

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

FIELD LEVEL COMPUTER EXPLOITATION PACKAGE

by

Adrian Arvizo
Vincent Janowiak

March 2007

 Thesis Advisor: Chris Eagle
 Second Reader: George Dinolt

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-
0188

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Field Level Computer Exploitation
Package
6. AUTHOR(S) Adrian Arvizo and Vincent Janowiak

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
 On today’s battlefield whether in Afghanistan or Iraq, ground combat
forces are dealing with an adversary that has embraced the use of computers
and electronic devices. Until now, there was no package of consolidated
forensic tools available to the ground combat forces with the capability of
conducting a quick interrogation of these devices. After a unit has captured
a target that possesses electronic devices that require immediate
exploitation, the devices are transferred to higher authority. Valuable time
is lost locating and capturing associates of the target as the information is
sent away to higher authority for analysis. The product of this thesis,
“Interrogator,” was designed to prevent or reduce the time lost by allowing
anyone to quickly retrieve data that is stored on a computer. This capability
will positively aid a small unit commanders’ ability to exploit critical
vulnerabilities of the enemy in a timely manner and improve the survivability
of the unit and the ability to complete their mission.

15. NUMBER OF
PAGES

127

14. SUBJECT TERMS
Computer forensics, Graphical User Interface, Linux

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

FIELD LEVEL COMPUTER EXPLOITATION PACKAGE

Adrian E. Arvizo
Lieutenant, United States Navy

B.S., University of Arizona, 2001

Vincent J. Janowiak
Lieutenant Commander, United States Navy
B.S., Norfolk State University, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2007

Authors: Adrian Arvizo

 Vincent Janowiak

Approved by: Chris Eagle
Thesis Advisor

George Dinolt
Second Reader/Co-Advisor

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

On today’s battlefield, whether in Afghanistan or

Iraq, ground combat forces are dealing with an adversary

that has embraced the use of computers and electronic

devices. Until now, there was no package of consolidated

forensic tools available to the ground combat forces with

the capability of conducting a quick interrogation of these

devices. After a unit has captured a target that possesses

electronic devices that require immediate exploitation, the

devices are transferred to higher authority. Valuable time

is lost locating and capturing associates of the target as

the information is sent away to higher authority for

analysis. The product of this thesis, “Interrogator,” was

designed to prevent or reduce the time lost by allowing

anyone to quickly retrieve data that is stored on a

computer. This capability will positively aid a small unit

commanders’ ability to exploit critical vulnerabilities of

the enemy in a timely manner and improve the survivability

of the unit and the ability to complete their mission.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. THE WAR ON TERRORISM1
B. USAGE SCENARIO2

1. Background2
2. Mission Planning3
3. Operations3
4. Post Operations3
5. Conclusion4

C. PURPOSE OF THE STUDY5
D. THESIS ORGANIZATION8

II. BACKGROUND ...11
A. POINTS OF CONTACT11
B. GENERAL NOTES12
C. CURRENT PROCEDURES14
D. COMPUTER FORENSICS14
E. TYPES OF FORENSICS15

1. Disk Imaging15
2. Live Incident Response17
3. Network18

F. FORENSIC TOOLS19
1. DC3 ..19
2. FCCU ...19
3. Helix ..20
4. Insert20
5. F.I.R.E.21

G. PRIVACY AND LEGAL ISSUES21
III. DEVELOPMENT ..23

A. OPERATING SYSTEM PLATFORMS23
B. DESIGN OF THE GRAPHICAL USER INTERFACE (GUI)25

1. Set Source26
2. Set Target27
3. Easy Search28
4. Advanced File Search29
5. Keyword Search30
6. Create Image30
7. Clear ..32
8. Shutdown32
9. Output Windows33
10. View and Backup Files33
11. Keyboard Input33

C. REMASTERING34
D. INCORPORATED TOOLS34

 viii

1. Standard Java Methods35
2. Standard Linux Commands35
3. Wabread36
4. Pasco ..36
5. Mork.pl37
6. dcfldd38
7. CrossOver Linux and Outlook 200338

E. TESTING ...40
IV. CONCLUSIONS ..45

A. SUMMARY ...45
B. FUTURE RESEARCH46

1. Open Source Production46
2. Foreign Language Support47
3. One-Click Searching47
4. Instant Messenger Data Collection48
5. Anti-Reverse Engineering48
6. Eliminate Unnecessary Features48
7. Remote Server Data Transfer48
8. Additional PIM Support49
9. Additional Address Book Parsing49
10. File Search by Format49
11. Searching Within Compressed Archives50
12. Virtual Machine File Search50
13. Searching Logical Volumes51
14. Malicious Software Search51
15. Formatting Output Files51

APPENDIX A. USER’S MANUAL53
A. INTRODUCTION53
B. SYSTEM REQUIREMENTS53
C. INSIDE THE KIT53
D. BEFORE YOU BEGIN54
E. BOOTING INTERROGATOR KNOPPIX55
F. SELECTING THE SOURCE AND TARGET DRIVES57
G. SEARCH OPTIONS59
H. CREATING IMAGES63
I. SHUTTING DOWN64
J. TROUBLESHOOTING65

APPENDIX B. REMASTERING INTERROGATOR KNOPPIX69
A. INTRODUCTION69
B. SYSTEM REQUIREMENTS69
C. STEP-BY-STEP REMASTERING69

1. Preparation69
2. Changing Startup Graphic and Background70
3. Removing Packages71
4. Adding Utilities/Scripts72

 ix

5. Setting File Associations72
6. Final Remastering Steps73

APPENDIX C. SOURCE CODE75
A. INTERROGATOR.JAVA75
B. INTERROGATORSEARCHOPTIONS.JAVA89
C. PROGRESSINDICATOR.JAVA93
D. KEYWORDSEARCHOPTIONS.JAVA94
E. FILEFILTER.JAVA98
F. STARTINTERROGATOR.SH100
G. WABREAD.SH100
H. FIREFOXHISTORY.SH100
I. IEHISTORY.SH100
J. DCFLDD.SH ..101
K. KEYWORDSEARCH.SH101
L. STARTOUTLOOK.SH101

LIST OF REFERENCES ...103
INITIAL DISTRIBUTION LIST109

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Main Interrogator Screen........................26
Figure 2. Set Source Window...............................27
Figure 3. Set Target Window...............................28
Figure 4. Easy Search Dialog Box..........................29
Figure 5. Advanced Search Dialog Box......................30
Figure 6. Keyword Search Dialog Box.......................30
Figure 7. Create Image....................................31
Figure 8. Naming the Image................................32
Figure 9. Shutdown Screen.................................33
Figure 10. Interrogator Splash Screen......................56
Figure 11. Main Interrogator Screen........................57
Figure 12. Set Source Window...............................58
Figure 13. Easy Search Dialog Box..........................60
Figure 14. Easy Search Results.............................61
Figure 15. Advanced Search Dialog Box......................62
Figure 16. Keyword Search options dialog box...............63
Figure 17. Naming the Image................................64
Figure 18. Shutdown Screen.................................65

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Laptop Computer Testing Data....................42
Table 2. Desktop Computer Testing Data...................43

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGEMENTS

The authors would like to acknowledge the financial

support of SPAWAR, Code 2875, for allowing the purchase of

the equipment used in this thesis. This work was performed

under Contract N6600106WR00101. We would also like to

thank Brian White from SPAWAR as our mentor. Finally, we

would like to thank our thesis advisors Chris Eagle and Dr.

George Dinolt for giving us the opportunity to work on this

thesis, taking the time for its review and providing the

guidance and constructive feedback necessary to make it a

worthwhile learning experience.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. THE WAR ON TERRORISM

Photographs and documents about Iraqi training camps

that existed during Saddam Hussein’s regime were part of a

very large collection of items that were captured in

postwar Iraq and Afghanistan [Ref. 1]. The items include

handwritten notes, typed documents, audiotapes, videotapes,

compact discs, floppy discs, and computer hard drives. The

data retrieved from digital devices together with

photographs and other items gave United States intelligence

officials an inside look at the activities of Hussein’s

regime in the months before the Iraqi War. Intelligence

officials who have worked on document exploitation tell us

there were roughly two million "exploitable items" captured

in postwar Afghanistan and postwar Iraq. Of that number,

they say, some 50,000 have been fully exploited [Ref. 1].

These two million exploitable items are no longer in

theater; they have been removed and distributed to other

organizations where more analysis resources are available.

There are very limited methods, tools and personnel

available to conduct this kind of exploitation in the

field. This is mostly because the current tools that exist

for this work are very difficult to use. There are a few

experts in the field who are capable of using the tools to

conduct the exploitation, but the number of these experts

is not nearly large enough to accomplish the amount of

useful work that could be done.

As the exploitation takes place within other

organizations outside of the battlefield, the data is not

 2

analyzed or consolidated and disseminated in a timely

fashion for battlefield use. Why should the warfighter in

the field not have the ability to tap into this wealth of

knowledge on a real-time basis?

It may be necessary to piece together several

documents, images and voice recordings in order to arrive

at the conclusion that terrorists are being trained and the

location of said training. This does not mean that

interrogating an individual piece of electronic equipment

in the field is a waste of time; it’s certainly possible

that doing so would yield information that might

immediately be useful. We have developed a tool that we

call the “Interrogator” to assist in the field evaluation

of captured computer devices for intelligence information.

B. USAGE SCENARIO

The following scenario presents a real world operation

that demonstrates how Interrogator could have been utilized

to assist the ground combat forces. This scenario has been

sanitized for public release.

1. Background

Unit A has received numerous tips from locals about

someone who we will call “Bad Man.” This individual has

been implicated in a number of attacks against local and

coalition forces. Multiple source intelligence sources

indicate that Bad Man has links with known terrorist cells

throughout the region and is constantly on the move.

Conventional wisdom states that Bad Man serves as a

facilitator for anti-coalition forces by smuggling various

items to finance acts of intimidation and murder. However,

 3

Unit A does not know the location of Bad Man and has no

physical evidence to support its reports about his actions.

2. Mission Planning

One day, Unit A gets a Human Intelligence (HUMINT)

report that details the location of Bad Man within their

area of operations (AO). The commander decides that he has

the proper resources to detain Bad Man issues an order

directing his immediate capture. During mission

preparation, the raid force commander, with staff support,

starts mission planning that can be generalized with the

acronym SMEAC: Situation, Mission, Execution,

Administration and Logistics, Command and Signal. The raid

force commander includes a post raid sensitive sight

exploitation (SSE), which is the evidence collection,

handling and detainee processing part of actions on the

objective. The results of the SSE will help Unit A

determine if the reporting on Bad Man is accurate.

3. Operations

Unit A conducts the raid and captures Bad Man. During

the SSE, a couple of computers and communication devices

are discovered at his location. Unit A collects all the

evidence and ships it off to higher authority where it is

registered and eventually undergoes forensic analysis.

4. Post Operations

Weeks later, during the data mining of Bad Man’s hard

drives, a document is found that lists several well known

terrorists; some who are in custody and others who are

still operating throughout the country. Bad Man’s points

 4

of contact show their contact number, email information,

previous missions, and current location. The analysis

organization quickly realizes the value of this find and

puts the information in a report and immediately sends it

back to the headquarters for the unit that initially

obtained the equipment. On a positive note, the discovered

information proves sufficient enough to have a local judge

detain Bad Man until he can stand trial. On the other

hand, as unit commanders get the report on Bad Man’s

contact, they direct raids to round up all of Bad Man’s

associates only to find out that they are too late. Thus,

terrorist cells that had any contact with Bad Man or his

associates change their tactics, techniques and procedures

(TTPs) to continue future operations with little to no

interference. Coalition forces must start all over again

in trying to understand and neutralize the adversarial

force in their AO.

5. Conclusion

The capability for data reduction that Interrogator

provides would positively aid small unit commanders in

their ability to improve the cycle time for the collection

and application of actionable intelligence1, thus enabling

them to exploit critical vulnerabilities of the enemy more

rapidly. Force multipliers are needed on today’s

battlefield where intelligence is time sensitive and lives

are on the line daily. In its current form, Interrogator

does not have the capability to work with foreign

1 Actionable Intelligence (AI) is defined as the means of providing a

commander and his warriors a level of situational understanding,
delivered with speed, accuracy and timeliness, to conduct successful
operations.

 5

languages. This is a challenge that could be overcome then

Interrogator could be pushed to small unit commanders. The

goal of Interrogator is to help commanders improve the

survivability of their unit, which means saving lives and

accomplishing their mission of neutralizing or destroying

the enemy more efficiently.

C. PURPOSE OF THE STUDY

The purpose of the work documented in this thesis was

to develop a user-friendly tool capable of extracting data

from a computer that might be useful as near real-time

intelligence to the warfighter in the field. By

accomplishing this, one of our goals was to support ground

combat forces operating as described in the scenario above.

Some examples of the types of data that could serve as

real time intelligence are files that contain mission

information or details about locations of associates,

contact information, web browser history, images and

videos. Gathering this information from a single enemy

computer may not yield all of the enemy’s secrets, but it

might lead to the next terrorist stronghold or even reveal

a phone number that can be used to track down the enemy.

With that in mind, it was our goal to provide the ability

to retrieve files containing data useful for the warfighter

in the field.

There are many software and hardware tools that are

capable of extracting this data but none provide an

integrated environment from which to collect all types of

information with one “tool” at a time. Many of these tools

 6

require a detailed theoretical and working knowledge of

operating systems and command line interfaces, commonly

referred as CLIs.

A command line interface is nothing more than a tool

that an operator uses to communicate with a computer. This

sounds like a simple process but the reality is that there

are rules that must be followed that apply to the syntax

for a CLI. Unfortunately, the syntax and the rules change

and are dictated by either the operating system (for

example, MS-DOS or UNIX) or by embedded systems (i.e.,

Juniper Networks or Cisco Systems) [Ref. 2]. In addition

to knowing the syntax and the rules, the operator must also

know the different options that can be applied to the

commands.

Here are some examples of the format typically used

for a CLI:

[doSomething] [how] [toFiles]
or
[doSomething] [how] [sourceFile] [destinationFile]
or
[doSomething] [how] < [inputFile] > [outputFile]

Here is an example taken directly from Appendix C of

this thesis:

find $1 -regextype posix-extended -iregex "$2" -print |
\sed -e 's/.*/"&"/' | xargs egrep -a -i -l "$3"

This is the Linux command sequence to search a

directory for files with specified keywords. The syntax

for each command is described in its respective “Manual

Page” [Refs. 3, 4, 5, 6]. Every set of characters is a

 7

different argument that must be applied in order to

complete the search. To be able to construct commands like

this efficiently, the operator must have a reference

available to look up the details of each of the commands

and the arguments that they might use or have many years of

Linux forensic experience and an excellent memory.

Today the operating environment that most computer

users are familiar and comfortable with is called a

graphical user interface (GUI). Microsoft has dominated

the operating system industry since the introduction of its

Windows operating system that implements a GUI.

A GUI is a computer environment that attempts to

simplify the user's interaction with the computer. This is

done by representing programs, commands, files, and other

options as visual elements in the form of graphical

elements such as icons, pull-down menus, buttons, scroll

bars, windows, and dialog boxes. By selecting one of these

elements, either using a pointing device such as a mouse or

a selection from a menu, the user can initiate different

activities, such as starting a program, printing a document

or running the command noted above for conducting a keyword

search [Ref. 2].

The average warfighter in the field lacks the skill

and training to invoke tools using complex command lines

and, in fact, many well trained computer users would

struggle with such a task. With the use of Interrogator,

nearly any member of a combat ground unit, after very

little training, would be equipped to conduct a search of a

computer. If the data retrieved during the search yields

 8

information that leads to further successful missions and

lives being saved, then Interrogator will have served a

useful purpose.

D. THESIS ORGANIZATION

In this thesis we present some of the basic concepts

that are involved with computer forensics. Chapter II

discusses a few of the techniques that are currently being

practiced as well as the difficulties associated with these

techniques relative to the project. Chapter II also

provides an introduction to the privacy issues and legal

aspects of computer forensics. Chapter III discusses the

development in-field forensics product we produced as part

of our work. This discussion includes operating systems

that were investigated for use as the project’s platform

and the reason KNOPPIX was selected. Chapter III also

provides details of the process of putting the project

together and an introduction to remastering KNOPPIX.

The most important part of Chapter III is the

implementation of the search tools that were selected for

use in Interrogator. Chapter IV contains our conclusions

along with a summary of the project and potential areas for

future research. There are three appendices attached, that

make up a significant portion of the thesis. Appendix A is

the User Manual for Interrogator. It can be used as a

standalone document for direction on using Interrogator.

Appendix B contains detailed instructions for remastering

KNOPPIX with the many customizations required for

Interrogator. Appendix C contains the Java source code for

 9

creating the GUI that links all the tools together. This

code is what makes Interrogator the most user friendly

option for any basic computer data retrieval.

 10

THIS PAGE INTENTIONALLY LEFT BLANK

 11

II. BACKGROUND

A. POINTS OF CONTACT

Major Hezekiah Barge was a member of the Information

Operations Staff for First Marine Expeditionary Force and

he is also a graduate of the Naval Postgraduate School.

Major Barge initially approached NPS staff and proposed the

idea of NPS students designing a GUI-based, user-friendly

package for conducting quick computer interrogations in the

field. This proposal was then brought to our attention by

our thesis advisor as a potential thesis topic. Major

Barge expressed the need for this because of the difficulty

in using the tools that are currently available. He also

noted that there was a lack of time, lack of training and

lack of experience on the part of the users that would be

able to take advantage of the data retrieved from the

computer. Major Barge explained that if a tool could be

designed that nearly anyone could use, regardless of

training or experience, it could potentially provide

invaluable intelligence information in the field.

In July 2006, NPS hosted an Information Warfare

Workshop, and one of the main focus topics was Cyber

Forensics2. During the cyber forensics talks, a

presentation was given by Andrew Woods, a Special Agent

with the Navy Criminal Investigative Service (NCIS). After

2 The workshop was held at the SCI level at the Naval Postgraduate

School 25-27 July 2006. It was sponsored by the department of
Energy/Office of Intelligence (DOE/IN-1), Joint Information Operations
Project Office (JIOPO) and Space and Naval Warfare Systems Center San
Diego (SSC-SD). Participants included Naval Criminal Investigative
Service (NCIS), Army Criminal Investigative Service (Army CIS), Air
Force Office of Special Investigations (AFOSI) and Department of
Defense Cyber Crime Center (DC3).

 12

discussing this thesis research topic with Special Agent

Woods, he was very enthusiastic about it and provided a

point of contact within NCIS, Timothy Fowler. Special

Agent Fowler works in the Cyber Department at NCIS and is

directly involved with computer forensics with the armed

forces in the field. After several email exchanges and

telephone conversations, it became apparent that there is a

real need for a user-friendly tool capable of collecting

data to be analyzed for intelligence in the field.

Also presenting during the cyber forensics talk was a

representative from Department of Defense Cyber Crime

Center (DC3)3. The DoD Cyber Crime Center is the center of

excellence for the investigation of computer crimes against

the Department of Defense [Ref. 10]. Within DC3 is the

Defense Computer Forensics Lab (DCFL), whose mission is to

provide digital evidence processing, analysis, and

diagnostics for any DoD investigation that requires

computer forensic support. The representative from DC3

also reinforced the need for the type of product that was

intended to be developed by this thesis research. DC3 has

a Digital Forensics Toolkit available on CD through the

Defense Cyber Crime Institute (DCCI). This toolkit will be

discussed in the section on current tools.

B. GENERAL NOTES

As the United States fights the war against terrorism,

there are thousands of fighting men and women in the field

throughout the entire world. During any one particular

3 DC3 is located in Linthicum, MD. It was founded on 1 Oct 2001 and

consists of the Defense Cyber Crime Institute (DCCI), the Defense
Computer Forensics Laboratory (DCFL) and the Defense Computer
Investigations Training Program (DCITP).

 13

mission in the field they may obtain electronic equipment

that was or is currently in the hands of the enemy or

suspected enemy. There are no written procedures that

instruct the warfighter in the field what to do with a

piece of electronic media or electronic equipment while

they have it in their possession. Electronic media and

equipment, in this case, refers to desktop computers,

laptop computers, PDAs, cell phones, floppy disks, CDs,

DVDs, flash drives, etc. In most cases, the equipment

obtained in the field is passed up the chain of command.

Once it has been taken from the battlefield, it is handled

and processed by personnel designated and trained to handle

electronic media but is not quickly interrogated for

information that could prove useful as real time

intelligence. In some cases electronic media and equipment

are delivered to other organizations where deep forensic

analysis takes place. Again, this analysis does not meet

the needs of the warfighter for real time intelligence data

in the field [Ref. 11].

Computer forensics examinations can be conducted for

the purpose of performing a root cause analysis of a

computer system that failed or is malfunctioning, or to

find out who is responsible for misuse of computer systems,

or perhaps who committed a crime using a computer system or

against a computer system. Computer forensic techniques

and methodologies are commonly used for conducting

computing investigations - again, in the interest of

determining what happened, when it happened, how it

happened, and who was involved. These are not the only

ways that computer forensics can be used; it can also be

applied to fight the war on terrorism.

 14

C. CURRENT PROCEDURES

The results presented in this thesis concern the

development of a data retrieval tool called “Interrogator”

that is designed to be used on desktop and laptop computers

that have been confiscated. It is also capable of being

operated from one computer while interrogating a hard drive

removed from another computer or interrogating a USB flash

drive. Interrogator is a data retrieval tool that has

underlying functionality that is similar to a computer

forensics tool. The difference is that the end user and the

purpose of the data retrieval are significantly different

from those for traditional computer forensic tools.

A discussion of traditional computer forensics is

necessary in order to understand the difference between

traditional computer forensics and the data retrieval that

is conducted using Interrogator.

D. COMPUTER FORENSICS

Computer forensics, like other fields of forensics,

comes with a complete and demanding set of requirements for

handling and maintaining the electronic data that has been

collected in order for that data to be used as legal

evidence [Ref. 16]. Some of the privacy and legal aspects

of electronic data retrieval will be discussed later in

this chapter. These privacy and legal aspects, in a general

sense, do not apply to the use of the Interrogator if it is

used for its intended purpose.

One common definition of computer forensics is the

application of forensic science techniques to computer-

based material. One interpretation of this is that

 15

computer forensics is the process of identifying,

preserving, analyzing, and presenting digital evidence in a

manner that is acceptable in a legal Proceeding [Ref. 9].

Using currently available tools, this collection of

computer data requires the collecting agent or user to have

an in-depth knowledge of computer hardware and software in

order to retain and establish the integrity of the data

collected.

In many cases, information is gathered during a

computer forensics investigation that is not typically

available or viewable by the average computer user, such as

deleted files and fragments of data that can be found in

the space allocated for existing files - known as slack

space. Special skills and tools are needed to obtain this

type of information or evidence.

E. TYPES OF FORENSICS

1. Disk Imaging

One of the most common and popular operations in

computer forensics is to copy the entire hard drive; this

is also referred to as disk imaging4. Once this is done it

is then possible to search the image along with information

that may be found on other peripherals and on back up media

[Ref. 7]. Data contained in the disk image includes files,

slack area, and unallocated space. This method provides

the investigator the opportunity to work with the drive

image and the data contained there at a slower and more

determined pace and allows the flexibility of being able to

use many more computer forensic tools when time is not an

4 Disk imaging is the process of creating a bit-for-bit copy of a
partition or hard drive.

 16

issue. More importantly, this method allows the

investigator to maintain the disk in the exact condition it

was received. It can be proven in court that the image has

not been tampered with through the use of hash algorithms

such as MD5 and SHA-1.

As a forensic investigator, it is essential to ensure

that a perfect snapshot of the system can be taken. One of

the problems that ensue with this method of computer

forensics is that nearly anything that is done to a system

can change it. For example, unplugging the network cable

from a running system will change the system — but leaving

the network plugged in will change it too! Even if you

decide to do nothing, the system will change because, at a

minimum, the time on the system constantly changes. The

best an investigator can do is to create a representation

of the current state of the system as accurately as

possible, documenting what steps he took in preparation for

creating the image.

After imaging the device, the investigator can later

mount5 the image as if it were an actual hard drive

partition. He can perform the same operations using the

same tools as if he had the original disk in his

possession. This allows the investigator to perform the

analysis at his leisure rather than with the time

constraints of an on-site investigation.

5 Mounting is the process of making a file system ready for use by

the operating system, typically by reading certain index data
structures from storage into memory ahead of time.

 17

2. Live Incident Response

There might be an occasion when a computer incident

has taken place and the investigator cannot afford to shut

down the system or remove the computer from a network.

There are a few reasons why this might be true but the most

likely reasons are that a proper backup has not been made

or the only evidence of the incident is in memory. In

these cases it is necessary to do a live incident response.

The data collected during a live incident response can

be broken down into two categories: volatile and non-

volatile. If the computer were to be shut down or

unplugged from the power source the information in the

volatile memory would be lost. A few examples of

information that could be retrieved from this memory are

current network connections, running processes and files

currently in use by any running programs. If this

information is not collected while the computer is turned

on, then it will not be retrievable after the computer is

shut down. Non-volatile memory is where all of the data is

stored that could be retrieved during many other types of

computer forensics analysis.

Interrogator was not designed to conduct a forensic

data reduction on a computer that cannot be shut down. The

warfighter in the field is not so concerned with network

connections or running processes that would be lost in the

volatile memory. There is a potential desire to see any

open files, as stated above, if those files were some form

of document. By using Interrogator, finding these files is

still possible as they may have been saved in temporary

file directories.

 18

3. Network

Another aspect of the computer forensics field is the

study of network forensics. This has become a necessity

because of the constantly growing eCommerce industry and

the stiff competition between companies to obtain the

economic fortunes of the world. Enterprise networks can

have the same concepts of computer forensics applied that

are used on individual computers.

Network forensic analysis has actually been
around as long as there have been networks;
tcpdump and to a lesser extent windump have been
used for years to analyze network traffic. In
the past few years, however, network forensic
software has become as sophisticated as
applications designed for host-based forensics.
[Ref. 9]

Again, Interrogator was not designed to conduct any

form of network forensics. In the battlefield, the need to

obtain real time intelligence information does not include

the ability to investigate a network intrusion. The tools

that would be necessary for network forensics are called

Intrusion Detection System (IDS) tools. These come in the

form of both hardware and software but are not included in

this thesis research. All the tools listed below, with the

exception of DC3, are open source and can be downloaded

free of charge from their respective websites listed in the

References.

 19

F. FORENSIC TOOLS

In this section we give the reader a brief description

of some computer forensics tools. It is, by no means, an

exhaustive list; just a brief description of a few tools

that are currently being utilized in the field of computer

forensics. Detailed information on Live CDs, which most of

these tools are based on, can be found in Chapter III.

1. DC3

Of the forensic tools investigated for this thesis,

the Digital Forensics Toolkit is the only non-bootable CD.

It contains several forensic utilities that can be executed

from an already-running Windows system. The toolkit is

provided by the Defense Cyber Crime Institute [Ref. 10],

but is only available to United States Department of

Defense, Law Enforcement and Counterintelligence personnel.

The forensic tools are applications that must be installed

on the local hard drive and then executed from there.

Although the tools are useful, they were not designed to

retrieve the data that was identified as being useful as

real time intelligence.

2. FCCU

Federal Computer crime Unit (Belgian) – FCCU is a CD-

ROM based forensic disk that is based on KNOPPIX 5.016.

This particular forensics disc is very powerful and useful.

The downside to this collection of tools, as with many

forensic tools, is that it is difficult to use because all

user interaction is through the command line interface.

6 KNOPPIX is a Linux operating system distributed on a CD-ROM that

can be run without installation.

 20

The most recent version of the CD has 163 command line

utilities. The user manual is available in PDF format from

the FCCU web site [Ref. 11]. Although the user manual is

helpful, it still requires the user to have significant

experience in the Linux command line. This tool did not

meet the requirements of the thesis study.

3. Helix

Helix is another Linux-based bootable CD-ROM. Helix

claims to be a forensically sound environment. The

procedures used to collect data are designed to retain the

data in a format that makes it acceptable to use as legal

evidence. This is not something that was considered to be

necessary in the development of Interrogator or on the

battlefield. Helix also has two operating modes: Linux and

a Microsoft Windows executable feature. It can be used to

conduct live incident response or to boot into the Linux

environment. In the Linux environment it does boot into a

graphical user interface but significant training is still

required before it can be used by an in-field user. The

most recent version of Helix is 1.8 and more information

can be found at the Helix website [Ref. 13].

4. Insert

Insert is also a Linux-based bootable CD-ROM. It is

made and distributed by Inside Security. One big advantage

that Insert has is the fact that it is quite small compared

to most bootable CDs. At only 60 megabytes it can be

burned on to a credit card size CD-ROM by over-burning7.

7 Over-burning (or over-recording) is the common term referring to

storing more data on a recordable disc than its reported capacity
indicates.

 21

This can also be a disadvantage since the number of tools

included on the disc is limited by its size. It can be

used from the GUI or from the command line. The command

line, for reasons already stated, is not suitable for use

in the field. Although it has a GUI, it is only used to

launch the included forensic utilities. Each utility then

has its own text-based interface, which the user must use

to enter various parameters. The most recent version of

Insert is 1.3.9a and more information can be found on the

Insert website [Ref. 14].

5. F.I.R.E.

 Forensic Incident Response Environment is a bootable

CD that boots into a very primitive but effective menu-

driven interface. The most recent version is 0.3.5b and is

available for download but has not been updated since May

of 2003. The disc contains several tools that would not

prove to be useful in the field. As a forensics CD, the

tools that might prove useful include image processing

tools but the disc really seems to focus on virus scanning

and system penetration testing, neither of which is needed

for the data retrieval that is desired by the warfighter.

More information on FIRE can be found at the website [Ref.

15].

G. PRIVACY AND LEGAL ISSUES

The Interrogator product created as part of this

research is intended to be used by military forces to

interrogate equipment that has been obtained during

military operations. Therefore the privacy and legal

implications associated with using the Interrogator do not

 22

fall under the general requirements discussed here. This

section is intended to be for background information

relative to forensics in general.

There are always privacy and legal implications to

consider anytime data is gathered that can potentially be

used against another person. It is certainly an issue with

regard to collection of evidence for the purpose of

establishing guilt and the need to prosecute for a crime

committed. These privacy and legal implications are not

expected to be to be an issue when dealing with data

gathered from enemy electronic devices.

Most computer forensics involves the application of

investigative and analytical techniques to acquire and

protect potential legal evidence. The Fourth Amendment8 to

the United States Constitution limits the ability to search

for evidence without a warrant. With this restriction, any

search of a computer or similar electronic device would be

considered a violation of privacy much like a file cabinet

[Ref 16]. Again, the use of Interrogator in its intended

environment would not lead to issues of legality or

privacy. For more detailed explanations on this subject,

see [Refs. 16, 17].

8 The Fourth Amendment to the United States Constitution states: “The

right of the people to be secure in their persons, houses, papers, and
effects against unreasonable searches and seizures, shall not be
violated, and no warrants shall issue, but upon probably cause,
supported by oath or affirmation, and particularly describing the place
to be searched, and the persons to or things to be seized.” [Ref. 16]

 23

III. DEVELOPMENT

A. OPERATING SYSTEM PLATFORMS

In order to effectively analyze computer storage

devices, it is necessary to have an operating system (OS)

running on the computer with the connected drives. The

computer should not be booted with its existing OS for

several reasons. First, the contents of the underlying

disk will change during analysis. Second, the existing OS

may be password protected. Third, there may be traps in

place to erase the data or send a signal when the native

operating system detects an unauthorized user.

The solution is to boot the computer system from a

known good OS. Traditionally, OSs require a lengthy

installation and configuration procedure tailored for the

specific hardware the system is expected to operate on.

This type of OS would not meet the goals of the project

because there is not enough time to do this near the

battlefield and the fact that the target system would be

modified. The recent advent of Live CDs (also called Live

Distributions) allows a wide range of computer system

configurations to be booted from a single disc or USB drive

without having to install an operating system onto the

computer’s hard drive [Ref 18].

Live CDs exist for several different computer

architectures including Intel x86, PowerPC, and AMD64 [Ref.

18]. The vast majority of personal computers sold are

based on the x86 platform [Ref. 19], which is also the

 24

target platform for the Interrogator project. Since it is

the most common platform, nearly all Live CDs are designed

to run on x86 computers.

Several Live distributions were investigated for use

as the OS upon which Interrogator would run. Only one

disc, BartPE [Ref. 20], was based on Windows while the rest

were based on Linux. The final selection was based on

hardware compatibility, boot time, and customizability.

BartPE initially looked promising from an ease-of-use

perspective because it is based on Windows XP.

Unfortunately, it had several problems that prevented its

use for this project. Its hardware compatibility is rather

limited, requiring third-party drivers to be added

individually to support devices such as SATA and SCSI

controllers. Customization was also limited since

additional functionality had to be added with the use of

BartPE plugins9. Finally, it did not appear to have the

ability to mount disk partitions with read-only access,

which would be an essential feature to prevent a user from

altering or damaging the original data.

We evaluated Linux-based distributions including

Ubuntu [Ref. 21], SuSe [Ref. 22], Fedora [Ref. 23], Kanotix

[Ref. 24], and KNOPPIX [Ref. 48]. After experimenting with

each of them on several systems, it was determined that

KNOPPIX provided the best all-around solution. Outstanding

9 A BartPE plugin may be a driver or an application that can be

loaded into BartPE to add functionality.

 25

features included full NTFS10 read/write drivers and

extensive customization capabilities via remastering.

Additionally, KNOPPIX booted properly on all systems that

were used during the testing phase. Details of these

systems can be found in Chapter III, Section E, Tables 1

and 2.

B. DESIGN OF THE GRAPHICAL USER INTERFACE (GUI)

One of the project’s primary goals was ease-of-use for

computer novices. The GUI played a pivotal role in meeting

the requirements. We wanted to minimize the workload and

training required of the user while still being able to

obtain useful data from the system.

Once the system has booted, the user is presented with

a simple interface containing a series of buttons across

the top, two output windows in the center, and three

buttons at the bottom as seen in Figure 1.

10 NTFS stands for New Technology File System. It is the standard

file system of Windows NT and its descendants: Windows 2000, Windows
XP, Windows Server 2003, and Windows Vista. NTFS replaced Microsoft's
previous FAT file system used in MS-DOS and early versions of Windows.

 26

Figure 1. Main Interrogator Screen.

The two upper rows of buttons allow the operator to

perform the following tasks:

1. Set Source

The source drive is the drive that is to be searched

by the operator. When this option is selected, the

operator will be presented with a pull down menu for

selecting the source drive as shown in Figure 2.

 27

Figure 2. Set Source Window.

2. Set Target

The target drive is the drive to be used for saving

data retrieved during the search. When this element is

selected, the operator will be presented with a pull down

menu for selecting the target drive as shown in Figure 3.

 28

Figure 3. Set Target Window.

3. Easy Search

Easy Search allows the operator to conduct a search of

the hard drive by specifying one or more types of files.

The most common file extensions are built into the search

function. When this element is selected the operator will

be presented with a menu to select the file types to search

for as shown in Figure 4. For example, if the operator

wishes to search for maps and video recordings, he should

select the images and videos checkboxes.

 29

Figure 4. Easy Search Dialog Box.

4. Advanced File Search

This function is for users with an understanding of

file types and extensions. Advanced file search allows the

operator to search for documents based on the file

extension of a specific file type. This is useful when the

operator wants to search for specific file types or wishes

to search for a file type not listed in the Easy Search.

For example, if jpeg type images are the only files that

need to be searched for, the operator would enter “.jpg”

(without quotes) in the dialog box and only search for

those files with a .jpg extension. If text files and avi

videos is the requirement for the search, the operator

would enter “.txt;.avi” (without quotes) as shown in Figure

5.

 30

Figure 5. Advanced Search Dialog Box.

5. Keyword Search

The Keyword Search function allows the operator to

search for keywords in the contents of files. When this

option is selected, the operator will be presented with the

dialog box as shown in Figure 6. On the left side, the

operator must select the file types to be included in the

search. On the right side, the operator must enter the

keywords to be searched for in the file types that are

selected.

Figure 6. Keyword Search Dialog Box.

6. Create Image

The Create Image function allows the operator to

create an exact copy of the desired partition (bit-by-bit)

 31

and store it in a file on the target drive. The resulting

file will be the same size as the original partition. When

this element is selected, the operator will be presented

with a dialog box as shown in Figure 7. The operator must

choose the partition to be imaged.

Figure 7. Create Image.

After choosing the partition to be imaged, the

operator will then be presented with an input dialog box to

enter the name of the image, as shown in Figure 8.

 32

Figure 8. Naming the Image.

When the operator selects “OK” after naming the image,

Interrogator will start the process of creating a

forensically sound11 image to the location previously

specified and will also create an MD5 hash of the image and

store the hash in the same folder.

7. Clear

Clicking this button will simply clear both the upper

and lower windows of the screen so the operator may conduct

another search without cluttering the screen with previous

search data.

8. Shutdown

Selecting the shutdown button will terminate

Interrogator and KNOPPIX, and shutdown the system. When

the system has completed the shutdown process the operator

will be presented with a shutdown screen as shown in Figure

9.

11 Forensically sound means that the copy is a complete and accurate

representation of the source drive. The copy must contain every bit,
byte and sector of the source drive, including unallocated space and
slack space.

 33

Figure 9. Shutdown Screen.

9. Output Windows

The upper output window provides the user with

context-sensitive information such as partition information

when setting the source and target. The lower output

window displays a list of filenames resulting from the

three types of searches.

10. View and Backup Files

The three bottom buttons allow the user to view the

selected file, select all files, and backup the selected

files to the target partition. The user may also double-

click any filename to view it rather than clicking the

button.

11. Keyboard Input

There are only a few times the user is required to

input characters from the keyboard. The user must type the

name of the target folder to store collected files. He

also needs to type keywords for a keyword search. The

advanced search also requires user input, but the average

 34

user is not expected to use this feature. Finally,

creating a partition image requires the user to type the

name of the image file.

C. REMASTERING

Taking a Live CD and customizing it to meet specific

needs is known as remastering. This project required

extensive use of the remastering process.

The KNOPPIX Live CD contains over 1.7 GB of data and

programs encompassing the OS and all the included software

and utilities. Standard recordable CDs only store 700 MB.

The Live CD is able to store more than 700 MB through the

use of a compressed loopback device (cloop) [Ref. 25].

Some changes such as creating custom graphics and

adding tools to the file system were relatively trivial.

Automatically mounting all partitions in a read-only manner

and creating custom file associations were more time-

consuming. The most complex customization involved

integrating Outlook 2003 (a Microsoft Windows application)

into KNOPPIX. Detailed steps of the remastering process

can be found in Appendix B.

D. INCORPORATED TOOLS

Implementing Interrogator’s core features required

functionality obtained from several sources. Java offered

built-in methods to perform file searching12 as well as

linking the GUI to command line utilities. Several open

source utilities were used to convert machine-readable

files to a format suitable for humans. Partition imaging

12 Java’s File class provides methods for accessing files and

directories.

 35

functionality was provided by dcfldd, which is described

below. Finally, a pair of commercial applications was

necessary to read Outlook PST files.

1. Standard Java Methods

The Java language and libraries include a wealth of

classes and associated methods that helped in the

construction of the Interrogator GUI. Swing and the

Abstract Window Toolkit (AWT)13 were used to create the

entire interface including all buttons, windows, and lists.

Java’s File class provided access to directories and files,

which were used in conjunction with loops to traverse

target partitions. The Process and Runtime classes

permitted the direct execution of command line utilities

from within the GUI and access to all output generated by

those utilities.

2. Standard Linux Commands

Linux has several built-in command line utilities that

were useful for this project. Every command in Linux

contains a myriad of arguments to control its operation.

This functionality is a large part of what makes Linux so

powerful and, at the same time, difficult to use. Commands

of particular use to Interrogator include find [Ref. 3],

egrep [Ref. 6], mount/umount [Ref. 26], df [Ref. 27], cp

[Ref. 28], and shutdown [Ref. 29]. Each of these will be

briefly described here. Specific arguments and syntax used

can be found in Appendix C.

13 Swing is a Java toolkit for developing graphical user interfaces.

It includes elements such as menus, toolbars and dialog boxes. Swing is
written in Java and is platform independent, unlike the Java Abstract
Window Toolkit (AWT), which provides platform-specific code.

 36

The find command searches a directory for a given

filename or regular expression. The egrep command searches

a file’s contents for a particular string or regular

expression. Partitions14 are mounted and unmounted with

mount and umount, respectively. Partition info such as

name, size and usage details are provided by the df

command. The cp command provides a mechanism to copy files

from one location to another. Finally, shutdown will

gracefully stop all services, unmount partitions, and

prepare the system for removal of power.

3. Wabread15

Windows Address Book files were parsed with the help

of a utility known as wabread (a.k.a. libwab) [Ref. 30].

Usage is fairly simple, requiring only an input file as a

command line argument. The resulting human-readable

address information is output to standard output or a file,

if desired.

4. Pasco

A key function of Interrogator is the ability to

easily read web browser history files. Two web browsers

were targeted for this project: Microsoft Internet

Explorer (IE) and Mozilla Firefox. These two browsers were

used because they are the most widely used browsers.

According to OneStat.com, Internet Explorer is utilized by

approximately 85 percent of the market and Mozilla Firefox

14 A partition is an allocated portion of a hard disk that can be

formatted with a file system. A hard disk may contain multiple
partitions.

15 Wabread (a.k.a. libwab) is an open-source command line utility
that you can use to export your addresses from a Windows Address Book
used in Microsoft Outlook and Outlook Express)

 37

is utilized by approximately 12 percent [Ref. 31]. The

remainder of the market is taken up by Netscape, Opera and

Safari. The most widely used web browser application is

Microsoft Internet Explorer (IE). Web browsers, in their

default configuration, keep track of recently visited

websites and store the data in a history file for the

convenience of the user.

Implementing the ability to read IE history files was

obviously very important. Pasco was written by Keith J.

Jones and parses an IE history file into a human-readable

output [Ref. 32]. It was incorporated into Interrogator

through the use a Bash16 shell script that sends the

index.dat file to Pasco as an argument and then sends the

output to a kwrite17 window, allowing the user to easily see

what websites were recently visited.

5. Mork.pl

Mozilla Firefox stores its history in a file called

history.dat, which is located in the user’s profile. This

file is in a poorly documented format known as Mork [Ref.

33]. Jamie Zawinski wrote a perl script18 named mork.pl to

convert the history file to a format better suited for

human interpretation [Ref. 34]. Mozilla and SeaMonkey also

store their history in history.dat using the Mork format

and are supported by Interrogator. It was integrated into

Interrogator in the same fashion as Pasco.

16 Bash is a Unix shell. It is the default shell on most Linux
systems and can be run on most Unix-like operating systems.

17 KWrite is a lightweight text editor for the K Desktop Environment
(KDE) and is similar to Microsoft Wordpad.

18 A script is a program written is a scripting language. It allows
the implementation of a series of commands without having to input each
command individually.

 38

6. dcfldd

Imaging is performed with the help of dcfldd [Ref.

35]. It is an enhanced version of the well known dd19

utility with features useful for forensics. The relevant

extra feature used in this project is the ability to output

a hash of the image. The image is file that contains a

copy of a disk partition, copied bit-for-bit from the

original. The utility dcfldd was incorporated into

Interrogator with the appropriate parameters gathered

utilizing the GUI interface and passed to a shell script

behind the scenes. The contents of the script can be found

in Appendix C.

7. CrossOver Linux and Outlook 2003

Outlook is the most widely used Personal Information

Manager (PIM) [Ref. 36]. PIMs manage email, appointments,

tasks, and contacts. Because of its extremely large market

share, including the ability to view Outlook data was

crucial to this project. Unfortunately, implementing this

capability was not an easy task.

Countless hours were spent searching for a way to

parse Outlook PST files. Outlook uses a “PST file” to store

the data mentioned above. The major roadblock was

Microsoft’s use of a proprietary and unpublished format for

the PST file. No PIMs are capable of importing Outlook

2003 data except for Outlook itself. There is a Linux tool

to parse Outlook files, libpst [Ref. 37], but it is limited

to use with Outlook 97/2000 files.

19 dd, short for data definition, is a common Linux program whose

primary purpose is the low-level copying and conversion of files.

 39

We came to the conclusion that Outlook 2003 PST

viewing capability would require the use of Outlook 2003

itself. This posed several problems since Outlook is very

large and only runs on Windows 2000, Windows XP or higher.

The solution came via a commercial application from

CodeWeavers called CrossOver Linux [Ref. 38]. CrossOver

allows certain Windows applications to run directly in

Linux without the Windows OS. Fortunately, the latest

version of the software, released during the development of

Interrogator, supports Outlook 2003. Using Outlook 2003,

Interrogator can also open PST files from older versions of

Outlook including Outlook 97, 98, 2000, and 2002.

Integration of CrossOver and Outlook into the

Interrogator KNOPPIX disc required eliminating a large

number of packages from the original KNOPPIX distribution

since the two programs together consumed several hundred

megabytes of storage. Space was gained by removing

redundant applications and other software deemed

unnecessary toward achieving the project’s goals.

Another problem was encountered after integrating the

two programs into the project. Outlook does not have the

capability of opening PST files from a read-only source.

The partition being analyzed is mounted in a forensically

sound read-only manner to prevent changes to the original

contents. The solution was to first copy the PST file to

the KNOPPIX home directory, where it is stored temporarily

 40

“in RAM20. A script was written to automate the steps

necessary to view the PST file, the details of which can be

found in Appendix C.

E. TESTING

Testing of Interrogator KNOPPIX was conducted for

actual operational capabilities on four laptop computers

and one desktop computer. These computers ranged from

Celeron processors to Dual Core processors. Preliminary

testing consisted of ensuring the core functions performed

as intended. Timing of the operations was not taken into

consideration during this first part.

After Interrogator was verified to function according

to design it was then tested for boot up and search times

on twenty different computers. Several brand name

computers were selected with varying processor types and

speeds. The focus of the test was to compare the amount of

time it took to boot the system and then display the

Interrogator Main Screen and the amount of time required to

conduct an Easy Search for images. This testing was not

conducted for the purpose of comparing the operational

characteristics of each system but only to demonstrate the

capability of Interrogator on a wide range of systems.

The boot time is dependent on the processor type and

speed, and the speed of the CD drive, if booting from a CD.

The time required for all searches are dependent on the

size of the hard drive, the number of files it contains,

and the drive’s performance characteristics (seek time and

20 Very large PST files may cause problems during analysis if the

file size exceeds the amount of available system RAM. The largest PST
file opened during testing was 722MB on a system with 2GB RAM.

 41

transfer rate). The last test, indicated with a yes or no

result, was whether or not the computer successfully booted

from a USB device. Boot time via USB was observed to be

significantly faster than CD-ROM, however, we decided to

report the worst-case boot time since many computer systems

are not capable of booting via USB. It should also be

noted that overall performance of Interrogator is markedly

faster via USB because of the significant seek time

advantage of flash memory and hard drives compared to CD-

ROM.

The basic information documented for testing included

computer make and model, number of processors, amount of

RAM installed, type and speed of the processors, boot time,

hard drive interface, size of the primary partition, search

time, and whether or not the system could boot from a USB

flash drive. The results of testing ten laptop computers

are shown in Table 1 and the results of testing ten desktop

computers are shown in Table 2.

 42

Laptop Computers

Make/Model # of
Proc

Ram Size Processor Type
and Speed

Boot
Time
mm:ss

Hard Drive
Interface/Size/

Used (GB)

Srch
Time
mm:ss

USB
Y/N

Dell Latitude C640 1 384 MB Mobile P4
2.6GHz

03:25 30 01:05 N

Toshiba Satellite
A105

1 2 GB Celeron M
1.6GHz

03:45 Serial/ 56 / 48 02:25 N

Dell Latitude D620 2 2 GB Intel Core Duo
2.16 GHz

02:55 Serial/ 73 / 44 01:25 Y

Compaq Evo N1015v 1 512 MB AMD Athlon 1.4
GHz

04:05 IDE/ 28 / 13 01:50 N

Gateway 400VTX 1 765MB Celeron 2.0GHz 05:00 IDE / 28 / 9.7 02:25 N
Sony Vaio VGNC260 2 2 GB Core Duo

1.83GHz
03:25 Serial/150/43 00:52 Y

HP Pavillion 9233 2 2 GB Core 2 1.66GHz 02:40 Serial/110/16 01:20 N
HP Pavillion 6243 2 1 GB Intel T2060

1.6GHZ
02:47 Serial/110/14 01:45 N

Table 1. Laptop Computer Testing Data

 43

Desktop Computers

Make/Model # of
Proc

Ram Size Processor Type
and Speed

Boot
Time
mm:ss

Hard Drive
Interface/Size/

Used
(GB)

Srch
Time
mm:ss

USB
Y/N

Dell Optiplex GX400 1 512 MB P4 1.4 GHz 03:05 IDE/58/6 00:32 N
Dell Optiplex GX620 2 3 GB P4 3.6 GHz 04:05 Serial/ 150 / 42 12+ Y
HP Pavillion 1777 2 2 GB Core 2 2.13GHz 02:00 Serial/ 400 / 36 00:45 N
Sony VAIO VGCLS20E 2 2 GB Core 2 1.66GHz 03:00 Serial/ 140 / 43 00:47 N
Dell Optiplex GX270 2 2 GB P4 3.0 GHz HT 03:45 IDE/ 75 / 13 02:55 N
Compaq Presario
SR2180NX

2 1 GB Pentium D
2.8 GHz

02:45 Serial/ 230 / 25 02:00 N

Acer Aspire
AST180-UA350B

1 512 MB AMD ATHLON
2.2 GHz

03:15 Serial/ 70 / 23 00:30 N

Acer Aspire
ASL100-UA380A

1 1 GB AMD ATHLON
2.4 GHz

03:05 Serial/ 70 / 25 01:00 N

Dell Dimension 4700 2 3 GB P4 3.0 GHz HT 03:07 Serial/ 140 / 64 01:20 Y

Table 2. Desktop Computer Testing Data

 44

THIS PAGE INTENTIONALLY LEFT BLANK

45

IV. CONCLUSIONS

A. SUMMARY

The purpose of this thesis was to create a package of

consolidated forensic tools that would conduct a search of a

computer and attached storage devices. The final product would

need to meet the following requirements:

• useful for a quick interrogation

• conducive to use in the battlefield

• usable by personnel without specific training in

computer forensics

The need and desire for this field-level computer

exploitation package was first brought to the attention of Naval

Postgraduate School Staff by Marines in the Information

Operations Department at Camp Pendleton, CA. The request was

for the development of a package that could be used by anyone in

the field to conduct computer searches. This requirement meant

the package needed to be very user-friendly.

The development of this package first involved determining

what information would be useful as real-time intelligence.

Then, existing tools available and in-use had to be examined.

The research results were essential in developing a plan to

design the package and decide on the best method of compilation.

Programming the Interrogator interface began before a final

decision had been made for the host OS. Java was the logical

choice due to its cross-platform portability and ease-of-use.

After investigating many options for a host operating system, a

decision was made to use KNOPPIX. This decision was based on its

size, boot time, and extensive hardware compatibility.

46

Remastering KNOPPIX several times was necessary in order to

integrate the changes required during the development of the

package. While the process of conducting this procedure is

already well documented, it is not a trivial task and proved to

be time consuming but essential to the development. Remastering

allowed the inclusion of additional tools and complete

customization of the OS. The remastered distribution was made

to accommodate both bootable CDs and USB drives.

The final package, called Interrogator, was created with

these tools and with the aforementioned goals in mind. It was

designed to search for many types of files including, but not

limited to, office documents, graphics, audio, video, and

browser histories. Along with being capable of searching and

retrieving many different types of files useful to the war-

fighter in the field, Interrogator is also very easy to use. It

is completely graphic and menu driven and comes with all of the

tools to both conduct the searches and save the data that has

been collected. Interrogator is not capable of conducting an

analysis of the data; however, without data collection, analysis

is not possible.

B. FUTURE RESEARCH

1. Open Source Production

One of the goals of this product was to maintain it as a

completely open source product. Unfortunately, we were not able

to read Outlook PST files with open source software.

Interrogator is capable of reading these PST files but there are

two non-open source programs involved. Crossover Linux was

purchased to run Windows software in a Linux environment and

Outlook 2003 is being used to read the PST files. Crossover

Linux is a commercialized version of Wine [Ref. 39] with

47

additional features necessary for integration with Interrogator

[Ref. 40]. Wine does not currently support Outlook 2003 nor

does it seamlessly integrate21 with KDE. Perhaps a future

version of Wine will include these features. If reading these

PST files can be done with completely open source software then

the Interrogator package becomes a bit more flexible and

affordable.

2. Foreign Language Support

Interrogator has not been tested with drives containing

foreign language documents. Although file extensions and format

should still be compatible, the language used in the documents

may very well be something other than English. Interrogator may

have problems opening files with names containing non-English

characters as well as searching for keywords with non-English

characters.

3. One-Click Searching

The user friendliness of Interrogator has been one of the

objectives of this study from the beginning. Making it even

easier to use could benefit the user in the field and would make

it usable by a larger population. One way of doing this would

be to develop a series of canned queries that would implement

specific data retrieval, copy the data to a target drive and

exit the program without the need to do each step individually.

Implementation of these queries could then be accomplished

through the use of the main menu or hot-keys. This would also

allow for much quicker data retrieval in the event that time is

critical and does not permit a full system scan.

21 Seamless integration includes the ability to double-click on an email
attachment and have it open in the appropriate application.

48

4. Instant Messenger Data Collection

Instant Messengers store contact information, passwords,

and in some cases, chat lots. The common instant messengers are

AOL Instant Messenger, Yahoo Instant Messenger, MSN Web

Messenger, Google Talk and ICQ. Interrogator could be enhanced

to search for instant messenger files and collect this

information.

5. Anti-Reverse Engineering

In the event someone obtains a copy of Interrogator that

should not have it, there should be a means of protecting all of

the files contained in the program to prevent an analysis of the

methods used for data collection. If an adversary determines

the types of files targeted or the searching methods used by

Interrogator, it would be easy to hinder Interrogator’s

usefulness.

6. Eliminate Unnecessary Features

There are many default features that are started during the

KNOPPIX boot process. The main startup script for KNOPPIX is

located at /etc/X11/Xsession.d/45xsession. Some of these

features are unnecessary and could be eliminated to speed up the

boot process. Additionally, hundreds of unnecessary packages

are included with the KNOPPIX distribution. Many were already

eliminated for this project but further research of the

remaining packages could result in more eliminations.

7. Remote Server Data Transfer

KNOPPIX comes preloaded with a full networking suite. A

future function of Interrogator could include a script for

easily transmitting retrieved data to a remote server. Secure

data transmission could be ensured through the use of the SCP

49

command line utility. SCP would be useful if high priority

files are found and need to be immediately sent to a remote

location. Another possibility would be using cryptcat [Ref. 41]

to securely transfer data that is not already stored in a file

(e.g., a directory listing). Naturally, these utilities should

be utilized in the background and accessible to the user through

buttons in the GUI.

8. Additional PIM Support

Although Outlook is the most widely used personal

information manager, it would be beneficial to include support

for other common PIMs such as Outlook Express and Mozilla

Thunderbird.

9. Additional Address Book Parsing

Currently, the only address books that are capable of being

read by Interrogator are Windows Address Book (WAB) and PST

files from Microsoft Outlook. Another future feature to be

designed into Interrogator would be the ability to parse

additional address books such as the one for Mozilla Thunderbird

or address books saved on local hard drives by other third party

email programs.

10. File Search by Format

File extensions are the primary means of associating files

with applications in Windows environments. In Linux

environments, file extensions are often used but not required,

which means Interrogator may be less effective against Linux

computers. Linux file systems were not a priority for this

project since NCIS indicated Linux is rarely encountered in the

field [Ref. 42].

50

There is occasionally an attempt to hide a particular file

simply by changing the extension of the filename. This type of

data obfuscation would hinder the search capabilities of

Interrogator. Interrogator only searches for files based on the

extension for each file type. A method of searching for files

based on other common file format structures would provide

additional assurance that all useful intelligence is retrieved.

11. Searching Within Compressed Archives

Many computer operators use the popular ZIP file format

[Ref. 43] to store files or exchange files with other users via

the Internet. A ZIP file is an archive that may contain one or

more files in a compressed or uncompressed format. A useful

addition to Interrogator would be the ability to search within

ZIP and other archive files.

12. Virtual Machine File Search

Interrogator is capable of looking for and identifying

virtual machines based on the file extensions for those machines

(vmdk, vmsd, vmx, vmem, and vmss). It is not capable of looking

at the file system inside the virtual machine. To be able to

complete the same level of search inside a virtual machine that

is currently capable on the host operating system would be very

useful. If the host operating system is only used as a method

of running VMWare or Virtual PC with all of the real data stored

in the virtual machine, it is not possible to analyze the data

in a timely manner with Interrogator. VMWare had released a

Perl script for mounting virtual disks in Linux, but the file is

currently inaccessible from their website [Ref. 44].

Alternative solutions may be available and should be implemented

in future research.

51

13. Searching Logical Volumes

Certain operating systems use Logical Volume Management

(LVM) partitions by default. This type of partition is capable

of being mounted by KNOPPIX, but requires several steps and is

not currently incorporated into Interrogator. Further

development should include the ability to analyze LVM

partitions.

14. Malicious Software Search

There are many known Trojans, Worms and Viruses in the form

of executable files. Many of these files have hash values

associated with them that are available in easily accessible

databases. The ability to search for malicious executables and

compare the hash values against known malicious executables

would be useful in determining how badly the computer is

infected before continuing a search and potentially downloading

a file that could corrupt the target drive and/or be spread to

other computers. Additionally, it would be useful to

incorporate an anti-virus utility such as ClamAV.22

15. Formatting Output Files

Interrogator is capable of searching for browser histories

from Mozilla Firefox and Microsoft Internet Explorer. The

output files resulting from such a search contain all of the

data that is required to determine internet web sites the user

has visited. The output files are difficult to read, however,

because of the formatting. An improved output format, such as a

spreadsheet or comma separated values capable of being imported

into a spreadsheet, containing only the most critical fields

would expedite the ability of the operator to determine the

existence of the type of data being searched for.

22 ClamAV is a free, open-source anti-virus toolkit for UNIX.

52

THIS PAGE INTENTIONALLY LEFT BLANK

53

APPENDIX A. USER’S MANUAL

This appendix is intended for personnel who will be

performing a forensic data search of a laptop computer, desktop

computer, removed hard disk, external hard disk or USB

flash/thumb drive.

A. INTRODUCTION

Interrogator KNOPPIX is an easy-to-use, field-deployable,

bootable CD-ROM disc. It provides a user-friendly, graphical

user interface (GUI) to perform computer forensics or basic data

retrieval. The program is designed to be used by someone with

limited computer skills, but the disc also includes a complete

Linux distribution with command line interface for users

requiring advanced functionality.

B. SYSTEM REQUIREMENTS

Interrogator KNOPPIX is based on KNOPPIX 5.1.1, which

supports a wide variety of computer hardware. The minimum

requirements for the system used to boot Interrogator are listed

below.

• Intel Compatible CPU (i486 or later)

• 256 MB of RAM (at least 512 MB recommended)

• Bootable CD-ROM drive

• SVGA-compatible (800 x 600) graphics card

• Serial, PS/2 or USB mouse

C. INSIDE THE KIT

If you received this product as part of the complete kit,

this is what should be included:

54

• This user manual

• One bootable CD with the complete Interrogator program

• One 8 GB USB flash drive. This includes the complete

Interrogator program and can also be used as a target

drive to save retrieved data.

• One 160 GB, USB powered, external hard drive. This

will be used for saving disk images but may also be

used as a target drive to save retrieved data.

• One USB to SATA/IDE hard drive adapter. This can be

used to attach a hard drive that has been removed from

a computer, to a computer that is being utilized to

run the Interrogator program.

• One AC power supply for the USB to SATA/IDE hard drive

adapter.

D. BEFORE YOU BEGIN

Before you begin, you must know a couple of things. You

need to decide if you will use the CD or the USB flash drive to

boot the system. Nearly all computers will boot up from a CD.

This will be the primary means of booting most systems. Very

few computers will boot from a USB flash drive, but it is the

faster method. This will normally work only on very new

computers.

Next, you need to decide where you will save the data that

you will retrieve. The most convenient target drive will be a

USB flash drive and you can use the flash drive included in the

kit. The only limitation to using a flash drive is available

storage. If you are only going to look for and retrieve

documents and images, a flash drive will probably suffice.

55

If you intend to image a hard drive, your target drive

needs to have at least the same capacity as the hard drive being

imaged. For this you will need the portable hard drive included

or some other hard drive of your own choosing.

You can use your own computer to retrieve data from a hard

drive that has been removed from another computer. To do this

you will need to use the USB to SATA/IDE hard drive adapter.

E. BOOTING INTERROGATOR KNOPPIX

Ensure all hard drives and thumb drives you wish to analyze

are attached to the computer before turning on the power. If

you plan on backing up files that you retrieve during the

search, ensure the backup device is also connected. Insert the

Interrogator KNOPPIX disc into the CD-ROM drive immediately

after turning on the power.

Different computers require different methods to boot from

a CD-ROM disc. Pay careful attention to messages that appear on

the screen as the computer is starting. There should be a

message stating to press a certain key for the boot menu. This

key may be “esc” or “F12.” Press the indicated key and a menu

will be presented to select the drive you wish to boot the

computer from. If the computer is capable of being booted from

a USB flash drive, then there will be a USB option on this menu.

Select the option that you want to use to boot the computer.

If the computer has successfully recognized the

Interrogator KNOPPIX disc a screen will appear with the

Interrogator KNOPPIX logo as shown in Figure 1. Press the

“Enter” key to start the utility. It may take up to five

minutes to start if the computer has a slow CD-ROM drive. You

will see the main Interrogator screen shown in Figure 2 when the

computer has completed the boot process.

56

Figure 10. Interrogator Splash Screen.

57

Figure 11. Main Interrogator Screen.

F. SELECTING THE SOURCE AND TARGET DRIVES

This section will describe the process of selecting the

drive to be interrogated and selecting a drive for saving data.

1. Set the source drive to analyze

Once you have booted the computer and have reached the main

menu for the Interrogator program the first thing to do is to

tell the computer which drive to interrogate:

Click the “Set Source” button.

A listing of all available drives will appear in the status

window as shown in Figure 3. There will also be other

information about the drives that you can choose from. Most

important is the size because this is generally the first

58

indicator of which drive to choose. It will also tell you how

much of the drive is in use and how much is available. This

will help you decide which drive to choose in the pull down

menu.

Figure 12. Set Source Window.

Choose the drive you wish to analyze in the drop-down menu

and click ok.

2. Set the target drive

This step is optional and only necessary if you plan to

make a copy of files found during the search step.

Click the “Set Target” button.

59

A listing of all available drives will appear in the status

window including their size and other information just like the

list that appears when you select the source drive in Figure 3.

In the drop-down menu, choose the drive where you would

like to store backed up files and click ok.

If you do not have write access to the selected drive you

will be asked if you would like to enable write access.

Finally, you will be prompted to enter a name for the

folder where all backup files will be stored in the target

drive.

G. SEARCH OPTIONS

Now that you have booted the system and selected the proper

source and target drives, it’s time to begin your search. This

section will detail what you need to know to conduct searches of

the source drive. You have a couple options when it comes to

conducting searches. You may conduct an easy search or an

advanced search. Both methods will be described here.

1. Click the “Easy Search” button.

The dialog box in Figure 4 will appear where you can select

the type of files to search for. You may select any combination

of file types and then click ok.

60

Figure 13. Easy Search Dialog Box.

Interrogator will scan the source drive for all files of

the selected types. This is done by searching for the files

based on the file extension (i.e., .doc, .pdf, .jpg, etc.). The

duration of the search process depends upon the size of the

source drive and the number of file types selected. It is best

to only select one file type to expedite searches and to avoid a

large list of resulting filenames. If you know that you only

want to see documents, then you should only select this option.

Likewise, if you know that you only want to see images, then you

should only select this option.

All files meeting the chosen criteria will appear in the

results window, which is the lower half of Figure 5.

61

Figure 14. Easy Search Results.

Double-click on any filename to view its contents. If the

filename ends with .pst it is an Outlook personal folder file.

There are a few additional steps required to view the contents.

Outlook 2003 will start after double-clicking the file. Click

on the File menu in Outlook, then click Open, then click Outlook

Data File. Next, click the My Documents icon. Now you will see

the file you want to view. Double click the filename. A new

“Personal Folders” item will appear in the mail folders pane.

Click the “+” to the left of Personal Folders. Now you can see

all the email folders from the source file. Click on a

subfolder such as Inbox and then a list of emails will appear in

the center window pane. Clicking on an email will show its

contents in the right window pane. To view contact information

you will need to click the Contacts button on the lower-left

62

side of the window. In the upper-left you will see Contacts

followed by Contacts in Personal Folders. Click Contacts in

Personal Folders. Now all contacts in the file will appear on

the right side of the screen.

1. Advanced Search

Click the “Adv. Search” button.

The dialog box in Figure 6 will appear allowing you to

enter the file extension of a specific file type. This is

useful if you know that you only want to look for one file type

or if you need to search for a file type not listed in the Easy

Search. For example, if you only wanted to see jpeg type

images, you would enter “.jpg” (without quotes) in the dialog

box and only search for those files with a .jpg extension. If

you want to search for text files and avi videos you would enter

“.txt;.avi” (without quotes). It is important to separate

multiple extensions with a semicolon.

Figure 15. Advanced Search Dialog Box.

All files of the specified extension will appear in the

results window.

Double-click on any file to view its contents.

2. Keyword Search

The Keyword Search function will search for keywords in the

contents of files.

63

Click the “Keyword Search” button.

A dialog box will appear as shown in Figure 7.

Figure 16. Keyword Search options dialog box.

On the left side, select the file types to be included in

the search.

On the right side, enter the keywords you want to find.

Click ok.

All files of the selected types containing any of the

entered keywords will appear in the results window.

Double-click on any file to view its contents.

H. CREATING IMAGES

The Create Image function will create an exact copy of the

desired drive (bit-by-bit) and store it in a file on the target

drive. The resulting file will be the same size as the imaged

drive.

Click the “Create Image” button.

Select the drive you would like to copy.

Enter a filename for the image as in Figure 8.

64

Figure 17. Naming the Image.

The file will be stored in the folder entered during the

“Set Target” function. Additionally, an MD5 hash of the image

will be stored in the same folder with the extension .md5.

Creating an image is the most time consuming process of all

of Interrogator’s features. The duration is dependent on the

speed of the source and target drives as well as the size of the

drive that is being imaged.

Note: Most modern hard disks are many gigabytes (GB) in

size. If your target drive is formatted with FAT32 you will not

be able to image a drive larger than 4GB. NTFS or EXT3 are the

recommended file systems for imaging hard disks.

I. SHUTTING DOWN

When you are done analyzing the drive you should properly

shutdown the system prior to disconnecting any drives. Click

the “Shutdown” button. Click “Yes” and wait until you are

notified that the computer is ready to turn off. You will be

prompted to remove the CD and hit the enter key to complete the

shut down process as shown in Figure 9.

65

Figure 18. Shutdown Screen.

J. TROUBLESHOOTING

This section will help solve common issues that may arise

during the operation of Interrogator KNOPPIX.

1. Computer fails to start Interrogator KNOPPIX.

Different computers require different methods to boot from

a CD-ROM disc. Pay careful attention to messages that appear on

the screen as the computer is starting. There should be a

message stating to press a certain key for the boot menu. This

key may be “esc” or “F12.” Press the indicated key and select

CD-ROM.

Some older computers may not provide an option to select a

boot device on startup. In this situation you must enter the

BIOS and change the boot order. When the computer is powered on

there will be a message indicating which key to press to enter

66

the BIOS or SETUP. Press the indicated key and look for an

option to specify the boot order. Set the CD-ROM drive as the

highest priority.

2. A password is requested when attempting to enter the
computer BIOS or SETUP.

Unfortunately, bypassing the BIOS password generally

requires opening the computer case and is beyond the scope of

this manual. In this situation it is best to use another

computer for running Interrogator. If the drive to be analyzed

is inside the password protected computer you must physically

remove the hard disk and attach it to another computer via the

included USB to IDE/SATA adapter.

3. A “busy, please wait” message has been on the screen
for a long time.

Analyzing a drive can be very time consuming especially on

large drives. Most computers have a hard drive indicator light.

The light will appear solid or blink when the drive is being

accessed. If the light is on please allow more time for the

process to complete. If the hard drive light has not lit for a

couple minutes it is possible that the computer has locked up.

In this case, restart the computer and retry the operation.

4. The drive you want to analyze is not in the list.

There are a few possible causes. It is possible the drive

is formatted with an unsupported file system or none at all.

All common file systems are supported by Interrogator KNOPPIX

including FAT16, FAT32, NTFS, EXT2, EXT3, and ReiserFS.

Another possibility is that the hard drive is damaged and

not recognized by the computer. If this drive is the main

system drive you can verify it is good by attempting to start

67

the computer without Interrogator KNOPPIX. If the computer

boots into anything other than Interrogator KNOPPIX it is most

definitely not damaged.

5. You see an error that you do not have write access
when attempting to backup files or create an image.

After clicking ok you will be asked if you want to enable

write access. If that does not work, the drive may be

physically locked. Some USB thumb drives or flash memory have a

switch to lock the drive. Please verify the drive is unlocked.

6. The computer fails to boot from the USB drive.

There is a workaround if you would like to boot from USB

for enhanced performance but the computer is only capable of

booting from CD. First, you need to insert both the bootable

Interrogator CD and the bootable USB drive. Enter the boot menu

after the computer is powered on. Select CD-ROM. Once the

initial Interrogator KNOPPIX screen appears you can enter the

following command to redirect the boot to the USB drive:

knoppix bootfrom=/dev/sda1

where sda1 is the USB drive. The USB drive may not be sda1 on

all systems. All USB and SATA drives will have the sd prefix.

If the computer has a single SATA hard drive, the USB drive will

be sdb1. If there are two SATA hard drives, the USB drive will

be sdc1.

68

THIS PAGE INTENTIONALLY LEFT BLANK

69

APPENDIX B. REMASTERING INTERROGATOR KNOPPIX

This appendix is intended for personnel who would like to

customize Interrogator KNOPPIX to meet specific needs.

A. INTRODUCTION

Remastering a Linux live CD is not a trivial task. There

are a few guides to remastering KNOPPIX available on the

Internet. Unfortunately, they are outdated and contain some

incorrect information. This guide was developed with

information from “Building Your Own Live CD” [Ref. 45] and

“Knoppix Remastering Howto” [Ref. 46].

A moderate level of Linux experience is required to follow

the instructions below. This guide will use VMWare Server [Ref.

47] and KNOPPIX 5.1.1 Live CD [Ref. 48]. Both products are

available free of charge online.

B. SYSTEM REQUIREMENTS

Remastering requires a large amount of RAM and disk space.

The minimum requirements are as follows:

1 GB RAM

4 GB available disk space on a Linux file system

C. STEP-BY-STEP REMASTERING

1. Preparation

Download VMWare Server from http://vmware.com

Install VMWare Server

Download KNOPPIX 5.1.1 Live CD from http://knoppix.com

Create a new virtual machine with 4GB SCSI hard disk

Configure the CD-ROM to use the KNOPPIX disc

70

Start the VM

Open the command line

Enter super user mode

su

Create a partition using the following commands:

fdisk /dev/sda1

n

p

1

w

Format the partition

mkfs.ext3 /dev/sda1

Mount the partition with read/write access

mount –t ext3 /dev/sda1 /media/sda1 –o rw

Create working directories

mkdir /media/sda1/source

mkdir /media/sda1/master

Copy files necessary for remastering

cp –Rp /cdrom/* /media/sda1/master

cp –Rp /KNOPPIX/* /media/sda1/source

rm /media/sda1/master/KNOPPIX/KNOPPIX

2. Changing Startup Graphic and Background

The startup graphic is a low resolution image that appears

when the computer begins to boot from the KNOPPIX disc. Create

71

a 640 x 400 pixel image in the image editor of your choice. You

must save it as a 16-color GIF image. The next commands will

assume you named the file logo.gif and will convert the image to

lss16 format.

giftopnm < logo.gif > logo.ppm

ppmtolss16 < logo.ppm > logo.16

Next, you need to save the file in the proper directory and

overwrite the existing startup graphic.

cp logo.16 /media/sda1/master/boot/isolinux/

The KDE desktop background can be any JPEG image. 1024 x

768 pixels is the ideal resolution. You need to save the file

as background.jpg. Simply copy it to the appropriate folder and

overwrite the original background.

cp background.jpg /media/sda1/master/KNOPPIX/

3. Removing Packages

If you need to add more than a couple megabytes of files to

the remastered disc you will need to remove some packages.

Removing packages requires chrooting into the source folder.

chroot /media/sda1/source

Now you can list the installed packages by size:

dpkg-query -W --showformat='${Installed-Size} \

${Package}\n' | sort –n

Remove packages with the command:

apt-get remove --purge name-of-package-to-remove

72

4. Adding Utilities/Scripts

Any utilities or scripts you want added to the remastered

disc should be placed in /media/sda1/usr/bin/

You also need to chmod 755 the executables you add.

chmod 755 readwab.sh

5. Setting File Associations

This will show how to associate files with the extension

*.wab to the script readwab.sh.

Create the mime link:

pico \ etc/skel/.kde/share/mimelnk/all/addressBook.desktop

Type the following:

[Desktop Entry]

Comment=

Hidden=false

Icon=

MimeType=all/addressBook

Patterns=*.wab

Type=MimeType

Save and exit.

Create the application link:

pico \

etc/skel/.kde/share/applnk/.hidden/readwab.sh.desktop

Type the following:

[Desktop Entry]

73

Exec=/usr/bin/readwab.sh

InitialPreference=2

MimeType=all/addressBook

Name=readwab.sh

Terminal=false

Type=Application

Save and exit.

Edit the user profile:

pico etc/skel/.kde/share/config/profilerc

Add the following at the top:

[all/addressBook - 1]

AllowAsDefault=true

Application=kde-readwab.sh.desktop

GenericServiceType=Application

Preference=1

ServiceType=all/addressBook

Save and exit.

6. Final Remastering Steps

Change to the master folder

cd /media/sda1/master

Create compressed filesystem

mkisofs –L –R –l –V “KNOPPIX ISO9660” –v \

–allow-multidot /media/sda1/source | \

74

create-compressed_fs – 65536 > \

/media/sda1/master/KNOPPIX/KNOPPIX

Create ISO image

mkisofs –pad –l –r –J –v –V “Interrogator” \

-no-emul-boot –boot-load-size 4 \

–boot-info-table –b boot/isolinux/isolinux.bin \

-c boot/isolinux/boot.cat –hide-rr-moved \

-o Interrogator.iso /media/sda1/master/

Your remastered KNOPPIX is located at

/media/sda1/master/Interrogator.iso

The last step is to burn the ISO image to a disc using your

favorite CD burning software. Nero [Ref. 49] and Roxio [Ref.

50] are good choices. Optionally, Interrogator can be installed

on a USB flash drive or hard drive in a few steps. The USB

device must have at least 700 MB of storage and needs to be

formatted with FAT16 or FAT32. First, boot a computer with the

Interrogator CD and ensure the USB drive is connected. Once the

system is fully loaded, open a terminal window. Enter super

user mode:

su

Then start the USB install utility:

mkbootdev

Select the USB drive from the list. If the drive already

contains a FAT16 or FAT32 partition select “don’t change

partitions on USB storage.” If there is no FAT partition or you

want to erase the existing data, choose “Create system on USB

storage using a FAT32 partition.”

75

APPENDIX C. SOURCE CODE

All source code written for Interrogator KNOPPIX is

included below. This includes Java files for the GUI and Bash

shell scripts.

A. INTERROGATOR.JAVA

/usr/bin/Interrogator/Interrogator.java

/*
 Interrogator version 0.4.8 2/27/07
 Adrian Arvizo
 This is a GUI for forensic utilities.
 File: Interrogator.java
 */

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.BufferedReader;
import java.io.File;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
import javax.swing.event.*;

/**
 * Interrogator class
 *
 * <p>
 * This is the top-level class for the Interrogator project.
 */
class Interrogator extends JFrame implements ActionListener,
ListSelectionListener {

 // ----------------------------------
 // Data Members
 // ----------------------------------

 /**
 * X coordinate of the frame default origin point
 */
 private static final int FRAME_X_ORIGIN = 0;

 /**
 * Y coordinate of the frame default origin point
 */
 private static final int FRAME_Y_ORIGIN = 0;

 /**
 * Default width for buttons
 */
 private static final int BUTTON_WIDTH = 180;

 /**
 * Default height for buttons
 */
 private static final int BUTTON_HEIGHT = 30;

 /**
 * Constant for platform specific newline
 */
 private static final String NEWLINE = System.getProperty("line.separator");

 /**

76

 * Constant for empty string
 */
 private static final String EMPTY_STRING = "";

 /**
 * Interface Buttons
 */
 private JButton setSourceButton, setTargetButton,
 shutdownButton, clearButton, backupButton, advSearchButton,
 easySearchButton, createImageButton, keywordSearchButton,
 viewButton, selectAllButton;

 /**
 * Upper output window
 */
 private JTextArea textArea;

 /**
 * List to show resulting filenames from searches
 */
 private LinkedList docList;

 /**
 * Extensions to search for
 */
 private String extName;

 /**
 * Source and target locations
 */
 private File sourcePath, targetPath;

 /**
 * Location of backup folder
 */
 private String backupFolderPath = "";

 /**
 * List to store partitions on system
 */
 private LinkedList drives;

 /**
 * Window that displays to indicate the program is busy
 */
 private ProgressIndicator progressIndicator;

 /**
 * List to display resulting filenames in GUI
 */
 private JList list;

 /**
 * Model to specify JList list
 */
 private DefaultListModel listModel;

 // ----------------------------------
 // Main method
 // ----------------------------------
 public static void main(String[] args) {
 Interrogator frame = new Interrogator();
 frame.setVisible(true);

 }

 // ----------------------------------
 // Constructors
 // ----------------------------------

 /**
 * Default constructor
 */
 public Interrogator() {
 final Container contentPane;

 //set the frame properties
 setTitle("Interrogator");
 setLocation(FRAME_X_ORIGIN, FRAME_Y_ORIGIN);
 setSize(java.awt.Toolkit.getDefaultToolkit().getScreenSize());
 contentPane = getContentPane();

77

 contentPane.setBackground(Color.white);
 contentPane.setLayout(null);

 //create the progress indicator window
 progressIndicator = new ProgressIndicator(null, true);

 //create and place buttons on the content pane
 setSourceButton = new JButton("Set Source");
 setSourceButton.setBounds(20, 10, BUTTON_WIDTH, BUTTON_HEIGHT);
 setSourceButton
 .setToolTipText("Click to choose the drive you wish to analyze");

 setTargetButton = new JButton("Set Target");
 setTargetButton.setBounds(210, 10, BUTTON_WIDTH, BUTTON_HEIGHT);
 setTargetButton
 .setToolTipText("Click to choose the drive to store collected data");

 shutdownButton = new JButton("Shutdown");
 shutdownButton.setBounds(590, 10, BUTTON_WIDTH, BUTTON_HEIGHT);
 shutdownButton.setForeground(Color.red);
 shutdownButton.setToolTipText("Click to shutdown the system");

 clearButton = new JButton("Clear");
 clearButton.setBounds(400, 10, BUTTON_WIDTH, BUTTON_HEIGHT);
 clearButton.setToolTipText("Click to clear the output windows");

 easySearchButton = new JButton("Easy Search");
 easySearchButton.setBounds(20, 45, BUTTON_WIDTH, BUTTON_HEIGHT);
 easySearchButton.setToolTipText("Click to search for files");

 advSearchButton = new JButton("Adv. Search");
 advSearchButton.setBounds(210, 45, BUTTON_WIDTH, BUTTON_HEIGHT);
 advSearchButton
 .setToolTipText("Click to specify the search extensions");

 createImageButton = new JButton("Create Image");
 createImageButton.setBounds(590, 45, BUTTON_WIDTH, BUTTON_HEIGHT);
 createImageButton.setToolTipText("Click to copy the entire drive");

 keywordSearchButton = new JButton("Keyword Search");
 keywordSearchButton.setBounds(400, 45, BUTTON_WIDTH, BUTTON_HEIGHT);
 keywordSearchButton
 .setToolTipText("Click to search for keywords within files");

 viewButton = new JButton("View Selected File");
 viewButton.setToolTipText("Click to view the selected file");
 viewButton.setActionCommand("View Selected File");
 viewButton.addActionListener(new ViewListener());
 viewButton.setEnabled(false);

 selectAllButton = new JButton("Select All");
 selectAllButton.setToolTipText("Click to select all files in list");
 selectAllButton.setActionCommand("Select All");
 selectAllButton.addActionListener(new SelectAllListener());

 backupButton = new JButton("Backup Selected Files");
 backupButton
 .setToolTipText("Click to backup all selected files in the lower window");

 //add the upper buttons
 contentPane.add(setSourceButton);
 contentPane.add(setTargetButton);
 contentPane.add(shutdownButton);
 contentPane.add(clearButton);
 contentPane.add(advSearchButton);
 contentPane.add(easySearchButton);
 contentPane.add(createImageButton);
 contentPane.add(keywordSearchButton);

 //register this frame as an action listener of the buttons
 setSourceButton.addActionListener(this);
 setTargetButton.addActionListener(this);
 shutdownButton.addActionListener(this);
 clearButton.addActionListener(this);
 backupButton.addActionListener(this);
 advSearchButton.addActionListener(this);
 easySearchButton.addActionListener(this);
 createImageButton.addActionListener(this);
 keywordSearchButton.addActionListener(this);

 //Create the upper status window and place it on the screen

78

 textArea = new JTextArea();
 textArea.setToolTipText("This is the status window");
 textArea.setEditable(false);
 final JScrollPane scrollText = new JScrollPane(textArea);
 scrollText.setBorder(BorderFactory.createLineBorder(Color.red));
 contentPane.add(scrollText);

 //Create the list and put it in a scroll pane.
 listModel = new DefaultListModel();
 list = new JList(listModel);
 list.setFont(new Font("Dialog", Font.PLAIN, 10));
 list.setSelectionMode(ListSelectionModel.MULTIPLE_INTERVAL_SELECTION);
 list.setSelectedIndex(0);
 list.addListSelectionListener(this);
 list.setVisibleRowCount(5);
 list.setToolTipText("Double-click any file to open");
 final JScrollPane listScrollPane = new JScrollPane(list);
 listScrollPane.setBorder(BorderFactory.createLineBorder(Color.red));

 //Opens the file when the file is double-clicked.
 list.addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent evt) {
 if (evt.getClickCount() == 2) {
 openFile();
 }
 }
 });

 //Add the lower output window and buttons to the screen
 contentPane.add(listScrollPane);
 contentPane.add(viewButton);
 contentPane.add(selectAllButton);
 contentPane.add(backupButton);

 //Check if the window is resized and arrange components appropriately
 this.addComponentListener(new ComponentAdapter() {
 public void componentResized(ComponentEvent e) {
 scrollText.setBounds(10, 80, getWidth() - 30, 170);
 listScrollPane.setBounds(10, 275, getWidth() - 30,
 getHeight() - 350);
 listScrollPane.repaint();
 textArea.updateUI();
 list.updateUI();
 viewButton.setBounds(10, getHeight() - 70, BUTTON_WIDTH,
 BUTTON_HEIGHT);
 selectAllButton.setBounds(200, getHeight() - 70, BUTTON_WIDTH,
 BUTTON_HEIGHT);
 backupButton.setBounds(390, getHeight() - 70, BUTTON_WIDTH,
 BUTTON_HEIGHT);
 }
 });

 //register 'Exit upon closing' as a default close operation
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 }

// ---
// Public Methods:
//
// void actionPerformed (ActionEvent)
//
// void valueChanged (ListSelectionEvent)
//
// --

 /**
 * Standard method to respond the action event.
 *
 * @param event
 * the ActionEvent object
 *
 */
 public void actionPerformed(ActionEvent event) {

 if (event.getSource() instanceof JButton) {
 JButton clickedButton = (JButton) event.getSource();

 if (clickedButton == setSourceButton) {
 setSource();
 } else if (clickedButton == setTargetButton) {
 setTarget();

79

 } else if (clickedButton == shutdownButton) {
 shutdown();
 } else if (clickedButton == clearButton) {
 clearText();
 } else if (clickedButton == backupButton) {
 copyFiles();
 } else if (clickedButton == advSearchButton) {
 advancedSearch();
 } else if (clickedButton == easySearchButton) {
 easySearch();
 } else if (clickedButton == createImageButton) {
 createImage();
 } else if (clickedButton == keywordSearchButton) {
 keywordSearch();
 } else {
 clearText();
 }

 //scroll the upper output window to the bottom
 textArea.setCaretPosition(textArea.getDocument().getLength());

 }
 }

 /**
 * This method is required by ListSelectionListener.
 *
 * @param ListSelectionListener.
 *
 */
 public void valueChanged(ListSelectionEvent e) {
 if (e.getValueIsAdjusting() == false) {
 if (list.getSelectedIndex() == -1) {
 //No selection, disable view button.
 viewButton.setEnabled(false);
 } else {
 //Selection, enable the view button.
 viewButton.setEnabled(true);
 }
 }
 }

// ---
// Private Methods:
//
// void addToList (String)
// void advancedSearch ()
// void clearText ()
// void copyFiles ()
// void createImage ()
// void easySearch ()
// void keywordSearch ()
// void mountPartition (String)
// void openFile ()
// void resetList ()
// void setSource ()
// void setTarget ()
// void setWriteAccess (String)
// void shutdown ()
//
// int [] selectedIndices ()
//
// File setDrive (String)
//
// String checkDriveAccess (String)
// String valueOf (int)
//
// --

 /**
 * Adds an item to end of the list.
 *
 * @param newItem item to be added to list.
 *
 */
 private void addToList(String newItem) {
 listModel.addElement(newItem);
 }

 /**
 * Performs an advanced file search by extensions

80

 * using native java File code
 *
 */
 private void advancedSearch() {
 if (sourcePath == null) {
 //source not yet selected, display warning
 JOptionPane.showMessageDialog(null, "Error: no source selected!",
 "Error: no source selected!", JOptionPane.ERROR_MESSAGE);
 } else {
 //source is selected
 //initialize the list of found files
 docList = new LinkedList();
 //ask the user which extensions to search for
 extName = JOptionPane.showInputDialog("Extension name");
 if (extName != null) {
 //user has entered extensions, perform search
 progressIndicator.setVisible(true);
 visitAllFiles(sourcePath);
 File docTemp;
 //add all resulting files to the lower output window
 for (int i = 0; i < docList.size(); i++) {
 docTemp = (File) docList.get(i);
 addToList(docTemp.getAbsolutePath());
 }
 }
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 }
 progressIndicator.setVisible(false);
 }
 }

 /**
 * Clears both output windows
 *
 */
 private void clearText() {
 textArea.setText(EMPTY_STRING);
 resetList();
 }

 /**
 * Copies files to the user selected target
 *
 */
 private void copyFiles() {
 if (backupFolderPath.equals(""))
 //target has not been selected, display warning
 JOptionPane.showMessageDialog(null,
 "Error: You have not selected a target");
 else {
 //target is selected, copy files to target
 try {
 String s = null;
 Process p = null;
 //determine which files are selected in the file list
 int[] selectedIndices = selectedIndices();
 for (int i = 0; i < selectedIndices.length; i++) {
 String[] copyCommand = { "cp", "--parents",
 valueOf(selectedIndices[i]), backupFolderPath };
 textArea.append(copyCommand[0] +
 copyCommand[1] +
 copyCommand[2] +
 copyCommand[3] + NEWLINE);
 progressIndicator.setVisible(true);
 p = Runtime.getRuntime().exec(copyCommand);
 p.waitFor();
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 }
 progressIndicator.setVisible(false);
 }
 BufferedReader stdInput = new BufferedReader(
 new InputStreamReader(p.getInputStream()));

 BufferedReader stdError = new BufferedReader(
 new InputStreamReader(p.getErrorStream()));
 while ((s = stdInput.readLine()) != null) {
 textArea.append(s + NEWLINE);

81

 }
 while ((s = stdError.readLine()) != null) {
 textArea.append(s + NEWLINE);
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 return;
 }
 }
 }

 /**
 * Creates a forensically sound image of a partition
 *
 */
 private void createImage() {
 File sourcePartition = setDrive("partition to image");
 if (sourcePartition != null) {
 //source partition is selected, continue creating image
 if (!backupFolderPath.equals("")) {
 //backup folder has been entered, continue creating image
 String sourcePartitionPath = sourcePartition.getAbsolutePath();
 textArea
 .append("source path: " + sourcePartitionPath + NEWLINE);
 String imageName = JOptionPane
 .showInputDialog("Name the image to be stored on: "
 + backupFolderPath
 + "\nThe .dd extension will be added automatically");
 String imageFullPath = backupFolderPath.concat("/" + imageName
 + ".dd");
 String imageHashFullPath = backupFolderPath.concat("/"
 + imageName + ".md5");
 textArea.append(imageFullPath + NEWLINE);
 textArea.append(imageHashFullPath + NEWLINE);

 if (imageName != null) {
 //image name has been entered, continue creating image
 try {
 String s = null;
 Process p = null;
 String[] imageCommand = { "dcfldd.sh",
 sourcePartitionPath, imageFullPath,
 imageHashFullPath };
 textArea.append(imageCommand[0] +
 imageCommand[1] +
 imageCommand[2] +
 imageCommand[3] + NEWLINE);

 progressIndicator.setVisible(true);

 p = Runtime.getRuntime().exec(imageCommand);
 p.waitFor();
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 }
 progressIndicator.setVisible(false);
 BufferedReader stdInput = new BufferedReader(
 new InputStreamReader(p.getInputStream()));
 BufferedReader stdError = new BufferedReader(
 new InputStreamReader(p.getErrorStream()));
 while ((s = stdInput.readLine()) != null) {
 textArea.append(s + NEWLINE);
 }
 while ((s = stdError.readLine()) != null) {
 textArea.append(s + NEWLINE);
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 return;
 }
 } else {
 //image name not provided, display error
 JOptionPane.showMessageDialog(null,
 "Error: no name provided!\nImage not created.",
 "Error: no name provided!",
 JOptionPane.ERROR_MESSAGE);
 }
 } else {
 //backup folder has not been entered, display error
 JOptionPane.showMessageDialog(

82

 null,
 "Error: no target selected!\nImage not created.",
 "Error: no target selected!",
 JOptionPane.ERROR_MESSAGE);
 }
 }
 }

 /**
 * Performs an easy file search by extensions
 * using native java File code
 *
 */
 private void easySearch() {
 if (sourcePath == null) {
 //source not selected, display error
 JOptionPane.showMessageDialog(null, "Error: no source selected!",
 "Error: no source selected!", JOptionPane.ERROR_MESSAGE);
 } else {
 //source selected, continue easySearch
 InterrogatorSearchOptions searchOptions =
 new InterrogatorSearchOptions(this, true);
 searchOptions.setVisible(true);
 docList = new LinkedList();

 extName = searchOptions.getSelectedExtensions();
 if (extName != null && !extName.equals("")) {
 //user has entered extensions and it's not blank
 progressIndicator.setVisible(true);
 textArea.append("extName: " + extName + NEWLINE);
 visitAllFiles(sourcePath);
 File docTemp;
 for (int i = 0; i < docList.size(); i++) {
 docTemp = (File) docList.get(i);
 addToList(docTemp.getAbsolutePath());
 }
 }
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 }
 progressIndicator.setVisible(false);
 }
 }

 /**
 * Allows the user to search for keywords in files
 *
 */
 // Search for keywords in files
 private void keywordSearch() {
 if (sourcePath == null) {
 //source not set, display error
 JOptionPane.showMessageDialog(null, "Error: no source selected!",
 "Error: no source selected!", JOptionPane.ERROR_MESSAGE);
 } else {
 //source is set, continue keywordSearch
 KeywordSearchOptions keywordSearchOptions =
 new KeywordSearchOptions(this, true);
 keywordSearchOptions.setVisible(true);
 extName = "";
 extName = keywordSearchOptions.getSelectedExtensions();
 String keywords = "";
 keywords = keywordSearchOptions.getKeywords();

 if (!keywords.equals("") && !extName.equals("")) {
 //user has entered keywords and selected extensions
 progressIndicator.setVisible(true);
 textArea.append("extName: " + extName + NEWLINE);
 textArea.append("keywords: " + keywords + NEWLINE);

 try {
 String s = null;
 Process p = null;
 String[] keywordSearchCommand = { "keywordSearch.sh",
 sourcePath.getAbsolutePath(), extName, keywords };
 for (int i = 0; i < keywordSearchCommand.length; i++) {
 textArea.append(keywordSearchCommand[i] + " ");
 }
 textArea.append(NEWLINE);

83

 progressIndicator.setVisible(true);
 p = Runtime.getRuntime().exec(keywordSearchCommand);
 p.waitFor();
 try { Thread.sleep(100);
 } catch (InterruptedException e) {
 }
 progressIndicator.setVisible(false);
 BufferedReader stdInput = new BufferedReader(
 new InputStreamReader(p.getInputStream()));
 BufferedReader stdError = new BufferedReader(
 new InputStreamReader(p.getErrorStream()));
 while ((s = stdInput.readLine()) != null) {
 textArea.append(s + NEWLINE);
 addToList(s);
 }
 while ((s = stdError.readLine()) != null) {
 textArea.append(s + NEWLINE);
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 return;
 }
 }
 try { Thread.sleep(100);
 } catch (InterruptedException e) {
 }
 progressIndicator.setVisible(false);
 }
 }

 /**
 * Changes a mount from read-only to write access
 *
 * @param targetPartition the partition to mount
 *
 */
 private void mountPartition(String targetPartition) {
 try {
 String s = null;
 Process p = null;
 //create the mount command
 String[] mountCommand = { "sudo", "mount", targetPartition, "-o",
 "ro" };
 textArea.append(mountCommand[0] +
 mountCommand[1] +
 mountCommand[2] +
 mountCommand[3] +
 mountCommand[4] + NEWLINE);
 progressIndicator.setVisible(true);
 p = Runtime.getRuntime().exec(mountCommand);
 p.waitFor();
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 }
 progressIndicator.setVisible(false);
 BufferedReader stdInput = new BufferedReader(new InputStreamReader(
 p.getInputStream()));
 BufferedReader stdError = new BufferedReader(new InputStreamReader(
 p.getErrorStream()));
 while ((s = stdInput.readLine()) != null) {
 textArea.append(s + NEWLINE);
 }
 while ((s = stdError.readLine()) != null) {
 textArea.append(s + NEWLINE);
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 return;
 }
 }

 /**
 * Opens the file in KDE's registered viewer application.
 *
 */
 private void openFile() {
 String pathTemp = (String) list.getSelectedValue();
 try {
 Process p = null;
 String[] buttonFourCommand = { "kfmclient", "exec", pathTemp };

84

 p = Runtime.getRuntime().exec(buttonFourCommand);
 } catch (IOException e2) {
 System.out.println("exception happened - here's what I know: ");
 e2.printStackTrace();
 System.exit(-1);
 }
 }

 /**
 * Clears the list.
 *
 */
 private void resetList() {
 listModel.removeAllElements();
 }

 /**
 * Allows the user to set the source drive to analyze
 *
 */
 private void setSource() {
 File sourcePathTemp = sourcePath;
 sourcePath = setDrive("drive to scan");
 if (sourcePath == null)
 //source not selected, set source to previous source
 sourcePath = sourcePathTemp;
 }

 /**
 * Allows the user to set the target drive
 *
 */
 private void setTarget() {
 if (sourcePath == null) {
 //source not selected, display error
 JOptionPane.showMessageDialog(null, "Error: Set the source first!",
 "Error: Set the source first!", JOptionPane.ERROR_MESSAGE);
 } else {
 //source selected, continue setTarget
 targetPath = setDrive("drive to save collected data");
 if (targetPath != null && sourcePath.getAbsolutePath().equals(
 targetPath.getAbsolutePath())) {
 //target is selected, but is same as the source, display error
 JOptionPane.showMessageDialog(null,
 "Error: You selected the source drive.\nPlease try again.");
 setTarget();
 } else if (targetPath != null) {
 //target is selected and is not the source
 String access = checkDriveAccess(targetPath.getAbsolutePath());
 if (access.equals("ro")
 //target is mounted read-only, prompt for write access
 && JOptionPane.showConfirmDialog(null,
 "Allow write on drive\n"
 + targetPath.getAbsolutePath(),
 "The target drive is read-only",
 JOptionPane.YES_NO_OPTION) == 0) {
 setWriteAccess(targetPath.getAbsolutePath());
 }
 //check if write access was enabled
 access = checkDriveAccess(targetPath.getAbsolutePath());
 if (access.equals("rw")) {
 //write access is enabled
 String backupFolder = JOptionPane
 .showInputDialog("Backup name");
 if (backupFolder == null) {
 //backup folder was not entered
 backupFolderPath = "";
 } else {
 //backup folder was entered, continue setTarget
 backupFolderPath = targetPath.getAbsolutePath() + "/"
 + backupFolder;
 textArea.append("\nbackupFolderPath: "
 + backupFolderPath + "\n");
 File dir = new File(backupFolderPath);
 if (!dir.exists()) {
 //user entered folder name
 //check if folder was created
 boolean success = dir.mkdir();
 if (!success) {
 //folder not created, display error
 textArea.append("Directory Creation Failed");

85

 }
 }
 }
 } else {
 //write access was not enabled, display error
 JOptionPane.showMessageDialog(
 null,
 "Error: no write access!\nBackup folder not created.",
 "Error: no write access!",
 JOptionPane.ERROR_MESSAGE);
 mountPartition(targetPath.getAbsolutePath());
 }
 }
 }
 }

 /**
 * Changes a mount from read-only to write access
 *
 * @param targetPartition the partition to set write access
 *
 */
 private void setWriteAccess(String targetPartition) {
 try {
 String s = null;
 Process p = null;
 //unmount drive that needs write access
 String[] umountCommand = { "sudo", "umount", targetPartition, };
 textArea.append(umountCommand[0] +
 umountCommand[1] +
 umountCommand[2] + NEWLINE);
 //mount drive with write access
 String[] mountCommand = { "sudo", "mount", "-o", "rw",
 targetPartition, };
 textArea.append(mountCommand[0] +
 mountCommand[1] +
 mountCommand[2] +
 mountCommand[3] +
 mountCommand[4] + NEWLINE);
 progressIndicator.setVisible(true);
 p = Runtime.getRuntime().exec(umountCommand);
 p.waitFor();
 p = Runtime.getRuntime().exec(mountCommand);
 p.waitFor();
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 }
 progressIndicator.setVisible(false);
 BufferedReader stdInput = new BufferedReader(new InputStreamReader(
 p.getInputStream()));

 BufferedReader stdError = new BufferedReader(new InputStreamReader(
 p.getErrorStream()));

 while ((s = stdInput.readLine()) != null) {
 textArea.append(s + NEWLINE);
 }
 while ((s = stdError.readLine()) != null) {
 textArea.append(s + NEWLINE);
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 return;
 }
 }

 /**
 * Shuts down the system using the command "shutdown -h now"
 *
 */
 private void shutdown() {
 int shutdownPrompt = JOptionPane.showConfirmDialog(null,
 "Are you sure\n you want to shutdown?", "Shutdown?",
 JOptionPane.YES_NO_OPTION);
 if (shutdownPrompt == 0) {
 //user selected yes to shutdown, continue shutting down
 try {
 String s = null;
 Process p = null;
 String[] shutdownCommand = { "sudo", "shutdown", "-h", "now" };

86

 textArea.append(shutdownCommand[0] +
 shutdownCommand[1] +
 shutdownCommand[2] +
 shutdownCommand[3] + NEWLINE);
 p = Runtime.getRuntime().exec(shutdownCommand);
 BufferedReader stdInput = new BufferedReader(
 new InputStreamReader(p.getInputStream()));
 BufferedReader stdError = new BufferedReader(
 new InputStreamReader(p.getErrorStream()));
 while ((s = stdInput.readLine()) != null) {
 textArea.append(s + NEWLINE);
 }
 while ((s = stdError.readLine()) != null) {
 textArea.append(s + NEWLINE);
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 return;
 }
 }
 }

 /**
 * Traverse all files in the given directory
 *
 * @param dir the directory to traverse.
 *
 */
 private void visitAllFiles(File dir) {
 if (dir.isDirectory() && dir.canRead()) {
 //is a directory and has read access
 //creates an array of files matching the provided extension
 File[] docList2 = dir.listFiles(new FileFilter(extName));
 if (docList2 != null) {
 //required to handle NTFS junctions
 //add all matching files to the master linked list (docList)
 for (int j = 0; j < docList2.length; j++) {
 docList.add(docList2[j]);
 }
 //create array of files/folders contained in dir
 String[] children = dir.list();
 // iterate through all subfolders
 for (int i = 0; i < children.length; i++) {
 visitAllFiles(new File(dir, children[i]));
 }
 }
 }
 }

 /**
 * Returns an array containing the indices of all selected items.
 *
 */
 private int[] selectedIndices() {
 return list.getSelectedIndices();
 }

 /**
 * Scans the system for mounted partitions,
 * prompts the user to select a partition,
 * and returns the chosen partition
 *
 * @param setDriveText title of choose partition dialog.
 *
 */
 private File setDrive(String setDriveText) {
 String s = null;
 File newPath = null;
 drives = new LinkedList();
 try {
 Process p = null;
 p = Runtime.getRuntime().exec(
 "df -x squashfs -x iso9660 -x tmpfs -x aufs -T -h");

 BufferedReader stdInput = new BufferedReader(new InputStreamReader(
 p.getInputStream()));

 BufferedReader stdError = new BufferedReader(new InputStreamReader(
 p.getErrorStream()));
 int driveCounter = 0;
 //list to store partition info

87

 LinkedList partitionInfo = new LinkedList();
 String cdSource = "null";
 textArea
 .append(NEWLINE
 + "Filesystem Type Size Used Avail Use% Mounted on"
 + NEWLINE);
 //display mounted partitions
 while ((s = stdInput.readLine()) != null) {

 Comparator partitionSort = new PartitionSort();
 String sTemp = s;
 if (s.matches(".*cdrom.*")) {
 //mount is cdrom or KNOPPIX boot partition
 //parse its mount point
 cdSource = s.substring(0, 9) + ".*";
 }
 if (s.matches(".*Drive.*") || s.matches(".*hd[a-z][1-9].*")
 || s.matches(".*sd[a-z][1-9].*")
 || s.matches(".*ext.*")) {
 //mount is a partition useful for Interrogator
 if (setDriveText.equals("partition to image"))
 //user called setDrive from the createImage button
 s = s.substring(0, 9);
 else {
 //user called setDrive from setSource or setTarget
 // start from the 20th character and grab everything
 // from the forward slash to the EOL
 s = s.substring(s.indexOf("/", 20), s.length());
 }
 if (s.matches(".*cdrom.*") || sTemp.matches(cdSource)) {
 //mount point contains "cdrom" and is KNOPPIX boot part
 } else {
 //mount is not KNOPPIX boot partition
 if (driveCounter > 0) {
 //more than one partition is mounted, display this
 //textArea.append(sTemp + NEWLINE);
 partitionInfo.add(sTemp);
 }
 //add the partition to the linked list
 drives.add(s);
 //increment the number of drives
 driveCounter++;
 //sort the linked list of partition info
 //alphabetically
 Collections.sort(partitionInfo, partitionSort);
 }
 }
 }
 //display info of all partitions on the upper output window
 for(int i = 0; i < partitionInfo.size(); i++)
 textArea.append((String)partitionInfo.get(i) + NEWLINE);
 //sort the partitions alphabetically
 Collections.sort(drives);
 //scroll upper output window to end of text
 textArea.setCaretPosition(textArea.getDocument().getLength());
 if (driveCounter < 2) {
 //only KNOPPIX boot partition is mounted
 JOptionPane.showMessageDialog(null, "Error: no drives found!",
 "Error: no drives!", JOptionPane.ERROR_MESSAGE);
 } else {
 //at least one additional part. is mounted, fill drive array
 String newDriveArray[] = new String[driveCounter - 1];
 for (int i = 1; i < drives.size(); i++) {
 newDriveArray[i - 1] = (String) drives.get(i);
 }
 while ((s = stdError.readLine()) != null) {
 textArea.append(s + NEWLINE);
 }
 String newPathTemp = (String) JOptionPane.showInputDialog(null,
 "Choose the " + setDriveText, "choose the "
 + setDriveText, JOptionPane.PLAIN_MESSAGE,
 null, newDriveArray, newDriveArray[0]);
 if (newPathTemp != null) {
 //a partition has been selected, set the path
 newPath = new File(newPathTemp);
 textArea.append("New " + setDriveText + ": "
 + newPath.getAbsolutePath() + NEWLINE + NEWLINE);
 }
 }
 } catch (IOException e) {
 System.out.println("exception happened - here's what I know: ");

88

 e.printStackTrace();
 System.exit(-1);
 }
 return newPath;
 }

 /**
 * Checks if the partition is mounted read-only or with write access.
 *
 * @param partition partition to check access.
 *
 */
 private String checkDriveAccess(String partition) {
 String s = null;
 String driveAccess = "ro";
 try {
 Process p = null;
 p = Runtime.getRuntime().exec("mount");
 BufferedReader stdInput = new BufferedReader(new InputStreamReader(
 p.getInputStream()));
 BufferedReader stdError = new BufferedReader(new InputStreamReader(
 p.getErrorStream()));
 while ((s = stdInput.readLine()) != null) {
 if (s.matches(".*" + partition + ".*")) {
 textArea.append(s + NEWLINE);
 int indexTemp = s.indexOf("r");
 driveAccess = s.substring(indexTemp, indexTemp + 2);
 textArea.append("Drive access is: " + driveAccess
 + NEWLINE);
 }
 }
 while ((s = stdError.readLine()) != null) {
 textArea.append(s + NEWLINE);
 }
 } catch (IOException e) {
 System.out.println("exception happened - here's what I know: ");
 e.printStackTrace();
 System.exit(-1);
 }
 return driveAccess;
 }

 /**
 * Returns an item in the list.
 *
 * @param i the ith item in the list.
 *
 */
 private String valueOf(int i) {
 return (String) listModel.get(i);
 }

 // ---
 // Inner Class: PartitionSort
 //
 // Sorts the partitions alphabetically.
 // --

 // Inner Class: PartitionSort
 class PartitionSort implements Comparator {
 public int compare(Object obj1, Object obj2) {
 //Type-cast objects to Strings.
 String str1 = (String) obj1;
 String str2 = (String) obj2;
 str1 = str1.substring(0,9);
 str2 = str2.substring(0,9);
 System.out.println(str1);
 //compare the strings
 return str1.compareTo(str2);
 }
 }

 // ---
 // Inner Class: SelectAllListener
 //
 // Selects all items in the list.
 // --

 // Inner Class: SelectAllListener
 class SelectAllListener implements ActionListener {

89

 public void actionPerformed(ActionEvent e) {
 int start = 0;
 int end = listModel.getSize() - 1;
 if (end >= 0)
 list.setSelectionInterval(start, end);
 }
 }

 // ---
 // Inner Class: ViewListener
 //
 // Opens the file when the button is clicked.
 // --

 // Inner Class: ViewListener
 class ViewListener implements ActionListener {

 public void actionPerformed(ActionEvent e) {
 // This method can be called only if
 // there's a valid selection
 // so go ahead and remove whatever's selected.

 int size = listModel.getSize();
 if (size == 0) { // List is empty, disable firing.
 viewButton.setEnabled(false);
 } else { // Select an index.
 openFile();
 }
 }
 }
}

B. INTERROGATORSEARCHOPTIONS.JAVA

/usr/bin/Interrogator/InterrogatorSearchOptions.java

/*
 InterrogatorSearchOptions
 Adrian Arvizo
 This class creates the easy search dialog box.
 File: InterrogatorSearchOptions.java
 */

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/**
 * Ch14JCheckBoxSample1 class
 *
 * <p>
 * A sample frame to illustrate the use of checkbox buttons.
 */
class InterrogatorSearchOptions extends JDialog implements ActionListener {

//----------------------------------
// Data Members
//----------------------------------

 /**
 * Default frame width
 */
 private static final int FRAME_WIDTH = 300;

 /**
 * Default frame height

90

 */
 private static final int FRAME_HEIGHT = 300;

 /**
 * X coordinate of the frame default origin point
 */
 private static final int FRAME_X_ORIGIN = 150;

 /**
 * Y coordinate of the frame default origin point
 */
 private static final int FRAME_Y_ORIGIN = 250;

 /**
 * An array of JCheckBox objects
 */
 private JCheckBox[] checkBox;

 /**
 * StringBuffers for easy manipulation of the extensions
 */
 private StringBuffer selectedExtensions;

//----------------------------------
// Constructors
//----------------------------------

 /**
 * Default constructor
 */
 public InterrogatorSearchOptions(JFrame frame, boolean modal) {
 super(frame, modal);
 Container contentPane;
 JPanel checkPanel, okPanel;

 JButton okButton, cancelButton;

 //create and array of buttons with the following titles
 String[] btnText = { "Office Documents", "Images", "Audio", "Videos",
 "Webpages", "Windows Address Book", "Outlook
contacts/email",
 "Bookmarks", "Browser History", "Virtual Machines" };

 // set the frame properties
 setSize (FRAME_WIDTH, FRAME_HEIGHT);
 setTitle ("File Types");
 setLocation (FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

 contentPane = getContentPane();
 contentPane.setBackground(Color.white);
 contentPane.setLayout(new BorderLayout());

 //create and place the checkboxes
 checkPanel = new JPanel(new GridLayout(0,1));
 checkPanel.setBorder(BorderFactory
 .createTitledBorder("Select types of files"));
 checkBox = new JCheckBox[btnText.length];
 for (int i = 0; i < checkBox.length; i++) {
 checkBox[i] = new JCheckBox(btnText[i]);
 checkPanel.add(checkBox[i]);
 }

 //create the tooltips for all checkboxes

91

 checkBox[0].setToolTipText("doc, xls, ppt, pdf");
 checkBox[1].setToolTipText("jpg, gif, tif, pcx, bmp");
 checkBox[2].setToolTipText("mp3, wav, wma, mid, aac");
 checkBox[3].setToolTipText("mpg, mpeg, avi, mov, wmv");
 checkBox[4].setToolTipText("htm, html");
 checkBox[5].setToolTipText("wab");
 checkBox[6].setToolTipText("pst");
 checkBox[7].setToolTipText("bookmarks.html");
 checkBox[8].setToolTipText("index.dat, history.dat");
 checkBox[9].setToolTipText("vmdk, vmsd, vmx, vmem, vmss");

 //create and place the OK button and enable ok by enter key
 okPanel = new JPanel(new FlowLayout());
 okButton = new JButton("OK");
 okButton.addActionListener(this);
 okPanel.add(okButton);
 getRootPane().setDefaultButton(okButton);

 //create and place the cancel button and enable cancel by escape key
 cancelButton = new JButton("Cancel");
 cancelButton.addActionListener(new ActionListener() {
 public void actionPerformed (ActionEvent event) {
 closeDialog();
 }
 });
 okPanel.add(cancelButton);
 addCancelByEscapeKey();

 contentPane.add(checkPanel, BorderLayout.CENTER);
 contentPane.add(okPanel, BorderLayout.SOUTH);

 //register 'Exit upon closing' as a default close operation
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 }

// ---
// Public Methods:
//
// void actionPerformed (ActionEvent)
//
// String getSelectedExtensions ()
//
// --

 /**
 * Determines which file types are selected when the user clicks ok.
 *
 * @param event
 *
 */
 public void actionPerformed(ActionEvent event) {

 //create an empty StringBuffer
 selectedExtensions = new StringBuffer("");

 //for each checkBox that is selected, append extensions to the buffer
 if (checkBox[0].isSelected())
 selectedExtensions.append(".doc;.xls;.ppt;.pdf;");
 if (checkBox[1].isSelected())
 selectedExtensions.append(".jpg;.gif;.tif;.pcx;.bmp;");
 if (checkBox[2].isSelected())
 selectedExtensions.append(".mp3;.wav;.wma;.mid;.aac;");
 if (checkBox[3].isSelected())

92

 selectedExtensions.append(".mpg;.mpeg;.avi;.mov;.wmv;");
 if (checkBox[4].isSelected())
 selectedExtensions.append(".html;.htm;");
 if (checkBox[5].isSelected())
 selectedExtensions.append(".wab;");
 if (checkBox[6].isSelected())
 selectedExtensions.append(".pst;");
 if (checkBox[7].isSelected())
 selectedExtensions.append("bookmarks.html;");
 if (checkBox[8].isSelected())
 selectedExtensions.append("index.dat;history.dat;");
 if (checkBox[9].isSelected())
 selectedExtensions.append(".vmdk;.vmsd;.vmx;.vmem;.vmss;");

 //close the dialog box when done
 this.setVisible(false);
 }

 /**
 * Returns a String of the entered keywords.
 *
 */
 public String getSelectedExtensions () {
 if (selectedExtensions != null)
 return selectedExtensions.toString();
 else return null;
 }

// ---
// Private Methods:
//
// void addCancelByEscapeKey ()
//
// void closeDialog ()
//
// --

 /**
 * Enables the escape key to perform a cancel operation.
 *
 */
 private void addCancelByEscapeKey(){
 String CANCEL_ACTION_KEY = "CANCEL_ACTION_KEY";
 int noModifiers = 0;
 KeyStroke escapeKey = KeyStroke.getKeyStroke(KeyEvent.VK_ESCAPE,
 noModifiers, false);
 InputMap inputMap = this.getRootPane().getInputMap(
 JComponent.WHEN_ANCESTOR_OF_FOCUSED_COMPONENT);
 inputMap.put(escapeKey, CANCEL_ACTION_KEY);
 AbstractAction cancelAction = new AbstractAction(){
 public void actionPerformed(ActionEvent e){
 closeDialog();
 }
 };
 this.getRootPane().getActionMap().put(CANCEL_ACTION_KEY, cancelAction);
 }

 /**
 * Hides the dialog.
 *
 */
 private void closeDialog () {
 this.setVisible(false);

93

 }
}

C. PROGRESSINDICATOR.JAVA

/usr/bin/Interrogator/ProgressIndicator.java

/*
 ProgressIndicator
 Adrian Arvizo
 This class displays a dialog box to indicate the program is busy.
 File: ProgressIndicator.java
 */

import javax.swing.*;
import java.awt.*;

class ProgressIndicator extends JDialog {

//----------------------------------
// Data Members
//----------------------------------

 /**
 * Default frame width
 */
 private static final int FRAME_WIDTH = 300;

 /**
 * Default frame height
 */
 private static final int FRAME_HEIGHT = 200;

 /**
 * X coordinate of the frame default origin point
 */
 private static final int FRAME_X_ORIGIN = 150;

 /**
 * Y coordinate of the frame default origin point
 */
 private static final int FRAME_Y_ORIGIN = 250;

//----------------------------------
// Constructors
//----------------------------------

 /**
 * Default constructor
 */
 public ProgressIndicator(JFrame frame, boolean modal) {
 super(frame);
 Container contentPane;
 final JProgressBar progressBar = new JProgressBar();
 JLabel waitText = new JLabel("Busy, Please Wait");

94

 //set the frame properties
 setSize (FRAME_WIDTH, FRAME_HEIGHT);
 setTitle ("Busy, Please Wait...");
 setLocation (FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

 contentPane = getContentPane();
 contentPane.setBackground(Color.white);
 contentPane.setLayout(new BorderLayout());
 contentPane.add(progressBar, BorderLayout.CENTER);
 contentPane.add(waitText, BorderLayout.CENTER);
 progressBar.setIndeterminate(true);

 try {this.setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));}
 finally { }
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 }
}

D. KEYWORDSEARCHOPTIONS.JAVA

/usr/bin/Interrogator/KeywordSearchOptions.java

/*
 KeywordSearchOptions
 Adrian Arvizo
 This class creates the keyword search dialog box.
 File: KeywordSearchOptions.java
 */

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

class KeywordSearchOptions extends JDialog implements ActionListener {

// ----------------------------------
// Data Members
// ----------------------------------

 /**
 * Default frame width
 */
 private static final int FRAME_WIDTH = 300;

 /**
 * Default frame height
 */
 private static final int FRAME_HEIGHT = 200;

 /**
 * X coordinate of the frame default origin point
 */
 private static final int FRAME_X_ORIGIN = 150;

 /**
 * Y coordinate of the frame default origin point
 */
 private static final int FRAME_Y_ORIGIN = 250;

 /**
 * An array of JCheckBox objects
 */

95

 private JCheckBox[] checkBox;

 /**
 * StringBuffers for easy manipulation of the extensions and keywords
 */
 private StringBuffer selectedExtensions, keywords;

 /**
 * Fields where the user may enter keywords
 */
 private JTextField keyword1, keyword2, keyword3, keyword4;

// ----------------------------------
// Constructors
// ----------------------------------

 /**
 * Default constructor
 */
 public KeywordSearchOptions(JFrame frame, boolean modal) {
 super(frame, modal);
 Container contentPane;
 JPanel checkPanel, okPanel, keywordPanel;

 JButton okButton, cancelButton;
 String[] btnText = { "Word (doc)", "PowerPoint (ppt)", "Excel (xls)",
 "Text (txt)", "Webpages (html)", "Rich Text (rtf)" };

 //initialize the fields for keywords
 keyword1 = new JTextField();
 keyword1.setText("");
 keyword2 = new JTextField();
 keyword2.setText("");
 keyword3 = new JTextField();
 keyword3.setText("");
 keyword4 = new JTextField();
 keyword4.setText("");

 //set the frame properties
 setSize (FRAME_WIDTH, FRAME_HEIGHT);
 setTitle ("File Types");
 setLocation (FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

 contentPane = getContentPane();
 contentPane.setBackground(Color.white);
 contentPane.setLayout(new BorderLayout());

 //create and place the checkboxes
 checkPanel = new JPanel(new GridLayout(0,1));
 checkPanel.setBorder(BorderFactory
 .createTitledBorder("Select types of files"));
 checkBox = new JCheckBox[btnText.length];

 //add the checkboxes to the check panel
 for (int i = 0; i < checkBox.length; i++) {
 checkBox[i] = new JCheckBox(btnText[i]);
 checkPanel.add(checkBox[i]);
 }

 //create the area for keywords and add the fields
 keywordPanel = new JPanel(new GridLayout(0,1));
 keywordPanel.setBorder(BorderFactory
 .createTitledBorder("Enter keywords"));
 keywordPanel.add(keyword1);
 keywordPanel.add(keyword2);
 keywordPanel.add(keyword3);
 keywordPanel.add(keyword4);

 //create and place the OK button and enable ok by enter key
 okPanel = new JPanel(new FlowLayout());
 okButton = new JButton("OK");

96

 okButton.addActionListener(this);
 okPanel.add(okButton);
 getRootPane().setDefaultButton(okButton);

 //create the cancel button and enable cancel by escape key
 cancelButton = new JButton("Cancel");
 cancelButton.addActionListener(new ActionListener() {
 public void actionPerformed (ActionEvent event) {
 closeDialog();
 }
 });
 okPanel.add(cancelButton);
 addCancelByEscapeKey();

 contentPane.add(checkPanel, BorderLayout.WEST);
 contentPane.add(keywordPanel, BorderLayout.CENTER);
 contentPane.add(okPanel, BorderLayout.SOUTH);

 //register 'Exit upon closing' as a default close operation
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 }

// ---
// Public Methods:
//
// void actionPerformed (ActionEvent)
//
// String getKeywords ()
//
// String getSelectedExtensions ()
//
// --

 /**
 * Determines which file types are selected when the user clicks ok.
 *
 * @param event
 *
 */
 public void actionPerformed(ActionEvent event) {

 //flag that specifies if multiple checkboxes are checked
 boolean multipleSelections = false;

 //create an empty StringBuffer
 selectedExtensions = new StringBuffer("");

 //for each checkBox that is selected, append those extensions to the buffer
 if (checkBox[0].isSelected()) {
 multipleSelections = true;
 selectedExtensions.append("(.*doc)");
 }
 if (checkBox[1].isSelected()) {
 if (multipleSelections == true)
 selectedExtensions.append("|(.*xls)");
 else {
 multipleSelections = true;
 selectedExtensions.append("(.*xls)");
 }
 }
 if (checkBox[2].isSelected()) {
 if (multipleSelections == true)
 selectedExtensions.append("|(.*ppt)");
 else {
 multipleSelections = true;
 selectedExtensions.append("(.*ppt)");
 }
 }
 if (checkBox[3].isSelected()) {
 if (multipleSelections == true)
 selectedExtensions.append("|(.*txt)");

97

 else {
 multipleSelections = true;
 selectedExtensions.append("(.*txt)");
 }
 }
 if (checkBox[4].isSelected()) {
 if (multipleSelections == true)
 selectedExtensions.append("|(.*html)");
 else {
 multipleSelections = true;
 selectedExtensions.append("(.*html)");
 }
 }
 if (checkBox[5].isSelected()) {
 if (multipleSelections == true)
 selectedExtensions.append("|(.*rtf)");
 else {
 multipleSelections = true;
 selectedExtensions.append("(.*rtf)");
 }
 }

 //close the dialog box when done
 this.setVisible(false);
 }

 /**
 * Returns a String of the entered keywords.
 *
 */
 public String getKeywords () {

 //create and empty StringBuffer
 keywords = new StringBuffer("");

 //flag that specifies if multiple keywords are entered
 boolean multipleKeywords = false;

 //for each keyword that is entered, append it to the keywords buffer
 if (!keyword1.getText().equals("")) {
 keywords.append("(" + keyword1.getText() + ")");
 multipleKeywords = true;
 }
 if (!keyword2.getText().equals("")) {
 if (multipleKeywords = true) {
 keywords.append("|(" + keyword2.getText() + ")");
 }
 else {
 keywords.append("(" + keyword2.getText() + ")");
 multipleKeywords = true;
 }
 }
 if (!keyword3.getText().equals("")) {
 if (multipleKeywords = true) {
 keywords.append("|(" + keyword3.getText() + ")");
 }
 else {
 keywords.append("(" + keyword3.getText() + ")");
 multipleKeywords = true;
 }
 }
 if (!keyword4.getText().equals("")) {
 if (multipleKeywords = true) {
 keywords.append("|(" + keyword4.getText() + ")");
 }
 else {
 keywords.append("(" + keyword4.getText() + ")");
 multipleKeywords = true;
 }
 }
 if (!keywords.equals(""))

98

 return keywords.toString();
 else return null;
 }

 /**
 * Returns a String of the selected extensions.
 *
 */
 public String getSelectedExtensions () {
 if (selectedExtensions != null)
 return selectedExtensions.toString();
 else return null;
 }

// ---
// Private Methods:
//
// void addCancelByEscapeKey ()
// void closeDialog ()
//
// --

 /**
 * Enables the escape key to perform a cancel operation.
 *
 */
 private void addCancelByEscapeKey(){
 String CANCEL_ACTION_KEY = "CANCEL_ACTION_KEY";
 int noModifiers = 0;
 KeyStroke escapeKey = KeyStroke.getKeyStroke(KeyEvent.VK_ESCAPE,
 noModifiers, false);
 InputMap inputMap = this.getRootPane().
 getInputMap(JComponent.WHEN_ANCESTOR_OF_FOCUSED_COMPONENT);
 inputMap.put(escapeKey, CANCEL_ACTION_KEY);
 AbstractAction cancelAction = new AbstractAction(){
 public void actionPerformed(ActionEvent e){
 closeDialog();
 }
 };
 this.getRootPane().getActionMap().put(CANCEL_ACTION_KEY, cancelAction);
 }
 /**
 * Hides the dialog.
 *
 */
 private void closeDialog () {
 this.setVisible(false);
 }
}

E. FILEFILTER.JAVA

/usr/bin/Interrogator/FileFilter.java

/*
 FileFilter 0.2
 Adrian Arvizo
 This class filters files based on extension. It takes a string of
extensions
 separated by semi-colons.
 File: FileFilter.java
 */

import java.io.*;

public class FileFilter implements FilenameFilter {

99

// ----------------------------------
// Data Members
// ----------------------------------

 /**
 * The array storing each extension for which to search
 */
 private String[] extName;

 /**
 * Flag indicating if the file ends with the searched extension
 */
 private boolean containsExtension;

// ----------------------------------
// Constructors
// ----------------------------------

 /**
 * Default constructor
 */
 public FileFilter () {
 }

 /**
 * Constructor taking string of extensions as an argument
 * Example argument: "txt;doc;xls;ppt;"
 */
 public FileFilter (String extNameTemp) {
 //fill the array with each extension separated by a semi-colon
 extName = extNameTemp.split(";");
 }

// ---
// Public Methods:
//
// boolean accept (File, String)
//
// --

 /**
 * Checks if the file ends with the specified extension.
 *
 * @param dir folder where file is found
 * @param name is name of file
 *
 */
 public boolean accept(File dir, String name) {
 name=name.toLowerCase(); //for case insensitivity
 //ensure this is reset to false before each test
 containsExtension=false;
 for (int i=0; i<extName.length; i++) {
 if (name.endsWith(extName[i].toLowerCase()))
 //set to true if the file has this extension
 containsExtension=true;
 }

100

 //returns true if the file has any of passed extensions
 return containsExtension;
 }
}

F. STARTINTERROGATOR.SH

/usr/bin/startInterrogator.sh

#!/bin/bash

mount all drives except type noproc, sysfs, tmpfs, devpts
sudo mount -a -t noproc, sysfs, tmpfs, devpts

change to the Interrogator directory
cd /usr/bin/Interrogator

start Interrogator as root
sudo java Interrogator &

G. WABREAD.SH

/usr/bin/wabread.sh

This script will parse a Windows Address Book file
and pass the output to kwrite
$1 is the input file, e.g. addressBook.wab

wabread "$1" | kwrite --stdin --geometry 1024x768+0+0

H. FIREFOXHISTORY.SH

/usr/bin/firefoxHistory.sh

This script will parse a Firefox history file
and pass the output to kwrite.
$1 is the input file, e.g. history.dat

mork.pl "$1" | kwrite --stdin --geometry 1024x768+0+0

I. IEHISTORY.SH

/usr/bin/IEHistory.sh

This script will parse an Internet Explorer
history, cache, or cookie file
and pass the output to kwrite.
$1 is the input file, e.g. index.dat
pasco "$1" | kwrite --stdin --geometry 1024x768+0+0

101

J. DCFLDD.SH

/usr/bin/dcfldd.sh

This script will create a forensically sound image
$1 is the input file, e.g. /dev/sda1
$2 is the output file, e.g. /media/sdb1/image1.dd
$3 is the md5 hash output file, e.g. /media/sdb1/image1.md5

dcfldd if="$1" conv=noerror,sync hashconv=after md5log="$3" of="$2"

K. KEYWORDSEARCH.SH

/usr/bin/keywordSearch.sh

This script will search a directory for files with
the given keywords.
$1 is the directory to search, e.g. /home/knoppix
$2 is the file extensions to search, e.g. '(.*doc)|(.*txt)'
$3 is the keywords to look for, e.g. "(nuclear)|(terrorist)
-regextype posix-extended changes the type of regular expression syntax
-iregex means ignore case
-print prints the full filename to standard output
sed -e 's/.*/"&"/' allows the handling of filenames with spaces
xargs handles passing output from one command to the input of another
egrep searches for words in a file using extended regular expressions
-a processes a binary file as text
-i means ignore case
-l outputs only the name of the file containing the keywords

find $1 -regextype posix-extended -iregex "$2" -print | \
sed -e 's/.*/"&"/' | xargs egrep -a -i -l "$3"

L. STARTOUTLOOK.SH

/usr/bin/startOutlook.sh

#!/bin/bash

This script copies an Outlook PST file to the
knoppix directory and launches Outlook 2003.
$1 is the input file, e.g. myData.pst

cp "$1" /home/knoppix
"/home/knoppix/.cxoffice/win2000/desktopdata/cxmenu/StartMenu.c^5E3A^5Fwindow
s^5Fprofiles^5Fcrossover^5FStart^2BMenu/Programs/Microsoft+Office/Microsoft+O
ffice+Outlook+2003"

102

THIS PAGE INTENTIONALLY LEFT BLANK

103

LIST OF REFERENCES

1. Hayes, Stephen F. Saddam’s terror training camps: What
the documents captured from the former Iraqi regime
reveal – and why they should all be made public. The
Weekly Standard. January 2006.

2. Answers.com. “Command Line Interface,”

http://www.answers.com/topic/command-line-interface.
Last visited on 27 February 2007.

3. Hurricane Electric. “find,”

http://man.he.net/?topic=find§ion=all, 1998. Last
Visited 16 March 2007.

4. Hurricane Electric. “sed,”

http://man.he.net/?topic=sed§ion=all, 1998. Last
Visited 16 March 2007.

5. Hurricane Electric. “xargs,”

http://man.he.net/?topic=xargs§ion=all, 1998.
Last Visited 16 March 2007.

6. Hurricane Electric. “egrep,”

http://man.he.net/?topic=egrep§ion=all, 1998.
Last Visited 16 March 2007.

7. Solomon, Michael and Barrett, Diane and Broom, Neil.

Computer Forensics JumpStart. SYBEX Inc., 2005

8. Hosmer, C. and Gordon, G. FORENSIC INFORMATION WARFARE

REQUIREMENTS STUDY. WetStone Technologies,
Incorporated.

9. Volonino, Linda and Anzaldua, Reynaldo and Godwin,

Jana. Computer Forensics Principles and Practices.
Pearson Prentice Hall, 2007.

10. “Defense Cyber Crime Institute,”

http://www.dc3.mil/dcci/dcci.htm, Last Visited 1 March
2007.

11. Interview between H. Barge, Major, USMC, Information

Operations Staff, First Marine Expeditionary Force,
Camp Pendleton, CA, and the authors, 28 October 2005.

104

12. Linux4n6.be. “The Belgian Computer Forensic Website,”
http://www.lnx4n6.be, 19 October 2006. Last Visited 1
March 2007.

13. E-fense. “The Helix Live CD Page,” http://www.e-

fense.com/helix/index.php, 6 October 2006. Last
Visited 1 March 2007.

14. Inside Security. “INSERT,” http://www.inside-

security.de/insert_en.html, Last Visited 1 March 2007.

15. DMZ Services. “F.I.R.E. Forensic and Incident Response

Environment Bootable CD,” http://fire.dmzs.com/, 1
April 2004. Last Visited 1 March 2007.

16. Johnson, Thomas. Forensic Computer Crime

Investigation. CRC Press, 2006.

17. Steel, Chad. Windows Forensics, The Field Guide for

Conducting Computer Investigations. Wiley Publishing,
Inc, 2006.

18. Pillay, Harish. “The Magic of Live CDs,”

http://www.freesoftwaremagazine.com/articles/live_cds,
4 February 2005. Last Visited 1 March 2007.

19. Wikipedia. “X86 Architecture,”

http://en.wikipedia.org/wiki/X86, 1 March 2007. Last
Visited 1 March 2007.

20. “Bart’s Preinstalled Environment (BarPE) Bootable Live

Windows CD/DVD,” http://www.nu2.nu/pebuilder, 17
February 2006. Last Visited 1 March 2006.

21. Canonical Ltd. “Ubuntu Home Page,”

http://www.ubuntu.com, 2007. Last Visited 17 March
2007.

22. Novell. “Welcome to openSUSE.org,”

http://en.opensuse.org/Welcome_to_openSUSE.org, 15
March 2007. Last Visited 17 March 2007.

23. Red Hat. “Fedora Project Wiki,”

http://fedoraproject.org/wiki, 17 March 2007. Last
Visited 17 March 2007.

105

24. Schirottke, Jorg (Kano). “Welcome to Kanotix,”
http://kanotix.com, 4 December 2006. Last Visited 17
March 2007.

25. Wikipedia. “Cloop,”

http://en.wikipedia.org/wiki/Cloop, 8 February 2007.
Last Visited 1 March 2007.

26. Hurricane Electric. “mount,”

http://man.he.net/?topic=mount§ion=all, 1998.
Last Visited 17 March 2007.

27. Hurricane Electric. “df,”

http://man.he.net/?topic=df§ion=all, 1998. Last
Visited 17 March 2007.

28. Hurricane Electric. “cp,”

http://man.he.net/?topic=cp§ion=all, 1998. Last
Visited 17 March 2007.

29. Hurricane Electric. “shutdown,”

http://man.he.net/?topic=shutdown§ion=all, 1998.
Last Visited 17 March 2007.

30. Lilith.tec-man.com. “Libwab Home Page,”

http://lilith.tec-man.com/libwab/index.html, 31 August
2006. Last Visited 1 March 2007.

31. OneStat.com. “Microsoft’s Internet Explorer global

useage share is 85.81 percent according to
OneStat.com,”
http://www.onestat.com/html/aboutus_pressbox50-
microsoft-internet-explorer-7-usage.html, 22 January
2007. Last Visited 14 March 2007.

32. Foundstone. “Free Tools,”

http://www.foundstone.com/index.htm?subnav=resources/n
avigation.htm&subcontent=/resources/proddesc/pasco.htm
, 2006. Last Visited 1 March 2007.

33. Wilson, Phil. “How to Export Firefox’s History to a

Text File,” http://philwilson.org/blog/2005/01/how-to-
export-firefoxs-history-to-text.html, 4 January 2005.
Last Visited 1 March 2007.

106

34. Zawinski, Jamie. “When the Database Worms Eat Into
Your Brain,” http://jwz.livejournal.com/312657.html, 3
March 2004. Last Visited 1 March 2007.

35. Sourceforge.net. “dcfldd,”

http://dcfldd.sourceforge.net, 19 December 2006. Last
Visited 14 March 2007.

36. Riefman, Jeff. “Microsoft’s Sacred Cash Cow,”

http://www.seattleweekly.com/2004-06-
02/news/microsoft-s-sacred-cash-cow.php, 2 June 2004.
Last Visited 1 March 2007.

37. Alioth. “MS Outlook Perosnal Folders Converter,”

http://alioth.debian.org/projects/libpst/, 16 January
2006. Last Visited 1 March 2007.

38. CodeWeavers. “CrossOver Linux,”

http://www.codeweavers.com/products/cxoffice/, 2007.
Last Visited 1 March 2007.

39. CodeWeavers. “Wine HQ,” http://www.winehq.com, 16

March 2007. Last Visited 17 March 2007.

40. CodeWeavers. “The CrossOver Difference: Superior

Integration,”
http://www.codeweavers.com/products/differences, 2007.
Last Visited 14 March 2007.

41. SourceForge.net. “cryptcat – encrypting netcat,”

http://sourceforge.net/projects/cryptcat, 18 October
2005. Last Visited 14 March 2007.

42. Fowler, Timothy. “RE: Forensics Thesis Project.” E-

mail to Adrian Arvizo and Vincent Janowiak. 14 August
2006.

43. Wikipedia. “ZIP (file format),”

http://en.wikipedia.org/wiki/ZIP_(file_format), 11
March 2007. Last Visited 19 March 2007.

44. VMware. “Download Add-ons,”

http://www.vmware.com/download/downloadaddons.html,
2007. Last Visited 14 March 2007.

107

45. Barlow, Daniel. “Building Your Own Live CD,”
http://www.linuxjournal.com/article/7246, 1 March
2005. Last Visited 27 February 2007.

46. KNOPPIX.net. “Knoppix Remastering Howto,”

http://www.knoppix.net/wiki/Knoppix_Remastering_Howto,
2007. Last Visited 27 February 2007.

47. VMware. “VMware Server,”

http://www.vmware.com/products/server, 2007. Last
Visited 27 February 2007.

48. Knopper, Klaus. “KNOPPIX,” http://knoppix.com, 2007.

Last Visited 27 February 2007.

49. Nero AG. “Nero 7 – Product Features,”

http://www.nero.com/nero7/enu/index.html, 2007. Last
Visited 1 March 2007.

50. Sonic Solutions. “Easy Media Creator 9 Suite,”

http://www.roxio.com/enu/products/creator/suite/overvi
ew.html, 2007. Last Visited 1 March 2007.

108

THIS PAGE INTENTIONALLY LEFT BLANK

109

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chris Eagle
Naval Postgraduate School
Monterey, California

4. George Dinolt
Naval Postgraduate School
Monterey, California

5. Adrian Arvizo
Naval Postgraduate School
Monterey, California

6. Vincent Janowiak
Naval Postgraduate School
Monterey, California

7. Brian Whyte
SPAWAR Systems Center San Diego
San Diego, California

