NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

SIMULATING CANDIDATE MISSIONS FOR A NOVEL
GLIDER UNMANNED UNDERWATER VEHICLE

by
John M. Seguin
March 2007
Thesis Advisor: Don Brutzman

Second Readers: Ray Jones
Richard Williams

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 2007 Master’s Thesis

4. TITLE AND SUBTITLE: Simulating Candidate Missions for a Novel | 5. FUNDING NUMBERS
Glider Unmanned Underwater Vehicle
6. AUTHOR: John M. Seguin

7. PERFORMING ORGANIZATION NAME AND ADDRESS 8. PERFORMING
Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING /MONITORING AGENCY NAME AND ADDRESS 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited

13. ABSTRACT

Unmanned Underwater Vehicles (UUVs) are becoming ubiquitous in the framework of U.S. Navy operations.
According to the U.S. Navy’s UUV Master Plan (2004), research and development will expand UUV capabilities that enable
diverse roles from Intelligence, Surveillance, and Reconnaissance (ISR) and Mine Countermeasures to Anti-Submarine
Warfare (ASW) and Information Operations (10). However, typical UUVs are severely limited in operational characteristics
such as endurance and range which prevents their use conducting certain missions.

A novel UUV is currently being designed that is projected to support significantly greater endurance and range
characteristics. This UUV is called Seadiver and is being designed by Institute of Engineering Science of Toulon, France with
support from Naval Postgraduate School. It is a low-cost glider UUV which generates propulsion not with propellers or jet
pumps, but rather by controlling its buoyancy. This method of propulsion is quite efficient and maybe capable of autonomous
operation up to 30 days with a range of around 700 nautical miles. A UUV with such endurance and range exposes military
missions previously impractical for UUVs especially when used in concert as an array of many UUVs.

This thesis creates a simulation using NPS-produced software simulation tools Simkit, Viskit and AUV Workbench
that analyzes the capabilities and effectiveness of Seadiver UUVs conducting missions of tactical interest.

14. SUBJECT TERMS Discrete Event Simulation, Simkit, Diskit, Viskit, Seadiver, UUV, AUVW, | 15. NUMBER OF
Java, XML, Distributed Interactive Simulation, DIS PAGES
140
16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

SIMULATING CANDIDATE MISSIONS FOR A NOVEL GLIDER UNMANNED
UNDERWATER VEHICLE

John M. Seguin
Lieutenant, United States Navy
B.S., Old Dominion University, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS AND OPERATIONS

from the

NAVAL POSTGRADUATE SCHOOL
March 2007

Author: John M. Seguin
Approved by: Don Brutzman
Thesis Advisor

Ray Jones, RADM USN (Ret.)
Second Reader

Richard Williams, RADM USN (Ret.)
Second Reader

Dan C. Boger
Chairman, Department of Information Sciences

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

Unmanned Underwater Vehicles (UUVS) are becoming ubiquitous in the
framework of U.S. Navy operations. According to the U.S. Navy’s UUV Master Plan
(2004), research and development will expand UUV capabilities that enable diverse roles
from Intelligence, Surveillance, and Reconnaissance (ISR) and Mine Countermeasures to
Anti-Submarine Warfare (ASW) and Information Operations (I0). However, typical
UUVs are severely limited in operational characteristics such as endurance and range
which prevents their use conducting certain missions.

A novel UUV is currently being designed that is projected to support significantly
greater endurance and range characteristics. This UUV is called Seadiver and is being
designed by Institute of Engineering Science of Toulon, France with support from Naval
Postgraduate School. It is a low-cost glider UUV which generates propulsion not with
propellers or jet pumps, but rather by controlling its buoyancy. This method of
propulsion is quite efficient and maybe capable of autonomous operation up to 30 days
with a range of around 700 nautical miles. A UUV with such endurance and range
exposes military missions previously impractical for UUVs especially when used in
concert as an array of many UUVs.

This thesis creates a simulation using NPS-produced software simulation tools
Simkit, Viskit and AUV Workbench that analyzes the capabilities and effectiveness of

Seadiver UUVs conducting missions of tactical interest.

THIS PAGE INTENTIONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

INTRODUGCTION. ...ttt bbbttt bbbt eneas 1
A OVERVIEW ..ottt sttt 1
B. PROBLEM STATEMENT ..ot 1
C. MOTIVATION ...ttt st sbeereas 2
D. OBJIECTIVES ...t 3
E. THESIS ORGANIZATION ..ottt 3
BACKGROUND AND RELATED WORKccciiiiieieic st 5
A INTRODUCGCTION. ...ttt ettt ene e 5
B. SEADIVER GLIDER ..ot 5
C. AUVWV ettt bbb et e et tesbenbeareane s 7
D. PROGRAMMING CONSTRUCTS. ..ottt 10
1. JAVA et b e rens 10
2. JAXB .t bbb 10
3. Document Object Model (DOM)cocvviiiiiiiiieecee e 13
4. Extensible Markup Language (XML).......ccccccevvevviinnineiesiesieens 14
E. SUMMARY .ttt sttt bbb re e enes 15
SIMULATION AND PROGRAMMING CONSIDERATIONS.........cccccoceninienn 17
A INTRODUCTION. ..ottt 17
B. DISCRETE-EVENT SIMULATION (DES)ccccoviiiiiiiiiienc e 17
1. Modeling CharacteriStiCsccoovveieiiiiieese e 17
2. Simulation Approaches for Handling Timecccoceevvvivevvcnenne. 18
3. V(=34 pTo o (o] (o]0 VARSI 18
4. NOTATION. ...ttt bbb 19
C. R3] 11V, 2 L ST PR 21
D. DISKIT bbbttt bbb 22
E. RV 1] S N ST 22
F. SUMMARY .ttt bbb 26
DES AUTHORING - CREATING A SIMULATION WITH VISKIT................ 27
A. INTRODUCTION. ..ottt 27
B. SIMKIT/DISKIT APl LIBRARY INHERITANCE STRUCTURE
AND USE IN VISKIT ..ottt 27
1. SIMENTITYBASEeonviiiie et 29
2. IMIOVEI3D ... 29
3. DISIMOVEI3D ...ttt 29
4. Seadiver Model Inheritance StruCture...........ccccoceveieieninienieienn, 30
C. EVENT GRAPH EDITOR - CREATING A MODELc.ccccovviveieinenn. 31
1. Event Graph Parametersccviiveiieieiieeseee e 31
2. State VariabIes ... 32
3. EVENTS ... 33
4, SCheduling EAQeSooeiiieeeee e s 39
D. ASSEMBLY EDITOR - CREATING A SIMULATIONcccovvvvininnne. 41

Vil

VI.

1. SCENANIO MANAGETc.ve et ns 41
2. SIMENTITY oo 43
3. Parameter ENTIYooooviiiii e 45
4, SIMEVENTLISTENET ... s 45
5. Property Change Listener (PCL)cccccovievieieiie e 46
E. MODELING FOR TACTICAL SCENARIOS.......ccccooeieiieie e, 48
1. MOVEMENT ... 48
2. DEEECTION ...ttt 50
F. STATISTICAL RESULTS ..ot s 52
G. SUMMARY ..ttt sttt be st b re e enes 53
TACTICAL CONSIDERATIONS FOR SIMULATION GOALS AND
REQUIREMENTS ...ttt ettt snenne s 55
A. INTRODUCTION. ...ttt 55
B. NEEDS AND REQUIREMENTS FOR ROBOT MODELING................ 55
1. Robot Design and ConstruCtion...........cccccvevviienieneciee e 55
2 Predicted Dynamics RESPONSEcccerueiieiinienieeie e 56
3. Robot Control and Mission Planning..........cccccecveviviinnieenesieseenns 56
4, SeNSOr CharaCteriStiCS.......ccouviieiiiie e s 56
5. POWEE BUAQET ...ttt 56
C. CHALLENGING TACTICAL SCENARIOS.......cccoeveiiieienese e 57
1. Minefield SEarch ... 57
2. Barrier SEArCHcociii e 59
D. COMMUNICATIONS PERIODICITY CONSIDERATIONS AND
REQUIREMENTSottt 60
E. SUMMARY .t bbb 61
SIMULATION SCENARIO DESIGN AND DESCRIPTIONc.cccoceviviviiinnne. 63
A. INTRODUCTION. ..ottt 63
B. ASSUMPTIONS ...t et 63
C. TACTICAL DEFINITION: EVENT GRAPHS ..o 65
1. Seadiver EVENt Graphccccooviiiii e 66
a. Seadiver Parameterscocevvveerieie e 68
b. Seadiver State Variables ... 69
2. ZoneMap EVENt Graph.......cccoecieiiiiiieeeee e 71
a. Z0NeMap Parameters. ..o iiie i 74
b. ZoneMap State Variables............ccoooviiiiiiiinns 75
3. Minefield Event Graph...........ccccocoveiiiiciiie e 76
a. Minefield Parameters...........ccoovveiieeneiie s 77
b. Minefield State Variables...........ccccooviiininiiiinee, 78
4. Surface/Submerged Target Event Graph........ccccooevviiiiiicninne 79
a. Target Parameters. ..o 80
b. Target State Variables...........ccooviiiiniii s 82
D. SIMULATION DEFINITION: ASSEMBLIESc.cccoooiiiiiiiiinieien 83
1. Minefield Search AsSembBIY ... 84
2. Barrier Search ASSembIYccccooveiiiiii e 86
E. MISSION VALIDATION WITH AUVW ... 87

viii

F. SUMMARY . 89

VII. SIMULATION RESULTS ...ooiiiiiistsie et 91
VIIl. CONCLUSIONS AND RECOMMENDATIONS........cciiiiiiiieienie e 93
A CONCLUSIONS ..ottt st nneas 93
1. Discrete Event Model Creation............ccocovvviviiiiienencncscseeee, 93
2. Mission-Structured SIMUIlations ..o 93
3. Simulation Validation with AUVW.............ccoceiiiiiii s 93
B. RECOMMENDATIONS FOR FUTURE WORK.......cccocoviiiiieiiseaene, 94
1. Real-World Classified Study..........ccccoevveviiiiiiieie e 94
2. Increased Sensor FIdelity ... 94
3. Finish Design, Construction and Validation Testing of
SBAMIVEY ...t 94
4. Implement Advanced Search TeChniqUEScccccevvvevveieiierieenee, 95
5. Implement Inheritance for Viskit Event Graph Models................ 95
6. Programmatically Load Viskit Assemblies for Large
SIMUIALIONS ... e 95
APPENDIX A, oottt bbb bbbttt bbb ne e 97
F N o N T) = FR SRS PRR 105
LIST OF REFERENCES.........coi ittt 113
INITIAL DISTRIBUTION LIST .ottt 115

THIS PAGE INTENTIONALLY LEFT BLANK

Figure 1.
Figure 2.

Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.

Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.

Figure 22.
Figure 23.

Figure 24.
Figure 25.
Figure 26.
Figure 27.

Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.

LIST OF FIGURES

Seadiver Glider 3D model. (from Dumonteil, Gassier, and Rebello 2006)....... 5
Simplified plan of Seadiver’s underwater behavior. (from Dumonteil,

Gassier, and Rebello 20006)c.ooeeiririieiie e 6
Airfoil Shape (NACAO0022). (from Dumonteil, Gassier, and Rebello 2006)6
2D mission planning i AUV W ... 8
3D mission playback iN AUVW. ..o 9
AUVW dataflOW. ..o 10
Arrival Process VNt graph.cccccveeeiveiesieseese e ses e 11
Viskit event graph XML structure. The top pane is a more human-

readable tree-view, while the bottom pane shows source XML file................ 12
Automatic source-code generation in Viskit from source XML event graph

IN FIGUIE 6 aDOVE. ..o 13
SIMPIE XML FHE. oo 14
SIMPIESt EVENT Graph.ocvciece e 20
Figure of next event graph ‘A’ and ‘B’ connected by a scheduling edge

with time delay (t) and conditional expression (i).cccccevveveerveresieeseennenn 20
Complex Event Graph of a Transfer Line Process (from Buss 2001) 21
Viskit’s Event Graph Editor Panel depicting a basic example.c..ccoc...... 23
Viskit’s Assembly Editor Panel depicting a basic example.........c.cccooervenenne. 24
Viskit’s Assembly RUN Panel.coooovoiiiie e 25
Viskit's Analyst Report Editor panel eXCerpt.........cccvvviiiiiiinnenienienccee 26
Complex event graph without inheritance (from Sullivan 2006). 28
DISMover3D Event Graph (from Sullivan 2006).ccccoocevieniininiinienene 30
Diagram of Seadiver inheritance StruCtUre.ccccocevievieeiecie e 31
Seadiver event graph parameters in Viskit. Event-graph parameters are

initialized at SETUP tIME.eeiieeeciece e e 32
Seadiver event-graph state variables in Viskit. State variables can change

as simulation time progresses, thus representing model state...........c...c.coc.... 33
Seadiver event graph shows the logical flow of information while

mModeling robot DENAVIONS.ccvoiiiicecc e 34
Event Inspector for the StartMoving event in the Seadiver event graph. 35
Event arguments dialog box for ProcessWaypoints event...........cccceeevvennenn. 36
Local Variables dialog box for a Seadiver event.cccccocveviveiieeviecieeninnn, 36
Code Block for a Seadiver event allows insertion of special-handling

source code into the Viskit-defined event graph..........cccccoviiininienenciee, 37
State Transition dialog box for a Seadiver event.ccccoccevvvevviieiieeneciennn, 38
Simkit waitDelay() Method.coiiiiie e 39
EAQE INSPECLOL. ..ottt re e e 40
Assembly EdItor Panel. ..o 41
Seadiver assembly depicting the model library to the left............cccccvvvvinennns 44
SimEventListener Connection dialog box of connection from Seadiver

node to ZoneMap node in the XXXX asSEMDBIY.ccccveveriieiieiesieseee e 46

Xi

Figure 34.

Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.

Figure 40.

Figure 41.
Figure 42.

Figure 43.
Figure 44.

Figure 45.

Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.

Figure 51.
Figure 52,
Figure 53.

The firePropertyChange() method of the Run event in the Seadiver event

0] -1 0] OSSR 46
Property Change Connection dialog box with state variable list expanded.....47
Basic movement process in SIMKIL.ccoevivevieeieiiesece e 49
Cookie-Cutter sensor. The basiC SCENAIIO.........cccccvvieeiiiiiniee e 51
Sensor DES methodology.coveeiiiiice e 51
Seadiver search pattern over a 20 km by 14 km zone. Sensor range is 500

10121 (=] PSP TOP PRSPPI 58
Barrier search mission setup. Mission includes 10 Seadivers and 2

LI L (=] TSP OPROPRTRPPRPPIN 60
SeAdIVEr BVENT GraAPN....coviiie et et 66
Seadiver initialization parameters as shown in the assembly Event Graph

INSPECTONt e e nne e 68
ZoneMap eVENt graph.oove i 71
Notional operating area sectioned into individual operating zones, one for

BACN SEAUIVET. ...ivieiecie ettt e e e sre e reenaesneenne s 72

Operating area sectioning performed ZoneMap for the creation of
waypoints in Target event graph. The blue area is the total operating area.
The red area indicates where targets start and end traversal of area (outside

L =T) OSSR 73
ZoneMap parameters as shown in the assembly Event Graph Inspector......... 74
Minefield eVent graph. ..o 76
Minefield parameters as shown in the assembly Event Graph Inspector. 77
Surfaced or submerged Target event graph.cccccvevveevieeie s 79
Target initialization parameters as shown in the assembly Event Graph

INSPBCTONttt 80
Minefield Search ASSEMDBIY.ccoiiiiiiiii e 84
Barrier Search ASSEMDBIY.ooiiiiiiicee e 86
Visual path validation with AUVW, displaying 10 Seadiver entities

searching and 2 Target entities transiting.ccocvovreeierenenese e 88

Xii

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.

LIST OF TABLES

Initialization Parameters for Scenario Manager.ccoocvveneenenieseeniennnn 42
List of Mover Managers available in Simkit and Diskit..............c.ccccoevevrennenn. 50
Assembly Run panel settings and descCriptions.cccovvevveneenenieseeniesnnn 52
Communication requirements for each misSioN.cccovevivevrsiesieese s 61
Major assumptions of the Seadiver simulation.ccccoviiieiininieicinn 64
Seadiver initialization parameters defined............ccccoveieiieii i 69
Seadiver State Variables. ..o 70
ZoneMap initialization parameters defined.cccooveveeieiiecn e 74
ZoneMap State Variables..........ccoooiieiiiiiiieee e 75
Minefield initialization parameters defined.ccccveveviieie s, 78
Minefield State Variables. ... 78
Target initialization parameters defined.cccccevvevieiircic e, 81
Target State Variables. ... 82

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

ACRONYMS AND ABBREVIATIONS

2D Two dimension

3D Three dimension

API Application Programming Interface

AUVW Autonomous Underwater Vehicle Workbench
CSS Continuous Systems Simulation

DIS Distributed Interactive Simulation

DES Discrete Event Simulation

DOM Document Object Model

GUI Graphical User Interface

HTML Hypertext Markup Language

i Conditional Statement in Event Graph Notation

ISITV The Institute of Engineering Science of Toulon, France
JAXB Java Architecture for XML Binding

M&S Modeling and Simulation

NPS Naval Postgraduate School

PCL Property Change Listener

SGML Standard Generalized Markup Language

t Time Delay

Uuuv Unmanned Underwater Vehicle

W3C World Wide Web Consortium

XML Extensible Markup Language

XSLT Extensible Stylesheet Language for Transformations

XV

THIS PAGE INTENTIONALLY LEFT BLANK

XVi

ACKNOWLEDGMENTS

Many people assisted in this research. Below is a list of the most important

influences during my time at NPS creating this thesis. | would like to personally thank

each and every one of you for your time and patience.

To my loving wife Chrisanne, daughter Sophia, and son Tristan who
sacrificed their time enabling my success during this project.

Thesis advisor, Don Brutzman LCDR USN (ret), for his guidance and
support during this thesis research.

Second readers, Ray Jones RADM USN (ret) and Richard Williams
RADM USN (ret), for their insight and time.

Rick Goldberg, Mike Bailey, Terry Norbraten, Arnold Buss, and Jeff
Weekley for providing advice, tools, and solutions to numerous aspects of
this project.

To my fellow curriculum students, especially Russ Schuhart and Steve
Milgazo, for making this experience more enjoyable through their
company and conversations.

To my curriculum Program Officer, Col. Karl Pfeiffer, USAF and
Program Advisor, Steve latrou for their support and encouragement.

XVii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

l. INTRODUCTION

A. OVERVIEW

This thesis supports the ongoing design and development of the Seadiver
Unmanned Underwater Vehicle (UUV) at Naval Postgraduate School (NPS). Seadiver is
a unique UUV in a relatively new class of underwater vehicles called gliders. Gliders
have a unique set of characteristics such as high endurance and variable payload that

might allow it to perform missions not suitable for UUVs in the past.

Capabilities of complex machines such as autonomous vehicles cannot be fully
known prior to field tests. They can only be projected based on design and intent.
Simulation can reduce that uncertainty inherent in design by virtually testing capabilities
and configurations against environmental constraints prior to construction completion.
This thesis creates a high fidelity simulation consisting of the Seadiver UUV and related
entities, in combination with mission rehearsal and statistical analysis tools, to predict the

value and accuracy of projected missions.

B. PROBLEM STATEMENT

This thesis creates simulations based on projected missions of the Seadiver UUV
for the purpose of answering the following questions in an attempt to validate the
designed capabilities of Seadiver. The research questions are:

) Can a Discrete Event Simulation (DES) be constructed with the Simkit
and ViskKit tools to simulate these missions?

o Can high-fidelity simulation be used to visualize and validate the new
missions for probability of success and provide insight into other advanced
uses of a glider UUV?

. Can missions be validated as physically realistic using AUVW?
. Is operator control of numerous robots feasible using AUVW?

. What are the tactical capabilities of the Glider UUV, and what new
missions are exposed by these novel capabilities?

C. MOTIVATION

The interest and growing use in the U.S. military for unmanned systems is high
and growing at an increasing rate. Recent uses in unmanned vehicles by the military are
demonstrating their ability establish and maintain maritime superiority. UUVs are
attractive over other methods because they are force multipliers and risk-reducing agents.
Additionally, they can be cost effective and their novel capabilities enable unique mission
capabilities. The U.S. Navy’s UUV Master Plan published in 2004 lists nine missions

that support Sea Power 21 strategy. These missions are:

o Intelligence, Surveillance, and Reconnaissance (ISR)
o Mine Countermeasures (MCM)

o Anti-Submarine Warfare (ASW)

. Inspection / Identification

o Oceanography

. Communication / Navigation Network Nodes (CN3)

. Payload Delivery

. Information Operations (10)

. Time Critical Strike (TCS)

In the realm of Undersea Warfare (USW), there are a number of available or
upcoming UUVs that are being designed to fill these missions. The most significant
limitation with UUVs is typically the power source. Most currently use batteries as their
source of power and hence are severely limited. This is because as the size of the UUV
increases, the amount of power required for propulsion increases at a greater proportion.
As more batteries are installed into the UUV to extend its range, the power requirement
also increases and quickly becomes an untenable situation. Therefore, the bottom line is
that UUVs are severely limited in size, speed, and endurance due to the aforementioned

relationship.

At Naval Postgraduate School (NPS), a UUV is currently being designed that will
partially uncouple that relationship. It is a type of UUV known as a glider. Gliders are a
recent innovation and work on the principle that changes in buoyancy create forward
motion through the water. Implementations such as this are energy efficient allowing for

endurance times on the order of weeks compared to hours for a typical UUV.
2

Additionally, what makes this glider unique is that most of its internal capacity is free-
flood. This allows for a vehicle of arbitrary size with other aspects such as endurance
and speed remaining constant, thus allowing for large payloads and an expanded range of

missions for which it is suited.

D. OBJECTIVES

This thesis applies Modeling and Simulation (M&S) concepts with multiple
complimentary NPS software projects to explore the tactical capabilities of the Seadiver
UUV. The objective of this research is to create a simulation using Discrete Event
Simulation (DES) methodology and NPS simulation software tools. The simulation is
designed based on the projected physical characteristics of the Seadiver UUV and other
moving entities such as surface ships and submarines in the context of UUV missions.
Simulation runs will then be conducted to determine the probability of Seadiver
conducting exemplar missions such as barrier search or mobile minefield. Validation of
mission results will be accomplished through evaluation of Seadiver behavior against

environmental forces in the Autonomous Unmanned Vehicle Workbench (AUVW).

E. THESIS ORGANIZATION

Chapter Il reviews background technologies and related work used during this
research effort. For each section, a short description is provided to give the reader a
baseline understanding of topics that are referenced throughout the remainder of the
thesis. Chapter 11l discusses the type of simulation framework (DES) along with the
software products and Application Programming Interfaces (API) used in construction
and validation of the simulation. Chapter IV outlines in detail the simulation design
process using DES methodology and implementing model behaviors. Chapter V outlines
in detail the creation of the Seadiver and other mover entity models and mission
simulations. Chapter VI discusses the tactical considerations encountered using UUVs in
novel mission contexts. Chapter VII discusses the results and analysis of the simulation.
Chapter VI is the conclusion of the thesis along with recommendation for further

research.

THIS PAGE INTENTIONALLY LEFT BLANK

II. BACKGROUND AND RELATED WORK

A INTRODUCTION

This chapter provides a conceptual overview of the technologies and related work
utilized for this research. The following sections are intended to provide the reader with
a basic understanding of these resources and how they were utilized in this thesis. Most
sections provide links to these resources when appropriate.

B. SEADIVER GLIDER

Seadiver is a prototype UUV (Figure 1) being jointly designed by The Institute of
Engineering Science of Toulon (ISITV), France with support from NPS. In the past
decade, there have been many UUVs constructed, but what makes Seadiver unique and
interesting for certain military applications is its combination of long autonomous
operation time, relative inexpensiveness, and variable payload at virtually no extra

operational cost.

Figure 1. Seadiver Glider 3D model. (from Dumonteil, Gassier, and Rebello 2006)

Seadiver is a type of UUV known as a glider. Gliders are unique in that they
generate propulsion by managing vehicle buoyancy and therefore have no propellers or
thrusters as shown in Figure 1. Propulsion is generated by hydrodynamic lift and drag.
Seadiver moves from location to location by continuously adjusting buoyancy and angle
of attack as shown in Figure 2. This has the effect of diving then ascending to generate

speed over ground.

GPS+Wireless radio Buoy
v
Sea surface
\-.x_-:‘ - \
2 _. 'Y
. .
Figure 2. Simplified plan of Seadiver’s underwater behavior. (from Dumonteil,

Gassier, and Rebello 2006)

Hydrodynamic properties are optimized by using an airfoil shape profile seen in
Figure 3. This type of propulsion is very power efficient, but has the drawback of low
speed across ground and maneuverability. Also, sensor position relative to the horizontal

changes significantly from ascent to decent and must be accounted for in the design.

Airfoil Shape

Figure 3. Airfoil Shape (NACA0022). (from Dumonteil, Gassier, and Rebello 2006)
6

The main advantage of operating a glider is its ability to operate continuously for
relatively long periods of time without recharging/refueling. This coupled with
Seadiver’s autonomy will allow it to remain on station operating independently for an
estimated 30 days and travel approximately 700 NM depending upon payload power

requirements.

Another major benefit of the Seadiver derived from its mode of propulsion and
shape is that potential payload sizes are virtually limitless. The outer shape can be
enlarged to accommodate many different size or use objects without having to redesign
the entire UUV. This is because most of the interior is free-flood area where any inserted
payload displaces water and therefore has a reduced effect on Seadiver’s buoyancy and

center of gravity.

C. AUVW

The Autonomous Unmanned Vehicle Workbench (AUVW) is an open source
software project designed and created at NPS that provides the ability to plan, rehearse,
and replay missions for arbitrary unmanned vehicles (UV). It is designed to allow
dissimilar vehicles to be evaluated on a common software platform which is normally
difficult since most UVs use proprietary vehicle specific data formats and mission
planning systems (Davis and Brutzman, 2005). Figure 4 depicts 2D mission planning
and Figure 5 depicts 3D mission playback in AUVW. As shown, AUVW provides a
tightly coupled 2D/3D interface that simplifies UV testing and operation.

Autonomous Unmanned Vehicle (AUY) Mission Planning & Visualization

Mission Select Mission Edit ~ Mission Run 1

Communications ~ Environment Geospatial

Parameters Tools View]

0. 4| UuV Position
;1 n Thrusters

2, -@ Make Knats

4| vUV Waypoint
¢ Send Message
UUV Waypoint
s Send Message
UUV Waypoint
UuUV Waypoint
UUV Waypoint
UUV Waypoint
UUV Waypoint
UUV Waypoint
UUV Waypoint
UUV Waypoint
UUV Waypoint
UuUV Waypoint
UUV Waypoint
UUV Waypoint
UUV Waypoint
UuUV Waypoint
UUV Waypoint

| Save Mission || Save As... || Close Mis

2D Mission Planner

500

450

400

350

300

250

1]

a0 100 150 200 250 300 350

400 450 400 550 800 [P

500

450

350

300

250

200

150

450 500

Vehicle type [w] M
O

Figure 4.

penMap loading Morlkerey Bay GEQ DEM_SEA. TTF
OpenMap loading Monterey Bay GEOLOGY.TIF
OpenMap loading Monterey Bay GRYSHADE. TIF
OpenMap loading Monterey Bay LANDSAT. TIF
OpenMap loading Monterey Bay MBS0SAT. TIF

IHEO:P I IR {@ITITEA -

orkbench system consaole

| Emai qutput | | Clear || Copy || Sav

2D mission planning in AUVW.

™ AUV Workbench: Autonomous Unmanned Vehicle (AUV) Mission Planning & Visualization

Mission Select Mission Edit Mission Run | Communications Environment Geospatial Parameters Tools Wiew 1 Help

P WwWwWaridbema2, xml | 3D Scene Viewer | o
=

0. ﬂ UUV Position Location: |C:1auv1nquorld)ench1
1. Thrusters JFE | reloed
2. 4] uuv waypoint
3. 4] uuv waypoint
4. 4] uuv waypoint
5. 4] uuv waypoint
6. 4] ULV Waypoint
7. 4] uuv waypoint
9. 4] uuv waypoint
10.] uUV Waypoint R
11. 1| UUV Waypoint —
12. 4] VUV Waypoint [y
13. _4] uuv waypoint Text
14. 4] uuv waypoint _)g
15. 4] uuv Waypoint J
16. 4] uUv waypoint Edit
17. 4] uuv waypoint a
18. 4| UV Waypoint
19. _#] uuv waypoint LED
20. 4] uuv wWaypoint &
| Save Mission " Save As... " Close Mission | ADS
Vehicle type Multiple o ()
[] Real-time file: [C:fauv/AuvWorkbench] . [ModelsWWWEridDemo2_0uuv, x3d complete. Ja'bber
IIle'aice: env:cur -0.000 -\0.000 0,000 (mjs)* — — — = — — = = :
H:::: fu‘;':tieso":‘;'l‘;ﬁ:;”;::;””::::iasm System Console |- 4 cqlided: d_ir; Eo:03155213§, 0.0681751, 0:538029183_c;nt; E—1800:1?64: -4069, 146~ ﬁ
Recorded max time dgl'atlon =1 hours, computed ma.><RunT|rneSe.conds=3600 (1.0 hours) e
[o] Fhoson successly prepered o mokbanch exccaton. Comencgrun, .
Adding: FiIe:IC:Iau‘\’r,fl?nuf\n\forld)ench,f.IModeIsIWWWGl'ildDem02_0uug\r.x3;1 - ‘“
[[Pause | @ Stop Iﬂ"ﬂ"ﬂ | >| oot
|Rur| actions for all missions v| ALV Workbench system console Email output | Clear " Copy " Save... W
||

Figure 5. 3D mission playback in AUVW.

The AUVW is used in this thesis to provide validation for the output missions
(discussed in detail later) of the Seadiver simulation. This is accomplished in two ways.
First, output missions are visually verified to be true in the context of operating area
dimensions, vehicle area dimensions, vehicle waypoint placement, and proper search
pattern implementation as defined in the simulation initial conditions (event graph
parameters). Second, AUVW has the ability to simulate the environment and physical
characteristics of the vehicle in six degrees of freedom. This allows validation of entity
movement and physical performance in a virtual environment based on the real world
physical conditions and constraints. Figure 6 depicts the AUVW dataflow model.

Tactical level 2D, GIS, 3D
u

visualization
sanar, SBI"IS:OI'S, — - Real-world GIS data,
o path planning s f':'tl 'm"I Savage madel archives
Real-time vehicle tasking =50a POl kil = i

S —— Dynamics response || Bathymetry, terrain, |
,,,,,,,,,,,,,,,,,,,,,, | “robot control submerged, surface, || virtual-sensor models ,
aerodynamic ([Environmental data |

"Hardware in loop” tests

iy =

'~ =" = =

| Mission data archive I Control-algorithm Dynamics response JMBL web services,

yelemetry, missions, X30. coefficients coefficiants MNetCOF data,
T ———— for varous vehicles for various vehicles computational

Figure 6. AUVW dataflow.

The AUVW also contains an extensive help system which can be used as a
resource for thesis students and other users. The help system is accessed from the menu
bar and contains tutorials and menu descriptions for users new to the workbench along
with all theses and dissertations that have utilized it previously. The AUVW help system

is a valuable resource for operation and research.

D. PROGRAMMING CONSTRUCTS
1. JAVA

Java is an object-orientated programming language developed by Sun
Microsystems. Java was designed to be platform independent so a developer could write
a program once and run it on any arbitrary set of computer hardware. Java is used
extensively at NPS for that reason and because most Java development tools are free.
Java is primarily used for Modeling and Simulation because of its platform independent
design, its multi-threaded capability, and the multitude of available related open-source
code such as JSIM, X3D, etc.

2. JAXB

JAXB is an open-source API created by SUN Microsystems. It provides a
convenient way to bind XML schemas to java source-code representations. JAXB makes
it easy for developers to incorporate XML data and processing into applications. As part
of this process, XML documents are either marshaled to java classes or unmarshaled into

a JDOM tree for use by the program.

10

VISKIT stores event graph models as XML documents. Figure 7 depicts a simple
event graph, the Arrival Process, and Figure 8 is the XML representation of it in Viskit.
JAXB enables the XML structures used by Viskit to store event graphs to be transformed
into executable java source (Figure 9) that can then be utilized by Simkit and Diskit.
This allows developers to create DES models quickly using only standard event graph

notation and methodology without having to master the Java programming language.

" o
|: HLIIW\l hl: Arrival |
Figure 7. Arrival Process event graph.

11

£ . ArrivalProcess_xml =B | | X |

=@ SimEntity

----- name = ArrivalProcess

----- version = 0.1

----- noMamespaceschemalocation = http://diana.gl.nps.nawvy mil/ Simlkdt simkdt, xsd
=@ Parameter

‘.name = interarrivalTime
=@ stateVariable
t-mame = numberdrrivals

- type = int
=@ Event
~-name = Run

E}. StateTransition

; > ----- state = numberfrrivals
=@ Assignment

Leyalue =10

- @ Schedule ~

“S8imEntity xmlns:xsi="http:/ fvww. w3 org/I001/XLSchena-instance"
name="ArrivalProcess" wversion="0.1"
¥sinolamespaceSchemalocation="http://diana. gl nps_ navy.-mnil/Simkit/simk
it . xsd">
<Parameter type="simkit. random. RandonVariate" name="interarrivalTime"
e
<StateVariable name="numberArrivals" type="int" /=
<Event name="Fun">
<ftateTransition state="numberArrivals"=>
<Assignment walue="0" /=
< fStateTransition>
<S3chedule pricritcy="0.0" delay="interarrivalTime. generatei)"
event="Arriwval" /=
“Coordinate w="g0" x="40" /=
</Event>

<Event name="Arrival"=

Figure 8. Viskit event graph XML structure. The top pane is a more human-
readable tree-view, while the bottom pane shows source XML file.

12

£ Generated source from ArrivalProcess.xml

nnt:| Larger || Smaller ” Print | ‘ Find || Find next ‘

1: package examples;

3: import simkit.*;

4: impeort simkit.random.*;

5: import java.util.*;

&

T: public eclass ArrivalProcess extends SimEntityBasze |

g

S: private simkit.randon.PRandomVariate interarrivalTime;

10:

11: protected int numberdrrivals:

1z:

13: /** Creates a new instance of ArrivalProcess */

14:

15: public ArriwalProcess(simkit.random.PandonVariate interarrivalTime) {

l&:

17: setInterarrivalTime (interarrivalTime) ;

18: }

15:

20: J**% Set initial walues of all state variables */

21: public wvoid reset() {

23: sSuper.reset();

24:

Z5: /%% StateTransitions for the Pun Event */

26:

27: numberdrrivals = 0;

28: }

28:

30: public void dePuni) {

31: firePropertyChange ("numberArrivals"” numberdrrivals);

32: waitDelay ("Arrival"”,interarrivalTime.generate() ,Priority.DEFAULT) ;

33: =

A= 1

| Compile test " Save source and close ” Close

Figure 9. Automatic source-code generation in Viskit from source XML event graph

in Figure 6 above.
3. Document Object Model (DOM)

The Document Object Model (DOM) is a platform and language-neutral interface
and World Wide Web Consortium specification that allows programs and scripts to
dynamically access and update the content, structure and style of documents. Sun
Microsystems has implemented the DOM interface a component APl of JAXP in the
org.w3c.dom Package. It allows programmers to create, modify, access, and write XML
documents using the Java programming language. Additional information is available at

Sun’s website at http://java.sun.com/j2se/1.4.2/docs/api/org/w3c/dom/package-

13

summary.html (accessed March 2007). The DOM is used in this thesis to create AUVW
mission files in Autonomous Vehicle Command Language (AVCL) format for validation

of the Seadiver simulation.

4. Extensible Markup Language (XML)

Extensible Markup Language (XML) is a general purpose, text based markup
language developed by the World Wide Web Consortium (W3C) as a subset of Standard
Generalized Markup Language (SGML). Like all markup languages, it was created as a
protocol for structuring data. It is not a programming language but it makes it easy for a
computer to generate data, read data, and ensure that the data structure is unambiguous.
XML is easy to create and process and designed to be platform independent and shared
across the internet. Other characteristics of XML include human readability, extensible,
verbose, modular, and license free. More information can be found at
www.w3.0rg/XML/1999/XML-in-10-points (accessed March 2007).

XML is used in Viskit as the format for saving Event Graphs and assemblies, and
in the AUVW to store UUV mission files. These mission files are in Autonomous
Vehicle Control Language (AVCL) format which is valid XML syntax. Figure 10 is an
example XML representation of a notional restaurant price list.

<l Edited with XML Spy v2007 (http:/fwww altova.com) —=
<hreakfast_menu=
<food=

<namex=Belgian Wafles</name:=
<price>35.95</price>
<description=twao of our famous Belgian Waffles with plenty of real maple syrup</description=
<calories=650</calories>

</food=

<food=
<name=French Toast</name=
<price=34 50</price=
<description=thick slices made from our homemade sourdough bread</description=
<calories=600</calories>

</food=

</breakfast_menus

Figure 10. Simple XML file.

14

E. SUMMARY

This chapter has provided the reader with an overview of the technologies and
related work utilized for this research. Section B detailed the novel glider UUV that
provides the inspiration for this thesis. Section C describes the simulation and virtual
reality program (AUVW) which is used for mission validation. Finally, Section D
describes the main programming constructs leveraged by the software APIs and programs

employed in this thesis.

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

I11. SIMULATION AND PROGRAMMING CONSIDERATIONS

A. INTRODUCTION

This chapter describes in detail the simulation framework and software programs
and APIs that leverage this framework. Section B defines Discrete-Event Simulation
(DES) as the theoretical framework in which this thesis creates a model of the Seadiver
UUV and other entities. Section C and D describe the Simkit and Diskit APIs and how
they are leveraged in this research. Finally, Section E explains the functionality of Viskit

as the main simulation environment of this thesis.

B. DISCRETE-EVENT SIMULATION (DES)
1. Modeling Characteristics

Models are created to study complex dynamic systems and examine their
performance, reliability, or other properties to improve either their initial design or
operation. Simulation is the means of executing these models to mimic the behavior of
actual systems. Simulations employ many repetitive runs to obtain relevant statistical
output for insight into the actual operation of the modeled system without real-world
testing that is often impractical and costly. In general, if a model uses an equation to
define a characteristic, then a simulation is the behavior or trajectory of that function over

time.

There are two defining characteristics when creating a model. The first, fidelity,
measures the level to which the model reflects the characteristics of the real system like
how similar it is in shape/dimensions, physical characteristics/constraints, or
performance. The second, abstractness, measures the lack of level of detail. This is
required not simply because it is impossible to capture every detail of a real-world system
which may or may not be known, but also because it allows for generality. Generality is
beneficial since it possibly allows for the design and analysis of multiple models simply

by changing parameters. (Miller 2007)

17

The ideal model has high both abstractness and high fidelity. Unfortunately this
is impossible and therefore a compromise must be struck that usually depends upon the
needs of the modeler. This thesis is highly abstract because the modeled system is still in

the design phase and not much is yet known about its real-world characteristics.

2. Simulation Approaches for Handling Time

There are two broad types of simulation modeling primarily characterized by how
they handle the passage of time. The first is Continuous Systems Simulation (CSS). CSS
is creating a model that can be represented by differential or difference equations. In
essence, it breaks the time domain into quantized chunks of small (usually the same) size.
This approach is used by the AUVW which serves as a validation tool for this thesis. The
second is DES and is also the focus of this thesis. It differs from CSS because it divides
the time domain by events. According to Professor Arnold Buss of NPS, DES has three
main world views; Event-Scheduling, Process-Interaction, and Activity Scanning. The
Event-Scheduling approach is based on the use of event lists to organize future events.

This is the world-view utilized in Simkit, and therefore is utilized in this thesis.

3. Methodology

Events are actions defined by the modeler to represent basic functionality of the
simulation. They represent changes in state that typically takes some amount of time to
occur such as an object arriving to the queue or a server completing a job. The event list
is simply a container that holds the list of events that are scheduled to happen and the
time at which they will happen. Buss describes the event list as:

The Event List amounts to a “to do” list for the simulated world. At any

simulated time epoch it is simply a list of what is scheduled to occur and

when. Each item of the list corresponds to an event that contains

information about which event is to occur and when it is to occur. (Buss
2000)

The scheduling and manipulation of the event list is the engine driving a DES.
Every action that comprises the model will be scheduled on the event list. Time advances
only in intervals defined by the time difference between the current event time and the

event on the event list with the smallest time duration. This process continues throughout

18

the duration of the simulation, that is each event is drawn off the event list one at a time
ordered by the time the event is scheduled to occur, until the event list is empty or an
event is scheduled that explicitly stops the simulation. Note that it is possible for two
events to be scheduled for exactly the same time and therefore it is necessary to

implement an order of precedence procedure in the event list.

4. Notation

An event graph is a structured, formal representation of a DES model. Event
graph notation was defined in work by Schruben in 1992. This notation is minimalist in
that it uses only those entities that are required, but in doing so add a level of abstractness
not seen in other DES world views such as Process-Interaction (Buss 2001). The
advantages of adhering to this notation are that virtually any model can be constructed
with it and the modeler can spend more time on model creation vice paradigm constructs.
Using the following notation conventions, the modeler can graphically depict all logic

and behavior contained in the model.

The most basic event graph is depicted in Figure 11. The two objects
fundamental to every event graph are the event nodes represented by circles with labels
and scheduling edges represented by directed lines or arcs. In Figure 11, event node A is
an event that can appear on the event list. The directed arc above event A is the
scheduling edge (in this case a self-scheduling edge since it re-schedules itself). In
essence, this event graph depicts an event A that will continuously re-schedule itself
unless interrupted by an outside event. Additionally, this event graph provides no
method to begin the initial event A and therefore it must be initialized by a foreign event
either programmatically or through a listener pattern (described later). Normally every
event graph contains a Run event from which other events are propagated and to reset all

state variables when a simulation run is completed.

19

Figure 11. Simplest Event Graph.

Two optional components of scheduling edges that greatly extend the

functionality of event graphs are edge conditions and time delays. Represented in Figure

12, edge conditions are conditional expressions defined by the modeler that prevents the
edge from being invoked until said condition is true. Edge conditions are represented by
logic functions above the wavy line in the middle of the scheduling edge. Time delays,
represented in Figure 12 by (t) located at the start of the scheduling edge, control exactly
when from execution of event A that event B is to be scheduled. Therefore, this event
graph depicts that once event A is scheduled, event B will be scheduled (t) amount of

time later if expression (i) is true.

(1)
! .
A Z >

Figure 12. Figure of next event graph ‘A’ and “B’ connected by a scheduling edge
with time delay (t) and conditional expression (i).

Two final and necessary components of complex event graphs are parameters and
state variables. Parameters area variables defined at the start of each simulation run and
represent constructs such as total number of servers or number of targets to be created.
State variables on the other hand are variables designed to change throughout the

simulation run. As the name suggests, state variables are updated to reflect the changed

20

state of the model such as the number of people in the queue at a particular time or if an
UUV is currently surfaced or submerged. Using this notation, it is possible to construct
models of limitless complexity. Figure 13 depicts a more complex model of a transfer
line process where a component is passed from one server to another and is finished only
when processed by all servers. In this model, Q and S represent state variables and (i)
represent a passed parameter.

Figure 13. Complex Event Graph of a Transfer Line Process (from Buss 2001)

C. SIMKIT

Simkit is an open source Java APl written by Professor Arnold Buss of Naval
Postgraduate School. It was designed to enable the creation of DES using event graph
methodology. In short, a simulation can be created programmatically using Simkit
because it provides the base framework for controlling the simulation, namely control
and maintenance of the Event List. This frees the modeler to work directly on
implementing the conceptual event graph model. Simkit also provides other helper
classes necessary to create simulations. These include random variate generators that
produce random numbers in the required distributions, and classes that facilitate
movement and detection among others. Simkit is the foundation upon which Diskit and
Viskit are built. It is possible to create complex DES using Simkit and the following
website lists the NPS Master’s Thesis work that has been completed using Simkit

(http://diana.nps.edu/~ahbuss/#Students accessed on March 2007).
21

D. DISKIT

Diskit is another open source Java API that extends the functionality of Simkit. It
was created for two primary reasons. First, there was a need to extend the movement and
detection capabilities of Simkit to 3D. This is because 2D usually doesn’t provide the
level of fidelity required for a model that simulates movement. Secondly, Diskit provides
classes that implement the Distributed Interactive Simulation (DIS) protocol. DIS allows
for transmitting the state of a simulation over a network. DIS coupled with the extension
to a 3D environment enable the visualization of the simulation as a 3D virtual

environment.

E. VISKIT

Viskit is an open source program in development at NPS written in the Java
programming language. Viskit was created to provide a graphical user interface (GUI)
for creating simulations using SimKit. Typically, creating complex simulations is
programmatically intensive. A modeler usually needs an extensive knowledge of a
programming language and the associated APIs that enable the simulation. This is no
different for Simkit and Diskit, and is exactly why Viskit was developed. By reducing
the amount of programming expertise required, Viskit has made simulation more

accessible to non-programmers.

Viskit uses a tabbed window with four tabs. The first provides a visual interface
that allows for easily creating, modifying, and saving event graphs called the event graph
editor. Figure 14 provides an example of a simple event graph in Viskit’s event graph
editor. It demonstrates that event graphs produced in Viskit faithfully adhere to the event
graph methodology presented earlier in Chapter Il. This ensures that if event graph
methodology is understood, Viskit can represent it and others who have no familiarity
with Simkit or Diskit can understand it. Additionally, because the source code is
automatically produced by Viskit, it allows for more complex event graphs to be created
without being increasingly encumbered with programming complexity that might quickly

become unmanageable.

22

* ' Viskit Event Graph: ZoneMap

File Edit Help

Event Graph Editor ‘l,lnssembly Editor ‘lllnssemblr Run \Analrst Report \

Add O U Mnde: O}p Or"o Zoom: @% @%

SimpleServer \".

Event graph parameters
Dowble click a mw to =0t
name type description

serviceTime simikdt, random, RandomVariate
totalMumberservers ink

\ Start _., | End +| ¥

State Variables
Dowble click a mw to =0t
name | type| description
numberinQueues ink

numberAvailableServers ink

+ | =

Code Block

[.]

Figure 14. Viskit’s Event Graph Editor Panel depicting a basic example.

Creation of the event graph representation of a model alone does not create a run
able discrete-event simulation. Viskit provides a means to create, modify, and save
simulations using event graphs in a panel called the Assembly editor located in the
second tab. Figure 15 depicts a simple simulation setup in the assembly editor. Event
graphs that were created in the event graph editor (or any event graph created that
extends Simkit’s SimEntityBase) show up on the left panel and are drag and dropped to
the right workspace. They are then connected using listener patterns (discussed later).
Finally, statistics-counting objects are listed in the lower left panel and drag and dropped
to the workspace on the right as required where they are connected to the event graphs
with PropertyChangeListeners (discussed later). This will produce applicable and

repeatable statistics as required of the simulation.

23

' Viskit Assembly Editor: ServerAssembly3

File Edit Help

B{(=]Eq

Event Graph Editor * Assembly Editor \Assemhlr Run \Analgrsl: Report \L

Event Graphs

D lib\ext\diskit. jar
£ lib\sirnkit . jar

F .

Property Change Listeners
D lib\ext\diskit. jar
p-£3 lib\simkit.jar

Zoom:

oS
ESIESES
arrival |=
numln
Queue

E]

iPermtv;
iDumper;

i Avail |
|Servers |
L. Stat !

Initialize assembly runner:

Figure 15.

Viskit’s Assembly Editor Panel depicting a basic example.

The Assembly Run is the third tab and provides a location to run the simulation.

Figure 16 depicts the Assembly Run panel after a run of an exemplar simulation. On the

left are controls to modify run parameters of the simulation such as length of time to run

and how many times to run the simulation. The top right of the Assembly Run panel

contains the text output of the simulation that can be inspected after each run. The

bottom right of the panel provides an error report generated during the run.

24

ISKIL ASSembDIy R

File Edit Help

Event Graph Editor | Assembly Editor = Assembly Run "'. Analyst Report |

Local Run \l\@ Design of Experiments "t [LaunchClusterJob ‘IL

T e Ce T CEI TS

a
Sim start time:| 100,0000 Output Report for Replication #2 u
Sim stop time: nunbetectedlines[0] 1 0.0000 O0.0000 O.0000 0.0000 O.0000
Summary OJutput Eeport:
replications:|:| seadiver.MinefieldSearchAssenbly. 1

stopTime = 100.0
verbose = false
singleStep = false

[] Verbose output

[v| Save replication data

[w] Print replication reparts numberPBeplications = 2

printReplicationFeports = true
printiummaryFeport = true
degignPointID = 0
saveReplicationData = true
numDetectedMines.mean (TALLY)
Z 0.000 0.000 0.000 0,000 0.000

Print summary reports

[1[3

Got ASSY PRINT REP REPORTS (not error) true
Got ASSY PRINT SUMM BEPORTS (not error) true
Got setPauseAfterEachEvent (not srror) = false
Got Eeset (Hot €rror)

Got stopAtTime (not error) =100.0
NAVAL Got setVerbose (not error) = false

POSTG RADUATE Got dumplutputs (not error)

Got start sim (not error)

SCHOOL Eim

Got dumplutputs (ot error)
Got getiinTimeString (not error)

stopped (not error)

Figure 16. Viskit’s Assembly Run Panel.

The last tab is the Analyst Report Editor. It provides an interface to enter detailed
information about the model and simulation runs that can be saved in XML format. This
combined with the simulation output generate a standardized report of the simulation
quickly and easily. The Analyst Report panel is itself composed of a number of tabs each
detailing with an aspect of the simulation and report. Figure 17 depicts the Analyst
Report Editor panel at the beginning tab called ‘Heading’ that collects information on the
simulation such as title and author. In general, each section of the analyst report has two
parts. First the analyst records what behaviors and results are expected to be produced by
the model. Second, the analyst assesses what was actually produced. The tool is set up
to encourage incremental analysis and testing, saving intermediate analysis each time.
Once each required tab is documented, a complete analyst report is generated in HTML

format to match. Appendix A is an example analyst report of a Seadiver mission.

25

- Viskit Analyst Report Editor
File Help

Event Graph Editor ‘n,lnssemhlr Editor ‘n,lﬁisemhhr Run ' Analyst Report ‘l".

& Behavior Definitions \'nll? Statistical Resulks \l'l. 8 Conclusions and Recommendations ‘l'l.
1 Heading "'. 2 Executive Summary "l. 3 Simulation Location "l. 4 Simulation Configuration "l. 5 Entity Parameters "l.

Repart Title |Seadi1.rer Barrier Search Mission |
Report Author |LT John Seguin |
Repork Date |Feb|'ua|"gr 9, 2007 |
Report Classification | UNCLASSIFIED -

Figure 17. Viskit's Analyst Report Editor panel excerpt.

F. SUMMARY

This chapter detailed the simulation framework along with the software programs
and APIs leveraged by this framework. This thesis utilizes DES methodology and
notation for creation of the Seadiver model. This is accomplished by employing Viskit
which is a program that provides a GUI for the creation of DES event graphs and
simulations. Viskit enables efficient creation of DES models by leveraging the Simkit
and Diskit APIs.

26

IV. DESAUTHORING - CREATING A SIMULATION WITH
VISKIT

A INTRODUCTION

This chapter describes in detail how to create a DES in Viskit. Every modern
programming language enables a construct called inheritance which facilitates code reuse
while decoupling form from function. Inheritance and how it is leveraged in this thesis is
the subject of Section B. Section C details event graph authoring in Viskit. Event graphs
are the main logical constructs in DES and define entity behavior. Section D explains
how event graphs are integrated into an assembly in Viskit to produce a simulation.
Finally, Section E illuminates how movement and detection functionality is implemented
in Simkit/Diskit.

B. SIMKIT/DISKIT API LIBRARY INHERITANCE STRUCTURE AND USE
IN VISKIT

Computer programs are complex constructs that if coded in a single container
would extend many lines and pages. Java and indeed most programming languages
provide mechanisms to organize and reuse code as much as possible. Viskit simulation
architecture utilizes all those inherent to Java, but one is of particular interest in Viskit
called inheritance. Inheritance allows for many implementing objects to contain all the
inherited characteristics of the superclass while allowing for the addition of a new
functionality in the current class. Additionally, the current class could then be used as the
superclass for another class, etc, etc. In effect, inheritance provides the ability to create

multiple entities that are primarily equivalent, yet have unique functionality.

The concept of inheritance is especially important to entity creation in Viskit. As
entities become more complex thru the process of implementation of features, the event
graphs can become overwhelmingly complex as shown in Figure 18. While Figure 18 is
a fully functioning Viskit entity, it is clearly difficult to decipher, modify, or test for
desired behavior. Figure 18 is an attempt to implement tactical behavior in Viskit

without inheritance.

27

| | | | | |
| | | | | |
L | L | L 1 L 1 L] | L |
b 7 k- Iy ™ Iy ™ 7 g + “\
:::(aug Ins e 1 | =ndMave Imterdcs 250
= i le]
M L - M o M ol M - 4 M -
ey Iry I!I.]
‘“\“ = !
[l o - i
e A = |
" ——] F:T:u I- If Far i‘
- - - "*‘_ - - -
Y g Angana 7 nw NI { zscar £ S AT
S, Range ! Sensar Target ::_l Cloar AP |
N N . Yoy . ri |
Iry Iy il 1 Bt | !
! LU LI !
1'..' I 'I:'I, M . -" K
L
- A NEL R, /
. r‘_,-"" Zatetyd | . i
el
. L M £ =YY
5 Y - ™
I 1| L I‘
T - ~ < = ~ /
AN freanan ! I IS EE sear {cnecsad |
___%;sburEm I:Ietc\:r.l.un:: Stark y — e rII
N ry LN y N S N A N -
Ty Yy T 7 [
0 In}
"\) bl |
M ~ Fi I
et r J ! - -
4 ™ N
STy P A ' ! { ama R
e Tar L ?& F | Escart J7 T (mence
s P ; o Y A A
L S 7 N / I
- - =
I [A \'"”"-‘-:_ ¥
. e Py
Mo ::F I
-+ N Aotred rd
i iy N - F,
l’i [}, I K . A Ir"‘" h\
it rﬂl‘l Fal
A f};-;;‘" y - Sscart
v’i |t s i N A
¥ - * 7
1| -~ , 11
I ¥ n] N
7
/ ’ﬁ:_{”“‘j i et Freturemi
y b |I_.l" Zmaty ; . Aefinad
Flr "Ix. i urd fj L - M - M -
[]
[A P 1
| ™~ 1
[i ||
I e i
- N A - ~ -~
T m"\ i ' 7 oun i “\
T] Target] Jal-t]
A M LN M
I l—u"T‘ I .—.ﬁ’ I I_l"'{ [
1T 11 1T 11
s 11 s o

Figure 18. Complex event graph without inheritance (from Sullivan 2006).

Viskit allows for the use of inheritance and it has been demonstrated that its
judicious use is essential to producing a maintainable model and is a “best practice’ and
simply a good design pattern that should be followed. Viskit provides this ability thru the
event graph settings dialog box that allows for specifying which class to extend. It is
important to note that to be used in Viskit, at some point one of the super classes must be
SimEntityBase. The benefits to adhering to this best practice include event graphs that
are more readable, focused on implementing only what is different from the superclass,

and easier to debug.

28

1. SimEntityBase

SimEntityBase is the fundamental component of Simkit simulations. Recall from
Chapter 2 that there are just two constructs of event graphs: the event and the scheduling
edge. SimEntityBase is the class that controls interactions with the event list. Each event
on an event graph is placed or removed from the event list according to its scheduling
edge. Every event graph in a simulation or one of its super classes must inherit from
SimEntityBase at some point otherwise it cannot interact with the event list. A more

detailed discussion of SimEntityBase is provided in (Buss 2002).

2. Mover3D

Mover3D is a Java interface that ensures implementing classes meet the minimum
requirements for a 3D mover in Diskit. It is essential that all movers in Simkit requiring
interactions such as detection and its inverse, undetection, implement Mover3D. This is
because of how the sensor classes are constructed since they fire ‘doDetection’ and
‘doUndetection’ events as specified by Mover3D. By convention, implementing classes

are named with Mover3D appended such as DISMover3D.

3. DISMover3D

DISMover3D implements the Mover3D interface and extends SimEntityBase,
thus it provides the minimum constructs for a Simkit simulation as well as ensuring it
will interact properly with the sensor library. Additionally, it provides all the
functionality required for a moving entity along with exposing that entity to the DIS
protocol. Essentially, DISMover3D provides all the functionality required of a simple 3D
mover that can detect other object and output its state as DIS packets across a network.
The Seadiver and Target event graphs in this simulation use DISMover3D as its moving
entities. Figure 19 depicts the event graph representation of DISMover3D.

29

' " '
|: Rl.ln\ll h|f Init 1'| |: Stc\p\l|

__/ N/ __/

-' Stalt\- '(/ \.
-. Move FRSei=Famt=ra=t=rd-g-ra-g-p Endrh:u e|4.-| Fause |
| Cll.llse |
ff,—__
|'l Ahead | {f"_"
‘\% _/J f ||ext\1.
T Maypoin

Figure 19. DISMover3D Event Graph (from Sullivan 2006).

4. Seadiver Model Inheritance Structure

The Seadiver simulation implements inheritance to the fullest extent possible.
Figure 20 is a diagram depicting the simulation inheritance structure. Notice that all
entities are at some point descendants of SimEntityBase. This is a requirement of Viskit
which enables all descendants to be observable, selectable, and able to be integrated into
assemblies. Along with extending SimEntityBase, all movers and sensors implement the
Mover3D interface represented by the dashed line. This is required to enable movement
and detection functionality through Diskit. Similarly, if only 2D movement and detection
is required, Simkit has a corresponding Mover interface that must be implemented.

30

SimEntityBase

/ Mover3D /—-l- DisMover3D

h 4 h 4 9 h 4

Seadiver Target Minefield ZoneMap

Figure 20. Diagram of Seadiver inheritance structure.

C. EVENT GRAPH EDITOR - CREATING A MODEL

Event graphs define a DES and control the behavior of the entities and their
relationships to other entities. Producing a productive simulation requires creating event
graphs that encompass behaviors of sufficient fidelity while maintaining some requisite

amount of generality.

This discussion demonstrates how the event graphs in the Seadiver simulation
were created in Viskit. It is not a full tutorial for Viskit, but does show how event-graph

methodology was used to create the Seadiver event graph for the model in Viskit.

1. Event Graph Parameters

In Simkit DES methodology, event-graph parameters are variables that are set at
simulation run time and do not change during the run. The exact value of parameters
must be entered in the Assembly Panel prior to the start of the simulation or an error will
occur. Parameters also represent performance characteristics of a model such as sensor
range or maximum speed. These must be available as changeable parameters to maintain
a sufficient level of abstractness to allow for multiple simulation runs without modifying

hard-coded values.

31

Viskit provides for view and modification of event-graph parameters in the Event
Graph Editor panel. Figure 21 depicts the Seadiver event graph parameter list as
displayed in Viskit. The plus and minus buttons at the bottom allow for addition or
removal of parameters. To modify an existing parameter, simply double click the

parameter line. These parameters will be discussed fully in a later section.

Event graph parameters
Double click a mow to
name type description
maximumSpeed double The maximum speed for this entity,
firstMoverID int The unique DIS entity ID number For first entity.
numberDivers int Total number of divers to be created,
sensorRange double Range of sensor (sonar,MAD,etc),
fixDelayTime diskit,random. RandomVariateInstantiator Random variabe For duration in minutes to conduct a gps Fix,
inputFileTemplake String Mame and Path of file to parse for use as a template For generation of AUWW missions,
outputFileName String MName and path (without extention) that will be used to create and write seadiver AUYW mission files,
operatingDepth double Nominal operating depth of the seadiver during mission runs,
+ -

Figure 21. Seadiver event graph parameters in Viskit. Event-graph parameters are
initialized at setup time.

2. State Variables

A state variable is a mathematical variable that defines an important aspect of the
system. State variables change throughout the simulation and that change is called the
state trajectory. The state trajectory is the graph of change in a state variable over time or
“evolution of the model in time.” (Buss 2000) Each state trajectory is piecewise constant
and therefore only changes at events. In a typical non-moving entity simulation, most
events represented on event graphs contain state changes. This is not true for tactical
models where decisions and behaviors by an entity are captured. Most of the events on
the Seadiver event graph do not generate state changes. In Viskit, state variables are
entered and listed on the Event Graph Editor panel as depicted in Figure 22.

32

State Variables
Double chick a mw fo =07
name Lype description
sensorObject dishit. Sensor Cookie cutter spherical sensor that detects all objects that get within sensorRange.
submerged boolean Flag to determine if submerged or at surface,
gpsFixieeded boolean Flag to store need For GPS fix (after each mine location),
detectionData java.util. HashMap Container that holds mine detection data,
numDetectedMines int Number of mines detected.
HWfixMoverManager seadiver PathDeviationMoverManager Maover manager used during time fixes required.
activeMoverManager seadiver MoverManager Stores the active mover manager.
wpsCreator seadiver LawnMowerWaypointCreator Creates waypaints in a lawn mower pattern from a zone supplied by ZoneMap event g.
zone seadiver, SymetricZoneMap Class containing zones of each mover,
targetCollector java.util LinkedList Container holding target objects detected For analysis,
mineCollector java.util LinkedList Container holder mine objects detected for analysis.
targetDetections int Number of times the targets were detected,
numberOFTargets int The number of surface/submerged targets in this simulation (if any).

totalMumberCFT argetDetections ink

Stores total amount of target detections,

oM

Figure 22. Seadiver event-graph state variables in Viskit. State variables can change
as simulation time progresses, thus representing model state.

3. Events

Events are one of the two fundamental components of event-graph methodology

(the other being the scheduling edge).

They are graphically depicted as circles on the

Event Graph Editor panel. When creating an event graph, empty events are placed on the

graph and then information about that event is entered into the Event Inspector that is

accessed by double-clicking that event. Figure 23 depicts the event graph for the

Seadiver model.

33

SealiverEG "'.

| Creats
Register |

| Register) Process
Register Register
Sensor Target

4| Target
etection

Figure 23. Seadiver event graph shows the logical flow of information while
modeling robot behaviors.

The Event Inspector is used to define events and consists of four main
components: Event Arguments, Local Varibles, Code Block, and State Transitions.

Figure 24 depicts the Event Inspector of the Start Moving event and its main components.

34

" Event Inspector: StartMoving.

~Bvent name
:SItal'i:aning_

~Description

Begins the movement of this entity, Continuous movement based on waypoints from the pl'nvidéd zones will c2| ...

~Bvent arguments

Dowble ciick a mw to 20
name type description
diver seadiver.DISMover3D
wp diskit,Vec3d

~Local variables
Dowble click a mw to edit.

name |kype| initial value description

~Code block
di';.rer.setTacl.:i.caIM:.;n.de(.disldt..TacticaIMudé.fRANSiﬁNG);__ IZl

~State transitions
Double click a mowto =01

submerged = true

| Cancel || Apply changes I

Figure 24. Event Inspector for the StartMoving event in the Seadiver event graph.

Beginning with the Event Arguments section, the functions of the sections are
explained. Arguments of events are incoming values and are directly analogous to the
signature of a Java method. The composition and position of arguments determine the
signature. Any call to that event from a waitDelay() method must be spelled correctly
and have the exact same signature or nothing will happen. If an event has arguments then

any attached upstream scheduling edges must provide the value of that argument.

35

All sections on the Event Inspector have plus and minus buttons used to add or
remove elements. Clicking the plus button adds an empty argument and double clicking
it brings up the Event Argument dialog box shown in Figure 24. The event argument
dialog box is used to define the argument’s name and type. Figure 25 for example

depicts the event argument dialog box for ProcessWaypoints event.

name |diver

type |seadiver.DISMover3D

description |Maover object argument passed From RegisterDiver event.

| Cancel || Apply changes |

Figure 25. Event arguments dialog box for ProcessWaypoints event.

The Locals Variables section provides a location to define variables whose scope
is limited to that event. They can be defined for any function, but are typically used to
supply values to scheduling edges without referencing the original object. Local
variables are added by clicking the appropriate plus button in the local variables section.
Double click the new entry to define a new local variable in the resulting Local variables
dialog box that appears. The new variable is defined by its name, type, and initial value

as shown in Figure 26 which is of a Seadiver event local variable.

' * Local Variable Inspector

name | exampleCfLocalVariable

bype |int

initial valus [0

description |Example of a Local Varible,|

Cancel | Apply changes |

Figure 26. Local Variables dialog box for a Seadiver event.

The Code Block section in the Event Inspector is a free form code entry area. It is
used to enter any required code whose function cannot be performed by one of the other

sections. The code must adhere to Java language programming syntax and rules. Unlike

36

previous sections, code is entered directly on the provided line or if more space is needed,
in the box accessed thru the ellipse notation to the right demonstrated in Figure 27. The
most common functions for code in the Code Block are print statements used for debug

purposes and helper classes for data collection.

diver.setTacticalMode(diskit, TacticalMode, TRANSITING);

diver.setMaximumspeed{maximumspeed);

diver.setStartPosition{new diskit, Vec3d{ zone.getZone(diver. getMoverID()). getLowi),
zone.getZone(diver, aetMaverID()). getLowy(), zone.getZone(diver.getMoverID()).aetLowZ()1);

[15ystem, out, printin{diver. getStartPosition());
diver,setCruiseSpeed{maximumspeed);
diver,setDestination{wp);

1System. out, printin{diver. getDestination());

diver.stark();

| Cancel || Apply changes I

Figure 27. Code Block for a Seadiver event allows insertion of special-handling
source code into the Viskit-defined event graph.

The final section is for state transitions. Similar to previous sections’ add and
remove state transition entries with the plus and minus buttons. Double clicking an entry
brings up the State Transition dialog box. In the dialog box, select the appropriate state
variable that needs modification and then give it a new value directly or through a
function. Note that only state variables previously entered in the Event Graph Editor are
available for change. Figure 28 depicts the State Transition dialog box using an arbitrary

Seadiver event having a state transition.

37

'+ State Transition

state variable |(disldt.X3DCum'dinate} centerPoint v” new |
i assign ko ["=")
i1 invoke on (")

= |new diskit . ¥3DCoordinate(length)2, width| 2, height[/2) |

state war, comment |Center of zone in ¥30 space |

|Cancel || Apply changes |

Figure 28. State Transition dialog box for a Seadiver event.

All event graphs are basically linear programs that move sequentially from one
event to the next thru scheduling edges. Most event graphs start with a Run event that

initializes all state variables and resets then upon multiple simulation runs.

Following the Run event, the system moves systematically to the next event as
directed by the scheduling edges. In the case of Seadiver, information is passed to the
ZoneMap event graph which creates individual operating areas for each mover and passes

that information back to the RegisterMap event.

From there, Seadiver diverges from typical Viskit processes when it creates the
required amount of mover entities as specified by the numberDivers parameter in the
Seadiver event graph. This adds complexity since each Seadiver entity is independent of
the event graph. Behaviors for all Seadivers can be constructed on the Seadiver event
graph but individual control is severely limited. For the purposes of this model, this was
considered acceptable when many movers must be created and would have the same

properties. Normally, each SimEntity would have an independent event graph.

After each mover is created, they are registered as sensors and movers with the
Scenario Manager, individual waypoints are generated based on operating area, and
ordered to begin movement. As the movers progress through waypoints, the Scenario
Manager will manage detections and undetections. When one occurs it fires an internal

‘doDetection’ event that Seadiver hears (the exact mechanism is performed by

38

PropertyChangeL.isteners which will be discussed later) and initiates its Detection event.
Based upon what type of detection is heard, follow-on events are fired down stream of

the Detection event for data keeping only.

4. Scheduling Edges

The second main component in event graph methodology is the scheduling edge.
Scheduling edges connect two events together, and as their name implies, serves as a
method to transition from one event to the next. In Simkit, edges are implemented by
waitDelay() methods. Figure 29 depicts a Simkit waitDelay() method. The waitDelay()
has four components: the scheduled event name as a String, the time delay from
completion for scheduling (source) event to scheduled (target) event, the priority of
events if there are two or more on the event list scheduled at the exact same time, and the

target event parameters.

if (icontact.getMoverIDi) > 399) s& ('targetCollector.contains(contact))) |
walthelay("FegisterTargetDetection” ,0.0,Prioricy.DEFAULT, (Object) (contact)) ;

}

Figure 29. Simkit waitDelay() method.

In Viskit, the waitDelay() method and therefore the scheduling edge is depicted
by an arc ending in an arrow from the source event to the target event in the Event Graph
Editor. The edge is defined in the Edge Inspector dialog box accessed by double clicking
the graphical edge. Figure 30 depicts the Edge Inspector and illustrates that the four
components of the waitDelay() method are implemented.

39

' Edge Inspector

Type: Scheduling

X)

Source event: Detection
Target event: RegisterTargetDetection
~Priority
DEFAULT R
~Time Delay
0.0

~Conditional Expression
i {

(conktack,getMoverID() = 399) && (targetCollector. contains(conkact))

) then schedule /cancel targelt event

~Edge Parameters -- to Register TargetDetection
Double click a mw o =07

event argumenkt | value

target (diskit.Mover3D) contact

add desoipdon

| Cancel || Apply changes

Figure 30. Edge Inspector.

connects the Detection event and the RegisterTargetDetection event.

This determines if the edge will schedule the target event.

than 399 and has not previously been placed in the container.

40

Figure 30 is the scheduling edge in the Seadiver event graph (Figure 23) that
As shown, the
source and target events are listed, the priority is selectable from seven preset
enumerations and is Default in this example, the time delay is settable to any number or

function, and the passed parameter is definable and is a Mover3D called contact.

One additional property of the scheduling edge is the conditional expression. It
lists the conditions that are required to be met prior to the target event being scheduled.
In this example, the

RegisterTargetDetection event will only be scheduled if the contacts ID number is greater

D. ASSEMBLY EDITOR - CREATING A SIMULATION

Viskit defines a construct called the assembly that it uses to create the simulation.
An assembly is constructed in the Assembly Editor panel of Viskit. An assembly is a
collection of event graphs and the connections between them called SimEventListeners.
The relationship between event graphs and the information passed between them via the
SEL defines the foundation of the simulation. Figure 31 depicts the Assembly Editor

panel with a Seadiver mission assembly open for editing.

'+ Viskit Assembly Editor: BarrierSearchAssembly

File Edit Help

Event Graph Editor * Assembly Editor \ﬁssemblr Run ', Analyst Report ',

4
£2 bl E";;_t Eza.phs M Mode: . h"_,,.: }— E'— Zoom: Initialize assembly runner:
+ - ib\extidiskit.jar 5

E| lib\gimkit. jar

----- @ ZoneMap(¥ML)
- Target(XML)
b SeaDiverEG{XML)

i target
tectionsTe

m

+ - Sea Zone
e Divers Map
Property Change Listeners

F-C3 liblextidiskit.jar
F-C3 lib\simbit, jar

Scenario
—€ 1
Manager] Targets

Figure 31. Assembly Editor panel.

1. Scenario Manager

The Scenario Manager is a required element of simulations utilizing Diskit

components. It provides all the functionality required to implement movement and

41

detection as well as the DIS protocol. This allows the modeler to create movers with
sensors easily by connecting the Scenario Manager and the mover event graph with a
SimEventListener (displayed in Figure 31 as the line with a small cup at the end
symbolically representing an ear listening to the event graph). Additionally,
implementation of the DIS protocol enables the simulation to publish DIS packets to a
network enabling distributed simulation and graphics.

The parameters of Scenario Manager are listed in Table 1. Parameters are
accessed through a dialog box called the Event Graph Inspector by double clicking the
event graph representation in the Assembly Editor panel. The speedScale parameter is
used to modify the speed of the simulation necessary when viewing the output of the
simulation in a virtual environment. The clearOnReset parameter enables the statistical
values to be reset for each repetition of the simulation allowing for correct reporting of
confidence intervals. The last four parameters deal with details of the DIS protocol and
the network interface.

Parameter Type Description
speedScale double Determines the speed of the simulation in a
X3D viewer.
clearOnReset boolean Enables the statistical values to be reset for

each repetition of the simulation

multicastIPAddress | String The IP address of the network interface on the
host computer used to transmit DIS packets.

port integer The port of the network interface on the host
computer used to transmit DIS packets.

sitelD integer DIS protocol setting.
applD integer DIS protocol setting.
Table 1. Initialization Parameters for Scenario Manager.

42

2. SimEntity

Once even graph models of SimEntities and objects have been created either in
the Event Graph Editor or as native Simkit Java classes, they then can appear in the event
graphs section of the Assembly Editor. If they appear in this list then they meet the
requirements of Viskit and can be used in the assembly o create a simulation. To use the
event graph, simply drag and drop it onto the assembly to create an instance of it as
represented by a SimEntity Node. Figure 32 depicts an assembly of a Seadiver mission
with the event graph library to the left. Note that Scenario Manager is not an event
graph, but can be accessed and used in the assembly since it is a Java class that extends
SimEntityBase.

43

 Viskit Assembly Editor: BarrierSearchAssembly
File Edit Help

Event Graph Editor ' Assembly Editor \Assembly Run \‘.Analrst Report \Il

n a— I3 13— Zoom: @ Tnitia

Event Graphs
F-03 liblext\diskit jar
D lib\simlit., jar

- [EB) SeabiverEG(XML)
: TargetD{ML]

L ZoneMap(¥ML) bbb,
target i
+ = e:tiunsT.:;
F . 4 bt B 3 A i “I
s Prnp:arty Change Listeners
B-E lib\simlit. jar
BE’ simldk m
Feb-(C ukil
D test D?f:rs :ﬂ_\\ Zl":an:
B stat %]
.= BatchMeansTallystat 1/
|- BoolzanCounter)
| CollectionSizeTimeVaryingstats
— Hiskogram
| LinearSimpleStatsTimeVarying
| MulkiStat
| MultipleBoolzanCounters Sce ﬂﬁ aEE
| MultipleCollectionSizeTimeVarying LE

| MultipleSimpleStatsTally

| MulkipleSimpleStatsTimeVarying
1 PercentagelnstateStat

| Savedstats

| SimpleStatsTally

| SimpleStatsTimeVarying

l_ TruncatingSimpleStatsTally

| TruncatingSimplestatsTimeVarying |«

= —

Figure 32. Seadiver assembly depicting the model library to the left.

Several event graphs and multiple helper classes were created for the Seadiver
thesis. Seadiver thesis assemblies are designed around Seadiver missions and several
assemblies have been created, one for each mission. All assemblies use the Seadiver
model and the ZoneMap object and either the Minefield or Target event graph. The
SimEntity nodes can be named anything, but for the purpose of Seadiver thesis their

names remain similar to the actual event graphs.

44

3. Parameter Entry

As discussed previously, event graph parameters are values that will not change
throughout the simulation and are set at runtime from entries in the SimEntity nodes of an
assembly. Parameters are accessed via the Event Graph Inspector dialog box by double
click. Parameters can be simple numerical values like integers or doubles, or can be any
other Java function that returns an object or value. The following section describes the

parameters for the event graphs used in the Seadiver thesis to illustrate this functionality.

4. SimEventListener

Lines connecting SimEntity nodes in the Assembly Editor represent Simkit
constructs called SimEventListeners. SimEventListeners connect two SimEntity nodes
together and allow them to share information between them. To connect nodes via a
SimEventListener connection, each event graph must contain an identical event (same
name and signature). The source event fires then as a result the target event is fired. This

has the effect of one event listening to the other event, hence the name SimEventListener.

SimEventListener connections are very beneficial to the Simkit methodology of
creating simulations because they allow for passing of information between event graphs.
This enables the componentization or breaking up of complex event graphs into small
chunks of functionality that allow for extensive re-use and simpler debugging. The

concept benefits are therefore similar to the use of inheritance.

An example of events taking advantage of SimEventListeners is the CreateMap
events in both the Seadiver and ZoneMap event graphs. Figure 33 depicts the
SimEventListener Connection dialog box that supplies information about a connection.
In this case, the event in Seadiver passes the number of Seadiver movers that will be
created and the first ID number that will be used to the ZoneMap event graph. It uses this
information to create individual operating areas for each Seadiver mover based on this
information and its own parameters (that determine the total size of the area). This
passing of information is enabled by SimEventListener connections and would be

difficult to accomplish otherwise.

45

'+ SimEvent Listener Connection

producing event graph |Sea[:li1.rers (seadiver.SealiverEs)

liskening event graph |Znnel'~'1ap (seadiver. ZoneMap)

description |Cunnects the CreateMap events in each event graph. |

| Cancel || Apply cl

Figure 33. SimEventListener Connection dialog box of connection from Seadiver
node to ZoneMap node in the xxxx assembly.

5. Property Change Listener (PCL)

The Property Change Listener (PCL) is similar to the SimEventListener in that it
is a construct that can be programmed to listen to a SimEntity node. Unlike the
SimEventListener connections that listen for events, PCL connections listen for changes
in state variables. By convention in Simkit, every time a state variable changes, a method
called firePropertyChange() is initiated that has the effect of broadcasting that change to
the simulation environment. Figure 34 depicts the firePropertyChange() method of the

Run event in the Seadiver event graph.

firePropertyChange ("targetletections"”, cargetDetections) ;

Figure 34. The firePropertyChange() method of the Run event in the Seadiver event
graph.

PCL connections are created to listen for specific state variable changes then
perform preset operations with them. Typically, these operations are for the collection,
calculation and display of statistics. Simkit has a number of built-in data collection and
analysis objects that can easily be incorporated into a simulation. Figure 31 depicts the
Assembly Editor panel for a Barrier Search assembly. In the bottom left display resides
the expanded list of included PCL connections and the assembly depicts one PCL
connection node (colored pink) called Target Detections Total. New data collection
objects that implement PCL connections can be created and easily incorporated into a

Viskit simulation via the plus button.

46

To incorporate a PCL into a simulation, a PCL is selected from the list (or created
in Java if one in the list does not fill all requirements) based on the type of property being
collected such as an integer or a collection and the property’s state as a function of time.
Once the appropriate PCL is selected, simply drag and drop it onto the assembly and
connect it to the SimEntity node with the correct state variable. Finally, select the
appropriate state variable from the list accessed by double clicking the connector as

shown in Figure 35.

source event graph |5&aDi\rers

property change listener |ta|'g=tDel:ectinnsTﬂll'gr

properky |targetDetectiuns

(an empty entry signifies ALL properties in source)

description |Cullects unigue target detections, |

| Cancel || Apply changes I

* seadiver.SeaDiverEG Properties

properkty name | property type
activeMoverManager seadiver. MoverManager
detectionData java.util,.HashMap
FixMaoverManager seadiver.PathDeviationMoverManager
gpsFixhleaded boolean
mineCollector java.util, LinkedLisk
numbetectedMines ink
numberQfTargets ink
sensorCbject diskit, Sensor
submerged boolean
targetCollector java.util, LinkedLisk
targetDetections ink
totalMumberOfTargetDetections ink
wpsCreator seadiver. LawnMower'WaypointCreator
Zone seadiver, SymetricZoneMap

| Cancel || Apply changes

Figure 35. Property Change Connection dialog box with state variable list expanded.

47

E. MODELING FOR TACTICAL SCENARIOS

Movement is essential to the Seadiver simulation since its primary intent is to
simulate the changing spatial relationship between Seadiver entities and other moveable
objects such as surface/submerged targets or mines. Traditionally, DES has been used
for simulating non-moving relationships as in queuing theory. This excludes simulations
requiring movement and is due to the mistaken belief that the discrete event paradigm is
impractical for this use. Additionally, it has been shown that in some cases using DES is

desirable to other methods such as the time-step world view. (Buss and Sanchez, 2005)

1. Movement

Movement in this thesis is accomplished by object event graphs such as Seadiver
implementing the Mover3D interface (or extending a class that implements Mover3D
such as DISMover3D). Implementing Mover3D ensures that the proper methods are

included to enable movement functionality.

The Seadiver simulation exclusively uses DISMover3D for 3D movement
capability. DISMover3D is simply an extension of 2D movement in the Simkit API.
(Buss and Sanchez, 2005) provide a basic explanation of movement and detection in
Simkit. In its simplest form, an object starts at position one at time one with a specific
velocity. Using well known position functions, these three variables are all that is

required to calculate future positions.

In Simkit, the initial position and calculated final position are modeled as events
called the StartMove and EndMove events respectively. Every movement from one
position to another begins with a StartMove an EndMove event as depicted in Figure 36.
As shown, every StartMove event schedules a corresponding EndMove event with a time
delay of that amount of time required to move from one position to the next based on the
objects speed and distance between locations. If there are additional movement
requirements, the EndMove event once fired will reschedule another StartMove event
immediately. This process continues moving an object through locations as long as the

movement requirement remains the same.

48

End
Move

Figure 36. Basic movement process in Simkit.

Entity movement is managed by an appropriately named Mover Manager. Mover
Managers control the scheduling of StartMove and EndMove events. Mover Managers
enable dynamic changing of entity behaviors such as changing from an object following a
preset waypoint list to avoiding an obstacle or loitering in an area. This is accomplished
by providing a mechanism to dynamically change the Mover Manager based on preset

conditions.

Simkit and Diskit provide several previously created Mover Managers that can br
readily incorporated into simulations. Additionally, Mover Managers can be created to
meet additional movement requirements such as the Path Deviation Mover Manager in

this thesis. Table x provides a summary of available Mover Managers.

Path Mover Manager Moves an entity through waypoints.

Random Mover Manager Moves an entity though random waypoints of
which the distribution can be set.

Avoidance Mover Manager Intermediate mover manager which moves an
entity around an obstacle at a preset standoff
distance between preset waypoints. The initial
mover manager is restored once past the
obstacle.

Intercept Mover Manager Intermediate mover manager which moves an
entity from a preset path to an intercept
position. The initial mover manager is restored
once intercept complete.

49

Zone Mover Manager Moves an entity through preset zones of
operation based on probability or A-Star search
(best path) algorithms.

Path Deviation Mover Manager Intermediate mover manager which interrupts a
preset path causing the entity to dwell in a
location for an amount of time. The time
duration is of a preset distribution.

Table 2. List of Mover Managers available in Simkit and Diskit.

2. Detection

Implementation of entity behaviors that require interaction between entities
cannot be achieved by movement alone. A method is required to allow entities
knowledge of other entity positions, its environmental limitations, and to react to them.

This is accomplished in Simkit and Diskit by the sensor implementation.

The simplest and most practical sensor is the cookie cutter sensor implemented in
Simkit. Figure 37 depicts the notional concept of the sensor. In this example, there is
one 2D sensor attached and coincident to entity A. The sensor moves with entity A and
has a radius R in which other entities will be detected if the circle prescribed by R around
entity A is entered. Similarly, when the entities achieve a distance greater than R apart,

the sensor does not detect the other entity.

50

Figure 37. Cookie-Cutter sensor. The basic scenario.

In Simkit and Diskit, this process is modeled by the Detection and UnDetection
events. Figure 38 depicts the DES methodology for the sensor Detection and
UnDetection events. These events correspond to the instance one entity enters within the
radius of a sensor and is projected to leave that radius respectively. Specifically,
Detection events are placed on the event list when it is calculated that entity B will enter
range of the sensor. Similarly, an UnDetection event is scheduled at the same time when
entities change velocity vectors, recalculation of enter and exit range values and

rescheduling of Detection and UnDetection events is performed.

Detection LinDetection

Ladd Entity) {ramove Entity)

Figure 38. Sensor DES methodology.

The Seadiver model implements the spherical cookie cutter sensor provided by
Diskit. It expands the 2D cookie cutter sensor in Simkit to three dimensions.

Functionally it operates the same as the sensor described above. These sensors can be
51

extended to provide advanced functionality such as implementation of non-circular range
or detection ranges based on probabilities, but the spherical cookie cutter sensor is

adequate for this proof of concept thesis.

F. STATISTICAL RESULTS

The output of a stochastic simulation is typically statistics of static or time-
varying nature. Each run of a simulation produces another set of statistics called a
repetition. A number of repetitions are produced which are used to generate confidence
intervals. Confidence intervals are then used to analyze the model for expected behavior

and to generate logical inferences from unexpected behavior.

The Assembly Run panel is the location where each repetition and calculated
confidence intervals are viewed. Section C of Chapter Il discussed the basic
functionality of the Assembly Run panel. Additionally, it is the location where the
simulation is initiated and its control settings adjusted. Table 3 lists the simulation

settings and their descriptions.

Setting Description

Sim Stop Time Determines when the simulation will stop. Simulation can also be
stopped programmatically based on preset events.

Replications Determines the amount of replications the simulation will
complete. This automatically allows for computation of
confidence intervals for stochastic simulations.

Verbose Output Determines how much information is written to the output panel
on the upper right. Primarily used for simulation debug purposes.
If verbose is selected, every entry in the event list is written to the
output panel.

Save Replication Data Determines if the statistical data output of the simulation is written
to file. This file is in XML format and is used in generation of the
Analyst Report.

Print Replication Reports Determines if the statistical replication data output of the

simulation is written to the output panel.

Print Summary Reports Determines if the summary report is written to the output panel.

Table 3. Assembly Run panel settings and descriptions.

52

G. SUMMARY

This chapter described in detail how to create a DES simulation in Viskit. Using
this chapter as a guide, the reader has the basic knowledge required to construct a basic
event graph in Viskit’s Event Graph Editor and then integrate that event graph into a
simulation in the Assembly Editor. Additionally, this chapter provided the conceptual
framework for implementing moving entities with detection capability and why DES is a

suitable framework for such.

53

THIS PAGE INTENTIONALLY LEFT BLANK

54

V. TACTICAL CONSIDERATIONS FOR SIMULATION GOALS
AND REQUIREMENTS

A INTRODUCTION

This chapter discusses the logic and methodology behind why modeling and
simulation was used to analyze the Seadiver UUV. First, the benefits and advantages of
modeling and simulation are previewed for the design and construction of complex
robots. The process of creating the two simulated missions of this thesis is then
explained in detail. Finally, the communication requirements for UUVs performing these

types of missions are described.

B. NEEDS AND REQUIREMENTS FOR ROBOT MODELING

Modeling and Simulation (M&S) is beneficial and probably essential for the
creation of complex moving entities such as autonomous UUVs. It enables realistic
evaluation of scenarios of interest while identifying discrepancies and deficiencies prior
to their becoming problematic in the construction or testing phases. The following
sections describe how creating a model optimizes production while minimizing risk, cost,

and time to deployment.

1. Robot Design and Construction

Creation of a 3D model during design and construction allows for accurate
identification of physical characteristics of the UUV. Characteristics such as dimensions,
density, weight, and center of gravity and buoyancy are now exposed for modification.
Designers can experiment with alternate products and materials to determine how they
affect the system as a whole. An example would be changing the structural material from
steel to a composite and its affects on properties such as the center of gravity or
buoyancy. In effect, modeling and simulation enables shifting a typically iterative
process from the construction phase (when errors are costly or fatal) to the design phase

(when they are more easily addressed).

55

2. Predicted Dynamics Response

Modeling enables determination of a vehicle’s predicted dynamic response. This
allows for accurate estimation of operational characteristics such as speed and turning

radius which in turn enable insight regarding how a particular UUV might be employed.

3. Robot Control and Mission Planning

One complex issue inherent in all UUVs is the method of operator planning and
then transferring a mission to a robot for execution. The mission itself must be capable
of achieving the desired objectives and be in a format the robot can understand.
Modeling and simulation enables mission construction in a 3D virtual environment such
as AUVW. This allows for visual and interactive mission planning producing the best

case scenario for completion of mission objectives.

A mission is constructed and saved in AUVW as an AVCL file. Using an open-
standards based XML file language such as AVCL allows for simple conversion and
mapping to a proprietary robot command language through use of an XSL
transformation. A single virtual simulation program such as AUVW can now
comparably plan and control many diverse robots, even when each utilizes a different

proprietary command language.

4. Sensor Characteristics

There are a multitude of sensors available for robot use. Determining which
sensor (or combination of sensors) is acceptable for a certain mission can be difficult.
Modeling and simulation allows for evaluation of various sensor characteristics and

packages prior to deployment which increase the probability of a successful mission.

5. Power Budget

A major driving factor behind UUV design is endurance. Endurance is controlled
by the power budget which is affected by the power requirements for propulsion
(buoyancy control for the Seadiver), communications, and sensors. Modeling and
simulation can optimize the endurance robots by enabling the selection of the best

combination of components.

56

C. CHALLENGING TACTICAL SCENARIOS

This thesis researches the ability of robots with long endurance to perform two
historically difficult naval missions: Minefield Search and Barrier Search. According to

the U.S. Department of the Navy’s Mine Warfare Plan,

The sea mine remains today- as it has throughout history- an exceptionally
powerful and cost-effective tactical weapon that deserves a prominent
position within any naval arsenal. (Johnson and Jones, 2000)

Indeed, many navies around the world maintain the capability to utilize sea mines
for littoral protection/denial or sea lane denial. Mine warfare is a serious threat to U.S.
power projection. Mines have been responsible for seriously damaging 14 U.S. Navy
ships since the Korean War. In a single 3 year stretch from 1988 to 1991, 3 U.S. Navy
ships hit mines resulting in over $121 million in damages while the total cost of the mines
were $13,000. (Goure 2002)

Mines are problematic for the U.S. Navy not only due to their low cost and
widespread proliferation, but also because of their difficulty in being located and
removed. There is a need to perform mine countermeasures operations quickly and
covertly without exposing assets to potentially hostile action. Removal of mines remains
time intensive, highly observable, and requires the use of many assets.

Barrier search is another particularly difficult mission. Barrier search is defined
in this thesis as the covert detection and location of enemy vessels, either surfaced or
submerged, over a large area. Early detection and warning of the presence of hostile
forces such as submarines is an essential prerequisite for many of the advanced
operational concepts of operations. Additionally, a barrier search mission can be
employed to locate enemy combatants exiting port or converging on an attack location.
Thus mine warfare and barrier search are significant challenges which might reveal

special value in a SeaDiver glider UUV.

1. Minefield Search

The first mission simulated by the Seadiver model is minefield search. It
endeavors to determine if many Seadiver robots can operate collectively to effectively

search a notional minefield. The results of the simulation are then intended to be
57

processed to determine metrics for use in analysis either against existing mine-
countermeasure solutions or also to re-initialize the simulation with modified parameters

to produce an optimized solution.

The notional minefield used for this research is a shallow area of length, width,
and depth dimensions. A select number of mines are dispersed over the area in
configurable 3D distributions along the length, width, and depth. In effect, the product is

a 3D rectangular volume with mines dispersed randomly inside.

The minefield is then divided into separate Seadiver operation zones, one per
UUV. When the simulation begins, all robots start searching their respective zones in a
lawn-mower search pattern depicted in Figure 39. Each parallel leg is at a distance apart
equal to the sensor range. Such an exhaustive cooperative-search pattern ensures 100

percent coverage of the area in the length and width dimensions.

2,400 4,000 7,500 10,000 12,500 15,000 17,500 20,000 22,500
E
Waypoint >
10,000 =

12,500 12,500

10,000

7.500 7.500

&,000

4,000

Seadiver with
- SENsOor range ring

= = <
- &-
J

2,500 2,500

Y
A
oo 00 00 00 090 OO 0 032

]

2,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000 22,500

Figure 39. Seadiver search pattern over a 20 km by 14 km zone. Sensor range is 500
meters.

58

Each mine is detected as a Seadiver moves within a specific sensor range. Upon
detection, the UUV then simulates taking a GPS fix and records mine location in an
internal database. Each GPS fix observation causes the Seadiver to delay at the mine
location for an amount of time determined by a configurable distribution. Upon
completion of the GPS fix, the Seadiver continues the search indefinitely. The simulation
is configured to stop when all mines are located.

2. Barrier Search

The second mission simulated by the Seadiver model is the barrier search. It
simulates an array of Seadivers spread across a notional area. It attempts to analyze the
probability of this array of UUVs detecting surfaced or submerged targets traversing the
area. The results of this simulation are to be used to determine if an array of Seadiver
UUVs can be deployed in such a way as to effectively detect and localize an approaching
hostile vessel.

The notional area is constructed and Seadivers are dispersed in the same manner
as in the minefield search mission described above. Each target traverses the area from
East to West bisecting randomized waypoints. The number of targets, number of
waypoints, waypoint distribution, and then Seadiver and target speeds are specified as

configurable parameters. Figure 40 depicts the barrier search mission setup.

59

-50,000 -25,000 o 25,000 A0,000 75,000 1.0E5 1.2565 1.5E5 1.7T5E5 20E5 22565 25E5 275E5
Barrier
= :
J5ES 6 db | 7655
1 N q
q o) $
1 5E5 1 .7} 1 5E5
| 4
2665 o I I Fog) 12565
¢ O
1.0ES -'} — é 1.0E5
Targets start A - o
outside barrier | L 45 Targets end
> outside barrier
— 2 /
0,000 o ¥ - Q © 0,000
-)
1 I . - — £
s, 000 { S _ i O!le Seadiver p § 25,000
JF _ _ P Zone
0 s 0
-50,000 -25,000 o 25,000 50,000 75,000 1.0E5 1.26E5 1865 1. 7T6ES 2.0E5 2.25E3 25E5 275E5

Figure 40. Barrier search mission setup. Mission includes 10 Seadivers and 2
Targets.

When the simulation begins, each Seadiver commences the search of its zone in
the same lawn-mower search pattern depicted in Figure 40 and the targets commence
their traversal of the area. As targets approach within Seadiver sensor range they are
detected. All detections are logged for later analysis. The simulation ends when all
targets have traversed the area. Data is collected on time to detect all targets and total

number of target detections.

D. COMMUNICATIONS PERIODICITY CONSIDERATIONS AND
REQUIREMENTS

The ability to communicate and obtain accurate fix information is essential to
these two missions. All the raw sensor data in the world is useless if it can’t be placed in
the hands of those who need and can act on it. Similarly, it is good to know the number
of mines in a minefield, but extremely more useful to know where those mines are
located. Therefore it is a requirement for Seadiver UUVs to have the capability to
communicate with satellites for contact reporting and GPS data, and this simulation

assumes they have this capability. Table 4 outlines these requirements for each mission.
60

Minefield Search Barrier Search

GPS fix 1) Mine located 1) Contact located

2) Start of each leg 2) Start of each leg
Contact Report 1) Weekly 1) Contact located

2) When commanded 2) When commanded

3) Upon first contact

Status Report 1) Weekly 1) Weekly

Table 4. Communication requirements for each mission.

E. SUMMARY

This chapter discussed the logic and methodology behind why modeling and
simulation was used to analyze the Seadiver UUV. The benefits and advantages of
modeling and simulation are presented for design and construction of complex robots.
The process of creating two simulated missions for this thesis is described in detail.
Finally, the communication requirements of UUVs performing these types of missions

are assessed.

61

THIS PAGE INTENTIONALLY LEFT BLANK

62

V1. SIMULATION SCENARIO DESIGN AND DESCRIPTION

A. INTRODUCTION

Every model strikes a balance between generality and fidelity. This research is no
exception. The prevailing conditions such as current design progress and required level
of reuse necessitate this model to be highly general. Section B details the assumptions
this model requires for this condition.

Section C details how entity behaviors are captured in this research during the
creation of the four event graphs that compose this thesis. The event graphs represent
three moving entities (Seadiver, Target, and Minefield) and one area knowledge object
(ZoneMap).

Simulations are created in a Viskit construct called an assembly using event
graphs and SimEventListener connections. Section D details how the aforementioned
event graphs along with Scenario Manager were integrated into the functional
simulations. This thesis constructs two functional assemblies and therefore two
simulations which mimic the ability of the Seadiver to conduct relevant military

missions.

Simulations constructed in Viskit are effectively programming constructs. The
output of this environment is statistical data and therefore makes it difficult to determine
the validity of such data. Disparity in statistical data could be in the best case typical
stochastic variation or in the worst case model inaccuracy or fault. Section E describes

how AUVW is employed to validate the simulation results.

B. ASSUMPTIONS

Every simulation must strike a balance between fidelity and abstraction
(generalization) to enable observation of results of interest while at the same time
ensuring those results are adequately representative of real-world conditions to promote
logical conclusions. For the purpose of this thesis, this simulation is highly abstract and
very general. This was necessary for two reasons. First, the vehicle has not been

completely constructed yet, and therefore most of its operating characteristics can only be

63

surmised at this point.

Second, this thesis focuses strictly on the vehicles ability to

perform certain missions such as minefield or barrier search, and therefore a higher

fidelity for other characteristics is not required.

In that context, many assumptions were

made constructing the simulation and Table 5 below summarizes them.

Assumption

Rationalization

Mover speeds

All mover speeds are constant from start to finish. Seadiver
speed is set to 3 knots. Target speed is set to 12 knots.

Mover
characteristics

turning

Seadivers and Targets turn instantaneously.

Seadiver endurance

Seadiver is speculated to have 30 day endurance. Endurance
is limited based on vehicle power requirements which
include sensor suit power requirements. Longer duration
may be possible.

Sensor characteristics

Cookie cutter spherical sensor used. All movers are detected
when entering range and undetected when exiting range. A
nominal sensor range is set as a parameter which can be
changed to evaluate tradeoffs between endurance, range, and
number of movers to adequately accomplish a mission.

Navigation capabilities

There is no navigational error correction required for
Seadivers. Seadivers pass through all waypoints.

Neglect set/drift

Environmental factors that affect Seadiver motion are
neglected for simplification in the DES. Set and drift
analysis on missions can be conducted in AUVW.

Non-random starting | All Seadivers start at the origin of their respective zones at
positions. position (000) relative.
Table 5. Major assumptions of the Seadiver simulation.

64

C. TACTICAL DEFINITION: EVENT GRAPHS

In the context of creating a simulation based on a UUV of assumed realistic

capabilities conducting undersea autonomous missions, a list of required model

functionality was generated. The identified minimum requirements are:

Entities must be capable of 3D movement along a path.
Entities must be capable of sensing and reacting to other entities.

Entity paths must be automatically generated based on supplied operating
area.

Key parameters of entities must be adjustable such as speed, operating
depth, and time delays.

The operating area must be variable with individual entity operating zones
automatically generated.

There must be a method to collect relevant statistics of operational
characteristics.

The simulation must be capable of creating and managing many moving
entities (design goal: 100) simultaneously.

The simulation must produce a mission specifying entity movement in
AVCL format for validation in AUVW.

The following sections describe the methodology used to enable this functionality

through event graph (model) and assembly (simulation) design.

65

Seadiver Event Graph

{gmtm Ci eat;\‘- f(efgistm éces‘}ﬂ

s P o FoE P e PPy
9

-(:g StEI K:gT::‘E}‘- |KS-;;\I|
NN NG

eglste

_| | Mine |
-h‘\I EtEEtIl:l
taction E””
pe eglste C'I:-_]ects
_ _/I | Target |

¢ etectn:n

Fokeary
\"J

SimEntityBase and hence can be used in Viskit.

group of moving Seadiver UUV entities.

Figure 41. Seadiver event graph.

The Seadiver model depicted in Figure 41 above is an event graph that extends

separate functional sections that control the behavior of the model.

66

It is designed to model an arbitrary

This event graph can be divided into three

The first region consists of the Run and Create Map events. Every event graph
requires a Run event by convention in Simkit. The Run event allows for initialization of
each variable upon commencement of multiple repetitions. Once the event graph and its
variables have been initialized, the Create Map event is fired which passes two

parameters, numberDivers and firstMoverID, to the ZoneMap event graph for processing.

The second section, consisting of the events between the Register Map and Start
Moving events, is responsible for proper creation and initialization of the amount of
Seadiver moving entities specified by the numberDivers parameter. This process begins
with the Register Map event which is fired by the ZoneMap event graph as it passes an
array of zones to the Seadiver event graph. Register Map schedules Create Diver event
with firstMoverID as a passed parameter which, along with the self-scheduling edge, is
analogous to a programmatic FOR loop. The result of this construct is that all events
downstream until the Start Moving event are conducted an amount equal to the number of

Seadivers to be created.

The Register Diver event handles the actual creation of the DISMover3D entities.
A unique entity is created each time Register Diver is fired. The Register Sensor and
Register Target events fire, once for each moving entity, and are required to register each
entity as a mover and sensor with the Scenario Manager in each assembly.

Next, the Process Waypoints event creates unique waypoints for each mover in a
lawn-mower search pattern via the LawnMowerWaypointCreator class. These waypoints
are then used to create an instance of pathMoverManager which controls Seadiver
progression of movement through the waypoints. Finally, the process fires the Start
Moving event which initiates movement for each Seadiver DISMover3D entity.

The third functional section senses object detection and un-detection, defines the
behavior of the mover after those events, and provides the logic for simulating GPS fix
collection. The Detection event fires every time a Seadiver entity detects another entity,
including another Seadiver. The following events such as Register Mine Detection,
Register Target Detection, and All Target Detection control filtering and registering
individual entity detections for use in statistic gathering by iterating appropriate state

variables. Detected objects that move beyond sensor range are Undetected. Upon

67

Undetection, Seadivers simulate taking a GPS fix by loitering in the area of undetection
of an amount of time determined by the fixDelayTime parameter. This is accomplished
by switching mover managers from pathMoverManager to fixMoverManager. Once this
delay is complete, fixMoverManager is replaced by pathMoverManager and movement

commences where it was interrupted.

The following sections detail the parameters and state variables for the Seadiver

event graph in detail. Note that all units are in meters and seconds.

a. Seadiver Parameters

' ' Event Graph Inspector

handle | Seabivers| ||:| detailed output
description | List of identical seadiver robots that perform a cooperative search. Units are m/s. |
Object creation
type |seadiver.SeaDi\rer |
method |Constructor |
Constructaor 0 \'.
double |1.53 |
firstMover1D [The maximum speed For this entity. | int | 100 |
int | 100 |
double |5[J[J |
diskit. random. R andomVariateInstantiator | dom.RandomyariateInstantiator(diskit.random. AR 1¥ariate, ...) ||:|
java.lang.String | raries|Theses /2007 Seguin/AvcMissions/Sealiver Template, xml ":l
java.lang.String |Beha\riorLibl'a|'iesJ‘ThesesJ‘2UU?SeguinIA\rcIMissinnsIDi\rer.xml ||Z|
double |50 |

| Cancel || Apply changes |

Figure 42. Seadiver initialization parameters as shown in the assembly Event Graph
Inspector.

Figure 42 depicts the Event Graph Inspector of the Seadiver model. Table

6 lists and defines each parameter.

68

Initialization

Type, Units Description
Parameter

maximumSpeed double, m/s Determines the maximum speed of the mover.

firstMoverID int Determines the starting number for mover ID
numbers. Each Seadiver will be issued an ID
starting at this number as required by the DIS
protocol that each entity have a unique number.

numberDivers int Determines how many Seadiver movers will be
created and used in the simulation.

sensorRange double, m Determines the range of the sensor for the Seadiver.
All Seadiver sensor ranges will be equal.

fixDelayTime Random Variate, s | Determines the amount of time required to take a

GPS fix. It is based on the random distribution
selected in the constructor.

inputFileTemplate

String

File name and path to the template used to create
AVCL mission files. Note that path is relative to the
Viskit Behavior Libraries directory and forward
slashes (/) are required.

outputFileName

String

File name and path to write created AVCL mission
files. Note that path is relative to the Viskit
Behavior Libraries directory and forward slashes (/)
are required.

operatingDepth

double, m

Determines the nominal operating depth of the
Seadiver.

Table 6.

Seadiver initialization parameters defined.

Seadiver State Variables

State Variable

Type

Description

sensorObject diskit.Sensor Spherical cookie cutter sensor attached to each
Seadiver. Any object coming within the
sensorRange parameter will be detected.

submerged boolean Indicates if the mover is submerged or not. The

only time a move is not submerged is during a
fix.

69

State Variable Type Description
gpsFixNeeded boolean Indicates when a GPS fix is needed which is after
a new detection.
detectionData HashMap Container used to collect detection data.
mineDetections int Counter to collect statistics on the number of
mines detected.
fixMoverManager seadiver. Mover manager that controls the actions of the

PathDeviation

mover when taking a fix. Specifically, the mover
loiters in the same area for an amount of time

MoverManager equal to fixDelay Time parameter.
activeMoverManager | seadiver. Mover manager helper that simply holds the
current mover manager.
MoverManager
wpsCreator seadiver. Generates waypoints in a lawn-mower search
pattern in a specific zone and creates AVCL
LawnMower s .
mission files from created waypoints.
WaypointCreator
zone seadiver. Creates equal sized operating areas for Seadiver

SymmetricZoneMap

movers, one for each Seadiver in a pattern that
uniformly distributes movers over an entire area.

targetCollector

LinkedList

Collection that holds unique target detections.
Used to determine if a target has been previously
detected.

mineCollector

LinkedList

Collection that holds unique mine object
detections. Used to determine if a mine has been
previously detected.

targetDetections

int

Counter to collect statistics on the number of
mines detected.

numberOfTargets

int

The number of targets created by the simulation.
Passed parameter from the target event graph.
Used by targetCollector to determine if all
movers were detected.

totalNumberOfTarget

Detections

int

Counter to collect statistics on the amount targets
were detected. These are not unique. Used to
determine how many times an individual target
was detected.

Table 7.

70

Seadiver State Variables.

2. ZoneMap Event Graph

Figure 43 depicts the ZoneMap event graph. ZoneMap is a helper object that
collects information on the size of the operations area and uses it to provide info to the
other SimEntities such as Seadiver and Target. This info is required for the simulation
and used to perform tasks such as providing individual operating areas for each Seadiver

or waypoint generation for Targets. It also is broken into three functional areas.

5
__/

-'fgre at;\‘-
l-. Map l
N

——,

bz

f
lineTargg
I\

4

l-'{re at;\-

\ Zones

f
[Run |—————m
\

|———|

-'fgreat‘e\‘-
\ Area |
N__/
d(egistm
l-. Map l
N/

-'Ig/egistm
\ Zones |
_/

Figure 43.

The first section controls initialization of the ZoneMap SimEntity. It consists of
the Run and Create Area events. The Run event is responsible for initialization and reset
of event graph state variables each repetition. The Create Area event creates the total
operating area for the simulation based on the parameters length, width, and height. It

stores this area as a diskit.ZoneGeometry object that exposes methods to work directly

with the area.

ZoneMap event graph.

71

The second section consists of the Create Map and Register Map events. It
contains the functionality required by the Seadiver event graph. The Create Map event
receives the number of Seadiver entities as an initialization parameter from the Seadiver
event graph and creates individual zones for each Seadiver entity using the
seadiver.SymmetricZoneMap class. This class divides the total zone into a number of
zones equal to the number of Seadiver entities. It uses 100 percent of the area with no
overlap and keeps the number of movers along the length and width equal if possible. Its
algorithm works best with a large number of Seadivers. Figure 44 below is a
representation of an area 100 by 60 kilometers long, sectioned into 24 individual zones
corresponding to 24 individual Seadivers.

100 km

60 km

Figure 44, Notional operating area sectioned into individual operating zones, one for
each Seadiver.

The third section consists of the events Determine Targets, Create Zones, and
Register Zones. This section creates zones for the Target event graph use in creating
waypoints. The Determine Targets event receives the number of target entities that are

created and the number of waypoints that are created for each target from the Target
72

event graph. Using this information, it sections the total area into equally sized zones. In
the Create Zone event, the zones are created for each target in an amount equal to the
number of waypoints each target can navigate through. The zones are individually added
to a collection (zoneL.ist) that is passed to the Target event graph in the Register Zones

event. Figure 45 represents an arbitrary area sectioned into individual waypoint zones.

Target Target
Start Zone 1 Zone 2 Zone 3 Zone 4 End Width
Zone Zone
Length

Figure 45. Operating area sectioning performed ZoneMap for the creation of
waypoints in Target event graph. The blue area is the total operating area. The red area
indicates where targets start and end traversal of area (outside area).

73

a. ZoneMap Parameters

 Event Graph Inspector.
handle | ZoneMap ||:| detailed output

description | Jefines the overall search area for operation by targets and subdivided search by seadivers, Units are m/s, |
Object creation

type | seadiver. ZoneMap |

method | Construckor |

Constructor 0 "'.

diskit, ¥x30Coordinate |new diskit, ¥30Coordinate{double,...) ||Z|
length double | 200000 |
double 200000 |
double |1CIU |

I Cancel || Apply changes

Figure 46. ZoneMap parameters as shown in the assembly Event Graph Inspector.

Figure 46 depicts the Event Graph Inspector of the ZoneMap object.
These are the parameters defined to enable specific functionality of the model while

maintaining an adequate level of generality. Table 8 lists and defines each ZoneMap

parameter.
Initialization . .
Type, Units Description
Parameter
origin X3Dcoordinate Determines the origin or reference point for the
coordinate system used by the simulation.

length double, m Determines the length (x value) of the area.

width double, m Determines the width (y value) of the area.

height double, m Determines the height (z value) of the area.

Table 8. ZoneMap initialization parameters defined.

74

b.

ZoneMap State Variables

State Variable

Type

Description

moveriD int Passed parameter from Seadiver event graph.
Used to match created zones to movers.
numberOfTargets int Passed parameter from Target event graph.

Passed to Seadiver event graph for use is
statistics collection.

centerPoint

diskit. X3DCoordinate

A 3D location generated from individual zone
dimensions. Used in the construction of zone
object.

zones seadiver. Creates an equal and symmetric amount of
. zones from the total area bases on the amount
SymmetricZoneMap .
of Seadiver movers.
axisAngle diskit.Vec4D Variable used to construct the area state
variable. Used to determine rotation about the
vertical axis of the zone.
area diskit.ZoneGeometry | A 3D volume object which determines the

individual operating areas for each Seadiver.

numberOfWaypoints

int

Determines the amount of waypoints created
for a target as it navigates through the
operating area. Passed parameter from Target
event graph.

zoneL.ist

LinkedList

Collection object used to hold all created
ZoneGeometry areas to be passed to Seadiver.

Table 9.

75

ZoneMap State Variables.

3. Minefield Event Graph

J/__.,-—-\.

f
| Run |

N/

-'j:;:re at‘e\'-
v Mine

A‘egistm
— l-. Target |
fégistm \M_-/)I
l-. Mine |
N

lfgiegistml
VSensar
N/
7 N R egin
i . egistel
EIEtEEtIDI-‘_Fbetectim

__/

Figure 47. Minefield event graph.

Figure 47 depicts the Minefield event graph. Its purpose is to create an arbitrary
number of mines specified by the numberMines parameter and disperse them in some
arbitrary area with some specified distribution. The Run event initializes and resets all
state variables then passes control to the Create Mine event. As its name suggests, the
Create Mine event creates an amount of DISMover3D mine objects equal to the
numberMines parameter. Each mine has a 3D location generated from the three random
variate parameters called mineDistributionWidth, mineDistributionLength, and
mineDistributionDepth. Each mine is then registered as a mover with the Scenario
Manager in the Register Target event. Additionally, a SphereCutterSensor is created for
each mine and registered with Scenario Manager in the Register Sensor event. Finally, as
all Detection events function, it fires each time a mover object enters within the

76

sensorRange parameter of the sensor created by this event graph. This sequence of
events enables the Register Detection to iterate the numberOfDetectionsByMine state

variable allowing for collection of statistics on objects detected by mines.

a. Minefield Parameters

' ' Ewent Graph Inspector

handle | MineField| ||:| detailed output
description | List of identical, non-maving mine objects distributed through the operating area. Units are mjs, |
Object creation
type |seadi\rer.MineFieId |
method |Constructor |
Construckor 0 \
st [10 |
NET |
firstMoverID int |600 |
mineFieldWwidth double 20000 |
mineFieldLength double |20000 |
mineFigldDepth double |10 |
mineDistributionWidth | diskit.randam.RandomVariateInstantiator | m.RandomVyariateInstantiator(diskit.random. AR 1Variate, ...} ||:|
mineDistributionLength | diskit.randam.RandomVariateInstantiator | m.RandomVyariateInstantiator(diskit.random. AR 1Variate, ...} ||:|
mineDistributionDepth | diskit.randem.RandomVariateInstantiator | m.RandomVariateInstantiator(diskit.random. AR 1Variate, ...} |IZ|
| Cancel Il Apply changes |
Figure 48. Minefield parameters as shown in the assembly Event Graph Inspector.

Figure 48 depicts the Event Graph Inspector of the Minefield model. The
minefield is simply a number of static movers dispersed over an area in a certain
distribution. Each mine is a mover3D object to enable detection capabilities. Table 10

lists and defines each Minefield parameter.

77

Initialization Parameter Type, Units Description

sensorRange double, m Determines the range of the sensor for each
mine. All mine sensor ranges are equal.

numberMines int Determines the number of mine objects that will
be created.

firstMoverID int Determines the range of individual ID numbers
required by DISMover3D objects.

minefieldWidth double, m Determines the width (y value) of the minefield.

minefieldLength double, m Determines the length (x value) of the minefield.

minefieldDepth double, m Determines the depth (z value) of the minefield.

mineDistributionWidth

simkit.random.

RandomVariate

Determines the distribution of mines over the
width of the minefield.

mineDistributionLength

simkit.random.

RandomVariate

Determines the distribution of mines over the
length of the minefield.

mineDistributionDepth

simkit.random.

RandomVariate

Determines the distribution of mines over the
depth of the minefield.

Table 10.

b.

Minefield initialization parameters defined.

Minefield State Variables

State Variable

Type

Description

numberOfDetectionsByMine | int Counter to collect statistics on mover
objects detected by mines.
Table 11. Minefield State Variables.

78

4. Surface/Submerged Target Event Graph

/N

| Run —HlneTal =

_ SN

Kdeglg -'Cleate EgIStEI fﬁ'nces‘}‘-

/

l. l:-ne I.El_g? -.r1|:| EI __)L

A‘Engt‘E\l’l féglstm -' Stal't\‘-
l-. Talget l.SEI'lSDI I 'm-:. ||'|g

/r_ﬂ‘\'- fé istel
DEtEEtIDI-‘_thE -
Rty

Figure 49. Surfaced or submerged Target event graph.

The Target event graph is similar to the Seadiver event graph and also has three
functional sections: Initialization, Creation of DISMover3D objects, and Detection and
Statistics. It simulates a moving surface or submerged vessel such as a destroyer or
submarine which also has the capability to detect other mover objects. Currently, Target
event graph contains no behavioral logic in the event of a detection event other than

logging the detection for statistical calculations.

In the initialization section of Target event graph, the Run event initializes all
parameters and state variables then fires the Determine Target Zones event. This event
passes the numberOfWaypoints and numberOfTargets parameters to the ZoneMap event
graph which uses that information to create zones required for target waypoint

generation.

The next section is involved with creation and initialization of the DISMover3D
objects. First, the Register Zones event receives the list of zones created by the ZoneMap
event graph. A graphical depiction of this zone list is in Figure 45. An instance of

TargetWaypointCreator is then created with the zoneL.ist and waypointDistribution in the
79

signature. Next, an instance of DISMover3D is created for each target mover with an 1D
beginning at 400 in the Register Mover event. Exactly like the Seadiver event graph, the
Register Target and Register Sensor events register the DISMover3D mover and the
sensor with the Scenario Manager. Finally, the Process Waypoints event instantiates
PathMoverManager with the TargetWaypointCreator created earlier, which generates
unique waypoints for each mover and the Start Moving event initiates the movement

sequence.

The third section senses and logs detection events by Target movers to allow for
collection of statistics. All sensors created in this event graph (one per DISMover3D) are
able to be listened to by creation of a SimEventListener connection. This ensures that
any appropriate sensor detection events can fire the Detection event in this event graph,
which allows for iteration of the numberOfSeadiverDetections state variable and

therefore the collection of statistics.

a. Target Parameters

Ml Aa|
sy

handle | Targets ||:| detailed output
description | List of identical target ships/submarines to be detected. Units are m/s. |
Object creation

type !seadiuer.Target |

method |Cnnstructnr |

Constructor 0 ‘\

double |6 |
numberOfTargets int |1I.’J |
numberQfWaypaints int |1 |

waypointDistribution | diskit,random. R andomVariateInstantiator |ndnm'u'ariateInstantiatm'(disldt.|'andnm.AR1Uariate. #:2 ||j

inputFileTemplate java.lang. String | ‘heses|2007Seguin/ AvclMissions|Seadiver Template. xml | il

outputFileAVCL java.lang. String |Behavin|'Lib|'aries,l'Thesesj200?SEguinIAchMissionsJ’Tar-”:.J

operatingDepth double |50 |

sensorRange double | 100 |

]
=
[11]
(1]}
(=5

| Cancel || Apply changes |

Figure 50. Target initialization parameters as shown in the assembly Event Graph
Inspector.

80

Figure 50 depicts the Event Graph Inspector of the Target model. The
Target model is based on the Seadiver model, minus some functionality not required of
targets, and therefore the parameters are similar. Table 12 lists and defines each Target

initialization parameters.

Initialization . o
Type, Units Description
Parameter

speed double, m/s Determines the speed of the mover.

numberOfTargets int Determines the number of target movers that will
be created.

numberOfWaypoints int Determines the number of waypoints the target
traverses. Zero means the target traverses the area
in a straight line.

waypointDistribution | simkit.random. Defines the random distribution of placement of

Random Variate numberOfWaypoints in the area.

inputFileTemplate String File name and path used as a template to create
AVCL mission files. Note that path is relative to
the Viskit Behavior Libraries directory and fwd
slashes (/) are required.

outputFileName String File name and path to write created AVCL mission
files. Note that path is relative to the Viskit
Behavior Libraries directory and fwd slashes (/)
are required.

operatingDepth double, m Determines the nominal operating depth of the
Target. Note that this can represent a surfaced or
submerged target.

sensorRange double, m Determines the range of the SphereCutterSensor
attached to each target.

Table 12. Target initialization parameters defined.

81

b. Target State Variables
State Variable Type Description

zoneList LinkedList Collection of zones created and passed by
ZoneMap event graph. Used by
TargetWaypointCreator to generate
waypoints.

active diskit.MoverManager Mover manager helper that simply holds the
current mover manager.

MoverManager

yRandomVariate

Simkit.random.

RandomVariate

Random number generation object which
generates random numbers in the width
direction. Used by
seadiver.RandomNumberGenerator class to
generate a set of unique random numbers
used in generating waypoints.

zRandomVariate

Simkit.random.

RandomVariate

Random number generation object which
generates random numbers in the height
direction. Used by
seadiver.RandomNumberGenerator class to
generate a set of unique random numbers
used in generating waypoints.

random Simkit.random. Array that holds 3 random numbers passed
to TargetWaypointCreator for generation of

VariateArray RandomVariate[3] target waypoints.

random seadiver.Random Seadiver class which is used to generate
unique waypoints for each simulation

NumberGenerator NumberGenerator repetition.

target seadiver.Target Generates unique target waypoints through

WaypointGenerator

WaypointGenerator

an area.

numberOf int Counter to collect statistics on the amount of
Seadiver detections.
SeadiverDetections
Table 13. Target State Variables.

82

D. SIMULATION DEFINITION: ASSEMBLIES

In Viskit, simulations are constructed as assemblies in the Assembly Panel
depicted previously in Figure 31. Assemblies are simply simulation definitions which
enable visual representation of the interactions between specific-instance event graphs.
Prior to Viskit, the simulation was assembled in a main class which handled the
SimEventListener and PropertyChangeListener connections manually. Viskit enables
creation of simulations using existing event graphs quickly and easily with drag and drop

simplicity.

Event graphs are connected together via SimEventListener connections that allow
the listening event graph knowledge of specific events in the listened to event graph.
This allows for information to flow between event graphs, enabling behaviors such as one
entity reacting to another entity, and is accomplished by simply drawing a line between
one event to the next with a SimEventListener connector selected. Similarly, assemblies
allow for the easy collection of statistics by connecting specific event graphs and

PropertyChangeL.isteners.

Despite the simplicity exposed in assemblies for creating SimEventListener and
PropertyChangeL.istener connections, a detailed knowledge of the event graphs used is
required. In fact, except for the simplest event graphs, any simulation requiring advanced
behaviors demands that the event graphs be created with the intent of being integrated
into a specific assembly from the beginning. For example, the Seadiver simulation is
designed around reusing proven diskit components such as Scenario Manager and
DISMover3D. In that context, the Seadiver and Target event graphs must have Register
Target and Register Sensor events, and a SimEventListener connection must be
established from Scenario Manager to the other event graphs or the simulation will not
start. In short, the conceptual design of behavior models, the creation of event graphs
based on those behaviors, and the integration of those event graphs into an assembly must

be conducted with each in mind.

83

1. Minefield Search Assembly

Mine
betections

Sea
Divers

ZoneMap

Scenario

Manager

éSeamveﬂ
betections

Figure 51. Minefield Search Assembly.

The Minefield Search Assembly consists of four event graphs and two
PropertyChangeListeners as shown in Figure 51. The mediator between movers and
sensors, Scenario Manager, listens to the Register Target and Register Sensor events in
both the Seadiver and Minefield event graphs via a SimEventListener connection. The
Seadiver and ZoneMap event graphs listen to each other with ZoneMap listening for the
Create Map event in Seadiver while Seadiver listens for the Register Map event in
ZoneMap. As discussed earlier, these connections are required to sectionalize the entire

operating area into the appropriate amount of zones, and to assign each Seadiver to an
84

area. The Minefield event graph is independent of the ZoneMap event graph and no
limitations are set for the Minefield size, which enables the Minefield to be arbitrarily

larger or smaller than the Seadiver operating area.

The PropertyChangeListeners associated with the Minefield Search assembly are
Mine Detections and Seadiver Detections which are of type SimpleStatsTally.
SimpleStatsTally simply keeps a running total of property changes and calculates
statistical values such as minimum, maximum, mean, variance and standard deviation at
the end of a repetition. They are connected via PropertyChangeListener connections to
the event graphs that expose the appropriate state variables, namely mineDetections and
numberOfDetectionsByMine respectively. Establishing PropertyChangeL.isteners in this
manner allows for Viskit to automatically display repetition and summary statistics which
are displayed in the Assembly Run panel. Further analysis support is also provided by

the Analyst Report tabbed panes.

85

2. Barrier Search Assembly

éngeté
betections

Scenario

ZoneMap

AV

Manager

<| Targets

éSeamveﬂ
betections

Figure 52.

The Barrier Search Assembly consists of four event graphs and two
PropertyChangeListeners as shown in Figure 52. The mediator between movers and
sensors, Scenario Manager, listens to the Register Target and Register Sensor events in
both the Seadiver and Minefield event graphs via a SimEventListener connection.
Seadivers and ZoneMap event graphs listen to each other with ZoneMap listening for the
Create Map event in Seadiver while Seadiver listens for the Register Map event in
ZoneMap. As discussed earlier, these connections are required to sectionalize the entire

operating area into the appropriate amount of zones and to expose Seadiver to an area

Barrier Search Assembly.

86

without requiring prior knowledge of it in the event graph. Similarly, the Target and
ZoneMap event graphs listen to each other with ZoneMap listening to Determine Target

Zones event and Target listening to the Register Zones event.

The PropertyChangeL.isteners associated with the Barrier Search assembly are
Target Detections and Seadiver Detections which are of type SimpleStatsTally.
SimpleStatsTally simply keeps a running total of property changes and calculates
statistical values such as minimum, maximum, mean, variance and standard deviation at
the end of a repetition. They are connected via PropertyChangeListener connections to
the event graphs that expose the appropriate state variables, namely mineDetections and
numberOfSeadiverDetections respectively. Establishing PropertyChangeListeners in this
manner allows for Viskit to automatically display repetition and summary statistics which

are displayed in the Assembly Run panel.

E. MISSION VALIDATION WITH AUVW

This thesis leverages the Autonomous Unmanned Vehicle Workbench (AUVW),
a virtual environment simulation program detailed in Chapter Il, to validate mission
generation and entity behavior for conducting missions. When designing complex
simulations in a programming environment, it becomes increasingly difficult to ensure
moving entities are operating as desired. This is especially true of this simulation
because many moving entities are required to work in concert over a large area

simultaneously.

The AUVW is used in this case to visually verify that each moving entity is
correctly positioned in its assigned operating zone and that waypoint generation for that
entity was successful. Specifically the Viskit classes produce AVCL mission scripts for
the respective targets and Seadiver vehicles to follow. Improper movement of entities
leads to difficult or faulty analysis of statistical results that can be difficult to diagnose.
Figure 53 demonstrates visual validation of a notional simulation consisting of ten

Seadiver entities and two Target entities.

87

-10E -75000 -50,000 -25000 O 25000 50,000 75000 1.0E5 12565 1.5E5 17565 2.0E5 225E5 25E5 1755 3.0ES 32565 35E5

5
5
E
— = :
3

d

y

Y

y

J25E5

1.0E3

Y
Al A
PO OO

F0,000

P5,000 25,000

D O PO PO PO P9 PO PO PO 39 PO
Y

Y i

1} o

P5,000 -25,000)

F0,000 -50,000)

-1.0E5 -75000 -50,000 -25000 0 25000 50,000 75000 1.0E5 12565 1.5E5 17565 2.0E5 2.25E5 25E5 1755 3.0E5 32665 35E5

Figure 53. Visual path validation with AUVW, displaying 10 Seadiver entities
searching and 2 Target entities transiting.

The Seadiver simulation makes several assumptions about the physical operating
characteristics of the Seadiver entity for simplification that could invalidate the statistical
results if not determined to have negligible effect of the simulation. For example, it is
assumed that Seadiver vector changes are instantaneous, which is obviously incorrect
since every moving entity has some turning radius. On a small-enough scale as with
search legs within a short distance, this assumption becomes non-negligible. Validation

using AUVW to run the AVCL missions can determine proper production of missions.

In AUVW, the Seadiver UUV has been physically and dynamically modeled.
This enables not only validation of generated search paths, but validation that the
Seadiver UUV can physically navigate this path with realistic physical characteristics,
such as diving or rising to generate forward propulsion, or the ability to navigate a turn
successfully. By running Seadiver AVCL missions in The AUVW generated by the
Seadiver simulation and observing correct behavior, validation of Seadiver operating
characteristics in the context of mission generated by the Seadiver simulation is
established.

88

F. SUMMARY

This chapter describes in detail the logic and methods employed including
required assumptions to create event graph models and simulation assemblies for this
research. Beginning with Section B, the assumptions and logic behind them are detailed
to produce a fairly abstract model. Section C detailed how entity behaviors are captured
in this research during the creation of the four event graphs that compose this thesis. The
event graphs represent three moving entities (Seadiver, Target, and Minefield) and one
area knowledge object (ZoneMap). Section D detailed how the aforementioned event
graphs along with Scenario Manager were integrated into the functional simulations.
Section D also explains how this thesis constructs two functional assemblies and
therefore two simulations which mimic the ability of the Seadiver to conduct relevant
military missions. Finally, Section E describes how AUVW is employed to validate
simulation results and why that is required in this thesis.

89

THIS PAGE INTENTIONALLY LEFT BLANK

90

VIl. SIMULATION RESULTS

This simulation not intended to be analytically rigorous. That is, the statistics
generated do not represent that the Seadiver can perform these missions, only that a DES
can be made with Viskit to model the Seadiver UUV and its hypothetical missions. This
simulation can however be used as a framework for follow-on simulations that are

analytically rigorous.

Simulation results and analysis are contained in Appendices A and B for the

Barrier Search and Minefield Search missions respectively.

91

THIS PAGE INTENTIONALLY LEFT BLANK

92

VIIl. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS
1. Discrete Event Model Creation

This research has created DES event graph models of various moving entities
defined by specific behaviors. These models, Seadiver, Target, Minefield, and ZoneMap
are scalable, repeatable, re-useable, and modifiable. This thesis has explained in detail
the process of creating Discrete Event simulations from the start by creation of entity
definitions via event graphs to execution of simulations and result generation. Using this
thesis as a guide, new models can be created and implemented with the programs and
APIs outlined. Additionally, the models and supporting classes can be used as is or

modified and used in new simulations.

2. Mission-Structured Simulations

The event graphs and supporting Java classes created during this research are used
to create two simulations structured around the unique capabilities of the Seadiver UUV.
These missions are the Barrier Search and the Minefield Search, both implemented over
large areas with numerous Seadiver UUVs. These simulations can be used as a
repeatable framework to analyze in detail the capabilities of the Seadiver UUV in
performance of these missions or as a platform for creation of additional simulations

based on missions.

3. Simulation Validation with AUVW

Validation of simulation mission structure and dynamic constraints is required
and demonstrated for this research. Validation is accomplished in AUVW through the
implementation of missions that are automatically generated during Viskit simulation
initialization by a Java class designed to produce mission files in AVCL format from a
Discrete Event simulation. Individual and small group can be validated coherently, but
large scale missions incorporating many entities (threshold: 20) are not feasible in
AUVW at this time due to limited computational resources of recent desktop computers.

This limitation can be worked around satisfactorily by using multiple computers, since all
93

results are networked and sharable. Further AUVW software development to improve
threading and resource allocation is expected to provide significant improvements in

computational efficiency and mission capacity.

B. RECOMMENDATIONS FOR FUTURE WORK
1. Real-World Classified Study

This thesis provides the framework and approach for conducting a real-world
classified study of Seadiver performing difficult missions. The two mission simulations
created in this thesis are an exemplar to other unique and currently infeasible UUV
missions that can be constructed in Viskit based on this research. These missions include
a Mobile Minefield or Large-Area Moving Underwater Communication Network. To
enable a real-world study, more research is required to determine Seadiver physical
capabilities and specifics of available sensor capabilities.

2. Increased Sensor Fidelity

To generate realistically accurate results from these mission simulations, there is a
need to expand the Diskit sensor library both in capability and fidelity. Sensor objects
need to be created for all expected sensor packages on UUVs performing these missions
to evaluate the most appropriate sensor or combination of sensors. Additionally, these
sensor objects need to accurately reflect the capabilities of the modeled sensor to provide

for realistic mission results.

3. Finish Design, Construction and Validation Testing of Seadiver

The Seadiver UUV has not been physically completed nor tested in a water
environment. Therefore it is difficult to accurately predict the hydrodynamic and
behavioral characteristics of Seadiver. These characteristics include turning radius, speed
through the water, and rate of change of depth, and are required to create simulations of
higher fidelity. Additionally, the process of construction and testing will validate some

assumptions made in this thesis such as Seadiver’s low cost of construction and speed.

94

4. Implement Advanced Search Techniques

Currently, this thesis implements a lawn-mower search pattern for each mission
type. This is adequate for a minefield search since 100 percent of the area must be
searched, but is inefficient for a barrier search. There is a need to implement advanced
search techniques such as the A-Star search path optimization or other heuristic search
methods to reduce these inefficiencies. Additionally, providing more search options
allows the researcher to test optimum combinations of parameters applicable to search

patters.

5. Implement Inheritance for Viskit Event Graph Models

Inheritance is used extensively in this research to simplify event graphs based on
behaviors. This allowed the event graphs of entities to only define the behaviors unique
to each. Currently, Viskit event graphs cannot extend other event graphs because of the
nature of the XML format in which they are saved. Therefore, all parent classes of the
event graph models that were created in this thesis had to be defined as Java code. To
allow for easier implementation of inheritance, there is a need for native Viskit event

graphs to extend each other.

6. Programmatically Load Viskit Assemblies for Large Simulations

This thesis employed special techniques to create multiple moving entities in a
single event graph. This created difficulties during the simulation phase due to the
method of repetition implementation in Simkit, necessitating special programming
measures to overcome. It is recommended that many entities not be created on a single
event graph to allow for focus to be maintained on entity behavior alone. Instead, a
programmatic method for loading multiple (tens to hundreds) entities into assemblies
should be researched to separate entity mechanics and behaviors when implementing

large arrays or lists of identical entities in a given assembly.

95

THIS PAGE INTENTIONALLY LEFT BLANK

96

APPENDIX A.

THIS REPORT IS: UNCLASSIFIED

Barrier Search Simulation

Analyst: LT John M. Seguin
Analysis date: 3/19/07 2:17 PM

Executive Summary

A novel UUV is currently being designed that is projected to support significantly greater
endurance and range characteristics. This UUV is called Seadiver and is being designed
by Institute of Engineering Science of Toulon, France with support from Naval
Postgraduate School. It is a low-cost glider UUV which generates propulsion not with
propellers or jet pumps, but rather by controlling its buoyancy. This method of propulsion
is quite efficient and maybe capable of autonomous operation up to 30 days with a range
of around 700 nautical miles. A UUV with such endurance and range exposes military
missions previously impractical for UUVs especially when used in concert as an array of
many UUVs

This simulation models the ability of Seadiver UUV to perform the Barrier Search
mission. The Barrier Search mission's purpose is to detect hostile contacts moving across
the barrier. The barrier is comprised of 100 searching Seadiver UUVs spread
symmetrically across the area. As the hostile contacts traverse from one side of the area
to the other, they are detected by Seadiver UUVs if they come within the sensor range of
the UUV. All unique detections are logged and statistical results are generated.

Simulation Location
Description of Location Features. This mission takes place in a generic littoral ocean area
200 km long, 200 km wide, and 100 m deep.

Post-Experiment Analysis of Significant Location Features. This was a generic area. The
area can be modified to meet the needs of the analyst.

Assembly Configuration for Viskit Simulation

Assembly Design Considerations. This assembly is designed around the Barrier Search
mission. The ZoneMap node takes the total area dimensions and creates individual
operating zones for each Seadiver UUV, and waypoint zones for the hostile contacts
(Target entities). This information is passed to the SeaDivers and Targets nodes
respectively through simEventListener connections. Scenario Manager controls and
manages movement and detection between all entities. There are two statistics collecting
nodes called TargetDetections and SeadiverDetections connected to the applicable entity
nodes containing the State Variables with Property Change Listeners.

97

Post-Experiment Analysis of Simulation Assembly Design. Simulation works as designed,
but behavior implementation was problematic due to creation of many moving entities in
a single node. A possible solution could be to programmatically generate the assembly
and have one moving entity per node.

Summary of Simulation Entities
[Entity Name |Behavior Definition
\SeaDivers \seadiver.SeaDiver
ZoneMap [seadiver.ZoneMap
Targets 'seadiver. Target

éTameté
betections

Sea /ﬂ\
= ZoneMap

N AVS

Scenario
<| Targets
Manager ™ d
éSeamueﬂ

betections

Entity Parameters
Entity Parameters Overview. Entity parameters are initialization values used to define
new event graphs. These values are pulled directly from the assembly.

98

Behavior Definitions

Description of Behavior Design. Seadiver: Seadiver is modeled after the SeaDiver glider
UUV. Its main behavior is to conduct a search in a Lawn-mower pattern over an area. In
the Barrier Search mission, the entities search their respective areas for other moving
entities (Targets). Upon detection, the UUV immediately takes a GPS fix (simulated)
then continues the search indefinitely.

Target: Target is modeled after a moving submerged or surfaced contact that is traversing
an area patrolled by Seadiver UUV. Targets have the ability to detect Seadiver UUVs, but
take no action upon detection.

Post-Experiment Analysis of Entity Behaviors. Possible future behavior would be to
incorporate behavior for Targets upon detection of Seadiver UUVs.

Statistical Results

Description of Expected Results. This simulation initiated 50 repetitions displayed below.
This is used as an exemplar to indicate the correct application of detection in a DES, and
the ability to produce representative statistics from that behavior. SeadiverDetections
statistic indicates the amount of Seadivers that were detected by Targets.
TargetDetections statistic indicates that all Targets were detected each repetition.

Analysis of Experimental Results. As an exemplar, no analysis was performed. Other

potential useful statistics would be time to detect all targets or the amount of detections
per target.

99

Replication Report
Entity: Target
Property: SeadiverDetections

0.23

0.22

0.21

0.20

0.19

0.18

017

0.16

0.15

0.14

013

0.12

0.11

0.10

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.0z

0.01

0.00 l

0.0 05 1.0 15 20 25 30 3.5 40 45 5.0 8.5 6.0 65 7.0 75 8.0 85
SeadiverDetections

IRun# Count [Min [Max |Mean StdDev |Variance

1 |14.000|0.000 [13.000 [6.500 |4.183 |17.500
2 |4.000 |0.000(3.000 [1.500 |1.291 |1.667
3 |10.000/0.000(9.000 [4.500 [3.028 [9.167
4]6.000 |0.0005.000 [2.500 |1.871 |3.500
5 |6.000 |0.0005.000 [2.500 |1.871 |3.500
6 |4.000 0.0003.000 [1.500 1.291 |1.667
7 |5.000 0.0004.000 [2.000 1.581 |2.500
8 [8.000 |0.0007.000 [3.500 |2.449 6.000
9 |4.000 |0.000(3.000 [1.500 |1.291 |1.667
110 |5.000 |0.000(4.000 [2.000 |1.581 |2.500
11 |4.000 0.000(3.000 [1.500 [1.291 1.667
12 |4.000 0.000(3.000 [1.500 [1.291 1.667
13 |14.000 |0.000 [13.000 [6.500 |4.183 |17.500
114 [7.000 |0.000(6.000 (3.000 2.160 |4.667
115 |6.000 |0.000[5.000 [2.500 |1.871 |3.500
116 |16.000 0.000 [15.000 [7.500 |4.761 |22.667

100

IRun# Count [Min [Max |Mean |StdDev |Variance

117 [3.000 |0.000[2.000 [1.000 |1.000 [1.000

18 |5.000 (0.000(4.000 [2.000 |1.581 2.500

119 |5.000 |0.000/4.000 [2.000 1.581 |2.500

20 9.000 |0.000(8.000 [4.000 |2.739 |7.500

21 [18.000|0.000 [17.000 [8.500 |5.339 |28.500

22 |5.000 |0.0004.000 [2.000 1.581 |2.500

23 [8.000 |0.0007.000 [3.500 |2.449 6.000

24 |6.000 |0.000[5.000 [2.500 |1.871 |3.500

25 [5.000 |0.000(4.000 [2.000 1.581 |2.500

26 |4.000 |0.000(3.000 [1.500 |1.291 |1.667

27 |5.000 |0.000(4.000 [2.000 1.581 |2.500

28 |5.000 |0.000(4.000 [2.000 1.581 |2.500

29 [10.000(0.000(9.000 [4.500 [3.028 [9.167

30 [1.000 (0.000(0.000 [0.000 0.000 0.000

31 |6.000 |0.000[5.000 [2.500 |1.871 |3.500

32 6.000 |0.000[5.000 [2.500 |1.871 |3.500

33 |7.000 |0.000(6.000 [3.000 |2.160 |4.667

34 [7.000 (0.000(6.000 [3.000 [2.160 |4.667

35 6.000 |0.000[5.000 [2.500 |1.871 |3.500

36 9.000 |0.000(8.000 [4.000 |2.739 |7.500

37 |5.000 |0.000(4.000 [2.000 1.581 |2.500

38 |6.000 |0.000(5.000 [2.500 |1.871 3.500

39 9.000 |0.000(8.000 [4.000 |2.739 |7.500

40 [7.000 |0.000(6.000 [3.000 2.160 |4.667

41 [3.000 |0.0002.000 [1.000 |1.000 [1.000

42 16.000 |0.000[5.000 |2.500 [1.871 |3.500

43 [7.000 (0.000(6.000 [3.000 [2.160 |4.667

44 16.000 |0.000[5.000 [2.500 |1.871 |3.500

45 |5.000 |0.000(4.000 [2.000 1.581 |2.500

46 [5.000 |0.000(4.000 [2.000 1.581 |2.500

47 [8.000 |0.000(7.000 (3.500 |2.449 6.000

48 |6.000 |0.000[5.000 [2.500 |1.871 |3.500

49 |9.000 |0.000(8.000 [4.000 |2.739 |7.500

50 [14.000 0.000 [13.000 |6.500 |4.183 17.500

101

Replication Report
Entity: Seadivers
Property: TargetDetections

0.375
0.350
0.325
0.300
0.275
0.250
0.225
0.200
0.175
0.150
0.125
0.100
0.075
0.050

0.025

0.000 -

34 35 3.8 37 38 39 40 41 42 43 44 45 a8 47 48 48 5.0 5.1 52 53 54 55
TargetDetections

IRun# |Count Min |[Max |Mean |StdDev Variance

1 |10.000/0.000(9.000 [4.500 [3.028 [9.167
2 |12.000/0.000 [11.000 [5.500 |3.606 13.000
3 |11.000|0.000 [10.000 [5.000 [3.317 11.000
4]9.000 |0.000(8.000 [4.000 2.739 |7.500
5 |8.000 |0.0007.000 (3.500 |2.449 6.000
6 [11.000|0.000 [10.000 [5.000 |3.317 |11.000
7]10.000/0.000(9.000 [4.500 [3.028 [9.167
8 |11.000|0.000 [10.000 [5.000 |3.317 11.000
9 |9.000 |0.000(8.000 [4.000 |2.739 |7.500
110 [8.000 |0.0007.000 [3.500 |2.449 6.000
11 |9.000 |0.000(8.000 [4.000 |2.739 |7.500
112 |10.000|0.000 [9.000 [4.500 [3.028 |9.167
113 |10.000|0.000 9.000 [4.500 [3.028 [9.167
114 |10.0000.000 [9.000 [4.500 [3.028 9.167
115 |11.000 0.000 [10.000 [5.000 [3.317 11.000
116 |10.000|0.000 [9.000 [4.500 [3.028 9.167

102

IRun# Count [Min [Max |Mean |StdDev |Variance

117 |9.000 |0.000(8.000 [4.000 |2.739 |7.500

118 [11.000 (0.000 [10.0005.000 (3.317 |11.000

119 |9.000 |0.000(8.000 [4.000 |2.739 |7.500

20 |10.000|0.000 9.000 [4.500 [3.028 [9.167

21 [10.000(0.000(9.000 [4.500 [3.028 [9.167

22 |10.000(0.000 9.000 |4.500 [3.028 9.167

23 9.000 |0.000(8.000 [4.000 |2.739 |7.500

24 |10.0000.000 9.000 [4.500 [3.028 [9.167

25 [10.000/0.000(9.000 [4.500 [3.028 [9.167

26 [9.000 (0.000(8.000 [4.000 [2.739 7.500

27 [8.000 |0.000(7.000 (3.500 |2.449 6.000

28 [8.000 |0.000(7.000 [3.500 |2.449 6.000

29 [11.000(0.000 [10.000 [5.000 [3.317 11.000

30 |10.000 (0.000 9.000 |4.500 [3.028 9.167

31 |11.000 0.000 [10.000 [5.000 [3.317 11.000

32 |10.000|0.000 [9.000 [4.500 [3.028 [9.167

33 [10.000(0.000 9.000 [4.500 [3.028 [9.167

34 [9.000 (0.000(8.000 [4.000 2.739 7.500

35 9.000 |0.000(8.000 [4.000 |2.739 |7.500

36 [11.000 |0.000 [10.000 [5.000 [3.317 11.000

37 [10.000(0.000 9.000 [4.500 [3.028 [9.167

38 [8.000 |0.000(7.000 [3.500 [2.449 6.000

39 |10.0000.000 [9.000 [4.500 [3.028 [9.167

40 |10.000|0.000 9.000 [4.500 [3.028 [9.167

41 |10.000/0.000(9.000 [4.500 [3.028 [9.167

42 111.000/0.000 [10.000 5.000 (3.317 |11.000

43]9.000 (0.000(8.000 [4.000 [2.739 7.500

44 [8.000 |0.0007.000 [3.500 |2.449 6.000

45 |10.0000.000 [9.000 [4.500 [3.028 [9.167

46 [11.000|0.000 [10.000 [5.000 [3.317 11.000

47 19.000 |0.000(8.000 [4.000 [2.739 7.500

48 9.000 |0.000(8.000 [4.000 |2.739 |7.500

49 |9.000 |0.000(8.000 [4.000 |2.739 |7.500

50 [8.000 |0.000(7.000 [3.500 |2.449 6.000

103

Summary Report

[Entity |Property Count [Min [Max [Mean [StdDev Variance |
'Seadiver TargetDetections [50.000 3.500 5500 4.350 [0.508 [0.258 |
Target |SeadiverDetections |50.0000.000(8.500 2.930 |1.693 |2.867 |

Conclusions and Recommendations

Conclusions. This simulation was a good exemplar for testing Barrier Search missions for
the SeaDiver UUV. For specific conclusions, see Chapter 8.

Recommendations for Future Work. As an exemplar simulation, the behaviors and
capabilities of moving entities are very general. More work is required refining the

model definitions and search patterns to generate relevant statistics. See Chapter 8 for
other specific recommendations for future work.

104

APPENDIX B.

THIS REPORT IS: UNCLASSIFIED

Minefield Search

Analyst: LT John M. Seguin
Analysis date: 3/20/07 12:45 PM

Executive Summary

Analyst Executive Summary. A novel UUV is currently being designed that is projected to
support significantly greater endurance and range characteristics. This UUV is called
Seadiver and is being designed by Institute of Engineering Science of Toulon, France
with support from Naval Postgraduate School. It is a low-cost glider UUV which
generates propulsion not with propellers or jet pumps, but rather by controlling its
buoyancy. This method of propulsion is quite efficient and maybe capable of autonomous
operation up to 30 days with a range of around 700 nautical miles. A UUV with such
endurance and range exposes military missions previously impractical for UUVs
especially when used in concert as an array of many UUVs.

This simulation models the ability of Seadiver UUV to perform the Minefield Search
mission. The Minefield Search mission's purpose is to detect all mines in a minefield,
then report all locations of mines for later removal. The search is comprised of 100
Seadiver UUVs spread symmetrically across the minefield. The minefield is comprised of
200 mines randomly distributed across the minefield. The Seadiver UUVs conduct the
search using a lawn-mower search pattern. All unique mine detections are logged and
statistical results are generated.

Simulation Location
Description of Location Features. This mission takes place in a generic littoral ocean area
200 km long, 200 km wide, and 100 m deep.

Post-Experiment Analysis of Significant Location Features. This was a generic area. The
area can be modified to meet the needs of the analyst.

Assembly Configuration for Viskit Simulation

Assembly Design Considerations. This assembly is designed around the Minefield Search
mission. The ZoneMap node takes the total area dimensions and creates individual
operating zones for each Seadiver UUV. This information is passed to the SeaDivers
node through simEventListener connections. Scenario Manager controls and manages
movement and detection between all entities. There are two statistics collecting nodes
called MineDetections and DetectionsByMines connected to the applicable entity node
containing the State Variable with Property Change Listeners.

105

Post-Experiment Analysis of Simulation Assembly Design. Simulation works as designed,
but behavior implementation was problematic due to creation of many moving entities in
a single node. A possible solution could be to programmatically generate the assembly
and have one moving entity per node.

Summary of Simulation Entities
\Entity Name \Behavior Definition
ZoneMap seadiver.ZoneMap
SeaDivers seadiver.SeaDiver
\MineFieId \seadiver.MineFieId

Mine
betections

S T T
= > ZoneMap

Divers

i

N

Scenario : :
<|MineField

Manager

0

éSeamueﬂ
betections

106

Entity Parameters
Entity Parameters Overview. Entity parameters are initialization values used to define
new event graphs. These values are pulled directly from the assembly.

Behavior Definitions

Description of Behavior Design. Seadiver: Seadiver is modeled after the SeaDiver glider
UUV. Its main behavior is to conduct a search in a lawn-mower pattern over its section
of the minefield. In the Minefield Search mission, the entities search their respective
areas for mines. Upon detection, the UUV immediately takes a GPS fix (simulated) then
continues the search indefinitely.

Minefield: Mines are stationary objects capable of detecting other moving entities. Mines
have the ability to detect Seadiver UUVSs, but take no action upon detection.

Post-Experiment Analysis of Entity Behaviors. Possible future behavior would be to
incorporate behavior for mines upon detection of Seadiver UUVs such as explode.

Statistical Results

Description of Expected Results. This simulation initiated 50 repetitions displayed below.
This is used as an exemplar to indicate the correct application of detection in a DES, and
the ability to produce representative statistics from that behavior. MineDetections statistic
indicates the amount of mines that were detected by Seadivers. DetectionsByMines
statistic indicates the number of Seadivers that were detected each repetition by mines.

Analysis of Experimental Results. As an exemplar, no analysis was performed. Other
potential useful statistics would be time to detect all mines.

107

Replication Report
Entity: Seadivers
Property: MineDetections

0.21

B7.0 87.5 88.0 885 88.0 88.5 0.0 a0.5 21.0 1.5 920 925 g3.0 a3s5 240 24.5 as50 955 6.0
MineDetections

N MineDetections

IRun#|Count |Min |Max |Mean |StdDev |Variance
1 [189.000|0.000 [188.000 (94.000 (54.704 |2992.500
2 |184.000/0.000 [183.000 91.500 (53.260 |2836.667
3 |177.000(0.000|176.000 [88.000 51.240 |2625.500
4 |189.000|0.000 [188.000 (94.000 (54.704 |2992.500
5 |184.0000.000 [183.000 91.500 (53.260 |2836.667
6 [190.0000.000 [189.000 (94.500 54.992 [3024.167
7]179.000(0.000 178.00089.000 51.817 |2685.000
8 [187.000|0.000 [186.000 (93.000 (54.126 |2929.667
9 [189.000|0.000 [188.000 (94.000 (54.704 |2992.500
10 [188.000|0.000 [187.000 [93.500 (54.415 |2961.000
111 |180.000(0.000179.00089.500 52.106 |2715.000
12 [181.000 0.000 [180.000 (90.000 (52.394 |2745.167
13 [188.000|0.000 [187.000 (93.500 (54.415 |2961.000
14 [187.000|0.000 [186.000 (93.000 (54.126 |2929.667
115 |193.000(0.000 192.00096.000 |55.858 |3120.167
16 [182.000|0.000 [181.000 90.500 (52.683 |2775.500

108

Run#|Count Min |Max |Mean |StdDev |Variance

17 [186.000|0.000 [185.000 92.500(53.838 |2898.500

18 [183.000|0.000 [182.00091.000(52.972 |2806.000

19 [181.0000.000 [180.000 (90.000|52.394 |2745.167

20 [181.000|0.000 [180.000 (90.000|52.394 |2745.167

21 [182.000/0.000 [181.000 90.500|52.683 [2775.500

22 [178.0000.000 [177.000 [88.500 51.528 |2655.167

23 [187.000|0.000 [186.000 (93.000 (54.126 2929.667

24 [183.000|0.000 [182.000 91.000(52.972 2806.000

25 1183.000/0.000 [182.000 [91.000 52.972 [2806.000

26 |181.000|0.000 180.000 [90.000 (52.394 |2745.167

27 [183.000|0.000 [182.00091.000(52.972 |2806.000

28 [184.000|0.000 [183.000 91.500(53.260 |2836.667

29 [184.000/0.000 [183.00091.500(53.260 |2836.667

30 |188.000 (0.000 [187.000 93.500 [54.415 |2961.000

31 [185.000 |0.000 [184.000 [92.000 (53.549 |2867.500

32 [181.000|0.000 [180.000 [90.000|52.394 |2745.167

33 [189.000/0.000 [188.000 [94.000 [54.704 [2992.500

34 {179.000 |0.000 [178.000 [89.000 51.817 |2685.000

35 [185.000 0.000 [184.000 [92.000 (53.549 |2867.500

36 [181.000|0.000 [180.000 90.000|52.394 |2745.167

37 [184.000/0.000 [183.00091.500(53.260 |2836.667

38 |189.000 0.000 [188.000 94.000 |54.704 |2992.500

39 [176.000|0.000 [175.000 [87.500|50.951 |2596.000

40 [178.000/0.000 [177.000 [88.500|51.528 |2655.167

41 [182.000/0.000 [181.00090.500(52.683 [2775.500

42 [192.000/0.000 [191.000 95.500|55.570 [3088.000

43 [175.000 |0.000 |174.000 [87.000 |50.662 |2566.667

44 |182.000|0.000 [181.000 [90.500 |52.683 |2775.500

45 |184.0000.000 [183.000 91.500 (53.260 |2836.667

46 [191.000/0.000 [190.000 [95.000 |55.281 [3056.000

47 {180.000 |0.000 [179.000 [89.500 52.106 |2715.000

48 |175.0000.000 [174.000 [87.000|50.662 |2566.667

49 |184.000/0.000 [183.00091.500 (53.260 |2836.667

50 [185.000|0.000 [184.00092.000(53.549 |2867.500

109

Replication Report
Entity: Minefield
Property: DetectionsByMine

0.125

0.120

0.115

0.110

0.105

0.100

0.085

0.080

0.085

0.020

0.075

0.070

0.0&5

0.080

0.055

0.050

0.045

0.040

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000 -

4,150 4200 4250 4300 4350 4400 4450 4500 4550 4,600 4,850 4700 4750 4800 4,850 4900 4950 5000 5050 5,100 5150 5200 5250 5,300
DetactionsByMine

¥ DetectionsByMine

IRun#|Count [Min |Max

Mean |StdDev |Variance

19860.000 |0.000 (9859.000 |4929.500 [2846.481 |8102455.000

9393.000 |0.000 (9392.000 |4696.000 [2711.670 |7353153.500

110126.000 |0.000 |10125.000 [5062.500 [2923.269 (8545500.167

19559.000 |0.000 (9558.000 |4779.000 [2759.590 | 7615336.667

9883.000 |0.000 (9882.000 |4941.000 [2853.121 |8140297.667

110331.000 0.000 [10330.000 |5165.000 [2982.447 |8894991.000

8849.000 |0.000 (8848.000 |4424.000 [2554.631 |6526137.500

9703.000 0.000 9702.000 |4851.000 [2801.159 |7846492.667

9370.000 |0.000 (9369.000 |4684.500 [2705.030 |7317189.167

9828.000 |0.000 (9827.000 |4913.500 [2837.244 |8049951.000

9759.000 0.000 9758.000 |4879.000 [2817.325 [7937320.000

19486.000 |0.000 (9485.000 |4742.500 [2738.517 |7499473.500

9532.000 |0.000 (9531.000 |4765.500 [2751.796 |7572379.667

110267.000 0.000 [10266.000 |5133.000 [2963.972 |8785129.667

9184.000 0.000 9183.000 |4591.500 [2651.337 |7029586.667

9770.000 |0.000 (9769.000 |4884.500 [2820.500 |7955222.500

110

Run#/Count [Min |Max Mean |StdDev |Variance

17

9259.000 |0.000 (9258.000 |4629.000 [2672.987 |7144861.667

18

9675.000 0.000 |9674.000 |4837.000 [2793.076 |7801275.000

19

8336.000 |0.000 [8335.000 |4167.500 [2406.540 5791436.000

20

110101.000 0.000 [10100.000 |5050.000 [2916.052 |8503358.500

21

9717.000 0.0009716.000 |4858.000 [2805.201 |7869150.500

22

110079.000 |0.000 [10078.000 (5039.000 [2909.701 8466360.000

23

8731.000 |0.000 [8730.000 |4365.000 [2520.567 |6353257.667

24

110122.000 0.000 [10121.000 |5060.500 [2922.114 |8538750.500

25

9480.000 |0.000 (9479.000 |4739.500 [2736.785 |7489990.000

26

8641.000 0.000 [8640.000 (4320.000 [2494.586 6222960.167

27

9708.000 |0.000 (9707.000 |4853.500 [2802.603 | 7854581.000

28

110418.000 0.000 [10417.000 |5208.500 [3007.562 |9045428.500

29

110331.000 0.000 [10330.000 |5165.000 [2982.447 |8894991.000

30

9348.000 0.000 9347.000 (4673.500 [2698.679 7282871.000

31

9861.000 |0.000 (9860.000 |4930.000 [2846.770 |8104098.500

32

8932.000 |0.000 (8931.000 |4465.500 [2578.591 |6649129.667

33

9950.000 |0.000 (9949.000 |4974.500 [2872.462 |8251037.500

34

8335.000 0.000 [8334.000 (4167.000 [2406.252 5790046.667

35

9362.000 |0.000 (9361.000 |4680.500 [2702.721 |7304700.500

36

8773.000 |0.000 [8772.000 |4386.000 [2532.691 |6414525.167

37

9901.000 |0.000 (9900.000 |4950.000 [2858.317 |8169975.167

38

110568.000 |0.000 [10567.000 (5283.500 [3050.863 |9307766.000

39

9267.000 |0.000 (9266.000 |4633.000 [2675.297 |7157213.000

40

8890.000 |0.000 (8889.000 |4444.500 [2566.466 6586749.167

41

8731.000 |0.000 (8730.000 |4365.000 [2520.567 |6353257.667

42

110345.000 |0.000 |10344.000 (5172.000 [2986.489 (8919114.167

43

19093.000 0.000 [9092.000 (4546.000 [2625.067 6890978.500

44

19426.000 |0.000 (9425.000 |4712.500 [2721.196 |7404908.500

45

9092.000 |0.000 (9091.000 |4545.500 [2624.779 |6889463.000

46

110570.000 0.000 [10569.000 |5284.500 [3051.441 |9311289.167

47

9451.000 0.000 |9450.000 (4725.000 [2728.413 [7444237.667

48

9352.000 |0.000 (9351.000 |4675.500 [2699.834 |7289104.667

49

9076.000 |0.000 [9075.000 |4537.500 [2620.160 |6865237.667

50

9569.000 |0.000 (9568.000 |4784.000 [2762.477 |7631277.500

111

Summary Report

\Entity|Property \Count|Min \Max \Mean \Sthev |Variance‘
| DetectionsByMine |50.000 4167.000 (5284.500 [4773.400 [280.909 [78909.898
| MineDetections ~ |50.000 (87.000 |96.000 91.380 [2.187 |4.781 \

Conclusions and Recommendations

Conclusions. This simulation was a good exemplar for testing Minefield Search missions
for the SeaDiver UUV. For specific conclusions, see Chapter 8.

Recommendations for Future Work. As an exemplar simulation, the behaviors and
capabilities of moving entities are very general. More work is required refining the
model definitions and search patterns to generate relevant statistics. See Chapter 8 for
other specific recommendations for future work.

112

LIST OF REFERENCES

Buss, A. H. 2004. Simkit analysis workbench for rapid construction of modeling and
simulation components. Proceedings of the Fall Simulation Interoperability
Workshop (September), Accessed 15 August 2006 at
http://www.sisostds.org/index.php?tg=fileman&idx=get&id=2&gr=Y &path=Sim
ulation+InAteroperability+Workshops%2F2004+Fall+S1W%2F2004+Fall+SIW+
Papers+and+Presentations&file=04F-SIW-020.pdf.

. 2002. Component Based Simulation Modeling With Simkit. Proceeding of the
2002 Winter Simulation Conference.

. 2001. Basic Event Graph Modeling. Simulation News Europe (April), Accesses
13 March 2007 at
http://diana.nps.edu/0a3302/Handouts/BasicEventGraphModeling.doc.

. 2000. The Event List. OA3302 System Simulation Winter 2007 class notes.
Accessed 13 March 2007 at http://diana.nps.edu/oa3302/Handouts/EventL ist.pdf.

Buss, A. H., and P. J. Sanchez. 2005. Simple Movement and Detection in Discrete Event
Simulation. Proceeding of the 2005 Winter Simulation Conference. Accessed 13
March 2007 at http://www.informs-cs.org/wsc05papers/118.pdf.

Buss, A. H., and R. Szechtman. 2006. OA3302 System Simulation, course notes,
Accessed August 2006 at http://diana.nps.edu/0a3302/Handouts/.

Davis, D., and D.P. Brutzman, 2005, “The Autonomous Unmanned Vehicle Workbench:
Mission Planning, Mission Rehearsal, and Mission Replay Tool for Physics-based
X3D Visualization,” 14th International Symposium on Unmanned Untethered
Submersible Technology (UUST), Autonomous Undersea Systems Institute
(AUSI), Durham New Hampshire, 21-24 August 2005.

Department of the Navy, The Navy Unmanned Undersea Vehicle (UUV) Master Plan, pp.
xv-xxv, Government Printing Office, Washington, D.C. 2004.

Dumonteil, R., D. Gassier, J. Rebollo, Implementing a Low-Cost Long-Range Unmanned
Underwater Vehicle: The Seadiver Glider, report prepared for Naval Postgraduate
School, 2006.

Johnson, ADM J. L., USN, and Gen J. L.Jones, USMC. 2000. U.S. Naval Mine Warfare
Plan, 4th Edition, Programs for the New Millennium, Department of the Navy,
Washington, D.C., January.

Goure, D., 2002. Sea-Mine Threat Can No Longer Be Ignored, National Defense
Magazine, August 2002. Accessed 13 March 2007 at
http://www.nationaldefensemagazine.org/issues/2002/Aug/Sea-Mine.htm.

113

Law, A., and D. Kelton. 2000. Simulation Modeling and Analysis, Third Edition,
McGraw Hill.

Miller, J.A. Simulation and Modeling in Java. Accessed 17 January 2007 at
http://chief.cs.uga.edu/~jam/home/courses/csci4210/book.html).

Schruben, L. 1983. Simulation Modeling with Event Graphs. Communications of the
ACM 26: 957.

Sullivan, P.J., Evaluating the Effectiveness of Waterside Security Alternatives for Force
Protection of Navy Ships and Installations Using X3D Graphics and Agent-Based
Simulation. Master’s Thesis, Naval Postgraduate School, Monterey, California,
September 2006.

Wu, T. C., 2004. An Introduction to Object-Oriented Programming with Java. Third
Edition. New York, New York: McGraw-Hill.

114

10.

11.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Don Brutzman
Naval Postgraduate School
Monterey, California

D.C. Boger
Naval Postgraduate School
Monterey, California

Curt Blais
Naval Postgraduate School
Monterey, California

John Moore
Navy Modeling and Simulation Office
Ft. Belvoir, Virginia

John Hiles
Naval Postgraduate School
Monterey, California

Arnold Buss
Naval Postgraduate School
Monterey, California

Joseph McConnell
Naval Facilities Engineering Command
Washington Navy Yard, District of Columbia

CAPT James D. Scola, USN
Commander, United States Pacific Fleet
Aiea, Hawaii

Caroline Massie

Chief of Naval Installations
Anacostia Annex, District of Columbia

115

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

Dr. Brian Donahue
Johns Hopkins University
Baltimore, Maryland

Dr. James D. Miller
Johns Hopkins University
Baltimore, Maryland

CAPT Taylor Skardon
Naval Station Pearl Harbor
Pearl Harbor, Hawaii

Alexandra De Visser
Naval Facilities Engineering Service Center
Port Hueneme California

Dallas Meggitt
Sound and Sea Technology
Edmunds, Washington

Dennis Garrood
Sound and Sea Technology
Edmunds, Washington

Mario Pozzo
Sound and Sea Technology
Edmunds, Washington

Len Daly
Daly Realism
Valley Glen, California

Rick Goldberg
Aniviza Inc.
Los Gatos, California

LT Wilfredo Cruzbaez
Naval Postgraduate School
Monterey, California

Alan Hudson

Yumetech, Inc.
Seattle, Washington

116

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

Terry Norbraten
Naval Postgraduate School
Monterey, California

CDR John Kennington
Commander, United States Pacific Fleet
Aiea, Hawaii

Wendy Walsh
Naval Postgraduate School
Monterey, California

Mark W. Kenny
Center for Submarine Counter-Terrorism Operations
Groton, Connecticut

CAPT Rick J. Ruehlin
Littoral and Mine Warfare
Washington Navy Yard, District of Columbia

Richard L. Snead
National Security Directorate
Oak Ridge, Tennessee

Distinguished Professor Anthony Healey
Department of Mechanical Engineering
Naval Postgraduate School

Monterey, California

Dr. Kwang Song

Department of Mechanical Engineering
Naval Postgraduate School

Monterey, California

Douglas Horner

Department of Mechanical Engineering
Naval Postgraduate School

Monterey, California

Sean Krageland

Department of Mechanical Engineering
Naval Postgraduate School

Monterey, California

117

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

CAPT Dan Gahagan, USN
Naval Research Laboratory
Arlington, Virginia

CAPT Dennis Sorensen, USN
Office of Naval Research
Arlington, Virginia

Dr. Thomas Swean
Office of Naval Research
Arlington, Virginia

Dr. Thomas Curtin
Office of Naval Research
Arlington, Virginia

D. Richard Blidberg
Autonomous Undersea Systems Institute
Durham, New Hampshire

Steven Chappell
Autonomous Undersea Systems Institute
Durham, New Hampshire

Rick Komerska
Autonomous Undersea Systems Institute
Durham, New Hampshire

Peter Flynn
Naval Research Laboratory,
Stennis Space Center, Mississippi

Mark Falagh
L-3 Communications
Orlando, Florida

Eyton Pollach
L-3 Communications
Orlando, Florida

Tom Highee

Sound and Sea Technology
Edmunds, Washington

118

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Robert Taylor
Sound and Sea Technology
Edmunds, Washington

Jay Cohen

Director Science & Technology
Dept Homeland Security
Washington, D.C.

Dr. Mark Pullen
Netlab, GMU
Fairfax, Virginia

Dr. Mike Hieb
Netlab, GMU
Fairfax, Virginia

Erik Chaum
NUWC
Newport, Rhode Island

David Bellino
NUWC
Newport, Rhode Island

Pierre Comieau
NUWC
Newport, Rhode Island

Yvonne Maralawski
NUWC
Newport, Rhode Island

Virginia Robin Beale
N81, Pentagon
Washington, DC

LCDR Harrison Schramm
N81, Pentagon
Washington, DC

LCDR Jeff Debrine

N81, Pentagon
Washington, DC

119

55.

56.

57.

58.

59.

60.

Dr. Jim Eagle

Operations and Research Department
Naval Postgraduate School
Monterey, California

CAPT Jeff Kline, USN (Ret.)
Operations and Research Department
Naval Postgraduate School
Monterey, California

CAPT Wayne Hughes, USN (Ret.)
Operations and Research Department
Naval Postgraduate School
Monterey, California

John Ruch
Rolands & Associates
Monterey, California

Dr. R.J. Roland
Rolands & Associates
Monterey, California

Ouerghi Nabil

Moves, NPS
Monterey, California

120

