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ABSTRACT 

Observed ocean acoustic wavefronts show surprising stability in long-range 

acoustic transmission experiments.  This suggests that ocean scattering processes tend to 

redistribute acoustic energy dominantly along the wavefront rather than across it.  The 

purpose of this thesis is to elucidate the physical mechanism for this type of scattering by 

presenting a ray-based physical model.  Analytic formulae are presented that predict 

wavefront distortions caused by ocean internal waves and other processes.  Applications 

of this study include wavefront healing near underwater obstacles, out-of-plane scattering 

and the vertical redistribution of energy of off-axis sources.   

. 
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I. INTRODUCTION 

Observed ocean acoustic wavefronts show surprising stability in long-range 

acoustic transmission experiments.  This suggests that ocean scattering processes tend to 

redistribute acoustic energy dominantly along the wavefront rather than across it.  The 

physical mechanism for this type of scattering has not yet been elucidated. 

There are several practical implications for this type of scattering.  First, 

scattering along the wavefront leads to the important result that shadow zones behind 

ocean obstacles, like seamounts, will be filled in more rapidly than by simple diffraction.  

Second, this type of scattering can lead to significant transfer of acoustical energy from 

high angles to low angles.  Hence, an off-axis source, like those responsible for the ocean 

ambient sound fields, will have their energy redistributed vertically, thus altering the 

vertical directionality of the ambient sound.  Thirdly, scattering along the front can 

contribute to the vertical extension of acoustical caustics zones that abut shadow zones.  

Observations reported by Dushaw et al. (1999) of the Acoustic Thermometry of Ocean 

Climate group on Navy SOSUS stations showed that wavefront data obtained from these 

stations had experienced dramatic vertical extensions of wavefront caustics several 

hundreds of meters above the receivers.  The resultant scattering caused interference 

patterns along the front and vertically extended the front into shadow zones (Figure 1).   

Finally, since this scattering mechanism leads to acoustical energy redistribution 

along the front, the scattering processes can be considered to be coherent in some regards.  

Thus, the scattered energy can be used effectively for signal and array processing needs, 

but the statistics from this type of scattering has not yet been examined in detail. 

With this background information in mind, we consider a pulse emitted from a 

point source in the ocean sound channel.  In this case, an outward propagating wavefront 

is formed.  After traveling approximately 1,000 km, the wavefront takes on an accordion 

shape (Figure 2).  The wavefront is composed of individual segments that are joined by 

cusps and each point on the wavefront is identified with a ray with a specific launch angle 

of the source.  The wavefront is thus defined by the end points of all the rays at a specific 
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time after emission of the pulse.  After adding small-scale heterogeneities due to internal 

waves, each ray will be displaced some distance from its unperturbed end point.  The 

deviation of this ray end point can be either along the wavefront or perpendicular to the 

wavefront.  Numerical simulations in this thesis and in other work will show that the 

deviation is much larger along the wavefront. 

The primary purpose of this thesis is to study along the front scattering using a 

hierarchy of models from a simple 1-D, discrete model to a fully random ocean model.  

The main acoustical observable is the geometry of the acoustical wavefront, and Ray 

methods are used to quantify the re-distribution of ray energy along and across the front.  

Of principal importance is the ability to predict the ocean and acoustic variables that 

could most affect this type of scattering.  For example, many of our simple reduced 

physics models predict that variance of along wavefront ray deflections scale like the 

cube of the propagation range, while the variance of  across the front ray deflections scale 

linearly with range.  In addition, scattering in the wavefront direction is controlled by the 

vertical gradients of sound speed while the scattering in the ray direction depends on the 

sound speed perturbation itself.   
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II. METHODOLOGY 

Ray-based acoustic propagation models with various ocean sound speed 

fluctuation models were used to estimate scattering along and across the wavefront.  The 

simplest model considered was a discrete 1-D model with small angle forward scattering.  

Here Snell’s law was linearized and used to analytically predict the trajectory of ray paths 

through a series of random sound speed layers.  The validity of the linear approximations 

was examined to determine the relative contributions of along vs. across wavefront 

scattering as a function of the sound speed variance, the number of layers, the width of 

the layers, and the wavefront angle of incidence.  

The next level of complexity considered a continuous 2-D random field of sound 

speed perturbations obeying the (GM) internal wave spectrum.  Various analytic 

approximations to the scattering were checked through the use of Monte-Carlo numerical 

ray simulations that examined the scattering physics.  The simplest case modeled was ray 

propagation through an internal wave field that was anisotropic in depth and the 

horizontal direction, but homogeneous in depth.  A comparison of ray simulation 

statistics to some simple analytic expressions was easily obtained because of the simple 

geometry. 

The last and most complicated case involved a true ocean environment, with a 

sound channel, and an anisotropic and inhomogeneous internal wave field.  Again, 

Monte-Carlo ray simulations were performed to test more complicated analytic 

expressions for scattering along and across the front. 

A. SOUND SPEED ENVIRONMENT 

In this numerical experiment, the following two dimensional sound speed field is 

considered: 

( ) ( ) ( )c x,z c z c x,z= + δ , ( ) c c zδ �           (2.1) 
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where IW
p

cc=
z
∂⎛ ⎞δ ζ⎜ ⎟∂⎝ ⎠

 and ( )c z  represent the sound speed perturbation and mean sound 

speed profile respectively.  ζ  is the internal wave displacement field and 
p

c
z
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠
 is the 

potential sound speed gradient.  The mean sound speed profile can then be modeled in 

one of two ways.  Either, it is represented by the constant 0c =1500 ms-1 or by the more 

complex Munk canonical form (Munk, 1974). 

( ) ( ) ( )( )a-2 z-z / B
0 ac z c 1+ e 2 z-z / B-1⎡ ⎤= ε +⎣ ⎦               (2.2) 

Specifically, the axial sound speed ( 0c ) is equal to 1500 ms-1, the total water depth 

D=5000 m, B=1000 m, the sound channel axial depth (za) was set to 1000 m, and 

ε =0.005515. 

First, the potential sound-speed gradient profile is expressed as 

( ) ( ) 2

0

c r,t
r,t N

c g

δ ⎛ ⎞α
µ = ≈ ζ⎜ ⎟

⎝ ⎠

v
v

            (2.3) 

where c0 is1500 ms-1, N is the buoyancy frequency and α  is a dimensionless constant 

related to salinity and temperature, approximately equal to 24.5. 

From Flatte et al (1979), a fractional sound speed variance profile was imposed in order 

to understand the internal wave induced sound-speed fluctuations: 

( ) ( )2

0

3
2

3
ref

N z
z

N
µ = µ              (2.4) 

where 2

0µ =6.26 x 10-8, and Nref = 3 cph.  However, near the surface and bottom, the 

profile of ( )2 zµ  will be modified in order to accommodate the internal wave vertical 

mode boundary condition of zero displacement at those areas.  Equation 2.4 is important 

because it reveals the inhomogeneities of internal wave induced sound-speed fluctuations 

with respect to depth.  As a result of a larger buoyancy frequency in the upper ocean as 

opposed to a deeper one, these sound-speed fluctuations are larger in the upper regime. 



 5

The task now falls to generating the random realizations of sound speed 

perturbations that are induced by internal waves, where, internal waves are oscillatory 

geophysical wave motions resulting from the Coriolis and buoyancy forces.  The change 

in sound-speed due to internal waves is on the order of 1 ms-1, with time scales lying 

within the regime of the Coriolis and buoyancy periods.  The length scales of internal 

waves are of order 100 m in the vertical and 10 km in the horizontal.  Further, sound-

speed fluctuations caused by internal waves are the dominant source of variability of 

acoustic fields in the ocean.   

The Garrett-Munk internal wave spectrum is utilized using the Colosi and Brown 

method (1998).  Internal waves can be represented as horizontally propagating vertical 

modes.  Consequently, the internal wave displacement field ζ can be considered as the 

sum over all possible internal waves with vertical mode number j and wave numbers kx 

and ky. 

( ) ( ) ( ) ( )max
x j

j
i k x t

IW x x j
j=1

x,y,z Re dk g j,k A z e
∞

−σ

−∞

⎡ ⎤
ζ = ⎢ ⎥

⎣ ⎦
∑∫          (2.5) 

where Aj is the jth mode function, xk  is the horizontal wave number in the propagation 

plane.  The amplitudes of the internal waves are complex random variables with statistics 

described by the GM spectrum.  The buoyancy frequency profile is modeled using a 

canonical profile as shown below. 

( ) -z/B
s N z N e=              (2.6) 

Here, B is still equal to 1,000 m and the surface buoyancy frequency (Ns) is set to 5 cph.  

However, when the background sound speed is a constant, Ns=1cph is employed.  The 

sum of the contributions from internal wave mode numbers up to jmax = 200 was chosen 

and internal waves with horizontal wave scales from 0.5 to 409.6 km were utilized in the 

generation of the random realizations of internal wave induced sound speed 

perturbations. 

 A random realization of the spectrum of µ  is achieved by expressing it in terms 

of a mode number and horizontal wave numbers kx and ky. The final result is 
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( ) ( )

( )
( )
( )

1
2 23 22
x j jj x

x 3 13 2 2 2 2 2
2 2 2 20 * x j 2 2
x j x j j

k +k kkN z k1 1 2 1G j,k ln
N M j +j k +k 2 k +k k +k kπ

2
µ 0

⎡ ⎤⎡ ⎤
+⎢ ⎥⎢ ⎥= µ +⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥−⎣ ⎦⎣ ⎦

     (2.7) 

where j
0

f jk
N B
π

= .  Internal waves are isotropic in the horizontal direction, but anisotropic 

in the vertical.  

B. RAY THEORY 

The evolution of the wavefront is well described by the two-dimensional ray 

equations (Brown et al, 2003, and Beron-Vera et al 2003).  They are given by 

 ( )1/ 22 2x c 1-c p
t

d
d

= , 2z c p
t

d
d

= , p 1 c
t c z

d
d

∂
=

∂
           (2.8) 

where p=sin /cθ  is the ray slowness in the z-direction.   The ray equations were integrated 

forward in time to Tmax=1000 km/ 0c  = 666.667(s), with the intermediate times being 

saved in increments of 0.667 seconds.  These equations were solved numerically using 

MATLAB. 

C. NO WAVEGUIDE CASE 

For the case of constant background sound speed, simulations were carried out 

with a source depth of 1,000 m and with an initial ray angle of zero degrees.  A total of 

12,000 realizations of ray propagation were computed in order to accurately calculate the 

necessary statistics.  In this case, a periodic boundary condition was implemented in 

order to compensate for rapid scattering to the ocean boundaries.  Figure 3 shows the ray 

endpoints from all the realizations at the following nominal ranges:  340, 680, and 1,000 

km.  A dramatic depth deviation (wavefront direction) of the end point relative to the 

range deviation (ray direction) is clearly evident.  This figure dramatically shows the 

dominance of scattering along the front.  The rays are also seen to be scattered into an arc 

instead of a straight line.  The arc is formed because the rays with the largest depth 

deviation could not get down range as far as the rays that stayed closer to the original 

depth.  In Figure 3, the green curve represents the parabolic fit to ray end point 
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distributions and the red curve shows the location of the unperturbed point source front 

(spherical wave).  The parabolic fit is used as a mean wavefront and thus this function is 

subtracted off the ray endpoints to yield statistics in the wavefront and ray directions.  It 

is clear that at 1000 km the wavefront direction deviations are on the order of tens of 

kilometers as opposed to the order of 10 meters of the ray direction deviations.  Statistical 

results will be given in later sections.   

D. WAVEGUIDE CASE 

Implementing a source depth of 1,000 m and an initial ray launch angle 

of ( )r 0 7θ = + o , where the angle rθ  is with respect to the x-axis, the case of the Munk 

background profile with internal wave induced sound speed variations was simulated.  A 

total of 12,000 realizations of ray propagation were modeled.  Figure 4 shows the ray 

endpoints from all the realizations at nominal ranges of 340, 680, and 1000 km.  The 

location of the unperturbed + 7o  ray is denoted by the green dots.  Further, the 

unperturbed front composed of initial angles between + 0o  and +14o  is denoted with a red 

line.  At a range of 1000 km, deviations of the ray end points in the ray direction are of 

the order 10 m.  Again, in the wavefront direction, the order is in kilometers, 

demonstrating the dominance of along wavefront deviations.  Also note that the 

scattering in the wavefront direction is seen to be asymmetrical in the sense that the 

wavefront is extended more towards the longer and not the shorter ranges.  Statistics will 

be discussed in later sections.  
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III. 1-D DISCRETE CASE 

The oceanographic wave propagation physics leading to distinct anisotropy in 

wavefront distortions is geometrically complex.  To alleviate this complexity, and better 

understand the precise geometry involved with this problem, a plane 1-D model is first 

considered.  Although, the model is not realistic, its simplicity allows for the analytical 

solutions of the trajectories of individual rays which are necessary in elucidating the 

aforementioned geometry. 

A model consisting of a layered random sound speed medium with small angle 

forward scattering was considered (see Figure 5).  There is an incident wave with angle 

0θ  (with respect to the horizontal), in a region of sound speed c0.  The incident wave 

refracts via Snell’s Law with angular deviation 1θδ  into region 1 of a slab with specified 

width L, where Colosi and Flatte (2007) defined the sound speed as 1 0 1 1 0c =c + c , c cδ δ � .  

The scattered ray then moves a distance x1 in the horizontal, taking time t1 to cross the 

slab in this region.  The process continues in this manner for a specified number of N 

slabs.   

Colosi and Flatte (2007) used Snell’s Law, cos constant
c
θ
= , to express a small 

angular deviation when there is a small sound speed perturbation jcδ .  Their results are 

given by   

j
j

0tan
θ

θ
−µ

δ ≅                   (3.1) 

where j j 0c / cδµ =  and j 0 jθ θ δθ= + .  After the scattered ray crosses each layer, an x-

deflection and a travel time result.  Their resulting equations are exact relations. 

j
0 j

Lx  = 
tan( )θ θ+ δ

, j
j 0 j

Lt  = 
c sin( )θ θ+ δ

                   (3.2) 
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After expansion in small angles, Flatte and Colosi (2007) arrived at the following 

approximation: 

j
j  j 0 0 2

0
x x -x  = x

sin θ
µ

δ = , 0
j  j 0 0 j 2

0

cos 2t t -t  = t  
sin

θ
θ

δ = µ          (3.3) 

Here, the unperturbed deflections of the ray path are represented by the values 

0 0x =L/tanθ  and 0 0 0t =L/(c sin )θ .  According to the results (Equation 3.3), both the x-

deflection jxδ  and the sound speed perturbation jµ  will always have the same sign.  That 

is to say, should jµ  be positive then jθδ  must be negative, which results in the ray 

having a larger glancing angle and thus a larger jxδ .  The opposite also holds true.  

However, the sign of the time shift is dependent upon both the angle of incidence and the 

sound speed perturbation.  For the case of interest 0θ  < 45o, the time shift jtδ  always 

holds the same sign as the x-deflection.  With jµ  > 0, the path length is longer and the 

time shift positive.  Thus, the sound speed increase is unable to compensate for the 

increase in path length.  The result is an increase in time for the ray to cross the slab.  The 

opposite occurs when jµ  < 0, which means that the ray crosses the slab in less time.  That 

is, for 0θ  < 45o, changes in the ray path length dominate the scattering of the rays.   

A random walk model was tested.  First, the sound speed fluctuations nµ  are 

assumed random, with n 0µ =  and 2
n m nmµ µ = µ δ .  Next, Colosi and Flatte (2007) 

derived the following: 
N

0 0
j j j2 3

j=1 j=1 j=10 0

x cosdx= x L
sin sin

θ
θ θ

Ν Ν

δ = µ = µ∑ ∑ ∑            (3.4) 

N
0 0

j 0 j j2 3
j=1 j=1 j=10 0 0

cos2 cos 2 Ldt= t t
sin sin c

θ θ
θ θ

Ν Ν

δ = µ = µ∑ ∑ ∑           (3.5) 

where dx and dt are the summations of jxδ  and jtδ , respectively.  Colosi and Flatte (2007) 

derived the results for the moments of dx and dt. 
2 2

0 02 2 2 2
2 6

0 0

x cosdx N L N
sin sin

θ
θ θ

δ⎛ ⎞= µ = µ⎜ ⎟
⎝ ⎠

         (3.6) 
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2 2 2
0 02 2 2 2

0 2 6 2
0 0 0

cos 2 cos 2 Ldt t N N
sin sin c

θ θ
θ θ

⎛ ⎞= δ µ = µ⎜ ⎟
⎝ ⎠

         (3.7) 

The growth of 2dx  and 2dt  is diffusive because they grow linearly with the number of 

scattering events (N). 

The approximations for jxδ  and jtδ  were numerically tested with random 

realizations and sound speedsµ .  The following parameter values were chosen:  sound 

speed      c0 = 1500 ms-1, depth of the layer L = 100, number of layers N = 100 and 
1
22cδ =    0.15 ms-1.  The variance of dx and dt were computed for an initial range of 

angles between 2 and 88 degrees.  The approximations proved to be excellent, as 

demonstrated in Figure 6. 

A. DECOMPOSITION ALONG AND ACROSS THE FRONT 

The scattered rays need to be compared to the unperturbed wavefront by 

correcting the scattered ray to the same time as the unperturbed wavefront.  With the 

assumption that the scattered ray propagates at the angle 0θ , Colosi and Flatte (2007) 

arrived at the following geometrical analysis (see Figure 7): 

W 0=dx sinθ∆ , and R 0 0=dx cos -dtcθ∆                             (3.8) 

where W∆  signifies the deviation along the wavefront and R∆  is the deviation in the ray 

direction, which is  normal to the wavefront.  The second term in R∆  represents the time 

correction back to the time of the unperturbed front.  Through Equation 3.8, a critical 

understanding of the relative sizes of the two wavefront deviations is achieved.  As a 

result of the fact that dx and dt have the same sign for 0 45θ < o , the two contributions to 

R∆  nearly cancel and the rays fall back along the unperturbed front.  As a result of this 

near cancellation, R∆  is reduced by a factor of tanθ  relative to W∆ .  This is a significant 

result as tanθ  can be quite small for launch angles near zero degrees.  Glancing 

incidences created a larger distance and thus longer time for crossing the slab, 

accentuating the effect.   
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The second moments were then obtained using the random walk model described 

earlier.   

2
02 2 2

W 4
0

cosN L
sin

θ
θ

∆ = µ ,  
2 2

R 2
0

N L
sin θ

2
µ

∆ =             (3.9) 

When 0θ  approaches 90 degrees, or near normal incidence, 2
0cos θ  approaches zero, 

thus 2
W∆  becoming very small; however, 2

0sin θ  approaches one, thus 2
R∆  

approaches a constant.  As 0θ  approaches zero or glancing incidence, 2
W∆  grows more 

rapidly than 2
R∆  because 4

0sin θ  grows more rapidly than 2
0sin θ .  At 0θ =45 degrees, 

the curves intersect (see Figure 8).  The figure also shows that the Monte-Carlo 

simulation does very well in approximating 2
R∆  and 2

W∆  and is very close to 

theoretical estimates.     
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IV. 2-D CONTINUUM MODELS:  NO WAVEGUIDE 

The discrete 1-D model used in the previous chapter did well to describe the 

geometry of the problem in question, but, nonetheless, brought forth serious 

disadvantages.  In the 1-D model, the x-component of the ray slowness ( )cos /cθ  was a 

conserved quantity, thus it can strongly affect the fluctuations in the system.  From 

Beron-Vera et al. (2003) and Beron-Vera and Brown (2004), in ray systems in which the 

sound speed is a function of only one variable.  The wave number component 

perpendicular to the sound speed gradient is constant.  When the sound speed varies in 

multiple directions the wave number components are not conserved and thus, ray chaos 

can occur (i.e., exponential sensitivity to initial conditions).  Further, linearization of the 

equations was prohibited in the 1-D model at an incident angle of zero as total reflection 

issues occurred.   

A. DEVIATIONS IN THE WAVEFRONT DIRECTION 

In the case of no sound channel, the geometry represents an unperturbed ray as a 

straight line from the source.  The direction x is along the unperturbed ray starting at the 

point (0,0).  If there are no fluctuations in sound-speed, the ray arrives at position z = 0 

and x = R after time T, as opposed to Z and R+X after time T with fluctuations ( see 

Figure 9).  The deviation of Z and X is along the wavefront and perpendicular to it, 

respectively.  Here, Flatte and Colosi (2007) considered an unperturbed ray angle at zero, 

thus θ  will be used to symbolize the angle at position X caused by the perturbations.  

The perturbation µ  is responsible for the deviation in the ray angle and can be estimated 

from the ray equations.  In this way, Colosi and Flatte (2007) calculated the deviation in 

angle after traveling a distance dx as 'd xdθ −µ� , where 'µ  is the random vertical 

gradient of fractional sound speed.  Their equation for the ray angle at Range R is then:  

( ) ( )
R R '

 
0 0

R d dx xθ θ= = − µ∫ ∫                (4.4) 

The integration path of Equation 4.4 is along the path of the unperturbed ray, 

alongside the x-axis.  Thus, after a range R, the variance in the ray angle is: 
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( ) ( )
R R R H H2 ' '

1 2 1 2 2 20 0 0
z z

L L Rdx dx x x dx
L L

θ 2 2= µ µ µ = µ∫ ∫ ∫�         (4.5) 

In evaluating this integral, Colosi and Flatte (2007) made the assumption that the 

correlation length of the sound speed gradient is short in comparison to the range R in 

equation 4.5.  The correlation lengths of the internal waves along and traverse to the ray 

are defined as LH and Lz respectively.  Equation 4.5 shows that the rms angle with respect 

to the horizontal grows as the square root of range.   

Now a derivation for the result for the along wavefront scatter is made.  Using the 

supposition that a ray propagates to some position x1 and undergoes a small angular 

deflection ( )1xθ , the scattered ray will then propagate to a range R following a straight 

line and to a depth deflection of d ( )1z R,x .  Simple geometry (Figure 10) shows that 

( ) ( ) ( )1
1 1

1

z x
tan x x

R-x
θ θ =� , or ( )1 1

z x R-x
θ
∂

=
∂

          (4.6) 

Next Flatte and Colosi (2007) took the sum of all deflections so, the total z-deviation at 

range R is  

( ) ( ) ( )
R R '

1 1 1
0 0

zZ R x R x xd dθ
θ
∂

= = − − µ
∂∫ ∫ .           (4.7) 

The variance of Z is then 

( ) ( ) ( )
R R 1 22 ' '2 1 2 1 2

0 0

x xZ R =R x x 1- 1- x x
R R

d d ⎛ ⎞⎛ ⎞ µ µ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠∫ ∫ .        (4.8) 

The two integration variables are within LH of each other due to a restriction imposed by 

the correlation function of 'µ .  Thus, Colosi and Flatte (2007) reduced the integral to the 

following result: 

( ) ( )
32

HR 212 '2 H 20
z

R LxZ R R x 1- L
R 3L

d
2µ⎛ ⎞ µ⎜ ⎟

⎝ ⎠∫� �           (4.9) 

As is evident, rms deviation along the wavefront grows as the 3/2 power of the range. 
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Numerical evaluations can now be performed for rmsθ  and rmsZ  through the 

estimation of the internal wave factors of Equations 4.5 and 4.9.  The following rms 

values, 6rmsθ o� and rmsz 60 km� are a result of propagation to a range of 1000 km with 

sound speed fluctuation values characteristic of internal waves:  LH = 10 km, Lz = 0.1 km, 

and 8102 −µ = . 

B. DEVIATIONS IN THE RAY DIRECTION 

The perturbed time Tδ  can be calculated along the ray.  X is given by 0c Tδ , 

where Tδ is the travel-time deviation for arrival at R calculated along the unperturbed 

ray.  Colosi and Flatte (2007) arrived at the following: 

( ) ( ) ( )
R R0

0
0 0

cX=c T R R= x R x,z dx
c x,z

d− − µ∫ ∫�        (4.10) 

The variance of X is then: 
2

HX RL2= µ             (4.11) 

Comparing rms values, deviation along the wavefront 
1

2 2Z  has an rms value of 

60 km in contrast to an rms value of only 
1

2 2X  = 10 m of the deviation along the ray.  

This is a surprising result.  It says that 
1/ 22

1/ 22

z
1000

x
� , stating that deviation is one-

thousand times greater along the front than across it.   

C. EXPRESSIONS FOR SOUND PROPAGATION THROUGH INTERNAL 
WAVES 

The wavefront wander 2τ (Flatté et al., 1979), is directly related to the deviation of 

the wavefront along the ray 2X .  As such, Colosi and Flatte (2007) derived the 

following: 
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( ) ( )
R2 2 2

p r0 0
X c z L =0,z xdθ2= τ = µ∫          (4.12) 

where Lp is the correlation length of the internal waves in the x-direction (along the ray) 

and rθ  is the ray angle with respect to the horizontal.  Also, Lp is dependent upon rθ  

because internal waves are anisotropic.  The deviation in ray angleθ  is different in that it 

is not dependent upon µ , but instead upon the correlation of the vertical gradient of µ .  

Therefore, 

( ) ( )
R2 '

rp0
z L =0,z xdθ θ2= µ∫           (4.13) 

where '
pL represents the correlation length of the vertical gradient of the internal waves in 

the x-direction.  Appendix A gives expressions for these correlation lengths.  Colosi and 

Flatte (2007) also show   

( ) ( )
2

R2 2 '
rp0

xZ R 1 z L =0,z x
R

dθ2⎛ ⎞= − µ⎜ ⎟
⎝ ⎠∫         (4.14) 

D. NUMERICAL RESULTS 

Figure 11 shows the statistics of the rms ray angle and of the rms along the 

wavefront 
1
22Z  and across wavefront 

1
22X  deviations.  With regards to the range 

scaling, the rms along the front, plotted in the upper portion of Figure 10, behaves as 

expected, rapidly growing as R3/2.  Similarly, the rms ray angle
1

2 2θ  displayed in the 

lower portion of the plot grows as expected by R1/2.  However, the across the wavefront 

statistics 
1
22X show some deviation from the prediction of Equation 3.8.  Despite the 

subtraction of the parabolic curve from the Monte-Carlo simulation, at ranges beyond 

300 km, the growth rate of
1
22X  ceases to increase by R1/2 and jumps to a rate of R3/2 for 

reasons not known (future research).  Consequently, a new approach for 
1
22X  is 

required for R>300 km. 
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E. OCEAN APPLICATIONS:  HORIZONTAL PLANE SCATTERING 

An important result is obtained when an examination of the horizontal spreading 

of acoustic rays in the horizontal (lat, long) plane of the previous section is performed.  

The effect is that this out of plane scattering may now play an important role should the 

wavefront become obstructed by an island or seamount, which would lead to the healing 

of the wavefront.   

Colosi and Flatte (2007) modified Equation 4.9 to yield the horizontal deviation 
2Y  for an isotropic sound speed fluctuation field: 

3
2

H

R
Y

3L

2µ
=             (4.15) 

An order of magnitude can now be obtained using parameters (same as the 

previous section) typical of ocean internal waves and a propagation range of 1000 km.  

The rms value of the out of plane deviation 
1

2 2Y 600 m� , which shows the effects of 

internal waves to appear quite small.  However, for a random field of mesoscale eddies 

with 5102 −µ �  and HL 50 km� , a much larger rms deviation of 10 km is obtained.  

Diffraction grows as R1/2 as opposed to scattering healing which grows as R3/2.  That is, 

diffraction dominates in shorter ranges and scattering healing dominates in larger ranges. 

F. WAVEFRONT HEALING IN THE VERTICAL 

The following images show the progression of the healing of a wavefront in the 

vertical past an underwater obstruction with respect to
1
22Z .  A sound source emitting 

rays is considered.  Some of the rays will hit the obstruction and others will go over it.  

As a result, a void or shadow zone will occur with respect to the vertical.  As such, the 

along front scattering in question is demonstrated to reveal faster infilling of the shadow 

zones than predicted by regular diffraction (not shown).  At only 100 km past the 

obstruction, the wavefront completely fills in the shadow zone.    
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V. INCORPORATION OF THE WAVEGUIDE 

The results of the no waveguide model were very encouraging, but now we want 

to treat the important effects of the waveguide.  Therefore, it was necessary to modify the 

theory to incorporate the ocean waveguide and depth dependent ocean internal waves.  

To better understand this new case a geometrical approach is taken.  In the no-waveguide 

case, the ray propagates to some point x’, scatters and then propagates to the final range 

R.  From Snell’s law, that ray will shift some vertical differential distance dθ  after 

traveling some horizontal distance R-x’.  As a result, dz
dθ

 equals R-x’ (see Figure 10).  

The geometry in the waveguide case is similar to the no-waveguide case except that the 

ray is now following a curved ray path and not a straight line (Figure 13).  Thus, the 

derivations for the variance in X, Z, andθ  remain relatively the same with the exception 

that dz
dθ

 is now dependent upon the ray tube functionζ .  Colosi and Flatte (2007) show 

that  

( ) ( )
( )

2

2

x'
x'

' R
dz
dθ

ς
= −

ς
             (5.1) 

The following statistical equations from Colosi and Flatte (2007) are for the waveguide 

case: 

R2 2
p0

X ds L= µ∫ , 
R2 2 '

p0
ds  Lθ = µ∫ , 

( )( )
2R2 2 ' 2

p 20 2
2

Z ds  L
R

ξ
= µ

ξ
∫      (5.2) 

A. NUMERICAL RESULTS 

In comparison to the results of the previous chapter, the rms ray angle 

statistics
1
22θ  continues to show the expected growth of R1/2 with some deviation at 

larger ranges followed by a tapering off at a range of about 1000 km.  The across the 

wavefront statistics
1
22X  now grow as R1/2 throughout the entire range interval as 
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opposed to the R3/2 seen in the no-waveguide case after 300 km range.  Theory fits well 

for
1
22Z  up to 600 km, but shows deviations at greater range.  For large ranges, there 

maybe a problem with the calculation of the ray tube functionζ past ranges of 600 km.  

Whereas, the Monte-Carlo simulation tapers off at larger ranges and grows nicely at R3/2, 

the theory shows a dramatic deviation from the model statistics (Figure 14). 
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VI. CONCLUSIONS 

The ray-based physical models did very well in elucidating the physical 

mechanism for the ocean scattering processes that tend to redistribute acoustic energy 

dominantly along the wavefront.  The models in question do a relatively good job 

predicting the wavefront distortions caused by the ocean internal waves with respect to 

Monte-Carlo simulations.  For the simple 1-D model, dx and dt have the same sign, thus 

ray direction variance is diminished.  Further, wavefront scattering is dominated by path 

length changes of the ray.  In the continuum models, ray direction deviations depend on 

µ  and grow diffusively as R1/2.  Also, wavefront direction deviations depend on 'µ  and 

there is a moment arm effect that makes 2Z  grow like R3/2.  With regards to the 

waveguide case model, the problem with the theoretical prediction of the Z statistics 

showing the dramatic deviation with the Monte-Carlo simulation must still be worked 

out.  Nonetheless, the statistics provided for seven degree angle rays propagating through 

Garrett-Munk internal waves in a Munk sound speed profile remain very compelling, and 

that the distribution of acoustic energy along the wavefront is dominant.   
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VII. FUTURE APPLICATIONS 

This paper looked only at one ray with a launch angle of seven degrees using a 

ray theory approach.  This method has some obvious inherent problems.  First, a source 

will emit more than one ray; and, the present ray theory does not give any information 

concerning the amplitude of the acoustical field.  To apply the results presented herein to 

an operational environment, the energy distribution of all the rays must be inferred by 

observing where the ray endpoints end up at along the wavefront.  Further, the 

calculations should also be compared with those implementing parabolic equations and 

normal mode theory to verify results and the effects of diffraction.  This new approach 

will help to understand the practical implications of along the wavefront scattering.  One 

application is the rapid infilling of shadow zones behind underwater obstructions, the 

significant transfer of acoustical energy from high to low angles, and the dramatic 

vertical extension of acoustical caustic zones that abut shadow zones that were reported 

by the Acoustic Thermometry of Ocean Climate group at Navy SOSUS stations in 1999 

will be more completely elucidated.   

For wavefront healing the important result is the comparison of diffractive healing 

which scales as R1/2 and scattering which scales as R3/2.  At short ranges, diffraction 

dominates, but at longer ranges scattering will dominate.  Where this transition occurs is 

unknown. 

Further, the theory needs to be compared to experimental data.  Because a beam 

ensonifies only a small group of launch angles, an experiment involving the transmission 

of a narrow angle beam using an array of sources can meet this need.  Littoral Warfare 

Advanced Development (LWAD) would be an appropriate platform to conduct this 

experiment. 
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APPENDIX A.  CORRELATION LENGTHS:  THE GARRETT-
MUNK SPECTRUM 

The GM spectrum is defined by two key variables:  vertical mode number j and 

frequencyσ .  For every vertical mode, there is some depth they are dependent upon.  

These depths are in turn locally represented by a harmonic function with a wavenumber 

given by: 

( )zk = jN zα               (A.1) 

( )
D

0

1 zN zdα =
π ∫              (A.2) 

where D is the ocean depth and N(z) is the buoyancy frequency profile.  The following 

equations are expressions for the correlation length of µ  in the directionθ , for the GM 

model: 

( ) ( )-1
p 1

i i

N z tan4 1L ,z j F
θ

θ
⎛ ⎞

= ⎜ ⎟π αω ω⎝ ⎠
          (A.3) 

maxj
-1

j 2 2j=1
*

1 1j M
j j j

= Σ
+

, 
max

1
j

j 2 2j=1
*

1M
j j

−
⎛ ⎞
Σ⎜ ⎟+⎝ ⎠

         (A.4) 

( ) ( ) ( ) ( )
( )

1/ 2221 3/ 22 2
1 1/ 22

x 1 1xF x x 1 x 1 ln
2 x 1 1

− − + +
= + + +

+ −
         (A.5) 

where maxj  is a cutoff mode number and iω  is the inertial frequency.  2µ  and N, the 

buoyancy frequency, are both functions of depth and *j is usually equal to three. 

 The correlation functions for the vertical derivative of µ  in the 

directionθ are obtained by giving 

( ) ( ) ( )2'
1p

i i

N z4 1L , z N j F
θ

θ
⎛ ⎞

= α ⎜ ⎟π αω ω⎝ ⎠
                               (A.6) 
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maxj

j 2 2j=1
*

1j M j
j j

= Σ
+

            (A.7) 

The cutoff mode number maxj  is of importance for '
pL  given the divergence of j  

for maxj →∞ .  Through observation, maxj  is established when the vertical wavenumber of 

the internal waves equals 0.1 cpm (Duda et al 1992). 
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APPENDIX B FIGURES 

 
Figure 1.   Wavefront data collected from Navy SOSUS receivers. 
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Figure 2.   A ray computation showing an acoustic wavefront at roughly 1,000-km range, 

resulting from a point source on the sound channel axis.  The calculation was 
carried out using a Munk canonical sound-speed profile without internal-wave 

sound-speed perturbations. 
 



 29

 
Figure 3.   Range evolution of the ray endpoints for 12,000 realizations of ray 

propagation through internal wave induced sound speed perturbations.  For all 
realizations the initial angle is zero degrees and the initial depth is 1,000 m.  The 

solid vertical lines show the location of the unperturbed wavefront, assumed a 
plane wave.  The dash red curve shows a parabolic fit to the ray endpoint 

distributions, and the green curve shows the location of the unperturbed point 
source front. 
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Figure 4.   Range evolution of the ray endpoints for 12,000 realizations of ray 

propagation through internal wave induced sound speed perturbations, with the 
Munk canonical profile.  For all realizations the initial angle is 7 degrees and the 
initial depth is 1000-m.  The red curve shows the unperturbed wavefront from a 
point source, and the green dot shows the location of the unperturbed 7 degree 

ray. 
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Figure 5.   Schematic showing the geometry of the 1-dimensional discrete layer problem. 
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Figure 6.   Comparison of statistics for dx and dt as a function of the initial angle 0θ , 
using the random walk model.  The blue curves represent the Monte Carlo 

simulations and the red curves are the theoretical estimations. 
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Figure 7.   Schematic of the geometry of the projection of the scattered ray onto the 
unperturbed wavefront. 
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Figure 8.   Computations of 2
W∆  and 2

R∆  as a function of initial 0θ , from direct 
Monte-Carlo numerical simulation and from theoretical estimates using Eq. 3.9. 
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Figure 9.   Geometry of ray scattering in the absence of a waveguide. 
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Figure 10.   Geometrical description of the application of Snell’s Law to the no-waveguide 
case. 
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Figure 11.   Computations of rms ray deflections for zero angle rays propagating through 

GM internal waves (solid) and theoretical expectations (dash).  The rms angle is 
diplayed in the lower portion of the plot, showing the expected growth by R1/2.  
The rms along the wavefront deflection is diplayed in the upper portion of the 
plot, also showing the expected R3/2 growth.  The ray direction deflection is 

displayed in the middle section of the plot where the numerical result has been 
corrected for the parabolic spreading of the ray endpoints.  The R1/2 scaling breaks 

down after 300-km in range. 
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Figure 12.   Progression of along the wavefront scattering past an underwater obstruction 
demonstrating a complete infilling of the shadow zone at a range of 100 km.   
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Figure 13.   Geometrical description of the application of Snell’s Law to the waveguide 
case. 
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Figure 14.   Computations of rms ray deflections for 7 degree angle rays 
propagatingthrough GM internal waves in a Munk sound speed profile.  Monte-
Carlo simulation results are shown with solid lines while theoretical results are 
dashed.  The rms ray angle is in the lower portion of the plot and the expected 

display of R1/2 is evident.  The rms along wavefront deflection is displayed in the 
upper portion and the expected growth of R3/2 is evident.  The rms across the 
wavefront is in the middle of the plot and shows the expected growth of R1/2.   
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