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1 SUMMARY

Supported by AFOSR, our previous direct numerical simulation (DNS) studies from December
1999 to November 2002 have demonstrated that our unique high-order shock fitting simulation
approach is a powerful tool in studying supersonic and hypersonic boundary-layer stability and
transition physics. However, experimental validation of numerical simulation methods for
hypersonic boundary layer stability and transition has not been done and is urgently needed. The
objective of this research project is to compare our numerical simulation solutions with available
experimental or theoretical results on hypersonic boundary layer receptivity and stability; and to
conduct extensive DNS studies on the flow mechanisms of hypersonic boundary layer receptivity
and stability. During the three-year period, we have conducted extensive DNS studies on the
receptivity of hypersonic boundary layer flows over a sharp wedge, a flat plate, a blunt cone, and
the FRESH aeroshell. DNS studies are compared with Stetson's 1984 stability experiment on Mach
7.99 flow over a blunt cone, and Maslov's leading-edge receptivity experiment on Mach 5.92 flow
over a flat plate. We also collaborate with Prof. Tumin in University of Arizona to compare
numerical and theoretical results on receptivity of a Mach 8 flow over a sharp wedge to wall
blowing-suction, and to deeply analyze the receptivity characteristics. Our numerical studies have
been validated to be of high accuracy and led to further understanding of hypersonic boundary layer
receptivity mechanism. Such understanding can lead to better tool for the prediction and control of
high speed boundary layer transition.

The main research contributions are:

1. We have conducted DNS studies on the receptivity of a Mach 8.0 flow over a sharp wedge of a
half-angle of 5.3' to wall blowing-suction. The results show that Mode F, mode S, and acoustic
modes are simultaneously excited by wall blowing-suction disturbances. It is found that the
frequency of the blowing-suction actuator has a significant effect on the receptivity process
owing to the frequency dependence of the synchronization point between mode F and mode S.
Furthermore, the excitation of mode S is strongly affected by profile and length of the forcing
actuator. All cases of numerical simulations consistently show that the synchronization point
plays an important role in the excitation of mode S by wall blowing-suction, i.e., mode S is
strongly excited only when the blowing-suction actuator is located upstream of the
synchronization point. When the forcing actuator is downstream of the synchronization point,
there is very little excitation of mode S, despite the fact that the blowing-suction actuator is still
located within the unstable region of mode S.

2. We collaborated with Prof. Tumin in University of Arizona to compare numerical and
theoretical results on receptivity of the Mach 8 flow over a sharp wedge to wall blowing-suction,
and to deeply analyze the receptivity characteristics. The perturbation flow field downstream of
the blowing-suction actuator was decomposed into boundary-layer wave modes with the help of
the biorthogonal eigenfunction system. It was shown that amplitudes of boundary-layer wave
modes calculated with the help of the theoretical receptivity model had good agreements with
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those obtained by projecting the numerical results onto the boundary-layer wave modes.

3. We have studied the receptivity of a Mach 5.92 over a flat plate to various two-dimensional wall

perturbations: oscillation, blowing-suction, and temperature perturbation. The numerical results

show that all types of two-dimensional wall perturbations eventually result in the same type of

instability wave (mode S) in the boundary layer. The hypersonic boundary-layer flow is most

sensitive to wall blowing-suction and least sensitive to wall temperature perturbation. It is

noticed that the profile of temperature perturbation has a strong effect on receptivity process.

The receptivity of the hypersonic boundary layer to temperature perturbation is proportional to

the energy introduced to the steady base flow, where the energy is determined by the profile of

temperature perturbation.

4. We have conducted DNS studies on the transient growth phenomena of a Mach 5.92 flat-plate

boundary layer and a Mach 7.99 flow over a blunt cone to small-scale three-dimensional

stationary roughness element. The surface roughness is periodic in spanwise direction. Effect of

thermal flat plate boundary conditions on the receptivity process is considered by comparing

numerical simulations on adiabatic and isothermal flat plates, respectively. The numerical

results show that counter rotating streamwise vortices are excited by stationary roughness

element. The temperature increases in the wake region of roughness peak whereas it decreases

in the wake region of roughness valley. Furthermore, the speed of wake from roughness peak is

slower than that from roughness valley. All these results are consistent with those of Tumin's

theoretical analysis. It is also concluded based on the numerical results that the roughness

element on adiabatic flat plate is more efficient in the excitations of streamwise vortices and

transient growth.

5. We developed a new high-order immersed interface method for computing boundary layer
transition with surface roughness. The work was motivated by discussions among the

participants in the Transition Study Group Open Forum Held in the AIAA meeting in Reno in

January 2005. It was pointed out that that there is a need to compute boundary layer stability

and transient growth with distributive surface roughness. The new method can be arbitrarily

high-order accuracy in the whole flow field, including the interface with discontinuity, and it

can be useful for the simulations of transient growth to finite or nonlinear surface roughness.

2 RESEARCH OBJECTIVES

The prediction of laminar-turbulent transition in supersonic and hypersonic boundary layers is a
critical part of the aerodynamics and heating analyses for the development of hypersonic

transportation vehicles and re-entry vehicles. The key for an accurate transition prediction is the

understanding of the physical mechanisms that lead to transition. However, many important

physical mechanisms leading to hypersonic boundary layer transition are currently still not well

understood. Among them, receptivity, which can provide the missing link between environment

disturbances and boundary layer instability growth and transition, is currently poorly understood.
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Due to the difficulties in conducting hypervelocity experiments and the complexity of hypersonic
flows, fundamental hypersonic studies increasingly rely on the use of DNS as a research tool. In
recent years, DNS has become a powerful tool in the studies of the stability and receptivity of
supersonic and hypersonic boundary layers.

Supported by AFOSR, we have developed high-order shock-fitting DNS methods [1], which can be
directly applied to hypersonic boundary layers over realistic blunt bodies with the effects of nose
bluntness, the presence of bow shock waves, and the real-gas effects at high temperatures. In the
past several years, we have studied the receptivity and stability of a number of 2-D and 3-D
hypersonic flows over sharp wedges [2, 3], .flat plates [4, 5], and blunt cones [6-8].

The main objectives of this research are to compare our numerical simulation solutions with
available experimental or theoretical results on hypersonic boundary layer receptivity and stability,
and to conduct extensive DNS studies on the flow mechanisms of hypersonic boundary layer

receptivity and stability. The DNS numerical tools, as well as other theoretical approaches such as
the linear stability analysis and the modal decomposition of biorthogonal eigenfunction system, are
used to gain new fundamental understandings of receptivity and stability of hypersonic boundary

layers. The goal of these studies is to lead to a better understanding of validity, accuracy, and
limitation of DNS results through experimental and theoretical comparisons, and to achieve new
improvements on the prediction tools for hypersonic boundary layer transition, by incorporating the
effects of forcing disturbances.

Six major research tasks have been undertaken in this research project. They are:

A) Code validation of Stetson's stability experiment of Mach 7.99 flow over a blunt cone [9];
B) Receptivity to wall blowing-suction of a Mach 8 flow over a sharp wedge;
C) Receptivity to various two-dimensional wall perturbations of the flat-plate boundary layer flow

corresponding to Maslov et al.'s leading-edge receptivity experiments [10];
D) Roughness induced transient growth in a Mach 7.99 flow over a blunt cone and the Mach 5.92

flat-plate boundary layer;
E) Development of a new high-order immersed interface method [11, 12] for the simulations of

transient growth to finite or nonlinear surface roughness;
F) Stability and receptivity of hypersonic flow over the FRESH areoshell.

The main approach is to use DNS as a research tool to study hypersonic boundary layer receptivity
physics. Linear stability analysis (LST) and model decomposition of biorthogonal eigenfunction
system are used in conjunction with DNS to help better understand the flow instability mechanisms
in numerical solutions. Our fifth-order upwind finite difference shock fitting method [13] for the

DNS of hypersonic flows with a strong bow shock is used. The use of the high-order shock-fitting
scheme makes it possible to obtain highly accurate mean flow and unsteady solutions, which are
free of spurious numerical oscillations behind the bow shock.

3 RESEARCH ACCOMPLISHMENTS

5



The research project described in the previous section was carried out in a three period from
January 1, 2004 to January 1, 2007. The three-year research project supported by this grant has led
to the publications of

1. Nine papers in the archive journals or book chapters,
2. Thirteen conference papers (mainly AIAA papers),
3. One Ph.D. thesis by a student who has graduated with his Ph.D. degree.

More importantly, the research has produced a large amount of new results, and has led to new
understanding of a number of hypersonic boundary layer receptivity mechanisms. The
understanding of the receptivity process is the key to improve current hypersonic boundary layer
transition prediction methods. In the following sections, the major research accomplishments are
summarized, followed by a more details discussions of some of our new results in hypersonic
boundary layer receptivity.

3.1 Code validation of Stetson's stability experiment of Mach 7.99 flow over a blunt cone

Publications: [4], 1151, [181

We have carried out code validation for the Stetson's stability experiment of Mach 7.99 flow over a
blunt cone. The simulation results for the second mode growth compared well with those of the
experiments and LST. The receptivity to wall blowing/suction at three different surface locations is
used to excite the second mode instability waves in the numerical simulation of the full
Navier-Stokes equations. It is found (Fig. 1) that the experimental second-mode amplitude growth
ratios, N factors, and growth rates agree well with those of the simulation in a linear growth region
of 195<s<215 for frequencies near the peak second mode instability. It is concluded that the
simulation and LST are accurate in predicting second mode growth in the current hypersonic
boundary layer flows.

- 4 -- Siteton " s S.03

SLST (Lytd. d *L)

Fig. 1 The 70 half-angle blunt cone of Stetson's Mach 7.99 stability experiments [9] and numerical simulation

of second mode growth by surface blowing/suction at surface station of 215 nose radii.
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Fig. 2 Experimental, simulation and LST comparison of growth rates, wave numbers, and amplitude ratios

(using 195 surface location as reference) at surface station of s = 215.

Fig. 2 compares the second mode growth rates, and wave numbers at the surface station of s=215.
Two sets of experimental growth rates of Stetson are plotted. The first set (labeled as Stetson's
Experiment II in the figure) is the growth rates published in Stetson's original 1984 paper. The
second set (Stetson's Experiment 1) are those calculated by the current author based on the new
published experimental results (Fig. 28 of Schneider's review paper [14]). The growth rates of the
current simulation of four frequencies are plotted in the figure. These four frequencies show second
mode excitation at this location in the simulation results. This figure shows that the growth rates of
the full Navier-Stokes simulation agree very well with the LST results. On the other hand, the newly
published experimental growth rates are much closer to those of the original LST and experimental
results with a 3% difference in wave number and a 12% difference in growth rate for the peak
growth rate. This is a reasonable agreement considering the fact that the wall surface is not perfectly
adiabatic in the experiment.

3.2 Receptivity to wall blowing-suction of a Mach 8 flow over a sharp wedge

Publications: [3], 171, [141, [16], 1211

Understanding the receptivity process is of critical importance to the prediction and control of
boundary layer transition. With the development of advanced computers and numerical techniques,
numerical simulation of the receptivity process by directly solving Navier-Stokes equations has
become feasible. By solving the compressible linearized Navier-Stokes equations, Malik et al. [15]
investigated the responses of a Mach 8 flow over a sharp wedge of a half-angle of 5.30 to three
types of external forcing: a planar free-stream acoustic wave, a narrow acoustic beam enforced on
the bow shock near the leading edge, and a blowing-suction slot on the wedge surface. They
concluded that these three types of forcing eventually resulted in the same type of instability waves
in the boundary layer. However the receptivity mechanism was not studied in detail. Ma and Zhong
[16] studied the receptivity mechanisms of the same hypersonic boundary layer to various
freestream disturbances, i.e., fast and slow acoustic waves, vorticity waves, and entropy waves, by
solving the two-dimensional compressible Navier-Stokes equations. They found that the stable
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modes in the boundary layer played a very important role in the receptivity process.

In this project, the receptivity mechanism of the Mach 8 flow over the sharp wedge to wall
blowing-suction is investigated in detail by series of numerical simulations. The steady base flow is
simulated by solving the two-dimensional compressible Navier-Stokes equations with a
combination of a fifth-order shock-fitting finite difference method and a second-order TVD scheme.
In the receptivity simulations, periodic blowing-suction disturbances are introduced to the steady
base flow through a forcing actuator on the wedge surface. The characteristics of boundary-layer
wave modes are identified and evaluated by comparing the results of LST and numerical
simulations. The effects of frequency and location of the forcing actuator on the receptivity process
are studied by considering seven cases of different blowing-suction locations with 15 frequencies
for each case. Furthermore, the effects of profile and length of the forcing actuator are investigated.
For all cases considered in this paper, forcing waves are weak enough so that the disturbances in the
boundary layer are linear. The contours of the instantaneous pressure perturbation induced by
blowing-suction disturbance are shown in Fig. 3. After the blowing-suction slot, the excited
pressure perturbations are divided into two branches: one branch penetrates the boundary layer and
propagates along the Mach lines (acoustic waves) while the other branch stays within the boundary
layer, which is the unstable mode (mode S), indicated by the typical wave structures near the wall.
The amplification of instantaneous pressure perturbation along the wedge surface also indicates the
excitation of mode S.

000020

000010

000000

-000010

-000020

02 04 06 08 1ý0 12 S

Fig. 3 Numerical simulation of receptivity of the Mach 8 flow over a sharp wedge to wall blowing-suction: 1)

instantaneous pressure perturbation field; 2) instantaneous pressure perturbation along the surface.

The numerical results show that mode F, mode S, and acoustic modes are simultaneously excited by



wall blowing-suction disturbances. Downstream of the forcing region, mode F decays owing to its
inherent stability whereas mode S grows because of its instability. Acoustic modes radiate into the
external flow outside the boundary layer. As a result, mode S eventually becomes the dominant
wave mode in the boundary layer. It is found that the frequency of the blowing-suction actuator has
a significant effect on the receptivity process owing to the frequency dependence of the
synchronization point between mode F and mode S. The numerical results also show that the
excitation of mode S is strongly affected by profile and length of the forcing actuator. All cases of
numerical simulations consistently show that the synchronization point plays an important role in
the excitation of mode S by wall blowing-suction, i.e., mode S is strongly excited only when the
blowing-suction actuator is located upstream of the synchronization point. When the forcing
actuator is downstream of the synchronization point, there is very little excitation of mode S, despite
the fact that the blowing-suction actuator is still located within the unstable region of mode S.

a) b)
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Fig. 4 Comparison of the theoretical prediction for the receptivity coefficient with data filtered out from the

computational results for receptivity of a hypersonic boundary layer to wall blowing-suction: a) mode S and b)

mode F.

On the other hand, numerical simulation results require careful analytical analysis in order to gain a
deeper understanding of the underlining physics in high-speed boundary-layer transition. A close
collaboration between numerical and theoretical study of the receptivity phenomena will not only

verify both sets of results, but also lead to better understanding of flow physics. We have started
working in this direction with Professor Tumin [2, 17] in University of Arizona. Specifically, direct
numerical simulation of receptivity in a boundary layer over a sharp wedge of half-angle 5.30 was
carried out with two-dimensional perturbations introduced into the flow by periodic-in-time
blowing-suction through a slot. The free-stream Mach number was equal to 8. The perturbation
flow-field downstream from the slot was decomposed into normal modes with the help of the
biorthogonal eigenfunction system. Filtered-out amplitudes of two discrete normal modes and of the
fast acoustic modes are compared with the linear receptivity problem solution. Fig. 4 shows a
comparison of the theoretical receptivity coefficient with the amplitude filtered out from the

computational results by the theoretical analysis. One can see from the figure that there is an
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excellent agreement between amplitudes calculated with the help of the theoretical receptivity
model.

3.3 Receptivity to various two-dimensional wall perturbations of a Mach 5.92 flat-plate
boundary layer flow

Publications: [101, [131

The receptivity of a Mach 5.92 boundary-layer flow over a flat plate to periodic two-dimensional
wall perturbations is investigated by numerical simulations and linear stability theory (LST). The
flow conditions are the same as those of Maslov et al.'s leading-edge experiment [10]. The steady
base flow is simulated by solving two-dimensional compressible Navier-Stokes equations with a
combination of a fifth-order shock-fitting method and a second-order TVD scheme. Accuracy of the
numerical steady base flow is validated by comparing with the theoretical self-similar
boundary-layer solution and the published experimental results. The characteristics of
boundary-layer wave modes are identified and evaluated by comparing the results of LST and
numerical simulations. In receptivity simulations, three types of periodic two-dimensional wall
perturbations, oscillation, blowing-suction, and temperature perturbation, are considered. All wall
perturbations are introduced to the steady base flow by a forcing slot located on the flat plate.
Effects of the perturbation type and the profile of temperature perturbation on receptivity process
are studied by considering six cases of wall perturbations. Fig. 5 compare normalized Mach number
and dimensionless streamwise velocity distributions across the boundary layer at three different
locations of x* = 96 mm, 121 mm, and 138 mm. The numerical results agree well with the
experimental results and the boundary-layer solution near the plate. However, in the region of ri >
5, the numerical results have a better agreement with the experimental results. The difference
between the numerical results and the boundary-layer solution is mainly caused by the existence of
the bow shock, because the effect of the bow shock is neglected in the calculation of the
compressible boundary-layer equations.

Y . 2S .-... .~.

20 0

0 .0 04 O 0 0o8 o0 02 04 06 0oMOM COuOu

Fig. 5 Numerical simulation of a Mach 5.92 flat-plate boundary layer to two-dimensional wall perturbations and

comparisons of normalized Mach number and dimensionless streamwise velocity.
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Fig. 6 Numerical simulation of receptivity of the Mach 5.92 flow over a flat plate to two-dimensional wall

perturbations: 1) instantaneous pressure perturbation along the wall; 2) comparison of numerical and LST

growth rates; 3) comparison of numerical and LST wave number; 4) amplitude comparison of pressure

perturbation (100 kHz) for cases of wall oscillation, blowing-suction, and temperature perturbation; 5)

amplitude comparison of pressure perturbation (100 kHz) for temperature perturbations of different profile.

Fig. 6 shows that all six cases of two-dimensional wall perturbations eventually result in the same
type of instability wave (mode S) in the boundary layer. The hypersonic boundary-layer flow is
most sensitive to wall blowing-suction and least sensitive to wall temperature perturbation. It is
noticed that the profile of temperature perturbation has a strong effect on receptivity process. The
receptivity of the hypersonic boundary layer to temperature perturbation is proportional to the
energy introduced to the steady base flow, where the energy is determined by the profile of
temperature perturbation.

3.4 Roughness induced transient growth in a Mach 7.99 flow over a blunt cone and the Mach
5.92 flat-plate boundary layer

Publications: [101, [11], [151

Recent theoretical studies have shown the importance of transient growth and surface roughness in
bypass transition [18, 19]. Reshotko and Tumin [20] have developed a model for roughness induced
transient-growth transition. So far, there has not been any direct numerical simulation study on
transient growth in hypersonic boundary layers. Furthermore, it is not known how the optimal
disturbances computed by the transient growth theory are generated by surface roughness. These are
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important issues related to the receptivity of transient growth. We use direct numerical simulation to

conduct such studies because the complete receptivity process and transient growth can be

simulated with minimum simplification assumptions. In the review period, we have done simulation
studies on roughness induced transient growth for hypersonic flow over blunt bodies and a flat plate.
The basic approach is to impose stationary 3-D surface roughness in the early stable region of the
steady base hypersonic boundary layers. The subsequent development of disturbances in the
boundary layer is captured by numerical simulations.

,• v - 0.09

h-0 0.05 n:2
-- n=4
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•. 0.03
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0* 01
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Fig. 7 Simulation solutions of temperature perturbations due to distributed surface roughness for Case D of
Mach 7.99 flow over a blunt cone with 88.9 mm nose radius.

The specific flow conditions for the blunt cones are the same as Stetson's Mach 7.99 flow over a 7
deg. half angle blunt cones with the four sets of nose radii (Cases A to D). So far, only small
distributed surface roughness has been imposed on the surface in the following

form: h(s,O) = cho(, A, cos(2;rnO+ 900))f(s). Fig. 7 shows the results of temperature perturbations
n

for Case D with nose radius of 88.9 mm. The flow perturbation induced by weak surface roughness

shows the growth of disturbances along the cone surface. Work is currently under way to extend
these initial studies to longer computational domain and to study the transient growth properties

induced by surface roughness.
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Fig. 8. Numerical simulation of receptivity of the Mach 5.92 flow over a flat plate to three-dimensional
stationary roughness element: 1) vector plot of wall-normal and spanwise velocity perturbations in the wake

region; 2) contours of temperature perturbation in the wake region; 3) contours of streamwise velocity
perturbation in the wake region.

We have also studied the receptivity to three-dimensional stationary roughness elements of a
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hypersonic flat-plate boundary layer, corresponding to Maslov et al.'s leading-edge experiment [10].
The surface roughness is periodic in spanwise direction. Effect of thermal flat plate boundary
conditions on the receptivity process is considered by comparing numerical simulations on adiabatic
and isothermal flat plates, respectively. Fig. 8 shows that counter rotating streamwise vortices are

excited by stationary roughness element. The temperature increases in the wake region of roughness
peak whereas it decreases in the wake region of roughness valley. Furthermore, the speed of wake
from roughness peak is slower than that from roughness valley. It is also concluded based on the
numerical results that the roughness element on adiabatic flat plate is more efficient in the
excitations of streamwise vortices and transient growth.

3.5 Development of a new high-order immersed interface method

Publications: [2], [121

During three-year project, we developed a new high-order immersed interface method for
computing boundary layer transition with surface roughness. The work was motivated by
discussions among the participants in the Transition Study Group Open Forum Held in the AIAA
meeting in Reno in January 2005. It was pointed out that that there is a need to compute boundary

layer stability and transient growth with distributive surface roughness. The methods for simulating
flow with irregular surface are similar to those for simulation of multi-phase flows or fluid-structure
interaction. A major difficulty in such simulation is due to the fact that the flow variables and their
derivatives are not continuous across the interface or irregular surface. One way to simulate surface
roughness of an arbitrary shape is to use the immersed boundary method [21] or the immersed
interface method (IIM) of Laveque and Li [22] with a fixed, non-body fitted grid. The main
drawback of the immersed boundary method is the fact that it is at most first order accurate at the
interface. The immersed interface method can achieve a second order accuracy. But the IIM method
is difficult to be used in complex flow problems. In order to maintain a second order accuracy, it is

necessary to know the jump conditions of flow variables and the jump conditions for the first and
the second derivatives at the interface.

For a uniformly high-order simulation of flow with surface roughness, we have developed a new
high-order IIM method [II]. The new method can be arbitrarily high-order accuracy in the whole
flow field, including the interface with discontinuity. So far, the new uniformly 2nd and 4 th order
accurate IIM methods have been tested for a number of 1-D and 2-D model equations with
discontinuous interfaces. Figure 5 shows the result of a 2-D example used by Leveque and Li [22]

d'u d__u
for the following elliptical equation, -+- fr 26(x- X(s)),5(y - Y(s))ds, where the interface

is a circle of radius 0.5 centered at the origin. There is a jump for the normal velocity gradient at the
interface. A uniform grid of N points is used in the numerical computations. The results are
compared for three different numerical methods: (1) our IIM method A: 2nd order accuracy in both
regular and interface grids, (2) our IIM method B: 4th order accuracy in regular grids and 3rd order in

irregular grid points, and (3) Leveque and Li's 2nd order IIM [22]. Fig. 9 shows that the new IIM
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method captures the interface accurately. Table I shows that the new 4h order 1IM method is most
accurate among these three methods. The results of this test case and other test cases show the
potential of the new high-order IIM method in accurately computing flow with irregular surface, as
well as two-phase flow problems. We plan to apply the new methods to the simulation of boundary
layer transient growth with distributed surface roughness.

Table 1. Comparison of Numerical Solutions of Three Methods

Leveque and Li's IIM Current JIM method A Current IIM method B

method (2"d order) [4] (2"d order) (4th order)

Errors (80 by 80 grid) 2.45x10-4 6.70x10-5  2.31x 10-6

Error Ratios 3.41 3.90 12.6

p1 5 -oU

S1 2

-1 -0.5 0 05 1

Fig. 9 Solution contours with discontinuous gradient at the interface and comparison of exact solution with the
new 2 nd order IIM method A for computing the 2-D model equation with a singular source term.

3.6 Stability and receptivity of hypersonic flow over the FRESH areoshell

At the request of Dr. John Schmisseur, we worked with Drs. Datta Gaitonde and Roger Kimmel of
AFRL on a computational study of the stability and receptivity of the FRESH aeroshell. One of the
objectives of the FRESH is to measure smooth-body and roughness-induced transition on the cone
surface. The aeroshell has a spherical cone with a 7 degree half angle. It uses either a sharp nose or
a slightly blunt nose. The objectives of our DNS studies are to compare our results with other
simulation results obtained by AFRL and to do DNS studies of the stability and receptivity of
hypersonic boundary layers over the aeroshell. So far, we have finished the computations of the
mean flow of a test case with the same conditions as a wind tunnel test of the model. The flow

conditions (air) are: M~,==6.5, T•,=225.56K, p,, =1.44xlO-lkg/m 3 , r, = 2.5mm , the cone half

angle is 7 degrees, Tw~ = 300K (isothermal wall), Re, = 19.1x 10 6 m-', the first part of the model
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without the flare is 1.0 meter long. Fig. 10 shows our steady flow solutions computed by the
fifth-order shock fitting code. The outer computational boundary is the bow shock obtained by the
simulation. The figure shows a very good resolution of the flow field.
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Fig. 10 Steady flow Mach number contours for the FRESH model with Mach 6.5 over a 7 deg. half angle blunt

cone. The coordinates are non-dimensionalized by the cone nose radius of 2.5 mm.

4 SUMMARY OF RESEARCH ACCOMPLISHMENTS

In the report period, we have mainly focused on the DNS studies of receptivity of supersonic and
hypersonic boundary layer flows. DNS results are compared with Maslov's leading-edge receptivity
experiment on Mach 5.92 flow over a flat plate, and Stetson's 1984 stability experiment on Mach
7.99 flow over a blunt cone. We also collaborate with Prof. Tumin in University of Arizona to
compare numerical and theoretical results on receptivity of a Mach 8 flow over a sharp wedge to
wall blowing-suction, and to deeply analyze the receptivity characteristics. Our numerical studies
have been validated to be of high accuracy and led to further understanding of hypersonic boundary
layer receptivity mechanisms. The main research accomplishments are

I. We have conducted DNS studies on the receptivity of a Mach 8.0 flow over a sharp wedge of a
half-angle of 5.3' to wall blowing-suction. The results show that Mode F, mode S, and acoustic
modes are simultaneously excited by wall blowing-suction disturbances. Downstream of the
forcing region, mode F decays owing to its inherent stability whereas mode S grows because of
its instability. Acoustic modes radiate into the external flow outside the boundary layer. As a
result, mode S eventually becomes the dominant wave mode in the boundary layer. It is also
found that the frequency of the blowing-suction actuator has a significant effect on the
receptivity process owing to the frequency dependence of the synchronization point between
mode F and mode S. Furthermore, the excitation of mode S is strongly affected by profile and
length of the forcing actuator. All cases of numerical simulations consistently show that the
synchronization point plays an important role in the excitation of mode S by wall
blowing-suction, i.e., mode S is strongly excited only when the blowing-suction actuator is
located upstream of the synchronization point. When the forcing actuator is downstream of the
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synchronization point, there is very little excitation of mode S, despite the fact that the

blowing-suction actuator is still located within the unstable region of mode S.

2. We collaborated with Prof. Tumin in University of Arizona to compare numerical and
theoretical results on receptivity of the Mach 8 flow over a sharp wedge to wall blowing-suction,
and to deeply analyze the receptivity characteristics. The perturbation flow field downstream of

the blowing-suction actuator was decomposed into boundary-layer wave modes with the help of

the biorthogonal eigenfunction system. It was shown that amplitudes of boundary-layer wave

modes calculated with the help of the theoretical receptivity model had good agreements with
those obtained by projecting the numerical results onto the boundary-layer wave modes

3. We have studied the receptivity of a Mach 5.92 over a flat plate to various two-dimensional wall
perturbations: oscillation, blowing-suction, and temperature perturbation. The numerical results

show that all types of two-dimensional wall perturbations eventually result in the same type of

instability wave (mode S) in the boundary layer. The hypersonic boundary-layer flow is most

sensitive to wall blowing-suction and least sensitive to wall temperature perturbation. It is also

noticed that the profile of temperature perturbation has a strong effect on receptivity process.

The receptivity of the hypersonic boundary layer to temperature perturbation is proportional to

the energy introduced to the steady base flow, where the energy is determined by the profile of
temperature perturbation.

4. We have conducted DNS studies on the transient growth phenomena of a Mach 5.92 flat-plate
boundary layer and a Mach 7.99 flow over a blunt cone to small-scale three-dimensional

stationary roughness element. The surface roughness is periodic in spanwise direction. Effect of

thermal flat plate boundary conditions on the receptivity process is considered by comparing

numerical simulations on adiabatic and isothermal flat plates, respectively. The numerical

results show that counter rotating streamwise vortices are excited by stationary roughness
element. The temperature increases in the wake region of roughness peak whereas it decreases

in the wake region of roughness valley. Furthermore, the speed of wake from roughness peak is

slower than that from roughness valley. All these results are consistent with those of Tumin's

theoretical analysis. It is also concluded based on the numerical results that the roughness

element on adiabatic flat plate is more efficient in the excitations of streamwise vortices and

transient growth.

5. We developed a new high-order immersed interface method for computing boundary layer

transition with surface roughness. The work was motivated by discussions among the
participants in the Transition Study Group Open Forum Held in the AIAA meeting in Reno in
January 2005. It was pointed out that that there is a need to compute boundary layer stability

and transient growth with distributive surface roughness. The new method can be arbitrarily

high-order accuracy in the whole flow field, including the interface with discontinuity, and it
can be useful for the simulations of transient growth to finite or nonlinear surface roughness.

5 RESULTS OF HYPERSONIC BOUNDARY LAYER RECEPTIVITY
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One of the major accomplishments of the current research project is on revealing the receptivity

mechanism of a hypersonic boundary layer to wall blowing-suction, and the effect of

blowing-suction locations of forcing regions. These results are discussed in more detail in this

section. Details of these results have been published in Publications: [2], [6], [13], [15], 1201.

5.1 Flow conditions and blowing-suction model

With the development of advanced computers and numerical techniques, numerical simulation of

the receptivity process by directly solving Navier-Stokes equations has become feasible. By solving

the compressible linearized Navier-Stokes equations, Malik et al. [15] investigated the responses of

a Mach 8 flow over a sharp wedge of a half-angle of 5.30 to three types of external forcing: a planar

free-stream acoustic wave, a narrow acoustic beam enforced on the bow shock near the leading

edge, and a blowing-suction slot on the wedge surface. They concluded that these three types of

forcing eventually resulted in the same type of instability waves in the boundary layer. However the

receptivity mechanism was not studied in detail. Ma and Zhong [16] studied the receptivity

mechanisms of the same hypersonic boundary layer to various freestream disturbances, i.e., fast and

slow acoustic waves, vorticity waves, and entropy waves, by solving the two-dimensional

compressible Navier-Stokes equations. They found that the stable modes in the boundary layer

played a very important role in the receptivity process.

Fig. 11 A schematic of the receptivity of a hypersonic boundary layer over a sharp wedge to wall

blowing-suction: 1. boundary layer; 2. sharp wedge; 3. bow shock; 4. blowing-suction actuator.

In this project, the receptivity mechanism of the Mach 8 flow over the sharp wedge to wall

blowing-suction is investigated by series of numerical simulations. Fig. 11 shows a schematic of the

receptivity of a hypersonic boundary layer over a sharp wedge to wall blowing-suction. Due to the

symmetric geometry, only the flow field over the upper surface of the sharp wedge is simulated.

The steady base flow is simulated by solving the two-dimensional compressible Navier-Stokes

equations with a combination of a fifth-order shock-fitting finite difference method and a

17



second-order TVD scheme. In the receptivity simulations, periodic blowing-suction disturbances
are introduced to the steady base flow through a forcing actuator on the wedge surface. The
characteristics of boundary-layer wave modes are identified and evaluated by comparing the results
of LST and numerical simulations. The effects of frequency and location of the forcing actuator on
the receptivity process are studied by considering seven cases of different blowing-suction locations
with 15 frequencies for each case.

The freestream conditions for the currently studied hypersonic flow over the sharp wedge are the
same as those used by Malik et al. [15], and Ma and Zhong [16], i.e.,

Mý = 8.0, T.* = 54.78K

p =389 Pa, P1 = 0.72

Re. = Pu./P. = 8.2 x 106 m-'

Total length of the wedge surface t 1.5 m

For the simulation of steady base flow, the wall is adiabatic, and the physical boundary condition of
velocity on the wedge surface is the non-slip condition. When periodic blowing-suction
disturbances are enforced on the steady base flow, the isothermal temperature condition is applied
on the wall. This temperature condition is a standard boundary condition for theoretical and
numerical studies of high frequency disturbances. Meanwhile, non-slip condition is applied on the
wall except the forcing region. Inlet conditions are specified. High-order extrapolation is used for
outlet conditions because the flow is supersonic at the exit boundary except a small region near the
wedge surface.

In Fedorov and Khokhlov's [23] theoretical and numerical analysis of boundary-layer receptivity to
wall disturbances, wall blowing-suction disturbance has the following traveling-wave form:

Fu1 0

wa= ax x a (1)
LO'J O

where u', v', w' are velocity disturbances in streamwise, wall-normal, and spanwise directions,

respectively, while 0' is the temperature disturbance. The parameters a, and '8, are wave

number components in streamwise and spanwise directions, and CO is the circular frequency. The

function g(x) represents the disturbance profile. Equation (1) implies that wall blowing-suction is

only related to the wall-normal velocity disturbance. For this model, small instantaneous mass flux
is generally introduced to the boundary layer.

18



Another model of blowing-suction disturbances is to enforce the mass flux oscillations on the wall,
which has been used by Eibler and Bestek [24], and Egorov et al. [25]. For this model, wall
blowing-suction is expressed as

P aV. =q,(x,t)=Asin 2 7r xx1 'xsinat (2)

where A is the amplitude of mass flux oscillation, p, and v, are the local density and

wall-normal velocity at the location x on the wall, p. and u. are the density and stream-wise

velocity in free-stream. The coordinates x, and x2 represent the leading and trailing edges of the

blowing-suction actuator. Due to the anti-symmetric profile of sine function within the forcing
region, the net mass flux introduced to the boundary layer is zero at any instant.

In current study, a blowing-suction model similar to Eq. (2) is used. The mass flux oscillations on
the wedge surface within the blowing-suction region can be written as:

(** ) q8,/3(l) Zsin coQt" (3)
n=1

where q, is a local constant depending on the location of the blowing-suction actuator, and 6 is a

small dimensionless parameter representing the amplitude of the mass flux oscillation. The function

/6(l) is the profile function defined within the forcing region as

- 20.251' -35.437514 +15.187512 if 1<1
- ) -20.25(2-1)' +35.4375(2 -l) 4-15.1875(2 _1)2 if 1>_1

The variable 1 is a dimensionless coordinate defined within the blowing-suction region,

1= 2(s, - s,.) (5)
se z- s

where s,* s, are the coordinates of the leading and trailing edges of the blowing-suction actuator.

Compared with the sine profile function in Eq. (2), the specific 5th-order-polynomial profile
function makes smoother the mass flux oscillations at the edges of the forcing actuator. Due to the
anti-symmetric property of the 5th-order-polynomial profile function within the blowing-suction

region, the net mass flux introduced to the boundary layer is zero at any instant. In Eq. (3), co' is

the circular frequency of multi-frequency blowing-suction disturbances (n = 1,2,...,15), which is

related to the frequency by,

w, == 2;rf 2nnrfl* (n =1,2,--.,15) (6)
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The circular frequency, co, and the frequency, f,, are non-dimensionalized according to

6.r ,* S, (7)

F,, - * .2 * u2 (8)

The current receptivity studies are focused on linear responses of the boundary layer to forcing
waves. In the simulations, the amplitude of mass flux oscillation is small enough to preserve the
linear properties of the disturbances. The dimensionless amplitude coefficient, - in Eq. (3), is
given as

=1.0x 10-5  (9)

5.2 Steady base flow

The steady base flow is simulated by solving the two-dimensional compressible Navier-Stokes
equations with a combination of a fifth-order shock-fitting finite difference method and a
second-order TVD scheme. In the leading edge region, there exists a singular point at the tip of the
wedge, which will introduce numerical instability if the fifth-order shock-fitting method is used to
simulate the flow. Therefore, the computational domain for the fifth-order shock-fitting method

starts at s* = 0.00409 m and ends at s = 1.48784 m, respectively. In actual simulations, the

computational domain is divided into 30 zones with a total of 5936 grid points in stream-wise
direction and 121 grid points in wall-normal direction. Forty-one points are used in the overlap
region between two neighboring zones, which is proved to be sufficient to make the solution
accurate and smooth within the whole domain. An exponential stretching function is used in the
wall-normal direction to cluster more points inside the boundary layer. On the other hand, the grid
points are uniformly distributed in stream-wise direction. The spatial convergence of the results
based on this grid structure has been evaluated by grid refinement studies to ensure the grid
independence of the numerical simulations. The results of the evaluation of numerical accuracy can
be found in Ma and Zhong's paper [16], they are not repeated here.

For the first zone of the shock-fitting calculations, the inlet conditions are obtained from the results
of the second-order TVD shock-capturing scheme which is used to simulate the steady base flow in
a small region including the leading edge. For other zones, inlet conditions are interpolated from the
results of the previous zone. Fig. 12 shows the wall-normal velocity and density contours near the
leading edge of the steady base flow obtained by the second-order TVD scheme and the fifth-order
shock-fitting method. The flow field including the leading edge is simulated by the TVD scheme,

whereas the flow field after s* = 0.00409 m is simulated by the shock-fitting method. The region

between s" = 0.00409 m to s = 0.0064 m is an overlap region where the flow is computed by
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both methods. This figure shows that wall-normal velocity and density contours have good
agreements within the overlap region, which indicates that the TVD solutions are accurate to be

used as inlet conditions for the fifth-order shock-fitting simulation in the first zone. The

combination of the shock-fitting method and the TVD scheme has also been validated in
simulations of supersonic and hypersonic steady base flows over a flat plate by Ma and Zhong [26],
and Wang and Zhong [4].
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Fig. 12 Numerical results of steady base flow: 1) wall-normal velocity and density contours near the leading

edge; 2) pressure contour; 3) pressure distributions along the wedge surface; 4) shock front position and
distribution of the shock angle; 5) distribution of Mach number behind the bow shock.

Fig. 12 shows the pressure contours of the steady base flow simulated by the fifth-order

shock-fitting finite difference method. The upper boundary of the flow field represents the bow

shock induced by the sharp wedge and the displacement thickness of the boundary layer. The lower

boundary is the surface of the sharp wedge of a half angle of 5.3'. A part of the pressure field from

x* =0.05 m to x* =0.15 m is amplified to show clearly the pressure contour within the

boundary layer. It is noticed that pressure is approximately a constant across the boundary layer and
along the Mach lines, which is consistent with the theories of the boundary layer flow and inviscid

supersonic aerodynamics. At a fixed location (constant x*), pressure behind the shock is higher

than that on the wedge surface due to the existence of the bow shock. Fig. 12 also shows the
pressure distribution along the wedge surface obtained by the fifth-order shock-fitting method. The

theoretical inviscid limit is also plotted in the figure for comparison. Near the leading edge, there
exists great pressure gradient for the numerical result, which is caused by the interaction between

the inviscid outer flow and the viscous boundary layer. From upstream to downstream, the
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outer-flow/boundary-layer interaction becomes weaker with the bow shock moving away from the
boundary layer. As a result, the pressure approaches the constant value of the inviscid limit further
downstream. The figure also shows that the pressure of numerical solution at the exit of
computational domain is greater than that of the theoretical inviscid limit. This difference in

pressure is a result of the induced boundary layer thickness on the wedge surface.

The shock front position and the shock angle obtained by the numerical simulations are plotted
together with those of the theoretical inviscid limit in Fig. 12. The solid line represents the shock
front whereas the dashdot line is a straight line representing the oblique shock induced by an
inviscid flow passing the sharp wedge with the same free-stream conditions. The figure shows that
the shock front of numerical solution is not a straight line. The angle of the bow shock decreases

from 14.793' near the leading edge to 11.307' at the exit of the computational domain, however the
inviscid limit of the shock angle is a constant of 11.1020. Fig. 12 shows the distribution of Mach
number behind the bow shock of the numerical result. The theoretical inviscid limit of Mach
number behind the oblique shock is also plotted in the figure for comparison. It shows that Mach
number increases from 5.911 near leading edge to 6.746 at the exit of the computational domain.
For inviscid Mach 8 flow over the sharp wedge of a half-angle of 5.3', Mach number behind the
shock is 6.798. Figure 6 shows that the shock angle and Mach number behind the shock approach
corresponding values of the theoretical inviscid limit further downstream, where the interaction
between the inviscid outer flow and the viscous boundary layer becomes weak. Again, large
gradients of the shock angle and Mach number behind the shock near the leading edge are caused
by the interaction between the inviscid outer flow and the viscous boundary layer.

5.3 Characteristics of boundary-layer wave modes

The characteristics of boundary-layer wave modes of the Mach 8 flow over the sharp wedge of a
half-angle of 5.3' is studied by LST based on a multi-domain spectral method of Malik [27]. The
LST code was written by Ma and Zhong [28]. The velocity, pressure, and temperature disturbances
are represented by harmonic waves of the form

"Ui "•(y)

S•ý(Y)
wý ='(y) ei(acx+fB•-zw°') (10)
P P(Y)

j; T(y)

Similar to Eq. (1), the parameters ac and 83, are wave number components in streamwise and

spanwise directions, and o, is the circular frequency. For the current two-dimensional flow cases,

,, = 0. Substituting disturbances of Eq. (10) and the steady base flow into the compressible

linearized Navier-Stokes equations, an ordinary-differential-equation system is achieved, i.e.,
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(A$d +B±d±C0=O011

^ T

where 0 is the disturbance vector defined by {i,,,T,i,} The coefficient matrices A, B, and

C were given in Malik's paper [27]. In spatial stability analysis, the two parameters, CO, and 83c,

are specified as real numbers. The streamwise wave number, ac, is a complex number and solved

as the eigenvalue of the ordinary-differential-equation system. The complex wave number a, can

be expressed as

a, = a, + ia, (12)

where a, is the local growth rate. A boundary-layer wave mode is unstable when a, < 0 whereas

it is stable when a, > 0. The real part, ar, is the local wave number which can be used to define

the local phase velocity:

a =(13)
ar

Both the wave number and the phase velocity can be used to identify the boundary-layer wave
mode.
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Fig. 13 Characteristics of boundary-layer modes: 1) distribution of dimensionless phase velocity; 2)
eigenfunctions of boundary-layer mode at synchronization point; 3) distribution of growth rate.

Fig. 13 shows the dimensionless phase velocities of boundary-layer wave modes at three
dimensionless frequencies as a function of the dimensionless circular frequency o. These three

frequencies are the same as F,, F, and F7 in Table 2. The three dashed lines represent the

dimensionless phase velocities of fast acoustic mode (a = 1+ M-,'), vorticity or entropy mode

(a = 1 ), and slow acoustic mode (a = 1- M,'), respectively. The excellent agreement of the phase
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velocities at different dimensionless frequencies indicates that the phase velocity is a function of co

only. The figure clearly shows that mode F originates from fast acoustic mode. As 0) increases,
the phase velocity of mode F decreases and intersects that of vorticity or entropy mode. On the
other hand, mode S originates from slow acoustic mode. The figure also shows that mode S

synchronizes with mode F at the point of coi = 0.11443 and a. = 0.93349. At the synchronization

point, the dimensionless phase velocities of mode S and mode F are the same, and their
eigenfunctions have similar profile. The figure shows that the flow fluctuations are confined within
the boundary layer. Except the differences near the edge of the boundary layer, the eigenfunctions

of mode F and mode S agree very well at the synchronization point. Although Fig. 13 shows that

the synchronization point at different frequencies have a constant value of Co0 (= 0.11443), the

dimensional location of the synchronization point, s.*,, are different for different dimensionless

frequencies. The synchronization location in s" coordinate for a given dimensionless frequency

can be calculated using the following formula

sO•s Ic•F")2
"" - l (14)

Fig. 13 also shows the growth rates of boundary-layer wave modes at the same set of three
frequencies as a function of the dimensionless circular frequency. The vertical dashed line
represents the position of the synchronization point, whereas the horizontal dashdot line stands for

the neutral modes (a, = 0). The growth rates of either mode S or mode F of the three frequencies

are almost the same, and they are approximately functions of Co only. Mode S is unstable in the

region from wo, = 0.04 to ow, = 0.23 whereas mode F is always stable. For unstable mode S, it is

also noticed that the growth rate upstream of the synchronization point (co < 0.095) is much larger
than those around and downstream of the synchronization point. This indicates that mode S is more

unstable around and downstream of the synchronization point. The parameters W, and W,! are

called the Branch I and Branch II neutral points of mode S. Mode S is stable upstream of Branch I
neutral point and downstream of Branch II neutral point. The location of the Branch II neutral point

in s" coordinate, which changes with different dimensionless frequencies, can be calculated by

s11  R -- _ (15)

Re"

Equations (14) and (15) show that when F increases, the corresponding s., and s11* decrease. In

other words, the synchronization point and the Branch II neutral point move upstream when F
increases. Table 2 lists dimensional frequency, dimensionless circular frequency, dimensionless
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frequency, locations of synchronization point and Branch II neutral point for the 15 sets of
frequencies considered in the current study

Table 2 Dimensional frequency, dimensionless circular frequency, dimensionless frequency,
locations of synchronization point and Branch II neutral point for the 15 sets of frequencies

considered in the current study

f." (kHz) co,, (kHz) nx 106 s (M) s* (M)

1 14.92 93.74 9.63 16.9885 68.38297

2 29.84 187.48 19.26 4.2471 17.09574
3 44.76 281.23 28.89 1.8876 7.59811

4 59.68 374.97 38.52 1.0618 4.27394
5 74.60 468.71 48.15 0.6795 2.73532
6 89.52 562.45 57.78 0.4719 1.89953
7 104.44 656.19 67.41 0.3467 1.39557

8 119.36 749.94 77.04 0.2654 1.06848
9 134.28 843.68 86.67 0.2097 0.84423

10 149.20 937.42 96.30 0.1699 0.68383
11 164.12 1031.16 105.93 0.1404 0.56515
12 179.04 1124.91 115.56 0.1180 0.47488

13 193.96 1218.65 125.19 0.1005 0.40463
14 208.88 1312.39 134.82 0.0867 0.34889
15 223.80 1406.13 144.45 0.0755 0.30392

5.4 Receptivity to a single-frequency blowing-suction actuator

The receptivity result of the hypersonic boundary layer to a blowing-suction actuator at a single
frequency is firstly presented in this section. The forcing disturbance at the frequency of

f= 74.60 kHz is introduced through a blowing-suction actuator on the wedge surface from

s= 0.10184 m to s, = 0.11384 m. Table 3 lists the parameters of the blowing-suction actuators

at seven different locations. The dimensional values of q• and other parameters of the forcing

actuator considered in this section are the same as case 2 in Table 3. The value of e is given in Eq.

(9). Due to the fact that only very weak disturbances are considered, the current receptivity is in the
linear region.

Fig. 14 shows the distribution of dimensionless instantaneous pressure perturbation along the wedge
surface. The amplification of the pressure perturbation from upstream to downstream indicates the
excitation of unstable modes in the boundary layer. The significant growth of the pressure
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perturbation starts at a location close to the corresponding synchronization point at s,* = 0.6795 m.

It is very likely that mode S is excited in the boundary layer by the blowing-suction disturbance,
because mode S is more unstable around and downstream of the synchronization point.
Table 3 Constant Error! Obiects cannot be created from editing field codes. and other parameters

of blowing-suction actuator for the seven cases by which the effect of location of the
blowing-suction actuator on receptivity is investigated

case q0 (kg/r2s) si (M) se (M) s (m)

1 0.214139 0.05184 0.06384 0.05784
2 0.125188 0.10184 0.11384 0.10784
3 0.096130 0.15184 0.16384 0.15784
4 0.080666 0.20184 0.21384 0.20784
5 0.070759 0.25184 0.26384 0.25784
6 0.063745 0.30184 0.31384 0.30784
7 0.054453 0.40184 0.41384 0.40784

h 0 0.02-
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Fig. 14 Distribution of dimensionless pressure perturbation along the wedge surface and comparisons of
numerical and LST local wave number and local growth rate.

In order to check the properties of the unstable modes, a Fourier transform is applied to the
dimensionless instantaneous pressure perturbation along the wedge surface, which leads to

p'(s',t) = p',(S +[ Y (16)

where p'(s*,t*) represents the dimensionless instantaneous pressure perturbation along the wedge

surface. In above equation, p',(s )j and ',,(s*) are the perturbation amplitude and phase angle,

respectively. Once p',(s*) and O',(s*) are known, a local wave number (a,,) and a local

growth rate (a0 2) of the perturbation at the frequency f* can be defined as
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d=L (17)

f dlp'nl 
(18)-p'J ds"

where L is the length scale of local boundary layer thickness as defined by Eq. (7). The

parameters am, and a,, will represent the true wave number and growth rate only if the

disturbance is dominated by a single wave mode. Otherwise, the disurbance needs to be
decomposed in order to check properties of a specific mode. For example, Tumin, Wang, and
Zhong [2] decomposed the perturbation at a location just downstream of the blowing-suction
actuator with a biorthogonal eigenfunction system, where mode F, mode S, and acoustic modes
coexisted and none of them was dominant.

Since our focus is on numerical simulation results, we only consider the later stage where mode S is
the dominant mode in the boundary layer. In this case, Eqs. (17) and (18) can be used to check the
properties of the unstable mode S. Fig. 14 compares local wave numbers and local growth rates at

the frequency f5* obtained by Eqs. (17) and (18) with the corresponding values of mode F and

mode S computed by LST, respectively. These two figures show that wave numbers and growth
rates of the numerical results agree well with those of mode S after the location of C0 = 0.095

(s* = 0.477 m). As shown in Fig. 13, this is the location where the growth rate of mode S decrease

significantly and mode S grows to the dominant mode in the boundary layer, which indicates that
the unstable mode excited by the blowing-suction forcing is mode S. It is also shown that the two
sets of growth rates agree very well for co from 0.102 to 0.131. When Wo is larger than 0.131, the
growth rate from numerical simulation is larger than that from LST, which means that mode S

obtained by numerical simulation becomes more stable than that predicted by LST. In other words,
the Branch II neutral point of mode S obtained by numerical simulation moves upstream compared
with that predicted by LST. A possible reason is due to the non-parallel effects that are not
considered in linear stability theory. This result is consistent for all cases considered in the current
study.

Fig. 15 compares the eigenfunctions of mode F and mode S with the amplitude of pressure
perturbation obtained from the numerical simulation at four different locations. Figure (a) shows
that the numerical pressure perturbation is not confined within the boundary layer, and it is quite
different from the eigenfunctions of mode F and mode S. These characteristics of pressure
perturbation are caused by the coexistence of mode F, mode S, and acoustic modes in the boundary

layer just downstream of the blowing-suction region. Figure (b) shows that the numerical pressure
perturbation is much closer to the eigenfunction of mode S, and it is almost confined within the

boundary layer. These characteristics of pressure perturbation indicate that mode S becomes the
dominant mode in the local boundary layer with acoustic modes radiating into the external flow
outside the boundary layer and mode F decaying owing to its inherent stability. Figures (c) and (d)
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show good agreements between the eigenfunctions of mode S and the pressure perturbation
obtained from the numerical simulation, because mode S is the dominant mode in the local

boundary layer downstream of s" : 0.6 m.
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Fig. 15 Comparisons of the eigenfunctions of mode F and mode S with the amplitude of pressure perturbation

obtained from numerical simulation at different locations: (a) o=0.070872 (s*=0.26534 m); (b)

o)=0.093855 (s*=0.46534 m);(c) ow=0.11223 (s*=0.66534 m);(d) oa=0.14530 (s0=1.11534 m).

The numerical results and analysis above show that mode F, mode S, and acoustic modes are
simultaneously excited by the blowing-suction disturbances. All these modes coexist in the
boundary layer just downstream of the forcing region, which leads to the strong modulations of
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pressure perturbation amplitude. Far downstream of the forcing region, acoustic modes radiate into

the external flow outside the boundary layer. Mode F decays owing to its inherent stability whereas

mode S grows substantially because of its instability. As a result, mode S becomes the dominant

mode in the boundary layer.

5.5 Effect of location of the blowing-suction actuator

In order to investigate the effect of location of the blowing-suction actuator on receptivity, a series
of numerical simulations have been carried out for different actuator locations. Specifically, seven

cases of different actuator locations are considered. Fig. 16 shows a schematic of forcing actuator

locations for the seven cases. In each case, wall blowing-suction with fifteen frequencies (f. listed

in Table 2 with n from I to 15) is introduced on the wedge surface. The subsequent responses of the

boundary layer are simulated by the fifth-order shock-fitting finite difference method.

- ~case

, , , I , , , , I , , , I , , , , I , ,

0.1 0.2 0.3 0.4

Fig. 16 A schematic of locations of the blowing-suction actuator for the seven cases: 1. bow shock; 2.
boundary layer; 3. blowing-suction actuator; 4. sharp wedge.

The model of the multi-frequency blowing-suction actuator is given by Eq. (3). The constant q0 in

model equation are different for the seven cases because it is locally defined at the leading edge of

the blowing-suction actuator. The location of the forcing actuator is defined as

C, 2 (19)

Constant q0 and other parameters of the blowing-suction actuator for the seven cases considered in
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the current section are listed in Table 3. As already been mentioned, $q^*_0$ is defined at the

location s," as the multiple of unperturbed density on the wall and wall-normal velocity after the

bow shock with the dimension of kg/m 2s.

It is noticed that the relative location of the blowing-suction actuator with respect to the
synchronization point plays a very important role in the receptivity process. According to Fig. 13,
the synchronization point between mode F and mode S has a dimensionless circular frequency of

(q, =0.11443. Although the synchronization point in co coordinate does not depend on the

dimensional frequency, its location in s" coordinate is different for different dimensional

frequency. The synchronization points in s* coordinate for the 15 frequencies are calculated by Eq.

(14) and tabulated in Table 2 as sL11.

Table 4 Relative location of the blowing-suction actuator with respect to the synchronization
point for the seven cases by which the effect of location of the blowing-suction actuator on

receptivity is investigated

case S: <s . S• > S.*

1 n from 1 to 15 none

2 n from 1 to 12 n from 13 to 15
3 n from I to 10 n from 11 to 15
4 n from 1 to 9 n from 10 to 15

5 n from 1 to 8 n from 9 to 15
6 n from 1 to 7 n from 8 to 15
7 n from 1 to 6 n from 7 to 15

Table 2 shows that the synchronization point moves upstream when the dimensional frequency
increases. Therefore, the blowing-suction actuators for the seven cases are located either upstream

or downstream of the corresponding synchronization point of f,. Table 4 lists relative locations of

the blowing-suction actuators with respect to the synchronization points for the seven cases.

"s4C < s,"" represents that the forcing actuator is located upstream of the synchronization point of

f , while " s >s,, " represents that the blowing-suction actuator is downstream of the

synchronization point of f, . For example, for the dimensional frequency of f = 74.60 kHz,

locations of the blowing-suction actuators in all cases are upstream of the synchronization point.
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While for the frequency of f0 = 149.20 kHz, locations of the blowing-suction actuators in cases

from I to 3 are upstream of the synchronization point, whereas locations of the blowing-suction
actuators in other cases are downstream of the synchronization point.

To show the effect of location of the blowing-suction actuator on receptivity more efficiently, the
perturbations of the same frequency are plotted together for the seven cases. Fig. 17 shows the
pressure perturbation amplitudes of the same frequency for the seven cases of different

blowing-suction locations. In these figures, the numbers of I to 7 within the small rectangular

represent the case number. Pressure perturbation amplitudes at the frequencies f], f,*, and f,"

are very small, because mode S is slightly unstable in the region upstream of the synchronization

point. Therefore, pressure perturbations of these three frequencies are left out. For the frequency of

f4*= 59.68 kHz, the blowing-suction actuators for all seven cases are located upstream of the

synchronization point at s,4 = 1.0618 m. Figure (a) shows that mode S is strongly excited for all

seven cases. Furthermore, the amplitudes of pressure perturbations decrease significantly when the
actuator shifts from upstream to downstream. Figures (b) and (c) show similar results for pressure

perturbations at the frequencies of f = 74.60 kHz and f6*= 89.52 kHz, respectively. At these

two frequencies, Table 4 shows that the blowing-suction locations are all upstream of the
corresponding synchronization points. Therefore, mode S is strongly excited for all seven cases.

When the frequency is f,*= 104.44 kHz, the location of the blowing-suction actuator is upstream

of the synchronization point at s7 = 0.3467 m for cases from I to 6, however it is downstream of

the synchronization point for case 7. Figure (d) shows that mode S is strongly excited for cases from
1 to 6. In case 7, there is very little excitation of mode S, despite the fact that the blowing-suction
actuator is still located within the unstable region of mode S. The results of all cases tested in this
study show a consistent trend that mode S is very weakly excited when blowing-suction location is

downstream of the synchronization point. For the frequency of f8*= 119.36 kHz, figure (e) shows

that mode S is strongly excited for cases from 1 to 5, while there is not much excitation of mode S
for case 6 and case 7. Again, this is resulted from the fact that the locations of the blowing-suction

actuators for cases from 1 to 5 are upstream of the synchronization point at s:8 = 0.2654 m,

whereas the forcing actuator is located downstream of the synchronization point for case 6 and case
7. It needs to be emphasized that the blowing-suction actuator is still located within the unstable
region of mode S even in cases 6 and 7.
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Fig. 17 Pressure perturbation amplitudes of a same frequency for the seven cases of different blowing-suction

locations (f~ with n from 4 to 15)
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As the frequency changes to f9 134.28 kHz in figure (f), the blowing-suction actuators are

located upstream of the synchronization point at s:9 = 0.2097 m for cases from I to 4, whereas

locations of the forcing actuator for cases from 5 to 7 are downstream of the synchronization point.
The results for this frequency are again consistent with those of the previous frequencies regarding
to the excitation of mode S. Figure (f) shows that mode S is strongly excited for cases from I to 4,

however the excited mode S is very weak for cases from 5 to 7. For the frequencies f, with n

from 10 to 11, similar conclusion can be drawn. For still higher frequencies, the last three figures
show that pressure perturbation is amplified in a very small domain downstream of the
blowing-suction actuator, because the unstable region of mode S is small for higher frequencies.
Consistently, mode S is significantly excited when the blowing-suction actuator is located upstream
of the synchronization point. When the blowing-suction actuator is downstream of the
synchronization point, there is a very little excitation of mode S.

To summarize, the current simulation results have consistently indicated that the synchronization
point between mode F and mode S plays an important role in the excitation of mode S by the
blowing-suction actuator. Mode S is strongly excited only when the blowing-suction actuator is
located upstream of the synchronization point. On the other hand, when the forcing actuator is
downstream of the synchronization point, there is a very weak excitation of mode S. This happens
even when the blowing-suction actuator is still within the unstable region of mode S. Therefore, the
synchronization point is critical to the receptivity process. The relationship between the location of
the blowing-suction actuator and the synchronization point suggests that, in order to control or delay
the laminar-turbulent transition more efficiently, the blowing-suction actuator should be placed
upstream of the synchronization point between mode S and mode F.

6 DEVELOPMENT OF A NEW HIGH-ORDER IMMERSIED INTERFACE

METHOD

Another major accomplishment of the current research project is the development of a new
high-order immersed interface method. The work was motivated by discussions among the
participants in the Transition Study Group Open Forum Held in the AIAA meeting in Reno in
January 2005. It was pointed out that that there is a need to compute boundary layer stability and
transient growth with distributive surface roughness. The new method can be arbitrarily high-order
accuracy in the whole flow field, including the interface with discontinuity, and it can be useful for
the simulations of transient growth to finite or nonlinear surface roughness. The new high-order
immersed interface method has been tested and published in Publications: [21, [12].

6.1 Introduction
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Recently, there has been strong interest in developing numerical methods for computing multi-phase

flow with unsteady interface. These methods have many practical applications, such as the

simulation of the dynamics of gas bubbles in a liquid [29], drop deformation and breakup in viscous

flow [30], free surface flow [31, 32], and the breakup of a liquid jet emanating into another fluid

[33].

Compared with single-phase numerical methods, algorithms for two-phase flow simulation face
additional difficulties related to the interface treatment. Firstly, the shape of the interface can be

complex, and can undergo change, merge and breakup during the course of the simulation.

Consequently, it is difficult to use body-fitted unsteady grid to fit the evolving interface. A fixed

Cartesian grid, where the interface can cut through the grid lines, is often used. In a fixed grid, the

interface can be treated by, among others, the volume-of-fluid method, the front tracking method

[34, 35], the level-set method [36-39], and the boundary element method [40]. Secondly, flow

variables and their derivatives can be discontinuous across the interface. Specific jump conditions at

the interface depend on the physical property of the problems, the unsteadiness of the interface, and

the geometric characteristics of the interface. Consequently, special treatments are necessary for
computing flow equations at grid points adjacent to the interface (i.e. irregular points). One of the

popular methods in treating interface discontinuity is the immersed boundary method (IBM)

originally developed by Peskin [21] for simulating blood flow in the heart. The basic idea of the

immersed boundary method is to model the interface by adding a delta-function source term to the

Navier-Stokes equations. The resulting equations are then discretized by a standard finite difference
method in a fixed Cartesian (or non-Cartesian) grid. The singular delta function is regularized by an

approximate smooth function spanning a few grid cells.

An alternative to the immersed boundary method is the "sharp-interface" methods which achieve
uniformly second (or higher) order accuracy by incorporating the jump conditions into the finite

difference formulas. The immersed interface method (IIM) introduced by LeVeque and Li [22] is
one of these methods. In presenting their original IIM method, LeVeque and Li (1994) considered

finite difference methods for the following elliptic equation:

V. (/J(x)Vu(x)) + K(x)u(x) = f(x) (20)

The equation is defined in a simple region with a uniform Cartesian grid. Fig. 18 shows a schematic

of a two-dimensional grid. There is an irregular surface F, which may cut across the grid lines, in

the computational domain. Across the interface, /J, K, and f may be discontinuous, and along it

f may have a delta function singularity. In the derivation of finite difference formulas, the

computational grid points are classified into two categories depending on their relative locations

with respect to F: regular points away from F and irregular points adjacent to F. A globally

0(h 2 ) accuracy is achieved by using the conventional 0(h2) central scheme for the regular

points and a locally 0(h) scheme for the irregular points. In the one-dimensional case, a finite
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difference formula of O(h) accuracy at an irregular point uses a three-point grid stencil together

with an additional correction term. A Taylor series expansion at the interface is used to obtain a set
of linear equations for the undetermined coefficients and the correction term. The linear equations
are often problem dependent, and they need to be solved numerically every time they are used in the

simulation. In order to reach a locally O(h) approximation, the correction term requires jump

conditions of up to the second derivatives, i.e.

[u], [flu.], and [f6u.] (21)

where [] denotes the jump in variables across the interface.

0.75 : -

0.5 4

-0.2:
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Fig. 18 A schematic of two-dimensional uniform grid with an immersed interface F with discontinuity in
solutions.

The immersed interface methods have been applied to the Stokes flow with elastic boundaries or
surface tension, Hele-Shaw flow, incompressible flow based on the Navier-Stokes equations with
singular source terms, and nonlinear problems in magneto-rheological fluids. Despite these
applications, the immersed interface methods are often difficult to apply to complex two or three
dimensional two-phase flow problems. In order to maintain a second-order accuracy, it is necessary
to obtain jump conditions at the interface for flow variables and their first and second derivatives.
For the Navier-Stokes equations with an interface of discontinuity, it is easy to derive the physical
jump conditions for flow variables and their first derivatives across the interface. But it is difficult
to obtain jump conditions for the second or high order derivatives. In order to develop third or
higher order immersed interface methods, it is necessary to obtain jump conditions for the third and
higher derivatives. In addition, the finite difference formulas of the original immersed interface
method need to be re-derived for different problems. The coefficients and the correction terms in the

35



finite difference formulas at irregular points cannot be obtained explicitly. They are often computed
numerically by solving a matrix equation. The repeated computations for the coefficients and
correction terms can be computationally expensive.

Based on the brief review above, it is desirable for a high-order immersed interface method to have
the following properties:

1. Only two physical jump conditions of the variables and their first derivatives should be
needed in the second or higher order immersed interface methods.

2. Finite difference formulas at irregular points should be expressed in a general explicit form
(without the need to compute matrix equations repeatedly) so that they can be applied to
different problems without any modification.

The derivation, analysis, and test results of the new methods are presented in following sections. the
new high-order immersed interface methods are presented in this paper for elliptic equations in the
form of Eq. (20) with imbedded interface of discontinuity only. Nevertheless, the method has
potential advantages in the application to two-phase flow because of its high-order accuracy and
simplicity in applications by requiring only the physical jump conditions for variables and their first
derivatives are needed in the finite difference formulas. The derivation of jump conditions involving
the second or higher order derivatives can be difficult for two-phase flow problem involving the
Navier-Stokes equations.

6.2 Explicit Finite Difference Formulas at Irregular Grid Points

Sh Interface F

i-n+1 ... i-1 i i+1 ... i+m

h

( n points on left side) ( m points on right side)

Fig. 19 Unifrom grid with an interface located on the right side of irregular point i with a general grid stencil
of n and m points on the left and right sides, respectively.

The new high-order immersed interface method is presented for one-dimensional differential elliptic
equations in the form of Eq. (20) in this section. The method is extended to two-dimensional elliptic

equations afterward. For simplicity, only the finite difference approximation to (du/dx), and
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(d2u/dx2 ), is presented, though formulas for higher derivatives can be easily obtained by the same

method. A uniform grid of mesh size h shown in Fig. 19 is used for the discretization. Without

losing generality, it is assumed that the origin of the coordinate system is located at grid point i,

i.e.

X,+k =kh (k=O, +1 +2, ± -) (22)

The interface is located at:

xr = x, + c-h = orh (23)

where o is the interface location parameter which satisfies

0O < t<1 (24)

As discussed in the preceding section, only two jump conditions involving u and ux are used in

the finite difference approximation of the derivatives. A general jump conditions across the interface

can be written as:

[au] = a+u+ - a-u- = A (25)

and

[flux ] = 8+u+x - flWu; =B (26)

where the superscripts, "+" and "-", represent the variables and constants at the right and left sides

of the interface F, respectively. The constants, a+, a-, ,8÷, /T, A, and B, are known

constants determined by the nature of the equation being computed. In an actual two-phase flow

problem, the jump conditions can be formulated such that a', a-, +, f8- are dimensionless

constants.

A grid point is called a regular point if the finite difference formulas at this point only involve grid

points on the same side of the interface. Otherwise, it is an irregular point. If grid point i is a

regular point (without the interface), finite difference approximation of an arbitrary order can be

easily derived by a Taylor series expansion or by a polynomial interpolation. For example, the

second and fourth order central difference approximations to (d 2u/dx2 ), are:

d2u u,1_- 2u,+U,4 1 + 0(h') (27)
Sdx2 )h

and

d -u, 2 +6+16uI 2 1hl6u,+, u,+2 + 0(h') (28)
dx2 J12h 2
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Therefore, in the case of O(h2 ) approximation in the regular points, i and i+1 (Fig. 19) are

irregular points. For the 0(h4 ) approximation, there are four irregular points, from i-I to

i+2. Alternatively, we can treat only points i and i+1 as irregular points, while 4th order
one-sided approximation is used for points i-1 and i+2. The latter approach is used in this
paper.

For irregular point i shown in Fig. 19, the use of Eq. (27) will lead to large computational errors

because of the discontinuity of u at F . LeVeque and Li [22] derived a locally O(h)

approximation at i by adding a correction term to the three-point stencil. The difference formula
and the correction term are then determined by a Taylor expansion at the interface. In order to reach

O(h) approximation, it is necessary to know the jump conditions involving u, u. and u,. The

first two jump conditions can be obtained easily. The jump conditions for the second derivatives can
be obtained by taking derivatives of the lower order jump conditions together with the differential
equation.

Therefore, the high-order immersed interface method presented below achieves a high-order
approximation at the irregular point i by imposing the two jump conditions given by Eqs. (25) and
(26) only. Instead of using more and more jump conditions of higher order derivatives to achieve
higher order accuracy at the irregular point as done in the original IIM method, we use more and
more grid points on both sides of the interface so that arbitrary order approximation can be achieved
while only the two jump conditions (25) and (26) are imposed. General difference formulas for

(du/dx)i and (d2u/dxi)i in explicit form can be derived by a matched polynomial expansion, so

that they are problem independent.

Finite difference approximation for (duldx), and (d2u/dx2 ), at the irregular point i is

considered by using a stencil of n points on the left of Fand m points on the right (Fig. 2). The
order of the approximation increases with the increasing values of n and m. In order to have a
uniform accuracy, it is desirable to have the same number of points on both sides of the interface,
i.e.

n=m (29)

Since n and m can be different in some special circumstances, we derive the general formulas
by assuming arbitrary values of n and m. The finite difference formulas for i can be derived

by a Taylor series expansion with ur as a parameter. The case of locally O(h) approximation for

(d2u/dx2 ), at interface is considered first as an example below. A general formula for arbitrary
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values of n and m is derived afterward.

6.3 Test and applications

The new method can be of arbitrarily high-order accuracy and it is simple to be applied to practical

two-phase flow problems by requiring only the physical jump conditions for variables and first

derivatives. It also has the advantage that the finite difference formulas at irregular points are

expressed in an explicit form so that they can be applied to difference problems without

modifications. Six versions of the new method of up to fourth order accuracy have been tested for

both one and two-dimensional model equations. The numerical results show that they can produce

very accurate results for elliptic equations with embedded interfaces. Details of test results have

been published in Publications: [2], 1121.
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