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Abstract

This project is focused on reduced basis approximation methods, associated rigorous
and sharp a posteriori error bounds, and offline-online computational strategies for the
rapid and reliable solution of parametrized elliptic, parabolic, and more recently hy-
perbolic partial differential equations relevant to mechanics from the quantum through
the meso-scale to the macro-scale. Typical equations and applications of interest include
Density Functional Theory for solid state property calculations, the Boltzmann equation
for microscale gas flows, the Navier-Stokes equations for natural convection calculations,
elasticity for stress intensity factors/brittle failure, and Helmholtz and the wave equa-
tion for acoustic waveguide applications. Of particular interest is real-time and robust
parameter estimation with application to detection, nondestructive evaluation, adaptive
design/optimization, and control.

In the online/deployed stage, we can provide results for key engineering outputs in
real-time without loss of accuracy or reliability: the outputs provided - in milliseconds
(online) - by our approach are provably indistinguishable from the outputs provided
- typically in many minutes or even hours - by classical methods.

Our web site http://augustine. mit. edu/ contains an interactive MATLAB® demo
(from the home page click on worked problems), as well as a summary of the methodol-
ogy (from the home page click on methodology) and a compendium of our publications
(from the methodology page click on Technical Papers).

Introduction

Engineering analysis requires the prediction of a (or more realistically, several) "out-
put of interest" 8 e C IR - related to energies or forces, stresses or strains, flowrates or
pressure drops, temperatures or fluxes, intensities or radar cross-sections - as a func-
tion of an "input" parameter P-vector p E D C ]R' - related to geometry, physical
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properties, boundary/initial conditions, and loads/sources.

These outputs se(it) are often functionals of a field variable ue'(),

Se(P,) =: f(W 0,);P) , (1)

where ue(it) E Xe - say displacement, velocity, or current - satisfies a j-parametrized
partial differential equation

a(ue(/), v; IL) = f(v;P), Vv e Xe (2)

Here Xe is the appropriate function space, and a (respectively t, f) are continuous
bilinear (respectively, linear) forms. (We consider for simplicity in this brief exposition
the linear elliptic case.)

In general, we can not find the exact (our superscript "c" above) solution, and hence
we replace se(It), ue(p) with a (say) Galerkin finite element approximation, s%(i), uf(lp):
given M E 7D,

s"(, W = f W ( W; P) ,(3)

where u-r(p) E XA' satisfies

a(uJ'((p),v;p) = f(v; p), Vv G XA. (4)

Here XA C Xe is (say) a standard finite element approximation subspace of dimension
Ar.

Unfortunately, to achieve the desired accuracy, Kr must typically be chosen very
large; as a result, the evaluation p -, sr(M) is simply too costly in the many-query and
real-time situations often of interest in engineering. Low-order models - we consider
here reduced basis approximations - are thus increasingly popular in the contexts of
engineering analysis, parameter estimation, design optimization, and control.

In the reduced basis approach [1, 5, 14, 16], we approximate s(i(p),ur(p) - for
some fixed sufficiently large "truth" K" = Kt - with SN (P), uN (P): given p C D,

sN (Y) = f (UNg(P); Y), (5)

where UN(P) c WN satisfies

a(UN(P),V;A) = f(V;i), Vv C WN • (6)

(For simplicity here, we consider a purely primal approach; in actual practice, we pursue
a primal-dual formulation.)

Here WN is a problem-specific space of dimension N «< Kt which focuses on the
(typically very smooth) parametrically induced manifold of interest: {uMrt(p) I t E D1}.
For example, in the Lagrange reduced basis approach (that we pursue), WN is the
span of snapshots urt(it), 1 < n < N, for selected pt E D9; alternatives include the
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Taylor, Hermite, and "POD" spaces. Properly selected - as we discuss below - these
spaces provide very rapid convergence UN(ii) --* ut (p) and hence SN(it) --* s' (p) as N
increases [5, 12].

The dramatic dimension reduction afforded by these reduced basis spaces can be
transformed into very significant computational economies: the crucial additional in-
gredient is an offline-online computational procedure [2, 10, 11, 17] that exploits affine
or approximate affine parametric structure to greatly reduce the marginal cost of each
additional output evaluation. This strategy yields very large savings in the many-query
and real-time contexts: online (deployed) complexity depends only on N - typically
orders of magnitude smaller than Aft - and not on At. (Of course, the offline cost
remains significant: some of the Accomplishments of this effort address control of the
offline computational burden.)

Our focus is the development of a posteriori error estimators for reduced basis ap-
proximations [11, 13, 17, 20]: inexpensive- marginal/online complexity independent of
A - and sharp error bounds As (p) that rigorously bound the error in the output:

Irt - sN(P)l ' ,(p),A V p E D. (7)

Absent such rigorous error bounds we can not determine if N is too small - and our
reduced basis approximation unacceptably inaccurate and decision-making compromised
- or if N is too large - and our reduced basis approximation unnecessarily expensive
and real-time response compromised. In more pragmatic terms, without error bounds
we can not rapidly and rigorously determine if critical design or safety conditions and
constraints are satisfied: for example, if SN(P) represents a stress intensity factor, does
approximate feasibility/safety SN(p) :_ C imply "true" feasibility/safety s Art(p) < C?

(In the nonlinear context, error bounds are crucial in establishing the very existence of

a "truth" solution u0t(y) [9, 19].)

In fact, absent rigorous error bounds, we can not even construct an efficient and well-
conditioned reduced basis approximation space WN. In particular for higher parameter
dimensions P, error bounds play a crucial role in "greedy" sampling procedures [7, 8,
13, 20]: we explore a very large subset of the parameter space D to successively find
the points with the largest (inexpensively computed) error bound; we only evaluate the
truth solution for these winning candidates - the "snapshots" u t (pn) on the parametric
manifold the span of which defines WN. Conventional sampling techniques, which do
not exploit error bounds, either can explore only very small subsets of D or require
prohibitively expensive offline effort. Effective sampling procedures are essential to rapid
convergence and efficient representation.

Accomplishments

We describe here some specific accomplishments.

a. Number of parameters.

We have made considerable progress in at least two directions.
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(i) Inf-Sup Lower Bound. We continue to improve the inf-sup lower bound procedure
crucial to our a posteriori output bounds for difficult (in particular, noncoercive)
problems. We can now reasonably treat (say, Helmholtz) problems with several
resonances and 0(5) parameters. We have developed two approaches.

The first approach is a higher-order expansion based on a new "natural norm."
The technique has now been applied in the coercive, non-coercive, and also non-
linear contexts. (See S Sen, K Veroy, DBP Huynh, S Deparis, NC Nguyen, and
AT Patera, "Natural norm" a posteriori error estimators for reduced basis ap-
proximations. Journal of Computational Physics, 217 (1): 37-62, 2006. doi:
j.jcp.2006.02.012.)

The second approach is a "Successive Constraint Method" which converts the para-
metric inf-sup lower bound, via a Rayleigh quotient, to a Linear Program. The
method offers good theoretical structure, simplicity, and (in tests to date) quite
good offline and online performance. Future work is required to develop an a priori
convergence theory, more efficient constraint selection, and faster Linear Program
solution. A paper on this subject has been submitted to CRAS Mathematics (see
http://augustine. mit. edu/methodology/papers/aptCRAS2006preprint .pdf

for the preprint).

(ii) Greedy Sample Selection. On the theoretical front (work with A. Buffa, Y. Ma-
day, C. Prud'homme, G. Turinici), related to approximation, we have shown that
if a sequence of approximation spaces exist that provide sufficiently rapid (expo-
nential) convergence, then our greedy sample selection procedure will efficiently
find an "associated" space that also provides (somewhat less) rapid exponential
convergence. Hence although we do not yet know a priori when to expect rapid
convergence, we do know (roughly) that if in theory sufficiently fast exponential
convergence is possible, then in practice our procedure will also exhibit very good
approximation properties. A paper is in preparation.

b. Generality of parametric dependence.

We have earlier developed a technique, the "Empirical Interpolation Method" [3],
which permits us to develop efficient reduced basis approximations for problems with
non-affine parameter dependence [6].

In this project we have developed completely rigorous error estimators for non-affine
problems: these estimators rely on a high-order Taylor series development and on the
demonstrably rapid convergence of reduced basis approximations for parametric deriva-
tives of the field variable. We have demonstrated the error bounds for several simple
model problems. Future work will consider more ambitious problems with non-affine
geometric variation.

c. The Helmholtz equation.

We have developed reduced basis approximations and a posteriori error estimators for
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Figure 1: Acoustic Low-Pass Filter Geometry.

waveguides with accurate outflow/radiation conditions for multiple propagating modes
(and of course also evanescent modes). These methods will permit us to consider a large
range of acoustic waveguide problems related to noise mitigation or detection (say, of
buried objects in the seabed).

As an example, we consider here the acoustic low-pass filter waveguide element shown
in Figure 1. The parameters are the (non-dimensional) frequency squared, pl = k2 , and
the width of the low-pass expansion (relative to the nominal waveguide width), A2 - H;
we consider the parameter domain y E cD = [0.1, 5.0] x [1.75, 2.25].

The governing equation is the Helmholtz acoustic equation with inhomogeneous Neu-
mann (imposed velocity) at inflow, rin, damping on the liner surface, Tliner, waveguide
radiation/propagation conditions (a Robin condition) on Fout, and homogeneous Neu-
mann (zero velocity) on all other boundaries.

The output of interest is a transmission coefficient TC, the log of the ratio of the
ouput pressure intensity to the input pressure intensity.

We present in Figure 2 the reduced basis output TCN for N = 35 as a function
of pl = k2 at several values of P 2 = H. We also indicate the error bars: the truth
FEM solution will with certainty reside within the indicated (rather tight) error bars.
For this particular problem the online computational savings - the ratio of the time
to calculate the truth output, s5 Mt(p) to the online time to compute the reduced basis
output and error bound, SN(p) and Asv(p) - is only 0(5) rather than the usual 0(100)
(see e. below and Table 1): first, the truth model for this simple test case is quite coarse;
second, the Linear Program performance for our new SCM inf-sup lower bound is quite
poor. The latter will be the subject of future work.

We are also collaborating with the group of J. Hesthaven of Brown University and
Y. Maday of University of Paris VI on reduced basis methods and a posteriori error
estimators for electromagnetic Helmholtz applications.
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Figure 2: Low-pass filter transmission coefficient as a function of k2 for different H
(see Figurel). As expected, for low k2 the signal passes; for moderate k2 the signal is
attenuated; and, at higher k2 (due to harmonics) the signal rebounds.

d. Real-time robust parameter estimation and uncertainty quantification for detection,
adaptive design, and control.

To date we have further developed our parameter estimation techniques, in particular
for the efficient construction of "possibility sets" through application of various optimiza-
tion procedures. We have also recently discovered that, for an interesting class of elliptic
and parabolic problems (e.g., related to transient thermal detection of cracks), we can in
fact achieve complete rigor while still maintaining reasonable computational efficiency;
the critical enablers are the reduced basis output approximations and a posteriori error
estimators. A paper has been submitted to the journal Inverse Problems.

e. Stress Intensity Factors.

Stress Intensity Factors (SIF) are crucial in the prediction of fatigue-induced crack
growth and potential brittle failure. In the past, SIF calculations are either too crude
(handbooks) or too expensive (direct finite element calculation) to be useful in the
most important contexts: many-query evaluation as needed in fatigue studies; real-time
evaluation as needed in embedded/health monitoring/lifing analyses.

We have developed a new formulation for SIFs particularly well suited to fast, sharp,
and rigorous reduced basis prediction and a posteriori error estimation. This new for-
mulation, and associated reduced basis treatment, is described in [8]. This paper also
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Figure 3: Geometry for Stress Intensity Factor calculation.

Online

N EN Computation Savings

5 1.04E-01 1.66E+02 467

10 6.01E-02 8.72E+01 417

20 9.08E-03 4.39E-01 248

30 2.36E-03 1.31E-01 191

35 9.42E-05 3.17E-02 136

40 4.58E-05 8.86E-03 125

Table 1: Reduced basis error, a posteriori error bound, and online computational sav-
ings; the latter is the time to compute the truth solution divided by the time to compute
(online) the reduced basis output and associated a posteriori error bound.

presents several examples, one of which we briefly describe.

We consider here the geometry shown in Figure 3: a pair of symmetric cracks each
of length d (measured from the centerline) emanating from a hole of radius R in a (plain
strain) specimen of height 2L; all lengths are non-dimensionalized by the specimen width.
Our interest is in the (linear elastic) Stress Intensity Factor, SIF, as a function of our
three parameters: yj = d, P2 = R, and P3 = L. The SIF serves to predict brittle failure,
or fatigue-induced crack growth.

We show in Table 1 the error in the reduced basis Energy Release Rate (ERR - the
square of the SIF), EN, the a posteriori error bound for the reduced basis prediction,
EN, and the (online) computational savings of the reduced basis approach relative to
the FEM truth; the error results reported are the maximum over a large parameter test
sample. We observe rapid convergence with N, relatively sharp (and rigorous) error
bounds, and very large computational savings.

The reduced basis results can now be used with confidence in predicting failure or
crack growth in real-time, a critical capability for component design, health monitoring,
and optimal (and safe) mission planning. At present, no other approaches can provide
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accurate, real-time, and reliable predictions for critical failure indicators.

Future work will address more complex loadings and geometric configuratons. If
successful, our work could replace much of the existing SIF technology.

f. Hyperbolic problems.

We have made progress on two classes of hyperbolic problems: first-order wave equa-
tions - in particular the Boltzmann equation; and the second-order wave equation -
in particular relevant to time-domain acoustics or elastodynamics or Maxwell.

The Boltzmann problem is a very difficult equation that involves independent space
and velocity coordinates and (through the collision term) non-local interactions; the
equation is increasingly relevant given the growth in microtechnology. We have devel-
oped a Petrov Galerkin stabilized formulation of the Boltzmann equation that in turn
permits us to develop very rapidly convergent reduced basis approximations and associ-
ated rigorous error bounds (e.g., for the flow rate through a microchannel). At present
we can consider only one space and velocity coordinate and a simple collision model
with two parameters (the Knudsen number and the accommodation coefficient). This
work is in collaboration with E. Ronquist; a paper on this topic will appear shortly [15].

For the linear second-order wave equation we have found, perhaps not surprisingly,
that for sufficiently smooth initial conditions we can develop rapidly convergent reduced
basis approximations. More surprisingly, we have found that we can develop rigorous
a posteriori error bounds for the error (in the energy norm) as a function of time and
parameter. A description of the approach and some first simple numerical tests are
provided in [18].

g. Nonlinear problems.

We have continued our efforts on the Navier-Stokes equations and natural convection
(relevant, for example, to materials processing flows); we are also considering a suite of
flows in canonical channel geometries relevant to the design of new microfluidic devices.

On a different front, Density Functional Theory quantum treatment of crystalline
(periodic) solid materials, we have recently initiated our first comparisons with conven-
tional (plane wave/Fourier spectral) approaches. It appears that, for our simple model
problems, our approaches can significantly reduced the requisite degrees of freedom.
This work, in collaboration with Y. Maday, C. Le Bris, and E. Cances, is described in
[4].
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