

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

ROUTE OPTIMIZATION FOR MOBILE IPV6 USING THE
RETURN ROUTABILITY PROCEDURE: TEST BED
IMPLEMENTATION AND SECURITY ANALYSIS

by

Ioannis Kandirakis

March 2007

 Thesis Advisor: Geoffrey Xie
 Second Reader: John Fulp

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-
0188

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Route Optimization for Mobile
IPv6 Using the Return Routability Procedure: Test Bed
Implementation and Security Analysis
6. AUTHOR Ioannis Kandirakis

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Hellenic Navy General Staff
Athens, Greece

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT

Mobile IPv6 is an IP-layer mobility protocol that is designed to provide mobility
support, allowing an IPv6 node to arbitrarily change its location on the IPv6 Internet
and still maintain existing connections by handling the change of addresses at the
Internet layer using Mobile IPv6 messages, options, and processes that ensure the
correct delivery of data regardless of the mobile node's location. Return Routability
is an infrastructureless, lightweight procedure that enables a mobile IPv6 node to
request another IPv6 node (maybe unaware of mobility) to test the ownership of its
permanent IPv6 address in both its home network and its temporary address in the
current IPv6 network; and authorizes a binding procedure by the use of a cryptographic
token exchange.

The main objective of this research effort is to build a test bed for
investigating the vulnerabilities of the Mobile IPv6 RR procedure. The test bed shall
facilitate the enactment and analysis of the effects of specific threats on the hosts
and the network. While this thesis is not about discovering new vulnerabilities or
evaluating countermeasures, the resulting test bed and software shall lay the necessary
groundwork for future research in those directions.

15. NUMBER OF
PAGES

121

14. SUBJECT TERMS Mobile IPv6, Return Routability Procedure, Test
Bed, Security, MIPL 2.0.2,SUSE LINUX 10.1

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

ROUTE OPTIMIZATION FOR MOBILE IPV6 USING THE RETURN
ROUTABILITY PROCEDURE: TEST BED IMPLEMENTATION AND SECURITY

ANALYSIS

Ioannis Kandirakis
Lieutenant, Hellenic Navy

B.S., Hellenic Naval Academy, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2007

Author: Ioannis Kandirakis

Approved by: Geoffrey Xie
Thesis Advisor

John Fulp
Second Reader

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Mobile IPv6 is an IP-layer mobility protocol that is

designed to provide mobility support, allowing an IPv6 node

to arbitrarily change its location on the IPv6 Internet and

still maintain existing connections by handling the change

of addresses at the Internet layer using Mobile IPv6

messages, options, and processes that ensure the correct

delivery of data regardless of the mobile node's location.

Return Routability is an infrastructureless, lightweight

procedure that enables a mobile IPv6 node to request

another IPv6 node (maybe unaware of mobility) to test the

ownership of its permanent IPv6 address in both its home

network and its temporary address in the current IPv6

network; and authorizes a binding procedure by the use of a

cryptographic token exchange.

The main objective of this research effort is to build

a test bed for investigating the vulnerabilities of the

Mobile IPv6 RR procedure. The test bed shall facilitate the

enactment and analysis of the effects of specific threats

on the hosts and the network. While this thesis is not

about discovering new vulnerabilities or evaluating

countermeasures, the resulting test bed and software shall

lay the necessary groundwork for future research in those

directions.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. OBJECTIVE ..2
B. RESEARCH QUESTIONS3
C. ORGANIZATION3

II. BACKGROUND ..5
A. THE NEED FOR TRANSITION TO IPV65
B. IP MOBILITY ..7
C. MOBILE IPV6 TERMINOLOGY8
D. MOBILE IPV610
E. BASIC MOBILE IPV6 PROCESS-TUNNELING MODE11
F. OVERVIEW OF RETURN ROUTABILITY (RR) PROCEDURE14
G. PRIOR EVALUATIONS OF MIPV6 PROTOCOL22

III. MIPV6 TEST BED CONFIGURATION29
A. PUBLISHED IMPLEMENTATIONS OF MIPV629
B. CHOOSING MIPV6 SOFTWARE31
C. TEST BED DESCRIPTION32

1. Test Bed Layout Description32
2. Configure-Patch-Build and Install the MIPv6

Kernel at HA, MN and CN35
3. Setup of HA, MN, CN, and routers45

a. HA45
b. MN47
c. CN48
d. CNrouter48
e. Frouter49

D. VERIFYING THE CONFIGURATION49
1. Scenario without the Use of IPsec50

a. Phase 1: MN Is At Its Home Network50
b. Phase 2: MN Moves to a Foreign Network ..56
c. Phase 3: MN Returns to its Home Network .63

2. Scenario with the Use of IPsec63
IV. SECURITY ISSUES OF MOBILE IPV671

A. IDENTIFIED SECURITY THREATS AND MIPV6 PROTOCOL
DEFENCE ...71

B. TEST BED SECURITY OBSERVATIONS73
C. ATTACK TRAFFIC GENERATION WITH SCAPY673
D. WORK IN PROGRESS FOR SECURING THE ROUTE

OPTIMIZATION PROCEDURE FOR MOBILE IPV674
V. CONCLUSIONS AND FUTURE WORK77

A. CONCLUSIONS77
B. FUTURE WORK78

 viii

APPENDIX A. CONFIGURATION FILES OF HA81
APPENDIX B. CONFIGURATION FILES OF MN87
APPENDIX C. CONFIGURATION FILES OF CNROUTER89
APPENDIX D. CONFIGURATION FILES OF FROUTER91
APPENDIX E. CONFIGURATION FILES OF CNROUTER93
APPENDIX F. USING SCAPY6 FOR CONSTRUCTING A BU MESSAGE97
LIST OF REFERENCES ...101
INITIAL DISTRIBUTION LIST105

 ix

LIST OF FIGURES

Figure 1. Bidirectional Tunneling of Mobile IPv6..........13
Figure 2. Timing Diagram and Message Format of RR

Procedure.......................................21
Figure 3. Physical Layout of MIPv6 Test bed...............34
Figure 4. Running Output of HA mip6d when MN is at Home

Network...51
Figure 5. Running Output of MN mip6d when MN is at Home

Network...52
Figure 6. Running Output MN ifconfig when MN is at Home

Network...54
Figure 7. Running Output CN mip6d when MN is at Home

Network...55
Figure 8. MN Kernel IP Routing Table before MN Movement...55
Figure 9. MN Moved to Foreign Network 2005::/64...........56
Figure 10. ifconfig of MN moved to the Foreign Network.....57
Figure 11. Virtual Terminal Information Provided by HA.....58
Figure 12. Virtual Terminal Information Provided by MN.....59
Figure 13. MN Kernel IP Routing Table after Movement to

Foreign Network.................................59
Figure 14. HOTI Message from MN to CN......................60
Figure 15. COTI Message from MN (CoA) to CN................60
Figure 16. HOT Message from CN to CN (HoA).................61
Figure 17. COT Message from CN to MN (CoA).................61
Figure 18. BU Message from MN(CoA) to CN...................62
Figure 19. BA Message from CN to MN(CoA)...................62
Figure 20. HA Virtual Terminal Output......................63
Figure 21. MN SPD Output before MN Moves to the Foreign

Network...67
Figure 22. MN SPD Output after MN Moves to the Foreign

Network...68
Figure 23. Ethereal Screen Capture of RR Procedure.........69

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Hardware Characteristics of MIPv6 Test bed
Components......................................33

Table 2. Test Bed IP and MAC Addresses...................35
Table 3. Table of Mobility Header Types..................50
Table 4. Possible Threats and Defense Mechanisms

provided by the RR Protocol.....................73

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

There are lots of people I would like to thank for a

huge variety of reasons.

I would like to thank the Hellenic Navy for providing

the opportunity to pursue my studies at the Naval

Postgraduate School.

I am deeply indebted to my advisors Prof. Geoffrey Xie

and Prof. John Fulp for their mentoring, inspiration and

support throughout this work. Without their common-sense,

knowledge and perceptiveness I would never have finished.

I would also like to thank all the rest of the

Academic Staff of the Naval Postgraduate School and

especially the Department of Computer Science for the

knowledge that they provided me with a high sense of

responsibility.

The greatest acknowledgement I reserve for my family,

my wife Filio and my son Filippos, who endured this long

process with me, always offering support, love and

patience.

I dedicate this thesis to my beloved father whom I

lost during my studies in NPS and he will never have the

chance to see my diploma.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Mobile IPv6 (MIPv6) is a network layer protocol for

enabling mobility in IPv6 networks. IP mobility technology

has gained a significant amount of traction over the last

few years, mainly due to the following factors [Soliman04]:

• Increasing dependence of society on information
and the need to access it from any place and any
time

• Wide spread deployment of high-speed wireless
networks.

• Emergence of 3G wireless networks that support
packet data services.

• Affordable mobile devices that are
multifunctional and capable of services that go
beyond just voice and SMS

• Inclusion of IP stacks in PDAs, mobile phones and
portable PCs.

Mobile IPv6 is the network layer protocol developed to

replace mobile IPv4. IPv6 has a larger address space and is

expected to improve network performance and network

security over that of IPv4. The intended improvements

include both enhancements of existing IPv4 functionalities

and new features. Most of the former category of

improvements have been tested and analyzed during the

operational period of IPv4; the new features; however, have

not been equally tested. Some of them still have not been

incorporated into popular operating systems, and some exist

only as RFC specifications, with no actual implementation.

One of the new features of Mobile IPv6 is the Return

Routability (RR) procedure, an infrastructureless solution

to achieve Routing Optimization and avoid routing

triangles.

2

This procedure is the subject of serious discussions

concerning its security implications. Several problems have

been identified, and solutions have been proposed

[Johnson04]. A systematic implementation and analysis in a

laboratory environment of the potential threats to the

hosts and the network, during the execution of the RR

process, will help in the evaluation of the proposed

solutions and in research for new ones. Such analysis,

together with the tools to gather the data to support that

analysis, is the focus of this thesis.

A. OBJECTIVE

The main objective of this research effort is to build

a test bed for investigating the vulnerabilities of the

Mobile IPv6 RR procedure. The test bed shall facilitate the

enactment and analysis of the effects of specific threats

on the hosts and the network. The threats shall be

implemented in software and validated using the test bed.

While this thesis is not about discovering new

vulnerabilities or evaluating countermeasures, the

resulting test bed and software shall lay the necessary

groundwork for future research in those directions. Thus,

the following tasks will be accomplished.

1. Identify known security issues with the proposed
Mobile IPv6 RR procedure.

2. Configure a suite of hardware components to
investigate the susceptibility of the
autoconfiguration protocol to the selected risks.

3. Implement attacks against the test bed and assess
the performance of the protocol in the presence
of malicious activity.

3

B. RESEARCH QUESTIONS

This thesis investigates the following specific

issues.

1. Are there any OSs that support the proposed
security functions of MIPv6, and if there are, to
which extent?

2. How do the components of the MIPv6 secure their
communication?

3. What are the possible threats to secure
communication between the mobile IPv6 nodes?

4. What are the suggested solutions?

5. Are there any known exploits of the
vulnerabilities of the MIPv6?

6. Are there any proposed threat mitigation
solutions, and if so, what are they?

C. ORGANIZATION

This thesis is organized as follows.

Chapter I provides and introduction to the thesis and

the rudiments of the Mobile IPv6 protocol.

Chapter II presents the need for transition to IPv6,

the benefits of IP Mobility, and provides an overview of

the Mobile IPv6 protocol. In addition, it describes the RR

procedure and the assumptions made for the design

implementation of the MIPv6 protocol. It is intended to be

a high-level description that will introduce the MIPv6

terminology and help the reader comprehend how the MIPv6

protocol and its RR procedure work.

Chapter III presents the layout and configuration

process of the implemented MIPv6 test bed. A very limited

number of published host operating systems are advertised

to have support for MIPv6. Worse, all the available MIPv6

capable OS releases are experimental in nature and still

going through rigorous validation tests. As such, a

4

significant amount of effort for this thesis was spent

determining a working combination of OS version and MIPv6

extension in a “trial and error” manner. The experience is

documented in this chapter. This chapter is intended to

provide sufficient details so that it can be used as a

“how-to” guide for deploying a MIPv6 test bed using open-

source software.

An evaluation of the RR procedure is provided in

Chapter IV that is based on the experimental results from

both Chapter III and the research of [Aura06], which was

published during this research.

Conclusions and recommendations for threat mitigation

are presented in the final chapter, along with suggestions

for future work on the analysis and evaluation of the

proposed solutions.

5

II. BACKGROUND

This chapter briefly presents the argument for

transition to IPv6, the rudiments of the IP Mobility

protocol, and the Mobile IPv6 protocol in particular.

Finally, it describes the RR procedure and the assumptions

made for the design implementation of the MIPv6 protocol.

It is intended to be a high-level description that will

introduce the Mobile IPv6 terminology (MIPv6) and help the

reader comprehend how the MIPv6 protocol and its attendant

RR procedure work.

A. THE NEED FOR TRANSITION TO IPV6

The Internet Protocol (IP) is a data-oriented protocol

used for communicating data across a packet-switched

internetwork. IP is a network layer protocol in the

internet protocol suite and is encapsulated in a data link

layer protocol (e.g., Ethernet). As a lower layer protocol,

IP provides the service of communicable unique global

addressing amongst computers. This implies that the data

link layer need not provide this service. Ethernet provides

globally unique addresses except it is not globally

communicable (i.e., two arbitrarily chosen Ethernet devices

will only be able to communicate if they are on the same

bus). The difference is that IP is concerned with the final

destination of data packets. Ethernet is concerned with

only the next device (computer, router, etc.) in the chain.

The final destination and next device could be one and the

same (if they are on the same bus), but the final

destination could be on the other side of the world

[http://en.wikipedia.org/wiki/Internet_Protocol Last

visited on February 2, 2007].

6

The current version of the IP protocol (IPv4) has not

changed a lot since RFC 791, which was published in 1981.

It is common belief that IPv4 served us well for over 25

years and still does.

However, the initial design of IPv4 did not anticipate

contemporary issues such as [Soliman04]:

• The exponential growth of the Internet and the
impending exhaustion of the IPv4 address space.

• The need for simpler and more automatic
configuration of addresses and other settings
that do not necessarily rely on the
administration of a DHCP infrastructure.

• The requirement for security at the IP level.

• The need for better support for real-time
delivery of data.

• The emergence of IP-capable mobile devices.

• The need of society to access information from
any place and at any time.

To address not only these, but also many proposed

methods for improving IPv4, the IETF has developed a suite

of protocols and standards known as IP version 6 (IPv6)

with the following features [Davies02]:

• New header format

• Larger address space

• Efficient and hierarchical addressing and routing
infrastructure

• Stateless and stateful address auto configuration

• Built-in security

• Better support for quality of service (QoS)

• A new protocol for neighboring node interaction

• Extensibility

In addition, the internals of the IPv6 protocol have

been designed with scalability and extensibility in mind.

7

This will allow many different kinds of devices besides

PCs, like cell phones and home appliances, to more easily

join the Internet in future

[http://wireless.about.com/od/networkprotocolsip/g/bldef_ip

v6.htm Last visited on February 5, 2007].

B. IP MOBILITY

IP Mobility is defined as the change in a node’s IP

address due to the following reasons:

• Change of its attachment point within the
Internet topology.

• Change in the topology itself, which causes a
node to change its address.

Mobility is considered to be an important issue, and

the need for an IP mobility management solution is

motivated by the following [Soliman04]:

• Users would like to have the choice of using
certain technologies over others.

• Hosts need to be reachable independently of their
“normal” (home) physical origin.

Mobile IPv6 is designed to handle the mobility management

on the IP layer for the emerging IPv6 protocol.

The solution to IP mobility is the Mobile IP protocol,

designed to allow mobile device users to move from one

network to another while maintaining reachability via their

permanent/home IP address. Defined in RFC 2002, Mobile IP

is an enhancement of the Internet Protocol (IP) that adds

mechanisms for forwarding Internet traffic to mobile

devices (known as mobile nodes) when they are connecting

through other than their home network.

[http://searchmobilecomputing.techtarget.com/sDefinition/0,

,sid40_gci849848,00.html Last visited on February 5, 2007]

8

C. MOBILE IPV6 TERMINOLOGY

In order for the reader to better understand the

description of the MIPv6 protocol and the RR procedure, its

concomitant terminology and message transactions are

presented in this section:

Home link: The home link is the link that is assigned

the home subnet prefix. The mobile node uses the home

subnet prefix to create a home address.

Home Address (HA): A unicast routable address assigned

to a mobile node, used as the permanent address of the

mobile node. This address is within the mobile node's home

link. Standard IP routing mechanisms will deliver packets

destined for a mobile node's home address to its home link.

Mobile nodes can have multiple home addresses, for instance

when there are multiple home prefixes on the home link.

Home Agent (HA): The home agent is a router on the

home link that maintains an awareness of the mobile nodes

of its home link that are away from home and the addresses

that they are currently using. If a mobile node is on the

home link, the home agent acts as a normal IPv6 router,

forwarding packets addressed to the mobile node. If the

mobile node is away from home, the home agent tunnels data

sent to the mobile node's home address to the mobile node's

current (remote) location on the IPv6 Internet.

Mobile node (MN): A mobile node is an IPv6 node that

can change links/networks, and therefore addresses, and yet

continue to maintain reachability using its home address. A

mobile node has “awareness” of its home address and the

9

global address of its current link address, and indicates

its home address to the home agent and IPv6 nodes with

which it is communicating.

Foreign link: A foreign link is a link that is not the

mobile node's home link. A foreign link is assigned a

foreign subnet prefix.

Care-of Address (CoA): the temporary, network-specific

IP address for routing messages to the mobile node’s

current location. The association of a care-of address with

a home address for a mobile node is known as a binding.

Correspondent nodes and home agents keep information on

bindings in a binding cache.

Correspondent Node (CN): A correspondent node is an

IPv6 node that is capable of communicating with a mobile

node while it is away from home. A CN can also be a mobile

node.

Cookie: random number used by a mobile node used to

prevent spoofing by a bogus CN in the RR procedure.

Care-of init cookie: a cookie sent to the CN in the

Care-of Test Init message, to be returned in the Care-of

Test message.

Home init cookie: a cookie sent to the CN in the Home

Test Init message, to be returned in the Home Test message.

Keygen Token: a number supplied by a CN in the RR

procedure to enable the MN to compute the necessary binding

management key for authorizing a BU.

Nonces: random numbers used internally by the CN in

the creation of keygen tokens related to the RR procedure.

10

Binding management key (Kbm): Key used for authorizing

a binding cache management message (e.g., BU and BACK

messages).

Binding Update (BU): Used by a mobile node to notify

other nodes of a new care-of address. It can also be used

to delete old bindings.

Binding Acknowledgement (BA): Used to acknowledge

receipt of a Binding Update.

Binding Refresh Request (BRR): Used by the CN to

inform the mobile node that the binding is (or is going)

stale.

Binding Error (BE): It is used by the CN to signal an

error.

D. MOBILE IPV6

Mobile IPv6 grew out of experiences with Mobile IPv4;

itself an attempt to enable IP attached devices to migrate

between physical networks without having to change the

publicly visible IP address by which they were uniquely

known to the rest of the Internet.

When a node moves from one access network to another

or switches between access technologies, it acquires a new

IPv6 address and cannot be reached directly via its old

IPv6 address due to its router’s ingress filtering. This

implies that all current communications (for example

streaming video from the Internet or a TCP session) are

stopped and will have to be restarted by the user or the

application.

11

The Mobile IPv6 protocol (RFC 3775) has been defined

to address those issues and allow the node to be always

reachable at the same IPv6 address whatever the access

network it uses. It allows the host to move transparently

for the applications and the users, without the need to

reset all the current connections each time the host moves

to another access network.

Its design aims to solve two problems:

• To allow transport layer sessions (TCP
connections and UDP-based transactions) to
continue even if the host(s) move and change
their IP addresses.

• To allow a node to be reached through a static IP
address; that is, a home (of) address (HoA).

E. BASIC MOBILE IPV6 PROCESS-TUNNELING MODE

The basic idea in Mobile IPv6 is to allow a home agent

(HA) to work as a stationary proxy for a mobile node (MN).

Whenever the mobile node is away from its home network, the

home agent intercepts packets destined to the node and

forwards the packets by tunneling them to the node's

current address, the care-of address (CoA). The transport

layer (e.g., TCP, UDP) uses the home address as a

stationary identifier for the mobile node.

With Mobile IPv6, a host has two addresses while

moving in the Internet topology: one permanent address that

identifies the host, and the other representing the

location in the Internet topology. The Mobile IPv6 protocol

takes care of the binding between these two addresses

(thanks to a Home Agent), and ensures that the host is

always reachable at its permanent address even if it moves

in the Internet topology.

12

Mobile IPv6 adopts a new strategy for securing a MN

that roams around the Internet. A MN needs to keep getting

new local IP addresses (CoA) and keep his HA informed that

he's moved and where he has gone.

There are two possible modes for communications

between the mobile node and a CN in MIPv6. The first mode,

bidirectional tunneling, does not require Mobile IPv6

support from the CN and is available even if the mobile

node has not registered its current binding with the CN.

Packets from the CN are routed to the home agent and then

tunneled to the mobile node. Packets to the CN are tunneled

from the mobile node to the home agent ("reverse tunneled")

and then routed normally from the home network to the CN.

The roaming device is authenticated through its home

address, and all communications to that device pass through

the home address before being sent to the temporary

location (CoA).

Bidirectional tunneling is responsible for triangle

routing. Triangle routing may incur unnecessary latency,

which is not desirable for real time traffic such as VoIP.

Also it impacts on reliability since a longer data path is

more likely to break due to a link failure.

In a nutshell, the bidirectional tunneling is

described by the following steps:

1. The MN uses its HoA when it is in its home
network. A datagram sent from CN to MN, will be
sent to MN’s HA.

2. HA delivers the datagram to MN at its HoA.

3. MN moves to a visiting network and acquires a
temporary IP address, CoA from the agent (local
router) of the visiting network.

4. The MN registers its CoA to its HA.

13

5. The CN sends a datagram to the MN, unaware if it
is in its home network, to the only address that
it can reach the MN, its HoA.

6. The HA forwards the datagram to MN, at its CoA.

7. The MN sends datagrams to CN, tunneling them
through its HA due to ingress filtering.

The above procedure is illustrated in Figure 1 below.

Figure 1. Bidirectional Tunneling of Mobile IPv6

This is the basic mode of function of Mobile IPv6 in

absence of any optimization and is called triangle routing

because every message between MN and CN has to route via

the MN’s Home Agent.

Triangle routing may create delays, caused by a long

trip time that affects real time traffic such as VoIP.

Also, it impacts on reliability since the longer path may

have broken links.

Correspondent Node

(4)

(5)
MN at
its HoA

HA

MN away from
its home
network

(1)
(2)

(6)

(3)

(7b)

(7a)

14

Route optimization is an optional feature of Mobile

IPv6 that eliminates triangle routing. It is a mode of

operation that allows the mobile node and its peer, a CN,

to exchange packets directly, bypassing the home agent

completely after the initial setup phase.

When route optimization is used, the mobile node sends

its current care-of address to the CN, using binding update

(BU) messages. The CN stores the binding between the home

address and care-of address into its Binding Cache. One way

to achieve route optimization is the implementation of the

RR procedure, an infrastructureless solution in which the

MN requests the CN to test its ownership of the HoA and CoA

and authorizes a binding procedure by the use of a

cryptographic token exchange.

F. OVERVIEW OF RETURN ROUTABILITY (RR) PROCEDURE

Mobile IPv6 Route Optimization verifies a mobile

node's authenticity through a routing property. H. Soliman

in Chapter 5 of his book, [Soliman04], describes the Return

Routability (RR) procedure with great detail. The essence

of the RR procedure is that the MN requests that the CN

test its ownership of its HoA and CoA. This is done by

sending two independent messages: the Home address Test

Init (HOTI) and Care-Of address Test Init (COTI). The CN

creates two tokens that only the CN can create (encrypt

with a secret key Kcn that is known only to CN) and sends

one token to each address (home and care-of addresses) in

two separate messages: HOme Test (HOT) and Care-Of Test

(COT).

15

The mobile node uses both of these tokens to create a

key (Kbm) that can be used to authenticate a binding update

message to the CN. Since the CN knows all the information

needed to produce the key, it can reproduce it when the

binding update is received, and so authenticate the

message. The same key is used to authenticate the binding

acknowledgment.

The HOTI message is sent by the mobile node to request

a test of the home address. The source address used in the

IPv6 header is the mobile node’s home address and the

destination is the CN’s address. Hence, this message has to

be tunneled to the home agent (since the home address is

not topologically correct in the visited network), which

decapsulates the message and forwards it to the CN. The

HOTI message is transported inside a mobility header type

1. This message contains a cookie (called home init cookie)

generated by the mobile node and later returned by the CN.

The cookie is a random number that has no significance; it

is included to ensure that the entity responding to the

HOTI message has actually received it. This message is

protected on the mobile node–home agent path by ESP in

tunnel mode.

The home agent verifies the ESP header and forwards

the internal message to the CN. In this case the home agent

is not provided with a home address option in the outer

header (unlike the binding update message) to use in order

to locate the right security association in the SAD. In

this scenario, the home agent’s SPD is configured to treat

the mobile node’s care-of address as a security gateway

address. The implication of this configuration is that the

home agent can associate a security association entry in

16

the SAD with a specific tunnel interface, identified by the

mobile node’s care-of address. Hence, the home agent will

be able to identify the security association based on the

interface from which it was received. This message (and the

HOT message) is treated differently by not including the

home address option. The reason is that the binding update

is sent before establishing the tunnel. Therefore, no

tunnel interface can be used to identify the security

association.

Almost simultaneously, the mobile node can send a COTI

message. The COTI message is sent from the mobile node’s

care-of address directly to the CN. It is transported in a

mobility header type 2. The message contains another random

cookie (called care-of init cookie). The COTI cookie is a

random number used to ensure that the responder to a COTI

message has actually received the original (COTI) message.

When the CN receives the HOTI message, it generates a

64-bit home keygen token (the token generated is based on

the home address). The home keygen token is generated by

taking the first 64 bits of the output of a message

authentication code function using Kcn and is then computed

on the concatenation of the home address and a nonce

generated by the CN as follows:

Home keygen token = First (64, HMAC_SHA1(Kcn, home
address|nonce|0))

where First(n, j) represents the first n bits in j.

HMAC_SHA1(Kcn, info) means a hashed message authentication

code (or a keyed hash) based on the SHA1 hash algorithm and

uses Kcn to key the function, which operates on info. The 0

is used to distinguish the home keygen token from the care-

of keygen token, shown later.

17

The CN then constructs a HOT message and sends it to

the mobile node. This message contains the home init cookie

originally sent by the mobile node and the home keygen

token. Since the CN generates nonces frequently, it needs

to be aware of the nonce used to generate a particular

cookie. Nonces are stored in an indexed list. Therefore, a

CN only needs to know the index corresponding to a

particular nonce to be able to generate the home keygen

token again. The nonce index is included in the HOT

message. This will be needed later by the CN to

authenticate the binding update.

The message will be intercepted by the home agent and

tunneled to the mobile node’s care-of address. A secure

tunnel (ESP) is used to forward this message to the mobile

node.

A similar operation is done when the CN receives the

COTI message. It generates a care-of keygen token, where

Care-of keygen token = First(64, MAC (Kcn, care-of address
|nonce|1))

The nonce used in this operation might not be the same

nonce used to create a home keygen token, depending on when

the COTI message was received (the CN might have generated

a new nonce). Therefore, the nonce index should be sent to

the mobile node in the COT message.

This message concludes the RR procedure. At this

point, the CN has not yet stored any more information than

it had at the beginning of this procedure: Kcn and an

indexed list of nonces. The CN stores neither the home

keygen token nor the care-of keygen token. When needed,

these tokens can be regenerated, given the nonce indices

originally used to generate them.

18

After receiving the HOT (tunneled from the home agent)

and the COT message, the mobile node is in a position to

generate a binding management key, Kbm. This is done as

follows:

Kbm = SHA1 (home keygen token|care-of keygen token)

The mobile node can now construct the mobility header

used for the binding update message. The mobility header

includes the binding update, a nonce indices option, and a

binding authorization data option. The nonce indices option

contains the two indices received in the HOT and COT

messages.

The authentication data are calculated as follows:

Auth_data = First (96, MAC(Kbm, Mobility_data)

where

Mobility_data = care-of address| final dst| Mobility header

data

The mobility header data includes the content of the

mobility header with the exception of the authorization

data option itself. The final destination is the packet’s

final destination, that is, the CN’s address. If the CN

were also a mobile node, a routing header type 2

(containing its home address) would be included in the

packet. Since the routing header is processed before the

mobility header, the final dst field should contain that

CN’s home address.

Since the CN does not keep state for any mobile nodes

during the RR procedure, the mobile node needs to include

its home and care-of addresses in the binding update. The

home address is included in a home address option (in a

19

destination options extension header), which precedes the

mobility header. If the care-of address were different from

the packet’s source address, it should be included in the

alternate-care-of address option; otherwise, the packet’s

source address is assumed to be the care-of address. In any

case, the care-of address should always be the one used in

the source address field of the COTI message; otherwise,

the wrong care-of keygen token will be used to generate Kbm

when the binding update is received at the CN.

After the binding update message is constructed, the

mobile node sends it to the CN.

When the CN receives the binding update, it looks into

the nonce indices option and finds the corresponding

nonces. The CN will be able to regenerate Kbm as follows:

1. Generate home keygen token: First (64, MAC (Kcn,
home address| nonce|0)). The home address is
taken from the home address option.

2. Generate care-of keygen token: First (64, MAC
(Kcn, care-of address| nonce|1)). The care-of
address is taken from the alternate care- of
address option when present; otherwise, the
source address is used.

3. Generate Kbm: Hash (home keygen token|care-of
keygen token).

4. Calculate Auth_data: First (96, MAC(Kbm,
Mobility_data).

5. If Auth_data is equal to the content of the
binding authorization data option, accept the
binding update.

If an acknowledgment is requested, the CN must send a

binding acknowledgment. The binding acknowledgment should

also contain the binding authorization data option.

The binding refresh advice option informs the mobile

node about the time when a new binding update is needed.

20

The advantage of the RR procedure is that it is

lightweight and does not require pre-shared authentication

material. It also requires no state at the CN. On the other

hand, the two reachability tests can lead to a handoff

delay unacceptable for many real time or interactive

applications such as Voice over IP (VoIP) and video

conferencing. Also, the security that the Return-

Routability procedure guarantees might not be sufficient

for security-sensitive applications. And finally,

periodically refreshing a registration at a CN implies a

hidden signaling overhead that may prevent mobile nodes

from hibernation during times of inactivity [Arkko06].

21

Figure 2. Timing Diagram and Message Format of RR Procedure

Time Diagram and Messages Format of RR

MN

CN

HA 1:HOTI: Home init cookie1

2:COTI: Care-of init cookie2

3:HOTI

5:HOT
4:COT

6:HOT

7:BU

8:BA

•HOT
•Home nonce1 index
•Home init cookie1
•Home keygen
token=First(64,
HMAC_SHA1 (Kcn,
(home
address|nonce|0)))

•COT
•Care-of nonce2 index
•Care of init cookie2
•Care of keygen token

First(64,
HMAC_SHA1 (Kcn,
(care of address |
nonce | 1)))

kbm = SHA1(home keygen token | care-of
keygen token)

BU: HMAC_SHA1(kbm, (CoA| CNA |BU))

Auth_data=First (96,MAC(Kbm,Mobility_data)

Mobility_data=CoA| final dest| mobility

header data

 CN generates a random key Kcn
once and nonces regularly

1,3:MN generates a home init
cookie1 and sends it to the CN
through HA
2:MN generates a care-of init
cookie2 and sends it directly
to the CN
4:CN replies to COTI sending a
message COT to the MN
5,6:CN replies to HOTI sending
a message HOT to the MN
through HA
7:BU message
8:BA message

1. HOTI
IPv6 header
src = CoA
dst = HA
ESP header
IPv6 header
Src= HoA
dst = CN
Mobility Header
type 1
Home init cookie1

2. COTI
IPv6 header
Src= CoA
dst = CN
Mobility Header
type 2
Care-of init
cookie2

3. HOT
IPv6 header
src = CN
dst = HoA
Mobility Header
type 3
Home nonce1 index
Home init cookie1
Home keygen token

4.COT
IPv6 header
src = CN
dst = CoA
Mobility Header
type 4
Care-of nonce2
index
Care-of init
cookie2
Care-of keygen
token

6. BU
IPv6 header
src = CoA
dst = CN
DST-options header
Home address option
Mobility header type 5
Binding update
Nonce indices option
[optional alternate-CoA
option]
Authorization data option

7. BU
IPv6 header
src: CN
dst: CoA
Routing header type 2
mobile node’s home address
DST-options header
Home address option (if CN were also a mobile
node)
Mobility header type 6
Binding Acknowledgment
[optional binding refresh advice option]
Authorization data option

22

G. PRIOR EVALUATIONS OF MIPV6 PROTOCOL

One important base assumption is that the routing

prefixes available to a node are determined by its current

location, and therefore the node must change its IP address

as it moves. In current IPv6 operational practice the IP

address prefixes are distributed in a hierarchical manner.

This limits the number of routing table entries each

individual router needs to handle. An important implication

is that the topology determines what globally routable IP

addresses are available at a given location. That is, the

nodes cannot freely decide what globally routable IP

address to use; they must rely on the routing prefixes

served by the local routers via Router Advertisements or by

a DHCP server. In other words, IP addresses are just what

the name says, addresses (i.e., locators) [Nikander05].

Furthermore, in the current Internet structure, the

routers collectively maintain a distributed database of the

network topology and forward each packet towards the

location determined by the destination address carried in

the packet. To maintain the topology information, the

routers must trust each other, at least to a certain

extent. The routers learn the topology information from the

other routers, and they have no option but to trust their

neighbor routers about distant topology. At the borders of

administrative domains, policy rules are used to limit the

amount of—perhaps faulty—routing table information received

from the peer domains. While this is mostly used to weed

out administrative mistakes, it also helps with security.

The aim is to maintain a reasonably accurate idea of the

network topology even if someone is feeding faulty

information to the routing system [Nikander05].

23

In the Mobile IPv6 security design, different

approaches were chosen for securing the communication

between the mobile node and its home agent and between the

mobile node and its CNs. In the home agent case, it was

assumed that the mobile node and the home agent know each

other through a prior arrangement, such as a business

relationship. In contrast, it was strictly assumed that the

mobile node and the CN do not need to have any prior

arrangement, thereby allowing Mobile IPv6 to function in a

scalable manner without requiring any configuration at the

CNs [Nikander05].

The Return-Routability procedure was designed with the

objective of providing a level of security that compares to

that of today's non-mobile Internet. As such, it protects

against impersonation, denial of service, and redirection-

based flooding attacks that would not be possible without

Route Optimization. This approach is based on an assumption

that a mobile Internet cannot become any safer than the

non-mobile Internet [Nikander05].

The goal of the current Mobile IPv6 route optimization

security has been to produce a design with a level of

security close to that of a static IPv4-based Internet, and

with an acceptable cost in terms of packets, delay, and

processing. The result is not what one would expect. It is

definitely not a traditional cryptographic protocol.

Instead, the result relies heavily on the assumption of an

uncorrupted routing infrastructure and builds upon the idea

of checking that an alleged mobile node is indeed reachable

through both its home address and its care-of address.

Furthermore, the lifetime of the state created at the

24

corresponded nodes is deliberately restricted to a few

minutes, in order to limit the potential threat from time

shifting [Nikander05].

Moreover, given the typically limited bandwidth in a

wireless medium, resources ought to be spent in an economic

matter. This is especially important for the amount of

signaling that a mobility protocol requires [Arkko06].

Additionally, applications that require a security

level higher than what the Return-Routability procedure can

provide are generally advised to use end-to-end protection

such as IPsec or Transport Layer Security (TLS) [Arkko06].

RR protects certain signaling messages, exchanged

between a mobile node and its home agent, through an

authenticated and encrypted tunnel. This prevents

unauthorized nodes on that path, including eavesdroppers in

the mobile node's wireless access network, from listening

in on these messages [Soliman04].

Given that a pre-existing end-to-end security

relationship between the mobile node and the CN cannot

generally be assumed, this protection exists only for the

mobile node's side. If the CN is immobile, the path between

the home agent and the CN remains unprotected. This is a

path between two stationary nodes, so all types of attacks

that a villain could wage on this path are already possible

in the non-mobile Internet. In case the CN is mobile, it

has its own home agent, and only the path between the two

(stationary) home agents remains unprotected [Arkko06].

RFC 3775 fails to conceal a mobile node's current

position as route-optimized packets always carry both home

and care-of addresses. Both the CN and a third party can

25

therefore track the mobile node's whereabouts. A workaround

is to fall back to bidirectional tunneling where location

privacy is needed. Packets carrying the mobile node's care-

of address are thus only transferred between the mobile

node and the home agent, where they can be encrypted

through IPsec ESP. But even then, the mobile node should

periodically re-establish its IPsec security associations

so as to become untraceable through its SPIs [Arkko06].

The RR procedure implicitly assumes that the routing

infrastructure is secure and trusted. Thus, it is

appropriate to design a protocol to secure the binding

update as long as it is no less secure than the underlying

routing infrastructure. In other words, if a packet is sent

to a particular destination, the routing system delivers it

to that destination. If an attacker compromises the routing

infrastructure and manages to control one or more routers,

several serious attacks can be launched independently of RR

procedures [Soliman04].

The RR procedure protects Binding Updates against all

attackers who are unable to monitor the path between the

home agent and the CN. The procedure does not defend

against attackers who can monitor this path [Aura06].

Another assumption made by RR is that it is difficult

for an attacker to be located on two different paths at the

same time and receive both tokens needed to generate Kbm.

This could happen if an attacker is sharing a link with the

CN; he would be able to see all of the RR packets,

construct a binding update message, send it to the CN, and

receive all of the CN’s traffic addressed to the mobile

node. However, an attacker does not need to go through all

this trouble to hijack the CN’s connections with the mobile

26

node if he shares a link with the CN; he can simply pretend

to be a router by stealing the default router’s link-layer

address and sending a fake router advertisement to the CN.

Alternatively, he can send a Neighbor Discovery redirect

message to the CN requesting that all its traffic be sent

to his link-layer address. Thus, an attacker sharing a link

with the CN can cause serious harm without Mobile IPv6;

that is, Neighbor Discovery messages are the weakest link

when an attacker is sharing a link with the CN

[Nikander05].

Since the main goal of the RR procedure is to ensure

that securing route optimization does not make things worse

than they are in today’s Internet, the above case can be

ignored. However, it is worth noting that this type of

attack will become significant as soon as a mechanism is

devised to secure Neighbor Discovery messages. When this

happens, the RR procedure will become the weakest link

[Soliman04].

An attacker can be located on the mobile node–CN path.

In this location, he would only be able to see the care-of

keygen token, which would not allow him to construct Kbm

correctly to steal the mobile node’s traffic.

The attacker might also send a large number of HOTI

and COTI messages to try to consume the CN’s resources in a

way that makes it unable to process legitimate requests

from real mobile nodes. The RR procedure is designed to

allow CNs to be protected from memory-exhaustion attacks; a

CN would only keep state when it receives an authenticated

binding update from a mobile node. Clearly, this procedure

cannot protect against an attacker aiming at using up the

CN’s link bandwidth by sending a very large number of

27

HOTI/COTI messages. However, this attack can be launched

without RR by simply sending a large number of bogus

messages. It is worth noting though, that the CN can simply

decide to not receive any HOTI/COTI messages if it detects

that it is being attacked. That is, the CN can “turn off”

route optimization; communication with mobile nodes will

still take place through the home agent [Soliman04].

Moreover, it is assumed that CN is able to implement

the RR algorithm and maintain a cache of MNs.

One of the most important advantages of the RR

procedure is that it does not require any manual

configuration or infrastructure support. This feature

assists with the quick deployment of Mobile IPv6 and

encourages vendors to support route optimization, which

would have been much harder if route optimization came with

the burden of infrastructure support or the unrealistic

assumption of manual configuration. However, it is

important to note that this comes at the cost of having

weak authentication compared to the more traditional

applications of public key cryptography [Arkko06].

28

THIS PAGE INTENTIONALLY LEFT BLANK

29

III. MIPV6 TEST BED CONFIGURATION

This chapter presents the layout and configuration

process of the implemented MIPv6 test bed. A very limited

number of published host operating systems are advertised

to have support for MIPv6. Worse, all the available MIPv6

capable OS releases are experimental in nature and yet

going through rigorous validation tests. As such a

significant amount of effort for this thesis was spent

determining a working combination of OS version and MIPv6

extension, in a “trial and error” manner. The experience is

documented in this chapter.

This chapter is intended to provide sufficient details

so that it can be used as a “how-to” guide for deploying a

MIPv6 test bed using open-source software.

A. PUBLISHED IMPLEMENTATIONS OF MIPV6

The most known implementations of MIPv6 are: “MIPL”

(Mobile IPv6 for Linux [http://www.mipl.mediapoli.com/ Last

visited on January 10, 2007]), “KAME” project (Mobile IPv6

for BSD based Oss [http://www.kame.net Last visited on

January 11, 2007]) and “USAGI” (Mobile IPv6 for Linux based

Oss [http://www.linux-ipv6.org/ Last visited on February 8,

2007]).

Mobile IPv6 for Linux (MIPL) is an implementation that

was originally developed as part of a software project

course in the Helsinki University of Technology (HUT), with

the goal to create a prototype implementation of Mobile

IPv6 for Linux. After the course, the implementation was

further developed in the context of the GO/Core project at

HUT Telecommunications and Multimedia Lab. It is an open

30

source implementation, released under the GNU GPL license

and freely available to anyone(http://www.mobile-

ipv6.org/software/). The MIPL implementation has been

tested in interoperability and conformance testing events

such as the ETSI IPv6 Plugtests and TAHI Interoperability

events.

The "KAME" and "USAGI", projects are working on

research and development on the implementation of the IPv6

and IPsec protocols, which operates on BSD based OSs for

the "KAME" project and on a Linux based OS for the "USAGI"

project. Accuracy of the implementation is now widely

accepted and is being incorporated into BSD based OSs

(FreeBSD, NetBSD, OpenBSD and BSD/OS) and Linux version 2.6

for the provision of an environment enabling the easy use

of IPv6 to a large number of users

[http://www.wide.ad.jp/about/research.html Last visited on

January 15, 2007].

The “KAME” project was a joint effort of six companies

in Japan to provide a free suite of IPv6, IPsec, and Mobile

IPv6 protocols for BSD variants. Particularly, a mobile

IPv6 implementation for the FreeBSD and NetBSD platforms

has been developed under this project. The code is

implemented as part of the kernel. In addition, several

user space programs have been developed for MIPv6 control,

for extracting MIPv6 statistics and for dynamic home agent

discovery. The implementation follows RFC 3775 and includes

functionality for HA, MN and CN (mandatory for an IPv6

implementation that claims to be IPv6 compliant). It also

supports authentication of messages between a MN and its HA

using IPsec [M. Dunmore, “Final MIPv6 Support Guide,”

31

February 8 2005, 6net,

[http://www.6net.org/publications/deliverables/D4.1.4.pdf

Last visited on January 15, 2007].

The “USAGI” Project (UniverSAl playGround for IPv6

Project) aims to provide a better IPv6 environment for

Linux in conjunction with the WIDE, KAME, and TAHI

projects. It includes Linux kernel extensions, IPv6 related

libraries, and IPv6 applications.

The “TAHI” project [http://www.tahi.org/ Last visited

on February 22, 2007] is aiming at providing a means of

high-level verification of these technologies.

B. CHOOSING MIPV6 SOFTWARE

In the beginning, the FreeBSD OS developed by the KAME

project was chosen for the MIPv6 test bed. The main reason

for this choice was that all MIPv6 functionality was

included in the OS kernel and no patch was required.

Following the instructions for a similar project based on

the 4.9 Version of FreebSD [Lawrence04] and using the

current version (6.2) as well as the detailed instructions

of [Blanchet06] it was made an attempt to configure and

build a MIPv6 test bed. However, this attempt was

unsuccessful. During my research, there were contradictory

information about the compatibility and functionality of

the current version with the Mobile IPv6 functionality.

Pressed by time, a decision was made to switch and use a

Linux OS and the MIPL implementation.

Specifically, SUSE Linux 10.1 was used and the

experience suggested that the Linux option has several

advantages over the FreeBSD option:

32

1. SUSE Linux has a very well-designed and full-
featured system configuration tool, YAST, which
is a complete control center for system
administration. SUSE Linux proved to be easy to
install and configure it in depth during the
installation time. Moreover, Novell, the company
behind SUSE, offers great on-line technical
support and documentation.

2. Under Linux whenever a software module was needed
for the test bed, the only thing to do was to
invoke YAST to search and verify if the module
(called package in Linux) was installed or not.
If it wasn’t, a simple mouse click on the module
was sufficient and YAST assumed the
responsibility to install, configure and resolve
all dependencies automatically.

3. The MIPL project was the most recent release for
MIPv6 implementation (released on 14 June 2006)
and fully RFC 3775 compliant.

C. TEST BED DESCRIPTION
1. Test Bed Layout Description

The implemented network test bed consists of five

computers. Two of them assume the roles of the CN and MN

respectively. The other three are configured as IPv6

capable routers. PC-based software router implementation is

used instead of commercial IPv6 routers in order to have

more flexibility for the addition of new IPv6 features and

fine tuning of network parameters such as the router

advertisements’ intervals [M. Dunmore (6net) Final MIPv6

Support Guide February 8, 2005]. Table 1 presents the main

hardware characteristics of the PCs used.

33

Role Make/Model CPU/speed RAM size

MN DELL Optiplex
GX620

Intel(R)
Pentium(R)4

3.40 GHz

2 GB

CN DELL Optiplex
GX620

Intel(R)
Pentium(R)4

3.40 GHz

2 GB

HA router DELL
Precision 340

Intel(R)
Pentium(R)4

2.40 GHz

256 MB

Frouter DELL
Precision 340

Intel(R)
Pentium(R)4

1.8 GHz

512 MB

CNrouter DELL
Precision 340

Intel(R)
Pentium(R)4

2.40 GHz

512 MB

Table 1. Hardware Characteristics of MIPv6 Test bed
Components

All the components of the network are connected via

Netgear dual speed hubs (model DS104) running at 10 Mbps so

as to facilitate packet sniffing for debugging purposes.

Handoffs between networks for the MN are simulated by

unplugging the Ethernet cable to which the MN is currently

attached and replace it with a cable from the network we

wish to move into.

Figure 3 shows the physical layout for the implemented

test bed.

34

Figure 3. Physical Layout of MIPv6 Test bed

The home network of the mobile node (MN) is the

2003::/64. The home agent (HA) is installed on the HA

router. The home network of the CN is the 2001::/64. During

the experiments, the MN was moved between the home network

and a foreign network, 2005::/64 which is advertised by the

Frouter.

All systems run the boxed distribution SUSE 10.1 as

their OS with Linux kernel 2.6.16.13-4 except the HA, the

MN and the CN which have been recompiled with Linux kernel

2.6.16 patched with the MIPv6-2.0.2-linux-2.6.16.patch to

provide the Mobile IPv6 features. The OS and the patch were

downloaded from

ftp://ftp.kernel.org/pub/linux/kernel/v2.6/linux-

2.6.16.tar.bz2 and

http://mobile-ipv6.org/software/download/mipv6-2.0.2-linux-

2.6.16.patch.gz, respectively.

2002::22002::1

2003::2

CNrouter

2003::/64 2001::/64

2002::/64 2004::/64

2005::/64

2001::8

2004::3

2003::1

2001::1 2005::3

MNCN

HA Frouter hub

hubhub hub

hub

2004::2

35

In Table 2 are presented the interfaces of the

Components of the test bed network along with their MAC and

IP addresses.

Node Interface MAC IP address

HA eth0 00:04:75:b5:a6:32 2003::2

 eth1 00:0b:db:25:69:61 2004::2

 eth2 00:40:f4:5f:a9:13 2002::2

MN eth0 00:12:3f:ae:20:5b 2003::1

CNrouter eth0 00:0a:5e:00:49:1b 2002::1

 eth1 00:0b:db:25:73:68 2000::1

 eth2 00:40:f4:5a:5b:cc 2001::1

Frouter eth0 00:08:74:41:5e:3f 2004::3

 eth1 00:09:5b:0a:5d:b3 2005::3

CN eth0 00:12:3f:ae:21:c2 2001::8

Table 2. Test Bed IP and MAC Addresses

2. Configure-Patch-Build and Install the MIPv6
Kernel at HA, MN and CN

For the configuration of the implemented MIPv6 network

components (HA, MN and CN), the following excellent

tutorials were used:

• “How To Compile A Kernel - The SuSE Way,”
[http://www.howtoforge.com/kernel_compilation_suse
Last visited on February 2, 2007].

• “Linux Mobile IPv6 HOWTO,”
[http://gnist.org/~lars/doc/Mobile-IPv6-
HOWTO/Mobile-IPv6-HOWTO.html Last visited on
February 10, 2007].

36

• “Mobile IPv6 Mini HOWTO,”
[http://www.ipt.etsi.org/mini_howto.htm Last
visited on February 12, 2007].

The first site describes the procedure of compiling a

kernel on SuSE systems. It describes how to build a custom

kernel using the latest unmodified kernel sources from

[http://www.kernel.org/ (vanilla kernel) so that the user

could be independent from the kernels supplied by his

distribution.

Another reason for choosing this tutorial was because

its goal was to build a kernel rpm package that could be

used not only for installation of the MIPv6 capable kernel

on the specific system, but also on the other SuSE systems

that are used in the test bed and demand the same

configuration.

The tutorial also shows how to patch the kernel

sources if additional features are needed, like the MIPv6

patch for the Mobile IPv6 functionalities.

More specifically, the following steps were followed

to install and patch a Linux kernel. (The tutorial provides

more detailed screenshots of the installation.)

a. Install ncurses-devel which will be needed by the

make menuconfig command which will be used later

on:

yast -i ncurses-devel

b. Modify a few tools that will be needed to build

the new kernel:

cp /usr/lib/rpm/find-provides.ksyms

/usr/lib/rpm/find-provides.ksyms_orig

37

cp /usr/lib/rpm/find-requires.ksyms

/usr/lib/rpm/find-requires.ksyms_orig

cp /usr/lib/rpm/find-supplements.ksyms

/usr/lib/rpm/find-supplements.ksyms_orig

c. Open each of these scripts and replace

kernel-*) is_kernel_package=1;; with

kernel*) is_kernel_package=1 :

vi /usr/lib/rpm/find-provides.ksyms

vi /usr/lib/rpm/find-requires.ksyms

vi /usr/lib/rpm/find-supplements.ksyms

Next, move to /usr/src in order to download the

desired kernel (2.6.16) to /usr/src directory.

cd /usr/src

d. Go to http://www.kernel.org/ and select the

desired for installation kernel, in this case,

linux-2.6.16.tar.bz2. The Kernel can be

downloaded to directory /usr/src like this:

wget http://www.kernel.org/pub/linux/kernel/v2.6/

linux-2.6.16.tar.bz2

e. Unpack the kernel sources and create a symlink

linux to the kernel sources directory:

tar xjf linux-2.6.16.tar.bz2

ln -s linux-2.6.16 linux

Check that the linux is symlinked with the

desired Kernel:

ls –l

38

It should be seen: linux linux-2.6.16. If the

linux is still connected with the previous

kernel, implement the commands:

rm linux

ln -s linux-2.6.16 linux

f. Change directory and download the patch found in

http://mobile-ipv6.org/software/download/mipv6-

2.0.2-linux-2.6.16.patch.gz to the Kernel source

and uncompress it:

cd /usr/local/src

wget http://mobile-ipv6.org/software/download/mipv6-

2.0.2-linux-2.6.16.patch.gz

g. Move again to /usr/src/linux in order to test the
patch before apply it:

cd /usr/src/linux

zcat /usr/local/src/mipv6-2.0.2-linux-2.6.16.patch.gz

| patch -p1 --dry-run

This command is just a test, it does nothing

to sources. If it doesn't show errors, the

following command should be executed which

actually applies the patch. Don't do it if the

first command shows errors:

zcat /usr/local/src/mipv6-2.0.2-linux-2.6.16.patch.gz

| patch -p1

39

h. Configure The Kernel

The configuration of the current working

kernel will be used as a basis for the new

kernel. The existing configuration is copied

to /usr/src/linux:

make mrproper

cp /boot/config-`uname -r` ./.config

i. Run

make menuconfig

This command brings up the kernel

configuration menu. Go to Load an Alternate

Configuration File and choose .config (which

contains the configuration of the current

working kernel) as the configuration file.

Then browse through the kernel configuration

menu and make your choices. Make sure that you

get inside Networking and load all the

necessary functionalities of MIPv6. I chose

them all. Make sure a kernel version

identification string is specified, under

General Setup ---> (-default) Local version -

append to kernel release (in my configuration

I named it MIPv6).

j. When this step is finished, select Exit and

answer the following question (Do you wish to

save your new kernel configuration?) with Yes.

40

k. Install the user space MIPv6 tool. Change

directory (/usr/local/src), download the latest

Linux MIPv6 source code (mipv6-2.0.2) from

http://mobile-ipv6.org/software/download/mipv6-

2.0.2.tar.gz and uncompress it:

cd /usr/local/src

wget http://mobile-ipv6.org/software/download/mipv6-

2.0.2.tar.gz

tar zxfv mipv6-2.0.2.tar.gz

l. Change directory:

cd mipv6-2.0.2

m. Configure, compile and install the source code

including the --enable-vt option to configure,

which will enable a virtual terminal listening on

localhost port 7777 and can be used later on to

provide with helpful information.

CPPFLAGS=-I/usr/src/linux/include ./configure --

enable-vt

make

make install

n. Before the kernel is being built, it is of vital

importance to check if it is MIPv6 ready. There

are two ways to verify it:

The first one is to go to directory that you

have installed the MIPv6 user space source

code

41

cd /usr/local/src/mipv6-2.0.2

and execute the following command:

./chkconf_kernel.sh /usr/src/linux

If the response is the following:

Checking kernel configuration...

Using /usr/src/linux/.config

All kernel options are as they should.

a correct configuration has taken place.

Otherwise, make the corrections suggested and

continue.

Another way to check if the configuration is

correct is to use an editor

(vi,pico,gedit,etc) and verify that in the

.config file in /user/src/linux, the following

options have been chosen:

CONFIG_EXPERIMENTAL=y

CONFIG_SYSVIPC=y

CONFIG_PROC_FS=y

CONFIG_NET=y

CONFIG_INET=y

CONFIG_IPV6=y

CONFIG_IPV6_MIP6=y

CONFIG_XFRM=y

CONFIG_XFRM_USER=y

CONFIG_XFRM_ENHANCEMENT=y

CONFIG_IPV6_TUNNEL=y

42

CONFIG_IPV6_ADVANCED_ROUTER=y

CONFIG_IPV6_MULTIPLE_TABLES=y

The Mobile Node also needs:

CONFIG_IPV6_SUBTREES=y

CONFIG_ARPD=y

In case that IPSec is desired to be enabled,

it is also needed:

CONFIG_INET6_ESP=y

CONFIG_NET_KEY=y

CONFIG_NET_KEY_MIGRATE=y

o. Build the kernel, simply executing this command:

make rpm

p. Install The New Kernel

After the successful kernel build, a src.rpm

and an rpm package have been created. The

src.rpm package can be found in the

/usr/src/packages/SRPMS/ directory. Verify its name

by running:

ls -l /usr/src/packages/SRPMS/

On my system it was called:

kernel-2.6.16MIPv6-1.src.rpm.

The rpm package can be found, depending on the

architecture, in one of the following

directories:

43

/usr/src/packages/RPMS/i386/, /usr/src/packages/RPMS/i586/,

/usr/src/packages/RPMS/i686/,

/usr/src/packages/RPMS/x86_64/, etc.,

On my system it was located in

/usr/src/packages/RPMS/i386/, and by running

ls -l /usr/src/packages/RPMS/i386/

I found out that its name was:

kernel-2.6.16MIPv6-1.i386.rpm.

q. Install the kernel rpm package like this:

cd /usr/src/packages/RPMS/i386/

rpm -ivh kernel-2.6.16MIPv6-1.i386.rpm

(The created kernel rpm package can be

transferred and installed to other SuSE

systems without having to compile the kernel

there again.)

r. Create a ramdisk for the new kernel, because

otherwise the system will most likely not boot

our new kernel:

mkinitrd

(This command will create new ramdisks for all

installed kernels.)

s. Configure the GRUB boot loader so that the new

kernel gets booted when the system is restarted.

Instead of modifying /boot/grub/menu.lst

directly, run yast to do it.

44

yast

Go to System -> Boot Loader:

On the next screen you will be seen the new

existing GRUB records. Go to Add to add a new

one: Select Clone Selected Section to clone

one of the working GRUB records:

Enter a name for the new kernel, e.g. SUSE

Linux 2.6.16-MIPv6, and go to Kernel ->

Browse:

The contents of the /boot directory and the

location of the new kernel are visible. Select

the new kernel which typically begins with

vmlinuz (in my case vmlinuz-2.6.16-MIPv6)

Next, go to Initial RAM Disk -> Browse:

See the contents of the /boot directory.

Select the appropriate ramdisk for the new

kernel which typically begins with initrd

(e.g. initrd-2.6.16-MIPv6).

A new GRUB record for the new kernel will be

seen. Mark it and hit Up until it is the first

in the list. Then hit Set as Default to make

the new kernel the default one, hit Finish and

Select Quit to leave YaST: Now reboot the

system:

shutdown -r now

If everything goes well, it should come up

with the new kernel. Check the version of the

kernel by running:

45

uname -r

This should display something like:

2.6.16MIPv6 (The name that the user gave to

the kernel).

3. Setup of HA, MN, CN, and routers

a. HA

The HA is a router with additional

functionalities which enable it to be the HA of the MN in

the test bed network. Issue the following commands, since

HA is a router:

echo 1 >/proc/sys/net/ipv6/conf/all/forwarding

echo 0 > /proc/sys/net/ipv6/conf/all/autoconf

echo 0 > /proc/sys/net/ipv6/conf/all/accept_ra

echo 0 > /proc/sys/net/ipv6/conf/all/accept_redirects

IPv6 routing was established by Zebra software

which manages TCP/IP based routing protocols.

Zebra had been chosen because, unlike traditional

monolithic architectures, and even the so-called "new

modular architectures" that remove the burden of processing

routing functions from the cpu utilizing special ASIC

chips; it instead offers true modularity.

Zebra is unique in its design in that it has a

process for each protocol [http://www.zebra.org/what.html]

Ripng (RIP next generation) was chosen to be the routing

protocol for the IPv6 tesbed, provided by ripngd deamon,

which provides IPv6 routing services in accordance with the

configuration file ripngd.conf.

The daemons zebra and ripngd are activated by

issuing the commands:

46

/etc/init.d/ripngd start

/etc/init.d/zebra start

The router advertisement daemon (radvd) is run by

Linux or BSD systems acting as IPv6 routers. It sends

Router Advertisement messages, specified by RFC 2461, to a

local Ethernet LAN periodically and when requested by a

node sending a Router Solicitation message. These messages

are required for IPv6 stateless autoconfiguration. In order

for the MN to be able to discover when it returns home, the

HA must be configured to send out router advertisements.

Router Advertisements were implemented via the radvd daemon

which provides Router Advertisement services in accordance

with the configuration file radvd.conf.

The daemon radvd is activated by issuing the

command:

/etc/init.d/radvd start

The user can verify that RAs are being sent by

running:

radvdump

Authentication and authorization of Mobile IPv6

messages between the MN and HA with IPsec is possible in

2.6.16 kernel. In order to provide IPsec between the

binding messages of the HA and the MN, sa.conf file was

created. In order to activate the Security Association in

both the HA and MN, ipsec-tools should have been installed

using Yast and implement the following command after

editing the file sa.conf:

setkey –f /etc/sa.conf

47

The functionality of MIPv6 is provided by the

daemon mip6d, based in the configuration file mip6d.conf.

In case that a service is not provided, the user

can always find the location of the daemon and run it

locally. For example:

whereis mip6d

mip6d:/etc/mip6d.conf /usr/local/sbin/mip6d

That means that the location of the daemon is at

/usr/local/sbin/mip6d. We change directory:

cd /usr/local/sbin

Now the daemon can be run locally:

Exact copy of the files of the HA can be found in

Appendix A.

b. MN

The MN is a host at which only the mip6d daemon

should be run. It is provided manually with its global IPv6

address and the necessary configurations:

ifconfig eth0 inet6 add 2003::1/64

echo 0 > /proc/sys/net/ipv6/conf/eth0/forwarding

echo 1 > /proc/sys/net/ipv6/conf/eth0/autoconf

echo 1 > /proc/sys/net/ipv6/conf/eth0/accept_ra

echo 1 > /proc/sys/net/ipv6/conf/eth0/accept_redirects

route –A inet6 add default gw 2003::2

Host_Name:/usr/local/sbin# ./mip6d start

48

Note that MN host will be given an additional

IPv6 address based on the HA’s prefix and its MAC address.

MN needs also the file sa.conf which should be positioned

in /etc/ directory. Exact copy of the files of the MN can

be found in Appendix B.

c. CN

CN is an IPv6 host at which only the mip6d daemon

should be run. It is provided manually with its global IPv6

address and the necessary configurations:

ifconfig eth0 inet6 add 2001::8/64

echo 0 > /proc/sys/net/ipv6/conf/eth0/forwarding

echo 1 > /proc/sys/net/ipv6/conf/eth0/autoconf

echo 1 > /proc/sys/net/ipv6/conf/eth0/accept_ra

echo 1 > /proc/sys/net/ipv6/conf/eth0/accept_redirects

route –A inet6 add default gw 2001::1

Note that CN host will be given an additional

IPv6 address based on the CNrouter’s prefix and its MAC

address. It does not need the file sa.conf. Exact copy of

the files of the CN can be found in Appendix C.

d. CNrouter

The CNrouter is an IPv6 router.

Issue the following commands, since CNrouter is a

router:

echo 1 > /proc/sys/net/ipv6/conf/all/forwarding

echo 0 > /proc/sys/net/ipv6/conf/all/autoconf

echo 0 > /proc/sys/net/ipv6/conf/all/accept_ra

echo 0 > /proc/sys/net/ipv6/conf/all/accept_redirects

49

As with HA, IPv6 routing was established by Zebra

software and ripngd daemon, which also assign IPv6

addresses to the interfaces of the router along with radvd

daemon. Moreover RAs are managed via radvd daemon and can

be verified by radvdump command. An exact copy of the files

of the CNrouter can be found in Appendix D.

e. Frouter

The Frouter is an IPv6 router. Its configuration

follows the principles of CNrouter. An exact copy of the

files of the Frouter can be found in Appendix E.

D. VERIFYING THE CONFIGURATION

In order to verify the MIPv6 network configuration the

following scenario, divided into three phases, has been

enacted:

• Phase 1: MN resides in its Home Network (attached
to the 2003::/64 link).

• Phase 2: MN moves to a Foreign Network
(2005::/64) and acquires a new CoA.

• Phase 3: MN returns to the Home Network.

The above scenario was performed with and without

using IPsec between the HA and the MN.

The procedure that will be followed in order to

observe the RR is that the MN will start ping the CN from

its Home Network and then follow Phases 2 and 3.

The tools that will be used to verify the

configuration are:

• “Sniffers” at the links HA-MN, HA-FRouter,
Frouter-MN with PCs equipped with
Wireshark/Ethereal software.

50

• Virtual terminal (# telnet local host 7777) at
the MIPv6 capable nodes, which provide the user
with information about the binding caches and the
binding update lists at them (HA, MN and the CN):

• The following debugging commands (at the MN) may
be used to provide the user with ad hoc debugging
information:

watch ifconfig eth0

watch route -A inet6

tcpdump -i eth0 -vv ip6 or proto ipv6

In order to be able to follow better the RR procedure

the following table which describes very briefly the types

of mobile headers and the routing of messages.

MOBILITY HEADER Message SENDER RECEIVER

MH Type 1 HOTI MN to CN via HA

MH Type 2 COTI MN to CN

MH Type 3 HOT CN to MN via HA

MH Type 4 COT CN to MN

MH Type 5 BU MN to HA or

MN to CN

MH Type 6 BA HA to MN or

HA to CN
Table 3. Table of Mobility Header Types

1. Scenario without the Use of IPsec

a. Phase 1: MN Is At Its Home Network

Mobile IPv6 is being started in all nodes with

the following order: HA, MN, CN, being in the directory

that mip6d resides, executing the following command:

#./mip6d –c /etc/mip6d.conf

The output of the predefined execution at HA and

MN nodes are shown in Figures 4 and 5:

51

HArouter:/usr/local/sbin # ./mip6d -c /etc/mip6d.conf
mip6d[12901]: MIPL Mobile IPv6 for Linux v2.0.2 started (Home Agent(1))
main: MIPL Mobile IPv6 for Linux started in debug mode, not detaching
from terminal
conf_show: config_file = /etc/mip6d.conf (2)
conf_show: vt_hostname = localhost
conf_show: vt_service = 7777
conf_show: mip6_entity = 2
conf_show: debug_level = 10
conf_show: PolicyModulePath = [internal]
conf_show: DefaultBindingAclPolicy = 0
conf_show: NonVolatileBindingCache = disabled
conf_show: KeyMngMobCapability = disabled
conf_show: UseMnHaIPsec = disabled (3)
conf_show: MnMaxHaBindingLife = 262140
conf_show: MnMaxCnBindingLife = 420
conf_show: MnRouterProbes = 0
conf_show: MnRouterProbeTimeout = 0.000000
conf_show: InitialBindackTimeoutFirstReg = 1.500000
conf_show: InitialBindackTimeoutReReg = 1.000000
conf_show: UseCnBuAck = enabled
conf_show: DoRouteOptimizationMN = enabled (4)
conf_show: MnUseAllInterfaces = disabled
conf_show: MnDiscardHaParamProb = disabled
conf_show: SendMobPfxSols = enabled
conf_show: OptimisticHandoff = disabled
conf_show: SendMobPfxAdvs = enabled
conf_show: SendUnsolMobPfxAdvs = enabled
conf_show: MaxMobPfxAdvInterval = 86400
conf_show: MinMobPfxAdvInterval = 600
conf_show: HaMaxBindingLife = 262140
conf_show: DoRouteOptimizationCN = enabled (5)
xfrm_cn_init: Adding policies and states for CN
xfrm_ha_init: Adding policies and states for HA
ha_if_addr_setup: Joined anycast group 2003:0:0:0:fdff:ffff:ffff:fffe
on iface 8
Figure 4. Running Output of HA mip6d when MN is at Home

Network

Important information from the output of HA

mip6d:

(1) The node is a Home Agent.

(2) The configuration file is the /etc/mip6d.conf

(3) IPsec is not enabled

(4) RO is enabled between HA and MN

(5) RO is enabled between HA and CN

It follows the output of the MN mip6d:

52

MN2:/usr/local/sbin # ./mip6d -c /etc/mip6d.conf
mip6d[16697]: MIPL Mobile IPv6 for Linux v2.0.2 started (Mobile Node(1)
)
main: MIPL Mobile IPv6 for Linux started in debug mode, not detaching
from terminal
conf_show: config_file = /etc/mip6d.conf (2)
conf_show: vt_hostname = localhost
conf_show: vt_service = 7777
conf_show: mip6_entity = 1
conf_show: debug_level = 10
conf_show: PolicyModulePath = [internal]
conf_show: DefaultBindingAclPolicy = 0
conf_show: NonVolatileBindingCache = disabled
conf_show: KeyMngMobCapability = disabled
conf_show: UseMnHaIPsec = disabled (3)
conf_show: MnMaxHaBindingLife = 262140
conf_show: MnMaxCnBindingLife = 420
conf_show: MnRouterProbes = 0
conf_show: MnRouterProbeTimeout = 0.000000
conf_show: InitialBindackTimeoutFirstReg = 1.500000
conf_show: InitialBindackTimeoutReReg = 1.000000
conf_show: UseCnBuAck = enabled
conf_show: DoRouteOptimizationMN = enabled (4)
conf_show: MnUseAllInterfaces = disabled
conf_show: MnDiscardHaParamProb = disabled
conf_show: SendMobPfxSols = enabled
conf_show: OptimisticHandoff = disabled
conf_show: SendMobPfxAdvs = enabled
conf_show: SendUnsolMobPfxAdvs = enabled
conf_show: MaxMobPfxAdvInterval = 86400
conf_show: MinMobPfxAdvInterval = 600
conf_show: HaMaxBindingLife = 262140
conf_show: DoRouteOptimizationCN = enabled (5)
xfrm_cn_init: Adding policies and states for CN
xfrm_mn_init: Adding policies and states for MN
conf_home_addr_info: HoA address 2003:0:0:0:0:0:0:1
conf_home_addr_info: HA address 2003:0:0:0:0:0:0:2
__tunnel_add: created tunnel ip6tnl1 (21) from 2003:0:0:0:0:0:0:1 to
2003:0:0:0:0:0:0:2 user count 1 (6)
conf_home_addr_info: Home address 2003:0:0:0:0:0:0:1
flag_hoa: set HoA 2003:0:0:0:0:0:0:1/128 iif 21 flags 10 preferred_time
4294967295 valid_time 4294967295
conf_home_addr_info: Added new home_addr_info successfully
__md_discover_router: discover link on iface eth0 (6)
md_change_default_router: add new router fe80:0:0:0:204:75ff:feb5:a632
on interface eth0 (6)
mn_addr_do_dad: DAD succeeded!
mn_move: 1535
mn_move: in home net (7)
mv_hoa: move HoA 2003:0:0:0:0:0:0:1/64 from iface 21 to 6
md_change_default_router: add new router fe80:0:0:0:204:75ff:feb5:a632
on interface eth0 (6)
md_expire_router: expiring router
fe80:0:0:0:204:75ff:feb5:a632 on iface eth0 (6)
Figure 5. Running Output of MN mip6d when MN is at Home

Network

53

Important information from the output of HA mip6d

daemon:

(1) The node is a Mobile Node

(2) The configuration file is the /etc/mip6d.conf

(3) IPsec is not enabled

(4) RO is enabled between HA and MN

(5) RO is enabled between HA and CN

(6) A tunnel has been created between HA and MN

(7) MN is at Home Network

Issuing the command

#ifconfig –a

at the MN, provides the output illustrated at Figure 6,

proving that the tunnel (ip6tnl1) is up and ready for

connections.

MN2:/etc # ifconfig -a
eth0 Link encap:Ethernet HWaddr 00:12:3F:AE:20:5B
 inet6 addr: 2003::1/64 Scope:Global (1)
 inet6 addr: 2003::212:3fff:feae:205b/64 Scope:Global (2)
 inet6 addr: fe80::212:3fff:feae:205b/64 Scope:Link
 UP BROADCAST NOTRAILERS RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:155202 errors:0 dropped:0 overruns:0 frame:6
 TX packets:28259 errors:0 dropped:0 overruns:0 carrier:0
 collisions:9 txqueuelen:1000
 RX bytes:19807002 (18.8 Mb) TX bytes:3921682 (3.7 Mb)
 Interrupt:169

gre0 Link encap:UNSPEC HWaddr 00-00-00-00-20-5B-00-00-00-00-00-
00-00-00-00-00
 NOARP MTU:1476 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

ip6tnl0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-
00-00-00-00-00
 NOARP MTU:1460 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

ip6tnl1 Link encap:UNSPEC HWaddr 20-03-00-00-00-00-00-00-00-00-00-
00-00-00-00-00
 inet6 addr: fe80::212:3fff:feae:205b/64 Scope:Link

54

 UP POINTOPOINT RUNNING NOARP MTU:1460 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:1598 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1598 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:127230 (124.2 Kb) TX bytes:127230 (124.2 Kb)

sit0 Link encap:IPv6-in-IPv4
 NOARP MTU:1480 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

tunl0 Link encap:IPIP Tunnel HWaddr
 NOARP MTU:1480 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
Figure 6. Running Output MN ifconfig when MN is at Home

Network

Last, we start the mip6d daemon to the CN with

the following output (Figure 7):

CN2:/usr/local/sbin # ./mip6d -c /etc/mip6d.conf
mip6d[31550]: MIPL Mobile IPv6 for Linux v2.0.2 started (Correspondent
Node)
main: MIPL Mobile IPv6 for Linux started in debug mode, not detaching
from terminal
conf_show: config_file = /etc/mip6d.conf
conf_show: vt_hostname = localhost
conf_show: vt_service = 7777
conf_show: mip6_entity = 0
conf_show: debug_level = 10
conf_show: PolicyModulePath = [internal]
conf_show: DefaultBindingAclPolicy = 0
conf_show: NonVolatileBindingCache = disabled
conf_show: KeyMngMobCapability = disabled
conf_show: UseMnHaIPsec = enabled
conf_show: MnMaxHaBindingLife = 262140
conf_show: MnMaxCnBindingLife = 420
conf_show: MnRouterProbes = 0
conf_show: MnRouterProbeTimeout = 0.000000
conf_show: InitialBindackTimeoutFirstReg = 1.500000
conf_show: InitialBindackTimeoutReReg = 1.000000

55

conf_show: UseCnBuAck = enabled
conf_show: DoRouteOptimizationMN = enabled
conf_show: MnUseAllInterfaces = disabled
conf_show: MnDiscardHaParamProb = disabled
conf_show: SendMobPfxSols = enabled
conf_show: OptimisticHandoff = disabled
conf_show: SendMobPfxAdvs = enabled
conf_show: SendUnsolMobPfxAdvs = enabled
conf_show: MaxMobPfxAdvInterval = 86400
conf_show: MinMobPfxAdvInterval = 600
conf_show: HaMaxBindingLife = 262140
conf_show: DoRouteOptimizationCN = enabled
xfrm_cn_init: Adding policies and states for CN
Figure 7. Running Output CN mip6d when MN is at Home

Network

Figure 8 shows the kernel IP routing table of MN.

It will be shown that the default route will be changed in

the next phase (after the MN moves to the Foreign Network).

MN2:/etc/init.d # route -A inet6
Kernel IPv6 routing table
Destination Next Hop Flags Metric Ref Use Iface
2001::/64 2003::2 UG 1024 9810 0 eth0
2003::/64 :: U 256 109 0 eth0
fe80::/64 :: U 256 0 0 ip6tnl1
fe80::/64 :: U 256 0 0 eth0
ff02::1/128 ff02::1 UC 0 106 0 eth0
ff00::/8 :: U 256 0 0 eth0
ff00::/8 :: U 256 0 0 ip6tnl1
::/0 fe80::204:75ff:feb5:a632 UGDA 1024 0 0 eth0
::1/128 :: U 0 21 1 lo
2003::1/128 :: U 0 175 1 lo
2003::212:3fff:feae:205b/128 :: U 0 0 1 lo
fe80::212:3fff:feae:205b/128 :: U 0 0 1 lo
fe80::212:3fff:feae:205b/128 :: U 0 1 1 lo

Figure 8. MN Kernel IP Routing Table before MN Movement

56

b. Phase 2: MN Moves to a Foreign Network

Figure 9. MN Moved to Foreign Network 2005::/64

When the MN detects that the default router (HA)

cannot be reached, the MN sends out a Router Solicitation

and the Foreign Router interface, where the MN has been

attached, responds with its prefix. The MN reconfigures

itself, creating a new IPv6 address, using the prefix of

the Foreign Router and its MAC address (1) and its HoA

appears in the created ip6tnl1 (2) , as shown in Figure 10.

MN2:/home/ikandira # ifconfig -a
eth0 Link encap:Ethernet HWaddr 00:12:3F:AE:20:5B
 inet6 addr: 2005::212:3fff:feae:205b/64 Scope:Global
 inet6 addr: fe80::212:3fff:feae:205b/64 Scope:Link
 UP BROADCAST NOTRAILERS RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:158180 errors:0 dropped:0 overruns:0 frame:7
 TX packets:30770 errors:0 dropped:0 overruns:0 carrier:0
 collisions:9 txqueuelen:1000
 RX bytes:20214758 (19.2 Mb) TX bytes:4270328 (4.0 Mb)
 Interrupt:169

gre0 Link encap:UNSPEC HWaddr 00-00-00-00-20-5B-00-00-00-00-00-
00-00-00-00-00
 NOARP MTU:1476 Metric:1

2003::/64 2001::/64

2002::/64 2004::/64

2005::/64

2002::2/eth2

2001::8/eth0

2004::3/eth0 2002::1/eth1

2001::1/eth2 2003::2/eth0 2005::3/eth1

CN

CNroute HA Froutehub

hubhub hub

hub

MN

CoA: 2005::212:3fff:feae:205b
HoA: 2003::1/eth0

57

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

ip6tnl0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-
00-00-00-00-00
 NOARP MTU:1460 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

ip6tnl1 Link encap:UNSPEC HWaddr 20-05-00-00-00-00-00-00-00-00-00-
00-00-00-00-00
 inet6 addr: 2003::1/128 Scope:Global
 inet6 addr: fe80::212:3fff:feae:205b/64 Scope:Link
 UP POINTOPOINT RUNNING NOARP MTU:1460 Metric:1
 RX packets:21 errors:0 dropped:0 overruns:0 frame:0
 TX packets:20 errors:4 dropped:4 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:1408 (1.3 Kb) TX bytes:2016 (1.9 Kb)

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:1654 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1654 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:132076 (128.9 Kb) TX bytes:132076 (128.9 Kb)

sit0 Link encap:IPv6-in-IPv4
 NOARP MTU:1480 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

tunl0 Link encap:IPIP Tunnel HWaddr
 NOARP MTU:1480 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Figure 10. ifconfig of MN moved to the Foreign Network

After the MN acquires its new address (CoA), it

informs its HA for its new CoA via a BU message and it

receives a BA message, where the HA verifies that it is

aware for the MN’s CoA.

58

Using the virtual terminal, it is observed that

the HA has updated its binding cache (Figure 10) and the MN

shows its binding update list (Figure 11):

HArouter:/etc/init.d # telnet localhost 7777
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
mip6d> help
bc fancy hal nonce pl prompt quit thread verbose
mip6d> verbose yes
yes
mip6d> bc
hoa 2003:0:0:0:0:0:0:1 nonce 0 status registered
 coa 2005:0:0:0:212:3fff:feae:205b nonce 0 flags AH--
 local 2003:0:0:0:0:0:0:2 tunnel ip6tnl1 link eth0
 lifetime 11236 / 11992 seq 64365 unreach 0 mpa -96 / 657 retry 0
mip6d> hal
eth0 2003:0:0:0:0:0:0:2
 preference 20 lifetime 10000
mip6d> pl
eth0 2003:0:0:0:0:0:0:2/64
 valid 11998 / 12000 preferred 10000 flags OAR
Figure 11. Virtual Terminal Information Provided by HA

MN2:/etc # telnet localhost 7777
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
mip6d> help
bc bul fancy nonce prompt quit rr verbose
mip6d> verbose yes
yes
mip6d> bul
== BUL_ENTRY ==
Home address 2003:0:0:0:0:0:0:1
Care-of address 2005:0:0:0:212:3fff:feae:205b
CN address 2003:0:0:0:0:0:0:2
 lifetime = 11992, delay = 11392000
 flags: IP6_MH_BU_HOME IP6_MH_BU_ACK
 ack ready
 dev eth0 last_coa 2005:0:0:0:212:3fff:feae:205b
 lifetime 11707 / 11992 seq 64365 resend 0 delay 11392(after 11108s)
expires 11707
 mps 10515 / 10797
== BUL_ENTRY ==
Home address 2003:0:0:0:0:0:0:1
Care-of address 2005:0:0:0:212:3fff:feae:205b
CN address 2001:0:0:0:0:0:0:8
 lifetime = 420, delay = 420000
 flags: IP6_MH_BU_ACK
 ack ready RR state ready
 dev eth0 last_coa 2005:0:0:0:212:3fff:feae:205b
care-of nonce index 4home nonce index 4

59

 lifetime 261 / 420 seq 56778 resend 0 delay 420(after 262s) expires
261

mip6d> rr
== Return Routability Entry (HOT_ENTRY) ==
 HoA 2003:0:0:0:0:0:0:1
 CN 2001:0:0:0:0:0:0:8
 CoA 2005:0:0:0:212:3fff:feae:205b
 Interface ip6tnl1
 resend 0 delay 210 (after 36 seconds) expires in 36 seconds
== Return Routability Entry (COT_ENTRY) ==
 CoA 2005:0:0:0:212:3fff:feae:205b
 CN 2001:0:0:0:0:0:0:8
 HoA 2003:0:0:0:0:0:0:1
 Interface eth0
 resend 0 delay 210 (after 36 seconds) expires in 36 seconds
Figure 12. Virtual Terminal Information Provided by MN

Moreover, the MN is changing its default route to

a tunnel (Figure 13).

MN2:/etc/init.d # route -A inet6
Kernel IPv6 routing table
Destination Next Hop Flags Metric Ref Use Iface
::/0 :: U 128 0 0 ip6tnl1
2001::8/128 2001::8 UC 0 69 0 ip6tnl1
2003::2/128 2003::2 UC 0 2 1 ip6tnl1
2001::/64 2003::2 UG 1024 9920 1 eth0
2005::/64 :: UA 256 18 0 eth0
fe80::/64 :: U 256 0 0 ip6tnl1
fe80::/64 :: U 256 0 0 eth0
ff02::1/128 ff02::1 UC 0 19 0 eth0
ff00::/8 :: U 256 0 0 eth0
ff00::/8 :: U 256 0 0 ip6tnl1
::/0 fe80::209:5bff:fe0a:5db3 UGDA 1024 24 2 eth0
::1/128 :: U 0 21 1 lo
2003::1/128 :: U 0 71 1 lo
2005::212:3fff:feae:205b/128 :: U 0 82 1 lo
fe80::212:3fff:feae:205b/128 :: U 0 0 1 lo
fe80::212:3fff:feae:205b/128 :: U 0 2 1 lo

Figure 13. MN Kernel IP Routing Table after Movement to
Foreign Network

As expected, since IPSec was not used, all the

messages were captured from Wireshark on the link Frouter

to MN, and presented in Figures 14 to 19.

60

Figure 14. HOTI Message from MN to CN

Figure 15. COTI Message from MN (CoA) to CN

61

Figure 16. HOT Message from CN to CN (HoA)

Figure 17. COT Message from CN to MN (CoA)

62

Figure 18. BU Message from MN(CoA) to CN

Figure 19. BA Message from CN to MN(CoA)

63

c. Phase 3: MN Returns to its Home Network

The MN assumes that it returned to its Home

Network, since it receives the router advertisement with

the HA-bit set from the interface of the HA. The HA flushes

its binding cache information. This can be seen from the

virtual terminal of the HA (Figure 20).

HArouter:/etc/init.d # telnet localhost 7777

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

mip6d> help

bc fancy hal nonce pl prompt quit thread verbose

mip6d> bc

mip6d> hal

eth0 2003:0:0:0:0:0:0:2

 preference 20 lifetime 10000

mip6d> hal

eth0 2003:0:0:0:0:0:0:2

 preference 20 lifetime 10000

mip6d> pl

eth0 2003:0:0:0:0:0:0:2/64

 valid 11999 / 12000 preferred 10000 flags OAR

Figure 20. HA Virtual Terminal Output

2. Scenario with the Use of IPsec

IPv6 was designed with security in mind from the

outset, mandating the support of authentication and

encryption in all IPv6 implementations [Soliman04].

64

IPsec is a set of protocols to support a secure

exchange of packets at the IP layer. It uses two protocols

to provide traffic security services, Authentication Header

(AH) and Encapsulating Security Payload (ESP).

The IP Authentication Header (AH) offers integrity and

date origin authentication, with optional anti-replay

features.

The Encapsulating Security Payload (ESP) protocol

offers the same set of services, and also offers

confidentiality (provide authentication and encryption only

for the headers following the ESP header).

Currently only the ESP IPsec protocol is supported in

MIPL.

IPsec supports two tunnel modes: Transport and Tunnel.

Transport mode encrypts only the transport (layer 4) and

data portion (application payload) of each packet, but

leaves the original IP header in the clear. The more secure

Tunnel mode encrypts both the original IP header and the

upper layers. On the receiving side, an IPSec-compliant

device decrypts each packet.

The protection offered by IPsec is based on

requirements defined by a Security Policy Database (SPD)

which is established and maintained by user or system

administrator, or by an application operating within

constraints established by either of the above.

In our case, it is the MIPL which establishes the SPD

between HA and MN. An SPD cannot be dictated because the

CoA of MN is not known in advance in the foreign network.

Only the MIPL can manage the binding between CoA and HoA.

65

The Security Association Database (SAD) contains

parameters that are associated with each established

Security Association (SA). A SA is a simplex "connection"

that provides security services to the traffic carried by

it.

In order to enable IPsec in the test bed the following

changes have to be made:

• IPsec should be enabled in mip6d.conf files of
both the HA and MN (UseMnHaIPsec enabled;) and a
set of IPsec policy should be added (see
Appendices A and B for more details in files
mip6d.conf)

• SAs should be set manually. The configuration
file (sa.conf), must be the same on the MN and HA
(see Appendices A and B for more details in files
sa.conf (they must be the same))

One interesting observation is that, when the sa.conf

files were implemented, the des-cbc “secret” should have

exactly eight characters while the hmac-sha1 “secret”

should have exactly 20 characters.

The set of commands that were used was the following:

Load the implemented configuration:

setkey -f /etc/sa.conf

Verify the SAD:

setkey –D

Flush the SPD:

setkey –FP

Flush the SAD:

setkey –F

Initially, when the MN is at Home Network, the SPD can

be seen, executing the command:

66

setkey -D

and the output of the command is:

MN2:/etc # setkey -D
2003::2 2003::1
 esp mode=tunnel spi=2005(0x000007d5) reqid=0(0x00000000)
 E: des-cbc 6d795f6b 65795f31
 A: hmac-sha1 74686973 20697320 74686520 74657374 206b6579
 seq=0x00000000 replay=0 flags=0x00000000 state=mature
 created: Feb 16 10:29:32 2007 current: Feb 17 21:31:50 2007
 diff: 126138(s) hard: 0(s) soft: 0(s)
 last: hard: 0(s) soft: 0(s)
 current: 0(bytes) hard: 0(bytes) soft: 0(bytes)
 allocated: 0 hard: 0 soft: 0
 sadb_seq=5 pid=20007 refcnt=0
2003::2 2003::1
 esp mode=transport spi=2003(0x000007d3) reqid=3(0x00000003)
 E: des-cbc 6d795f6b 65795f31
 A: hmac-sha1 74686973 20697320 74686520 74657374 206b6579
 seq=0x00000000 replay=0 flags=0x00000000 state=mature
 created: Feb 16 10:29:32 2007 current: Feb 17 21:31:50 2007
 diff: 126138(s) hard: 0(s) soft: 0(s)
 last: hard: 0(s) soft: 0(s)
 current: 0(bytes) hard: 0(bytes) soft: 0(bytes)
 allocated: 0 hard: 0 soft: 0
 sadb_seq=4 pid=20007 refcnt=0
2003::2 2003::1
 esp mode=transport spi=2001(0x000007d1) reqid=2(0x00000002)
 E: des-cbc 6d795f6b 65795f31
 A: hmac-sha1 74686973 20697320 74686520 74657374 206b6579
 seq=0x00000000 replay=0 flags=0x00000000 state=mature
 created: Feb 16 10:29:32 2007 current: Feb 17 21:31:50 2007
 diff: 126138(s) hard: 0(s) soft: 0(s)
 last: hard: 0(s) soft: 0(s)
 current: 0(bytes) hard: 0(bytes) soft: 0(bytes)
 allocated: 0 hard: 0 soft: 0
 sadb_seq=3 pid=20007 refcnt=0
2003::1 2003::2
 esp mode=tunnel spi=2004(0x000007d4) reqid=0(0x00000000)
 E: des-cbc 6d795f6b 65795f31
 A: hmac-sha1 74686973 20697320 74686520 74657374 206b6579
 seq=0x00000000 replay=0 flags=0x00000000 state=mature
 created: Feb 16 10:29:32 2007 current: Feb 17 21:31:50 2007
 diff: 126138(s) hard: 0(s) soft: 0(s)
 last: hard: 0(s) soft: 0(s)
 current: 0(bytes) hard: 0(bytes) soft: 0(bytes)
 allocated: 0 hard: 0 soft: 0
 sadb_seq=2 pid=20007 refcnt=0
2003::1 2003::2
 esp mode=transport spi=2002(0x000007d2) reqid=3(0x00000003)
 E: des-cbc 6d795f6b 65795f31
 A: hmac-sha1 74686973 20697320 74686520 74657374 206b6579
 seq=0x00000000 replay=0 flags=0x00000000 state=mature
 created: Feb 16 10:29:32 2007 current: Feb 17 21:31:50 2007
 diff: 126138(s) hard: 0(s) soft: 0(s)

67

 last: hard: 0(s) soft: 0(s)
 current: 0(bytes) hard: 0(bytes) soft: 0(bytes)
 allocated: 0 hard: 0 soft: 0
 sadb_seq=1 pid=20007 refcnt=0
2003::1 2003::2
 esp mode=transport spi=2000(0x000007d0) reqid=1(0x00000001)
 E: des-cbc 6d795f6b 65795f31
 A: hmac-sha1 74686973 20697320 74686520 74657374 206b6579
 seq=0x00000000 replay=0 flags=0x00000000 state=mature
 created: Feb 16 10:29:32 2007 current: Feb 17 21:31:50 2007
 diff: 126138(s) hard: 0(s) soft: 0(s)
 last: Feb 16 15:26:37 2007 hard: 0(s) soft: 0(s)
 current: 26352(bytes) hard: 0(bytes) soft: 0(bytes)
 allocated: 244 hard: 0 soft: 0
 sadb_seq=0 pid=20007 refcnt=0

Figure 21. MN SPD Output before MN Moves to the Foreign
Network

When the MN moves to the foreign network, the SPD is

updated via MIPL with the CoA of the MN, as can be seen in

Figure 22.

MN2:/etc # setkey -D
2003::2 2003::1
 esp mode=transport spi=2003(0x000007d3) reqid=3(0x00000003)
 E: des-cbc 6d795f6b 65795f31
 A: hmac-sha1 74686973 20697320 74686520 74657374 206b6579
 seq=0x00000000 replay=0 flags=0x00000000 state=mature
 created: Feb 16 10:29:32 2007 current: Feb 22 16:26:47 2007
 diff: 539835(s) hard: 0(s) soft: 0(s)
 last: Feb 22 16:26:00 2007 hard: 0(s) soft: 0(s)
 current: 520(bytes) hard: 0(bytes) soft: 0(bytes)
 allocated: 13 hard: 0 soft: 0
 sadb_seq=5 pid=5823 refcnt=0
2003::2 2003::1
 esp mode=transport spi=2001(0x000007d1) reqid=2(0x00000002)
 E: des-cbc 6d795f6b 65795f31
 A: hmac-sha1 74686973 20697320 74686520 74657374 206b6579
 seq=0x00000000 replay=0 flags=0x00000000 state=mature
 created: Feb 16 10:29:32 2007 current: Feb 22 16:26:47 2007
 diff: 539835(s) hard: 0(s) soft: 0(s)
 last: Feb 22 16:25:58 2007 hard: 0(s) soft: 0(s)
 current: 368(bytes) hard: 0(bytes) soft: 0(bytes)
 allocated: 23 hard: 0 soft: 0
 sadb_seq=4 pid=5823 refcnt=0
2005::212:3fff:feae:205b 2003::2
 esp mode=tunnel spi=2004(0x000007d4) reqid=0(0x00000000)
 E: des-cbc 6d795f6b 65795f31

68

 A: hmac-sha1 74686973 20697320 74686520 74657374 206b6579
 seq=0x00000000 replay=0 flags=0x00000000 state=mature
 created: Feb 16 10:29:32 2007 current: Feb 22 16:26:47 2007
 diff: 539835(s) hard: 0(s) soft: 0(s)
 last: Feb 22 16:25:58 2007 hard: 0(s) soft: 0(s)
 current: 132(bytes) hard: 0(bytes) soft: 0(bytes)
 allocated: 1 hard: 0 soft: 0
 sadb_seq=3 pid=5823 refcnt=0
2003::1 2003::2
 esp mode=transport spi=2002(0x000007d2) reqid=3(0x00000003)
 E: des-cbc 6d795f6b 65795f31
 A: hmac-sha1 74686973 20697320 74686520 74657374 206b6579
 seq=0x00000000 replay=0 flags=0x00000000 state=mature
 created: Feb 16 10:29:32 2007 current: Feb 22 16:26:47 2007
 diff: 539835(s) hard: 0(s) soft: 0(s)
 last: Feb 22 16:26:00 2007 hard: 0(s) soft: 0(s)
 current: 1092(bytes) hard: 0(bytes) soft: 0(bytes)
 allocated: 13 hard: 0 soft: 0
 sadb_seq=2 pid=5823 refcnt=0
2003::1 2003::2
 esp mode=transport spi=2000(0x000007d0) reqid=1(0x00000001)
 E: des-cbc 6d795f6b 65795f31
 A: hmac-sha1 74686973 20697320 74686520 74657374 206b6579
 seq=0x00000000 replay=0 flags=0x00000000 state=mature
 created: Feb 16 10:29:32 2007 current: Feb 22 16:26:47 2007
 diff: 539835(s) hard: 0(s) soft: 0(s)
 last: Feb 22 16:25:57 2007 hard: 0(s) soft: 0(s)
 current: 42984(bytes) hard: 0(bytes) soft: 0(bytes)
 allocated: 398 hard: 0 soft: 0
 sadb_seq=1 pid=5823 refcnt=0

2003::2 2005::212:3fff:feae:205b
 esp mode=tunnel spi=2005(0x000007d5) reqid=0(0x00000000)
 E: des-cbc 6d795f6b 65795f31
 A: hmac-sha1 74686973 20697320 74686520 74657374 206b6579
 seq=0x00000000 replay=0 flags=0x00000000 state=mature
 created: Feb 16 10:29:32 2007 current: Feb 22 16:26:47 2007
 diff: 539835(s) hard: 0(s) soft: 0(s)
 last: Feb 22 16:25:58 2007 hard: 0(s) soft: 0(s)
 current: 64(bytes) hard: 0(bytes) soft: 0(bytes)
 allocated: 1 hard: 0 soft: 0
 sadb_seq=0 pid=5823 refcnt=0

Figure 22. MN SPD Output after MN Moves to the Foreign

Network

Figure 23 illustrates the whole RR procedure,

protected by IPsec, as captured on the HA-FA link.

69

Figure 23. Ethereal Screen Capture of RR Procedure

Packet #19 is sent from the CoA of the MN to the HA

and it is protected by ESP. This packet is the BU of MN for

its new CoA.

In packet #23, the HA acknowledges the BU (BA).

Packet #26 is sent from the CoA of the MN to the HA

and it is also protected by ESP. Almost at the same time,

sends a COTI message (packet#27) to the CN. It can be

safely assumed that packet #26 is the protected by ESP HOTI

message.

Packet#28 is the protected by ESP, HOT message.

Packet#29 is the COT message.

Packet#30 is a binding update (BU) from the CoA of the

MN to the CN.

Packet#30 is the Binding Acknowledge from the CN to

the CoA of the MN.

70

THIS PAGE INTENTIONALLY LEFT BLANK

71

IV. SECURITY ISSUES OF MOBILE IPV6

This chapter presents possible threats against the

Return Routability protocol and discusses the effectiveness

of the security mechanisms provided by the protocol against

these attacks. Alternative proposals for better securing

the protocol are also described.

A. IDENTIFIED SECURITY THREATS AND MIPV6 PROTOCOL DEFENCE

The following table summarizes the possible attacks

against the MIPv6 protocol and how the protocol mitigates

these attacks as described in [Aura06]:

Threat Solution provided by RR procedure [Aura06]
False BU
Attack
(attacker is
neither on the
CN-HoA route
nor within the
local network
of CN)

Signaling messages between the MN and its HA
are encrypted via IPsec and authenticated

Connection
Hijack Attack

Session protected by the mobility header
used for the BU message , that includes the
BU, a nonce indices option and a binding
authorization option.

Bombing Attack Case 1: Target of the attack is an existent
IP address
 The IP layer at target during the
process of the decapsulation of the routing
header encounters the “unknown” address of
the attacker and drop the packets without
passing it to the transport layer.
Case 2: Target of the attack is a non-
existent IP address
 The router of the subnet of the non-
existent IP address should send an ICMP
Destination Unreachable message to the
sender of the unwanted packets.

72

Threat Solution provided by RR procedure [Aura06]
Replay Attack The Sequence Number of the ESP header

provides anti-replay protection for the
packet. The sequence number is 32-bit long
starting from 1) which provides an unique id
for each packet sent over the quick mode
security association for the communication.
The sequence number cannot repeat for the
life of the quick mode security association.
The receiver checks this field to verify
that a packet for a security association
with this number has not already been
received. If one has been received, the
packet is rejected.
[http://technet2.microsoft.com/WindowsServer
/en/library/c3a956bf-704b-4980-9655-
762985e380f61033.mspx?mfr=true Last visited
on March 15, 2007]

CPU Exhaustion RR protocol uses relatively inexpensive
encryption and one-way hash functions and
the consumption of CPU power is not a major
concern.

State-storage
Exhaustion

The CN does not store a separate key for
each MN. Instead it stores a single
periodically-changing randomly generated
master secret (Kcn) and computes the two
keygen tokens with a one-way function from
the master secret and from HoA and CoA
Home keygen token = First (64,
HMAC_SHA1(Kcn, home address|nonce|0))
 and
Care-of keygen token = First(64, MAC (Kcn,
care-of address | nonce|1))

Amplification
Attack (Force
the CN to
respond with a
of packets
being
significantly
larger than
that of the
query.)

The CN waits to receive both HOTI and COTI
messages from the MN. Then, it replies to MN
with only two messages, HOT and COT, sending
only as many messages as it receives, thus
eliminating the amplification problem.

Reflection The CN responds always to the same address
from which it receives a message.

73

Threat Solution provided by RR procedure [Aura06]
HOT, COT and
BA spoofing

Usage of nonces (home init cookie-Care-of
init cookie) in the HOTI and COTI messages,
which the CN copies to the HOT and COT
messages, respectively.

Insider attack
from CN local
network

Can be mitigated if the CN is also a MN of a
HA. In that way all keygen tokens are
protected by IPsec(ESP).

Table 4. Possible Threats and Defense Mechanisms
provided by the RR Protocol

B. TEST BED SECURITY OBSERVATIONS

1. It is clearly stated in [Aura06] that the RR
protocol does not defend against an attacker who
can monitor the CN-HA data path. This threat can
be mitigated if the CN is a MN itself.

2. A HA router can be easily identified, since it
transmits on the clear (inside the router
advertisements) its identity of being a HA.

3. The files that determine the security
associations are stored in both the routers and
the MN’s file system. Routers are generally well
protected, but the file security at MN depends on
the user behavior. In cases where an attacker has
broken into the MN’s file system, the attacker
can acquire the security association
configuration file, which contains the security
credentials and all the necessary information to
implement any kind of attack against the MN.

4. The last 64 bits of the MN’s IP CoA are
predictable, since the CoA is configured
according to the attached router advertisements
due to Stateless DHCP (not a major concern since
can be mandated to use statefull DHCP).

C. ATTACK TRAFFIC GENERATION WITH SCAPY6

Scapy [http://www.secdev.org/projects/scapy/ Last

visited on March 8, 2007] is a powerful interactive packet

manipulation program. Scapy6 was the IPv6 version of Scapy,

which is now named mip6 (executable file mip6.py). It is

written in Python and runs natively on Linux, and on most

Unix systems with libpcap, libdnet and their respective

74

python wrapper. The scapy6.py and mip6.py files that can be

used to construct mobile ipv6 packets can be found at

[http://namabiiru.hongo.wide.ad.jp/scapy6/ Last visited on

March 12, 2007]. Detailed examples of MIPv6 packet

construction can be found in:

[http://namabiiru.hongo.wide.ad.jp/scapy6/uts/mip6-test-

report.html Last visited on March 12, 2007].

For this thesis, Scapy was used for the construction

of one “bogus” BU message. Our goal was to inject a storm

of fake BU to the CN from a machine that impersonates the

MN during a MIPv6 MN-CN session.

Specifically, the attack machine was first attached to

the 2000::/64 interface of the CNrouter, having in mind

that the attack should be implemented from outside the MN-

CN path. It then flooded the CN with 4000 fake BU’s, during

a Mobile IPv6 session between the MN and the CN. The flood

attack was unsuccessful, as it was expected. The

performance of the ongoing session between the MN and the

CN was not affected at all during the attack, demonstrating

the MIPv6 protocol’s effectiveness against false BUs.

Details of how the fake BU was built using Scapy6 are

given in Appendix F.

D. WORK IN PROGRESS FOR SECURING THE ROUTE OPTIMIZATION
PROCEDURE FOR MOBILE IPV6

There is a lot of work in progress for enhancing the

Mobile IPv6 Route Optimization procedure.

Vogt and Arkko in [Vogt07] describe and evaluate

strategies to enhance Mobile IPv6 Route Optimization, on

the basis of existing proposals, in order to motivate and

guide further research in this context.

75

Dupont in [Depont 07] analyses some new kinds of

reflection attacks, as known as 3rd party bombing

introduced by Mobile IPv6 and makes some recommendations in

order to protect the MIPv6 protocol.

Li, et al., in [Li07] puts forward a mechanism called

ECC RRP, which enhances the key management for the Return

Routability Procedure with anonymous Elliptic Curve

Cryptography (ECC) Key Agreement Protocol. The proposed

solution is not prone to attacks by nodes on the route from

CN to HA in way that the RR process described in [RFC 3775]

and reduces the latency related to handovers that require

new binding updates.

Mun, et al., in [Mun06] propose an optimized scheme

which performs Routing Optimization using the AAA

infrastructure between the HA and a CN instead of the RR

procedure.

76

THIS PAGE INTENTIONALLY LEFT BLANK

77

V. CONCLUSIONS AND FUTURE WORK

The main objective of this research effort was to

build a test bed for investigating the vulnerabilities of

the Mobile IPv6 RR procedure. The test bed should

facilitate the enactment and analysis of the effects of

specific threats on the Mobile IPv6 hosts and the network.

While this thesis is not about discovering new

vulnerabilities or evaluating countermeasures, the

resulting test bed and software has laid the necessary

groundwork for future research in those directions.

It must be mentioned that RR is not the only way to

secure MIPv6 messages. Alternatively, MIPv6 can be secured

using public keys and certificates or Cryptographic

Generated Addresses (CGAs), having always in mind that

there is always a trade-off between convenience and

security.

A. CONCLUSIONS

The major findings from this thesis research are:

• When stateless DHCP is used, the last 64 bits of
the MN’s IP CoA is predictable (EUI64), since the
CoA is configured according to the attached
router advertisements. If an Attacker knows a
node’s MAC address, he can violate its location
privacy (the prefix would give out its location
in the Internet). Stateful DHCP is mandated for
location privacy. Stateless DHCP is more
convenient for private or campus networks that
are protected by firewalls, covering the issue of
location privacy.

• The RR procedure uses IPsec for authentication,
with relatively inexpensive encryption and one-
way hash functions. The consumption of CPU power
is not a major concern (which is extremely
important for mobile devices). There is always
the solution of using PKI, but the processing

78

overhead of existing PKI solutions is
particularly noticeable within the context of
mobile handheld devices, such as PDAs (Personal
Digital Assistants) or mobile/smart phones, which
have certain limitations regarding storage and
computational capacity because of their small
size.

• The security of the MIPv6 protocol is yet to be
“battle-tested”. Most existing MIPv6
implementations are still intended for research
and development purposes. There are many
different implementations, as indicated in
Chapter 2, and the protocol itself is under
continuous improvement and refinement. There is
not yet any Microsoft OS implementation of MIPv6
protocol.

B. FUTURE WORK

The main remaining vulnerability in the RR protocol is

that an attacker, in the same local network as the

correspondent node, may be able to intercept and spoof all

of the BU protocol messages [Aura06]. The present test bed

can be extended in such a way that both MN and CN be MNs

belonging to their respective home agents. Theoretically,

such a configuration would protect all RR messages with

IPsec. It would be interesting to see how the protocol

would react and defend itself in such an occasion against

the possible attacks. That way, the two communicating

mobile nodes can securely optimize the routing between

their care-of addresses regardless of any potential

attacker on the current access networks [Aura06].

Currently, Scapy6 does not support the construction of

HOTI, COTI, HOT, and COT packets. An extension to Scapy6 to

support all kinds of RR messages would give the opportunity

to MIPv6 developers to evaluate the security threats of

MIPv6 protocol under realistic simulation conditions. The

implementation of all identified threats against the RR

79

procedure, using Scapy6 or other software, would help

evaluate the effectivenss of the proposed solution of IPsec

for threat mitigation.

80

THIS PAGE INTENTIONALLY LEFT BLANK

81

APPENDIX A. CONFIGURATION FILES OF HA

The following table contains the configuration files

of HA along with their locations.

Configuration File Location Functionality
radvd.conf /etc/ Advertise the

prefixes of the
Router’s interfaces

ripngd.conf /etc/quagga/ Implements the
standard Routing
Information
Protocol for
IPv6

zebra.conf /etc/quagga Along with ripngd
daemon provides
IPv6 routing for
the test bed

mip6d.conf /usr/local/sbin MIPv6 configuration
file used by mip6d
daemon

sa.conf /etc/ Security
Association
configuration file

radvd.conf

#This is the radvd.conf file of the HA
#Location: /etc/radvd.conf
#This daemon advertises the prefixes of the interfaces of the HA
router;
#Note that only the interface 0 has the option AdvHomeAgentFlag on;
 interface eth0
 {
 AdvSendAdvert on;
 MaxRtrAdvInterval 3;
 MinRtrAdvInterval 1;
 AdvIntervalOpt on;
 AdvHomeAgentFlag on;
 HomeAgentLifetime 10000;
 HomeAgentPreference 20;
 AdvHomeAgentInfo on;
 prefix 2003::2/64
 {
 AdvRouterAddr on;
 AdvOnLink on;
 AdvAutonomous on;
 AdvPreferredLifetime 10000;

82

 AdvValidLifetime 12000;
 };
 };
 interface eth1
 {
 AdvSendAdvert on;
 MaxRtrAdvInterval 10;
 MinRtrAdvInterval 3;
 AdvIntervalOpt on;
 prefix 2004::2/64
 {
 AdvRouterAddr on;
 AdvOnLink on;
 AdvAutonomous on;
 };
 };
interface eth2
 {
 AdvSendAdvert on;
 MaxRtrAdvInterval 10;
 MinRtrAdvInterval 3;
 AdvIntervalOpt on;
 prefix 2002::2/64
 {
 AdvRouterAddr on;
 AdvOnLink on;
 AdvAutonomous on;
 };
 };

ripngd.conf

!This is the ripngd.conf file of the HA
!Location:/etc/quagga/ripngd.conf
!This daemon implements the standard Routing Information
! Protocol for IPv6
hostname quagga
password quagga
!
router ripng
 network eth0
 network eth1
 network eth2
 redistribute connected
 redistribute static
 redistribute kernel
!

zebra.conf

!This is the zebra.conf file of the HA
!Location:/etc/quagga/zebra.conf
!This daemon along with ripngd provide the
!tesbed with IPv6 routing
hostname quagga
password quagga
enable password quagga

83

log file /var/log/quagga/quagga.log
!
interface eth0
 ipv6 address 2003::2/64
 ipv6 nd prefix 2003::/64
 no ipv6 nd suppress-ra
 ipv6 nd ra-interval 10
!
interface eth1
 ipv6 address 2004::2/64
 ipv6 nd prefix 2004::/64
 ipv6 nd suppress-ra
 ipv6 nd ra-interval 10
!
interface eth2
 ipv6 address 2002::2/64
 ipv6 nd suppress-ra
 ipv6 nd ra-interval 10
!
interface lo
!
interface sit0
 ipv6 nd suppress-ra
!
ip forwarding
ipv6 forwarding
ipv6 route 2001::/64 2002::1
ipv6 route 2005::/64 2004::3
!
line vty
!

mip6d.conf
This is the mip6d.conf file of the HA
Location: /etc/mip6d.conf
Mobile IPv6 configuration file: Home Agent
This file provides MIPv6 functionality to the HA
via daemon mip6d

 # filename: /etc/mip6d.conf
 NodeConfig HA;
 ## If set to > 0, will not detach from tty
 DebugLevel 10;

 ## List of interfaces where we serve as Home Agent
 Interface "eth0";
 ##
 ## IPsec configuration
 ## Use when IPsec is not enabled

 ## UseMnHaIPsec disabled;
 ## Use when IPsec is enabled

 UseMnHaIPsec enabled;
 ## Define the set of IPsec Policy
 IPsecPolicySet {
 HomeAgentAddress 2003::2;
 HomeAddress 2003::1/64;

84

 IPsecPolicy HomeRegBinding UseESP 1 2;
 IPsecPolicy MobPfxDisc UseESP 3;
 IPsecPolicy TunnelMh UseESP;
 }

sa.conf

This is the Security Association configuration file of HA
Note that an exact copy of this file resides also at MN
To activate run: #setkey –f /etc/sa.conf
Location:/etc/sa.conf
#-------------------------------
2003::1 is home address of MN
2003::2 is address of HA
#des-cbc key should be 8 characters long
#hmac-sha1 key should be 20 characters long

flush;

MN -> HA transport SA for BU
 add 2003:0:0:0::1 2003:0:0:0::2 esp 2000
 -u 1
 -m transport
 -E des-cbc "my_key_1"
 -A hmac-sha1 "this is the test key" ;

HA -> MN transport SA for BA
 add 2003:0:0:0::2 2003:0:0:0::1 esp 2001
 -u 2
 -m transport
 -E des-cbc "my_key_1"
 -A hmac-sha1 "this is the test key" ;

MN -> HA transport SA for MPS
 add 2003:0:0:0::1 2003:0:0:0::2 esp 2002
 -u 3
 -m transport
 -E des-cbc "my_key_1"
 -A hmac-sha1 "this is the test key" ;

HA -> MN transport SA for MPA
 add 2003:0:0:0::2 2003:0:0:0::1 esp 2003
 -u 3
 -m transport
 -E des-cbc "my_key_1"
 -A hmac-sha1 "this is the test key" ;

MN -> HA tunnel SA for HoTI
 add 2003:0:0:0::1 2003:0:0:0::2 esp 2004
 -m tunnel
 -E des-cbc "my_key_1"
 -A hmac-sha1 "this is the test key" ;

85

HA -> MN tunnel SA for HoT
 add 2003:0:0:0::2 2003:0:0:0::1 esp 2005
 -m tunnel
 -E des-cbc "my_key_1"
 -A hmac-sha1 "this is the test key" ;

86

THIS PAGE INTENTIONALLY LEFT BLANK

87

APPENDIX B. CONFIGURATION FILES OF MN

The following table contains the configuration files

of MN along with their locations.

Configuration File Location Functionality
mip6d.conf /usr/local/sbin MIPv6 configuration

file used by mip6d
daemon

sa.conf /etc/ Security
Association
configuration file

mip6d.conf

This is the mip6d.conf file of the MN
Location: /etc/mip6d.conf
Mobile IPv6 configuration file: Mobile Node
This file provides MIPv6 functionality to the MN
via daemon mip6d
 #
 # filename: /etc/mip6d.conf

 NodeConfig MN;

 ## If set to > 0, will not detach from tty
 DebugLevel 10;
 ## Enable RO
 DoRouteOptimizationMN enabled;
 DoRouteOptimizationCN enabled;

 MnDiscardHaParamProb enabled;
 Interface "eth0";
 MnHomeLink "eth0" {
 HomeAgentAddress 2003::2;
 HomeAddress 2003::1/64;
 }
 ## IPsec configuration
 ##
 UseMnHaIPsec enabled;
 IPsecPolicySet {
 HomeAgentAddress 2003::2;
 HomeAddress 2003::1/64;
 IPsecPolicy HomeRegBinding UseESP1 2;
 IPsecPolicy MobPfxDisc UseESP 3;
 IPsecPolicy TunnelMh UseESP;
 }

88

sa.conf

This is the Security Association configuration file of MN
Note that an exact copy of this file resides also at HA
To activate run: #setkey –f /etc/sa.conf
Location:/etc/sa.conf
#-------------------------------
2003::1 is home address of MN
2003::2 is address of HA
#des-cbc key should be 8 characters long
#hmac-sha1 key should be 20 characters long

flush;

MN -> HA transport SA for BU
 add 2003:0:0:0::1 2003:0:0:0::2 esp 2000
 -u 1
 -m transport
 -E des-cbc "my_key_1"
 -A hmac-sha1 "this is the test key" ;

HA -> MN transport SA for BA
 add 2003:0:0:0::2 2003:0:0:0::1 esp 2001
 -u 2
 -m transport
 -E des-cbc "my_key_1"
 -A hmac-sha1 "this is the test key" ;

MN -> HA transport SA for MPS
 add 2003:0:0:0::1 2003:0:0:0::2 esp 2002
 -u 3
 -m transport
 -E des-cbc "my_key_1"
 -A hmac-sha1 "this is the test key" ;

HA -> MN transport SA for MPA
 add 2003:0:0:0::2 2003:0:0:0::1 esp 2003
 -u 3
 -m transport
 -E des-cbc "my_key_1"
 -A hmac-sha1 "this is the test key" ;

MN -> HA tunnel SA for HoTI
 add 2003:0:0:0::1 2003:0:0:0::2 esp 2004
 -m tunnel
 -E des-cbc "my_key_1"
 -A hmac-sha1 "this is the test key" ;

HA -> MN tunnel SA for HoT
 add 2003:0:0:0::2 2003:0:0:0::1 esp 2005
 -m tunnel
 -E des-cbc "my_key_1"
 -A hmac-sha1 "this is the test key" ;

89

APPENDIX C. CONFIGURATION FILES OF CNROUTER

The following table contains the configuration files

of CN along with their locations.

Configuration File Location Functionality
mip6d.conf /usr/local/sbin MIPv6 configuration

file used by mip6d
daemon

mip6d.conf

This is the mip6d.conf file of the CN
Location: /etc/mip6d.conf
Mobile IPv6 configuration file: Correspondent Node
This file provides MIPv6 functionality to the CN
via daemon mip6d
NodeConfig CN;
If set to > 0, will not detach from tty
DebugLevel 10;
Enable RO
DoRouteOptimizationCN enabled;
UseCnBuAck enabled;

90

THIS PAGE INTENTIONALLY LEFT BLANK

91

APPENDIX D. CONFIGURATION FILES OF FROUTER

The following table contains the configuration files

of Frouter along with their locations.

Configuration File Location Functionality
radvd.conf /etc/ Advertise the

prefixes of the
Router’s interfaces

ripngd.conf /etc/quagga/ Implements the
standard Routing
Information
Protocol for
IPv6

zebra.conf /etc/quagga Along with ripngd
daemon provides
IPv6 routing for
the test bed

radvd.conf

This is the radvd.conf file of the Frouter
Location: /etc/radvd.conf
This daemon advertises the prefixes of the interfaces of the Frouter
 interface eth0
 {
 AdvSendAdvert on;
 AdvIntervalOpt on;
 MinRtrAdvInterval 3;
 MaxRtrAdvInterval 10;
 AdvHomeAgentFlag off;
 prefix 2004::/64
 {
 AdvOnLink on;
 AdvAutonomous on;
 AdvRouterAddr on;
 };
 };
 interface eth1
 {
 AdvSendAdvert on;
 AdvIntervalOpt on;
 MinRtrAdvInterval 3;
 MaxRtrAdvInterval 10;
 AdvHomeAgentFlag off;
 prefix 2005::/64
 {
 AdvOnLink on;
 AdvAutonomous on;

92

 AdvRouterAddr on;
 };
 };

ripngd.conf

!This is the ripngd.conf file of the Frouter
!Location:/etc/quagga/ripngd.conf
!This daemon implements the standard Routing Information
! Protocol for IPv6
hostname quagga
password quagga
!
router ripng
 network eth0
 network eth1
 redistribute connected
 redistribute static
 redistribute kernel
!

zebra.conf

!This is the zebra.conf file of the Frouter
!Location:/etc/quagga/zebra.conf
!This daemon along with ripngd provide the
!tesbed with IPv6 routing
hostname quagga
password quagga
enable password quagga
log file /var/log/quagga/quagga.log
!
interface eth0
 ipv6 address 2004::3/64
 ipv6 nd prefix 2004::/64
 ipv6 nd suppress-ra
 ipv6 nd ra-interval 10
!
interface eth1
 ipv6 address 2005::3/64
ipv6 nd prefix 2005::/64
no ipv6 nd suppress-ra
 ipv6 nd ra-interval 10
!
interface lo
!
interface sit0
 ipv6 nd suppress-ra
!
ip forwarding
ipv6 forwarding
ipv6 route 2001::/64 2004::2
ipv6 route 2002::/64 2004::2
ipv6 route 2003::/64 2004::2
!
line vty
!

93

APPENDIX E. CONFIGURATION FILES OF CNROUTER

The following table contains the configuration files

of CNrouter along with their locations.

Configuration File Location Functionality
radvd.conf /etc/ Advertise the

prefixes of the
Router’s interfaces

ripngd.conf /etc/quagga/ Implements the
standard Routing
Information
Protocol for
IPv6

zebra.conf /etc/quagga Along with ripngd
daemon provides
IPv6 routing for
the test bed

radvd.conf

#This is the radvd.conf file of the CNrouter
#Location: /etc/radvd.conf
#This daemon advertises the prefixes of the interfaces of the CNrouter
interface eth0
 {
 AdvSendAdvert on;
 AdvIntervalOpt on;

 MinRtrAdvInterval 3;
 MaxRtrAdvInterval 10;
 AdvHomeAgentFlag off;

 prefix 2002::1/64
 {
 AdvOnLink on;
 AdvAutonomous on;
 AdvRouterAddr on;
 };
 };

interface eth1
 {
 AdvSendAdvert on;
 AdvIntervalOpt on;

 MinRtrAdvInterval 3;
 MaxRtrAdvInterval 10;
 AdvHomeAgentFlag off;

94

 prefix 2000::1/64
 {
 AdvOnLink on;
 AdvAutonomous on;
 AdvRouterAddr on;
 };
 };

 interface eth2
 {
 AdvSendAdvert on;
 AdvIntervalOpt on;

 MinRtrAdvInterval 3;
 MaxRtrAdvInterval 10;
 AdvHomeAgentFlag off;

 prefix 2001::1/64
 {
 AdvOnLink on;
 AdvAutonomous on;
 AdvRouterAddr on;
 };
 };

ripngd.conf

!This is the ripngd.conf file of the CNrouter
!Location:/etc/quagga/ripngd.conf
!This daemon implements the standard Routing Information
! Protocol for IPv6
hostname quagga
password quagga
!
router ripng
 network eth0
 network eth1
 network eth2
 redistribute connected
 redistribute static
 redistribute kernel
!

zebra.conf

!This is the zebra.conf file of the CNrouter
!Location:/etc/quagga/zebra.conf
!This daemon along with ripngd provide the
!tesbed with IPv6 routing
!
! Zebra configuration saved from vty
! 2007/01/23 13:46:08
!
hostname quagga
password quagga

95

enable password quagga
log file /var/log/quagga/quagga.log
!
interface eth0
 ipv6 address 2002::1/64
 ipv6 nd prefix 2002::/64
 ipv6 nd suppress-ra
 ipv6 nd ra-interval 10
!
interface eth1
 ipv6 address 2000::1/64
 ipv6 nd suppress-ra
 ipv6 nd ra-interval 10
!
interface eth2
 ipv6 address 2001::1/64
 ipv6 nd prefix 2001::/64
 no ipv6 nd suppress-ra
 ipv6 nd ra-interval 10
!
interface lo
!
interface sit0
 ipv6 nd suppress-ra
!
ip forwarding
ipv6 forwarding
ipv6 route 2003::/64 2002::2
ipv6 route 2004::/64 2002::2
ipv6 route 2005::/64 2002::2
!
line vty
!

96

THIS PAGE INTENTIONALLY LEFT BLANK

97

APPENDIX F. USING SCAPY6 FOR CONSTRUCTING A BU
MESSAGE

This appendix describes the way that a BU message is

constructed, using mip6.py (the IPv6 version of Scapy). It

is impressing that a complicated message like a mobile IPv6

BU constructed with a few commands (/*Comments*/).

/* b1 is an IPv6 packet*/

>>> b1=IPv6()

/*The source address of the packet is */
/*2000::212:3fff:fead:f081*/

>>> b1.src='2000::212:3fff:fead:f081'

/*The destination address is 2001::8*/

>>> b1.dst='2001::8'

/*An IPv6 header has been constructed */

>>> b1.show()
###[IPv6]###
 version= 6
 tc= 0
 fl= 0
 plen= 0
 nh= No Next Header
 hlim= 64
 src= 2000::212:3fff:fead:f081
 dst= 2001::8 [Teredo srv: 0.0.0.0 cli: 255.255.255.247:65535]

/*An Extension Header (Destination Options Header) with */
/* the Home Address Option is needed*/

>>> b2=IPv6ExtHdrDestOpt(options=[HAO(hoa='2003::1')])

/*b3 is the concatenated result of b1 and b2 headers*/

>>> b3=b1/b2

/*This is the result of the concatenation*/

>>> b3.show()
###[IPv6]###
 version= 6

98

 tc= 0
 fl= 0
 plen= 0
 nh= Destination Option Header
 hlim= 64
 src= 2000::212:3fff:fead:f081
 dst= 2001::8 [Teredo srv: 0.0.0.0 cli: 255.255.255.247:65535]
###[IPv6 Extension Header - Destination Options Header]###
 nh= No Next Header
 len= 0
 autopad= On
 \options\
 |###[Home Address Option]###
 | otype= Home Address Option [11: discard+ICMP not mcast, 0:
Don't change en-route]
 | optlen= 16
 | hoa= 2003::1

/*Nonce Indices Option is created*/

>>> b4=NonceIndices(olen=4,hni=4, coni=4)

/*Binding Authorization Data is created*/

>>> b5=BindingAuthData(authenticator=2807)

/*A Mobility Header of Binding Update is created with */
/*the options of Nonce Indices and Binding Authorization*/
/*Data */

>>> b6=IPv6MobHdrBU(options=[b4,b5])

/*The final message is the concatenation of b3 */
/*and b5 Headers*/

>>> b_final=b3/b6

/*The final outcome of our MIPv6 BU construction*/

>>> b_final.show()
###[IPv6]###
 version= 6
 tc= 0
 fl= 0
 plen= 0
 nh= Destination Option Header
 hlim= 64
 src= 2000::212:3fff:fead:f081
 dst= 2001::8 [Teredo srv: 0.0.0.0 cli: 255.255.255.247:65535]
###[IPv6 Extension Header - Destination Options Header]###
 nh= Mobility Header
 len= 0
 autopad= On
 \options\
 |###[Home Address Option]###

99

 | otype= Home Address Option [11: discard+ICMP not mcast, 0:
Don't change en-route]
 | optlen= 16
 | hoa= 2003::1
###[IPv6 Mobility Header - Binding Update]###
 nh= No Next Header
 len= 0
 mhtype= BU
 reserved= 0
 cksum= 0x0
 seq= 0x4242
 flags= AMR
 reserved= 0x0
 mhtime= 0x3
 autopad= On
 \options\
 |###[Mobile IPv6 - Nonce Indices]###
 | otype= 4
 | olen= 4
 | hni= 4
 | coni= 4
 |###[Mobile IPv6 - Binding Authorization Data]###
 | otype= 5
 | olen= 16
 | authenticator= 2807

100

THIS PAGE INTENTIONALLY LEFT BLANK

101

LIST OF REFERENCES

[Arkko04] J. Arkko, et al., “Using IPsec to Protect
Mobile IPv6 Signaling between Mobile Nodes
and Home Agents,” RFC 3776, June 2004.

[Arkko05] J. Arkko, Ed., J. Kempf, B. Zill, P.
Nikander, “SEcure Neighbor Discovery
(SEND),” RFC 3971, March 2005.

[Arkko06] J. Arkko, “A Taxonomy and Analysis of
Enhancements to Mobile IPv6 Route
Optimization,” RFC4651, August 2006.

[Aura05] T. Aura., “Cryptographically Generated
Addresses (CGA),” RFC 3972, March 2005.

[Aura06] T. Aura, M. Roe,” Designing the Mobile
IPv6 Security Protocol,” Microsoft
Technical Report MSR-TR-2006-42, April
2006.

[Blanchet06] Marc Blanchet, “Migrating to IPv6: A
Practical Guide to Implementing IPv6 in
Mobile and Fixed Networks,” John Wiley &
Sons, Ltd., January 2006.

[Davies02] Joseph Davies, “Understanding IPv6,”
Microsoft Press, November 2002.

[Deering98] S. Deering, R. Hinden, “Internet Protocol,
Version 6 (IPv6) Specification,” RFC 2460,
December 1998.

[Devarapalli05] V. Devarapalli, et al., “Network Mobility
(NEMO) Basic Support Protocol,” RFC 3963,
January 2005.

[Dunmore05] M .Dunmore (6net) “Final MIPv6 Support
Guide,” February 8, 2005.

[Giaretta06] G. Giaretta, Ed. Patel, “Problem Statement
for bootstrapping Mobile IPv6 (MIPv6),”
RFC 4640, September 2006.

102

[Hinden03] R. Hinden, S. Deering., “Internet Protocol
Version 6 (IPv6) Addressing Architecture,”
RFC 3513, April 2003.

[Johnson04] D. Johnson, C. Perkins, J. Arkko,
“Mobility Support in IPv6,” RFC 3775, June
2004.

[Keeni06] G. Keeni, et al., “Mobile IPv6 Management
Information Base,” RFC 4295, April 2006.

[Kent05] S. Kent, “IP Authentication Header,” RFC
4302, December 2005.

[Kent05] S. Kent, “IP Encapsulating Security
Payload (ESP),” RFC 4303, December 2005.

[Koodli05] R. Koodli, Ed.,”Fast Handovers for Mobile
IPv6,” RFC 4068, July 2005.

[Kui04] R. Kui et al., ”Routing Optimization
Security in Mobile IPv6,” March 2004.

[Lawrence04] Lawrence Stewart, Mai Banh, Grenville
Armitage,” Implementing an IPv6 and Mobile
IPv6 test bed using FreeBSD 4.9 and KAME,”
March 2004.

[Nikander05] P. Nikander, J. Arkko, T. Aura, G.
Montenegro, and E. Nordmark, "Mobile IP
Version 6 Route Optimization Security
Design Background," RFC 4225, December
2005.

[Nodmark05] E. Nordmark, T. Li, “Threats Relating to
IPv6 Multi-homing Solutions”, RFC 4218,
October 2005.

[Patel05] Patel, et al., ”Mobile Node Identifier
Option for Mobile IPv6 (MIPv6),” RFC 4283,
November 2005.

[Patel06] Patel, et al., “Authentication Protocol
for Mobile IPv6,” RFC 4285, January 2006.

[Perkins06] C. Perkins, “Securing Mobile IPv6 Route
Optimization Using a Static Shared Key,”
RFC 4449, June 2006.

103

[Seo05] S. Kent, K. Seo, “Security Architecture
for the Internet Protocol,” RFC 4301,
December 2005.

[Soliman04] Hesham Soliman, “Mobile IPv6,” Addison-
Welsey, April 2004.

[Soliman05] H. Soliman, et al., “Hierarchical Mobile
IPv6 Mobility Management (HMIPv6)”, RFC
4140, August 2005.

[Thomson98] S. Thomson, T. Narten, “IPv6 Stateless
Address Autoconfiguration,” RFC 2462,
December 1998.

[Dupont07] F. Dupont, “A note about 3rd party bombing
in Mobile IPv6,” draft-dupont-mipv6-
3bombing-05.txt, Work in Progress, January
2007.

[Li07] Chunqiang. Li, Fuyou. Miao,.Madjid.
Nakhjiri, “An enhancement of Mobile IPv6
Return Routability Procedure using
Elliptic Curve Cryptography Key agreement
Protocol,” draft-li-mipshop-mip6rrp-ecc-
00.txt, Work in Progress, February 2007.

[Mun06] Youngsong Mun, Seonggeun Ryu, Jaehoon Nah,
Seungwon Sohn, “An Enhanced Mobile IPv6
Handover for Roaming between
Administrative Domains Based on AAA,”
draft-mun-mipshop-emipv6-aaa-01.txt,Work
in Progress, December 2006.

[Vogt07] C.Vogt, J. Arkko, “A Taxonomy and Analysis
of Enhancements to Mobile IPv6 Route
Optimization,” RFC 4651, February 2007.

104

THIS PAGE INTENTIONALLY LEFT BLANK

105

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Geoffrey Xie

Naval Postgraduate School
Monterey, California

4. Professor John Fulp
Naval Postgraduate School
Monterey, California

5. Neal Ziring
National Security Agency
Fort George G. Meade, Maryland

6. Matthew N. Smith
National Security Agency
Fort George G. Meade, Maryland

