count  Min Max  Mean StdDev Variance 
17 186.000 0.000 185.000 92.500 53.838 2898.500 
18 183.000 0.000 182.000 91.000 52.972 2806.000 
19 181.000 0.000 180.000 90.000 52.394 2745.167 
20 181.000 0.000 180.000 90.000 52.394 2745.167 
21 182.000 0.000 181.000 90.500 52.683 2775.500 
22 178.000 0.000 177.000 88.500 51.528 2655.167 
23 187.000 0.000 186.000 93.000 54.126 2929.667 
24 183.000 0.000 182.000 91.000 52.972 2806.000 
25 183.000 0.000 182.000 91.000 52.972 2806.000 
26 181.000 0.000 180.000 90.000 52.394 2745.167 
27 183.000 0.000 182.000 91.000 52.972 2806.000 
28 184.000 0.000 183.000 91.500 53.260 2836.667 
29 184.000 0.000 183.000 91.500 53.260 2836.667 
30 188.000 0.000 187.000 93.500 54.415 2961.000 
31 185.000 0.000 184.000 92.000 53.549 2867.500 
32 181.000 0.000 180.000 90.000 52.394 2745.167 
33 189.000 0.000 188.000 94.000 54.704 2992.500 
34 179.000 0.000 178.000 89.000 51.817 2685.000 
35 185.000 0.000 184.000 92.000 53.549 2867.500 
36 181.000 0.000 180.000 90.000 52.394 2745.167 
37 184.000 0.000 183.000 91.500 53.260 2836.667 
38 189.000 0.000 188.000 94.000 54.704 2992.500 
39 176.000 0.000 175.000 87.500 50.951 2596.000 
40 178.000 0.000 177.000 88.500 51.528 2655.167 
41 182.000 0.000 181.000 90.500 52.683 2775.500 
42 192.000 0.000 191.000 95.500 55.570 3088.000 
43 175.000 0.000 174.000 87.000 50.662 2566.667 
44 182.000 0.000 181.000 90.500 52.683 2775.500 
45 184.000 0.000 183.000 91.500 53.260 2836.667 
46 191.000 0.000 190.000 95.000 55.281 3056.000 
47 180.000 0.000 179.000 89.500 52.106 2715.000 
48 175.000 0.000 174.000 87.000 50.662 2566.667 
49 184.000 0.000 183.000 91.500 53.260 2836.667 
50 185.000 0.000 184.000 92.000 53.549 2867.500 
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Replication Report  
Entity: Minefield 
Property: DetectionsByMine  

 
Run# Count  Min Max  Mean  StdDev  Variance  
1 9860.000 0.000 9859.000 4929.500 2846.481 8102455.000 
2 9393.000 0.000 9392.000 4696.000 2711.670 7353153.500 
3 10126.000 0.000 10125.000 5062.500 2923.269 8545500.167 
4 9559.000 0.000 9558.000 4779.000 2759.590 7615336.667 
5 9883.000 0.000 9882.000 4941.000 2853.121 8140297.667 
6 10331.000 0.000 10330.000 5165.000 2982.447 8894991.000 
7 8849.000 0.000 8848.000 4424.000 2554.631 6526137.500 
8 9703.000 0.000 9702.000 4851.000 2801.159 7846492.667 
9 9370.000 0.000 9369.000 4684.500 2705.030 7317189.167 
10 9828.000 0.000 9827.000 4913.500 2837.244 8049951.000 
11 9759.000 0.000 9758.000 4879.000 2817.325 7937320.000 
12 9486.000 0.000 9485.000 4742.500 2738.517 7499473.500 
13 9532.000 0.000 9531.000 4765.500 2751.796 7572379.667 
14 10267.000 0.000 10266.000 5133.000 2963.972 8785129.667 
15 9184.000 0.000 9183.000 4591.500 2651.337 7029586.667 
16 9770.000 0.000 9769.000 4884.500 2820.500 7955222.500 
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Run# Count  Min Max  Mean  StdDev  Variance  
17 9259.000 0.000 9258.000 4629.000 2672.987 7144861.667 
18 9675.000 0.000 9674.000 4837.000 2793.076 7801275.000 
19 8336.000 0.000 8335.000 4167.500 2406.540 5791436.000 
20 10101.000 0.000 10100.000 5050.000 2916.052 8503358.500 
21 9717.000 0.000 9716.000 4858.000 2805.201 7869150.500 
22 10079.000 0.000 10078.000 5039.000 2909.701 8466360.000 
23 8731.000 0.000 8730.000 4365.000 2520.567 6353257.667 
24 10122.000 0.000 10121.000 5060.500 2922.114 8538750.500 
25 9480.000 0.000 9479.000 4739.500 2736.785 7489990.000 
26 8641.000 0.000 8640.000 4320.000 2494.586 6222960.167 
27 9708.000 0.000 9707.000 4853.500 2802.603 7854581.000 
28 10418.000 0.000 10417.000 5208.500 3007.562 9045428.500 
29 10331.000 0.000 10330.000 5165.000 2982.447 8894991.000 
30 9348.000 0.000 9347.000 4673.500 2698.679 7282871.000 
31 9861.000 0.000 9860.000 4930.000 2846.770 8104098.500 
32 8932.000 0.000 8931.000 4465.500 2578.591 6649129.667 
33 9950.000 0.000 9949.000 4974.500 2872.462 8251037.500 
34 8335.000 0.000 8334.000 4167.000 2406.252 5790046.667 
35 9362.000 0.000 9361.000 4680.500 2702.721 7304700.500 
36 8773.000 0.000 8772.000 4386.000 2532.691 6414525.167 
37 9901.000 0.000 9900.000 4950.000 2858.317 8169975.167 
38 10568.000 0.000 10567.000 5283.500 3050.863 9307766.000 
39 9267.000 0.000 9266.000 4633.000 2675.297 7157213.000 
40 8890.000 0.000 8889.000 4444.500 2566.466 6586749.167 
41 8731.000 0.000 8730.000 4365.000 2520.567 6353257.667 
42 10345.000 0.000 10344.000 5172.000 2986.489 8919114.167 
43 9093.000 0.000 9092.000 4546.000 2625.067 6890978.500 
44 9426.000 0.000 9425.000 4712.500 2721.196 7404908.500 
45 9092.000 0.000 9091.000 4545.500 2624.779 6889463.000 
46 10570.000 0.000 10569.000 5284.500 3051.441 9311289.167 
47 9451.000 0.000 9450.000 4725.000 2728.413 7444237.667 
48 9352.000 0.000 9351.000 4675.500 2699.834 7289104.667 
49 9076.000 0.000 9075.000 4537.500 2620.160 6865237.667 
50 9569.000 0.000 9568.000 4784.000 2762.477 7631277.500 
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Summary Report  
Entity Property  Count Min  Max  Mean  StdDev  Variance 
 DetectionsByMine 50.000 4167.000 5284.500 4773.400 280.909 78909.898
 MineDetections 50.000 87.000 96.000 91.380 2.187 4.781 
 

 
Conclusions and Recommendations  
Conclusions. This simulation was a good exemplar for testing Minefield Search missions 
for the SeaDiver UUV.  For specific conclusions, see Chapter 8.  
 
Recommendations for Future Work. As an exemplar simulation, the behaviors and 
capabilities of moving entities are very general.  More work is required refining the 
model definitions and search patterns to generate relevant statistics.  See Chapter 8 for 
other specific recommendations for future work.   
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