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ABSTRACT 
 
 
 

The thesis investigates a method to estimate the forward velocity and heading rate 

of an autonomous underwater vehicle (AUV).  Through relatively new technologies small 

AUVs are now able to mount a Forward Looking Sonar (FLS) on the vehicle’s nose.  

This can be used for obstacle avoidance and feature based navigation.  The sensor can 

also be used to estimate motion of the AUV, which can be useful for undersea navigation.  

The thesis focuses on a template matching technique used in computer vision.  Two 

sequential sonar images are compared with the goal of finding the rotation and translation 

that best correlates the first to the second sonar image.  The transformation which 

maximizes the correlation coefficient is then converted to forward velocity and heading 

rate through motion analysis.   

Experimentation shows that the method provides accurate estimates for both the 

forward velocity and heading rate of the AUV.  Accuracy of the estimates for forward 

velocity was at the limitation of the resolution of the sonar.  Using velocities estimated 

through image processing applied to FLS images entirely with software, the weight and 

energy resources currently required by standard measurement techniques could be used to 

increase the vehicles endurance or for additional payload capacity.  Another benefit 

would be the reduction in acoustic and electrical interference with the FLS and side scan 

sonar, which would improve the vehicle’s obstacle avoidance and mine-hunting 

capability.  The vehicle could become more flexible in its capability to support additional 

roles vice specific missions.  This method holds the promise for permitting smaller AUVs 

with a FLS to navigate undersea more accurately.  
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I. INTRODUCTION 

A. GENERAL 

The application of unmanned vehicles in both civilian and military roles continues 

to expand and grow as new capabilities are demonstrated.  The use of unmanned vehicles 

as force multipliers and also as risk reducers has been directed within Sea Power 21.  In 

the current Global War on Terrorism (GWOT) the use of unmanned vehicles in military 

roles has been rapidly evolving.  The vision for these unmanned vehicles includes roles 

such as Intelligence, Surveillance, and Reconnaissance (ISR) as well as improvised 

explosive devises/mine countermeasures.  Specific missions, such as minefield detection 

and clearance as well as improvised explosive devise disposal are roles that are perfectly 

suited for the unmanned vehicles, as it reduces risk to personnel.  In some instances, such 

as mine hunting, the unmanned vehicles are capable of performing the role faster and 

with greater accuracy than humans. Due to the vastly different environments in which 

they operate, unmanned vehicles are designed for specific missions.  Due to the mission 

and situation, the amount of input necessary from a human operator will vary greatly. 

The Navy Unmanned Underwater Vehicle (UUV) Master Plan (Department of the 

Navy, 2004) identifies several of the areas where research and development continues to 

be required.  The development of autonomy and control as well as sensors and sensor 

processing are areas requiring major research.  Energy and propulsion as well as 

navigation and communication also continue to be areas where research and growth are 

required and are also specifically identified within the UUV Master Plan.  Sea Power 21 

has specifically identified unmanned systems within the future vision of the U.S. Navy.  

To ensure that the U.S. Navy maintains sea superiority, the development and employment 

of the technologies surrounding the unmanned vehicles must continue at a pace to meet 

the expected roles.  The immediate needs of the military, involve unmanned vehicles 

conducting mine countermeasure operations.  For example several Remote 

Environmental Monitoring Units (REMUS) Autonomous Underwater Vehicles (AUVs) 

were employed during Operation Iraqi Freedom (Figure 1) to assist in the clearance of 
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mines within the harbor of Umm Qasr.  With the REMUS AUVs operating in 

cooperation with additional mine clearance assets safe lanes of passage were quickly 

established for the arrival of humanitarian aide.  

 

 
Figure 1.   Tactical Application of REMUS AUVs Deployed in Operation Iraqi Freedom 

(From UUV Master Plan, 2004) 
 

B. MOTIVATION AND RELEVANCE 

As the AUVs roles in the battlespace become more prevalent researchers must 

examine the current limitations of the vehicles.  Within the U.S. Navy’s UUV Master 

Plan the continued research and development of sensor processing and navigation are 

specifically identified.  Increased intelligent autonomy is necessary to allow unmanned 

systems to operate independent from human input for extended periods on more complex 

tasks.  Autonomous vehicles must be able to collect, evaluate, and sort data based on 

mission performance and priorities.  UUVs require significantly more sophisticated 

autonomy since maintaining a communications link between the vehicle and a human 

operator is often impossible.   
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For aerial, ground, and surface unmanned vehicles the challenge of navigation can 

be resolved by incorporating the inputs from the Global Positioning Satellites (GPS).  

Many AUVs also employ these inputs; however the GPS inputs are only available when 

the vehicle or GPS antenna is above the surface of the water.  When the vehicle is 

operating in the undersea environment it relies upon additional inputs from equipment 

such as long base-line (LBL) transponders, accelerometers, and gyroscopes to track how 

the vehicle has moved from the last known position.  Another method of measuring 

velocities in the forward and lateral directions involves the use of active sonar.  The 

Acoustic Doppler Current Profiler (ADCP) uses this method, and the hardware adds 

weight to the vehicle and requires energy to operate.  If the velocities could be estimated 

through image processing applied to legacy sonar images entirely with software, the 

weight and energy resources currently required by the ADCP could be used to increase 

the vehicles endurance or for additional payload capacity.  Another benefit would be that 

there would be a reduction in acoustic and electrical interference with the FLS and side 

scan sonar, which would improve the vehicle’s obstacle avoidance and mine-hunting 

capability.  The vehicle could become more flexible in its capability to support additional 

roles vice specific missions.  For example the additional payload capacity could be used 

to carry mine countermeasure neutralization charges or deployable sensor/communication 

arrays to support antisubmarine warfare or ISR operations.  The U.S. Navy’s UUV 

Master Plan also identifies the need for small, man-portable AUVs.  Small AUVs may 

not be capable of supporting the larger hardware such as the ADCP therefore an 

alternative is required.  For one time use AUVs, such a vehicle used to deploy mine 

neutralization charges, capital costs would need to be minimized.  Therefore an 

alternative to the ADCP would be desired. 

Active sonar is one method that is used to measure the relative position of features 

in an undersea environment.  Feature detectors are used to extract the features from the 

sonar images and the relative positions, range and bearing can be determined.  The 

relative position of the features is used in a position estimation filter, such as an Extended 

Kalman Filter (EKF) to determine the updated position of the unmanned vehicle in the 

undersea environment.  This is called feature-based navigation.  In some situations there 
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are multiple features within the sonar field of view (FOV).  The proposed method can 

prevent confusing the features and sending bad inputs into the EKF, which would then 

result in erroneous estimates of the vehicles position in the environment.  Using velocity 

estimates from the sonar images accurate predictions of the location of features from one 

image to the next can be determined.  Using this predicted position, compared to the 

measured position, ensures that individual features are tracked accordingly.  Ensuring 

that the new positions of the features are inputted correctly will result in a more accurate 

vehicle position update. 

 

C. REMUS VEHICLE DESCRIPTION 

The Remote Environmental Monitoring Units (REMUS) AUV was used to 

evaluate this thesis.  The advantage of the Naval Postgraduate School REMUS AUV is 

that it is equipped with both the forward looking sonar (FLS) and an acoustic Doppler 

current profiler (ADCP) Doppler velocity log (DVL).  The proposed image correlation 

method from the FLS can be evaluated against the results of the ADCP DVL 

measurements.  This permits comparisons between the estimated and measured velocities 

to ensure the algorithm runs correctly.   

REMUS are commercially built low cost AUVs.  They are small, lightweight 

AUVs which were originally developed by the Oceanographic Systems Laboratory at 

Woods Hole Oceanographic Institute.  In 2001, REMUS AUVs entered commercial 

production and they are currently sold by Hydroid, Inc.  REMUS is used for a variety of 

applications which include environmental sensing, harbor security, and mine 

countermeasure operations.  The vehicle operates with a laptop computer.  Launching and 

recovery operations are simplified due to the vehicle’s compact size and light weight. As 

seen in Figure 2, it is a small portable system that is 7.5” (19 cm) in diameter, 63” (160 

cm) long, and weighs 80 pounds (37 kg).  As defined by the vehicle classifications in the 

US Navy UUV Master Plan the REMUS AUV is considered a man-portable vehicle.  As 

a package, REMUS incorporates a wide range of onboard sensors and includes an 

upgradeable payload for the addition of unique sensor packages.  All of these factors 

make REMUS an attractive platform for US Navy applications.  Furthermore, research 
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tailored to the REMUS platform has the distinct advantage of applying directly to a 

vehicle already in production and presently deployed by the US Navy.  The U.S. Navy 

currently uses variants of the REMUS AUV to assist the Naval Special Clearance Teams 

to locate mines. 

 

 
Figure 2.   REMUS AUV (From Hydroid Inc., 2007) 

 

REMUS can be configured with many different types of sensors such as: side 

scan sonar, an ADCP, inertial navigation system, and acoustic modem.  The navigation 

system includes a compass, the above-mentioned ADCP to provide speed over ground 

when ground lock is available, and an acoustic LBL system to correct accumulated dead 

reckoning errors.  REMUS simultaneously senses its depth under the surface of the water 

and uses it’s Teledyne Technologies Inc. RD Instruments (RDI) Workhorse Navigator 

based ADCP DVL sonar to detect its altitude above the ocean floor.  The ADCP DVL is 

also used to calculate the ground-referenced or water-referenced vehicle velocity.  

Currently side scan sonar is employed to detect objects on or near the sea floor.   
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PHYSICAL/FUNCTIONAL AREA CHARACTERISTIC 
Vehicle Diameter 19 cm 
Vehicle Length 160 cm 
Weight in Air 37 kg (<80 lbs.) 
Trim Weight in Air 1 kg 
Maximum Operating Depth 100 meters 

Energy 1kw-hr internally rechargeable 
Lithium ion 

Endurance 
22 hours at optimum speed of 
1.5m/s (3 knots).  8 hours at 
2.6m/s (5 knots) 

Propulsion Direct dive DC brushless motor 
to open three bladed propeller 

Velocity Range 0.25 to 2.8 m/s variable over 
range 

Control 2 coupled yaw and pitch fins 
On/Off Magnetic switch 

 
External Hook-up  

Two pin combined Ethernet, 
vehicle power and battery 
charging; 4pin serial connector  

Navigation 
Long base line; Ultra short 
base line; Doppler assisted 
dead reckon; (Optional: GPS) 

Transponders 20-30 kHz operating frequency 
range 

Tracking 
Emergency transponder, 
mission abort, and ORE 
Trackpoint compatible 

Sensors Doppler Velocity Log RDI 1.2 MHz up/down looking 

Side Scan Sonar 600 or 900 kHz MSTL AUV 
model 

 

Table 1. REMUS Specifications (From Hydroid Inc., 2007) 
 

The Naval Postgraduate School REMUS AUV is equipped with a forward 

looking sonar (FLS) that is normally used for detection of objects on the bottom and 

within the water column as well as for obstacle avoidance.  This FLS is a low-power, 

high-resolution Blue View Technologies Blazed Array active sonar that operates at 450 
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kHz.  The FLS provides a 45 degree field of view and has an effective range of 450 feet, 

or 137.2 meters.  The range resolution of the FLS is adjustable, and the two Blazed Array 

transducers are also reconfigurable.   The Blazed Array sonar is discussed further. 

 

D. THESIS SCOPE AND STRUCTURE 

The goal of this thesis is to utilize sequential Blazed Array sonar images to 

accurately estimate forward and lateral velocities as well as the heading rate of an AUV.  

Numerous component problems must be addressed to achieve that goal.  The sonar 

images are a matrix in Cartesian coordinates comprising of pixels whose values (16 bit, 0 

to 65535) represent intensities of the return strength of the forward looking sonar.  A 

template matching, or image correlation, algorithm is presented, where the previous sonar 

image is modified to simulate motion of the AUV.  Euclidean transformations using a 

combination of translation and rotation will simulate motion of the vehicle in the image.  

The correlation coefficient is calculated comparing the images.  A search is performed 

and the transformation which maximizes the correlation coefficient is converted to 

estimates in the forward velocity, lateral velocity, and heading rate through motion 

analysis.  The estimated velocities and heading rates is compared to the ADCP DVL 

measured velocities and the compass measured heading rates.  The velocity estimates 

could be used as inputs into the AUVs control algorithms and steering model, replacing 

the inputs from current velocity measurement techniques.  The effect on the navigation 

performance of the AUV steering model can be determined under these conditions.  
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Figure 3.   REMUS AUV (From UUV Master Plan, 2004) 

 

Chapter II will present the theory of active sonar, covering specifically the 

operation of the ADCP as it utilizes Doppler Effects to measures velocity, and the 

operation of the Blazed Array transducers.  Chapter III will provide the details of the 

image processing and computer vision techniques applied to estimate the velocities of the 

AUV.  Due to the interdisciplinary nature of this thesis, previous related work is 

discussed in the chapter introductions and the applicable sections.  Chapter IV will detail 

the steering model for the REMUS AUV.  Chapter V will present the vehicle simulation 

in detail and the simulation results.  Finally, Chapter VI provides thesis conclusions and 

recommendations for future work.  The supporting code utilized in this work is retained 

in the appendices to this thesis.  
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II. ACTIVE SONAR 

A. INTRODUCTION  

Active sonar is the use of a transmitted acoustic signal to navigate and locate 

features.  The physical propagation of that signal in water can be modeled and accurate 

ranges and bearings to features can be determined from the returned acoustic signal, 

which is also called an echo.  The active sonar process is a method of echo-locating 

features in the underwater environment.  A transducer both produces an acoustic pulse, or 

‘ping’, and listens for the reflected return signal.  Range as well as bearing to a feature or 

object can be determined from the return signal. (Waite, 2002)  The time measured from 

the transmission of the acoustic signal (t) and the speed of sound in the water (c) is used 

to calculate the range to the feature that resulted in the return signal. 

 Range / 2ct=  (1) 

The reflected signal which is detected contains information, besides location, 

about the feature.  The intensity and size of the return signal can be used to aid in the 

identification of specific features.  Images are created from the returned acoustic signal.  

Based upon the time that return signal is measured and the speed of sound propagating 

through the water as well as the bearing that the signal is received, the location of 

features can be accurately displayed within the image. (Figure 4)  However due to the 

process of the propagation of sound in the water there is significant noise associated with 

the acoustic signal.  This noise will affect the return signal measured by the transducer.  

The inherently noisy nature associated with sonar is much greater than the noise that 

would be associated with optical images (Cuschieri, 1998).  Motion analysis becomes 

more challenging with the noisy nature of the sonar images. 

The continued development of active sonar has resulted in a variety of systems; 

however the concept of utilizing the propagation of sound through the water has 

remained constant.  Many types of acoustic signals have been designed; continuous wave 

pulses and frequency modulation pulses are examples.  Utilizing digital signal processing 

the signals can be manipulated to form specific beam patterns.  Various frequencies are 
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used based upon their propagation performance in the undersea environment.  Sonar can 

also be used to measure the Doppler shift of contacts.  This frequency shift between the 

transmitted and received signals is a result of the relative motion of the contact with 

respect to the transmitting platform.  The RDI ADCP utilizes the Doppler shift of the 

active signals to measure the velocity of the REMUS AUV.  The process by with the 

change in frequency between the transmitted and received signals is converted into a 

measurement of the vehicle velocity is discussed further. 

 

Figure 4.   Blazed Array FLS Image of Multiple Features REMUS AUV 012506. 
 

B. ACTIVE SONAR EQUATIONS  

Active sonar systems transmit a pulse of sound and then listen for return echoes.  

The sonar equation accounts for how intense the sound source is (source level), sound 

spreading and attenuation as the sound pulse travels from the sonar to the target 
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(transmission loss), the amount of sound reflected back toward the sonar by the target 

(target strength), sound spreading and attenuation as the reflected pulse travels back to 

the receiver (transmission loss), the background noise at the receiver (noise level), and 

the receiver characteristics (array gain).  The terms in the sonar equation are all in 

decibels, and they are added together forming the active sonar equation. 

The sonar transmits a signal with a source level SL, given in underwater decibels 

referenced one meter from the source. The sound becomes weaker as it travels toward the 

target, due to spreading and absorption. The total reduction in signal intensity is called 

the transmission loss TL. The sound intensity at the target is then (SL -TL). Only part of 

the sound that hits the feature is reflected back toward the sonar source. The intensity of 

the echo one meter from the target relative to the intensity of the sound hitting the target 

is called the target strength TS. (Waite, 2002)  The echo one meter from the target 

essentially looks like the signal from a source with a source level of: 

 Echo intensity (decibels) = (SL - TL) + TS (2) 

As the reflected signal travels back to the sonar system, the signal intensity is again 

reduced by the transmission loss TL. The intensity of the returned signal or echo at the 

receiver is then: 

 Returned signal intensity (decibels) = (SL - TL) + TS - TL (3) 

which can be simplified to: 

 Returned signal intensity (decibels) = SL -2TL +TS (4) 

If the noise level at the receiver is NL decibels, then the ratio of the signal level to the 

noise level at the receiver, called the signal-to-noise ratio (SNR), is: 

 SNR (decibels) = SL -2TL +TS - NL (5) 

 As can be seen from the developed active sonar equation, the intensity of the 

return can depend on many factors. The propagation of sound in the water, angle of 

incidence, range, feature hardness, water and environmental conditions can all affect the 

intensity of the active sonar return signal.  

 



 12

C. DOPPLER VELOCITY MEASUREMENTS 

The Doppler Effect is the change in frequency and wavelength of a wave that is 

perceived by an observer moving relative to the source of the waves.  For waves, such as 

acoustic waves, propagating though the ocean, the velocity of the observer and of the 

source is reckoned relative to the medium in which the waves are transmitted. The total 

Doppler Effect may therefore result from both the motion of the source and the motion of 

the observer.  Doppler sensors have been used for several years to aid in navigation.  The 

Doppler sensors calculate the AUV velocity relative to the sea floor or the water column 

(they also measure water currents).  The sensors transmit a high frequency narrow beam.  

Due to the motion of the vehicle the frequency of the returned signal is slightly different.  

The shift in frequency is then used to calculate the velocity of the vehicle.   

The REMUS AUV has a 1200 kHz Teledyne RDI Workhorse Navigator ADCP 

DVL.  This ADCP is a 4 beam sensor in a Janus configuration (facing opposite 

directions) with a 60 degree depression angle.  The sensor is both upward (Figure 5) and 

downward looking.   

 

 

 

Figure 5.   REMUS ADCP Upward Beams (From NOAA’s Marine Navigation 2007) 
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The ADCP measures the two way Doppler shift.  As the acoustic signal travels 

from the transducer to the bottom or surface, there is a Doppler shift due to the moving 

transmitter, which is the source, and a stationary bottom.  Once the acoustic signal 

reaches the surface or bottom it is reflected and scattered.  Some of the acoustic signal 

travels back to the transducer; therefore the Doppler shift is due to the stationary bottom, 

which is now the source, and the moving transducer. The two Doppler shifts are not 

equal.  As derived by Jorgensen the velocity of the vehicle (v) the frequency of the 

transmitted signal received at the bottom is 

 
( )1 cos

o
b

ff v A
c

=
−

 (6) 

Where fo is the frequency of the transmitted signal, v is the vehicle speed, c is the 

speed of sound, and A is the transmission depression angle from the horizontal. The 

acoustic signal is then scattered back to the AUVs transducer from the bottom. The 

frequency shift due to the Doppler, from the scatters to the transducer is the received 

frequency. 
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The delta Doppler frequency is the difference between the transmitted frequency 

and the received frequency. This would be the delta Doppler frequency for a single 

acoustic beam. 
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Since the denominator is approximately unity the equation can be reduced to the 

following 



 14

 ( )2 cosd o
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Using the Janus configuration, the acoustic beams which are on opposite sides can 

be used to reduce the errors associated with this equation. Using the delta Doppler 

frequency from a fore and aft beam, then the equation becomes  
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Which can be rewritten as 
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Since the second term of the denominator is negligible, the equation can be 

reduced to  

 ( )2 coso
vf f A
c

∆ =  (12) 

However, the depression angle of the transducers is 60 degrees; therefore the 

equation can be simplified (Jorgensen, 1993) 

 v f λ= ∆  (13) 

Since the ADCP utilizes the same principles as other active sonar systems the 

same errors are associated with the systems.  The ADCP utilizes a higher frequency than 

the FLS and side scan sonar, however the principles associated with the propagation of 

sound through the water remains unchanged.  The advertised long-term accuracy of the 

Teledyne RDI Workhorse Navigator ADCP DVL is 0.2% or 0.1 centimeters per second.  

 

D. NOISE ASSOCIATED WITH SONAR SYSTEMS 

The inherently noisy nature associated with sonar images (Cuschieri, 1998) makes 

the process of motion analysis challenging.  There are several sources of noise associated 
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with active sonar.  Sonar systems usually need a level of SNR to determine if a contact is 

detectable.  Noise can come from thermal/electrical noise, ambient noise, vessel noise, 

and reverberation.  Thermal/electrical noise is produced by the electrical system 

associated with the sonar.  Any resistance within the sonar system is a source of thermal 

noise. (Waite, 2002)  Sonar designers take this noise into consideration, and sonar 

systems are designed to keep this noise at a relatively low level.  Ambient noise, which is 

also referred to as background noise, includes all of the noise in the ocean.  Processes 

such as wind and rain can significantly increase the level of ambient noise by increasing 

the sea state.  The formation and collapse of small air bubbles is a noisy evolution.  

Shipping in harbors and transient lanes increases the ambient noise.  Also a variety of 

marine life can increase the ambient noise, for example marine mammals and shrimp can 

produce high levels of noise.  Vessel noise is the noise created by the vehicle itself.  This 

would include flow noise and the noise associated with propulsion and additional 

machinery.  For a small battery powered AUV operated at relatively slow speeds these 

vessel noise sources would be small. 

Reverberation is a considerably more significant source of noise.  Reverberation 

is a result of the active acoustic signal being scattered.  Scattering can be caused by 

marine life, inanimate matter suspended in the water column, and even the 

inhomogeneous structure of the water column itself.  Significant scattering can also be 

caused by the ocean surface and the sea bed.  Some of the scattered signal is directed 

back to the transducer.  This component is called backscatter, and this energy is 

reverberation.  Many of the current AUVs operate in the littoral environment.  Littorals 

are near-shore areas, which are shallow water environments.  The shallow waters results 

in high reverberation from both the surface of the ocean and the sea bed.  These near 

shore and harbor areas also have higher concentration of suspended inorganic material.  

This increased concentration of matter in the water column can also increase the level of 

reverberation.  

The active acoustic signal is affected by a variety of factors.  Environmental 

conditions such as the concentration of marine life and suspended inorganic material in 

the water can affect the noise level in the acoustic return signal.  As the concentration of 



 16

particulate material in the water increases then the amount of reverberation also 

increases.  Therefore the SNR would decrease under these conditions.  

 

E. BLAZED ARRAY TRANSDUCERS 

The Naval Postgraduate School REMUS AUV is equipped with a forward 

looking sonar (Figures 6 and 7).  This sonar is typically used for detection of objects on 

the bottom and within the water column, as a gap-filler for the side scan sonar, well as for 

obstacle avoidance.  This FLS is a low-power, high-resolution Blue View Technologies 

Blazed Array active sonar that operates at 450 kHz.  The FLS provides a 46 degree field 

of view in the imaging plane and 15 degree field of view perpendicular to the imaging 

plane (Figure 8).  The FLS has an effective range of 450 feet, or 137.2 meters.  The range 

resolution of the FLS is adjustable, and the two Blazed Array transducers are also 

reconfigurable.    

 
Figure 6.   Naval Postgraduate School REMUS AUV with BLUEVIEW FLS 
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Figure 7.   Naval Postgraduate School REMUS AUV with BLUEVIEW FLS.  Note the nose 

cone is removed, and the transducers are in the horizontal configuration.  

 

 

 

Figure 8.   Field of View of a Blazed Array transducer (From BlueView Technologies Inc., 
2007) 
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P450-15-RS BLUEVIEW FLS CHARACTERISTICS 
Max Range 450 ft 
Update Rate Up to 10 Hz 
Swath Width 45 degrees 
Beam Width 1.0degree x 15 degrees 
   

ELECTRICAL 
Power 19-35 volts DC @ 25 watts 
Communications Ethernet 
Communications Settings IP Address 192.168.1.100 
   

MECHANICAL 
Depth Rating 100 m 
Weight in air w/o PC104 12.2 lbs 
Weight in water w/o PC105 0.3 lbs (salt) / 0.6 lbs (fresh) 
Dimensions Length w/ Nose Cone 11.4 in 
Dimensions Width 7.5 in 
   

ACOUSTIC 
Operating Frequency 300-600 kHz 
Number of Beams 20 

 

Table 2. Blue View FLS Specifications (From Blue View Inc., 2007) 

 

Scanning type sonars are common and work by mechanically rotating a single 

acoustic beam over the imaging area.  This method is less accurate when used from a 

moving platform, such as an AUV.  The Blazed Array transducers produce many small 

acoustic beams simultaneously.  Blazed Array transducers generate an acoustic beam 

with a series of frequencies ranging from 300 kHz to 600 kHz, where each frequency is 

radiated at a specific characteristic angle (Figure 9).  Each beam incrementally increases 

15 kHz, for a total of 20 individual beams which are transmitted with each ping.  In 

essence, this process is frequency steered acoustic beamforming.  Multiple independent 

beams can be simultaneously formed from a single hardware channel, which allows for 
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smaller sonar designs which are cheaper and require less power.  These small sonars are 

well suited for AUVs (Thompson, 2001). 

 
Figure 9.   Illustration of Blazed Array Beamforming (From Thompson, 2001) 

 

The overall concept of active sonar still applies with the Blazed Array 

transducers.  The broadband signal is generated, which interacts with the environment 

and targets within it.  Backscattered signal is then received by the transducers, and the 

image is generated.  The significant difference with Blazed Array transducers is that 

angular imaging information is embedded into the transmitted broadband signal through 

the frequency domain.   

Imaging sonar results in a two dimensional image projection of the three 

dimensional environment.  The center of the projection is the face of the Blazed Array 

transducers, which is a finite distance from the projection plane.  The two dimensional 

projection is created from the acoustic reflections due to features within the sonar’s field 

of view.  Another important characteristic of the Blazed Array sonar images are that they 

are generated from two individual staves.  Mismatched staves could result in poorer 

results due to the poorer acoustic performance of the sonar.  
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F. NEAR-FIELD EFFECTS  

During the initial model simulation it was observed that some of the results 

estimated that the forward velocity of the vehicle was zero. An evaluation of these results 

and an examination of the sonar displays resulted in images that had no significant 

features within it, but had near-field effects. These effects, as seen in Figure 10, are 

intense returns that are directly in front of the two staves of the Blazed Array. These near-

field intensities returns are strong signals and are detected forward of the sonar in the two 

sequential images.  Therefore, when the image matching is conducted by maximizing the 

correlation coefficient the vehicle velocity in the forward direction is approximated to be 

zero.  The intense near-field effects extended up to include more than a quarter of the 

sonar field of view.  Further pier-side experimentation which included only the sonar and 

not the AUV do not exhibit these near-field effects.  This would seem to suggest that the 

effect could be caused by noise associated with the vehicle.  During the experimentation 

the sonar was also limited in the range of motion.  There was no forward motion, and 

therefore no flow noise.  There was no ADCP or side scan sonar, therefore the was no 

additional acoustic noise being transmitted into the ocean 
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Figure 10.   FLS Image with Dominate Near-Field Effects REMUS AUV 012506. 

 

Pitch and roll of the AUV were examined to determine if these near-field effects 

were caused by reverberation due to the surface of the ocean or the sea floor.  There 

appeared to be no correlation to the pitch and roll of the vehicle to these effects.  Also 

evaluated were the conductivity, temperature and depth measurements from the mission 

to evaluate if this effect could be a result of environmental conditions such as increased 

suspended particulate or inhomogeneous conditions within the water column.  However 

there was no indication that any environmental conditions were causing the near-field 

effects.  The level of the transmitted signal was examined to determine if insonofication 

could be a result from excessive peak power, produced by the transducer.  The 

transmitted acoustic signal was not sufficient enough to cause the formation of bubbles 

directly in front of the staves.  BlueView Technologies, Inc. confirmed that peak power 
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associated with the source level of the FLS is less than the peak power necessary to result 

in bubble formation. 

From a discussion with personnel from BlueView Technologies, Inc. the near-

field effect is possibly a result of the frequency beamforming.  In an effort to produce the 

most appropriate beams from the two staves, signal processing is used to manipulate the 

transmitted signal.  There are many benefits and costs associated with manipulating the 

signal.  Range resolution, beam width, and side lobe strength and numbers are all affected 

by the beamforming.   

Additional experimentation with the FLS detached from the REMUS AUV 

resulted in images which did not present the near-field effects.  This suggests that the 

near-field effects are a result of some aspect of the AUV and not the actual sonar system.  

The source of the near-field effects requires additional research and will be discussed 

further in recommendations for future work.   
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III. COMPUTER VISION 

A. INTRODUCTION  

The optics and optical processing associated with the human eye is complex.  

There are significant amounts of processing accomplished, at both low level and high 

level.  People can rely on inference and assumptions, while computing devices must 'see' 

by examining individual pixels of images, processing them and attempting to develop 

conclusions with the assistance of knowledge bases and features such as pattern 

recognition engines.  Computers rely upon sensors which are not equivalent to the human 

optics.  Sensors such as optical and infrared cameras as well as sonar and radar provide 

digital signals which the computers must analyze.  Computers do not 'see' in the same 

way that human beings process optical signals.  A benefit of computer vision systems is 

that they are capable of processing images consistently.  However, computer-based image 

processing systems are typically designed to perform a single, repetitive task, and despite 

significant improvements in the field, no computer vision system can yet match some 

capabilities of human vision.   

Although some computer vision algorithms have been developed to mimic human 

visual perception, a number of unique processing methods have been developed to 

process images and identify relevant image features in an effective and consistent 

manner.  Computer vision can be considered the method to describe a scene or extract 

useful information from the scene.  Machine vision is the application of computer vision 

to industry and manufacturing.  The goal of machine vision is to recover useful 

information from the images and then apply that information.  Machine vision most often 

uses digital input/output devices and computer networks to control other equipment such 

as robotic arms, or control surfaces on an AUV.  Machine vision is a subfield of 

engineering that encompasses computer science, optics, mechanical engineering, and 

industrial automation.   

The Navy UUV Master Plan identifies several of the areas where research and 

development continues to be required.  The development of autonomy and control as well 
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as sensors and sensor processing are areas requiring more research and development.  

Machine vision has a role in the further developing the autonomy of unmanned vehicles.  

This thesis applies computer vision techniques to the sonar images. 

Machine vision methods have been applied extensively to images from cameras 

for use in navigation and determining unmanned vehicle positioning.  Unmanned aerial 

vehicles and space vehicles have used inputs from cameras to aide in navigation and 

control (Roumeliotis, 2002).  Some AUVs have also used cameras for navigation and 

control (Kalyan, 2004).  The potential of using optical cameras for navigation in the 

undersea environment is limited, since light does not travel the distances necessary to 

make this a practical method in the undersea environment.  However the machine vision 

methods have not been applied as extensively to sonar images.  Sonar imagery 

traditionally has been used to detect, localize, track, and identify targets of interest.  

 

B. MOTION ANALYSIS 

For many years now images from cameras have been used to determine the 

motion of objects within the scenes. Motion analysis is frequently based on a small 

number of sequential images. Typically, points of interest are identified, analyzed and 

velocity vectors are created from the pairs of points, or features, in the sequential images. 

The points of interests are usually identified using a feature detector, which is discussed 

further. 

Optical flow is a concept for estimating the direction and speed of instantaneous 

motion of intensity points within a sequence of visual images.  Many researchers have 

used optical flow methods to determine the velocities of objects within a sequence of 

camera images. Appling this idea to the sonar images has resulted in the development of 

acoustic flow, which involves the estimation of the range and azimuth rates of the 

features within the sonar images (Cuschieri, 1998).  Their experimentation was 

conducted using significant features such as a sunken barge; however it was 

accomplished using only sonar images, where previous work employed cameras.  The 

complex noise associated with the sonar images was apparent when compared to the 

optical imagery from cameras.  This noise was identified as a challenging problem to the 
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acoustic flow method, and a theoretical alternative identified by Cuschieri and 

Negahdaripour was to estimate motion directly from the intensity variations within the 

sonar imagery, which is what is proposed within this thesis.  There are several approaches 

for estimating velocity; in this thesis the model will employ a correlation coefficient 

based matching procedure followed by motion analysis.  Motion analysis is done utilizing 

the subtle patterns within the sonar image due to the variability in the ocean bottom.  The 

key attribute to the method of using the template matching techniques and the correlation 

coefficient is that velocity estimates can be made even when there are no intense features 

within the sonar image to track.   

National Aeronautics and Space Administration is utilizing vision to help aid in 

motion estimation for vehicles to land on distant bodies (Roumeliotis, 2002).  Their work 

involves cameras, and tracking distinct features between consecutive images.  Then they 

use a rigid transformation, and a cost function to estimate the motion, where they 

minimize the cost function to optimize the motion estimates.  However, this work was 

done using a high resolution camera.  Similar work was done in an underwater 

environment (Kalyan, 2004).  Here they used a high resolution monocular camera to 

estimate the motion.  They needed to conduct a high degree of filtering to the images to 

remove scattering by the suspended particulate (Kalyan, 2004)  A corner detector was 

then used to extract a large number of features, and a correspondence method which 

compares all corners detected within the two images.  The corresponding points are then 

used to estimate the homography between the two frames.  The homography is the 

relationship between the two images, where any point in one image corresponds to one 

and only one point in the other, and vice versa. The homography contains the rotation and 

translation, which is then converted to an estimate of motion.  Additional work involved 

optical triangulation using the reflection of lasers off the bottom (Caccia, 2002), where 

the reflections were identified through their intensity. The characteristic problems 

associated with underwater vision, such as suspended particulate, limited range, non-

uniform lighting, and the unstructured environment were identified. 

Previous work which involved the Blazed Array sonar utilized the transducers in 

the vertical configuration.  Using image processing the ocean floor is identified within the 
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sonar image.  A Hough Transform was used to determine the height of obstacles above 

the ocean floor.  The AUV used this as an input for reactive obstacle avoidance (Horner, 

Healey, Kragelund, 2005) within the vehicle’s autopilot controller to provide greater 

autonomy.  Optical flow techniques applied to the sonar images were identified as an 

additional method for obstacle avoidance.  

The process within this thesis involves two sequential sonar images which is 

analyzed.  These FLS images are created from the intensity returns of the active acoustic 

signal. The image is a matrix in Cartesian coordinates where individual pixels value 

represents the intensity of the return signal.  A critical assumption is that objects within 

the image are stationary and that the motion within the image is due solely to the vehicle.  

This assumption would break down if there were significant concentrations of suspended 

particulate within the water column.  The assumption could also break down if the 

vehicles operating area had significant kelp or other types of seaweed growing on the 

bottom that could potentially sway with the currents.  A search is conducted utilizing a 

Euclidean transformation which is then performed on the image.  The transformation is 

applied where the rotation is directly related to the heading rate, and the translation is 

directly related to the forward and lateral velocities.  The best match between the two 

sequential images is then determined by calculating the correlation coefficient of the two 

image matrices.  The transformation associated with the best match is then used to 

estimate the velocity in the forward and lateral directions as well as the heading rate. 

 

C. FEATURE IDENTIFICATION 

Feature detection has been an area where there has been much development.  

There are many types of feature detectors that have been used successfully within image 

processing.  Depending upon the features that an operator expects to find and the features 

that an operator wants to track within the program, there are many detectors from which 

can be chosen.  Feature detection is the process by which a program examines a particular 

image and finds points of interest that can be easily found with the next image.  Examples 

of proven feature detectors are edge detectors, corner detectors, and line detectors.  In an 

image, these features are identified by the abrupt changes in intensity or brightness 
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between the pixels (Sonka, 1995).  A corner detector was then used to extract a large 

number of features from underwater camera images in previous work (Kalyan, 2004).  

Most feature detectors have been developed for visual camera images, some of these 

were considered for use in identifying features with the sonar image.  The line detector 

was considered due to the sonar’s characteristically good range resolution.  

When considering a feature detector for the sonar image, researchers first must 

understand the actual sonar image itself.  A sonar image is created from the intensity of 

the return signal of the detections, vice a combination of colors that create a camera 

image.  The intensity itself is an actuality, a detection of a feature.  Therefore by 

remaining within the image-space, it is not necessary to utilize a separate and distinct 

feature detector.  Within this thesis the images are compared using the calculated 

correlation coefficient, which performs the pixel comparison within the image space.  

The removal of this process provides a reduction in processing time and would reduce the 

processing power necessary to perform the operation.  In this thesis it is not necessary to 

track individual features, however if this process was used in cooperation with a feature-

based navigation program it would be necessary to identify and track individual features 

between the images.  Feature-based navigation programs detect the features and track 

them to create a map of the environment with which the AUV then can use to navigate.  

This difference, utilizing dense image matching, results in higher correlation than sparse 

feature location matching.  However, determining the correlation with dense image 

matching requires more processing time. 

 

D. EUCLIDEAN TRANSFORMATION 

Sequential images from the forward-looking sonar are taken while the vehicle is 

traveling through the undersea environment.  The goal of this thesis is to compare the 

images to identify and estimate that motion in the forward and lateral direction and 

heading rate.  The assumption has been previously stated that all of the features detected 

by the sonar are stationary bottom features.  Therefore the apparent motion by the 

features is due solely to the motion of the vehicle.  To compare the sonar images the 

estimated motion is applied to the previous image.  This is done using an image 
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processing technique called an affine transformation.  There are several types of image 

transformations, in this thesis a combination of rotation and translation is applied to 

simulate the estimated motion of the vehicle. 

In essence, each feature, as identified through intensity, within the first image is 

matched to the same intensity within the second image.  When this matching is conducted 

the current image is held stationary while the previous image is adjusted using a 

transformation to find the correct dr/dt and dθ/dt that maximizes the correlation 

coefficient.  The transformation that maximizes the correlation coefficient will then be 

converted to estimates of the motion between the two sonar images.  These processes of 

rotation and translation are applied to the images within the image space. 

To simulate motion between the previous sonar image and the currently observed 

sonar image the rotation and translation applied must rigid motion with no scaling or 

distortion.  The transformation method must preserve the size of the image and the 

lengths between the features; therefore there is no distortion within the image.  The rigid-

body model requires that the real world Euclidean distance between any two pixels 

coordinate locations to remain unchanged by the transformation (Jain, 1995).  The 

Euclidean transformation, also referred to as rigid-body transformation, is used within 

this thesis since it prevents distortion within the images.   

Euclidean transformation normally utilizes a rotation matrix and a translation 

matrix.  In Figure 11 Ti,j represents translation vector between images `j' and `i' and αi,j 

rotation angle of image j in image i coordinate system (Sonka, 1995).  Euclidean 

transformations preserve length and angle, so the shape of an object within the image 

does not change only the position and orientation of the object changes (Figure 11).   
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Figure 11.   Rigid Transformation Model of Image Displacement 

 

Euclidean transformations can be decomposed into two operations, first 

translation and then rotation, to simulate forward and lateral velocities and then heading 

rate.  Any Euclidean transformation can be represented as a matrix of appropriate size. 

For example: 
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Where R is a rotation matrix and T is a translation vector. The two dimensional 

Euclidean rotation matrix using homogenous coordinates is: 
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Once the rotation and translation are applied to the sonar images the correlation 

coefficient can be calculated.  The correlation coefficient conducts a pixel-by-pixel 
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comparison of the two images.  The presence of pixels outside the field of view would 

provide unrealistic results when the correlation coefficient is calculated and therefore 

would result in inaccurate estimates of velocity.  These overlapping areas which are 

outside the combined field of view of the two sonar positions are removed to ensure an 

accurately calculated correlation coefficient. 

 

E. CORRELATION COEFFICIENT BASED MATCHING 

Matching has been used to determine image positions where known objects and 

specific patterns are located (Sonka, 1995).  In a stereoscopic scene where more than one 

image of a scene is taken from different locations, matching can be used to determine 

scene properties.  Matching has been used in the undersea environment to create mosaics 

of the ocean bottom (Fleischer, 1998).  In this thesis the previous sonar image is the 

pattern against which the current sonar image is compared.  The patterns that is compared 

are the slight variations in the intensity of the sonar returns.  Even without strong returns 

from features, there is slight variation within the image due to the characteristics of the 

bottom.  Ripples in the sand, for example, can give slightly different return intensities due 

to the variation associated with the acoustic signal scattering off of the ripple.  The 

correlation-based approach requires the assumption that the relative local intensities 

within the image remain constant.   
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Figure 12.   Example of a pattern in FLS image from REMUS AUV 012506 

 

In essence, the pattern within the first image is matched to the same pattern within 

the second image.  Using the sonar images as matrices of intensities the correlation 

coefficient can be calculated.  It is not necessary to use a feature detector to identify and 

then track specific points between the images.  The use of the entire image actually 

results in higher correlation than sparse feature location matching.  Utilizing a search and 

maximizing the correlation coefficient between the two sequential images, the optimal 

rotation and translation associated with the two images can be determined.  The 

translation is then converted to velocities estimates in both the forward and lateral 

directions and the rotation is converted to an estimate of heading rate.   

Sonar images were compared and evaluated to determine the intensities that were 

being observed and used to conduct the matching and subsequent velocity estimates.  The 

near-field effects (Figure 10) and the mine-like features (Figure 4) had strong intensities 
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as can be seen by the pixel values.  Mine-like features were placed on the ocean bottom 

to simulate a mine field.  The features intensity varied between sequential images but was 

strong, easily exceeding values of 700.  The average value of the intensity in the far-field 

sonar field of view, not including the features, varied from 30 to 50.  It is the patterns 

generated within the sonar images at these low intensities that result in the velocity 

estimates (Figure 12).   

The correlation coefficient is a measure of how well the patterns within the two 

images “match”.  Matching has been used to identify a portion, specific object, or pattern, 

within a larger image.  This matching technique is applied to dynamic images.  Matching 

is rarely perfect since the pattern is usually corrupted by various sources of noise and 

geometric distortion therefore an absolute match is not possible (Fleischer, 1998).  The 

value of the correlation coefficient ranges from negative 1.0 to positive 1.0, where a 

perfect match would be exactly 1.0.  The prefect match would exist when every single 

pixel within one image is the identical value in the second image.  With the introduction 

of noise, a precise match is impossible.  However the maximum match, as measured by 

the correlation coefficient can be determined.  The previous sonar image is generated 

from the return intensities, which is the base pattern from which the matching process is 

conducted.  The estimated rotation and translation is applied to the previous images 

through the Euclidean transformation.  How closely the two sonar images match is then 

determined using the correlation coefficient.  The correlation coefficient is computed 

between the previous sonar image (A) and the current sonar image (B) where both A and 

B are matrices of size m by n. 

 
( )( )

( ) ( )

mn mn
m n

2 2
mn mn

m n m n

A A B B

A A B B
rho

− −
=

⎛ ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑∑

∑∑ ∑∑
 (16) 

Once the maximum correlation coefficient is determined, then the best estimate of 

the rotation and translation is known.  From the optimal transformation the velocity and 

heading rate estimates can be determined.  The rotation that was applied directly 

corresponds to the change in heading of the vehicle and the translation applied 
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corresponds directly to the amount of forward and lateral distance traveled.  The 

difference in time between the two sonar images is used to convert those distances 

traveled and the change in heading into an estimate in the vehicles velocity and heading 

rate during the period between the sonar images.  The estimated velocities and heading 

rates could then be used as inputs into the vehicles steering model to estimate the vehicles 

motion and position.   
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IV. STEERING MODEL 

A. INTRODUCTION 

Rigid body models are formed in order to analyze, predict, and control motion 

behavior of autonomous machines that travel over land, air, and undersea.  Each type of 

vehicle model differs in only the terms of the forces applied to produce motion.  

However, these forces are often controllable and can thus be studied from a prospective 

of stabilization.  This chapter will only deal with the modeling of underwater vehicles.  

The approach taken with underwater vehicles is that of a moving body in free space 

without constraint.  The forces applied to underwater vehicles include the following:  

inertial, gravitational, hydrostatic, propulsion, thruster, and hydrodynamic lift and drag 

forces.  (Healey class notes). 

 

B. EQUATIONS OF MOTION IN THE HORIZONTAL PLANE 

The following paragraphs describe a simplified development of the steering 

model used to control the REMUS vehicle.  For a more detailed development, see 

(Healey, 1995).  This model was adapted from that of the Acoustic Radio Interactive 

Exploratory Server (ARIES) AUV (Healey and Marco, 2001) and is based on the 

following assumptions: 

• the vehicle behaves as a rigid body 

• the earth’s rotation is negligible for acceleration components of the 

vehicle’s center of mass 

• the primary forces that act on the vehicle are inertial and gravitational in 

origin and are derived from hydrostatic, propulsion, thruster, and 

hydrodynamic lift and drag forces. 

Before describing the equations of motion (EOM) that govern the REMUS 

steering model, a coordinate system for the vehicle and its surrounding area must be 

defined.  The EOM are derived using a Newton-Euler approach that relates the position 
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and motions in the local plane to those in the global plane.  The geometry of the local and 

global coordinate system can be seen in Figure 13. 

O
G ρ G

RO

X

Y

Z

x

y

z  
Figure 13.   Local and Global Coordinate System (From Marco and Healey, 2001) 
 

In order to convert from a local velocity vector[ ], ,u v w , where u is surge, v is 

sway, and w is heave, to a global velocity vector , ,X Y Z⎡ ⎤⎣ ⎦
& & & , a transformation matrix 

containing ‘Euler’ angles ( , ,φ θ ψ ) must be defined.  The transformation matrix (T) is 

defined as follows: 

 
cos  cos , sin  cos , - sin 

( , , ) cos  sin  sin  - sin cos , sin  sin  sin  + cos  cos , cos  sin 
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(17) 

Transformation from a global velocity vector to the local velocity vector occurs as 

follows: 

 ( ), ,
u X
v Y
w Z

φ θ ψ
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ = • ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

T

&

&

&
 (18) 

 Transformation from a local velocity vector to a global velocity vector 

occurs as follows: 
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The global angular velocity vector [ ], ,p q r  can be transformed into the rates of change of 

the ‘Euler’ angles as follows: 
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 Healey (1995) derives the equations of motion for a six degree model as: 

SURGE EQUATION OF MOTION 

( ) ( ) ( ) ( )2 2 sinr r r G G G fm u v r w q x q r y pq r z pr q W B Xθ⎡ ⎤− + − + + − + + + − =⎣ ⎦& & &  (21) 

SWAY EQUATION OF MOTION 

( ) ( ) ( ) ( )2 2 cos sinr r r G G G fm v u r w p x pq r y p r z qr p W B Yθ φ⎡ ⎤+ − + + − + + − − − =⎣ ⎦& & &   (22) 

HEAVE EQUATION OF MOTION 

( ) ( ) ( ) ( )2 2 cos cosr r r G G G fm w u q v p x pr q y qr p z p q W B Zθ φ⎡ ⎤− + + − + + − + + − =⎣ ⎦& & &  (23) 

ROLL EQUATION OF MOTION 

( ) ( ) ( ) ( ) ( )2 2
x z y xy yz xz G r rI p I I qr I pr q I q r I pq r m y w u q v p+ − + − − − − + + − +⎡⎣& & & &   

( ) ( ) ( )cos cos cos sinG r r r G B G B fz v u r w p y W y B z W z B Kθ φ θ φ− + − − − + − =⎤⎦&   (24) 

PITCH EQUATION OF MOTION 

( ) ( ) ( ) ( ) ( )2 2
y z z xy yz xz G r rI q I I pr I qr p I pq r I p r m x w u q v p+ − − + + − + − − − +⎡⎣& & & &   

( ) ( ) ( )cos cos sinG r r r G B G B fz u v r w q x W x B z W z B Mθ φ θ− − + + − + − =⎤⎦&  (25) 
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YAW EQUATION OF MOTION 

( ) ( ) ( ) ( ) ( )2 2
z y x xy yz xz G r r rI r I I pq I p q I pr q I qr p m x v u r w p+ − − − − + + − + + −⎡⎣& & & &   

( ) ( ) ( )cos sin sinG r r r G B G B fy u v r w q x W x B y W y B Nθ φ θ− − + − − − − =⎤⎦&  (26) 

Where: 

W = weight 

 B = buoyancy 

 I = mass moment of inertia terms 

 ur, vr, wr = component velocities for a body fixed system  with respect to the water 

 p, q, r = component angular velocities for a body fixed system 

 xB, yB, zB = position difference between geometric center and center of buoyancy 

 xG, yG, zG = position difference between geometric center and center of gravity 

 Xf, Yf, Zf, KF, Mf, Nf = sums of all external forces acting in the particular body fixed 

direction 

In addition, he presents a simplified version of these equations of motion.  In order to 

simplify the initial equations of motions the following assumptions were made: 

• the center of mass of the vehicle lies below the origin 

• xG and yG are zero 

• the vehicle is symmetric in its inertial properties 

• motions in the vertical plane are negligible (i.e., [wr, p, q, r, Z, φ , θ ]=0) 

• ur equals the forward speed, Uo 

The simplified equations of motion are thus: 

  
r ou U=  (27) 

 ( )r o fmv mU r Y t= − + ∆&  (28) 

 ( )zz fI r N t= ∆&  (29) 

 rψ =&  (30) 
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 cos sino r cxX U v Uψ ψ= − +&  (31) 

 sin coso r cyY U v Uψ ψ= − +&  (32) 

 

C. HYDRODYNAMIC COEFFICIENTS 

Healey proposes that due to symmetry of the vehicle, one can heuristically 

determine that only a subset of motions would affect the loading in any particular 

direction (Healey class notes) and uses the following expressions to describe 

hydrodynamic forces of sway and yaw:

   ( , / , , / , , / , )f r rY f v dv dt r dr dt p dp dt t∆ =  (33) 

 ( , / , , / , , / , )f r rN f p dp dt v dv dt r dr dt t∆ =  (34) 

Sway, yaw, and roll motions are coupled.  However, roll motion is often only 

coupled one way and not considered when evaluating horizontal plane steering.  The 

hydrodynamic forces for sway and yaw are linearized using Taylor series expansion to 

determine ‘hydrodynamic coefficients.’  The coefficients are dependent on the shape 

characteristics of the vehicle and have significant affect on the natural stability of the 

vehicle.  The expression for the transverse (sway) force is: 

 
r rf v r v r r rY Y v Y v Y r Y r= + + +& && &  (35) 

and the expression for rotational (yaw) force is: 

 
r rf v r v r r rN N v N v N r N r= + + +& && &  (36) 

This leads to: 
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and 
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f f f f
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r r
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Where: 

rvY& = coefficient for added mass in sway 

rY&  = coefficient for added mass in yaw 

rvY  = coefficient of sway force induced by side slip 

rY   = coefficient of sway force induced by yaw 

rvN & = coefficient for added mass moment of inertia in sway 

rN & = coefficient for added mass moment of inertia in yaw 

rvN = coefficient of sway moment from side slip 

rN = coefficient of sway moment from yaw 

 The hydrodynamic coefficients for steering for the REMUS vehicle were adapted 

from thesis work performed by Massachusetts Institute of Technology (Prestero, 2001) 

establishing estimates of all vehicle coefficients.  Upon re-calculation, Fodrea (2002) 

adjusted the hydrodynamic coefficients to account for variation in experimental data.  

Table 2 lists the REMUS hydrodynamic coefficients for the steering model used during 

this experiment. 
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Table 3. REMUS Hydrodynamic Coefficients for Steering (From Fodrea, 2002) 

 

The dynamics of the vehicles are defined as: 

 ( )
r rr v r v r r r rmv mr Y v Y v Y r Y r Y tδδ= − + + + + +& && & &  (39) 

 ( )
r rzz v r v r r r rI r N v N v N r N r N tδδ= + + + +& && & &  (40) 

 rψ =&  (41) 

 

D. VEHICLE KINEMATICS 

The kinematics of the vehicle is described by Equations (39) and (40).  Ucx and 

Ucy are the current velocities in the associated direction.  The kinematic equations, along 

with the heading rate, compose the steering dynamics of REMUS and can be expressed 

as follows: 
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where ( )r tδ represents the control input for both rudders. 

 

E. VEHICLE DYNAMICS 

The final assumption made for vehicle dynamics (Johnson, 2001) is that the cross 

coupling terms in the mass matrix is zero.  Thus, the final vehicle dynamics are defined 

as: 
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  (43) 

 
F. APPLICATION 

The ultimate goal of using the proposed method of estimating vehicle velocities 

and heading rate is to accurately navigate in the undersea environment.  Once a real-time 

velocity estimate can be provided and employed in the AUVs navigation and position 

estimation systems, these inputs could be used vice the ADCP measurements.  The 

velocities and heading rate estimates from the FLS could be used to update the vehicle 

motion model and state information (Figure 14).  The state information of the vehicle 

contains the vehicle kinematics.  The kinematic equations, along with the heading rate, 

compose the steering dynamics of REMUS AUV. 
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Figure 14.   Using Sensor Updates to Update State Information (From Smith, Self, and 

Cheeseman, 1990) 
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V. SIMULATION AND RESULTS 

A. INTRODUCTION 

The proposed method of estimating velocities from sequential sonar images is 

applied to previously recorded data.  This method assumes that all features within an 

image are stationary, and therefore the relative local intensities remain constant. The 

intensities of the returns within the sonar image are dependent upon range, bearing, and 

time I (r,θ,t).  The AUVs velocity estimate is a determination of the motion between 

images.  The change in intensity over range and bearing with respect to time, dr/dt and 

dθ/dt, is used to perform motion analysis.  The displacements of those features, as 

detected within the images through their intensity, can be converted to an estimation of 

the velocity of the AUV in both the forward and lateral directions.  In essence, each 

feature, as identified through intensity, within the first image is matched to the same 

intensity within the second image.   

The AUV velocity estimate is applied using Euclidean transformations.  This 

transformation method preserves length and angle, so the shape of an image is not 

distorted: straight lines transform to straight lines, planes transform to planes and circles 

transform to circles, for example.  Only the position and orientation of the object 

changes, which is why they are also called rigid body transformations.  Euclidean 

transformations applied in this thesis can be decomposed into two operations, rotation 

and translation.  The process of rotation and translation are applied to the images within 

the image space.  Within an image there is a defined region which is the sonar’s field of 

view; these are the only applicable pixels.  Therefore a modification to the transformation 

must be applied, since non-applicable pixels must be excluded from the correlation 

coefficient.  Since some pixels will be outside the vehicles field of view once the velocity 

estimates are applied, those pixels must not be used in the calculation of the correlation 

coefficient.   

The correlation coefficient is then calculated, comparing the two sequential sonar 

images with the transformation applying a velocity estimate.  A search is then used to 
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maximize the correlation coefficient.  Once the maximum correlation coefficient is 

determined then the translation and rotation are converted back to velocity estimates for 

the REMUS AUV.  

 

B. MODEL PROCESS  

The velocity estimation process was run on sonar image and data collected from 

the REMUS AUV.  The FLS images that were analyzed were collected on 25 January 

2006 in Monterey Bay, California.  The specific area selected was on average 17 meters 

deep, ranging from 15 to 21 meters, with a sandy bottom.  The data was chosen in part 

because the three to four meter surf represented a challenging navigation environment for 

the vehicle.  The mission was a minefield survey; therefore several mine-like objects 

were deployed to simulate a mine field.  Divers visually observed small ripples and pock 

marks within the relatively flat sandy bottom, and occasionally noted sparse kelp growing 

from the bottom.  The REMUS AUV was deployed and executed a preprogrammed 

mission (Figure 15).   
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Figure 15.   REMUS AUV Position and Feature Positions 012506 

 

As can be seen in Figure 15 the mission was a mine field survey using a technique 

commonly referred to as “mowing the lawn”.  The vehicle transited the minefield and 

then conducts two ninety degree turns to perform another parallel transit of the minefield.  

These transits lanes are specifically designed based on the sensor width, to ensure proper 

coverage of the minefield.  After deployment the vehicle dove to the preprogrammed 

depth and conducted the mission at an average altitude of 3.3 meters.  The data collected 

by the REMUS AUV was saved into a Mathworks Matlab© structure 

“state_lbl_adcp_pings012506_01.mat”. (Table 4).  In the example structure it can be seen 

that some of the fields are “-999”.  This is the entry that is used when there is no 

information available during that time.  Not all of the fields update at the same frequency, 

and the “-999” is inserted when there is no new information in that field.  All of the sonar 

images collected during the mission were saved in a folder called “Allpings” as .son files.  
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The Blueview ProVeiwer software saves the entire mission as a compressed record in a 

single file.  Blueview Technologies software ProViewer was used to convert the 

proprietary .son files to xml .raw files.  By exporting and converting the .son to .raw files 

the individual images can be easily accessed for comparison.  

 

          lblLatitude: -999
         lblLongitude: -999
         adcpLatitude:  36.7169
        adcpLongitude: -121.82
      forwardVelocity:  -0.1359
    starboardVelocity: 0.0689
     verticalVelocity:  -0.062
             altitude:  19.1839
             latitude:  -999
            longitude:  -999
                depth:  -999
       compassHeading: -999
          headingRate:  -999
    estimatedVelocity: -999
                pitch: -999
            pitchRate:  -999
                 roll: -999
             rollRate:  -999
        flsFileNumber:  -999
                 time:  3.16E+04

 
Table 4. Example Structure Containing Data from REMUS Mission 012506 

 

 1. Image Preprocessing  
Two previously recorded sequential FLS images are opened for comparison to 

determine the lateral and forward velocities and heading rate of the REMUS AUV 

between the images.  When the image matching is conducted by maximizing the 

correlation coefficient the vehicle velocity in the forward direction is approximated to be 

zero.  As can be seen in Figure 16, the value of the correlation coefficient increases as the 

two images are compared with less forward velocity applied through the Euclidean 
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transformation.  The reduction in forward velocity aligns the high intensity pixels that are 

created from the near-field effects, thus resulting in forward velocity estimates that are 

much less than the actual velocity.  Another artifact of the near field intensities can be 

easily seen in Figure 17.  As the correlation coefficient is calculated at heading rates 

where the magnitude is greater than approximately 10 degrees per second it can be 

observed the correlation coefficient is increasing.  This artifact is generated since at the 

high magnitude heading rates the near-field intensity of one stave is now being aligned 

with the near-field intensity of the opposite stave in the next image. 

 

 
 

Figure 16.   Correlation coefficient versus Forward Velocity and Heading Rate from two 
sequential FLS images REMUS AUV 012506 
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Figure 17.   Correlation coefficient versus Forward Velocity and Heading Rate from two 

sequential FLS images REMUS AUV 012506 

 

To remove the near-field effects from the two sonar images, preprocessing is 

conducted.  Average pixel intensity is determined from the far-field portion of the sonar’s 

field of view.  This average pixel intensity is then used to replace the intensity returns of 

the near field effects.  A constant intensity is not utilized since the relative intensity 

between images is variable.   

Another form of preprocessing was considered for the sonar images.  The images 

are currently in Cartesian coordinate system.  Converting the sonar images to the Polar 

coordinate system was considered, however there would have been distortion within the 

image, especially in the near field region.  If the conversion had been applied, a 

weighting system would have been required to compensate for the distortion.  Due to this 
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distortion, and the additional manipulation that would have been required, it was decided 

to keep the images in the Cartesian coordinate system.  

 2. Transformation 
Using kinematic estimates, bounded by physical characteristics of the vehicle, the 

previous sonar image is adjusted using Euclidean translations in the forward (U) and 

lateral (V) directions.  The velocity estimates in the forward direction were bounded from 

1.0 to 2.0 meters per second, which is based on physical limitations applied to the vehicle 

during these experiments and to reduce the processing time of the model.  There is a 

minimum error that can be expected from estimating the forward velocities from the 

sonar images.  The error is dependent upon the resolution of the sonar system employed 

and the setting used. The FLS Blazed Array used during these tests was set for a range of 

90 meters.  The images produced based on the resolution settings were matrices of 464 

pixel rows and 334 pixel columns. Therefore the range resolution of the FLS in the 

lowest resolution setting is 0.1940 meters per pixel.  Therefore the forward velocity 

estimates were in increments of 0.2 meters per second, based on these sonar resolutions 

setting which used for the experiment.  The velocity estimate in the forward and lateral 

direction is converted to a number of pixels.  The previous sonar image is adjusted by 

that number of pixels to simulate motion in the forward and lateral direction between the 

two sonar images.  The adjustment is performed by the number of pixels counted upward 

from the images origin and the outer edges of the field of view.  Then a line is drawn 

connecting the points and the inapplicable pixels are replaced with zeros.  

As can be seen in upper left image in Figure 18 the line is drawn connecting the 

translated origin and the translated left edge of the field of view.  Then in the upper right 

image the non-applicable pixel intensities are replaced with zeros. The lower left images 

shows the line drawn connecting the translated origin and the translated right edge of the 

field of view.  The bottom right image shows the fully translated sonar image after the 

remaining non-applicable pixel intensities are replaced with zeros.  Note that the near-

field effects have not been removed so the process can be more easily observed.  
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Figure 18.   Example of Translation Being Applied to a single FLS Image. Upper left image 

shows the initial sonar image with the required FOV outlined. Lower right shows 
the sonar images with the translation applied. Note that the near-field effects have 

not been removed so the process can be more easily observed. 
 

The heading rate estimate is converted to a number of degrees. The sonar field of 

view is known.  Applying a heading rate will result in pixels which are outside the field 

of view.  The size of the field of view within the two images is used to remove the pixels 

which would be outside the modified sonar field of view.  A point at the maximum width 

of the field of view is determined based on the assumed heading rate.  This point is 

connected with a line to the image origin.  Pixels which would be outside the AUV’s 

field of view are removed. The previous image is then rotated, using Euclidean rotation, 

that number of degrees to simulate motion of the vehicle between the two sonar images.  

These steps can be seen in Figures 19 and 20, where the top left image is the translated 

image and the top right is the image without translation applied.  The middle two images 
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show the lines being drawn connecting the image origin with the appropriate point in the 

field of view.  The bottom two images have the non-applicable pixels removed.   Again 

note that the near-field effects have not been removed so the process can be more easily 

observed.  The two figures show identical magnitude heading rate estimates; however 

one is clockwise while the other is counter-clockwise.  

 
Figure 19.   Removing Overlapping Pixels in Preparation for Counter-Clockwise Rotation 

Being Applied to two FLS Images. The upper left sonar image is the previous 
image with translation applied, while the upper right is the current sonar image. 
The white outlines the two FOV to be compared. The bottom images show the 
FOV with overlapping pixels removed. Note that the near-field effects have not 

been removed so the process can be more easily observed.  
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Figure 20.   Removing Overlapping Pixels in Preparation for Clockwise Rotation Being 

Applied to two FLS Images. The upper left sonar image is the previous image 
with translation applied, while the upper right is the current sonar image. The 

white outlines the two FOV to be compared. The bottom images show the FOV 
with overlapping pixels removed. Note that the near-field effects have not been 

removed so the process can be more easily observed. 
 

Since the rotation is Euclidean there is no image distortion; however the image 

size increases due to this process.  After applying the Euclidean rotation, the image which 

is rotated consists of a matrix which is larger than the image which is not rotated.  The 

field of view is also no longer centered correctly due to the rotation.  This can be seen in 

Figure 21 where the top left right image need to be rotated and must be compared to the 

top left image.  The next row down shows the rotated image and the image it must be 

compared to; note the pixel size of the two images.  To properly calculate the correlation 

coefficient from the images, the image is corrected in two steps.  First the image origins 

are adjusted to be at the identical pixel locations, which can be seen in the two images on 
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the third row.  This is done by adding rows and/or columns of zeros as necessary to the 

appropriate image.  The image origins must be in the exact same location to allow for 

pixel-to-pixel comparisons to occur, which is required for the matching technique.  To 

calculate the correlation coefficient the images must be of identical pixel size.  The next 

step adds rows and/or columns of zeros to the images as required, ensuring the 

correlation coefficient can be determined.  The results can be seen in the bottom two 

images.  Again note that the near-field effects have not been removed so the process can 

be more easily observed.  Now the correlation coefficient can be calculated.  

 
Figure 21.   Image Rotation and Removing Overlap to Ensure Proper Calculation of the 

Correlation Coefficient. The upper two sonar images are to be compared. The 
second row shows the right sonar image rotated. The third row shows the addition 

of rows and columns of zeros to match the two images origins. The final row 
shows the addition of rows and columns of zeros to create two identically sized 
matrices. Note that the near-field effects have not been removed so the process 

can be more easily observed. 
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 3. Correlation coefficient  
The correlation coefficient is calculated between the modified previous sonar 

image and the current sonar image. The search process is conducted by first translating 

the image and then rotating that image incrementally to the right and left.  Then the 

original image is translated an increment larger and the rotations are applied 

incrementally to the right and left, and so on until the search is completed. At each step 

the correlation coefficient is calculated, and the maximum is tracked throughout the 

process.  The exhaustive search in will find the combination of translation and rotation 

which maximizes the correlation coefficient.  

 4. Motion Analysis  
The total translation and rotation modifications that are applied to the sonar image 

which maximize the correlation coefficient are then converted to an estimate of the 

velocities in the forward and lateral directions and heading rate. A forward distance can 

be estimated through a conversion from the number of pixel rows the previous sonar 

image was modified. Using the time between the sonar images a forward velocity 

estimate can be determined. The same process is applied to estimate the lateral velocity.  

The total rotation in degrees which is applied to the previous sonar image and maximizes 

the correlation coefficient is the turn in degrees conducted between the two sonar images.  

The time between the two sonar images is used to convert the turn conducted into and 

estimate of the heading rate.  

 

C. RESULTS  

The following sections will present the results of the initial REMUS AUV 

mission.  Additional experimentation was conducted based on those initial results and 

those results will also be presented. 
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1. REMUS AUV Mission 012506 

During the entire REMUS AUV mission 2420 sonar image comparisons were 

conducted.  The average correlation coefficient was 0.8923 with a maximum value of 

0.903 and a minimum value of 0.7698.  

The average forward velocity measured by the ADCP DVL was 1.5 meters per 

second for the duration of the entire mission.  The average error through the entire 

mission between the ADCP measured and imagery-based estimated forward velocities 

was 0.0392 meters per second, (Appendix A) which results in approximately 2 percent 

error in the forward velocity estimate compared to the ADCP DVL measurements 

(Figures 22-33).  As previously discussed the image pixel size was 464 by 334, therefore 

range resolution of the FLS in the lowest resolution setting is 0.1940 meters per pixel.  

The average magnitude of the error for the entire mission is 0.2291 meters per second, 

which is approximately the resolution of the sonar. 

 

 

 
Figure 22.   Estimated and Measured U for REMUS 012506 from 31627 to 31849 
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Figure 23.   Estimated and Measured U for REMUS 012506 from 31850 to 32063. Note that 

the first circle identifies when the AUV was in the minefield, the second is 
identifies when the AUV conducted two ninety degree turns.  

 
 
 

 
Figure 24.   Estimated and Measured U for REMUS 012506 from 32064 to 32279. Note that 

the first circle identifies when the AUV was in the minefield, the second is 
identifies when the AUV conducted two ninety degree turns. 



 59

 
Figure 25.   Estimated and Measured U for REMUS 012506 from 32280 to 32491 
 
 
 
 

 
Figure 26.   Estimated and Measured U for REMUS 012506 from 32492 to 32710 
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Figure 27.   Estimated and Measured U for REMUS 012506 from 32711 to 32919 
 
 
 
 

 
Figure 28.   Estimated and Measured U for REMUS 012506 from 32920 to 33129 
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Figure 29.   Estimated and Measured U for REMUS 012506 from 33130 to 33344 
 
 
 
 

 
Figure 30.   Estimated and Measured U for REMUS 012506 from 33345 to 33559 
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Figure 31.   Estimated and Measured U for REMUS 012506 from 33561 to 33779 
 
 
 
 

 
Figure 32.   Estimated and Measured U for REMUS 012506 from 33780 to 33996 
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Figure 33.   Estimated and Measured U for REMUS 012506 from 33997 to 34229 
 

As can be seen by the ADCP DVL measured forward velocity, the AUV velocity 

has a sinusoidal component around the average speed, probably due to wave action on the 

vehicle.  It can also be seen that the forward velocity is reduced through the turns by the 

increased drag on the vehicle.  Examining the sonar image based velocity estimates these 

velocity changes through the turns can also be observed.  The sinusoidal component 

around the average speed can also be seen when an average trend line is plotted.  As was 

discussed earlier, due to the characteristics of the sonar imagery, noise is also easily seen 

in the data.  However a noticeable characteristic of the data is that there is significantly 

less noise associated with the velocity estimates when the vehicle transited the minefield.  

This is due to the stronger intensities associated with the mine-like features within the 

sonar images.  This can be seen, for example, in Figures 23 and 24.  At time 31910 the 

AUV entered the minefield and then at time 31945 the AUV exited the minefield (Figure 

23).  The AUV then conducted its two ninety degrees turns at approximately time 32000 

(Figure 23).  The AUV then reentered the minefield at time 32100 and exited the 

minefield again at time 32140.   
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During early models the forward velocity was unbounded, upon initial 

deployment of the AUV when speeds were less than 1.0 meters per second the model 

accurately tracked velocity in the forward direction with an error of 0.06 meters per 

second (Figure 34).   

 
Figure 34.   Unbounded Estimated and Measured U for Initial Deployment REMUS 012506  

 

The average magnitude of the lateral velocity measured by the ADCP was 0.0844 

meters per second for the duration of the entire mission.  The lateral velocity estimates 

from the correlation coefficient were compared with the lateral velocity measured by the 

ADCP when the sonar images were recorded.  The average of the lateral velocity 

measured by the ADCP was 0.0039 meters per second, while the lateral velocity never 

exceeded 0.5 meters per second throughout the entire mission.  However, the lateral 

velocity estimates were zero through the entire REMUS mission.  This is due to the 

relatively small motion in the lateral direction.   

The highest magnitude of lateral velocity is expected during the turns of the 

vehicle.  This is due to the characteristics of the vehicle which result in advance and 

transfer.  The average magnitude of the lateral velocity measured by the ADCP DVL 
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during vehicle turns is 0.0936 meters per second.  The angular accuracy of the FLS is 1.2 

degrees, which at a range of 10 meters results in a lateral distance of 0.209 meters, and at 

a range of 90 meters is a lateral distance of 1.885 meters.  Even at the shorter range the 

angular accuracy results in a distance which is much greater than the distances attempted 

to be measured in estimating the lateral velocity.  It had been previously identified that 

sonar characteristically has poor angular accuracy (Kaylan, 2004), and previous work had 

concluded that sonar needed to be combined with and underwater camera to detect lateral 

motion.   

The average error between the compass measured and estimated heading rates 

was 0.0844 degrees per second.  However, within these results it was observed that the 

heading rate estimates did not track through the REMUS turns.  The REMUS was 

preprogrammed to conduct quick ninety degree turns.  During the turns on average only 

three FLS images were recorded.  It is possible that the high speed of the turns resulted in 

insufficient information contained within the FLS field of view to conduct adequate 

correlation matching.   

 

2. Lateral Velocity and Heading Rate Experiments 022307 

To further examine the lateral velocity and heading rate inaccuracies additional 

experiments were conducted.  The experiments were conducted in Monterey Harbor, 

California on 23 February 2007.  The FLS was removed from the REMUS AUV, and 

was attached to a pole and lowered into the water from a pier.  The FLS was walked 

laterally along the pier for several experiments; however the lateral velocity estimated 

was still consistently zero.   

With a stop watch the FLS was also rotated by hand at a rate of one 360 degree 

revolution per minute (6 degrees per second) to simulate the REMUS AUV turning 

during a mission.  The rotations were conducted in both the clockwise and counter-

clockwise directions.  The results of the experiment demonstrate that it is possible to 

accurately estimate the heading rate of the AUV.  The average counter-clockwise heading 
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rate was estimated at 5.91 degrees per second, and the clockwise heading rate was 

estimated at -6.11 degrees per second. (Appendix A) 

One of the heading rate experiments can be seen in Figure 35. In Figure 35 the 

sonar is initially lowered into the water from the dock, the initial noise is due to the sonar 

nose cone filling with water.  Then the sonar was rotated counter-clockwise to align it to 

an initial orientation with the dock.  Then the sonar was rotated by hand, in alternating 

directions, one complete 360 degree turn.  The rotations can be seen starting clockwise 

then followed by counter-clockwise.  A rotational rate of 6 degrees per second was 

attempted.  The fluctuations in heading rate are believed to be repositioning of hands on 

the pole during the rotation of the sonar.  

 

Heading Rate Expermient 022307
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Figure 35.   Simulated Heading Rate for REMUS 022307 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

This study is the first attempt to investigate the performance of the Blazed Array 

sonar system as a source of velocity inputs.  This research demonstrated that it is possible 

to use the Blazed Array forward looking sonar images and the developed correlation 

coefficient based template matching techniques to estimate the forward velocity and 

heading rate of autonomous undersea vehicles.  It was shown that the forward velocity of 

the AUV can be estimated to within the sonar resolution capabilities.  In the lowest sonar 

resolution a two percent error in the forward velocity as compared to the ADCP DVL, 

whose accuracy is 0.1 centimeters per second, was achieved in this research.  Utilizing 

higher Blazed Array sonar resolution settings the error should be reduced.  These results 

demonstrate that the technique is useful and accurate even when the vehicle navigated 

over a relatively smooth ocean floor with no strong features in the FLS images. 

This research also demonstrated in early tests that the velocity in the lateral 

direction was not estimated accurately with the FLS in the lowest resolution settings.  

Additional experimentation and previous research suggests that it may not be possible to 

track the lateral velocity using the developed methods applied to the FLS.  This may be a 

result of the FLS in the lowest resolution settings, the small motion in the lateral 

direction, and the characteristically poor angular accuracy of the sonar (Kaylan, 2004).   

 

B. RECOMMENDATIONS FOR FUTURE WORK 

This thesis introduces a new method which is capable of accurate estimations for 

forward velocity and heading rates of autonomous vehicles in the undersea environment.  

Based on the results of the experimentation conducted for this thesis, additional missions 

should be planned to collect more data.  Follow-on mission should incorporate slower 

turn rates and environments with varying bottom types.  Utilizing the FLS and the 

template matching technique a mosaic of the ocean bottom could also be constructed.   
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The near-field effects also require additional evaluation.  The exact source of the 

effects needs to be determined.  During the mission the effects fluctuated and changed in 

size, possibly with the pitch, roll, and/or yaw of the vehicle.  The effects could potentially 

contain useful information, which could be gained through modeling the effects.  

Significant research is required to resolve the questions associated with the lateral 

velocity.  Follow-on missions should be conducted with the sonar in higher resolution 

settings determine if accurate results could be achieved with the increased resolution.  

There are potential methods to work around the issues associated with the poor angular 

accuracy of the sonar.  One method would be applying this imagery based forward 

velocity estimation to the REMUS AUV side scan sonars.  Estimating the forward 

velocity from the side scan sonars could result in accurate estimates of the vehicles lateral 

velocity. 

For this method to be useful it must be employed in real-time onboard the AUVs.  

There are several methods which could modify this program and reduce the 

computational time for the velocity estimates.  The current search conducted in Matlab® 

is time expensive, experimentation with various optimization methods could result in 

real-time velocity estimates.   

Once a real-time velocity estimate can be provided and employed in the AUVs 

navigation and position estimation systems, these inputs could be used vice the ADCP 

measurements.  Evaluating the performance of the vehicle utilizing these estimates vice 

measurement from the ADCP DVL would be necessary.  Eliminating the RDI Doppler as 

an onboard sensor has the following benefits: 

 Electrical load reduced, increasing mission endurance. 

 Reduced electrical noise impacts on Forward Look Sonar and Side Scan 

Sonar, improved obstacle avoidance and mine hunting performance. 

 Reduced capital cost. $35k (RDI Doppler)  

 Increases payload space for other components or reduces overall size of AUV. 

 Enhanced mission flexibility due to above. 
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There is future work in incorporating this technique and other computer vision 

techniques to the obstacle avoidance and simultaneous localization and mapping 

problems.  Computer vision processes applied in non-traditional roles can further enhance 

the capabilities of autonomous underwater vehicles.  However these processes could be 

incorporated in a multitude of unmanned vehicles, to include ground, surface and aerial 

systems. 

 
Figure 36.   Blazed Array FLS Image of Multiple Features REMUS AUV 012506 

 

One of the current challenges presently being worked on by many robotic 

communities is the simultaneous localization and mapping (SLAM) problem (Leonard, 

2003).  One of the critical components for an unmanned vehicle to map an unknown 

environment is its ability to locate itself on a partially explored map, or unknown 

environment.  The AUV having been placed in an unknown location in an unknown 
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environment would create a map, using only relative observations of features, and 

simultaneously use it to navigate.  This ability would remove the need for the vehicle to 

have a priori knowledge of the environment.  The observed relative position of the 

feature is added to the map and used to update the relative position of the vehicle in the 

local map.  The ability of an unmanned vehicle to travel through an unknown 

environment and map features currently has several challenges.  Errors associated with 

the model of the vehicles motion and errors associated with the sensors both contribute to 

inaccuracies in feature and vehicle positions within the map.  Another challenge is the 

data association problem.  This is the robot’s inability to determine whether a feature that 

it is currently detecting is the same feature that it had previously detected.  Without the 

ability to associate the data correctly an accurate map can not be produced and the 

unmanned vehicle may become lost in the unknown environment.  

 
Figure 37.   Geometric Relationship between Multiple Features 

 

Sonar is one method that is used to measure the relative position of features in an 

undersea environment.  Feature detectors are used to extract the features from the sonar 

images and the relative positions, range and bearing can be determined.  The relative 

positions of the features are used in position estimation filters, such as an Extended 
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Kalman Filter (EKF), to determine the updated position of the unmanned vehicle in the 

environment.  However, their use in the EKF requires the knowledge of the specific 

feature and its location (Figure 36).  This can prevent confusing the features and sending 

bad inputs into the EKF, which would then result in erroneous estimates of the vehicles 

position in the environment.  Using velocity estimates from the sonar images we could 

accurately predict the location of features from one image to the next.   

 
1 1

2 2

3 3

'
' R T
'

F F
F F
F F

ε
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (44) 

In other words, the geometrical relationship of multiple objects in a sequence of 

sonar images should hold.  Errors associated with the relationships would be a result of 

the sensor model, and the sonar imaging.  By comparing the affine transformation from 

the image correlation technique to the movement from the individual features detected 

there should be close to a one to one mapping (Figure 37).  Over a sequence of images 

this comparison should be useful in detecting additional features, such as features which 

were previously undetected or features which may have moved since the original 

mapping.  Using this prediction, the estimated position can be compared to the measured 

position, to ensure that individual features are tracked accordingly.  Ensuring that the new 

positions of the features are input correctly would result in a more accurate vehicle 

position update. 
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APPENDIX A: SIMULATION RESULTS 

The average error through the entire mission between the ADCP measured and 

imagery-based estimated forward velocities was 0.0392 meters per second, which results 

in approximately 2 percent error in the forward velocity estimate compared to the ADCP 

DVL measurements.  The average magnitude of the error for the entire mission is 0.2291 

meters per second, which is approximately the resolution of the sonar which is 0.1940 

meters per pixel. 

REMUS AUV Mission 012506 
     U Average U Average  Heading Rate HR Average 

 Start Time Stop Time Error Absolute Error Average Error Absolute Error
 31627 31849 -0.0758 0.2566 0.3863 0.7603 
 31850 32063 -0.0627 0.1996 -0.8157 1.2354 
 32064 32279 -0.0805 0.1879 0.7774 1.1738 
 32280 32491 -0.0464 0.1870 -0.9055 1.3176 
 32492 32710 -0.0432 0.2068 0.7299 1.1886 
 32711 32919 -0.0372 0.1820 -0.8257 1.3478 
 32920 33129 -0.0380 0.2499 1.3502 2.1270 
 33130 33344 -0.0168 0.2502 -0.6336 1.4846 
 33345 33559 0.0253 0.2975 0.7953 1.2324 
 33561 33779 -0.0675 0.2511 -0.9357 1.2810 
 33780 33996 -0.0141 0.2625 0.8199 1.1594 
 33997 34229 -0.0139 0.2184 0.2703 0.6211 
       
Entire Mission 31627 34229 -0.0392 0.2291 0.0844 1.2441 

 

Heading Rate Experiment 022307 
Clockwise Rotation (deg/sec) -5.67 
Counter-Clockwise Rotation (deg/sec) 5.37 
Clockwise Rotation (deg/sec) -6.57 
Counter-Clockwise Rotation (deg/sec) 6.46 
Clockwise Rotation (deg/sec) -6.09 
Average Clockwise Rotation (deg/sec) -6.11 
Average Counter-Clockwise Rotation (deg/sec) 5.91 
    
Rotational Rates Attempted (deg/sec) +/- 6.00 
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APPENDIX B: MATLAB CODE FOR VELOCITY ESTIMATES 

The following MATLAB® code was used for running simulations on the data 

sets.  The original code was developed by M. Dolbec.  The codes contained in 

Appendices B and C are intended to run in MATLAB® with a specific data set structure 

from the REMUS vehicle.  These sonar images and data sets may be obtained from the 

NPS Center for AUV Research or the codes can be tailored to run with specific data sets 

to provide the correct velocity estimates.   

 
% Correlation Filter between sequential images 
% Mike Dolbec       Last modified 01FEB07 
  
% Methodology   ************************ 
%  
% remove the near field effects 
% Apply heading rate and velocity estimate to sonar image (rotation and 
translation) 
% utilize nested for loops to determine highest correlation coefficient 
% then motion analysis for combined u and HR  
clc,  
  
load state_lbl_adcp_pings012506_01.mat 
  
% >> REMUS(k)  k = 1:11805 
  
%           lblLatitude: -999 
%          lblLongitude: -999 
%          adcpLatitude: 36.7169 
%         adcpLongitude: -121.8202 
%       forwardVelocity: -0.1359 
%     starboardVelocity: 0.0689 
%      verticalVelocity: -0.0620 
%              altitude: 19.1839 
%              latitude: -999 
%             longitude: -999 
%                 depth: -999 
%        compassHeading: -999 
%           headingRate: -999 
%     estimatedVelocity: -999 
%                 pitch: -999 
%             pitchRate: -999 
%                  roll: -999 
%              rollRate: -999 
%         flsFileNumber: -999 
%                  time: 3.1583e+004 
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Data = []; 
Time = []; 
Fig  = []; 
RTrack = []; 
MAXtime = 0; 
  
% Initial Velocity Estimates 
vel = 1.0; 
Delta_head = 0; 
  
j = 1;     % lower limit of the images to process 
k = 11805;     % upper limit of the images to process 
  
i=1; 
%% 
% determine Heading Rate and Velocity 
for n = j+1:k+1 
  
    if (REMUS(n-1).compassHeading) > -999 
        Data(1,i) = REMUS(n-1).compassHeading; 
        Data(5,i) = REMUS(n-1).estimatedVelocity; 
        Data(7,i) = REMUS(n-1).headingRate; 
        Data(9,i) = REMUS(n-1).pitch; 
        Data(11,i) = REMUS(n-1).roll; 
        Time(3,i) = REMUS(n-1).time; 
        ind0 = n-1; 
         
        if (REMUS(n-1).flsFileNumber) == -999 
                for m = n+1:k+1 
                    if (REMUS(m).flsFileNumber) > -999 
                        Data(3,i) = REMUS(m).flsFileNumber; 
                        Time(1,i) = REMUS(m).time; 
                        ind1 = m; 
                        break  
                    end 
                end 
            end 
         
            if (REMUS(n).compassHeading) == -999 
                for m = n+1:k+1 
                    if (REMUS(m).compassHeading) > -999 
                        Data(2,i) = REMUS(m).compassHeading; 
                        Data(6,i) = REMUS(m).estimatedVelocity; 
                        Data(8,i) = REMUS(m).headingRate; 
                        Data(10,i) = REMUS(m).pitch; 
                        Data(12,i) = REMUS(m).roll; 
                        Time(4,i) = REMUS(m).time; 
                        ind2 = m; 
                        break 
                    end 
                end 
            end 
             
            if (REMUS(ind1+1).flsFileNumber) == -999  
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                for l = ind1+1:k+1 
                    if (REMUS(l).flsFileNumber) > -999 
                        Data(4,i) = REMUS(l).flsFileNumber; 
                        Time(2,i) = REMUS(l).time; 
                        ind3 = l; 
                        break  
                    end 
                end 
            end 
         
        if Data(3,1) < Data(4,1)   
  
        Data; 
        Time; 
        dt = Time(2,1)-Time(1,1); % time since the AUV was deployed  
        avgT = (Time(3,1)+Time(4,1)) / 2; 
        vel1 = (Data(5,1)+Data(6,1)) / 2; 
        pitch = (Data(9,1)+Data(10,1)) / 2; 
        roll = (Data(11,1)+Data(12,1)) / 2; 
%%         
%********************************************************************** 
%       Need to handle the discontinuity jumps between 0 and 359       
%********************************************************************** 
  
        if abs(Data(2,1)-Data(1,1)) <= 180 
            Delta_head1 = Data(2,1)-Data(1,1); 
        end 
   
        if Data(2,1)-Data(1,1) > 180 
            Delta_head1 = Data(2,1)-Data(1,1) - 360; 
        end 
   
        if Data(1,1)-Data(2,1) > 180 
            Delta_head1 = Data(2,1)-Data(1,1) + 360; 
        end 
         
        head_rate = (Delta_head1)/dt; 
        head_rate1 = (Data(7,1)+Data(8,1)) / 2; 
  
%% 
%********************************************************************** 
%       Retrieves the appropiate sonar images       
%********************************************************************** 
 
tic 
  
for vel = 1.0:0.1:2.0 
     
        IM1 = OpenSonarImage(Data(3,1)); 
        IM2 = OpenSonarImage(Data(4,1));  
         
[rows cols] = size (IM1); 
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%********************************************************************** 
%       Determine threshold values       
%********************************************************************** 
  
Thresh = IM1(17:220, 80:260); 
S = mean(Thresh); 
threshold1 = mean(S); 
         
Thresh = IM2(17:220, 80:260); 
S = mean(Thresh); 
threshold2 = mean(S); 
  
%********************************************************************** 
%       Applys a threshold to remove the Near-Field Effects       
%********************************************************************** 
  
        threshold = 50;     % feature detection intensity threshold 
         
        for X = round(rows/2):rows 
            for Y = 1:cols 
                if IM1(X,Y) >= threshold; 
                    IM1(X,Y) = threshold1; 
                end 
            end 
        end 
         
        for X = round(rows/2):rows 
            for Y = 1:cols 
                if IM2(X,Y) >= threshold; 
                    IM2(X,Y) = threshold2; 
                end 
            end 
        end 
         
%********************************************************************** 
%    Threshold to determine what is being tracked in the sonar images        
%********************************************************************** 
Max = max(max(IM1)); 
  
%         threshold = 40;     % feature detection intensity threshold 
%          
%         for X = 1:rows 
%             for Y = 1:cols 
%                 if IM1(X,Y) >= threshold; 
%                     IM1(X,Y) = threshold1; 
%                 end 
%             end 
%         end 
%          
%         for X = 1:rows 
%             for Y = 1:cols 
%                 if IM2(X,Y) >= threshold; 
%                     IM2(X,Y) = threshold2; 
%                 end 
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%             end 
%         end 
         
%********************************************************************** 
%                  End Preprocessing      
%********************************************************************** 
  
%         dt = 2; 
        pixelsPerMeter = rows / 90;  % Range (m) of the Blazed Array 
FLS  
        PixelVelx = round (vel * pixelsPerMeter * dt); 
  
        x = 0;         
  
% Image_mod3 = IM1(1:rows-(PixelVelx+x), 1:cols); 
% Actual_image3 = IM2((PixelVelx+x)+1:rows, 1:cols); 
%                  
% r = corr2(Image_mod3, Actual_image3) 
         
%********************************************************************** 
%        Determines the Origin of the image  
%**********************************************************************  
             
            % determines the origin of the image 
            [rows1 cols1] = size (IM1); 
  
            for r = round(rows1/2):rows1; 
                if sum(IM1(r,:)) == 0 
                    origin_rows1 = (r-1); 
                    X1 = origin_rows1 - (PixelVelx+x); 
                    break 
                end 
            end 
  
            for c = 1:cols1 
                if (IM1(origin_rows1,c)) > 0 
                    Y1 = (c+1); 
                    break 
                end 
            end 
                      
%********************************************************************** 
%        Determines the points of the image to be excluded IM1 
%********************************************************************** 
  
% this determines the point from which the line will be drawn 
% this will exclude non-applicable portions due to U  
  
% X2 = 33-(PixelVelx+x) 
%  
% Y2 = 1; 
  
[rows1 cols1] = size (IM1); 
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Y2 = 1; 
% Y2 = cols1 
  
for q = 1:rows1 
    if IM1(q,Y2) > 0 
        X2 = (q+1)-(PixelVelx+x); 
        X2a = (q+1); 
        break 
    end 
end 
  
%********************************************************************** 
%        Create the line from the two points 
%********************************************************************** 
  
IM1 = linept(IM1, X1, Y1, X2, Y2); 
  
% figure(1),  
% subplot(2,2,1) 
% imagesc(IM1) 
  
%********************************************************************** 
%        Remove the non-applicable portion of the image IM1 
%********************************************************************** 
  
threshold = 0;  % value of non-image pixels 
[rows cols] = size(IM1); 
  
for X = 1:rows 
    for Y = 1:cols 
        if IM1(X,Y) >= threshold; 
            IM1(X,Y) = 0; 
        elseif IM1(X,Y) == -1; 
            IM1(X,Y) = 0; 
            break 
        end 
    end 
end 
  
% figure(1),  
% subplot(2,2,2) 
% imagesc(IM1) 
        
%********************************************************************** 
%        Determines the point of the image to be excluded IM2 
%********************************************************************** 
  
% this determines the point from which the line will be drawn 
% this will exclude non-applicable portions due to U  
  
% X2 = 33-(PixelVelx+x); 
%  
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% Y2 = cols; 
  
[rows1 cols1] = size (IM1); 
  
% Y2 = 1; 
Y2 = cols1; 
  
for q = 1:rows1 
    if IM1(q,Y2) > 0 
        X2 = (q+1)-(PixelVelx+x);  
        break 
    end 
end 
  
%********************************************************************** 
%        Create the line from the two points for U  
%********************************************************************** 
  
IM1a = linept(IM1, X1, Y1, X2, Y2); 
% figure(1), 
% subplot(2,2,3) 
% imagesc(IM1a) 
  
%********************************************************************** 
%        Remove the non-applicable portion of the image IM2 
%********************************************************************** 
  
threshold = -1;  % value of non-image pixels 
[rows cols] = size(IM1a); 
  
% for h = 1:X2 
%     for Y = 1:cols 
%         IM1a(h,Y) = 0; 
%     end 
% end 
  
for X = 1:rows 
    for Y = 1:cols 
        if IM1a(X,Y) == -1; 
            for g = Y:cols 
                IM1a(X,g) = 0; 
            end 
        end 
    end 
end 
  
% figure(1),  
% subplot(2,2,4) 
% imagesc(IM1a) 
  
%********************************************************************** 
%        Determines the Origin of the 2 images (initial estimates) 
%**********************************************************************  
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            % determines the origin of the unrotated image 
            [rows1 cols1] = size (IM2); 
  
            for r = round(rows1/2):rows1 
                if sum(IM2(r,:)) == 0 
                    origin_rows2a = (r-1); 
                    break 
                end 
            end 
  
            for c = 1:cols1 
                if (IM2(origin_rows2a,c)) > 0 
                    origin_cols2a = (c); 
                    break 
                end 
            end 
  
             
            % determines the origin of the image 
%             [rows1a cols1a] = size (IM1a); 
%  
%             for r = round(rows1/2):rows1a 
%                 if sum(IM1a(r,:)) == 0 
%                     origin_rows1a = (r-1); 
%                     break 
%                 end 
%             end 
%  
%             for c = 1:cols1a 
%                 if (IM1a(origin_rows1a,c)) > 0 
%                     origin_cols1a = (c); 
%                     break 
%                 end 
%             end 
  
            origin_rows1a = X1; 
            origin_cols1a = Y1; 
             
%********************************************************************** 
%    Addition of zeros to match origins (initial estimates) 
%********************************************************************** 
  
% to calculate the correlation coefficient the origins of the images  
% must be at the same pixel location to ensure a truthful comparison 
  
        [rows1 cols1] = size (IM2);             
        [rows1a cols1a] = size (IM1a);   
         
            if origin_rows1a-origin_rows2a == 0 
                IM2 = IM2; 
                Extra_Rows = 0; 
            elseif origin_rows1a-origin_rows2a > 0 
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                Extra_Rows = origin_rows1a-origin_rows2a; 
                bottom = zeros(Extra_Rows,cols1);  
                IM2 = [IM2; bottom]; 
            elseif origin_rows2a-origin_rows1a > 0 
                Extra_Rows = origin_rows2a-origin_rows1a; 
                top = zeros(Extra_Rows,cols1);  
                IM1a = [top; IM1a]; 
                IM2 = IM2; 
            end 
                              
  
            if origin_cols1a-origin_cols2a == 0 
                Extra_Cols = 0; 
            elseif origin_cols1a-origin_cols2a > 0 
                Extra_Cols = origin_cols1a-origin_cols2a; 
                left = zeros(rows1,Extra_Cols);  
                IM2 = [left, IM2];     
            else 
                Extra_Cols = origin_cols2a-origin_cols1a; 
                left = zeros(rows1a,Extra_Cols);  
                IM1a = [left, IM1a]; 
            end 
             
%********************************************************************** 
%        Check the Origin of the 2 images (initial estimates) 
%**********************************************************************  
  
% this is to ensure the code is adjusting the images properly  
  
            % determines the origin of the image 
            [rows1 cols1] = size (IM2); 
  
            for r = round(rows1/2):rows1 
                if sum(IM2(r,:)) == 0 
                    origin_rows2a = (r-1); 
                    break 
                end 
            end 
  
            for c = 1:cols1 
                if (IM2(origin_rows2a,c)) > 0 
                    origin_cols2a = (c); 
                    break 
                end 
            end 
  
            % determines the origin of the image 
            [rows1a cols1a] = size (IM1a); 
  
            for r = round(rows1/2):rows1a 
                if sum(IM1a(r,:)) == 0 
                    origin_rows1a = (r-1); 
                    break 
                end 
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            end 
  
            for c = 1:cols1a 
                if (IM1a(origin_rows1a,c)) > 0 
                    origin_cols1a = (c); 
                    break 
                end 
            end         
             
%********************************************************************** 
%     Addition of zeros to match matrix sizes (initial estimates) 
%********************************************************************** 
  
% to calculate the correlation coefficient the images (matrices)  
% must be of identical sizes  
  
            [rows1a cols1a] = size(IM1a); 
            [rows1b cols1b] = size(IM2); 
  
            if rows1a-rows1b > 0 
                Extra_Rows = rows1a-rows1b; 
                bottom = zeros(Extra_Rows,cols1b);  
                IM2 = [IM2; bottom]; 
            else 
                Extra_Rows = rows1b-rows1a; 
                bottom = zeros(Extra_Rows,cols1a);  
                IM1a = [IM1a; bottom]; 
            end 
  
            [rows1a cols1a] = size(IM1a); 
            [rows1b cols1b] = size(IM2); 
         
            if cols1a-cols1b > 0 
                Extra_Cols = cols1a-cols1b; 
                right = zeros(rows1b,Extra_Cols);  
                IM2 = [IM2, right];     
            else 
                Extra_Cols = cols1b-cols1a; 
                right = zeros(rows1a,Extra_Cols);  
                IM1a = [IM1a, right]; 
            end 
  
%********************************************************************** 
%        Determines the upper left corner of the two images 
%********************************************************************** 
     
            [rows2 cols2] = size (IM2); 
  
            for c = 1:cols2 
                if sum(IM2(:,c)) > 0 
                    left2a_col = (c); 
                    break 
                end 
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            end 
  
            for r = 1:rows2 
                if (IM2(r,left2a_col)) > 0 
                    left2a_row = (r); 
                    break 
                end 
            end 
  
            [rows1 cols1] = size (IM1a); 
  
            for c = 1:cols1 
                if sum(IM1a(:,c)) > 0 
                    left1a_col = (c); 
                    break 
                end 
            end 
  
            for r = 1:rows1 
                if (IM1a(r,left1a_col)) > 0 
                    left1a_row = (r); 
                    break 
                end 
            end 
             
%********************************************************************** 
%        removes overlap which would reduce the correlation 
%********************************************************************** 
  
% this will exclude non-applicable portions due to U  
  
            if left1a_row - left2a_row > 0 
                 
                for h = 1:left1a_row 
                    for Y = 1:cols2 
                        IM2(h,Y) = 0; 
                    end 
                end 
                for h = 1:left1a_row 
                    for Y = 1:cols1 
                        IM1a(h,Y) = 0; 
                    end 
                end 
                 
            else 
                 
                for h = 1:left2a_row 
                    for Y = 1:cols1 
                        IM1a(h,Y) = 0; 
                    end 
                end 
                for h = 1:left2a_row 
                    for Y = 1:cols2 



 86

                        IM2(h,Y) = 0; 
                    end 
                end 
            end 
  
% Image_mod3 = IM1a; 
% Actual_image3 = IM2; 
%                  
% r = corr2(Image_mod3, Actual_image3) 
  
Image_mod3 = IM1a; 
Actual_image3 = IM2; 
  
%********************************************************************** 
%     Determines the correlation coefficient, and tracks the highest 
%********************************************************************** 
  
r = corr2(Image_mod3, Actual_image3); 
  
    if vel == 1.0 
         
            u = ((PixelVelx + x) / pixelsPerMeter) / dt; 
            HR = (0); 
            rtrack = [r; u; vel1;  
                      HR; head_rate; head_rate1;  
                      avgT; pitch; roll]; 
  
    else 
         
        if r > rtrack(1,1) 
            u = ((PixelVelx + x) / pixelsPerMeter) / dt; 
            HR = (0); 
            rtrack = [r; u; vel1;  
                      HR; head_rate; head_rate1;  
                      avgT; pitch; roll]; 
        end 
         
    end                    
% RTrack_plot = [RTrack_plot, rtrack]; 
  
IM1u = IM1a; 
IM1o = IM2; 
  
 
 
%% 
%********************************************************************** 
%        Performs the operation for lateral velocity 
%**********************************************************************  
  
horizontal_angle1 = 0;      
  
% Determine the angle 
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for  y = 1:1:15 
     
    horizontal_angle = horizontal_angle1 + y; 
%        horizontal_radian = (dt * estimated_v) * pi / 180; 
  
%********************************************************************** 
%        Determines the Origin of the image  
%**********************************************************************  
  
% figure(2), 
% subplot(3,2,1)  
% imagesc(IM1u); 
%  
% figure(2),  
% subplot(3,2,2)  
% imagesc(IM1o);  
  
[rows1 cols1] = size(IM1o); 
  
for r = round(rows1/2):rows1; 
    if sum(IM1o(r,:)) == 0 
        origin_rows1 = (r-1); 
        X1 = origin_rows1; 
        break 
    end 
end 
  
for c = 1:cols1 
    if (IM1o(origin_rows1,c)) > 0 
        Y1 = (c); 
        break 
    end 
end 
             
%********************************************************************** 
%        Determines the point of the image to be excluded IM1 
%********************************************************************** 
  
X2 = X2a; 
  
% since 25 degrees equals 167 pixels 
% 1 degree = 6.68 pixels ~= 7 pixels 
  
Y2 = round(horizontal_angle * 7.42); 
  
%********************************************************************** 
%        Create the line from the two points 
%********************************************************************** 
  
IM1a = linept(IM1o, X1, Y1, X2, Y2); 
% figure(2),  
% subplot(3,2,4) 
% imagesc(IM1a) 
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%********************************************************************** 
%        Remove the non-applicable portion of the image IM1 
%********************************************************************** 
  
threshold = 0;  % value of non-image pixels 
[rows cols] = size(IM1a); 
  
for X = 1:rows 
    for Y = 1:cols 
        if IM1a(X,Y) >= threshold; 
            IM1a(X,Y) = 0; 
        elseif IM1a(X,Y) == -1; 
            IM1a(X,Y) = 0; 
            break 
        end 
    end 
end 
  
% figure(2),  
% subplot(3,2,6) 
% imagesc(IM1a) 
     
     
%********************************************************************** 
%        Determines the point of the image to be excluded IM2 
%********************************************************************** 
 
% determines the origin of the image 
[rows1 cols1] = size (IM1u); 
  
for r = round(rows1/2):rows1; 
    if sum(IM1u(r,:)) == 0 
        origin_rows1 = (r-1); 
        X1 = origin_rows1; 
        break 
    end 
end 
  
for c = 1:cols1 
    if (IM1u(origin_rows1,c)) > 0 
        Y1 = (c); 
        break 
    end 
end 
  
  
X2 = X2a; 
  
% since 25 degrees equals 167 pixels 
% 1 degree = 6.68 pixels ~= 7 pixels 
  
Y2 = cols1-round(horizontal_angle * 7.42); 



 89

  
%********************************************************************** 
%        Create the line from the two points IM2 
%********************************************************************** 
  
IM2a = linept(IM1u, X1, Y1, X2, Y2); 
% figure(2), 
% subplot(3,2,3) 
% imagesc(IM2a) 
  
%********************************************************************** 
%        Remove the non-applicable portion of the image IM2 
%********************************************************************** 
  
threshold = -1;  % value of non-image pixels 
[rows cols] = size(IM2a); 
  
for h = 1:X2 
    for Y = 1:cols 
        IM2a(h,Y) = 0; 
    end 
end 
  
for X = 1:rows 
    for Y = 1:cols 
        if IM2a(X,Y) == -1; 
            for g = Y:cols 
                IM2a(X,g) = 0; 
            end 
        end 
    end 
end 
  
% figure(2),  
% subplot(3,2,5) 
% imagesc(IM2a) 
  
IM1a = imrotate(IM1a, (horizontal_angle), 'loose'); 
% figure(3), imagesc(IM1a) 
  
         
 
%********************************************************************** 
%        Determines the Origin of the 2 images (initial estimates) 
%**********************************************************************  
             
            % determines the origin of the unrotated image 
            [rows1 cols1] = size (IM2a); 
  
            for r = round(rows1/2):rows1 
                if sum(IM2a(r,:)) == 0 
                    origin_rows2a = (r-1); 
                    break 
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                end 
            end 
  
            for c = 1:cols1 
                if (IM2a(origin_rows2a,c)) > 0 
                    origin_cols2a = (c); 
                    break 
                end 
            end 
  
            % determines the origin of the left rotated image 
            [rows1a cols1a] = size (IM1a); 
  
            for r = round(rows1/2):rows1a 
                if sum(IM1a(r,:)) == 0 
                    origin_rows1a = (r-1); 
                    break 
                end 
            end 
  
            for c = 1:cols1a 
                if (IM1a(origin_rows1a,c)) > 0 
                    origin_cols1a = (c); 
                    break 
                end 
            end 
             
%********************************************************************** 
%    Addition of zeros to match origins (initial estimates) 
%********************************************************************** 
  
            if origin_rows1a-origin_rows2a == 0 
                IM2a = IM2a; 
                Extra_Rows = 0; 
            elseif origin_rows1a-origin_rows2a > 0 
                Extra_Rows = origin_rows1a-origin_rows2a; 
                top = zeros(Extra_Rows,cols1);  
                IM2a = [top; IM2a]; 
            else 
                Extra_Rows = origin_rows2a-origin_rows1a; 
                bottom = zeros(Extra_Rows,cols1a);  
                IM1a = [IM1a; bottom]; 
                IM2a = IM2a; 
            end 
             
        [rows1 cols1] = size (IM2a);             
        [rows1a cols1a] = size (IM1a);             
  
            if origin_cols1a-origin_cols2a == 0 
                Extra_Cols = 0; 
            elseif origin_cols1a-origin_cols2a > 0 
                Extra_Cols = origin_cols1a-origin_cols2a; 
                left = zeros(rows1,Extra_Cols);  
                IM2a = [left, IM2a];     
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            else 
                Extra_Cols = origin_cols2a-origin_cols1a; 
                left = zeros(rows1a,Extra_Cols);  
                IM1a = [left, IM1a]; 
            end 
         
%********************************************************************** 
%     Addition of zeros to match matrix sizes (initial estimates) 
%********************************************************************** 
 
            [rows1a cols1a] = size(IM1a); 
            [rows1b cols1b] = size(IM2a); 
  
            if rows1a-rows1b > 0 
                Extra_Rows = rows1a-rows1b; 
                bottom = zeros(Extra_Rows,cols1b);  
                IM2a = [IM2a; bottom]; 
            else 
                Extra_Rows = rows1b-rows1a; 
                bottom = zeros(Extra_Rows,cols1a);  
                IM1a = [IM1a; bottom]; 
            end 
  
        [rows1a cols1a] = size(IM1a); 
        [rows1b cols1b] = size(IM2a); 
         
            if cols1a-cols1b > 0 
                Extra_Cols = cols1a-cols1b; 
                right = zeros(rows1b,Extra_Cols);  
                IM2a = [IM2a, right];     
            else 
                Extra_Cols = cols1b-cols1a; 
                right = zeros(rows1a,Extra_Cols);  
                IM1a = [IM1a, right]; 
            end 
% figure(4),  
% subplot(2,1,1) 
% imagesc(IM1a)   
% subplot(2,1,2) 
% imagesc(IM2a)  
  
% Image_mod3 = IM1a; 
% Actual_image3 = IM2a; 
%                  
% r = corr2(Image_mod3, Actual_image3) 
  
         
        
%********************************************************************** 
%        Determines the upper left corner of the two images 
%**********************************************************************  
 
if  horizontal_angle >= 0 



 92

     
            [rows2 cols2] = size (IM2a); 
  
            for c = 1:cols2 
                if sum(IM2a(:,c)) > 0 
                    left2a_col = (c); 
                    break 
                end 
            end 
  
            for r = 1:rows2 
                if (IM2a(r,left2a_col)) > 0 
                    left2a_row = (r); 
                    break 
                end 
            end 
  
            [rows1 cols1] = size (IM1a); 
  
            for c = 1:cols1 
                if sum(IM1a(:,c)) > 0 
                    left1a_col = (c); 
                    break 
                end 
            end 
  
            for r = 1:rows1 
                if (IM1a(r,left1a_col)) > 0 
                    left1a_row = (r); 
                    break 
                end 
            end 
        
%********************************************************************** 
%        removes overlap which would reduce the correlation 
%**********************************************************************  
  
            if left1a_row - left2a_row > 0 
                 
                for h = 1:left1a_row 
                    for Y = 1:cols2 
                        IM2a(h,Y) = 0; 
                    end 
                end 
                for h = 1:left1a_row 
                    for Y = 1:cols1 
                        IM1a(h,Y) = 0; 
                    end 
                end 
                 
            else  
                 
                for h = 1:left2a_row 
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                    for Y = 1:cols1 
                        IM1a(h,Y) = 0; 
                    end 
                end 
                for h = 1:left2a_row 
                    for Y = 1:cols2 
                        IM2a(h,Y) = 0; 
                    end 
                end 
            end 
             
% figure(5),  
% subplot(2,1,1) 
% imagesc(IM1a)   
% subplot(2,1,2) 
% imagesc(IM2a)  
  
Else 
 
%********************************************************************** 
%        Determines the upper right corner of the two images 
%********************************************************************** 
 
            [rows2 cols2] = size (IM2a); 
  
            for c = round(cols2/2):cols2 
                if sum(IM2a(:,c)) > 0 
                    right2a_col = (c-1); 
                    break 
                end 
            end 
  
            for r = 1:rows2 
                if (IM2a(r,right2a_col)) > 0 
                    right2a_row = (r); 
                    break 
                end 
            end 
  
            [rows1 cols1] = size (IM1a); 
  
            for c = round(cols1/2):cols1 
                if sum(IM1a(:,c)) > 0 
                    right1a_col = (c-1); 
                    break 
                end 
            end 
  
            for r = 1:rows1 
                if (IM1a(r,right1a_col)) > 0 
                    right1a_row = (r); 
                    break 
                end 
            end 
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%********************************************************************** 
%        removes overlap which would reduce the correlation 
%********************************************************************** 
  
            if right1a_row - right2a_row > 0 
                 
                for h = 1:right1a_row 
                    for Y = 1:cols2 
                        IM2a(h,Y) = 0; 
                    end 
                end 
                for h = 1:right1a_row 
                    for Y = 1:cols1 
                        IM1a(h,Y) = 0; 
                    end 
                end 
                 
            else  
                 
                for h = 1:right2a_row 
                    for Y = 1:cols1 
                        IM1a(h,Y) = 0; 
                    end 
                end 
                for h = 1:right2a_row 
                    for Y = 1:cols2 
                        IM2a(h,Y) = 0; 
                    end 
                end 
            end 
             
% figure(5),  
% subplot(2,1,1) 
% imagesc(IM1a)   
% subplot(2,1,2) 
% imagesc(IM2a)      
  
end 
  
% figure(2),  
% subplot(4,2,8) 
% imagesc(IM1a)   
% subplot(4,2,7) 
% imagesc(IM2a) 
  
Image_mod3 = IM1a; 
Actual_image3 = IM2a; 
  
%********************************************************************** 
%     Determines the correlation coefficient, and tracks the highest 
%**********************************************************************  
  



 95

r = corr2(Image_mod3, Actual_image3); 
  
        if r > rtrack(1,1) 
            u = ((PixelVelx + x) / pixelsPerMeter) / dt; 
            HR = (horizontal_angle); 
            rtrack = [r; u; vel1;  
                      HR; head_rate; head_rate1;  
                      avgT; pitch; roll]; 
        end 
                          
% RTrack_plot = [RTrack_plot, rtrack]; 
                     
%% 
    horizontal_angle = horizontal_angle1 - y; 
%        horizontal_radian = (dt * estimated_v) * pi / 180; 
%********************************************************************** 
%        Determines the Origin of the image  
%**********************************************************************  
 
% figure(6), 
% subplot(3,2,1)  
% imagesc(IM1u); 
%  
% figure(6),  
% subplot(3,2,2)  
% imagesc(IM1o);  
  
[rows1 cols1] = size(IM1o); 
  
for r = round(rows1/2):rows1; 
    if sum(IM1o(r,:)) == 0 
        origin_rows1 = (r-1); 
        X1 = origin_rows1; 
        break 
    end 
end 
  
for c = 1:cols1 
    if (IM1o(origin_rows1,c)) > 0 
        Y1 = (c); 
        break 
    end 
end 
             
%********************************************************************** 
%        Determines the point of the image to be excluded IM1 
%********************************************************************** 
  
X2 = X2a; 
  
% since 25 degrees equals 167 pixels 
% 1 degree = 6.68 pixels ~= 7 pixels 
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Y2 = cols1+round(horizontal_angle * 7.42); 
  
%********************************************************************** 
%        Create the line from the two points 
%********************************************************************** 
  
IM1a = linept(IM1o, X1, Y1, X2, Y2); 
% figure(6),  
% subplot(3,2,4) 
% imagesc(IM1a) 
  
%********************************************************************** 
%        Remove the non-applicable portion of the image IM1 
%********************************************************************** 
  
threshold = -1;  % value of non-image pixels 
[rows cols] = size(IM1a); 
  
for h = 1:X2 
    for Y = 1:cols 
        IM1a(h,Y) = 0; 
    end 
end 
  
for X = 1:rows 
    for Y = 1:cols 
        if IM1a(X,Y) == -1; 
            for g = Y:cols 
                IM1a(X,g) = 0; 
            end 
        end 
    end 
end 
  
% figure(6),  
% subplot(3,2,6) 
% imagesc(IM1a) 
%********************************************************************** 
%        Determines the point of the image to be excluded IM2 
%********************************************************************** 
 
% determines the origin of the image 
[rows1 cols1] = size (IM1a); 
  
for r = round(rows1/2):rows1; 
    if sum(IM1u(r,:)) == 0 
        origin_rows1 = (r-1); 
        X1 = origin_rows1; 
        break 
    end 
end 
  
for c = 1:cols1 
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    if (IM1u(origin_rows1,c)) > 0 
        Y1 = (c); 
        break 
    end 
end 
  
  
X2 = X2a; 
  
% since 25 degrees equals 167 pixels 
% 1 degree = 6.68 pixels ~= 7 pixels 
  
Y2 = -round(horizontal_angle * 7.42); 
  
%********************************************************************** 
%        Create the line from the two points IM2 
%********************************************************************** 
  
IM2a = linept(IM1u, X1, Y1, X2, Y2); 
% figure(6), 
% subplot(3,2,3) 
% imagesc(IM2a) 
  
%********************************************************************** 
%        Remove the non-applicable portion of the image IM2 
%********************************************************************** 
  
threshold = 0;  % value of non-image pixels 
[rows cols] = size(IM2a); 
  
for X = 1:rows 
    for Y = 1:cols 
        if IM2a(X,Y) >= threshold; 
            IM2a(X,Y) = 0; 
        elseif IM2a(X,Y) == -1; 
            IM2a(X,Y) = 0; 
            break 
        end 
    end 
end 
  
% figure(6),  
% subplot(3,2,5) 
% imagesc(IM2a) 
  
IM1a = imrotate(IM1a, (horizontal_angle), 'loose'); 
         
%********************************************************************** 
%        Determines the Origin of the 2 images (initial estimates) 
%**********************************************************************  
             
            % determines the origin of the unrotated image 
            [rows1 cols1] = size (IM2a); 
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            for r = round(rows1/2):rows1 
                if sum(IM2a(r,:)) == 0 
                    origin_rows2a = (r-1); 
                    break 
                end 
            end 
  
            for c = 1:cols1 
                if (IM2a(origin_rows2a,c)) > 0 
                    origin_cols2a = (c); 
                    break 
                end 
            end 
  
            % determines the origin of the left rotated image 
            [rows1a cols1a] = size (IM1a); 
  
            for r = round(rows1/2):rows1a 
                if sum(IM1a(r,:)) == 0 
                    origin_rows1a = (r-1); 
                    break 
                end 
            end 
  
            for c = 1:cols1a 
                if (IM1a(origin_rows1a,c)) > 0 
                    origin_cols1a = (c-0); 
                    break 
                end 
            end 
             
 
 
 
 
%********************************************************************** 
%    Addition of zeros to match origins (initial estimates) 
%********************************************************************** 
  
            if origin_rows1a-origin_rows2a == 0 
                IM2a = IM2a; 
                Extra_Rows = 0; 
            elseif origin_rows1a-origin_rows2a > 0 
                Extra_Rows = origin_rows1a-origin_rows2a; 
                top = zeros(Extra_Rows,cols1);  
                IM2a = [top; IM2a]; 
            else 
                Extra_Rows = origin_rows2a-origin_rows1a; 
                bottom = zeros(Extra_Rows,cols1a);  
                IM1a = [IM1a; bottom]; 
                IM2a = IM2a; 
            end 
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        [rows1 cols1] = size (IM2a);             
        [rows1a cols1a] = size (IM1a);             
  
            if origin_cols1a-origin_cols2a == 0 
                Extra_Cols = 0; 
            elseif origin_cols1a-origin_cols2a > 0 
                Extra_Cols = origin_cols1a-origin_cols2a; 
                left = zeros(rows1,Extra_Cols);  
                IM2a = [left, IM2a];     
            else 
                Extra_Cols = origin_cols2a-origin_cols1a; 
                left = zeros(rows1a,Extra_Cols);  
                IM1a = [left, IM1a]; 
            end 
         
%********************************************************************** 
%      Addition of zeros to match matrix sizes (initial estimates) 
%********************************************************************** 
 
            [rows1a cols1a] = size(IM1a); 
            [rows1b cols1b] = size(IM2a); 
  
            if rows1a-rows1b > 0 
                Extra_Rows = rows1a-rows1b; 
                bottom = zeros(Extra_Rows,cols1b);  
                IM2a = [IM2a; bottom]; 
            else 
                Extra_Rows = rows1b-rows1a; 
                bottom = zeros(Extra_Rows,cols1a);  
                IM1a = [IM1a; bottom]; 
            end 
  
        [rows1a cols1a] = size(IM1a); 
        [rows1b cols1b] = size(IM2a); 
         
            if cols1a-cols1b > 0 
                Extra_Cols = cols1a-cols1b; 
                right = zeros(rows1b,Extra_Cols);  
                IM2a = [IM2a, right];     
            else 
                Extra_Cols = cols1b-cols1a; 
                right = zeros(rows1a,Extra_Cols);  
                IM1a = [IM1a, right]; 
            end 
% figure(7),  
% subplot(2,1,1) 
% imagesc(IM1a)   
% subplot(2,1,2) 
% imagesc(IM2a)  
  
% Image_mod3 = IM1a; 
% Actual_image3 = IM2a; 
%                  
% r = corr2(Image_mod3, Actual_image3) 
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%********************************************************************** 
%        Determines the upper left corner of the two images 
%**********************************************************************  
 
if  horizontal_angle >= 0 
     
            [rows2 cols2] = size (IM2a); 
  
            for c = 1:cols2 
                if sum(IM2a(:,c)) > 0 
                    left2a_col = (c); 
                    break 
                end 
            end 
  
            for r = 1:rows2 
                if (IM2a(r,left2a)) > 0 
                    left2a_row = (r); 
                    break 
                end 
            end 
  
            [rows1 cols1] = size (IM1a); 
  
            for c = 1:cols1 
                if sum(IM1a(:,c)) > 0 
                    left1a_col = (c); 
                    break 
                end 
            end 
  
            for r = 1:rows1 
                if (IM1a(r,left1a)) > 0 
                    left1a_row = (r); 
                    break 
                end 
            end 
             
%********************************************************************** 
%        removes overlap which would reduce the correlation 
%**********************************************************************  
  
            if left1a_row - left2a_row > 0 
                 
                for h = 1:left1a_row 
                    for Y = 1:cols2 
                        IM2a(h,Y) = 0; 
                    end 
                end 
                for h = 1:left1a_row 
                    for Y = 1:cols1 
                        IM1a(h,Y) = 0; 
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                    end 
                end 
                 
            else 
                 
                for h = 1:left2a_row 
                    for Y = 1:cols1 
                        IM1a(h,Y) = 0; 
                    end 
                end 
                for h = 1:left2a_row 
                    for Y = 1:cols2 
                        IM2a(h,Y) = 0; 
                    end 
                end 
            end 
             
% figure(8),  
% subplot(2,1,1) 
% imagesc(IM1a)   
% subplot(2,1,2) 
% imagesc(IM2a)  
  
Else 
 
%********************************************************************** 
%        Determines the upper right corner of the two images 
%********************************************************************** 
 
            [rows2 cols2] = size (IM2a); 
  
            for c = round(cols2/2):cols2 
                if sum(IM2a(:,c)) == 0 
                    right2a_col = (c-1); 
                    break 
                end 
            end 
  
            for r = 1:rows2 
                if (IM2a(r,right2a_col)) > 0 
                    right2a_row = (r); 
                    break 
                end 
            end 
  
            [rows1 cols1] = size (IM1a); 
  
            for c = round(cols1/2):cols1 
                if sum(IM1a(:,c)) == 0 
                    right1a_col = (c-1); 
                    break 
                end 
            end 
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            for r = 1:rows1 
                if (IM1a(r,right1a_col)) > 0 
                    right1a_row = (r); 
                    break 
                end 
            end 
        
%********************************************************************** 
%        removes overlap which would reduce the correlation 
%********************************************************************** 
  
            if right1a_row - right2a_row > 0 
                 
                for h = 1:right1a_row 
                    for Y = 1:cols2 
                        IM2a(h,Y) = 0; 
                    end 
                end 
                for h = 1:right1a_row 
                    for Y = 1:cols1 
                        IM1a(h,Y) = 0; 
                    end 
                end 
                 
            else 
                 
                for h = 1:right2a_row 
                    for Y = 1:cols1 
                        IM1a(h,Y) = 0; 
                    end 
                end 
                for h = 1:right2a_row 
                    for Y = 1:cols2 
                        IM2a(h,Y) = 0; 
                    end 
                end 
            end 
             
% figure(9),  
% subplot(2,1,1) 
% imagesc(IM1a)   
% subplot(2,1,2) 
% imagesc(IM2a)      
  
end 
  
% figure(6),  
% subplot(4,2,8) 
% imagesc(IM1a)   
% subplot(4,2,7) 
% imagesc(IM2a) 
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Image_mod3 = IM1a; 
Actual_image3 = IM2a; 
  
%********************************************************************** 
%     Determines the correlation coefficient, and tracks the highest 
%********************************************************************** 
  
r = corr2(Image_mod3, Actual_image3); 
  
        if r > rtrack(1,1) 
            u = ((PixelVelx + x) / pixelsPerMeter) / dt; 
            HR = (horizontal_angle); 
            rtrack = [r; u; vel1;  
                      HR; head_rate; head_rate1;  
                      avgT; pitch; roll]; 
        end 
                          
% RTrack_plot = [RTrack_plot, rtrack]; 
  
end 
end 
  
% RTrack_plot1 = RTrack_plot'; 
         
        rtrack;   
        % [correlation coefficient;  
        %  U eststimate from the correlation coefficient;  
        %  U calculated from the average of the instantaneous fwd 
velocity;  
        %  HR eststimate from the correlation coefficient;   
        %  HR calculated from the change in compass heading over time; 
        %  HR calculated from the average of the instantaneous stbd 
velocity 
        %  average time from when the sonar images were taken] 
  
        % Velocity Estimates 
         
         
%         if rtrack(2,:)>0.7 && rtrack(2,:)<2.0 
%             vel = rtrack(2,:); 
%         else 
%             vel = 1.5; 
%             disp('velocity est. out of bounds') 
%         end 
         
        vel = 1.0; 
        Delta_head = 0; % rtrack(4,:); 
         
t = toc; 
    if t > MAXtime 
        MAXtime = t; 
    end 
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        RTrack = [RTrack, rtrack]; 
         
        Screen = [RTrack(1,:);  % correlation coefficient 
                  RTrack(2,:);  % U est from correlation coefficient 
                  RTrack(3,:);  % REMUS(l).estimatedVelocity averaged 
                  RTrack(4,:);  % HR est from correlation coefficient 
                  RTrack(6,:)]  % REMUS(m).headingRate averaged 
        end  
    end                     
end 
  
for n = j+1:k+1 
      
    if (REMUS(n-1).forwardVelocity) > -999 
        fig(1,i) = REMUS(n-1).forwardVelocity; 
        fig(2,i) = REMUS(n-1).altitude; 
        fig(3,i) = REMUS(n-1).time; 
        Fig = [Fig, fig]; 
    end 
end 
  
RTRACK = RTrack'; 
FIG = Fig'; 
  
%% 
%********************************************************************** 
%       Total Plots      
%********************************************************************** 
 
        figure, 
        plot (RTrack(7,:), RTrack(1,:)), title('Correlation 
coefficient') 
         
        figure, 
        hold on 
        plot (RTrack(7,:), RTrack(2,:), '-r'), 
        plot (RTrack(7,:), RTrack(3,:), '-k'), 
        plot (RTrack(7,:), (RTrack(3,:)-RTrack(2,:)), '-b') 
        plot (Fig(3,:)', Fig(1,:)', '-g') 
        legend('Est U (Forward Velocity)', 'Calculated',... 
               'Error', 'Measured Fwd Vel') 
        title('Estimated and Measured U from REMUS 012506') 
         
        figure, 
        hold on 
        % plot ( RTrack(7,:), RTrack(5,:), '-g'),  
        plot (RTrack(7,:), RTrack(4,:), '-r'), 
        plot (RTrack(7,:), RTrack(6,:), '-k'), 
        legend('Est HR (Heading Rate)', 'Measured') 
        title('Estimated and Measured HR from REMUS 012506') 
  
        figure, 
        plot (RTrack(7,:), (RTrack(4,:)-RTrack(6,:)), '-b') 
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        title('Error between Estimated and Measured HR from REMUS 
012506') 
  
%********************************************************************** 
%       Analysis and Plots      
%********************************************************************** 
% After using Excel lookup to match times for Imagery-based velocity 
% estimates to ADCP measured velocities and to calculate moving  
% averages 
  
load ('RTrack') 
  
RTrack = RTrack'; 
  
Total_Error_U = mean(RTrack(3,:)-RTrack(2,:)) 
% Total_Error_V = mean(RTrack(4,:)-RTrack(6,:))  
  
ABS_Error_U = mean(abs(RTrack(3,:)-RTrack(2,:))) 
% ABS_Error_HR = mean(abs(RTrack(4,:)-RTrack(6,:)))  
  
%********************************************************************** 
%       Sub Plots      
%********************************************************************** 
  
a = 200; 
  
for b = a:a:length(RTrack); 
    c = b-(a-1); 
     
        figure, 
        subplot(2,1,1)  
        hold on 
        plot (RTrack(7,[c:b]), RTrack(2,[c:b]), '-','Color',[1 0.6 
0.78]), 
        plot (RTrack(7,[c:b]), RTrack(3,[c:b]), '-k', 'LineWidth',2), 
        plot (RTrack(7,[c:b]), RTrack(10,[c:b]), '-',...  
            'Color',[0.8471 0.1608 0], 'LineWidth',2) 
        legend('Est U (Forward Velocity)', 'ADCP Measured U',... 
            'Est U Moving Average', 'location', 'SouthOutside') 
        title('Estimated and Measured U from REMUS 012506') 
        xlabel('Time'); 
        xlim([RTrack(7,c), RTrack(7,b)]); 
        ylabel('Velocity (m/s)'); 
        ylim([0.8, 2.2]); 
         
        subplot(2,1,2) 
        hold on 
        plot (RTrack(7,[c:b]), (RTrack(3,[c:b])-RTrack(2,[c:b])), '-b') 
        title('Error between Estimated and Measured U from REMUS 
012506') 
        xlabel('Time'); 
        xlim([RTrack(7,c), RTrack(7,b)]); 
        ylabel('Velocity (m/s)'); 
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        ylim([-1.0, 1.0]); 
  
Average_Error_U = mean(RTrack(3,[c:b])-RTrack(2,[c:b])) 
Average_ABS_Error_U = mean(abs(RTrack(3,[c:b])-RTrack(2,[c:b]))) 
Average_Error_HR = mean(RTrack(4,[c:b])-RTrack(6,[c:b])) 
Average_ABS_Error_HR = mean(abs(RTrack(4,[c:b])-RTrack(6,[c:b]))) 
  
end 
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APPENDIX C: MATLAB CODE FOR OPENING FLS IMAGES 

The following MATLAB® code was used for opening the individual sonar 

images within the simulations.  The original code was developed by Doug Horner, with 

modifications made by M. Dolbec during the course of this work. 

 
function sonarImage = OpenSonarImage(fileNumber) 
% open a sonar image where the single argument is the file number 
% it returns a two dimensional array of doubles 
  
  
  
fileNumberStr = num2str(fileNumber); 
%create the string that is the filename. File naming example is 
%img-h1-p000002.raw 
  
numLength = length(fileNumberStr); 
if (numLength == 1) 
    fileName1 = 'img-h1-p00000'; 
end 
if (numLength == 2) 
    fileName1 = 'img-h1-p0000'; 
end 
if (numLength == 3) 
    fileName1 = 'img-h1-p000'; 
end 
if (numLength == 4) 
    fileName1 = 'img-h1-p00'; 
end 
if (numLength == 5) 
    fileName1 = 'img-h1-p0'; 
end 
  
fileNameExt = '.raw'; 
  
filename = strcat(fileName1,fileNumberStr,fileNameExt); 
fullPathName = strcat('C:\DolbecImagesFirst\Allpings\',filename); 
  
fid = fopen(fullPathName, 'r', 'b'); 
  
if fid == -1 
    error('Failed to open file'); 
end 
     
XSize = 334; 
YSize = 464; 
  
sonarImage = double(rot90(flipdim(fread(fid,[XSize YSize], ... 
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    '*uint16'),2))); 
  
fclose(fid); 
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APPENDIX D: MATLAB CODE FOR SEGMENTATION LINES 

The following MATLAB® code was used for creating lines connecting two 

pixels.  The original code was developed by Georges Cubas, with modifications made by 

M. Dolbec during the course of this work. 

 
function result = linept(matrix, X1, Y1, X2, Y2) 
% Connect two pixels in a matrix with 1 
% 
% Command line 
% ------------ 
% result=linept(matrix, X1, Y1, X2, Y2) 
%   matrix : matrix where I'll write 
%   (X1, Y1), (X2, Y2) : points to connect 
%   result : matrix + the line 
% 
% Note 
% ---- 
%   matrix can contents anything 
%   (X1, Y1), (X2, Y2) can be out of the matrix 
% 
% Example 
% ------- 
% a = linept(zeros(5, 10), 2, 2, 3, 9) 
% a = 
%  
%      0     0     0     0     0     0     0     0     0     0 
%      0     1     1     1     1     0     0     0     0     0 
%      0     0     0     0     0     1     1     1     1     0 
%      0     0     0     0     0     0     0     0     0     0 
%      0     0     0     0     0     0     0     0     0     0 
% 
% Georges Cubas 20/11/03 
% georges.c@netcourrier.com 
% Version 1.0 
  
result = matrix; 
for x=max(1, X1):sign(X2 - X1):max(1, X2) 
    y = round(f(x, X1, Y1, X2, Y2)); 
    if y > 0 
        result(x, y) = -1; 
    end 
end 
for y=max(1, Y1):sign(Y2 - Y1):max(1, Y2) 
    x = round(f2(y, X1, Y1, X2, Y2)); 
    if x > 0 
        result(x, y) = -1; 
    end 
end 
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function y=f(x, X1, Y1, X2, Y2) 
a = (Y2 - Y1)/(X2 - X1); 
b = Y1 - X1 * a; 
y = a * x + b; 
  
function x=f2(y, X1, Y1, X2, Y2) 
if X1==X2 
    x = X1; 
else 
    a = (Y2 - Y1)/(X2 - X1); 
    b = Y1 - X1 * a; 
    x = (y - b)/a; 
end 
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