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ABSTRACT 

The military weather community is mandated by the Department of 

Defense (DoD) to provide accurate, timely, and reliable meteorological 

information necessary for commanders to exploit the best windows of opportunity 

for operations.  In order to meet this mandate, the military must apply state-of-

the-art long-range forecasting techniques.  This study was motivated by the need 

for long-range forecasts for mission planning in Iraq.  To develop these forecasts, 

we tested and adapted composite analysis and forecasting techniques used by 

the National Oceanographic and Atmospheric Association (NOAA) for forecasts 

in the continental U.S.  Using these techniques, we conducted seasonal 

composite analyses for Iraq surface temperature and precipitation rate, with the 

compositing based on the observed occurrence of the North Atlantic Oscillation 

(NAO) and El Nino – La Nina (ENLN) climate variations.  We then used 

composite analysis results to produce long range forecasts of Iraq surface 

temperature and precipitation rate based on the predicted occurrence of the NAO 

and ENLN.  These forecasts outperformed forecasts based on long-term means 

(LTMs).  Forecasts based on LTMs are currently the best available long range 

forecasts available from DoD.  Thus, the composite analysis forecasts developed 

and tested in this study are a clear improvement over presently available DoD 

long range guidance products.  The outcome of this study is a vector for the DoD 

weather community to expand out from the almost exclusive use of LTM based 

climatological products, and to invest in modern state-of-the-art methods for to 

supporting the global mission of the DoD.   
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I. INTRODUCTION  

A. BACKGROUND  
Over the past several decades, there has been rapid progress in 

understanding of Earth’s climate system (e.g., Changon 2004).  The challenge 

the Department of Defense (DoD) now faces is applying this new understanding 

to operations.  In turn, with DoD’s current lack of exploitation of the advances 

made in the civilian community, combatant commanders’ operational risk 

management and decision making abilities are behind the times with respect to 

awareness of potential intra-/inter-seasonal weather impacts to military 

operations (e.g., LaJoie 2006, Stepanek 2006, Vorhees 2006).  Detailed 

recommendations for improvements in applied military climatology have been 

laid out in LaJoie (2006) and Vorhees (2006).  Both of these studies propose 

changes to the current DoD emphasis on climate products based on long-term 

means (LTMs).  In this study, we have examined a new suite of potential military 

climate products, with a focus on their application to the Iraq region. 

Improved long-range outlooks are a critical component of the 

commander’s battlespace awareness.  In a an interview on November 19, 2006, 

with the Associated Press (AP 2006), Brigadier General Douglas Pritt, in charge 

of U.S. lead efforts to train the Afghan military stated, “[Afghan troops are] much 

better equipped for winter operations than the Taliban.  I’m hoping for a lot of 

snow this winter.”  Comparing the Afghan troops to the Taliban fighters, Pritt went 

on to say that snowfall was already hampering Taliban supply lines (AP, 2006).  

The General’s rationale is that snowfall limits trafficability and maneuvers, 

making the enemy more vulnerable to an offensive military strike.  With limited 

re-supply and less advanced equipment, the Taliban forces would be less likely 

to mount an offensive or a strong sustained defense.  U.S. and Afghan 

government military planners could use this knowledge in planning their own 

winter offensive.  However, to do so to best advantage, the planners need to  
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have reliable long-range outlooks that go beyond simply forecasting LTM 

conditions and identify deviations from the LTMS (e.g., heavy snowfall in the 

upcoming winter). 

Joint Publication 3-59, Joint Doctrine, Tactics, Techniques, and 

Procedures for Meteorological and Oceanographic Operations (Joint Staff 1999), 

states 

Accurate, timely, and reliable meteorological and oceanographic 
(METOC) information can provide the commander with knowledge 
necessary to anticipate and exploit the best window of opportunity 
to plan, execute, support, and sustain specific operations. 

In order to meet this mandate the military must apply state-of-the-art long-range 

forecasting techniques.  This research will examine composite analysis and 

forecasting techniques developed by the National Oceanographic and 

Atmospheric Association (NOAA) for use in the continental U.S and their 

application to support of the DoD global mission. 

For this research we have used Iraq as our focus region because of its 

prominence in national security concerns over the last few decades.  Its strategic 

location and resources make it important to U.S. foreign policy. 

B. GEOGRAPHY AND LTM CLIMATE OF IRAQ 
For this study, we considered the climate of the southwest Asia (SWA) 

region in which Iraq is located (Figure 1).  Iraq occupies 437,072 square-km of 

this region (CIA 2007), which is slightly more than twice the size of the U.S. state 

of Idaho. 
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Figure 1.   The southwest Asia region examined in our study and located 

within 10N-50N; 30E-80E 
 
 

1. Geography 

Iraq has an arid to semi-arid inland climate (CIA 2007).  The majority of 

precipitation falls during October to April.  Most of this “wet-season” precipitation 

is associated with transient extratropical cyclones (ETCs). 

Most of Iraq’s terrain is relatively flat with little change in elevation.  It can 

be described as a broad plains area with marshes along the Iranian border in the 

south, where the Tigris and Euphrates rivers empty into to the Persian Gulf.  The 

notable exceptions to the continuous elevation are the Zagros mountain range 

along Iraq’s eastern border, and the highlands of the Anatolia Plateau and 

Taurus Mountains along the northern border. (CIA 2007)  The distribution of 

precipitation over Iraq is dependent in part on the orientation of the mountain 

ranges.  Southerly flow into the region can transport significant moisture from the 

warm tropical waters of the Indian Ocean (IO), Red Sea, and Persian Gulf.  The 

Mediterranean Sea, to the west, can supply eastward tracking ETCs with 

additional moisture for precipitation in Iraq. (AFCCC 2005) 
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Figure 2.   Topography of southwest Asia.  Figure courtesy of Air Force 

Combat Climatology Center (AFCCC) [accessed online at http://www.afccc.af.mil 
5 March 2007] 

 
 

2. LTM Climate of Iraq 
In order to understand the effects of climate variations on Iraq, we must 

understand the LTM climate of the greater SWA region.  The LTM climate is 

summarized in Vorhees (2006), and more detailed studies are provided by 

Vojtesak et al. (1991), Walters et al. (1991), and Walters and Sjoberg (1988). 

a. Winter (Jan-Mar) 
The main driver of the winter climate is the lower tropospheric semi-

permanent high pressure area known as the Siberian or Asiatic High.  The 

Siberian High is centered over western Mongolia and tends to merge with other 

lower tropospheric semi-permanent high pressure areas, including the Saudi 

Arabian (Arabian Peninsula), Saharan High (Sahara Desert), and the Azores 

High (eastern North Atlantic Ocean).  The merging of these high pressure 

centers tends to create a continuous lower tropospheric ridge in the subtropics 

and mid-latitudes.  During this time, there is a strengthening of northeasterly low 

level winds from Asia over the northwestern Indian Ocean (IO).  During the 

winter, the polar front jet (PFJ) reaches its southernmost latitudes and its 

maximum intensity. (AFCCC 2005) 
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Also during the winter months, eastward shift in deep tropical 

convection occurs over the Maritime Continent (MC).  As a result, there is a 

corresponding shift in upper level ridging associated with the Rossby-Kelvin 

wave response to the convection (Vorhees 2006).  As winter subsides, the snow 

caps of the mountains begin to melt, which can lead to extensive flooding in low 

lying regions.  Flooding is especially likely in central and southern Iraq as the 

snow melts in the mountainous northern region. (CIA 2007) 

b. Spring (Apr-Jun) 
ETCs still transit the region during spring, although ETC frequency 

decreases as the season progresses.  The decrease is due the northward shift of 

the PFJ and the strengthening of the Arabian Peninsula High. (AFCCC 2005) 

c. Summer (Jul-Sep) 
Many of the major features of the summer months are closely 

related to the Asian summer monsoon.  Strong upper level ridging tends to 

develop over SWA and all of southern Asia in response as deep convection over 

southern and eastern Asia.  At the low levels, a semi-permanent thermal trough 

stretching from northwestern Africa to southeastern Asia also develops.  There is 

also a northward shift of the intertropical convergence zone (ITCZ).  The low 

level winds south of trough tend to create a broad region of southwesterly flow 

that converges into the ITCZ.  This season is often referred to as the southwest 

monsoon period.   

d. Autumn (Oct-Dec) 
Iraq’s autumn season is a transition between the southwest 

monsoon and the northeast monsoon periods.  During this period, a decrease in 

insolation leads to the eventual collapse of the thermal trough and associated 

heat lows which setup during the summer season.  The Asiatic High begins to 

build, resulting in a reorientation of the low level flow to northeasterly.  The PFJ 

begins to shift southward in the SWA region as the north hemisphere begins to 

cool.  The shift in the PFJ results in increased ETC frequency in the region.  The 

ETCs bring with them precipitation and can begin as early as October.  These 

ETCs are the primary mechanism for precipitation in Iraq.  
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C. EXTRA-TROPICAL CLIMATOLOGY 
The greater Iraq region of SWA is affected by four main synoptic regimes 

(AFCCC 2005).  The winter regimes include the Asiatic High, Cyprus Low, and 

Black Sea Low.  The summer regimes are the Pakistani Heat Low and the 

Arabian Peninsula High.  These regimes vary the most during the transition 

seasons of spring and autumn. 

As Vorhees (2006) and Barlow et al. (2005) concluded, the amount of 

precipitation in SWA associated with ETC activity can be strongly affected by 

moisture advection into SWA from the south.  They identified convection 

variations in the eastern IO and MC region, and the resulting Rossby-Kelvin 

wave response over the IO and south Asia, as an important mechanism for 

altering the advection of moisture to ETCs in SWA.  But one outstanding 

question remains from these studies: What climate variation(s) affect the 

frequency and/or tracks of ETCs in SWA?  Through our regional correlation 

analyses and compositing we hope to shed some light on this question. 

In order to understand the climate of Iraq it is important to review the 

typical storm track of the regimes during the course of a “normal” year.  Figure 3a 

shows the typical storm tracks during the months of June, July, and August.  A 

dominate Sahara High coupled with the Arabian Peninsula High tends to block 

ETCs that might otherwise enter Iraq.   
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Figure 3.   Primary storm tracks for: (a) June, July, August; (b) September, 

October, November; (c) December, January, February; and (d) March, April, 
May.  Taken from AFCCC SWA DVD (2005) 

 
September, October, and November storm tracks are shown in Figure 3b.  

The most notable aspect of Figure 3b is the secondary cyclogenesis in the 

eastern Mediterranean Sea during November, one of the factors that leads to the 

onset of Iraq’s wet-season.  Figure 3c shows the primary storm tracks during 

December, January, and February.  The increased number of storms into the 

greater Iraq region in this season brings the majority of Iraq’s annual 

precipitation.  Figure 3d shows how the wet season begins to subside after 

March.  ETCs become less frequent as the PFJ shifts northward and the Arabian 

High, begins to strengthen and once again dominate the region. (AFCCC 2005) 

D. LARGE-SCALE CLIMATE VARIATIONS 
Global scale climate variations, such as the North Atlantic Oscillation 

(NAO) and El Nino – La Nina (ENLN), have been shown to affect climate in SWA 

(e.g., Barlow et al. 2005, Vorhees 2006).  When researching the world-wide 

effects of ENLN, Mason and Goddard (2001) suggested, “for many parts of the 

world this knowledge provides a better estimate of the probable future climate 

than the assumption that a seasonal condition will be the same as average.”  As 
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will be demonstrated in our study, this assertion has validity and can be applied 

to other oscillations other than ENLN. 

1. El Nino-La Nina 
Of all the climate variations, ENLN has been the most studied.  This 

variation has three phases, El Nino (EN), neutral, and La Nina (LN).  The Climate 

Predication Center (CPC) defines EN as a:  

large-scale ocean-atmosphere climate phenomenon linked to a 
periodic warming in sea-surface temperatures (SST) across the 
central and east-central equatorial Pacific (between approximately 
the date line and 120W).  El Nino represents the warm phase of the 
ENSO cycle, and is sometimes referred to as a Pacific warm 
episode.  (http://www.cpc.ncep.noaa.gov, accessed 5 March 2007).   

LN events are defined as: 

Periodic cooling of SST in the central and east-central equatorial 
Pacific that occurs every 3 to 5 years or so.  La Nina represents the 
cool phase of the ENSO cycle, and sometimes referred to as a 
Pacific cold episode.  (http://www.cpc.ncep.noaa.gov, accessed 5 
March 2007).   

Further details of the development and cycle of ENLN can be found in Murphree 

(2006a), Philander (1990), Ropelewski and Halpert (1987, 1989, 1996), and 

Hildebrand (2001). 

As Vorhees (2006) concluded, EN and LN can have significant 

consequences on the SWA region.  That study demonstrated that anomalous 

eastern IO convection can drive anomalies in SWA’s seasonal temperature and 

precipitation.  For example, the anomalous warming of SSTs during LN in the MC 

region increases convective activity over that region.  In turn, deep ascent is 

enhanced, creating anomalous upper level divergence.  The net effect, as shown 

by Matsuno (1966) and Gill (1980), tends to be an equatorial Rossby-Kelvin 

wave response (Figure 4a).  The reverse set of patterns and processes occurs 

during EN, leading to a reversal in the sign of the Rossby-Kelvin wave response 

(figure 4b).  
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Figure 4.   Illustration taken from Ford (2000) shows the upper tropospheric 
response to anomalous tropospheric warming (a) and cooling (b) centered on the 

equator.  The contours and arrows represent the response in terms of upper 
tropospheric geopotential heights and winds, respectively.  The anticyclonic 

(cyclonic) circulations to the northwest and southwest of the warming (cooling) 
region represent the upper tropospheric Rossby wave response.  The troughing 

(ridging) to the west, and the ridging (troughing) to the east, of the warming 
(cooling) region represent the Kelvin wave response. 

 
Nitta (1987) and others have shown that a Rossby wave response to 

tropical convection variations can also extend into and generate responses in the 

extratropics.  These responses have been observed far from the area in which 

they were initiated. 

Vorhees (2006) is the starting point for this research.  Table 1 shows a 

summary of his findings. 
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Table 1.   Global climate variations and the associated fall and winter precipitation 
anomalies in southwest Asia as determined by Vorhees (2006). 

 
 

For our study, the Vorhees (2006) findings for ENLN and the NAO are 

most relevant.  Although, these finding are for all of SWA, we begin with the 

hypothesis that similar signals will be observed in Iraq, which is located near the 

SWA region analyzed by Vorhees.  It is important to note Vorhees (2006), as with 

most ENLN studies, did not examine the effects on SWA of the neutral phases of 

ENLN and the NAO. 

2. North Atlantic Oscillation 
One of the most prominent and recurring climate variations, the NAO can 

dictate climate variations over much of the Northern Hemisphere (Hurrell et al. 

2003).  NAO phases can occur throughout the year, but tend to be strongest 

during the northern winter.  The NAO is fairly predictable at time scales on the 

order of a week to a month (Hurrell et al. 2003). 

There is still debate as to whether the NAO is the North Atlantic branch of 

the Northern Hemisphere Annular Mode, or Artic Oscillation (AO) (Vorhees 

2006).  For the purposes of this study, we are more concerned with application of 

NAO observational data and forecasts, rather than NAO dynamics. 
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The NAO is divided into three phases: positive, negative, and neutral.  As 

shown in Figure 5a, the positive phase (negative) exists when the Azores High 

and Icelandic Low are stronger (weaker) than average.  The positive and 

negative phases can produce large anomalies in the mid-latitude westerlies, 

trades, temperature, moisture advection from North America into western Asia.  

(Figure 5; Murphree 2006b) 

 

 
Figure 5.   Schematic depiction of the NAO phases: (a) positive and (b) 

negative.  Taken from http://www.Ideo.columbia.edu/NAO/ (Accessed February 
2007) 

 
In the positive (negative) phase, ETC storm track across the North Atlantic 

tends to be located further to the north (south) as it passes over Europe leading 

to higher precipitation in northern Europe (southern Europe and Mediterranean). 

The impacts of both phases on SWA are examined in the Vorhees (2006) 

study and partially summarized in Table 1, which shows that the positive and 

negative phases produce opposite effects and that these effects change sign 

from fall to winter.  In particular, Vorhees (2006) found that during positive NAO 

periods, SWA temperatures and precipitation tends to be cooler and wetter in the 

fall, and cooler and drier in winter, with the opposite anomalies occurring during 

negative NAO periods. 
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E. EXISTING OPERATIONAL CLIMATE MONITORING AND FORECAST 
PRODUCTS  
1. DoD Products 
The primary sources of DoD climatological products are AFCCC and Fleet 

Numerical Meteorology and Oceanography Detachment, both located in 

Asheville, North Carolina.  As shown by the AFCCC website (AFCCC 2007), 

almost all products produced by AFCCC represent different ways of packaging 

and presenting LTM data.  Although these products have their application, their 

predictive value is limited. 

2. Non-DoD Products 
In this section we have highlighted a select few types of products 

generated by civilian climatological that have a high potential for application in 

DoD operations. 

a. National Oceanic and Atmospheric Administration 
The National Oceanic and Atmospheric Administration (NOAA) 

provide numerous oceanic and atmospheric science services to the general 

public.  One of its self-described roles is to be a leader in applied scientific 

research, to include climate.  Specifically, “understand changes in climate, 

including the EN phenomenon, to ensure that we can plan and respond 

properly.”  (http://www.noaa.gov/, accessed 5 March 2007)  Much of this charge 

is met by the work of two NOAA sub-agencies, CPC and Earth System Research 

Laboratory (ESRL) located at Camp Springs, Maryland and Boulder, Colorado, 

respectively. 

b. Climate Predication Center 
CPC’s mission is, “serve the public by assessing and forecasting 

the impacts of short-term climate variability, emphasizing enhanced risks of 

weather-related extreme events, for use in mitigating losses and maximizing 

economic gains” (http://www.cpc.ncep.noaa.gov/, accessed 5 March 2007).  The 

CPC website hosts an extensive suite of products, including: 

• Statistical 6-10 day, 8-14 day, one month, and three month 
outlooks of temperature and precipitation 
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• Assessments of hazards and drought conditions and 
outlooks 

• Climate monitoring and forecasts for ENLN, NAO, MJO, AO, 
Antarctic Oscillation, and the Pacific/North American Pattern.  
Most of the forecasts are offered as GFS or ensemble mean 
based outlooks. 

CPC also maintains an archive of the aforementioned indices and forecasts.  

Although CPC’s products are North America centric, many of the methods it uses 

can be applied all around the globe. 

c. Earth System Research Laboratory 
NOAA formed ESRL to engage in comprehensive research in Earth 

system science, including Earth’s climate system.  This includes applied research 

leading to operational climate products, including: 

• Seasonal Climate Forecast Guidance (Experimental) – A 
forecasting tool to assess the impact of climate variations on 
temperature and precipitation forecasts 

• Climate Products Interactive Plotting and Analysis Tools – 
web-based plotting and analysis tool that provides the public 
with access to a significant number of climate data sets and 
climate analysis tools. 

ESRL’s interactive plotting and analysis tools give users access to  very useful 

dataset, the National Centers for Environmental Prediction (NCEP) and National 

Center for Atmospheric Research (NCAR) reanalysis dataset.  The ESRL tools 

and the NCEP/NCAR reanalysis dataset were used extensively in this study, as 

discussed in Chapter II. 

d. International Research Institute for Climate and Society 
The International Research Institute for Climate and Society (IRI) of 

Columbia University and located in Palisades, New York offers a suite of 

products (with verification) including climate analyses and probabilistic seasonal 

climate forecasts.  

DoD climatology products and services would dramatically benefit 

from developing strong collaborative relationships with, and adapting many of the 

methods used by, CPC, ESRL, and IRI. 
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F. MOTIVATION 
The motivation of the study is to provide a viable tool for producing climate 

outlooks for military planners and decision makers.  We hope key DoD weather 

leaders will realize the value and feasibility of our methods and assist in applying 

them to military weather forecasts. 

The data and methods used for our research are discussed in Chapter II.  

Chapter III contains our main results, and Chapter IV presents our conclusions 

and suggestions for future research. 
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II. DATA AND METHODS 

A. DATA 
1. NCEP/NCAR Reanalysis 
One of our main datasets was the the NCEP/NCAR dataset.  NCEP and 

NCAR partnered together to produce a retroactive record, or reanalysis, of 

atmospheric fields (Kalnay et al 1996) that extends from 2006 to the present.  

NCEP/NCAR updates the reanalysis every five years to insure the system 

remains state-of-the-art.  After more than a decade of use by the environmental 

science community, the NCEP/NCAR reanalysis dataset has proven to be a 

tremendous resource for the field of climatology. (Kistler 2001)  For further 

explanation of the reanalysis we refer the reader to Kistler et al. (2001) and 

Kalnay et al. (1996). 

a. Strengths 
One of the main strengths of the reanalysis is its uniform global 

coverage extending over almost six decades at a horizontal spatial resolution of 

2.5 x 2.5 degree and a temporal resolution of six hours.  The reanalysis gives 

researchers an approximation of the state of the atmosphere, using state-of-the-

art global analysis methods for many areas which otherwise would be very poorly 

described. 

b. Limitations 
The grid resolution of the reanalysis makes examination of 

mesoscale features challenging.  However, alternative datasets have their own 

problems.  For example, station observations in our region of interest, SWA, tend 

to have major spatial and temporal data gaps over the several decades of record 

needed for our study.  The Advanced Climate Modeling and Environmental 

Simulations (ACMES) reanalysis dataset, maintained by AFCCC, is available at 

44 and 11 km horizontal resolution anf for SWA, but only for ten year periods. 

Limitations of the NCEP/NCAR reanalysis data differs according to 

the variable.  The variables are categorized according to four classes — A, B, C,  
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and D) — that indicate the relative influence of the observational data on 

reanalysis variable.  Kalnay et al (1996) describe the four variable categories as 

follows: 

An A indicates that the analysis variable is strongly influenced by 
observed data, and hence it is in the most reliable class (e.g., 
upper-air temperature and wind).  The designation B indicates that, 
although there are observational data that directly affect the value 
of the variable, the model also has a very strong influence on the 
analysis value (e.g., humidity and surface temperature).  The letter 
C indicates that there are no observations directly affecting the 
variable, so that it is derived solely from the model fields forced by 
the data assimilation to remain close to the atmosphere (e.g., 
clouds, precipitation, and surface fluxes).  Finally, the letter D 
represents a field that is obtained from climatological values and 
does not depend on the model (e.g., plant resistance, land-sea 
mask). 

The reliability of the reanalysis variables can also vary with time.  

Variables representing periods prior to the advent of extensive satellite 

observation (i.e., from before the 1970s) are based on less observational data 

and therefore tend to be less reliable. 

For this study, the advantages of the NCEP/NCAR reanalysis 

dataset clearly outweighed its disadvantages.  We therefore used it as a main 

dataset for our study.  We worked with data from 1970-2006, a total of 37 years, 

so that we would have a long enough record to capture a number of ENLN and 

NAO events, and so that we maximized the numbers of years for which relatively 

large amounts of satellite observations were available for the reanalysis (i.e., the 

1970s onward). 

2. Climate Indices 
a. El Nino-La Nina 
ENLN is one of the most researched climate variations, and there 

are a large suite of indices that monitor ENLN.  CPC alone hosts over 8 different 

spatial and temporal variations of ENLN indices.  One of these, Nino-3.4, is one 

of the most widely used and forecasted ENLN indices. 



17 

(1) NINO3.4 Index. The Nino-3.4 index defines EN and 

LN according to anomalies with respect to the 1971-2000 mean of the SST in the 

central tropical Pacific region of 5N-5S, 120-170W.  The departure indicates an 

EN (LN) event when a 3-month average is greater than or equal to the normal 3-

month average by +0.5C (-5C) (Higgins et al. 2004)  Figure 6 shows the 3-month 

running mean Nino3.4 values for 1970-2006. 

 

 
Figure 6.   3-month running mean of Nino3.4 SST anomalies (C) from 1970 to 

2006.  The +0.5 (-0.5) thresholds for EN (LN) phases used for our study are 
marked on figure.  Generated at ESRL website [accessed online at 

http://www.cdc.noaa.gov/ March 2007]. 
 
 

CPC produces deterministic and probabilistic Nino3.4 

forecasts.  One of the main limitations to using Nino3.4, or any index based only 

on SST, is that it does not directly account for other aspects of ENLN, especially 

the atmospheric component.  Multi-variate indices, such as the Multi-variate El 

Nino Index (MEI) may give more comprehensive representations of ENLN, 
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especially when ENLN conditions are weak.  However, forecasts of multi-variate 

indices are more difficult to forecast, and less available operationally, than single 

variable indices, such as Nino3.4. 

b. North Atlantic Oscillation 
There are a number of NAO indices available.  For this study we 

chose to work with the NAO index produced by CPC, mainly because it is based 

on data from a large number of points across the North Atlantic basin, unlike 

most of the other indices which are based on just two points, or two small 

regions, in the North Atlantic basin.  

(1) NAO Index. The CPC NAO index (NAOI) is based on 

empirical orthogonal function (EOF) analyses of 1000 hPa heights between 20N 

and 90N (CPC 2007).  CPC maintains an up-to-date archive of the NAOI dating 

back to 1950.  Also, CPC issues deterministic NAOI forecasts at lead times up to 

14 days based on forecasts from the Global Forecast System (GFS) and 

ensemble mean outlooks.  Like the Nino3.4 forecasts, the NAOI forecasts 

performance is tracked on CPC website through a model versus observation 

correlation analysis (Figure 7). 
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Figure 7.   Observed NAOI (upper panel) and differences between observed 

and GFS forecasted NAOI at lead times of 7, 10, and 14 days (lower three 
panels).  All values are15-day running mean values.  Figure from CPC [accessed 

online from http://www.cpc.ncep.noaa.gov/ March 2007]. 
 
 

For this study, we designated as positive (negative) NAO 

periods those in which the three-month running mean values of the NAOI were 

greater (less) than +0.3 (Figure 8).  In between values of the NAOI indicated 

neutral NAO periods. 
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Figure 8.   3-month running mean of NAOI from 1970 to 2006.  The +0.3 (-0.3) 

thresholds for positive (negative) NAO phases used for our study are marked on 
the figure.  Generated at ESRL website [accessed online at 

http://www.cdc.noaa.gov/ March 2007]. 
 
 

CPC issues NAOI forecasts, but the lead times are relatively 

short (e.g., 7-14 days) and they are not the probabilistic forecasts needed for the 

composite analysis forecast method used in this study. 

B. METHODS 
Our process can be summarized as a three-step process; (1) climate 

variation based localized composite analysis, (2) application of composite 

analysis to produce a composite analysis forecast (CAF), and (3) CAF 

verification. 

1. Localized Composite Analysis 
This study adapts the composite analysis methods laid out in NOAA’s 

training module, Creating a Local Climate Product Using Composite Analysis 
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(Hauser 2007), which is based on Higgins et al. (2003).  The module includes a 

template and instructions to follow in order to perform a localized composite 

analysis for a chosen site.  This module is used to train National Weather Service 

(NWS) forecasters in how to produce a CAF.  To apply the NOAA composite 

analysis process, it is very useful to first determine the predictors and 

predictands that will be used in the process.  Based on the prior studies of how 

global scale climate variations affect SWA (see Chapter I), we selected ENLN 

and the NAO as our predictors.  Based on the sensitivity of many DoD operations 

to surface temperature and precipitation, we selected these two variables as our 

predictands.  In brief, the composite analysis process uses information about the 

historical observed occurrence of the predictors and predictands to identify the 

typical observed relationships between the predictors and predictands.  Then a 

forecast of the predictors is used, along with the historical observed relationships, 

to create a forecast of the predictands based on the forecast of the predictors. 

Sections a-i below list the basic steps in the composite analysis process 

and described how we performed the steps for our study. 

a. Select Area of Application 
We defined Iraq as the region within 29N - 37.5N, 38.5E – 48.5E 

shown in Figure 9. 
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Figure 9.    Region used in this study to describe Iraq climate variations: 29N - 

37.5N, 38.5E – 48.5E.  Map generate at ESRL website [accessed online at 
http://www.cdc.noaa.gov/ March 2007]. 

 
 

We created spatial averages for this Iraq region of the NCEP/NCAR 

reanalysis values of our predictands, surface temperature and precipitation rate 

for each season (Jan-Mar, JFM; Apr-Jun, AMJ; Jul-Sep, JAS; and Oct-Dec, 

OND) from 1948 to 2006.  The resulting timeseries are shown in Figures 10 and 

11. Note the large interannual and decadal scale variations.  These variations are 

not represented by LTMs, but the CAF process is designed to both describe and 

predict such variations.  Due to the large variations from one season to the next 

in these timeseries, and the need to highlight interannual variations in the 

timeseries, we have used different vertical scales for each season.  This makes it 

more difficult to compare the seasons, but we feel this is acceptable, since the 

focus of this study is on variations in a given season from one year to the next, 

rather than on an analysis of the seasonal cycle.  
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Figure 10.   Timeseries of Iraq region spatially averaged seasonal surface 
temperature (1948-2006).  Data from pre-satellite Era (pre-1970, blue shading) 
were not used in composite analyses done for this study.  Figure generated at 
ESRL website [accessed online http://www.cdc.noaa.gov/Timeseries/ March 

2007]. 
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Figure 11.   Timeseries of Iraq region spatially averaged seasonal precipitation 
rate (1948-2006).  Data from pre-satellite Era (pre-1970, blue shading) were not 

used in composite analyses done for this study.  Figure generated at ESRL 
website [accessed online http://www.cdc.noaa.gov/Timeseries/ March 2007]. 

 
 

b. Determine Time-Scales of Composite Analysis 
Given the planning lead-time for DoD, our focus in this study was 

on contributing to the development of forecasts with lead times of 1-3 months.  

To do this, we chose to perform monthly and seasonal (3-month) composite 

analyses.  The seasons we worked with were JFM, AMJ, JAS, and OND.  The 

time scale selected can affect which climate variations are then used in the 

composite analyses, since climate variations have a range of time scales 

(intraseasonal to decadal and longer). 

c. Determine Minimum Data Requirements 
We needed a dataset large enough to include a relatively large 

number of ENLN and NAO events — on the order of ten samples of each phase. 
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This required our data set to be on the order of 30 years long.  Due to the lack of 

a long set of reliable station observations for Iraq, we chose to work with the 

NCEP/NCAR reanalysis dataset. 

d. Select Time Range  
For this study we chose 1970-2006, a 37 year period, due to the 

lack of extensive of satellite data prior to 1970.  The NOAA process uses only a 

30-year period of record, so in this respect we deviated from this process. 

e. Select Predictor Climate Variation Index, Index 
Threshold, and Corresponding Index Forecast  

We selected Nino3.4 as our index and forecast index for ENLN.  

We chose the NAOI as our index and forecast for the NAO.  For Nino3.4 we used 

the standard index threshold of +/- 0.5 to categorize ENLN phases.  For NAOI we 

used a threshold of +/- 0.3 to categorize the phases of the NAO. 

f. Determine Predictand Category Thresholds 
We chose a three part, or tercile, categorization for our predictands, 

with the tercile categories being: above normal (AN), near normal (NN), and 

below normal (BN).  The tercile thresholds were determined separately for each 

of the four seasons.  The thresholds were determined by assigning each of the 

37 representations of each season into one of the three terciles, such that there 

were an approximately even number of individual seasons in each tercile (e.g., 

12 in AN, 13 in NN, and 12 in BN). 

g. Calculate Frequency of Occurrence During Each 
Oscillation Phase 

For each of the four seasons, the number of the AN, BN, NN 

seasons that occurred during each of the three phases of each climate variation 

was determined to get the frequency of occurrence for each phase. 

h. Apply Trend Adjustment 
Trend adjustment is performed to account for the effects of any 

long term (e.g., decadal) trends in the predictand timeseries.  The trend 

adjustment is based on the previous 10 years of data, and if the deviation from 

the trend is statistically significant, then the trend adjustment is applied using a 
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least squares fit method.  For this study, we did not apply trend adjustments (see 

Chapter IV for more discussion of this issue). 

i. Conduct Risk Analysis Using a Geometric Distribution. 
A geometric distribution is used to describe the probability 

distribution among all possible outcomes of a category.  This analysis is required 

to determine the statistical significance of the observed frequency distribution.  

This type of analysis helps assess the certainty that the distribution is not due to 

chance.  We used a 10% significance level (i.e., 90% confidence interval) as a 

cutoff for an acceptable degree of risk.  Further discussion of geometric 

distributions can be found in Wilkis (2006) and Hauser (2007). 

2. Calculation of the Composite Analysis Forecast (CAF) 
Steps a-I described in the prior section provide an outline of the composite 

analysis process.  The outcome from that process is a set of observed frequency 

distributions for the predictands with respect to the predictors, with the statistical 

significance of each distribution determined.  The observed frequency 

distributions describe how observed AN, NN, and BN values of the predictands 

were related to the observed phases of the predictors (e.g., surface temperatures 

were AN in 40% of the JFMs that occurred during EN).  The distributions that are 

statistically significant can then be combined with a probabilistic forecast of the 

predictor to construct a probabilistic forecast of the predictand.  We refer to this 

forecast as a composite analysis forecast (CAF).  An example of the calculation 

used to create these forecasts is given below for a forecast of AN predictand 

conditions given a probabilistic ENLN forecast:  

Forecasted probability of AN predictand conditions = (observed 
probability of being in the AN category given EN) x (forecast 
probability of EN) + (observed probability of being in the AN 
category given neutral) x (forecast probability of neutral) + 
(observed probability of being in the AN category given LN) x 
(forecast probability of LN) 

Here, the observed probabilities are taken directly from the observed frequency 

distributions.  This calculation is repeated for NN and BN predictand conditions to 

get a full forecast of the probability of all three predictand conditions.  Such 
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forecasts (CAFs) are warranted for each season for which there was at least one 

statistically significant frequency distribution. 

The strength of the CAF method is that it exploits the same dataset used 

to generate LTMs, but does so in a way that yields much more refined and 

potential useful information for forecasters.   In addition, CAFs are relatively easy 

to produce.  Many of the steps involved in generating a CAF can be automated.  

The method’s limitations are: its dependence on the availability and accuracy of 

the predictor forecast, and the representativeness of the dataset. 

a. Developing a Composite Analysis Forecast Without an 
Official Probability forecast 

A composite analysis forecast is not possible without a forecast for 

the chosen climate variation phases.  In the absence of an official version of such 

a forecast, we can use the observed tendencies of the variation to change phase 

from one season to the next to develop a probability forecast of the variation.  

The tendencies are determined by identifying for each seasonal transition (JFM 

to AMJ, AMJ to JAS, JAS to OND, OND to JFM) the percentage of times that 

given phase stayed the same, or changed to each of the other two phases (e.g., 

during the 37 JFM to AMJ transitions, EN stayed the same in 40% of the 

transitions, changed to neutral in 30% of the transitions, and changed to LN in 

30% of the transitions).  These percentages can then be used as the forecasts if 

observations of the climate variation phase at the time the forecast is issued are 

available.  We call the resulting forecast of the variation a climate variation 

tendency forecast (TF).  In our study, we created TFs for the NAO because 

official probability forecasts of the NAO were not available.  We also created TFs 

for ENLN in order to compare the skill of the TFs to the skill of the official ENLN 

forecasts from CPC 

The obvious strength in the tendency forecast is that it can be 

performed for all major climate variations.  However, the TF method assumes 

that a given variation will continue to behave as it has in the past.  If the sample 

used to develop the TF probabilities is too small it can cause the forecast to have 

a bias. Of course, this same weakness also holds for the whole composite 
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analysis and composite analysis forecast process, since it is heavily based on 

using past observed relationships to predict future relationships. 

3. Verification 
a. Preliminary Test of CAF Process 
We conducted initial tests of the CAF process by using it to forecast 

JFM precipitation rate related to ENLN in San Diego, California.  This season, 

predictand, predictor, and location were chosen because high quality data is 

available for this location, and because prior studies have shown a strong 

relationship in San Diego between winter precipitation and ENLN, with 

precipitation tending to be higher (lower) than normal during EN (LN) (e.g., 

Philander 1990).  Our application of the CAF process yielded: (1) statistically 

significant relationships between precipitation rate and ENLN that were 

consistent with those from prior studies using different methods; and (2) CAFs 

with positive skill.  

b. Verification of CAFs 
We conducted hindcasts using the CAF process for periods in 

which we withheld observational data.  We then compared the hindcasts to 

observations to verify the CAFs.  The following skill scores, as defined in Wilks 

(2006) were used in the verification process: 

• Heidke skill score (HSS) 

• Probability of detection (PoD) for all events, and for AN, NN, and 
BN events 

• False alarm ratio (FAR) for all events, and for AN, NN, and BN 
events 

• Bias for AN, NN, and BN 

• Forecast accuracy (FA) 
These skill scores were calculated using a 3 x 3 contingency table to determine 

the number of hits, misses, false alarms, and correct negatives for each of the 

predictands (cf. Wilks 2006).  Separate contingency tables were developed for 

each season, predictand, and predictor. 

The CAF probabilities for each were used to proportionately 

distribute the forecast among the three forecast columns of the contingency 
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table.  For example, a single forecast that gave of 50% chance AN conditions, a 

30% chance of NN conditions, and 20% chance of BN conditions was entered as 

a 0.5 in the AN forecast column, a 0.3 in the NN forecast column, and a 0.2 in the 

BN forecast column. 

The same skill scores were applied to assess the skill of forecasts 

based simply on LTMs (the de facto climate forecasts for DoD).  All of these LTM 

forecasts were assigned to the NN forecast column of the contingency table, 

since NN conditions should be close to LTM conditions.  By comparing the skill of 

the CAFs and the LTM-based forecasts, we assessed the improvement that 

CAFs offer over the current climate forecasts for DoD. 
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III. RESULTS 

A. OVERVIEW OF RESULTS 
This section presents an overview of our composite analysis results.  More 

detailed results are found in the Appendix, where all composite analyses results 

are shown in bar chart form. 

1. Results for ENLN 
a. Surface Temperature 
Table 2 shows the frequency distribution results for EN based 

composite analyses of Iraq surface temperature for all four seasons, with bold, 

underlined values indicating statistically significant results.  The only statistically 

significant result was for the neutral BN case in OND with a frequency of 8.3%, 

indicating a low probability of below normal surface temperatures during neutral 

ENLN periods.  Although not indicated in Table 2, some of the results were just 

below the statistical significance threshold (90%) and may therefore warrant 

attention in future studies.  These include neutral AN case in OND with a 

frequency of 50%, and EN AN case in AMJ with a frequency of 11.1%. Based on 

the statistical significance of these results, CAFs would be preferred over LTM 

based forecasts only in OND. 
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Table 2.   Frequency distributions (%) determined from ENLN based composite 
analysis of Iraq seasonal surface temperatures.  Bold, underlined values 

are statistically significance (see Chapter II). 

 
 

b. Precipitation Rate 
Table 3 shows the frequency distribution results for EN based 

composite analyses of Iraq precipitation rate for all four seasons, with bold, 

underlined values indicating statistically significant results.  Statistically significant 

results occurred for all seasons except JFM.  All of the five statistically significant 

results were associated with AN precipitation conditions during EN and neutral 

phases.  No statistically significant signals were observed during LN phases.  

Note that in all seasons during EN, there is a relatively high probability of high 

precipitation (cf. Vorhees 2006).  The statistical significance results indicate that 

CAFs would perform better than LTM based forecasts in all seasons except JFM. 
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Table 3.   Frequency distributions (%) determined from ENLN based composite 
analysis of Iraq seasonal precipitation rates.  Bold, underlined values are 

statistically significance (see Chapter II). 
 

 
 
 
 

2. Results for NAO  
a. Surface Temperature 
Table 4 shows some striking results for NAO based composite 

analyses of surface temperature.  These include a 54.5% frequency of BN 

temperatures in Iraq in JFM during a positive NAO.  The zero values in the JFM 

column of Table 2 indicates that all JFM BN Iraq seasonal surface temperature 

conditions in 1970-2006 occurred during a positive NAO phase.  So below 

normal temperatures are very likely during the NAO positive phase and very 

unlikely during the NAO neutral and negative phases. 
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Table 4.   Frequency distributions (%) determined from NAO based composite 
analysis of Iraq seasonal surface temperatures.  Bold, underlined values 

are statistically significance (see Chapter II). 
 

 
 

Similar to JFM, positive NAO phases were associated with a 

statistically significant low frequency (8.3%) of AN events.  The negative NAO 

phase during JAS was associated with statistically significant frequencies of 0% 

of BN conditions and 70% of AN conditions (the highest of any in this study).  

The message for forecasters is that during the negative NAO phase, above 

(below) normal surface temperatures are very likely (unlikely).  The same holds 

true for OND but the relationships in OND are not as strong as in JAS. 

These results show strong statistical relationships exist between 

the NAO and Iraq seasonal surface temperature during the JFM, JAS, and OND 

seasons.  This allowed us to apply the CAF method to those three seasons. 

b. Precipitation Rate 
The NAO based composite analyses of Iraq precipitation rate 

yielded only two statistically significant results (Table 5).  Both were for BN 

conditions during AMJ.  Positive NAO phases during AMJ, had a statistically 
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significant high frequency (58.3%) of BN conditions, while NAO negative phases 

during AMJ had a statistically significant low frequency of BN conditions.  These 

results do not support the results from Vorhees (2006) for NA related 

precipitation rate anomalies in SWA during OND and JFM (se Chapter I). 

 

Table 5.   Frequency distributions (%) determined from NAO based composite 
analysis of Iraq seasonal precipitation rate.  Bold, underlined values are 

statistically significance (see Chapter II). 
 

 
 

 
3. Forecast Verification Results  
Tables 6-9 show the verification results for the CAF and LTM forecasts.  

The ENLN results show the skill scores for two types of CAFs, those based on 

TFs and those based on the official CPC probabilistic Nino3.4 forecast.  The skill 

of the LTM based forecasts is also shown.  Verification was not done or some 

cases (indicated by n/a in Tables 6-9). 

The results in Table 6 show that both types of CAFs have higher skill 

scores than LTM outlooks used for seasonal forecasts.  In fact, both types of 

CAFs demonstrated greater than zero HSS every time they were applied.  This 
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means the CAFs performed better than a forecast based on random selection.  

Neither of the two types of CAFs nor LTM outlook forecasts demonstrated 

negative skill (HSS less than zero). 

Note that the LTM forecasts detected all NN events but no AN or BN 

events.  Thus, the LTM FAR was 66.67% and the total PoD was 33.33%.  The 

HSS is, approximately, a measure of how well a forecast performed compared to 

a randomly generated forecast (e.g., a randomly selecting AN, NN, BN as 

forecast) (cf. Wilks 2006).  The LTM based forecasts received HSS of zero.  This 

means LTM did no better or no worse than a randomness forecast, implying no 

skill in using LTM outlooks as seasonal forecasts.   

A comparison of the skill of the two types of CAFs shown in Table 7 

indicates that the CPC based CAFs had higher HSS in JAS (0.1425) and OND 

(0.1784), but the TF based CAFs had higher HSS in AMJ (0.0927).  The PODs 

for the CPC based CAFs of AN were quite high for climate forecasts during JAS 

(46.88%) and OND (40.86) (Table 7).  Overall, the CPC based CAFs had 

somewhat higher HSS and total PoD than the TF based CAFs.  Two exceptions 

were for OND temperature and AMJ precipitation rate. 
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Table 6.   Skill scores of: forecasts of seasonal Iraq surface temperature.  Forecasts 
evaluated in this table are: (1) CAFs based on TFs and CPC Nino3.4 

forecasts of ENLN phase; and (2) LTM based forecasts.  The skill score 
types are shown in the leftmost column.  See Chapter II and III text for 

details. 
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Table 7.   Skill scores of: forecasts of seasonal Iraq precipitation rate.  Forecasts 

evaluated in this table are: (1) CAFs based on TFs and CPC Nino3.4 
forecasts of ENLN phase; and (2) LTM based forecasts.  The skill score 
types are shown in the leftmost column.. See Chapter II and III text for 

details. 
 

 
 
 

Tables 8 and 9 show the skill scores of the TF based CAFs for Iraq 

seasonal temperatures and precipitation rate, respectively.  Overall, the CAFs 

performed better than a LTM based forecasts.  In particular, all the HSSs showed 

positive skill, beating randomly generated forecasts and LTM based forecasts. 
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Table 8.   Skill scores of: forecasts of seasonal Iraq surface temperature.  Forecasts 
evaluated in this table are: (1) CAFs based on TFs and CPC Nino3.4 

forecasts of NAO phase; and (2) LTM based forecasts.  The skill score 
types are shown in the leftmost column.  See Chapter II and III text for 

details. 
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Table 9.   Skill scores of: forecasts of seasonal Iraq precipitation rate.  Forecasts 

evaluated in this table are: (1) CAFs based on TFs and CPC Nino3.4 
forecasts of NAO phase; and (2) LTM based forecasts.  The skill score 
types are shown in the leftmost column.. See Chapter II and III text for 

details. 
 

 
 
 
B. SUMMARY OF RESULTS 

There were six statistically significant results for NAO based composite 

analyses of Iraq seasonal surface temperatures during JFM, JAS, and OND.  

One statistically significant result was obtained for ENLN based analyses of Iraq 

seasonal surface temperature during OND.  There were five statistically 

significant results for ENLN based analyses of Iraq seasonal precipitation rates 

during AMJ, JAS, and OND.  And there were two statistically significant results 

for NAO based analyses of Iraq seasonal precipitation rate during AMJ. These 

statistically significant results allowed application of the CAF method to these 

seasons, predictors, and predictands.  The skill of the CAFs was in most cases 
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small but positive.  In addition, the CAFs clearly outperformed forecasts based on 

LTMs.  Since LTMs are the basis for almost all DoD climate outlooks, they are 

the de facto climate forecasts for DoD.  Thus, the forecasts we have tested and 

applied to Iraq surface temperature and precipitation rate are a clear 

improvement n the presently available DoD products.  
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IV. CONCLUSIONS 

A. SUMMARY 
The composite analyses completed for Iraq seasonal surface 

temperatures and precipitation rates using ENLN and NAO indices implies, there 

are links between these variables and these oscillations.  The forecasts based on 

these composite analyses (the CAFs) had positive skill and outperformed the use 

LTM based forecasts.  The statistical links between the predictands and 

predictors (ENLN and NAO) and predictands (temperature and precipitation rate) 

are significant but do not demonstrate causality.  Additional dynamically oriented 

studies are needed to determine the causes of the links we have identified. 

B. JUSTIFICATION FOR MILITARY USE 
As stated in Chapter I, AFCCC develops products that are almost 

exclusively based on LTM.  Military forecasters take these products and provide 

seasonal outlooks to military commanders and planners.  This practice does not 

allow for the consideration of climate variation(s) that affect the area of interest.   

These effects can lead to considerable deviation from the LTM.  It is easy to 

understand how these deviations have adverse affects on military operations if 

not accounted for during planning and decision making phases.  Although not as 

accurate or precise as most short-range forecasts, the CAF method has the 

potential to provide more comprehensive and accurate forecasts than the current 

practice of using LTM based products for long-range military planning. 

In an attempt to provide an example of the benefits of the CAF based 

product, we used the CAF process to create a hindcast of Iraq seasonal 

precipitation rate for OND 2002.  For this hindcast, we withheld data from later 

than December 2000 when we did the composite analysis.  Figure 10 shows an 

example of the results from this hindcast experiment; in particular, the ENLN 

based composite analysis based on data from only 1970-2000. 
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Figure 12.   ENLN based composite analysis of Iraq seasonal OND precipitation 

rate based on data from 1970-2000.  Bars indicate the distribution of AN, NN, 
and BN conditions during OND for the three ENLN phases.  Bars with bold black 
borders indicate results that are statistically significant (see Chapter II for details). 
 

We then applied the OND TF of Nino3.4 to the composite analysis and 

generated the hindcast shown in Figure 13. 
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Figure 13.   Probabilistic hindcast based on CAF process of Iraq seasonal 

precipitation rate for OND 2002.  
 

This seasonal forecast for OND 2002 could have been given on October 1 

2002 to Central Command planners and commanders in support of the on-going 

operations of NORTHERN/SOUTHERN WATCH.  The forecast would have 

provided key information to the planning and execution of air portals and 

intelligence, surveillance, and reconnaissance (ISR) operations over Iraq.  

Theater commanders and planners would have been made aware of a high 

potential for increased precipitation, and related high cloud cover, over Iraq.  The 

increased cloud cover could have been expected to result in negative effects to 

ISR and flight operations.  In addition to the effects on the military decision 

making process, the CAF could have given forecasters better situational 

awareness of potential conditions for the upcoming seasons.  Comparisons of 

the hindcast shown in Figure 13 indicate that had it been issued as a forecast on 

October 1, 2002, it would have verified as correct (anomalously high precipitation 

rates did occur in Iraq during OND 2002, not shown) 
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C. RECOMMENDATIONS TO DEPARTMENT OF DEFENSE 
There are numerous useful applications and variations of a generalized 

CAF process.  In this section we highlight some of the more important ones. 

1. Applying CAF with Other Climate Variations, Variables, 
Datasets, Timescales, and Regions 

The CAF method could be used with other variations (e.g., Indian Ocean 

Zonal Mode, Madden-Julian Oscillation, etc.) which have statistically significant 

relationships with other regions.  These other variations occur on a range of 

temporal scales (annual, monthly, weekly, etc.).  Since the CAF process applies 

to all time scales, skillful long-range forecasts at intraseasonal to decadal scales 

could be generated. 

2. Potential for Improving the CAF 
As stated in Chapter II, one step involved in the CAF process that we did 

not use was trend adjustment.  As seen in Figure 14, the timeseries of the Iraq 

seasonal surface temperatures reveals a warming trend from 1970 to 2006.  This 

was not accounted for in our study but if applied, would likely have yielded a 

product with more skill. 
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Figure 14.   The timeseries of Iraq seasonal surface temperatures for each of 

the seasons.  The bold red lines are approximations of the warming trends seen 
in each timeseries.  Timeseries generated at ESRL website [accessed online at 

http://www.cdc.noaa.gov/ March 2007]. 
 
 
 

3. Development of Seasonal Forecasts for MAJCOM Regions  
Figure 15 shows an example of seasonal forecast produced by CPC for 

North America.  Using the CAF process, or related processes used by CPC and 

IRI, similar forecasts could be developed for the DoD unified major commands 

(MAJCOMs; Figure 16).  One potential MAJCOM product is a seasonal 

probability line-of-sight forecast based on specific ISR platform thresholds.  This 

could provide vital long-range planning for the positioning of key ISR assets (e.g., 

satellites, Global Hawk, etc.). 
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Figure 15.   Example of a CPC 3-month outlook of U.S. temperature 
probabilities.  Figure from http://www.cpc.ncep.noaa.gov/ [Accessed 6 March 

2007] 
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Figure 16.   Areas of responsibility for the DoD Unified Major Commands.  
Figure from https://www.army.mil/ [Accessed 6 March 2007] 

 
 
 

4. Application Cost Analysis for DoD Operations 
Although we can imagine the potential benefits in providing DoD 

commanders and planners a seasonal climate CAF, we cannot confirm any 

specifics in the way of cost analysis.  We recommend a cost analysis study 

demonstrating the estimated loss (savings) of DoD time and resources from a 

incorrect (correct) seasonal forecast of a previous event.  A cost analysis study 

may provide a more definitive value of this type of forecast. 
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APPENDIX: COMPOSITE ANALYSIS FIGURES 

 
 

Figure 17.   ENLN based composite analysis of seasonal Iraq surface 
temperature (1970-2006).  Bars with bold black borders indicate statistically 

significant results.   
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Figure 18.   ENLN based composite analysis of seasonal Iraq precipitation rates 
(1970-2006).  Bars with bold black borders indicate statistically significant results. 
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Figure 19.   NAO based composite analysis of seasonal Iraq surface 
temperature (1970-2006).  Bars with bold black borders indicate statistically 

significant results.   
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Figure 20.   NAO based composite analysis of seasonal Iraq precipitation rates 
(1970-2006).  Bars with bold black borders indicate statistically significant results. 
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