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Foreword

Propulsion systems, which are one of the priority activities of the Applied Vehicle Technology Panel of
NATO’s Research and Technology Organisation, are frequently confronted by unexpected and unsteady
behaviors known by the generic name of “combustion instabilities”. Many solid propellant rockets, liquid
propellant engines, ramjets and main or reheat combustors of turbojets have been affected by these types
of problems during development. Combustion instabilities were identified at the start of the 1950s as an
endemic disease and were then the subject of research aimed at understanding their origins, explaining
how they developed and, eventually, predicting their levels. The researchers were very quickly convinced
of the difficulty of the problem, which is essentially due to two factors: firstly, the difficulty of taking
detailed measurements of the internal flow in engines, because of the extremely severe physical conditions
inside them, and secondly, the close coupling between numerous unsteady mechanisms related to fluid
mechanics, combustion, two-phase flows, etc. The work done on this subject in the United States has had
a profound influence in all Western countries and I had the good fortune, when I was asked to study the
question for the French Armament Procurement Agency (DGA), to meet Professors Fred Culick and
Ed Price, then later Professor Gary Flandro and other US Navy, US Air Force and NASA specialists.
These contacts were determining factors for the direction of French work.

Today, Professor Fred Culick proposes a summary entitled “Unsteady Motion in Combustors for
Propulsion Systems” in the form of an AGARDograph. There are very few scientists in the world who
have accumulated such in-depth expertise and experience on the subject and the RTO should be grateful to
Professor Fred Culick for having put all this acquired knowledge at the service of NATO’s technological
research. An attentive reading of the document prepared reveals that it is a truly comprehensive survey,
in the literal sense of the word. What Professor Fred Culick has done is to put several decades of research
into an understandable form, thus endowing the work with a true encyclopaedic nature, both by the variety
of situations examined and by the abundance and exhaustiveness of the references used. Due to his great
teaching ability, Professor Fred Culick has also been able to conduct a quite weighty mathematical
analysis with thoroughness and accuracy and to establish the indispensable link between observations
made on engines and predictions arrived at by calculation. Furthermore, if only one of the work’s qualities
had to be pointed out, I, for my part, would opt for Professor Fred Culick’s exceptional ability to give
physical meaning to the equations.

I therefore think that the AGARDograph prepared by Professor Fred Culick is bound to become a
worldwide reference on the difficult but always topical subject of combustion instabilities.

Dr. Paul KUENTZMANN
ONERA, France
Former PEP/AGARD member
Former AVT/RTO member
RTB member
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Avant-propos

Les systémes propulsifs, qui constituent 'une des priorités des activités de la Commission Applied
Vehicle Technology de la Research and Technology Organisation de 1’OTAN, sont fréquemment
confrontés a des comportements instationnaires imprévus connus sous le nom générique « d’instabilités de
combustion ». De nombreux moteurs-fusées a propergol solide, moteurs-fusées a ergols liquides,
statoréacteurs, foyers principaux ou de rechauffe de turboréacteurs ont connu ce type de probléme en
cours de développement. Identifiées au début des années 50 comme une maladie endémique, les
instabilités de combustion ont dés lors fait 1’objet de recherches pour en comprendre l’origine, en
expliquer le développement et, a terme, en prévoir les niveaux. Les chercheurs ont été trés tot convaincus
de la difficulté du probléme, qui tient pour 1’essentiel & deux aspects : d’une part, a la difficulté de réaliser
des mesures détaillées de 1’écoulement dans les moteurs, en raison des conditions physiques trés séveres
qui y régnent, et, d’autre part, du fait du couplage étroit de nombreux mécanismes instationnaires relevant
de la mécanique des fluides, de la combustion, des écoulements diphasiques, etc. Les travaux conduits sur
ce théme aux Etats-Unis ont imprégné tous les pays occidentaux et j’ai eu la chance, lorsque j’ai été
chargé d’étudier la question pour la DGA frangaise, de rencontrer les Professeurs Fred Culick et Ed Price,
puis ultérieurement le Professeur Gary Frandro et d’autres spécialistes de I’US Navy, de I’'US Air Force et
de la NASA. Ces contacts ont été déterminants pour orienter les travaux francais.

Le Professeur Fred Culick propose aujourd’hui sous la forme d’un AGARDograph une synthése intitulée
« Unsteady Motions in Combustion Chambers for Propulsion Systems ». Il existe trés peu de scientifiques
au monde qui aient accumulé une expertise et un expérience aussi approfondies sur le sujet et la RTO doit
étre reconnaissante au Professeur Fred Culick d’avoir mis tout cet acquis au service des recherches
technologiques de ’OTAN. Une lecture attentive montre que le document préparé constitue une véritable
Somme, au sens littéral du mot. Le Professeur Fred Culick a en effet remis en forme plusieurs décennies
de recherche, conférant ainsi a I’ouvrage un caractére véritablement encyclopédique, tant par la variété des
situations examinées que par I’abondance et 1’exhaustivité des références utilisées. Grace a un sens
pédagogique aigu, le Professeur Fred Culick a également su conduire, avec rigueur et précision, une
analyse mathématique assez lourde, et établir la liaison indispensable entre observations réalisées sur
moteurs et prévisions de calcul. Si en outre une seule qualité de 1’ouvrage devait étre mise en exergue,
j’opterais pour ma part sur I’exceptionnelle faculté¢ du Professeur Fred Culick & donner un sens physique
aux équations.

L’AGARDograph préparé par le Professeur Fred Culick m’apparait donc devoir devenir 1’ouvrage
mondial de référence sur le sujet difficile mais toujours d’actualité des instabilités de combustion.

Docteur Paul KUENTZMANN
ONERA, France
Ex membre PEP/AGARD
Ex membre AVT/RTO
Membre RTB
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Unsteady Motions in Combustion Chambers
for Propulsion Systems

(RTO-AG-AVT-039)

Executive Summary

Combustion instabilities were discovered in the late 1930s as anomalies in firings of solid and liquid
rockets. During World War II, experience gradually suggested that certain problems encountered in
development and actual use of solid rockets were especially associated with pressure oscillations having
relatively high frequencies ranging from a few hundred to several thousand Hertz. Associated problems
were structural vibrations; greatly increased surface heat transfer rates; sometimes impaired performance;
and, in extreme cases, failure of the combustion system and destruction of vehicles. By the 1950s, forms
of combustion instabilities had been identified in all types of rockets, gas turbines, thrust augmentors and
ramjets. The problem continues to the present time and will always be found in combustion systems,
particularly those intended to provide high performance. Eliminating instabilities therefore becomes an
important task in a development program.

This study includes a wide span of material ranging from summaries of practical examples of combustion
instabilities to the present status of the field; and results of a method for analysis of the general problem.
Following a summary of practical problems in Chapter 1, a lengthy discussion is given in Chapter 2 of the
best known mechanisms for oscillations in the various kinds of systems. Chapters 3 and 4 summarize a
widely used general method of analyzing general unsteady motions in a combustion chamber, based on
expansion in normal modes and spatial averaging of the equations of motion. The result is a formulation
focused on the behavior of a set of coupled nonlinear oscillators.

Chapter 5 is a summary of those parts of classical acoustics required to understand linear behavior and the
elementary aspects of unsteady behavior in combustors. Chapters 6 and 7 are devoted to the theory of
linear and nonlinear behavior respectively, with examples taken from experience with combustion
systems. In Chapter 8 the subject of passive control is covered, giving a brief summary of experience, with
several examples. The last section of the chapter describes work which has been done on some of the
connections between the generation and shedding of large vortices and combustion in dump combustors.

The book ends with Chapter 9, a brief coverage of active control applied to combustors. This subject has
important potential applications not yet realized. It is particularly interesting because, in an elementary
way, the framework of modern active control fits naturally into the scheme formulated here in Chapters 3
and 4. Eight Appendices to the book contain treatments of special topics referred to in the text.
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Mouvements instables dans les chambres de
combustion des systemes de propulsion

(RTO-AG-AVT-039)

Syntheése

A la fin des années 30, on avait découvert des instabilités de combustion, qui constituaient des anomalies
dans les tirs de fusées a combustible solide et liquide. Au cours de la Deuxieéme Guerre Mondiale,
I’expérience a progressivement suggéré que certains problémes rencontrés lors du développement et de
I’exploitation des fusées a combustible solide étaient particulierement associés a des oscillations de
pression ayant des fréquences relativement élevées entre quelques centaines et plusieurs milliers de Hertz.
Ces problémes étaient accompagnés de vibrations de structure, de taux de transfert de chaleur de surface
largement augmentés, de dégradation des performances dans certains cas et, dans des cas extrémes de la
défaillance du systéme de combustion et de la destruction des véhicules. Au cours des années 50, des formes
d’instabilité de combustion ont été identifiées sur tous les types de fusées, de turbines a gaz, d’augmentateurs
de poussée et de stato-réacteurs. Le probléme se poursuit a I’heure actuelle et existera toujours sur les
systémes de combustion, en particulier ceux destinés a assurer des performances élevées. C’est pourquoi
I’¢limination des instabilités est devenue un point important des programmes de développement.

Cette ¢tude recouvre un large éventail de sujets, allant des synthéses d’exemples pratiques d’instabilités de
combustion a I’état actuel du domaine et aux résultats d’une méthode d’analyse du probléme général.
Le Chapitre 1 donne une synthése des problemes pratiques, le Chapitre 2 donne une description détaillée
des mécanismes les plus connus relatifs aux oscillations sur les différents types de systémes. Les Chapitres
3 et 4 résument une méthode générale largement utilisée pour I’analyse des mouvements instables
généraux dans une chambre de combustion, en fonction de I’expansion en modes normaux et d’une
moyenne spatiale des €équations de mouvement. Il en résulte une formulation axée sur le comportement
d’un ensemble d’oscillateurs non linéaires couplés.

Le Chapitre 5 est un résumé des domaines de 1’acoustique classique nécessaires a la compréhension du
comportement linéaire et des aspects élémentaires du comportement instable des chambres de combustion.
Les Chapitres 6 et 7 sont consacrés a la théorie des comportements linéaires et non linéaires respectivement,
avec des exemples tirés de 1’expérience sur les systemes de combustion. Le Chapitre 8 traite le sujet du
contrdle passif et donne un bref apergu de 1’expérience, ainsi que différents exemples. La dernicre section de
ce chapitre décrit le travail réalisé sur certaines liaisons entre la génération et la chute des grands
tourbillons et la combustion dans les chambres de combustion largables.

L’ouvrage se termine par le Chapitre 9, qui traite bricvement du controle actif appliqué aux chambres de
combustion. Ce sujet comporte des applications potentielles importantes qui n’ont pas encore été réalisées.
Il est particuliérement intéressant car, de maniére élémentaire, le cadre du contréle actif moderne s’adapte
naturellement aux schémas formulés dans les Chapitres 3 et 4. Les huit Annexes de I’ouvrage décrivent le
traitement de sujets spéciaux mentionnés dans le texte.
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Overview

Phenomena referred to generally as combustion instabilities are fundamentally related to the stability of
motions in a combustion chamber. Their existence is normally inferred from observations of well defined
oscillations of pressure or structural distortions. Instabilities of combustion processes themselves are rarely
contributing factors, the chief exceptions being possible intrinsic instabilities of solid propellants, and the
weakening of flame stabilization mechanisms near the lean operating limits of gaseous and liquid fueled
systems. Broadly, then, the appearance of a combustion instability is due to a loss of stability of the
composite dynamical system comprising the combustion processes and the chamber itself, containing the
medium which supports waves associated with the unstable motions.

Combustion instabilities have been found in all types of systems. The reason is simple and fundamental:
In a combustor, by design the combustion processes generate high power densities under conditions when
the losses of energy are small. Only weak coupling between fluctuations of the combustion power and the
flow of the medium is sufficient to produce undesirable fluctuations of pressure and kinetic energy in the
flow. Mainly three characteristics of a system influence its dynamical behavior: the physical state in which
reactants are introduced (solid, liquid, gas); the geometry of the system; and the specific mechanism causing
the instabilities to occur. It is therefore possible to construct a general analytical framework sufficiently
comprehensive to capture most, if not all, of the main features of instabilities in any combustion system.
One purpose of this book is to describe an approach that has been applied successfully to a broad range of
problems arising in laboratory devices and in full-scale systems.

The approach follows a well-travelled path which consists essentially in constructing reduced-order mod-
els of dynamical behavior by first applying a method of spatial averaging. Formally the dynamics of the
continuous flow system having an infinite number of degrees of freedom is represented by the dynamics of a
system of coupled nonlinear oscillators in one-to-one correspondence with the natural acoustic modes of the
combustor in question. Long understood from experience in several fields, the idea leads to an analytical
framework that is easily applied to laboratory test devices, sub-scale tests and to full-scale combustion sys-
tems of all sorts. Representation constructed of acoustic modes is not so restrictive as first appears, neither
in respect to the perturbing processes, nor in respect to linearity. So long as the amplitudes are not ‘too’
great, quite general motions can be synthesized. For realistic applications, the greatest difficulties arise in
modeling the dominant physical and chemical processes; and in determining certain material and dynamical
properties.

I make no attempt in this work to give a survey of possible methods of analysis; nor do I cover much
more than the single method, with major applications. In particular, I do not discuss the many analyses
based on solutions to partial differential equations. Considerable experience has demonstrated that relying
on the averaged equations is an effective strategy both for understanding physical behavior and for obtaining
useful results for practical problems. But I certainly do not claim any sort of universality.

This book ranges over a broad spectrum of topics from the physical foundations, experimental results
and mathematical methods, to summary examinations of some experiences with combustion instabilities in
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operational systems. The text is organized roughly into three main parts. Chapters 1 and 2 cover practical
examples of combustion instabilities; their interpretation in elementary terms; and lengthy discussions, in
Chapter 2, of the chief mechanisms for instabilities in laboratory and full-scale systems. A substantial part
of Chapter 2 is devoted to unsteady combustion in solid propellant rockets. Some may consider that the
emphasis is misplaced particularly because there is at the present time much greater concern with instabilities
and oscillations in gas turbines, covered cursorily in Chapter 9.

There are good reasons for the space devoted to basic problems arising in solid rockets. Practical
considerations forced by combustion instabilities have been present since the late 1930s; with changes of
design and propellant systems they continue and will likely always be present. Perhaps the most important
reason for such intense theoretical considerations is the fundamental property that a solid rocket, or a test
sample of solid propellant, can be fired only once. There is accordingly enormous motivation, always present
in planning test programs based on solid propellants, for maximizing the information gained from a single
firing. That explains the concern with transient behavior, the periods of growth and decay of oscillations.
The rates of change exhibited in the envelopes of oscillatory motion are determined by the averaged influences
of all contributing physical processes. To understand those rates and their combined consequence, requires
attention to the basic behavior of the system, a central motivation throughout this book.

An interesting peripheral issue in the history of solid rockets is the matter of national security and
classification. In the very late 1950s and early 1960s, success was achieved in releasing some material for
late publication and in relaxing restrictions on availability of current work. The story of that process is
part of the main subject here because official rules may have direct effect on the style certainly, but also on
the content and quality of research. Section 2.2 serves partly to make the point in respect to combustion
instabilities in solid rockets.

Chapters 3, 4 and 5 form the second part of the book, covering largely theoretical and analytical matters.
The conservation equations for a two-phase flow are developed in Annexes A and B. Their approximation
by a single fluid model is the basis in Chapter 3 for extracting systems of equations for the averaged and
time-dependent motions. The latter are then simplified by expansion in two small parameters, characteristic
Mach numbers of the mean and fluctuating flows. Five classes of problems are identified according to the
orders of terms retained in the expansion; the classes include classical acoustics, linear stability, and three
types of nonlinear problems.

The method of approximate analysis used in this book is developed in Chapter 4. In outline it follows
well-known strategies for analyzing dynamical systems: A modal expansion; spatial averaging with suitable
weighting functions, chosen here to be the unperturbed acoustic modes; and, as an optional possible tactic for
further simplifying the equations, application of time-averaging. The spatially averaged equations, a system
of ordinary nonlinear second order equations, are solved by a perturbation-iteration procedure that produces
systems of equations for the amplitudes of the modes, having forms systematically defined according to the
two-parameter expansion procedures. The procedure is well-founded and has long been used in other fields.

An important property, long known but explicitly emphasized here, is that the results are not restricted
to irrotational velocity fields. That true property is contrary to a criticism often incorrectly directed to
this method, most recently in three papers given in August 2004. If the analysis is applied correctly (al-
beit additional modeling may be required), it is entirely capable of treating problems in which vorticity is
important, always to some approximation. Moreover, also contrary to criticisms attempted several times in
the literature, the approximate solution satisfies the correct perturbed boundary conditions, not those set
on the basis functions used in the modal expansion. Annex F is included to address this point.

Owing to confusion and mis-interpretation of the points just made, I should be more specific. The
following remarks are expanded in Chapter 4. For linear harmonic motions, the first order approximation in
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M., the Mach number of the mean flow, is equation (4.82), which is (4.20) written in different symbols:

P (r) = ¢n(r +Z E2 k,Q / / U (r0)h(ro)dVy + #% ros) f (ros)dSo (4.82)

The prime on the summation sign signifies that the N** term is missing. This expression represents the
actual pressure field perturbed from the N** classical acoustic mode 1y (r) by the processes accounted for
in the perturbation functions. The corresponding formula for the perturbed Mach number field is (4.85),
and the wavenumber of the actual motion is given by (4.19) written for the N** mode:

ipakM'D = —VpM) — ey {[M]}y + eFro + endFry (4.85)

k* = E2 // wN rO rO dVb #wN I‘Os rOs)dSO (419)

What has apparently been confusing is the well-known property of this kind of perturbation/iteration
procedure that the first order properties of the actual N** mode can be calculated if the properties of the N'*"
unperturbed mode are known. Thus in the work here, besides the perturbations h and f , only the wavenumber
and mode shape of the N** unperturbed classical acoustic mode are required to calculate the properties,
including the wavenumber (4.19), of the actual perturbed N*" mode. To this level of approximation one
does not need to know explicitly, for example, the pressure and velocity fields of the actual modes treated.
But nevertheless they are implicit. In particular, the classical unperturbed modes are for irrotational flow
but the flows of actual perturbed modes are rotational, deducible, for example, from (4.82) and (4.85). The
wavenumber (4.19) is therefore the wavenumber of a rotational wave.

Results for a given problem require the functions H(r) and f (r). The procedure developed in Chapters
3 and 4 is intended only to provide a framework within which particular forms of A and f are placed; the
forms themselves must be worked out as a separate chore for a chosen problem.

A few words about the property that the method really is ‘approximate’ are needed. There are two
small parameters measuring smallness in the method: A characteristic average Mach number M,. measuring
in the first instance the intensity of the mean flow; and a Mach number M, indicative of the amplitude of
fluctuations, most clearly the amplitude of acoustic velocity waves. It is the nature of perturbation methods
that accuracy—somehow defined by comparison with the ‘true’ results which are normally not known—is
lost as the sizes of the small parameters are increased. The way in which accuracy deteriorates is simply not
known, not is it investigated here, because the real value of the method often lies less with its accuracy than
with the ease with which it may produce results indicative of trends produced by changes in a system.

In Chapter 5, classical acoustics is reviewed, chiefly to summarize those results most relevant to problems
of combustion instabilities. Much of the material is well-known and available in many texts, but some special
topics are included to give a fairly complete muster of the purely acoustical results most commonly useful
in the field of combustion instabilities.

The third part, the remainder of the body of this book, includes subjects common to many engineering
fields but covered here with emphasis on applications to combustion systems: linear stability (Chapter 6);
nonlinear behavior (Chapter 7); passive control (Chapter 8); and feedback control (Chapter 9). Examples of
results and, when possible, comparison of predictions with observations, are scattered throughout those four
chapters, to convey a sense of the current state of the field; and to suggest some of the areas where effort
is required to achieve continued progress. Chapters 6 and 7 contain much material which is basic to the
subject and is covered in some detail. In contrast, Chapters 8 and 9 are mainly descriptive. Chapter 8 is an
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incomplete survey of the principal methods of passively controlling combustion instabilities, the important
measures taken in practice; the last section of the chapter covers a simple example to illustrate the matter
for an idealized thrust augmentor. Chapter 9 is an introduction to feedback control of combustion systems.
I had intended to cover much more, but owing to constraints on time of preparation, the discussion has been
cut short.

Although the idea of trying to manage combustion instabilities by some means of active control was first
suggested by W. Bollay in 1951 and investigated in detail by Professor H.S. Tsien in 1952, results in the
laboratory and in full-scale systems were not achieved until the past fifteen years or so. Despite the early
enthusiasm, and subsequent achievement of a few impressive results, feedback control is still far from routine
applications. Chapter 9 is included to provide a sketchy idea of how far the subject has progressed; and
some indication of how much remains to be done. I believe that significant basic progress towards routine
practical applications in this area awaits clearer basic understanding of the systems to be controlled. The
subject merits continued attention, particularly at the fundamental level. There are many opportunities
for extended research, not merely directed efforts intended to produce short-term ‘pay-offs’. Success will
contribute much to practical applications as well as to basic understanding.

There are eight annexes. The first two deal with formation of the equations of motion. Annex A
is a fairly detailed and complete derivation of the equations for multi-component reacting flows in which
one component is liquid or solid and the remainder are gases. The equations are combined to give the
set governing flows of an equivalent mass-averaged fluid. Annex B gives the basis for the one-dimensional
approximation, extremely important for practical applications. Annexes C and D cover topics which are
important for special problems, but which don’t fit well in the body of the text. Annex C establishes
the correct formula for viscous attenuation of a planar acoustic wave at a rigid surface by using the one-
dimensional approximation. It’s remarkable that the result is exact. Equally important, this is the basis for
the ‘pumping’ process accompanying unsteady conversion of solid to gas at a burning surface, a topic treated
in Chapter 6. Some general aspects of vorticity and entropy fluctuations are covered in Annex D. It is often
useful to model combustion zones as flame sheets; special considerations may arise when that approximation
is used with spatial averaging. Examples are treated in Annex E. Annex F is included to help clarify some
of the reasons that the approximate method of solution (Chapter 4) works well. The discussion is intended
mainly to suggest how it is that the expansion for the acoustic field to first and higher order satisfies the
correct perturbed boundary conditions even though the basis functions do not. Annex G is an extended
discussion of the Nyquist Criterion, with examples, intended to provide part of the background required
for understanding some of the works on feedback control covered or cited in Chapter 9. The last annex,
H, is included to call attention to methods related to the method of averaging and used in other fields as
approximations to nonlinear behavior.

It perhaps comes as a surprise to many that computational methods, especially computational fluid
dynamics (CEFD), are given almost no space in this book except for references. There are several reasons,
mainly the fact that to the present time CFD has not been part of the mainstream of work on combustion
instabilities. That circumstance is probably due partly to the backgrounds of the people working in the field,
but largely because until rather recently, CFD would have offered little help for solving practical problems
in which combustion instabilities are central. However, as in many fields of engineering, the situation is
changing rapidly.

I certainly don’t intend to imply that numerical computations of reacting unsteady flows have not been
attempted. There are many examples. For instance, some of the earliest efforts are cited in NASA SP-194,
“Liquid Rocket Instability” covering work carried out in the 1960s in support of the Apollo Program. In the
early 1970s computation of transient unstable oscillations in solid rockets were limited to a few periods by the
machines available. Much progress has been made since that time. For both research and practical purposes,
constraints remain still but are rapidly becoming less severe. Nevertheless, even when CFD reaches the level
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of providing perfect simulations of real problems, we will still confront the problem of understanding. I
believe that analysis—especially approximate methods—will always fill that basic need.

The main reason that CFD has otherwise been relatively helpless in this subject is that problems of
combustion instabilities involve physical and chemical matters that are still not well understood. Moreover,
they exist in practical circumstances which are not readily approximated by models suitable to formulation
within CFD. Hence, the methods discussed and developed in this book will likely be useful for a long time
to come, in both research and practice.

In the past decade especially, increasingly detailed simulations have appeared, providing ever more
faithful approximations to unsteady flows in combustion chambers. Those developments are particularly
important in the field of solid propellant rockets for which it is necessary to deal with quite elaborate
internal geometries. The significant task remains to incorporate in analysis using CFD both the realistic
nonlinear behavior and valid models of unsteady (and eventually nonlinear) combustion dynamics. It seems
to me that eventually the most effective ways of formulating predictions and theoretical interpretations of
combustion instabilities in practice will rest on combining methods of the sort discussed in this book with
computational fluid dynamics, the whole confirmed by experimental results.

Probably at this time the most promising formulation of CFD for unsteady flows in combustors is some
form of large eddy simulation (LES). Some quite good results have been obtained for realistic geometries,
although the methods are far from complete and are certainly not yet available for routine computations
or practical design work. The flow fields computed always have characteristics which apparently can be
interpreted as turbulent motions similar to those found in real combustors. How faithfully the actual fields
are reproduced remains an open question.

As a practical matter, the methods used in this book fall somewhere between CFD and the semi-empirical
methods commonly used in design work, at least in the initial stages. There is often—especially, but not only,
in industry—a tendency to avoid practicing analysis, particularly in carefully constructed approximate forms,
in favor of more appealing (dazzling?) methods requiring extensive computing resources, which may produce
appealing multi-colored pictures. Extraordinarily important for many reasons, CFD in its various forms must
be developed as far as possible. But suppose CED could produce perfect results entirely equivalent to perfect
experimental results. For some, that would evidently be a state of Nirvana. But others wonder whether our
understanding of physical behavior would be correspondingly expanded. The sorts of results discussed in
this book, and the procedures followed to obtain them, help serve the implied purpose.

On the other hand, I have also avoided in this book any calculations involving turbulence. That practice
raises a serious question: Are the results computed with no effects of turbulence valid for practical flows which
inevitably are highly turbulent? Certain experimental results and measurements carried out for full-scale
devices have long suggested that narrowly and tentatively the answer is ‘yes’. On the basis of fundamental
considerations by Chu and Kovasznay (1957), discussed briefly in Annex D and Sections 3.1 and 7.9, a
somewhat more definitive positive answer is available. For most of the purposes here, it seems that the
influences of turbulence can be safely overlooked. (But see Section 7.9.) One must especially be aware of the
assumption when experimental and theoretical results for variations in time, or the corresponding spectra,
are compared, for it is surely true that eventually the effects of turbulence must be accounted for.

If the preceding is accepted as a reasonable interpretation of the broad development of the subject, a
corollary conclusion is that convenient approximations to actual behavior are essential. The ability to capture
the essence of a phenomenon in a short statement, or perhaps a formula, is evidence of understanding.
Naturally one must always possess as well some understanding of the limitations of approximations if they
are to be truly useful. An attractive feature of the methods discussed here is the ease with which one may
deduce such “rules of thumb.” Examples are scattered throughout the text.
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In this book I try to give a fair idea of the historical aspects of combustion instabilities from roughly 1950
to the present. I hope that the foundations of the subject are sufficiently well covered that the essentials of the
phenomenon in any type of chemical propulsion system may be understood. Although I have tried to include
examples of instabilities in all types of propulsion systems now used, I make no claims of completeness. I
realize that for want of space, or to avoid excessive reproduction of readily accessible material, I have
excluded many good examples. To the best of my knowledge, I have tried to give proper credit to the
principal contributors associated with the various fields. I have included more extensive attributions, as well
as wider coverage, of certain parts of the material, in three versions of a short course devoted to the subject
(Culick 2000a, 2001, 2002a).

Finally, I must vent a few comments on the problem of financial support by government agencies and
others. Not surprisingly, as a subject which so often deals with problems, not desirable attributes, of practical
systems, combustion instabilities has traditionally become a ‘hot topic’ only when there are serious problems
in costly systems. Too often, support has been given for short-term quick fixes, and then has been withdrawn
when the problems are managed. It is apparently not fertile ground for research program managers who seek
to support career-building ‘break-throughs’. Steady progress based partly on advances in contributing fields
such as instrumentation, measurement techniques and computational resources generally, unfortunately,
fails to offer obvious prospects of stardom. My own experience is that the subjects discussed in this book
capture much of the basic ideas and materials common to broad areas of applied science and engineering.
Consequently, even during periods when there are no particularly pressing practical problems, there is a
need and ample justification for a well-grounded research program having rather general applications, and
meriting continuous support over many years. Only in this way will there be a (small) community educated
as required and having experience in the fields of practical applications covered here.

This book has depended on many works and direct help of others, beginning with my Sc.D. dissertation
and my supervisor Professor Morton Finston (1919-1986) who gave me complete freedom in my choice of
topic and in details of development, both of the subject and of myself. To him I remain forever grateful.
Professor F.E. Marble sponsored my move out of student life at MIT to Caltech and from the beginning to
the present has been generous with his advice, critiques and cogent opinions. During the time our careers
touched, I benefitted much from friendship with Professor E.E. Zukoski (1927-1995). We collaborated most
closely in projects involving the Caltech dump cumbustor; the best example is covered in Section 7.8. Mr. E.
W. Price, then at the Naval Ordinance Test Station (1965), first gave me a long-term consulting arrangement,
but more importantly, a seemingly endless supply of ideas, problems, and knowledgeable discussions. His
personal contributions to the field of solid rocketry and his influence on its development are his unique legacy.
Ed’s careful reading of Chapter 2, especially Sections 2.1 and 2.2, followed by his lengthy and carefully written
comments (initially a mixed review!) happily caused me to make significant changes greatly improving the
text. Once again I am sincerely grateful to him for his friendship and help.

Professor M.W. Beckstead was first a co-author with me when he was working at NOTS, and later,
when he had joined Hercules, Inc., gave me intellectual and financial support for my first work on nonlinear
combustion instabilities, leading eventually to my 1974 paper. He has been a collaborator and co-author for
many years. Dr. R. L. Derr was, and still is, a close supporter and friend whose opinion I value second to
none. We share more than three decades of good memories ranging from late-night chats to a memorable low-
level pass over Death Valley. I first met Professor Gary Flandro when he was a doctoral student at Caltech;
we have remained mutual admirers and friends, sharing many interests including aeronautical history and
model aircraft. We continue our professional collaboration and friendly competition. Mr. Jay Levine and I
first became acquainted in the early 70s when I helped him a little with the basis of some of the first numerical
calculations of unsteady motions in solid propellant rockets. Our relationship has always been and remains
close and respectful. Mr. Norman Cohen was long a professional friend, but in the past few years, through
the Caltech MURI program, we have worked closely and profitably; I have benefitted enormously. Professor
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Vigor Yang was wonderful as a student with me, but he soon became a professional colleague, co-author,
supporter and personal friend. Our meaningful and satisfying friendship will never cease.

My consulting activities have had considerable influence on the subjects and material covered in this
book. Particularly I thank the group in the Michelson Laboratory at the Naval Weapons Center (formerly
the Naval Ordinance Test Station, NOTS), China Lake, which over the years has had many names. The
three successive leaders of that Division have always been gracious hosts and extremely helpful: Mr. E.W.
Price, Dr. R.L. Derr and presently Dr. F.S. Blomshield.

Several of my students have helped me in working out various parts of the subjects covered here. I am
fortunate to have had them as friends and co-workers. Especially I thank those whose contributions I have
included in this text: Kim Aaron, Elias Awad, Victor Burnley, Joe Humphrey, Giorgio Isella, Craig Jahnke,
Sanjay Kumar, Ho-Hoon Lee, Windsor Lin, Kirin Magiawala, Konstantin Matveev, Steve Palm, Guido
Poncia, Winston Pun, Claude Seywert, Grant Swenson and Vigor Yang. I have also benefitted greatly from
postdocs who have worked with me, including Leonidas Paparizos, Jim Sterling, Craig Jahnke, Tae-Seong
Roh, Michael Shusser, and Al Ratner.

From January to June 1992, I had the pleasure of holding the post of Professor Associé at Ecole Centrale,
Paris where I gave a series of lectures and benefitted greatly from the hospitality and intellectual atmosphere
of the Laboratoire. I am indebted to Prof. Sébastien Candel and his colleagues for their generosity and
friendship. While I was preparing the manuscript for this book, Dr. Francois Vuillot gave me much help
with an annotated bibliography of the ONERA work on vortex shedding prior to 2001.

In 1998 Dr. Clas A. Jacobson suggested giving a short course on some of the subjects addressed in this
book, at the United Technologies Research Center. He helped me greatly in decisions of organization as well
as choices of topics. That course, sponsored by the Department of Energy, was accompanied by the notes
published as Culick (2000)a, and helped me organize some of my thoughts.

I owe thanks to a huge number of professional colleagues and friends who are nameless here, yet who
appear as authors in the list of references. I have chosen not to list you specifically so as not to risk causing
prickly feelings by omissions. You surely know who you are—living in many countries! Be assured that I
feel very deeply the gratitude I owe for what I have learned from you and for the many ways in which you
have helped me. In particular, I have benefitted greatly from more than ten years’ service on the AGARD
Propulsion and Energetics Panel; six years’ membership of the Sverdrup Advisory Council for AEDC; and
from my current participation in the activities of the Technical Advisory Committee for Pratt and Whitney,
Inc.

Before this work was published, I circulated a ‘nearly final’ draft to a few of the people listed above. 1
am grateful for their corrections, helpful comments and encouragement. Especially, Mr. Paul Kuentzmann
of ONERA obviously spent much time reading the draft; I am grateful to him for his many comments and
thoughtful suggestions. The points of view expressed in the text, and any errors of commission or omission,
are of course my responsibility.

Dr. Lawrence Quinn, then (early 1990s) at the Air Force Rocket Propulsion Laboratory, helped me
begin some of the background work for the book with a small grant. We did not plan such a stretched-out
process! I am grateful to AGARD, the Advisory Group for Aerospace Research and Development, which
in 1995 became RTO, the Research and Technology Organization, for their willingness to publish the first
version of this book. They were most gracious in agreeing to a period of preparation which became extended
due to my health problems.
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Finally, I thank Mrs. Jamie Campbell who skillfully typed much of the manuscript for this book using
KTEX; and T extend a special ‘thank you’ to Ms. Cecilia Lin who expertly (and happily) created and recreated
many figures. I am particularly grateful to Ms. Melinda Kirk who contributed much typing and proofreading,
but especially she coordinated preparation of the book and managed to bring it all together. In many ways,
she has acted effectively as an editor-in-residence. I am much indebted to her.
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CHAPTERM

Combustion/Instabilities/inl Propulsion[Systems

Chemical propulsion systems depend fundamentally on the conversion of energy stored in molecular bonds
to mechanical energy of a vehicle in motion. The first stage of the process, combustion of oxidizer and fuel,
takes place in a vessel open only to admit reactants and to exhaust the hot products. Higher performance
is achieved by increasing the rate of energy release per unit volume. For example, the power densities in
the F-1 engine for the Apollo vehicle (1960s), and the Space Shuttle main engine (1970s) are respectively 22
gigawatts/m?, and 35 gigawatts/m®. The power densities in solid rockets are much less. For a cylindrical
bore, the values are approximately 0.25(r/D) gigawatts/m3, where 7 is the linear burning rate, typically a few
centimeters per second, and D is the diameter. Thus the power densities rarely exceed one gigawatt/m3. An
afterburner on a high-performance fighter may burn fuel at the rate of 75,000 pounds per hour, generating
roughly 450 megawatts for a short period in a volume of perhaps (1 m?), giving power densities around
0.3-0.4 gigawatts/m?.

These are indeed very large power densities. To appreciate how large, consider the fact that the average
power consumption per person in a developed country is about 4 kilowatts (roughly the same as that
for astronauts). In the United States, with approximately 195 million people in 1965, the total power
consumption was about 1,000 gigawatts. Hence, for a few minutes, the five F-1 engines in the first stage of
the Apollo produced power equivalent to nearly 1% of the entire power consumption of the U.S. at that time
— in a very small volume. We cannot be surprised that such enormous power densities should be accompanied
by relatively small fluctuations whose amplitudes may be merely annoying or possibly unacceptable in the
worst cases.

We are concerned in this book with the dynamics of combustion systems quite generally. The motivation
for addressing the subject arises from particular problems of combustion instabilities observed in all types
of propulsion systems. By “combustion instability” we mean generally an oscillation of the pressure in
a combustion chamber, having a fairly well-defined frequency which may be as low as 10-20 Hz or as
high as several tens of kilohertz. Typically the instabilities are observed as pressure oscillations growing
spontaneously out of the noise during a firing. As a practical matter, combustion instabilities are more likely
encountered during development of new combustion systems intended to possess considerable increases of
performance in some sense. The present state of theory and experiment has not provided a sufficiently strong
foundation to provide a complete basis for prediction. Hence there are only a few guidelines available to help
designers avoid combustion instabilities.

Under such conditions, it is extremely important to pay attention to the experience gained in the
laboratory as well as in full-scale tests of devices. Moreover, because of the many properties of the behavior
common to the various systems, much is to be gained from understanding the characteristics of systems
other than the one that may be of immediate concern. It is therefore proper to begin with a survey of
some typical examples drawn from many years’ experience. Theory is an indispensable aid to making sense
of observational results. Conversely, discussion of various experimental observations is a natural place to
introduce many of the basic ideas contained in the theory.
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From the beginning of this subject, the central practical question has been: What must be done to
eliminate combustion instabilities? Traditionally, the approach taken has been based on passive measures,
largely ad hoc design changes or notably for solid propellant rockets, favorable changes of propellant compo-
sition. During the past few years, considerable effort has been expended on the problem of applying active
feedback control to combustion systems. It’s an attractive proposition to control or eliminate instabilities
with feedback control, particularly because one implication, often made explicit, is that the use of feedback
will somehow allow one to get around the difficult problems of understanding the details of the system’s
behavior. Many laboratory, and several full-scale demonstrations, apparently support that point of view.
However, for at least two reasons, serious application of feedback control must be based on understanding
the dynamics of the system to be controlled:

(i) all experience in the field of feedback control generally has demonstrated that the better the controlled
plant is understood, the more effective is the control;

(ii) without understanding, development of a control system for a full-scale device is an ad hoc matter,
likely to involve expensive development with neither guarantee of success nor assurance that the best
possible system has been designed.

Therefore we begin this book with a survey of combustion instabilities observed in various systems. The
theoretical framework is constructed to accommodate these observations, but later emerges also as a perfect
vehicle for investigating the use of active feedback control (Chapter 9).

1.1. Introduction

For the kinds of propulsion systems normally used, combustion chambers are intended to operate under
conditions that are steady or change relatively slowly. The central questions addressed here concern the
stability and behavior subsequent to instability of steady states in combustors. If a state is unstable to small
disturbances, then an oscillatory motion usually ensues. Such combustion instabilities commonly exhibit
well-defined frequencies ranging from 15 Hz or less to many kilohertz. Even at the highest amplitudes
observed in practice, the instabilities consume only a small fraction of the available chemical energy. Thus,
except in extremely severe instances, the oscillations do not normally affect the mean thrust or steady power
produced by the systems. Serious problems may nevertheless arise due to structural vibrations generated by
oscillatory pressures within the chamber or by fluctuations of the thrust. In extreme cases, internal surface
heat transfer rates may be amplified ten-fold or more, causing excessive erosion of the chamber walls.

An observer usually perceives an unstable motion in a combustion chamber as “self-excited,” a conse-
quence of the internal coupling between combustion processes and unsteady motion.! Except in cases of
large disturbances (e.g. due to passage of a finite mass of solid material through the nozzle), the amplitude
of the motion normally seems to grow out of the noise without the intrusion of an external influence. Two
fundamental reasons explain the prevalence of instabilities in combustion systems:

i) an exceedingly small part of the available energy is sufficient to produce unacceptably large unsteady
motions;

ii) the processes tending to attenuate unsteady motions are weak, chiefly because combustion chambers
are nearly closed.

Those two characteristics are common to all combustion chambers and imply that the possibility of
instabilities occurring during development of a new device must always be recognized and anticipated.

LAn alternative explantion, that observed combustion instabilities are (or may be) motions driven by the noise present in
combustors is explored in Section 7.9; see also Figure 1.34.
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Treating combustion instabilities is part of the price to be paid for high-performance chemical propulsion
systems. It is a corollary of that condition that the problem will never be totally eliminated. Advances in
research will strengthen the methods for solution in practical applications, and will provide guidelines to
help in the design process.

The fact that only a small part of the total power produced in a combustor is involved in combustion
instabilities suggests that their existence and severity may be sensitive to apparently minor changes in the
system. That conclusion is confirmed by experience. Moreover, the complicated chemical and flow processes
block construction of a complete theory from first principles. It is therefore essential that theoretical work
always be closely allied with experimental results, and vice versa. No single analysis will encompass all
possible instabilities in the various practical systems. There are nevertheless many features common to all
combustion chambers. Indeed, it is one theme of this book that the characteristics shared by propulsion sys-
tems in many respects dominate the differences. While it is not possible to predict accurately the occurrence
or details of instabilities, a framework does exist for understanding their general behavior, and for formulat-
ing statements summarizing their chief characteristics. For practical purposes, the theory often serves most
successfully when used to analyze, understand, and predict trends of behavior, thereby also providing the
basis for desirable changes in design. Experimental data are always required to produce quantitative results
and their accuracy in turn is limited by uncertainties in the data.

Special problems may be caused by combustion instabilities interacting with the vehicle. Because the
frequencies are usually well-defined in broad ranges, resonances with structural modes of the vehicle or with
motions of components are common. Perhaps the best known form of this sort of oscillation is the POGO
instability in liquid rockets. Strong couplings between chamber pressure oscillations, low-frequency structural
vibrations, and the propellant feed system sustain oscillations. The amplitudes may grow to unacceptable
limits unless measures are taken to introduce additional damping. A striking example occurred in the Apollo
vehicle. The central engine of the cluster of five in the first stage was routinely shut off earlier than the others
in order to prevent growth of POGO oscillations to amplitudes such that the astronauts would be unable
to read instruments. Comments on the vibrations and the early shut off may be heard in communications
recorded during the launch phase of several Apollo missions.

In the U.S., and possibly in other countries, notably Germany and Russia before and during World War
II, combustion instabilities were probably first observed in liquid rocket engines. Subsequent to the war,
considerable effort was expanded in Russia and in the U.S. to solve the problem, particularly in large engines.
Probably the most expensive program was carried out during development of the F-1 engine for the Apollo
vehicle in the years 1962-1966, reviewed in a useful report by Oefelein and Yang (1993).

Liquid-fueled air-breathing propulsion systems also commonly suffer combustion instabilities. Axial
oscillations in ramjet engines are troublesome because their influence on the shock system in the inlet
diffuser can reduce the inlet stability margin. Owing to their high power densities and light construction,
thrust augmentors or afterburners are particularly susceptible to structural failures.

For any thrust augmentor or afterburner, conditions can be found under which steady operation is not
possible. As a result, the operating envelope is restricted by the requirement that combustion instabilities
cannot be tolerated. Due to structural constraints placed on the hardware, combustion instabilities in
afterburners are particularly undesirable and are therefore expensive to treat.

In recent years combustion instabilities in the main combustor of gas turbines have become increasingly
troublesome. The chief reason is ultimately due to requirements that emission of pollutants, notably oxides
of nitrogen, be reduced. A useful strategy, particularly for applications to flight, is reduction of the average
temperature at which combustion takes place. Generation of NO by the thermal or ‘Zel’dovich’ mechanism
is then reduced. Lower combustion temperature may be achieved by operating under lean conditions, when
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FI1GURE 1.1. Schematic diagram of a combustion system as a feedback amplifier.

the flame stabilization processes tend to be unstable. Fluctuations of the flame cause fluctuations of energy
release, which in turn may produce fluctuations of pressure, exciting acoustical motions in the chamber.

Finally, almost all solid rockets exhibit instabilities, at least during development, and occasionally motors
are approved even with low levels of oscillations. Actual failure of a motor itself is rare in operations, but
vibrations of the supporting structure and of the payload must always be considered. To accept the presence
of weak instabilities in an operational system one must have sufficient understanding and confidence that
the amplitudes will not unexpectedly grow to unacceptable levels. One purpose of this book is to provide
the foundation for gaining the necessary understanding.

In the most general sense, a combustion instability may be regarded as an unsteady motion of a dynamical
system capable of sustaining oscillations over a broad range of frequencies. The source of energy associated
with the motions is ultimately related to the combustion processes, but the term ‘combustion instability,’
while descriptive, is misleading. In most instances, and always for the practical problems we discuss in this
book, the combustion processes themselves are stable: Uncontrolled explosions and other intrinsic chemical
instabilities are not an issue. Observations of the gas pressure or of accelerations of the enclosure establish the
presence of an instability in a combustion chamber. Excitation and sustenance of oscillations occur because
coupling exists between the combustion processes and the gasdynamical motions, both of which may be
stable. What is unstable is the entire system comprising the propellants, the propellant supply system, the
combustion products that form the medium supporting the unsteady motions, and the containing structure.

If the amplitude of the motions is small, the vibrations within the chamber are often related to classical
acoustic behavior possible in the absence of combustion and mean flow. The geometry of the chamber is
therefore a dominant influence. Corresponding to classical results, traveling and standing waves are found
at frequencies approximated quite well by familiar formulas depending only on the speed of sound and the
dimensions of the chamber. If we ignore any particular influences of geometry, we may describe the situation
generally in the following way, a view valid for any combustion instability irrespective of the geometry or
the type of reactants.

Combustion processes are sensitive to fluctuations of pressure, density, and temperature of the envi-
ronment. A fluctuation of burning produces local changes in the properties of the flow. Those fluctuations
propagate in the medium and join with the global unsteady field in the chamber. Under favorable conditions,
the field develops to a state observable as a combustion instability. As illustrated schematically in Figure
1.1, we may view the process abstractly in analogy to a feedback amplifier in which addition of feedback
to a stable oscillator can produce oscillations. Here the oscillator is the combustion chamber, or more pre-
cisely, the medium within the chamber that supports the unsteady wave motions. Feedback is associated
with the influences of the unsteady motions on the combustion processes or on the supply system, which in
turn generate fluctuations of the field variables. The dynamical response of the medium converts the local
fluctuations to global behavior. In the language of control theory, the field in the chamber is the ‘plant,’
described by the general equations of motion.
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The diagram in Figure 1.1 illustrates the main emphases of this book. Broadly, the subjects covered
divide into two categories: those associated with the plant—the fluid mechanics and other physical processes
comprising the combustor dynamics; and those connected primarily with the feedback path, chiefly combus-
tion processes and their sensitivity to time-dependent changes in the environment, the combustion dynamics.
The theory we will describe encompasses all types of combustion instabilities in a general framework having
the organization suggested by the sketch. External forcing functions are accommodated as shown in the
sketch, but the causes associated with the feedback path are far more significant in practice.

Figure 1.1 is motivated by more than a convenient analogy. For practical purposes in combustion systems,
we generally wish to eliminate instabilities. Traditionally that has meant designing systems so that small
disturbances are stable, or adding some form of energy dissipation to compensate the energy gained from
the combustion processes, that is, passive control. However, in the past few years interest has grown in the
possibility of active control of instabilities. If that idea is to be realized successfully, it will be necessary to
combine modern control theory with the theory developed in this book. The development of much of control
theory rests partly on the use of diagrams having the form of Figure 1.1. It is advantageous to think from
the beginning in terms that encourage this merger of traditionally distinct disciplines.

We will return to the subject of control, both active and passive, in the last two chapters of this book.
Any method of control is rendered more effective the more firmly it rests on understanding the problem to be
solved. Understanding a problem of combustion instabilities always requires a combination of experiment and
theory. For many reasons, including intrinsic complexities and inevitable uncertainties in basic information
(e.g., material properties, chemical dynamics, turbulent behavior of the flow field, ...), it is impossible to
predict from first principles the stability and nonlinear behavior of combustion systems. Hence the purpose
of theory is to provide a framework for interpreting observations, both in the laboratory and full-scale
devices; to suggest experiments to produce required ancillary data or to improve the empirical base for
understanding; to formulate guidelines for designing full-scale systems; and globally to serve, like any good
theory, as the vehicle for understanding the fundamental principles governing the physical behavior, thereby
having predictive value as well.

All theoretical work in this field has been carried out in response to observational and experimental
results. We therefore spend much of the remainder of this introductory chapter on a survey of the charac-
teristics of combustion instabilities observed, and occasionally idealized, in the systems to be analyzed in
later chapters.? The general point of view taken throughout the book will then be formulated in heuristic
fashion, based on experimental results.

1.2. Historical Background

Some of the consequences and symptoms of combustion instabilities were first observed in the late 1930s
and early 1940s, roughly at the same time for liquid and solid propellant rockets, and apparently somewhat
earlier in the Soviet Union than in the U.S. With the later development of turbojet engines, high-frequency
instabilities were found in thrust augmentors or afterburners in the late 1940s and early 1950s. Although the
problem had been encountered in ramjet engines in the 1950s, it became a matter of greater concern in the
late 1970s and 1980s. The introduction of compact dump combustors led to the appearance of longitudinal
or axial oscillations that interfered with the inlet shock system, causing loss of pressure margin and ‘unstart’
in the most severe cases. Owing to availability, almost all of the data cited here as examples will be derived
from liquid rockets, solid rockets and laboratory devices. Figure 1.2 is a qualitative representation of the
chronology of combustion instabilities. Due to the accessibility of documentation and the experiences of the
author, particular cases cited are mainly those reported in the U.S. We will be mainly concerned in this book

2A few references to papers and books are given in this chapter as guides to the literature. Later chapters contain more
complete citations as the topics are treated in greater detail.
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FIGURE 1.2. A chronology of combustion instabilities.

Several reviews of early experiences with combustion instabilities have been prepared for liquid rockets
(Ross and Datner 1954) and for solid rockets (Wimpress 1950; Price 1968; Price and Flandro 1992). The
details are not important here, but the lessons learned certainly are. Often forgotten is the most important
requirement of good high-frequency instrumentation to identify and understand combustion instabilities
in full-scale as well as in laboratory systems. Until the early 1940s, transducers and instrumentation for
measuring pressure had inadequate dynamic response to give accurate results for unsteady motions. Ross
and Datner note that “Prior to 1943, the resolution of Bourdon gauges, photographed at 64 and 128 fps,
constituted the principal instrumentation.” Recording oscillographs were introduced sometime in 1943, but
not until the late 1940s were transducers available with sufficient bandwidth to identify instabilities at higher
frequencies (hundreds of hertz and higher).

The situation was even more difficult with solid rockets because of the practical difficulties of installing
and cooling pressure transducers. Probably the experience with cooling chamber and nozzle walls helps
explain why quantitative results were obtained for instabilities in liquid rockets earlier than for solid rockets
(E. W. Price, private communication). Prior to the appearance of high-frequency instrumentation, the
existence of oscillations was inferred from such averaged symptoms as excessive erosion of inert surfaces
or propellant grains due to increased heat transfer rates; erratic burning appearing as unexpected shifts in
the mean pressure; structural vibrations; visible fluctuations in the exhaust plume; and, on some occasions,
audible changes in the noise produced during a firing.

Experimental work progressed for several years before various unexplained anomalies in test firings were
unambiguously associated with oscillations. By the late 1940s, there was apparently general agreement
among researchers in the U.S. and Europe that combustion instabilities were commonly present in rocket
motors and that they were somehow related to waves in the gaseous combustion products. In addition to
measurements with accelerometers, strain gauges, and pressure transducers, methods for flow visualization
soon demonstrated their value, mainly for studies of liquid propellant rockets (Altseimer 1950; Berman and
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Logan 1952; and Berman and Scharres 1953). Characteristics of the instabilities as acoustic vibrations, or
weak shock waves, were revealed.

It is much more difficult to observe the flow field in a solid rocket motor and during the early years of
development, the only results comparable to those for liquid rockets were obtained when excessive chamber
pressures caused structural failures. Partially burned grains often showed evidence of increased local burning
rates, suggesting (possibly) some sort of influence of the gas flow. The same events also produced indications
of unusual heating of the unburned solid propellant, attributed to dissipation of mechanical vibrational
energy (Price and Flandro, 1992). Subsequently that interpretation was confirmed by direct measurements
(Shuey, H.C. 1970-1975, related to the author by Mr. E.W. Price).

High-frequency or ‘screech’ oscillations were also first encountered in afterburners in the late 1940s; as
a result of the experience with rockets and the availability of suitable instrumentation, the vibrations were
quickly identified as combustion instabilities. The staff of the Lewis Laboratory (1954) compiled most of the
existing data and performed tests to provide a basis for guidelines for design.

Thus by the early 1950s many of the basic characteristics of combustion instabilities had been discovered
in both liquid-fueled and solid-fueled systems. Many of the connections with acoustical properties of the sys-
tems, including possible generation of shock waves, were recognized qualitatively. Although the frequencies
of oscillations found in tests could sometimes be estimated fairly closely with results of classical acoustics,
no real theory having useful predictive value existed. During the 1950s and the 1960s the use of sub-scale
and laboratory tests grew and became increasingly important as an aid to solving problems of combustion
instabilities occurring in the development of new combustion systems of all types.

1.2.1. Liquid and Gas-Fueled Rockets. During the 1960s, the major efforts on combustion insta-
bilities in liquid rockets were motivated by requirements of the Apollo vehicle. Harrje and Reardon (1972)
edited a large collection of contributions summarizing the work during that period. Essentially nothing ad-
ditional was required to treat instabilities in the Space Shuttle main engine, and in the U.S., new programs
specifically dealing with liquid rockets did not appear again until the mid 1980s (Fang 1984, 1987; Fang and
Jones 1984, 1987; Mitchell, Howell, and Fang 1987; Nguyen 1988; Philippart 1987; Philippart and Moser
1988; Jensen, Dodson, and Trueblood 1988; and Liang, Fisher and Chang 1986, 1987.) Subsequent to a flight
failure of an Ariane vehicle due to combustion instability in a first-stage Viking motor, a comprehensive re-
search program was begun in France in 1981 (Souchier et al. 1982; Schmitt and Lourme 1982; Habiballah et
al. 1984, 1985, 1988, 1991; Lourme et al. 1983, 1984, 1985, 1986).

The problem of instabilities in liquid rockets received greatest attention in the development of the man-
carrying vehicles for flight to the moon. Both the U.S. and the U.S.S.R. expended great effort on the problem.
Because virtually all the necessary information is conveniently available, we examine the experience in the
U.S., a canonical example. Oefelein and Yang (1992, 1993) have given a good summary of the program;
their effort is the basis of the remarks here.

Instabilities in liquid rockets are simpler than in solid rockets, to some extent because the basic internal
geometry of the system is simpler. Serious complications are introduced by the flow and mixing of reac-
tants. Practically the only influence that the existence of instabilities had on the configuration of the F-1
was on the form of axial baffles attached to the face of the injector at the head end of the motor; and on
the details of the injector which influenced the interactions between the jets of fuel and oxidizer. Once the
general form of injector had been chosen—impinging jets of fuel and oxidizer—the number of variables was
significantly reduced. Nevertheless, considerable freedom in the details of the injector remained. Conse-
quently, development of the F-1 from October 1962 to September 1966 involved more than 3200 full-scale
tests. Approximately 2000 of those tests were conducted as part of Project First, the program carried out
to solve the problems arising with combustion instability in the F-1.
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During Project First, the global geometry of the chamber and nozzle was not a matter of concern; we
shall assume the geometry as given and essentially fixed. Three basic injectors were initially examined, all
involving impinging jets. All showed spontaneous instabilities, that is, unacceptable oscillations without any
external disturbances. Figure 1.3 shows a typical pressure trace taken at the beginning of the program.
Because it was known that baffles were effective for reducing the sort of transverse oscillations observed,
a configuration was chosen with thirteen compartments on the injector face, formed by barriers oriented
normal to the face of the injector, extending about 7.6 cm. downstream from the injector face. Figure 1.4(b)
is a picture of the injector, about one meter in diameter.

CHAMBER PRESSURE

T A F

S U PR NS S .... ...|.... _._t. e

FIGURE 1.3. Pulses of the injected fuel stream in the F-1 engine (Oefelein and Yang 1993).

An informative collection of simplified pictures of the various sorts of injection elements was published
by Rocketdyne, Inc. (Jaqua and Ferrenberg 1989), reproduced here in Figure 1.5. The configurations are of
course sketched in simplified forms, but one important point is quite clear. If the formation of sheets and
clouds of unlike drops depends on impingement of jets or liquid streams, then one expects the process to be
sensitive to perturbations, particularly when there is a component of the disturbance normal to the plane of
the sheet. Hence the effectiveness of baffles of the sort shown in Figure 1.4(b) is related to the shadowing of
the injected streams.

~19'

FIGURE 1.4. (a) The F-1 engine and (b) the face of the injector showing the fourteen baffles
(Oefelein and Yang 1993).
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Common Injection Element Configurations
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FIGURE 1.5.

Injection elements commonly used in liquid rockets (Jaqua and Ferrenberg 1989).

The example of the F-1 and experience with reducing the combustion instability forms a basic canonical
case. As shown in Figure 1.3, the instability had a frequency of about 440 Hz. and amplitudes greater
than the mean chamber pressure in the chamber without baffles, but about 65% of the mean pressure in
the chamber with baffles. Hence development proceeded with the baffles in place. Changes in the details
of the injector design—such as hole sizes and the angles of impingement of the jets—eventually eliminated
resurging. A method of pulsing or ‘bombing’ was then used to assess the stability of an injector, rated
according to the damping time of a pulse. The procedure was entirely empirical since no theory existed
(and still doesn’t). During this stage, the phenomenon of ‘resurging’ was often observed as an instability,
an example is shown in Figure 1.6. However, by November 1965, the engine exhibited acceptable damping
times (c. 45 ms or less) following pulse amplitudes of acceptable magnitude. Figure 1.7 shows an example
obtained with a flight qualified injector subjected to a 13.5 grain bomb.
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FIGURE 1.6. Resurging subsequent to a bomb-induced perturbation (Oefelein and Yang 1993).

CHAMBER PRESSURE

o o o ol 3l
172 Mpa LT AR
(250 PSI) =———rH—7 —

L S Y T b
P

4 O O, O OO O I Y
T, ; A L [ Il
S e vl i e v o O T O O O A O

FIGURE 1.7. Decaying pressure induced initially by a pulse from a 13.5 grain bomb (Oefelein
and Yang 1993).

There seems little doubt that the mechanisms for the instabilities were understood quite well in broad
outline, if not in quantitative detail, for this kind of injector. Stretching downstream from the face of the
injector there were three fairly well-defined regions. The first contains the spray fans generated by the
injection jets; the next contains fuel drops breaking up and vaporizing; and the last, where only vapor exists,
may be characterized by mixture ratio variations in space. Imposition of time-dependent properties, notably
pressure and velocity, produces fluctuations of properties which in turn can generate fluctuations of the local
burning rate. Thus all three regions can contribute to the tendency to instability.

The F-1 provides an example of an instability in a liquid oxygen (LOX) hydrocarbon (HC) system with
injectors based on impinging jets. As the experience suggests, the configuration having jets impinging on
one another seems to be quite sensitive to external perturbations. It appears for example, that the jets could
be misaligned rather easily, leading possibly to an instability. Hence many designers have favored coaxial
injectors, but it is not our purpose here to make a case for any particular kind of injector, which in any
case may depend on the propellants in question. Perhaps the most common form of injector in general is
based on coaxial flow; examples producing jets with and without swirl are shown in Figure 1.8. Summaries
of recent research on coaxial injection elements in the context of combustion instabilities have been given by
Hulka and Hutt (1995). They also give a good summary of U.S. experience from the late 1950s to the early
1990s.

An entirely different form of injector was introduced by TRW, Inc. for the lunar descent module of the
Apollo vehicle; it was invented by G.W. Elverum at Caltech’s Jet Propulsion Laboratory, and later developed
at TRW (Elverum et al. 1967). The need for a throttleable engine was satisfied by a pintle design, sketched
in Figure 1.9. Figure 1.10 is a photograph of a cutaway model of the engine. Thrust could be varied from
1000 to 10,000 pounds by moving the pintle.

The engine gained a deserved reputation for stability. Figure 1.11 shows the decay several pulses in a
test of the engine at TRW. As a result of such testing, the engine has been widely viewed as ‘absolutely’
stable. However it is important to realize that one can state only that the engine is acceptably stable for
the fuel and oxidizer used (nitrogen tetroxide and A-50, a 50/50 mixture of hydrazine and unsymmetrical
dimethylhydrazine, called UDMH) and for a certain range of operating conditions. Limitations have been
shown on more than one occasion, to the embarrassment of test program managers.
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FIGURE 1.8. Simplified forms of coaxial injectors. (a) pure shear coaxial element; (b) coaxial
element producing swirl (Hulka and Hutt 1995).
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and Reardon 1972). TRW retired).

Instability problems also arose during development of the Space Shuttle main engine (SSME), which
developed 500K pounds of thrust, but the difficulties were overcome. Three SSMEs are used on the Shuttle.
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FIGURE 1.11. Decay of pulses injected in the TRW LEM engine (Harrje and Reardon 1972).

Figure 1.12 is a drawing of the engine showing the coaxial elements and the oxidizer elements serving also
as baffles.
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F1GURE 1.12. Cutaway drawing of the main injector assembly of the Space Shuttle main
engine (Courtesy of Rocketdyne, Inc.).

Russian experience with combustion instabilities in liquid rockets was not well-known in the West until
the 1990s although some publications were available, e.g. Natanzon (1984) which later appeared in English
translation. The propulsion community in the U.S. generally did not learn of Russian research concerned
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FIGURE 1.13. The RD-0110 engine (a) general view of the basic engine; (b) the injector
face (Rubinsky 1995).

with operational rockets until the conference held at Pennsylvania State University in 1993 (“Liquid Rocket
Engine Combustion Instability”, 1995). Subsequently an updated English translation of Natanzon’s work
appeared (Natanzon 1999). That work offers a good coverage of some fairly recent Russian work as well as
a useful summary of many topics basic to the dynamics of liquid rockets. Russian experimental work on
instabilities in liquid engines is covered in the book by Dranovsky (2006).

Rubinsky (1995) published what is likely the first thorough account of Russian experience with a problem
of combustion instability in a liquid rocket engine, the RD-0110. The system used coaxial injectors (referred
to as “bipropellant centrifugal atomizers”) supplying liquid oxygen and a hydrocarbon fuel; the engine
produced 67,000 pounds of thrust with a chamber pressure of 1000 psi. Chamber diameter is 7.1 inches,
length 10.6 inches and throat diameter 3.3 inches. Figure 1.13 shows the engine and the face of the injector.
The engine was used in the Soyuz vehicle with four motors powering the upper stage, Figure 1.14.

Extended development work eventually reduced the instability to a problem occurring once out of about
300 thrust chambers. It was a problem from ignition to 0.1 seconds or so. Installation of longitudinal ribs
made of combustible felt solved the problem; Rubinsky (1995) describes the matter in detail. Figure 1.15
shows a chamber with ribs.

1.2.2. Combustion Instabilities in Thrust Augmentors. The situation in respect to instabilities
in afterburners® seems to have changed little in fundamental respects in more than 20 years. Early work

3Increased thrust was obtained from early gas turbines by adding a second combustion chamber downstream of the turbine.
The exhaust of the turbine is oxidizer rich, limitations being set on the mixture ratio for combustion (i.e., temperature) according
to material properties. All of the flow entering the inlet then passed through both combustors; the second combustor was
conventionally called an afterburner. With the development of bypass engines, the ’afterburner’ received some air which had
not passed through the main combustor. Hence the device became known as a ’thrust augmentor’, referring to its purpose to
augment the thrust, without implying the source of air.
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FiGure 1.14. Four RD-0110 engines Ficure 1.15. RD-0110 engine cut-
mounted in the upper stage of the away to show combustible ribs in-
Soyuz vehicle (Rubinsky 1995). tended to attenuate a tangential mode

(Rubinsky 1995).

showed that high-frequency oscillations (‘screech’) could be treated over fairly broad operating conditions
by installing passive suppression devices—usually acoustic liners—and by adjusting the distribution and
scheduling of the injected fuel. Problems increased as high-bypass engines were developed because the large
annular flow passages allowed waves to propagate upstream to the compressor. As a result, instabilities
occurred with longer wavelengths and hence lower frequencies (Bonnell et al. 1971; Kenworthy et al. 1974;
Ernst 1976; Underwood et al. 1977; Russell et al. 1978). Figure 2.54 is a sketch showing an example of an
augmented engine which exhibited low-frequency instabilities. Because considerable effort—and cost—has
been spent to try to reduce or eliminate instabilities in augmentors by passive means, the subject will be
examined in Chapter 8. See also Section 2.4.4.

Low frequencies are not easily attenuated, so modifications in the supply system and appropriate sched-
uling of the fuel injection are the main strategies for treating these modes. In any case, it appears that all
afterburners are subject to operational constraints set by the need to avoid combustion instabilities. Both
because of the operational constraints and because of the high costs incurred during development to give
current operating envelopes, combustion instability in afterburners remains an attractive subject of research.

Broadly, then, the inevitable appearance of instabilities has led to a basic general strategy followed
generally in the development of new afterburners. To the greatest extent possible, acoustic liners are installed
in the lateral boundaries. These are effective for attenuating relatively high frequency oscillations historically
called ’screech.” Such vibrations normally involve fluctuations in planes transverse to the axis of the burner,
so the liners on the case of the burner work quite well.

Oscillations in the direction of flow are in general much more difficult to eliminate. In fact their presence
seems often to set operating limits on the afterburner. Those limitations occur mainly in two regions of
the basic operating envelope: at lower Mach numbers and high altitude; and at high Mach number and low
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altitude. The limits are found from ground tests of the engine, a significant development cost for a new
engine.

In general, current information for instabilities in afterburners is unavailable. The most recent work
reported in the open literature deals with possible use of active control mainly to widen the operating
envelope. An example of modest success at Rolls-Royce has been reported by Moran et al. (2001).

1.2.3. Combustion Instabilities in Ramjet Engines. Instabilities in liquid-fueled ramjet engines
are similar in many respects to those in afterburners, an example of the general property that the character
of the oscillations is determined largely by the types of propellants used and the geometry of the chamber. In
both systems, the steady combustion processes are stabilized behind bluff flameholders. Hence with suitable
interpretation, many results of research are applicable to both types of systems. In the late 1970s and 1980s,
research programs on combustion instabilities in ramjet engines were initiated by several western countries
(see, for example, Hall 1978; Culick 1980; Culick and Rogers 1980; Clarke and Humphrey 1986; Humphrey
1987; Sivasegaram and Whitelaw 1987; Zetterstrom and Sjoblom 1985; Biron et al. 1987; Culick and Schadow
1989). Figure 1.16 is a sketch of a stylized combustor representing the sort of configuration commonly used
in liquid-fueled ramjets.

I

|

|
<

I

|
|

oo Vol I
\ \ \ Combustor Nozzle
Flameholding
Jet breakup, evaporation, mixing (spreading)
Fuel injection (penetration)

Inlet flow

FIGURE 1.16. Stylized configuration of a liquid-fueled ramjet (United Technologies Corp. 1978).

Possibly the most interesting and fundamental result of work during that period was demonstration
of the importance of coupling between acoustical motions and large coherent vortex structures shed by a
rearward facing step or a flameholder, first emphasized by Byrne (1981, 1983). That phenomenon, with or
without combustion processes, arises in many situations and will likely long continue to be the subject of
research. Problems associated with generation of unsteady vorticity and vortex shedding arise in all types
of combustors. Much effort has been expended in this area, a subject that will arise often in this text.

A typical example is that investigated thoroughly in the dump combustor at Caltech (Smith, 1985;
Sterling, 1987; Zsak, 1993; Kendrick, 1995). Figure 1.17 is a sketch of the configuration, in which the flow is
subsonic throughout, with premixed gaseous reactants introduced from a plenum chamber and exhausting
to the atmosphere. Even for liquid-fueled ramjets, vaporization of the fuel often occurs so rapidly that
combustion downstream of the dump plane occurs in a gaseous mixture. The general character of the
stability diagram for this geometry has been found in other experimental programs as well: for a given flow
rate, the most intense oscillations occur in the vicinity of stoichiometric proportions of the fuel oxidizer.

The waveform and spectrum for the limiting behavior of an unstable oscillation are shown in Figure
1.18. Evidently the spectrum consists of a small number of peaks imbedded in a background of ‘noise’
spread over the entire frequency range covered. In this respect the motion seems to be dominated by two
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CHANNEL SPAN =7.62 cm

FIGURE 1.17. The Caltech dump combustor.

oscillations having frequencies 530 Hz. and 460 Hz. and subharmonics. Estimates based on the assumption
of axial acoustic motions have shown (Sterling 1987; Sterling and Zukoski 1987, 1991; Zsak 1993) that the
two oscillations are normal modes of the system. Explanation of the nonlinear mechanism responsible for
the sub-harmonics has not been given. It is interesting and significant that the ‘noise’ exhibited in the
spectrum seems to appear as a kind of random modulation of the amplitude of the waveform reproduced
in Figure 1.18(a). That interpretation is supported by the approximate analysis of nonlinear acoustics and
noise covered here in Chapter 7.
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FIGURE 1.18. Waveform and spectrum for an instability in the Caltech dump combustor.

Although this example is special, it does illustrate the chief features of combustion instabilities generally:
well-defined organized oscillations within an apparently random field, normally called noise. It is quite
common that there are more peaks in the spectra than appear in Figure 1.18(b), and that the frequencies
tend to be close to those of the normal acoustics modes of the chamber in question. The quantitative aspects
vary widely, but the physical behavior suggested by these results broadly defines the general problem to be
addressed by the theory.

The dump combustor has been a favored configuration for laboratory tests having a variety of forms and
purposes. We will appeal often to results of such tests. Particularly, the configuration is prone to generate
large vortices generated in various forms, a widely studied phenomenon. The dump combustor continues to
be a favorite configuration for research as well as applications. Farly work by Schadow and his colleagues
has been extended by many followers. (Schadow et al. 1981, 1983, 1984, 1985, 1987a, b)
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1.2.4. Combustion Instabilities in Gas Turbines. Until fairly recently, combustion instabilities in
gas turbines had received much less attention than in other systems. We distinguish here main combustors
from afterburners which have always exhibited troublesome oscillations. Traditionally, and it is still true,
relatively little information has been available about such instabilities in practical systems, for proprietary
reasons. However it is probably true for several reasons, mainly relatively large acoustic losses in the
combustors, that until fairly recently serious combustion instabilities had been quite rare in gas turbines.

The situation changed with increased emphasis on reducing air pollution. At about the same time, the
use of gas turbines for stationary power generation increased. Thus serious concern with any development
problems also increased and was not so restricted by proprietary considerations owing to the widespread
implications. A strategy for reducing emission of a major pollutant, NO, is to lower the average tempera-
ture at which primary combustion occurs, in accordance with the Zel’dovich mechanism for producing NO
(Zel’dovich et al.1985). Unfortunately, at lower temperatures achieved by operation at lower local values
of fuel/air ratio, the processes stabilizing the flame are less stable and tend to encourage the excitation of
oscillations.

As a result, during the past ten—twelve years combustion instabilities have become a serious problem
in the development of stationary power generation systems based on combustion, mainly of hydrocarbon
fuels. That is not a subject central to this book but the problems are in some cases similar and the methods
discussed here are applicable. The subject of combustion instabilities in gas turbines has become important
for very practical reasons, but basic problems remain unsolved. Chapter 9 is an abbreviated discussion of
instabilities and their active control in gas turbines.

1.2.5. Combustion Instabilities in Solid Propellant Rocket Motors. Instabilities in solid pro-
pellant rockets were the first examples discovered, as early as the late 1930s. For reasons which will become
clear in this book, unsteady motions in full-scale solid propellant motors and in laboratory devices have
probably been the subject of more research than in any other type of system. Accordingly, much of our
approach to understanding instabilities in combustion chambers generally can be traced to experiences with
solid rockets. An excellent authoritative summary of the research and practical sides of the subject is the
short historical article by Price (1992).

Since the late 1950s, serious concern with instabilities in solid propellant motors has been sustained by
problems arising in both small (tactical) and large (strategic and large launch systems) rockets. The volume
of collected papers compiled and edited by Berle (1960) provides a good view of the state of the field at the
end of the 1950s in Western countries. The level of activity remained high and roughly unchanged through
the 1960s, due entirely to the demands of the Cold War: The use of solid rocket boosters in systems for
launching spacecraft, and for changing trajectories, came later. During the 1950s and 1960s strong emphasis
was already placed on sub-scale and laboratory tests, a strategy dictated at least partly by the large costs
of full-scale tests. As a result, more is understood about combustion instabilities in solid rockets than for
other systems. Moreover, methods and viewpoints developed by the solid rocket community have strongly
influenced the approaches to treating combustion instabilities in other systems. The theory developed in
this book is an example of that trend.

Many earlier cases exist of combustion instabilities in solid rockets, but a particularly striking example
arose in the late 1960s and was documented in the ATAA/ASME Joint Propulsion Meeting in 1971. It was a
problem with the third stage of the Minuteman IT launch vehicle that initially motivated considerable research
activity during the following decade, sponsored largely by the Air Force Rocket Propulsion Laboratory. The
causes of three failures in test flights had been traced to the presence of combustion instabilities. Thorough
investigation showed that although oscillations had been present throughout the history of the motor, a
significant change occurred during production, apparently associated with propellant Lot 10. A record of
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the pressure during a flight test is given in Figure 1.19. The broadening of the trace is due to the presence
of ‘high’ frequency oscillations, close to 500 Hz. Figure 1.20 shows the main observable features.

400

300 . —

200

4CHAMBER PRESSURE

PRESSURE, PSIA

100

F1GURE 1.19. Flight test record of pressure in a Minuteman II, stage 3.

The oscillations existed during the first fifteen seconds of every firing and always had frequency around
500 Hertz. Whatever had occurred with production Lot 10 caused the maximum amplitudes of oscillations
to be unpredictably larger in motors containing propellant from that and subsequent lots. The associated
structural vibrations caused failures of a component in the thrust control system.

This example exhibits several characteristics common to many instances of combustion instabilities in
solid rockets. In test-to-test comparisons, frequencies are reproducible and amplitudes show only slight
variations unless some change occurs in the motor. Any changes must be of two sorts: either geometrical,
i.e. the internal shape of the grain; or chemical, consequences of variations in the propellant. Chemical
changes, i.e. small variations in the propellant composition, are most likely to affect the dynamics of the
combustion processes and indirectly other physical processes in the motor. That is apparently what happened
in the Minuteman.

Between production of propellant Lots 9 and 10, the supplier of aluminum particles was changed, be-
cause the original production facility was accidentally destroyed. The new aluminum differed in two respects:
shapes of the particles, and the proportion of oxide coating on individual particles. Testing during investi-
gation of the instability led to the conclusion that consequent changes in the processes responsible for the
production of aluminum oxide products of combustion generated smaller particle sizes of AloO3. The smaller
sizes less effectively attenuated acoustic waves; the net tendency to excite waves therefore increased. As a
result, the motors were evidently more unstable and also supported larger amplitudes of oscillation. The
second conclusion was purely speculative at the time of the investigation, but can now be demonstrated
with the theory covered in this book. Nevertheless, the details explaining why the change in the aluminum
supplied led eventually to the significant changes in the combustion products remain unknown.

Subsequent to the Minuteman problem, the Air Force Rocket Propulsion Laboratory supported a sub-
stantial program of research on many of the most important problems related to combustion instabilities
in solid rockets. Broadly, the intellectual centroid of that program lay closer to the areas of combustor
dynamics and combustion dynamics than to the detailed behavior of propellants. The synthesis, chemistry,
and kinetics of known and new materials belonged to programs funded by other agencies in the U.S. and in
Europe, notably ONERA in France. By far most of the related work in Russia has always been concerned
with the characteristics and combustion of propellants, with relatively little attention to the dynamics of
combustors.

Investigations and problems of combustion instability in solid rockets have been far more numerous and
widespread than for any other system. It is likely an accurate statement that more is generally understood
about the problem of oscillations in combustors because of work done to treat the problem in solid rockets.
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F1GURE 1.20. Frequencies and amplitudes of combustion instabilities in the Minuteman
II, stage 3 motor: (a) change of behavior after Lot 1-10 (Fowler and Rosenthal 1971); (b)
frequencies and amplitudes measured during static tests (Bergman and Jessen 1971).

We will mention only a few examples here and refer to others where appropriate in the following text. As
Figure 1.2 suggests, much had been accomplished prior to the Minuteman problem. A useful selection of
papers was given in a session at the ATAA/ASME Joint Propulsion Meeting, 1971.

In the late 1960s and 1970s there was considerable effort in the U.S. to “solve” the problem of instabilities
in solid rockets. Similar research was carried out in Europe, especially in France. Considerable progress
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was made, both theoretically—mnotably the foundation of a method for analyzing nonlinear behavior—and
experimentally, especially methods to measure the response function of solid propellants improved at several
U.S. companies, at the Naval Air Warfare Center, China Labs (NAWC) and at ONERA in France. But
problems of instabilities in motors continued to arise without prediction.

At that time it was known that there remained some difficulties with the theory and serious compu-
tational restrictions. That is true as well today although progress continues to be made. The most recent
large research program devoted to the subject in the U.S. was the Multidisciplinary University Research
Initiative (MURI), “Investigations of Novel Energetic Materials to Stabilize Rocket Motors.” Although the
research was primarily concerned with properties and behavior of energetic propellants, some of the work
necessarily was devoted to general problems of time-dependent combustion. One conclusion, confirming once
again previous work, is that there is no method giving accurate and widely useful results for the propellant
response function. An idea of how difficult the problem is may be gained from the fact that at least five
methods have been used, several extensively, and none has been found satisfactory for all purposes.

There seems to be general agreement that for most practical purposes the T-burner serves best. This
device, sketched in Figure 1.21, in principle gives data for the response of a small flat sample of propellant
to a pressure oscillation. Variants have been devised to give results for the response to velocity fluctuations,
with only modest success. First discussed by Price and Sofferis (1958), by far most work with the T-burner
has been done at NAWC. Price (1992) has given the most authoritative summary of instabilities in solid
rockets, including the development of T-burners. The most recent discussions of T-burners have been given
by Blomshield et al. (1996) and Blomshield (2000).

— -
— -
— -
— -

f

(a) Basic T-Burner

Exhaust

f

(b) Pulsed T-Burner

34 e

f

(c) T-Burner with Variable Area Test Samples

Exhaust

Exhaust

FIGURE 1.21. A sketch of the basic T-burner and two variants.

Blomshield (2001) has also compiled a large list of examples of instabilities in operational motors. Figure
1.22 taken from that work is an impressive array of motors that have exhibited instabilities. The examples
cover more than 45 years.
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Motor Details Type

No_ Name |Date| App. Propellant Type  |Long|Tang|DC shifts|Pulsed|Prop|Metal |Geo. Details
I Sergeant [1951{Sounding| Polysulfide/AP X Not fixed
[ 2 | RVA-10 [1951] TBM Polysulfide/ AP X Unknown
|3 | Sergcant |1957] TBM | Polysulfide/AP X Not Fixed

4| Subroc |[1961| SAS Al/Palyurethane X X X Reduced Al size

5 | Iroquois |1960 ? Aluminized X X X Increased Al%, reduced Size

6 Tartar  |1961] SAA Duel Grain X X X X Nozzle moved downstream

7 Tow 1964| STS Double Base X X X Added Baffles

8 Genie [1965] ATA | AP/Al/Polyurethane] X X Reduced Al size

9 |Minuteman{1968| BAL |Double Base/AP/Al] X X Changed system, not motor

10| Manpads [1969| SL AP/AVHTPB b X X Lowered Solid Loading

11 ATR 1975 ATA AP/HTPB X X X Increased AP size, added catalyst

AALM [1975] RES AP/HTPB X X ZrC containing motors were better

13| MK-12 1975 SAA AP/AVHTPB X X Changed system. not motor

14| Slufac [1975] STS AP/HTPB X|X X Added helmholtz resonator

15 |Sidewinder|1977] ATA AP/HTPB X X X X X |Grain design change, some RDX for AF
|| 16| Maverick |1977| AS AP/HTPB X X X Increased AP size, added catalyst, ZrC
|| 17| LCMM |1978] RES AP/HTPB X X X | Add eroding Nozzle, changed geometry
I[ 18] MSM |1978] RES |Double Base/CMDB X X X Inereased port area

19| Harm [1978] AS AP/HTPB X X No changes required

201 EX-70 1979 SAA AP/HTPB X X X Smaller AP, increase nozzle size

21| EX-104 [1985] SAA Duel AP/AVHTPB | X No changes required

22| ASROC |1985] SAS AP/HTPB X No changes required

23| Sentry [1985| TBM AP/AVHTFPB X X X Program ended, smaller Al

24| LCPM |1988| 1777 AP/HTPB X X Smaller AP, higher loading

25|SHUTTLE 1990 BOS AP/AIPBAN X No changed required

26| DBM |1994] SL AP/AVHTPB X X X Grain design change

27 | Pathfinder [1996) SPA AP/AIVHTPB X X| X Increased Al from 2% to 16%

28| NWR  [1997| RES AP/HTPB X | X X X X X | Stability additives, geometry, pressure

———
TBM — Theater Ballistic Missile  SAS — Surface Anti-Submarine  SAA - Ship Launched Anti-Aircraft  STS — Surface to Surface  SPA — Space Motor
ATA — Air-to-Air  BAL — Ballistic Missile  SL — Surface Launched ~ AS — Air to Surface  RES — Research Motor  BOS - Space Booster

FIGURE 1.22. A partial summary of U.S. solid propellant motors (1951-1997) having prob-
lems of combustion instabilities (Blomshield 2001).

Not covered in the summary just cited is the case which has generated more effort than any other in the
recent past—the Ariane 5 Booster. Both the Shuttle and the Ariane 5 booster motors exhibited relatively
low level longitudinal oscillations. However, the excursions of pressure in the Ariane 5 have consistently been
larger and due to installations of counter-measures, may have cost payload.* The problem has motivated a
large amount of very good research and has led to the discovery of a new source of pressure waves called
“parietal vortex shedding” discussed further in the following section. Whereas the sort of vortex shedding
already mentioned, and commonly found in combustors, occurs at edges, parietal vortex shedding arises
when vortices are formed near a boundary through which flow enters a volume. Computations and several
tests in laboratory devices of established reality of the phenomenon. It appears, however, that disagreement
still exists concerning the importance of parietal vortex shedding in the full-scale Ariane 5.

As the research activities related specifically to solid rockets decreased during the 1980s and new pro-
grams began for liquid-fueled systems, the communities, previously quite separate, grew closer together.

4As part of the vehicle design—before the first tests—mechanical damping devices were installed between the booster
motors and the main vehicle. The problem is particularly bothersome in practice because for odd acoustic modes, there is a
large amplification factor (about ten for the Ariane 5) relating fractional thrust oscillations to fractional pressure oscillations.
(P. Kuentzmann, private communication.)
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For example, prompted by contemporary concern with problems in ramjets, a workshop sponsored by JAN-
NAF (Culick 1980) was organized partly with the specific intention to bring together people experienced in
the various propulsion systems. During the 1980s there was considerable interchange between the various
research communities and since that time, a significant number of people have worked on both solid and
liquid-fueled systems. That shift in the sociology of the field has provided the possibility and much of the
justification for this book. Events of the past decade have confirmed that the field of combustion instabilities
is very usefully approached as a unification of the problems arising in all systems.

In Europe during the 1990s, work on combustion instabilities in solid propellant rockets was motivated
largely by low frequency oscillations in the booster motors for the Ariane 5. The most intensive and compre-
hensive recent work in the U.S. has been carried out in two Multidisciplinary University Research Initiatives
(MURI) involving 15 different universities (Culick 2002a, Krier and Hafenrichter 2002). An unusual charac-
teristic of those programs, active for six years beginning in 1995, was the inclusion of coordinated research
on all aspects of problems of combustion instabilities in solid propellant rockets, from fundamental chemistry
to the internal dynamics of motors. Results of recent works will be covered here in the appropriate places.

1.3. Mechanisms of Combustion Instabilities

The simplest and most convenient characterization of an unstable oscillation is expressed in terms of the
mechanical energy of the motion. Linear theory produces the result that the rate of growth of the amplitude
is proportional to the fractional rate of change of energy, the sum of kinetic and potential energies. The
idea is discussed further in the following section. What matters at this point is that the term ‘mechanism’
refers to a process that causes transfer of energy to the unsteady motion from some other source. Thus,
mechanisms form the substance of the feedback path in Figure 1.1. Generally there are only three sorts
of energy sources for unsteady motions in a combustor: the combustion processes; the mean flow, which of
course itself is caused by combustion; and a combination of combustion and mean flow simultaneously acting.
The distinction is important because the physical explanations of the energy transfer are very different in
the three cases.

Just as for steady operation, the chief distinctions among combustion instabilities in different combustors
must ultimately be traceable to differences in geometry and the states of the reactants. The root causes,
or ‘mechanisms’, of instabilities are imbedded in that context and are often very difficult to identify with
certainty. Possibly the most difficult problem in any particular case is to quantify the mechanism. Solving
that problem requires finding an accurate representation of the relevant dynamics.

1.3.1. Mechanisms in Liquid-Fueled Rockets. Combustion instabilities first became a serious prob-
lem in liquid rockets and remain a matter of basic concern during development. The chief mechanisms remain
those known for many years, associated with the propellant feed system; the injection system; the processes
required for conversion from liquid to gas; and combustion dynamics. There seem to be no examples caused
primarily by vortex shedding, mean flow/acoustics interactions, or convective waves (of entropy or vorticity).

Figure 1.23 is a broad summary of the main processes taking place in a liquid rocket combustion chamber
(Culick and Yang 1993) The listing and categorization serves only as a rough general guide. Particular
situations may introduce additional processes.

In order to construct a dynamical model of a combustion chamber, it is necessary to place the processes
of Figure 1.23 in space. This is not the occasion to pursue that matter in detail, which must in any case
be done for each given design. Figure 1.24, adapted from Bazarov (1979), conveys the general idea. One
approach to analyzing linear stability is based on combining the transfer functions according to a diagram
like Figure 1.24. Then the problem may be posed in the manner of feedback control theory. Each process
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The mechanisms causing instabilities differ in detail, and perhaps grossly, depending on the type of sys-
tem. Generally there are three types of system depending on the choice of reactants: liquid oxygen/hydrogen
(LOX/H) typified by the engines RL-10, J-2, Space Shuttle main engine (SSME), and the Vulcain (Euro-
pean Space Agency); liquid oxygen/hydrocarbon (LOX/HC) of which some examples are the Apollo F-1,
the Atlas, and the RD-0110 (Russian); and those systems using storable propellants such as those based on
nitrogen tetroxide (N2Oy) as the oxidizer with fuels commonly hydrazine, monomethylhydrazine (MMH) as
in the French Viking motor in the Ariane 1-4, and unsymmetrical dimethylhydrazine (UDMH). The TRW
pintle engine which was used in the Lunar Descent Vehicle is perhaps the most famous engine using storable

propellants.

For a given choice of reactants, the most significant influence on the instabilities is the injection system.
In this context the main classes of injectors are impinging jets; shear and swirl coaxial injectors; showerheads;
and impinging sheets. Changes of the geometry may produce a large variety of injectors, many of which are
shown in Figure 1.5. FEach of these devices exhibits its own mechanism for instability, possibly different in
important respects, and subtly dependent on operating conditions. It is not possible to offer generalizations.
Figure 1.25 suggests the variety of mechanisms that may arise in a coaxial injector.

Liquid Oz G‘,‘j‘f,?z
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Recirculated

Hot gas

H20 + H2
3000 K
KiOO m/s
“\.  Flame
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W% s  Dispersed liquid objects (droplets, ligaments)

LA Liquid core surface

Oney aanpany T

: liquid + cold gas mixing zone, non reactive, confined

: liquid + cold gas mixing zone, non reactive, non confined
: Spray + cold + hot gas mixing without burning

: Burning spray zone

HV—

FI1GURE 1.25. A sketch showing some of the processes taking place in a coaxial injector
(Vingert et al. 1993).

1.3.2. Sensitivity of Combustion Processes; Time Lags. Combustion processes are sensitive to
the macroscopic flow variables, particularly pressure, temperature and velocity. Even slow changes of those
quantities affect the energy released according to rules that can be deduced from the behavior for steady
combustion. In general, however, representations of that sort, based on assuming quasi-steady behavior,
are inadequate. Combustion instabilities normally occur in frequency ranges such that genuine dynamical
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behavior is significant. That is, the transient changes of energy release do not follow precisely in phase with
imposed changes of a flow variable such as pressure.

The simplest assumption is that the combustion processes behave as a first order dynamical system
characterized by a single time delay or relaxation time. That idea was apparently first suggested by von
Karman as a basis for interpreting instabilities discovered in early experiments with liquid propellant rockets
at Caltech (Summerfield 1941). That representation, which came to be called the ‘n—7 model’ was developed
most extensively by Crocco and his students at Princeton during the 1950s and 1960s. Time delays may be
due, for example, to processes associated with ignition of reactants. Subsequent to injection as the reactants
flow downstream, finite times may be required for vaporization, mixing, and for the kinetics mechanism to
reach completions. Both effects may be interpreted as a convective time delay. Under unsteady conditions,
the initial state of the reactants, their concentrations, pressure, and velocity, also fluctuate, causing the delay
time to be both nonuniform in space and in time. As a result, the rate of energy release downstream in the
chamber is also space- and time-dependent, and acts as a source of waves in the combustor.

In the case of liquid-fueled systems, interactions of the injected streams, formation of sheets and break-up
into drops are processes sensitive to pressure and particularly velocity fluctuations. Those are purely fluid-
mechanical processes impossible to treat analytically and pose extremely difficult problems for numerical
simulations. No complete numerical analyses exist and only much simplified models have been used in
numerical simulations of combustion instabilities. The dynamics of a combustion system are not likely to be
well-represented by an n — 7 model.

If a time-lag model is used, either further modeling and calculations must be carried out, or an assumption
must be made for the dependence of the time lag on frequency. It is usual that the time lag is assumed
constant. Then the response of the system exhibits unrealistic resonances as the frequency increases. An
example is shown later in Figure 2.20 for combustion of a solid propellant. Realistic behavior is found only
by taking the lag itself to be a function of frequency. The choice is largely arbitrary unless the physical basis
for the model is improved.

Purely gaseous-fueled systems present possibilities for different physical models that also leads to first-
order behavior. It is an old idea that even in complicated geometries, combustion in a non-premixed system
must occur at least partly in elements of diffusion flames. If the gaseous reactants are premixed then in
simple configurations such as tubes, or dump combustors, combustion may occur in large stable flame sheets
of the flow is laminar, or in fragments of premixed ‘flamelets’ when the flow is turbulent. In all of these cases
it is reasonable to anticipate that at any given time the rate of energy release is roughly proportional to the
area of the flame sheets. Then fluctuations of the velocity or processes responsible for ignition and extinction,
will cause fluctuations of the energy release rate. Models of this process lead to an equation representing
first order behavior (For example, see Poinsot et al. 1988; Candel et al. 1992; McManus et al. 1993; Dowling
1995; Annaswamy et al. 2000).

The approximation of first order behavior fails entirely for the dynamics of burning solid propellants
(Culick 1968). Although in good first approximation dominated by unsteady heat transfer in the condensed
phase, a diffusive process, the combustion dynamics in this case exhibits behavior closer to that of a second
order system. The frequency response of that burning rate tends normally to have a large broad peak centered
at a frequency falling well within the range of the frequencies characteristic of the chamber dynamics. Hence
there is a clear possibility for a resonance and instability suggested by the diagram in Figure 1.1.

1.3.3. Vortex Shedding and Vortex/Mean Flow Interactions. Generation of oscillations by the
average flow is due to causes roughly like those active in wind musical instruments. In all such cases, flow
separation is involved, followed by instability of a shear layer and formation of vortices. Direct coupling
between the vortices and a local velocity fluctuation associated with an acoustic field is relatively weak; that
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is, the rate of energy exchange is in some sense small. However, the interaction between the velocity (or
pressure) fluctuation and the initial portion of the shear layer is normally a basic reason that feedback exists
between the unsteady field in the volume of the combustor and vortex shedding.

Figure 1.26 conveys the idea of one way in which shed vortices may excite oscillations. The local
acoustic velocity field determines the times at which individual vortices are shed at an edge. By some means
of coupling, the vortices then act to generate an acoustic field, but with a lag between the shedding and
generation processes. The acoustic field so generated is local and the process of filling the chamber is another
matter. However, it seems to be generally true that acoustic fields generated by vortex shedding are never
as intense as the stronger fields produced by the combustion processes directly.

Byrne (1981, 1983) seems to have been first to suggest that vortex shedding could be responsible for
instabilities observed in dump combustors. The idea was developed very actively in the 1980s, both in
systems operating at room temperature without combustion (Schadow et al. 1981, 1983, 1984, 1985) and in
combustors (Schadow et al. 1985, 1987a, 1987b).

u
—_— -
Acoustic
Field
_—
Acoustic Field Generated
by Coupling between Shed
> ) Vortices and the Existing
Shedding Acoustic Field
Process Shed
- Vortices

////////////////?

FIGURE 1.26. Generation of an acoustic field by vortex shedding.

Unsteady combustion in vortices was one of the early mechanisms proposed as a cause of combustion
instabilities in combustors using bluff body flameholders (Kaskan and Noreen 1955, Marble and Rogers
1956). It was essentially re-discovered in the 1980s during tests of dump combustors (Smith and Zukoski
1985; Daily and Oppenheim 1986; Sterling and Zukoski 1991, for example). Several attempts have been made
to quantify the mechanism with analysis (Norton 1983; Karagozian and Marble 1986) and with numerical
simulations (Laverdant and Candel 1988; Samaniego and Mantel 1999). Insufficient progress has been made
to construct a model suitable for general analysis of combustion instabilities. Thus there is currently no
basis for predictions of combustor dynamics excited by this mechanism, although there are recent simplified
attempts for special situations by Matveev and Culick (2002, 2003a) and by Matveev (2004) . Special cases
have been discussed in connection with particular experimental results; see, for example, Sterling 1993 and
Sections 2.3.4 and 2.3.5.

It has long been known experimentally that vortices shed in a chamber more effectively generate acoustic
waves if they impinge in an obstacle downstream of their origin (Flandro and Jacobs, 1975; Culick and
Magiawala, 1979; Nomoto and Culick, 1982; Flandro, 1986). The first practical examples of this phenomenon
were found in the solid rocket booster for the Shuttle launch system in the 1970s and the Titan motor (Brown
et al. 1981, 1985). It was that problem that motivated the works just cited, but since then vortex shedding
has been recognized as a mechanism for generating acoustic oscillations in other systems as well, notably
the booster motors on the Space Shuttle and on the Ariane 5. A particularly good summary and discussion
of the subject has recently been given by Vuillot and Casalis (2002). Owing to their involvement with a
problem of pressure oscillations in the Ariane 5 booster motors, the authors focus special attention on a very
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different form of vortex shedding. Laboratory tests and numerical simulations have established the existence
of a process called ‘parietal vortex shedding’ in which large coherent vortices grow out of the region of shear
near a surface through which flow enters the chamber. The flow can either be issuing from a burning solid
propellant or may be the flow inward of fluid through a permeable boundary.

It happens that the amplitudes of oscillations in the Ariane motors are significantly greater than those
found in the Space Shuttle booster motors. In the latter case, vortices are definitely created by instability
of the shear layer formed in flow past an obstacle. The reasons for the difference in amplitudes in the
two cases may be due to differences in geometry. One proposal rests on special conditions in the Ariane,
possibly encouraging “parietal vortex shedding”, but the problem is not satisfactorily resolved. Parietal
vortex shedding involves growth of vortices initiated in the region adjacent to a transpiring surface, such as
a burning solid.

1.3.4. Operation Near the Lean Blow-Out Limit. Combustion instabilities have not historically
been a serious problem in gas turbine main combustors. Although instabilities have certainly been observed
for many years, they have not been persistently troublesome. Due to proprietary considerations almost no
detailed results for full-scale machines have been made public, a situation that has recently been changing.
In the past few years combustion instabilities have become a serious problem in gas turbines because of the
need to operate close to the lean blowout limit of premixed gaseous reactants as part of the strategy to
reduce generation of pollutants, notably NO.

As the operating condition approaches the lean blowout limit, combustion processes (‘flame dynamics’),
including flame stabilization, are more sensitive to fluctuations than under operation at higher mixture
(F/O) ratios. The sensitivity extends to flame fronts and zones as well as to the stabilization processes,
shear layers and recirculation zones. The latter, associated with injection and stabilization, may possess
multiple dynamical states, i.e. special bifurcations and hysteresis.

The dynamical behavior of the premixer and injection devices may contribute to instabilities in various
ways. Internal resonances, for example, may be excited by oscillations in the chamber, causing perturbations
of the energy released in the combustion processes downstream of the injector. There may also be undesirable
coupling between elements of an array of premixers and injectors. Such dynamical behavior may also be
turned to advantage to extend the operating range of stable operation. That strategy was successfully
pursued on several occasions in the Russian liquid rocket community.

It is likely that fluctuations of the mixture or fuel/oxidizer ratio (F/O) play an important role in the
dynamics of gas turbine combustors (Lieuwen et al. 2001). If the F'/O ratio of the reactants is at all sensitive
to conditions in the combustion chamber, there is an obvious feedback path connecting the combustor
and combustion dynamics. The possibility has arisen previously in other combustion systems, but at least
anecdotal evidence has suggested that serious attention must be paid to fluctuations of mixture ratio as a
fundamental mechanism for instabilities in gas turbines.

There is considerable evidence that the ratio of a “convective timescale” and the dominant acoustic
period (1/f) may be the determining parameters, or at least an important one, governing mixture ratio
fluctuations in a given situation. Lieuwen et al. (2001) and Cohen et al. (2003) have given particularly useful
discussions of the matter. Unfortunately the situation is clouded because the first case, shown in Figure 1.27,
is a discussion of an axisymmetric configuration and the second, Figure 1.28, is concerned with experiments
using a two-dimensional dump combustor. The ratio 7.f was around unity or less for the tests with the
configuration shown in Figure 1.27, but two or greater for the two-dimensional combustor, Figure 1.28.
It seems that explanations of the observed behavior are more convincing when considered separately than
when taken together. There is no single reasoning, no matter how lengthy, that explains satisfactorily the
observations. The actual case, like the others treated here, is too complicated for such a simple result.
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al. 2001).

Much remains to be learned about instabilities in gas turbines, although the subject has been greatly
clarified in the past 10-12 years. We will not cover the material thoroughly in this volume, mainly because
we are concerned primarily with other types of systems which are of more concern for the applications most
significant for aerospace systems. Moreover, the causes of instabilities in gas turbines to a large extent
seem to be distinct from those in rockets, afterburners and ramjets. In the most fundamental sense, that
conclusion is perhaps illusory. Chapter 9 is devoted to a largely qualitative discussion of some of the recent
topics addressed in work on instabilities in gas turbines.

1.3.5. Mechanisms in Solid-Fueled Rockets. No disagreement exists that the predominant mecha-
nisms for instabilities in solid propellant rockets is the sensitivity of burning surfaces to pressure and velocity
fluctuations. A large part of Chapter 2 is devoted to the basic essentials, including, in Section 2.2, a de-
tailed derivation of the simplest response of a burning surface to pressure fluctuations. During the past five
decades, a great amount of resources has been consumed in an effort to develop methods for measuring the
response. Success, however, has been spotty and far short of what is required both for practical and for
research purposes. It is an outstanding problem in the field that merits continued work, especially to devise
a new method.

Quite a different mechanism also exists, involving the shedding of large vortices and subsequent excitation
and interactions with acoustic waves. Vorticity /acoustic coupling is actually a relatively widely recognized
mechanism, not only in solid rockets, because its existence does not rest on combustion processes. The
importance of vortex shedding in dump combustors, the usual configuration of ramjet engines, has long
been established as a major mechanism. Thus, if one is concerned with the possibility that the process is
important in a solid propellant motor, attention should be paid to the characteristics of the phenomenon in
ramjets. The point is not, of course, that the two sorts of situations are in some sense the ’same’ but there
are similarities and much may be learned from comparisons of results. No such comparative studies exist.

Partly because a solid propellant rocket cannot be repeatedly tested in the same manner as other systems,
more attention has been given combustion instabilities in this kind of combustor than for any other. It is
possible, but not likely, that any important mechanisms of instabilities have been overlooked or are unknown.
The practical problem, as we will see, is quantifying the contributions well enough to obtain good results.

1.3.6. Combustion Dynamics. Except for instabilities sustained by the purely fluid mechanical mech-
anism of vortex shedding, all practical cases of combustion instabilities involve combustion dynamics in some
form. It is hardly an exaggeration to claim that understanding combustion dynamics is ultimately the most
important fundamental problem in the subject of combustion instabilities. Broadly the term refers to the
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property possessed by any chemically reacting system that the rate at which energy is released is sensitive,
i.e. responds, to the rates of change of pressure, temperature, density and mixture ratio. For solid and
liquid propellants, the combustion dynamics is usually more conveniently expressed in terms of the rate of
conversion of the condensed phase to gaseous combustion products.

In the limit of small changes (i.e. for linear behavior), dynamical response functions for combustion
systems are entirely analogous to transfer functions used in the subject of controls. They are fundamental
to analysis of the stability of combustion systems and to application of the principles of feedback control.

Introduction of response functions as general definitions is part of the basis on which combustion in-
stabilities, or, more widely, the dynamics of combustion systems, can be investigated and understood with
minimal appeal to the particulars of the combustion dynamics of a specific type of system. However, ap-
plications of the theory require close attention to the details of the system at hand. Modeling combustion
dynamics on theoretical grounds only carries serious limitations due to the complexities of the systems.
Hence experimental methods and, to an increasing extent, numerical simulations are essential to treating
combustion instabilities in practical systems.

1.4. Physical Characteristics of Combustion Instabilities

Owing to the difficulty of making direct measurements of the flow field within a combustion chamber,
virtually all that is known about combustion instabilities rests on close coordination of experiment and
theory. The subject is intrinsically semi-empirical, theoretical work being founded on observational data
both from full-scale machines and laboratory devices. Conversely, the theoretical and analytical framework
occupies a central position as the vehicle for planning experimental work and for interpreting the results. The
chief purposes of this section are to summarize briefly the most important basic characteristics of observed
instabilities; and to introduce the way in which those observations motivate the formulation of the theoretical
framework.

In tests of full-scale propulsion systems, only three types of data are normally available, obtained from
pressure transducers, accelerometers, and strain gauges. Measurements of pressure are most direct but are
always limited, and often not possible when the necessary penetration of the enclosure to install instruments is
not allowed. Hence the unsteady internal pressure field is often inferred from data taken with accelerometers
and strain gauges. In any case, because it is the fundamental variable of the motions, the pressure will serve
here as the focus of our discussion.

Figure 1.29 shows examples of pressure records from measurements taken with three different solid
propellant rockets. They show many of the features commonly observed for combustion instabilities. The
transient records 1.29 (a) and (b) exhibit the exponential growth characteristic of a linear instability. That
behavior is most clearly exposed by plotting the logarithm of the peak values versus time, giving a straight
line because p ~ e** means logp ~ at. The result is of course not precise because the oscillation is not
a pure sinusoidal motion and indeed, the case 1.29(b) shows development of steep fronts, often preceding
evolution into approximately triangular waveforms accompanied by an increase in the average burning rate
and chamber pressure. In any case, the transient growth usually slows and the oscillation becomes a limit
cycle possibly containing several frequencies. Figure 1.29(c) is an example showing behavior often observed
for instabilities in solid rockets for which the best measurements of transients have been made.

Figure 1.30 shows details of a test record taken during firing of a full-scale solid rocket. Development
of steep waves and higher harmonics are clearly evident. Note also the rise of mean pressure accompanying
the appearance of higher harmonics at time D. As shown also in Figures 1.29 (b) and (c), that is not an
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FIGURE 1.29. Transient growths and “limit cycles” of combustion instabilities.

unusual occurrence. In the case giving the records shown in Figure 1.30, the instability was eliminated with
a change of the internal configuration, consistent with the ideas pursued in this book.
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A convenient and quickly informative method of displaying characteristics of an unstable firing is the
“waterfall” plot, of which examples are shown in Figures 1.31 and 1.32. Spectra for a sequence of times are
plotted on the same axes, the vertical axis serving as the measure of pressure as well as indicating the time
intervals at which the spectra are taken. Figure 1.31 is the waterfall plot starting early in the test of a stable
motor. A test having an instability, such as that shown in Figure 1.30 is reproduced in Figure 1.32.
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The cases chosen here have been examples of fully developed instabilities. The well-defined peaks reflect
the clear presence of several frequencies in the waves, the larger amplitudes occurring at the lower frequencies,
as commonly happens. A substantial background of broad-band noise is of course always present due to
turbulent fluctuations of the flow, noise emission by combustion processes, and possibly other unsteady
motions such as flow separation. Some recent laboratory tests have shown that the level of noise depends on
the presence and amplitude of combustion instabilities, but the cause is unknown and no such observations
exist for full-scale combustors.

Much of this book is devoted to understanding the origins of the behavior illustrated by the examples in
Figures 1.3, 1.6, 1.7, 1.29 and 1.30. The classical theory of acoustics has provided the basis for understanding
combustion instabilities since early recognition that some unexpected observations could be traced to pressure
oscillations. Many basic results of classical acoustics have been applied directly and with remarkable success
to problems of instabilities. It is often taken for granted that well-known acoustics formulas should be
applicable—their use can in fact be justified on fundamental grounds. However, in the first instance, it is
surprising that they work so well, because the medium is far from the ideal uniform quiescent gas assumed
in the classical acoustics of resonating chambers.

On the other hand, non-classical behavior is not difficult to find. It has been firmly established with
tests using both liquid and solid rockets that instabilities involving “subcritical bifurcations” are common.
That is, a combustor may be stable to small disturbances but may exhibit an instability if subjected to a
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sufficiently large disturbance. An example of such behavior for a liquid rocket has been cited with Figures
1.6, 1.7 and 1.11. Figure 1.33 shows a typical result found for solid rockets. The subject of subcritical
bifurcations is discussed in Section 7.11.
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FIGURE 1.33. A severe pulsed instability in a solid rocket; an example of a subcritical
bifurcation (Blomshield 2001).

A combustion chamber contains a non-uniform flow of chemically reacting species, often present in
condensed as well as gaseous phases, exhausting through a nozzle that is choked in rockets, ramjets, and
afterburners. Moreover, the flow is normally turbulent and may include regions of separation. Yet estimates
of the frequencies of oscillations computed with acoustics formulas for the natural modes of a closed chamber
containing a uniform gas at rest commonly lie within 10-15 percent or less of the frequencies observed for
combustion instabilities, if the speed of sound is correctly chosen.

There are three main reasons that the classical view of acoustics is a good first approximation to wave
propagation in combustion chamber: (1) the Mach number of the average flow is commonly small, so
convective and refractive effects are small; (2) if the exhaust nozzle is choked, incident waves are efficiently
reflected, so for small Mach numbers the exit plane appears to be nearly a rigid surface; and (3) in the
limit of small amplitude disturbances, it is a fundamental result for compressible flows that any unsteady
motion can be decomposed into three independent modes of propagation, of which one is acoustic (Chu
and Kovazsnay 1956). The other two modes of motion are vortical disturbances, the dominant component
of turbulence, and entropy (or temperature) waves. Hence even in the highly turbulent non-uniform flow
usually present in a combustion chamber, acoustic waves behave in good first approximation according to
their own simple classical laws. That conclusion has simplified enormously the task of gaining qualitative
understanding of instabilities arising in full-scale systems as well as in laboratory devices.

Of course, it is precisely the departures from classical acoustics that define the class of problems we
call combustion instabilities. In that sense, this book is concerned chiefly with perturbations of a very old
problem, standing waves in an enclosure. That point of view has significant consequences; perhaps the
most important is that many of the physical characteristics of combustion instabilities can be described and
understood quite well in a familiar context. The remainder of this chapter is largely an elaboration of that
conclusion.

The most obvious evidence that combustion instabilities are related to classical acoustic resonances
is the common observation that frequencies measured in tests agree fairly well with those computed with
classical formulas. Generally, the frequency f of a wave equals its speed of propagation, a, divided by the
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wavelength, A:

(1.1)

>

On dimensional grounds, or by recalling classical results, we know that the wavelength of a resonance or
normal mode of a chamber is proportional to a length, the unobstructed distance characterizing the particular
mode in question. Thus the wavelengths of the organ-pipe modes are proportional to the length, L, of the
pipe, those of modes of motion in transverse planes of a circular cylindrical chamber are proportional to the
diameter, D, and so forth. Hence (1.1) implies

[~ % longitudinal modes
(1.2)a,b

a
f~ D transverse modes

There are two basic implications of the conclusion that the formulas (1.2)a,b, with suitable multiplying
constants, seem to predict observed frequencies fairly well: evidently the geometry is a dominant influence
on the special structure of the instabilities; and we can reasonably define some sort of average speed of
sound in the chamber, based on an approximation to the temperature distribution. In practice, estimates
of a use the classical formula a = /yRT with T the adiabatic flame temperature for the chemical system
in question, and with the properties v and R calculated according to the composition of the mixture in the
chamber. Usually, mass-averaged values, accounting for condensed species, seem to be close to the truth. If
large differences of temperature exist in the chamber, as in a flow containing flame fronts, nonuniformities
in the speed of sound must be accounted for to obtain good estimates of the frequencies.

Even for more complicated geometries, notably those often used in solid rockets, when the simple formulas
(1.2)a,b are not directly applicable, numerical calculations of the classical acoustic motions normally give
good approximations to the natural frequencies and pressure distributions. Thus quite generally we can
adopt the point of view that combustion instabilities are acoustical motions excited and sustained in the
first instance by interactions with combustion processes. That the classical theory works so well for estimating
frequencies and distributions of the unsteady motions means that computation of those quantities is not a
serious test of a more comprehensive theory. What is required first of a theory of combustion instabilities is
a basis for understanding how and why combustion instabilities differ from classical acoustics.

In particular, two global aspects of minor importance in much of classical acoustics, are fundamental to
understanding combustion instabilities: transient characteristics and nonlinear behavior. Both are associ-
ated with the property that with respect to combustion instabilities, a combustion chamber appears to an
observer to be a self-excited system: the oscillations appear without the action of externally imposed forces.
Combustion processes are the sources of energy which ultimately appear as the thermal and mechanical
energy of the fluid motions. If the processes tending to dissipate the energy of a fluctuation in the flow are
weaker than those adding energy, then the disturbance is unstable.

1.5. Linear Behavior

When the amplitude of a disturbance is small, the rates of energy gains and losses are usually proportional
to the energy itself which in turn is proportional to the square of the amplitude of the disturbance; the
responsible processes are said to be linear because the governing differential equations are linear in the flow
variables. An unstable disturbance then grows exponentially in time, without limit if all processes remain
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linear. Exponential growth of the form Age®*, where Ag is the amplitude of the initial small disturbance,
is characteristic of the initial stage of an instability in a self-excited system, sketched in Figure 1.34(a). In
contrast, the initial transient in a linear system forced by an invariant external agent grows according to
the form 1 — e=#*, shown in Figure 1.34(b). The curve e® is concave upward and evolves into a constant
limiting value for a physical system only if nonlinear processes are active. However, the plot of 1 — e 7% is
concave downward and approaches a limiting value for a linear system because the driving agent supplies
only finite power.

Self - Excited Driven
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FIGURE 1.34. Transient behavior of (a) self-excited linearly unstable motions; (b) forced motions.

Data of the sort sketched in Figure 1.34 leave no doubt that the unstable motions in combustion chambers
are self-excited, having the characteristics shown in Figure 1.34(a). The physical origin of this behavior is
the dependence of the energy gains and losses on the motions themselves. For combustion instabilities,
the ‘system’ is the dynamical system whose behavior is measured by the instrument sensing the pressure
oscillations. Thus, in view of earlier remarks, the dynamical system is in some sense the system of acoustical
motions in the chamber coupled to the mean flow and combustion processes (recall Figure 1.1).

It is a fundamental and extremely important conclusion that by far most combustion instabilities are
motions of a self-excited dynamical system. Probably the most significant implication is that in order to
understand fully the observed behavior, and how to affect and control it, one must understand the behavior
of a nonlinear system. When the motion in a combustion chamber is unstable, except in unusual cases of
growth to destruction, the amplitude typically settles down to a finite value: the system then executes a
limiting motion, usually a periodic limit cycle. For practical applications, it is desirable to know how the
amplitude of the limit cycle depends on the parameters characterizing the system. That information may
serve as the basis for changing the characteristics to reduce the amplitude, the goal in practice being zero.
In any case, good understanding of the properties of the limit cycle will also provide some appreciation for
those variables which dominate the behavior and to which the motions may be most sensitive, a practical
matter indeed.

Our global view, then, is that a combustion instability is an oscillatory motion of the gases in the
chamber, which can in first approximation be synthesized of one or more modes related to classical acoustic
modes. The mode having lowest frequency is a ‘bulk’ mode in which the pressure is nearly uniform in space
but fluctuating in time. Because the pressure gradient is everywhere small, the velocity fluctuations are
nearly zero. This mode corresponds to the vibration of a Helmholtz resonator obtained, for example, by
blowing over the open end of a bottle. The cause in a combustion chamber may be the burning process
itself, or it may be associated with oscillations in the supply of reactants, caused in turn by the variations
of pressure in the chamber. In a liquid rocket, structural oscillations of the vehicle or the feed system may
also participate, producing the POGO instability (Rubin 1966; Dordain, Lourme, and Estoueig 1974).
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Structural vibrations of a solid rocket are not normally influential in that fashion, but an instability
of the bulk mode (there is only one bulk mode for a given geometry) has often been a problem in motors
designed for use in space vehicles. In those cases, the term L*-instability has been used because the stability
of the mode is predominantly a function of the L* of the motor and the mean pressure (Sehgal and Strand
1964). The instability is associated with the time lag between fluctuations of the burning rate and of mass
flux through the nozzles: That time lag is proportional to the residence time, and hence L*, for flow in the
chamber. L*-instabilities occur in motors qualified for space flight because they arise in the lower ranges of
pressure at which such rockets operate.

Whatever the system, most combustion instabilities involve excitation of the acoustic modes, of which
there are an infinite number for any chamber. The values of the frequencies are functions primarily of the
geometry and of the speed of sound, the simplest examples being the longitudinal and transverse modes of
a circular cylinder, with frequencies behaving according to (1.2)a,b. Which modes are unstable depends on
the balance of energy supplied by the exciting mechanisms and extracted by the dissipating processes. We
consider here only linear behavior to illustrate the point.

In general the losses and gains of energy are strongly dependent on frequency. For example, the attenu-
ation due to viscous effects typically increases with the square root of the frequency. Other sources of energy
loss associated with interactions between the oscillations and the mean flow tend to be weaker functions of
frequency. That is the case, for example, for reflections of waves by a choked exhaust nozzle. The gains of
energy usually depend in a more complicated way on frequency.

The sources of energy for combustion instabilities, i.e. the mechanisms responsible for their existence,
present the most difficult problems in this field. For the present we confine our attention to qualitative
features of energy exchange between combustion to unsteady motions. For example, the magnitude of the
energy addition due to coupling between acoustic waves and combustion processes for a solid propellant
normally rises from some relatively small quasi-steady value at low frequencies, passes through a broad
peak, and then decreases to zero at high frequencies. Recent experimental results suggest that flames may
exhibit similar behavior (for example, Pun 2001). Energy is transferred to a pressure oscillation having a
particular frequency at a rate proportional to the part of the coupling that is in phase with the pressure at
that frequency.® Figure 1.35 is a schematic illustration of this sort of behavior.

In Figure 1.35, the gains exceed the losses in the frequency range f1 < f < f3. Modes having frequencies
in that range will therefore be linearly unstable. An important characteristic, typical of combustion chambers
generally, is that in the lower ranges of frequency, from zero to somewhat above the maximum frequency
of instability, the net energy transfer is a small difference between relatively larger gains and losses. That
implies the difficulty, confirmed by many years’ experience, of determining the net energy flow accurately.
Unavoidable uncertainties in the gains and losses themselves become much more significant when their
difference is formed. That is the main reason for the statement made earlier that analysis of combustion
instabilities has been useful in practice chiefly for predicting and understanding trends of behavior rather
than accurate calculations of the conditions under which a given system is unstable. The ultimate source
of all of these difficulties is the fact, cited in Section 1.1, that the motions in question consume and contain
only small portions of the total energy available within the system. Hence in both laboratory tests and in
operational systems one is confronted with the problem of determining the characteristics of essentially small
disturbances imbedded in a complicated dynamic environment.

The best and most complete data illustrating the preceding remarks have been obtained with solid
propellant rockets. There are several reasons for that circumstance. First, the ignition period — the time to
cause all of the exposed propellant surface to begin burning — is relatively short and the average conditions in

51t is possible, due to the behavior of the phase, that in a range of high frequencies the combustion processes may in fact
extract energy from the acoustic waves and hence contribute to the losses of energy.
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FIGURE 1.35. Qualitative dependence of (a) energy gains and losses; and (b) the frequency
response of a combustor.

the chamber quickly reach their intended values. Unless oscillations are severely unstable, and grow rapidly
during the ignition transient, there is a good opportunity to observe the exponential growth characteristic
of a linear instability. The measurements shown in Figure 1.29 are good examples.

Secondly, it is probably true that more effort has been spent on refining the measurements and predictions
of linear stability for solid rockets than for other systems because of the expense and difficulty of carrying out
replicated tests. There is no practical routine way of interrupting and resuming firings, and it is the nature
of the system that an individual motor can be fired only once. Particularly for large motors used in space
launch vehicles, successive firings involve great expense. Development by empirical trial-and-error is costly
and there is considerable motivation to work out methods of analysis and design applicable to individual
tests.

In contrast, liquid-fueled systems can be fired repeatedly. Trial-and-error has long been a strategy for
development of both liquid rockets and air-breathing systems. It seems that attention in that sort of work
has generally been focused on modifications to reduce amplitudes (as in ‘bombing’ tests) rather than on
determining the stability of small-amplitude motions. Very little data exists for values of growth constants,
and most of those results have been obtained for model or sub-scale laboratory devices. There are examples
of stability boundaries inferred from ‘bombing’ tests of the sort mentioned earlier and theoretical results
exist, but there seem to be no investigations comparable to those carried out for solid rockets. A Standard
Stability Prediction (SSP) program has been available for solid rockets for 25 years (Lovine et al. 1976,
Nickerson et al. 1983) and is now the subject of a development program (French 2003); no such product in
a general form exists for liquid rockets or for other propulsion systems.

We have already noted in Section 1.2 that much progress was achieved in analyzing and understanding
combustion instabilities in solid rockets from the late 1960s into the 1980s when there was little work on

1-36 RTO-AG-AVT-039



COMBUSTION INSTABILITIES IN PROPULSION SYSTEMS

liquid rockets. During that period, computing resources, microprocessors, and therefore techniques of data
acquisition and processing advanced enormously. Hence by comparison with the situation for solid rockets,
the subject of combustion instabilities in liquid-fueled systems, especially liquid rockets, did not benefit as
greatly from the general progress of supporting technologies. That situation is changing. Naturally, the
problem of instabilities in gas turbines has only relatively recently been subject to widespread attention and
therefore has not suffered the same historical deficiencies.

Finally, liquid or gaseous fueled systems are intrinsically more difficult to analyze and understand because
of the more complicated chemical processes and coupling with the unsteady flow field. It is true that
combustion of a heterogeneous solid propellant containing many ingredients, often including a metal, is very
complicated indeed and far from completely understood in general. However, from the point of view of
treating combustion instabilities, there is the great advantage that under most conditions, virtually all of the
significant combustion processes are completed within a thin zone near the solid propellant itself. Coupling
to the unsteady flow field may therefore be represented as a boundary condition. Combustion of liquid
fuels is necessarily distributed throughout the volume of the chamber. Making accurate approximations
to the spatial dependence is difficult, requiring quite careful treatment of many rate processes, including
chemical kinetics and transfer of energy between liquid and gaseous phases. The elementary dynamics of
the combustion processes are poorly understood relative to the situation for solid rockets.

1.5.1. Gains and Losses of Acoustic Energy; Linear Stability. It is a general result of the theory
of linear systems that if a system is unstable, a small disturbance of an initial state will grow exponentially
in time:

amplitude of disturbance ~ e*s" (1.3)

where oy > 0 is called the growth constant. If a disturbance is linearly stable, then its amplitude decays
exponentially in time, being proportional to e~®* and oy > 0 is the decay constant. The definition (1.3)
implies that for a variable of the motion, say the pressure, having maximum amplitude py in one cycle of a
linear oscillation:

p'(t) = poes =) (1.4)
where Py is the amplitude at time ¢ = #y. Then if p}, p, are the peak amplitudes at time 1, to,
Br _ plt=ty) _ ettt

= _ pog(ta—ty)
ﬁl B p’(t = ﬁl) o e%q(t1—to) = o (15)

The logarithm of (1.5) is

log 22 = oy (ts — 1) (1.6)
P1
In practice, to — t1 is usually taken equal to the period 7, the time between successive positive (or negative)
peaks. Then the logarithm of the ratio ps/p; for a number of pairs of successive peaks is plotted versus the
time ¢; or to at which the first or second peak occurs. The line is straight, having slope . Figure 1.36
shows a good example of both exponential growth and decay of pressure oscillations. The measurements
were taken in a small laboratory device, a T-burner.

Whatever the system, the analytical treatment of linear stability is essentially the same. There is really
only one problem to solve: find the growth and decay constants, and the frequencies of the modes. Determin-
ing the actual mode shapes is part of the general problem, but is often not essential for practical purposes.
Typically, both the frequency and the mode shape for small-amplitude motions in a combustion chamber
are so little different from their values computed classically as to be indistinguishable by measurement in
operating combustors. By “classical” we mean here a computation according to the equations of classical
acoustics for the geometry at hand, and with account taken of large gradients in the temperature, which
affect the speed of sound. The presence of combustion processes and a mean flow field are not accounted for
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F1GURE 1.36. Exponential growth and development of a limit cycle out of a linearly unstable
motion (Perry 1968).

explicitly, but it may be necessary, for satisfactory results, to include a good approximation to the boundary
condition applied at the exhaust nozzle, particularly if the average Mach number is not small.

Hence the linear stability problem is really concerned with calculations of the growth and decay constants
for the modes corresponding to the classical acoustic resonances. An arbitrary small amplitude motion can,
in principle, be synthesized with the results, but that calculation is rarely required for practical applications.
Results for the net growth or decay constant have been the central issue in both theoretical and practical
work. In combustors, processes causing growth of disturbances and those causing decay act simultaneously.
Hence an unstable disturbance is characterized by a net growth constant that can be written o = ag — aq.
Because the problem is linear, the growth constants can quite generally be expressed as a sum of the
contributions due to processes accounted for in the formulation, as for example:

a = ag = ag = (W)eombustion T (Ynozzle T (Ymean flow + (@)condensed T (Vstructure +--- (1.7)

The labels refer to processes of interaction between the acoustic field and combustion, the nozzle, the
mean flow, condensed species, the containing structure, ... . Structural interactions comprise not only the
vibrations mentioned earlier as a necessary part of the POGO instability, but also quite generally any motions
of mechanical components, including propellant. For example, in large solid propellant rockets, motions of
the viscoelastic material of the grain may be a significant source of energy losses through internal dissipation
(McClure, Hart and Bird 1960a).

The stability boundary—the locus of parameters marking the boundary between unstable (a > 0) and
stable (a < 0) oscillations—is defined by o = 0 in (1.7). That statement is a formal statement of the physical
condition that the energy gained per cycle should equal the energy lost per cycle:

g = Qg (1.8)
Usually the main source of energy is combustion and in terms of the contributions shown in (1.7), this
relation becomes

(@) combustion = ~(®nozzle ~ (M mean flow — (¥condensed — (¥structure (1.9)

There are situations in which the acoustic/mean flow interactions may provide a gain of energy. That is,
energy is transferred from the average flow to the unsteady motions (as happens, for example, in wind
instruments and sirens), but there is no need to consider the matter at this point.
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As simple as it appears, equation (1.7) defining «, and its special form (1.8) defining the stability
boundary, are basic and extremely important results. There is no evidence, for any propulsion system,
contradicting the view that these results are correct representations of actual linear behavior. Difficulties in
practice arise either because not all significant processes are accounted for, or, more commonly, insufficient
information is available to assign accurately the values of the various individual growth or decay constants.

As examples, Figure 1.37 shows stability boundaries for longitudinal oscillations in a gas-fueled labora-
tory rocket motor (Crocco, Grey, and Harrje 1960) and Figure 1.38 shows the results of calculations for a
large, solid propellant rocket (Beckstead 1974). Those examples illustrate the two uses mentioned above for
the formula (1.9). In the case of the gas-fired rocket, the calculations contained two parameters not known
from first principles, namely n and 7 arising in the time-delay model of the interactions between combustion
and the acoustic field. All other parameters defining the geometry and the average flow field were known.
The purpose of the work was to compare the calculations with measurements of the stability boundary to
infer values of n and 7.
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FIGURE 1.37. Stability boundaries for a laboratory gas-fueled rocket (Crocco, Grey, and
Harrje 1960).

The purpose of the results reproduced in Figure 1.38 was to predict the stability of a full-scale motor
prior to test firing. In that case, all of the parameters appearing in (1.7) must be known. Usually some of
the information is available only from ancillary laboratory tests, notably those required to characterize the
coupling between propellant combustion and the acoustic field.

Indeed, an important application of the formulas (1.11) and (1.12) is to do exactly that for the laboratory
device called the “T-burner”. It is not necessary to restrict attention to the stability boundary if good
measurements of the growth constant can be made. Then if all the losses can be computed, one can find the
value of the growth constant due to combustion (or, more generally all energy gains) as the difference

combustion (1.10)
Results for Acombustion AN either be adapted for. use directly in computing the stability.of a motor; or
they can be interpreted with models of the combustion processes to obtain better understanding of unsteady
combustion. That procedure has been used extensively to assess the combustion dynamics of solid propellants
and to investigate trends of behavior with operating conditions and changes of composition.
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F1GURE 1.38. Predicted stability boundary for a large solid propellant rocket motor, and
the separate contributions to aq and o, (Beckstead 1974).

The growth constant has a simple interpretation beyond that given by (1.6) as the slope of a semi-
logarithmic plot of the peak amplitudes versus time: twice « is the fractional rate of change of time-
averaged energy in the classical acoustic field. We will prove the result more rigorously in Chapter 5 but
this interpretation is so central to all problems of linear stability that it is useful to have it in hand from the
beginning. By the definition of «, both the pressure and velocity oscillations have the time dependence

t t

/ / .
p~e*coswt; u ~e*sinwt

multiplied by their spatial distributions. The acoustic energy density is the sum of the local kinetic energy,
proportional to u’ 2, and potential energy, proportional to p/2:

K.E. ~e**cos?wt; P.E. ~ e sin wt

If we assume that the period of oscillation, 7 = 27 /w, is much smaller then the decay rate, 1/, then the
values of these functions averaged over a cycle of the oscillation are proportional to e?®*. Hence the acoustic
energy density is itself proportional to e?®!. Integrating over the total volume of the chamber we find that
the total averaged energy (€) in the acoustic field has the form

(&) = (Eg)e?! (1.11)

where (€g) is a constant depending on the average flow properties and the geometry. We then find directly
from (1.11) the result claimed:
1 d(&)
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Another elementary property worth noting is that 1/« is the time required for the amplitude of oscillation
to decay to 1/e of some chosen initial value. Also, the fractional change of the peak value in one cycle of
oscillation (t2 —t; = 7 = 27 /w) is

|p/2| _ ‘p/l‘ _ 5\p/\m ~ eatl _ eO(tg _ eO(tg ea(tl—tg) 1

where | |, denotes the magnitude of the peak amplitude. We assume as above that the fractional change
in one period 7 is small so

e*tit) 1 pa(ty —ty) =1+4ar
The amplitude itself is approximately proportional to e®*2 or e®"* and we can write the fractional change as

/
Pl o — & (1.13)
|p/|m /
where f is the frequency in cycles per second, f = 1/7. The dimensionless ratio f/« is a convenient measure
of the growth or decay of an oscillation. According to the interpretation of 1/« noted above, (1/a)/7 = f/«a
is the number of cycles required for the maximum amplitudes of oscillation to decay to 1/e or grow to e
times an initial value.

The ratio a/ f must be small for the view taken here to be valid. Intuitively, & must in some sense be
proportional to the magnitude of the perturbations of the classical acoustics problem. We will find that the
most important measure of the perturbations is a Mach number, M,., characterizing the mean flow; for many
significant processes, a/f equals M, times a constant of order unity. Roughly speaking, then, the measured
value of ¢/ f is an initial indication of the validity of the view that a combustion instability can be regarded
as a motion existing because of relatively weak perturbations of classical acoustics.

1.6. Nonlinear Behavior

It is a fundamental and extremely important conclusion that combustion instabilities are motions of
a self-excited nonlinear dynamical system. Probably the most significant implication is that in order to
understand fully the observed behavior, and how to affect or control it, one must ultimately understand the
behavior of a nonlinear system. When the motion in a combustion chamber is unstable, except in unusual
cases of growth to destruction, the amplitude typically settles down to a finite value: the system then executes
a limiting motion, usually a periodic limit cycle. For practical applications, it is desirable to know how the
amplitude of the limit cycle depends on the parameters characterizing the system. That information may
serve as the basis for changing the characteristics to reduce the amplitude, the goal in practice being zero.
In any case, good understanding of the properties of the limit cycle will also provide some appreciation for
those variables which determine the behavior, and to which the motions may be most sensitive, a practical
matter indeed.

Rarely do the motions in a combustion chamber exhibit clear limit oscillations of the sort commonly
encountered with simpler mechanical systems. A particularly good example of a limit cycle in a T-burner
is shown in Figure 1.36. It appears that combustion devices are subject to influences, probably not easily
identified, that prevent constant frequencies and amplitudes in the limit motions. The motions seem not
to be limit cycles in the strict sense. However, experience gained in the past few years suggests that the
deviations from the well-defined behavior of simpler systems are normally due to secondary influences. There
are several possibilities, although not enough is known about the matter to make definite statements. Recent
analysis (Burnley, 1996; Burnley and Culick, 1999) has demonstrated that noise, and interactions between
random and acoustical motions can cause departures from purely periodic limit cycles appearing very similar
to those found in pressure records for operating combustors (Figure 1.39). The random or stochastic motions
are likely associated with flow separation, turbulence, and combustion noise.
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FIGURE 1.39. A computed limit cycle and its normalized spectrum executed by a single
nonlinear acoustic mode in the presence of noise (Burnley and Culick 1996).

Probably other causes of departures from strictly periodic limit cycles are associated with the parameters
characterizing steady operation of a combustor; and with ‘noise’ or random fluctuation of flow variables. As
we have already emphasized, the unsteady motions require only a negligibly small part of the energy supplied
by the combustion processes. Relatively minor variations in the combustion field, due, for example, to small
fluctuations in the supplies of reactants, may alter the rates of energy transfer to instabilities and hence
affect features of a limit cycle. Similarly, adjustments in the mean flow, notably the velocity field and
surface heat transfer rates, will directly influence the unsteady field. Laboratory experiments clearly show
such phenomena and considerable care is required to achieve reproducible results. In solid propellant rockets,
the internal geometry necessarily changes during a firing. That happens on a time scale much longer than
periods of unsteady motions, but one obvious result is the decrease of frequencies normally observed in tests.
Because there is ample reason to believe that the phenomena just mentioned are not essential to the global
nonlinear behavior of combustion instabilities, we ignore them in the following discussion.

1.6.1. Linear Behavior Interpreted as the Motion of a Simple Oscillator. Intuitively we may
anticipate that nonlinear behavior may be regarded in first approximation as an extension of the view of
linear behavior described in the preceding section, made more precise in the following way. Measurement of
a transient pressure oscillation often gives results similar to those shown in Figure 1.34(a). The frequency in
each case varies little, remaining close to a value computed classically for a natural resonance of the chamber,
and the growth of the peak amplitude during the initial transient period is quite well approximated by the
rule for a linear instability, e**. Thus the behavior is scarcely distinguishable from that of a classical linear
oscillator with damping, and having a single degree of freedom. The governing equation for the free motions
of a simple mass (m)/ spring (k)/ dashpot (r) system is

2
m% +7"Cfl—:§+kx:0 (1.14)
It is surely tempting to model a linear combustion instability by identifying the pressure fluctuation, p’, with
the displacement x of the mass. Then upon dividing (1.14) by m and tentatively replacing = by p’, we have
2,/ /
dp + 2ad£

— -+ wip' =0 (1.15)
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where 2ac = r/m and the undamped natural frequency is wg = \/k/m. The familiar solution to (1.15) has the
form of the record shown in the lower part of Figure 1.34(a), p’ = poe® cos Qt where Q = wy\/1 — (a/wp)?
and p is the value of p’ at t = 0.

The preceding remarks suggest the course we should follow to investigate the linear behavior of combus-
tion instabilities, and indeed is the motivation behind the general view described earlier. But this is purely
descriptive heuristic reasoning. No basis is given for determining the quantities ‘mass,” ‘damping coefficient,’
and ‘spring constant’ for the pressure oscillation. The procedure for doing so is developed in Chapter 4;
the gist of the matter is the following, a brief description of the method used later to analyze combustion
instabilities.

According to the theory of classical acoustics for a sound wave, we may identify both kinetic energy
per unit mass, proportional to the square of the acoustic velocity u’, and potential energy per unit mass,
proportional to the square of the acoustic pressure p’. The acoustic energy per unit volume is

1 ’u’2+£ (1.16)
2 \” pa? ’

where p and a are the average density and speed of sound. This expression corresponds to the formula for
the energy of a simple oscillator,

1
L m + k) (1.17)

Now consider a stationary wave in a closed chamber. Both the velocity and pressure fluctuations have
spatial distributions such that the boundary condition of no velocity normal to a rigid wall is satisfied. Hence
the local pressure p’ in equation (1.15) must depend on position as well as time. However, the frequency
wo depends on the geometry of the entire chamber and according to equation (1.12), we should be able to
interpret 2« in equation (1.15) as the fractional rate of change of averaged energy in the entire volume.
Therefore, we expect that the parameters m, k, and r implied by the definitions o = r/2m and wy = k/m
must be related to properties of the entire chamber. The approximate analysis used in most of this book
is based partly on spatial averaging defined so that the properties ascribed to a particular mode are local
values weighted by the spatial distribution of the mode in question, and averaged over the chamber volume.

Locally in the medium, the ‘spring constant’ is supplied by the compressibility of the gas, and the mass
participating in the motion is proportional to the density of the undisturbed medium. When the procedure
of spatial averaging is applied, both the compressibility and the density are weighted by the appropriate
spatial structure of the acoustical motion. As a result, the damping constant and the natural frequency are
expressed in terms of global quantities characterizing the fluctuating motion throughout the chamber. We
will find rigorously that in the linear limit, an equation of the form (1.15) does apply, but instead of p’ itself,
the variable is 7, (t), the time dependent amplitude of an acoustic mode represented by

Pp = P ()Y (7) (1.18)

where P is the mean pressure and v, (7) is the spatial structure of the classical acoustic mode identified by
the index (),. Hence the typical equation of motion is
d277n dn,

_dt2 + 20471? + winn =0 (119)

The constants a,, and w,, contain the influences of all linear processes distinguishing the oscillation in a
combustion chamber from the corresponding unperturbed classical motion governed by the equation

d?ny,

dt?

42y =0 (1.20)
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if dissipation of energy is ignored. Because damping in a mechanical system causes a frequency shift, the
actual frequency is not equal to the unperturbed value, wyg.

For technical reasons not apparent at this point, it is convenient to regard the linear perturbing process
as a force Fy,(nn, 7y ) is acting on the ‘oscillator’ and equation (1.19) is written

d*ny,

dt?
The superscript ()% identifies the ‘force’ as linear, and for simplicity w2, is written w2. We will consistently
use the symbol w,, for the unperturbed classical acoustic frequency. If there is no linear coupling between the
modes (typically linear coupling is small), the force FI consists of two terms, one representing the damping
of the mode and one the frequency shift:

+wpty = Fy (0 1n) (1.21)

Fy = —Awnin + 207, (1.22)
Equations (1.21) and (1.22) produce (1.19) with w? replaced by w? + Aw?.

With the above reasoning we have heuristically constructed equation (1.21) as the fundamental equation
for a linear combustion instability corresponding to a classical acoustic mode of the chamber. Its simplicity
masks the fact that a great amount of effort is required to determine realistic functions F.X(n,,,7,) applicable
to the motions in a combustion chamber. The approximate analysis developed later provides a framework for
accommodating all linear processes but does not contain explicit formulas for all of them. Most importantly,
there are terms representing interactions between combustion processes and the unsteady motions, but their
computation requires modeling the mechanisms that cause combustion instabilities. Some of the purely
gasdynamical processes, arising with coupling between mean and fluctuating motions, are given explicitly.

According to classical acoustic theory, a closed chamber of gas at rest has an infinite number of normal or
resonant modes. The spatial structures (mode shapes) and resonant frequencies are found as solutions to an
eigenvalue problem. A general motion in the chamber, having any spatial structure, can then be represented
as a linear superposition of the normal modes. The process of spatial averaging, leading to equation (1.20),
amounts to representing any motion as an infinite collection of simple oscillators, one associated with each
of the normal modes. That interpretation holds as well for equation (1.21) except that now each mode may
suffer attenuation (a,, < 0) or excitation (c, > 0). It is this point of view that allows natural extension of
the analysis to nonlinear behavior.

1.6.2. Combustion Dynamics and Stability. Determining the linear stability of a system theo-
retically comes down to computing the value of the constant «, equation (1.21). With the model of an
instability as a simple oscillator acted upon by a force dependent on the motion, the governing equation for
the amplitude is (1.21). For simplicity, assume only one mode is active and that the driving force is entirely
due to fluctuations of the rate of heat @’ provided to the flow. This type of motion is commonly called a
‘thermo-acoustic instability.” In simplest form the equation for the amplitude 7 (t) := n(t) is

. 6(2’
2 _
ﬁerﬂl* (v — 1)‘ ot
where 9 (r) is spatial distribution of the pressure for the mode, the ‘mode shape’, defined so the pressure
fluctuation is p’ = pnip(r). Derivation of equation (1.23) follows from the procedure worked out in Chapters
3, 4, and 6.

d277

pdV (1.23)

Suppose that the heat release rate is sensitive only to pressure and write its fluctuation as

Y4
Q = %p’ = Rp' = pRyy (1.24)
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where R is the response function, here having dimensions of inverse time,

[R] = [Energy/Volume]

Substitution of (1.24) in (1.23) and identification of o by comparison of the result with (1.19) leads to a
formula for o

[Energy/Volume] 1

d*n dn _ ., dn
= —1p | Ry“dV 1.25
a2 +win = {( / v } a - Yar (1.25)
and « is proportional to the response function,
~1 f
a= VTp/ Ry2dV (1.26)
The equation governing the amplitude is
d’n dn
21 _9a2t =0 1.27
dt? dt T (1.27)
with solution
n(t) = Ae™ cos(wit + @) (1.28)

where A and ¢ are constant and w? = w? — o?. Suppose R is a real constant, i.e. the fluctuation Q' of the

heat release rate is in phase with the pressure ﬂuctuatlon p’. If R, and hence «, is positive, the oscillation
is driven by the response of the heat release to the pressure fluctuations.

This example is the simplest illustration of the direct connection between oscillations in a combustor and
combustion dynamics represented here by a response function. The idea has enormously wide applications
in all of the systems discussed in this book.

1.6.3. Nonlinear Behavior Interpreted as the Motion of a Nonlinear Oscillator. In view of
the observation that measurements often show development of limit cycles like those shown in Figure 1.40,
it is tempting simply to add a nonlinear term to the oscillator equation (1.21) and assume that a combustion
instability involves only a single mode. Thus, for example, we could add to the right-hand side a force
F'E = ¢n2 +con? + c3nntin +ca|nn| +- - - where the constants c;,... may be chosen by fitting the solution to
data. Culick (1971) showed that quite good results could be obtained with this approach applied to limited
data. Figure 1.40 shows one example. Of course this is a purely ad hoc approach and provides no means of
computing the coefficients from first principles.

Following the early result shown in Figure 1.40, Jensen and Beckstead (1972) applied that procedure to
extensive data taken in laboratory devices intended for measuring the characteristics of unsteady burning of
solid propellants. The chief result was that the data could be matched equally well with rather broad ranges
of the constants, and no particular kind of nonlinearity seemed to dominate the motions. Consequently,
representation with a single mode was not successful. Even though analysis of pressure records for limit
cycles often showed relatively small (it seemed) amounts of harmonics of the principle mode, it appeared
necessary to account for two modes at least, with coupling due to nonlinear processes.

In other contexts, that conclusion is surely not surprising. The development of a small amplitude com-
pressive disturbance into a shock wave is the oldest and most familiar example in gasdynamics. Steepening
of a smooth wave arises primarily from two nonlinear influences: convection of the disturbance by its own
motion, and dependence of the speed of sound on the local temperature, itself dependent on the wave motion.
A good approximation to the phenomenon is obtained if viscous stresses and heat conduction are ignored.
If the disturbance is regarded as a combination of various modes, the flow of energy from modes in the low
frequency range to those having higher frequencies is favored by the nonlinear gasdynamic coupling. The
rapid growth of the higher-frequency modes having shorter wavelengths produces the steepening, eventually
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FI1GURE 1.40. An example of fitting T-burner data with the model of a simple nonlinear
oscillator (Culick 1971).

limited, in real flows, by the actions of various effects, mainly viscous. In a combustion chamber possible
consequences of nonlinear combustion processes cannot be ignored. For example, there is much evidence ac-
cumulated in recent years that in some small gas-fueled combustors, the combustion processes may dominate
the nonlinear behavior (see, for example, Dowling 1997).

In extreme cases of combustion instabilities, particularly in liquid and solid rockets, the approximately
sinusoidal motions, substantially systems of stationary waves, may be absent or evolve into a different form.
The motions then appear to be weak shock waves, or pulses having measurable width, propagating in the
chamber. Instabilities of that type are commonly produced subsequent to excitation by finite pulses. Figure
1.41 shows examples observed in liquid rockets, typically involving motions mainly transverse to the axis.
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They were discovered relatively early in the development of liquid rockets (e.g. Ross and Datner 1954) and
were identified as ‘spinning’ transverse modes. Their presence is particularly harmful due to the greatly
increased surface heat transfer rates causing unacceptable scouring of the chamber walls.
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FIGURE 1.41. Steep-fronted waves observed in a liquid propellant rocket motor (Ross and
Datner 1954).

The corresponding cases in solid rockets usually are longitudinal motions. They rarely occur in large
motors and seem to have been first observed in pulse testing of laboratory motors (Dickenson and Jackson
1963; Brownlee 1960; Brownlee and Marble 1960). An example is reproduced in Figure 1.42 (Brownlee,
1964). Often this sort of instability is accompanied by a substantial increase of the mean pressure, seriously
affecting the steady performance of the motors. The primary cause of the pressure rise is evidently the
increased burn rate, although precisely why the rate increases is not well understood. More recently, these
pulsed instabilities have been the subject of successful comparisons between laboratory test results and
numerical simulations (Baum and Levine 1982; Baum, Levine, and Lovine 1988). Figure 1.43 shows an
example of their results.

For combustion instabilities, the situation is very different from that for shock waves in a pure gas
because the processes governing the transfer of energy from combustion to the gasdynamical motions cannot
be ignored and in general depend strongly on frequency. Indeed, it may happen, as seems sometimes to be
the case for combustion of solid propellants, that the coupling may cause attenuation of higher frequencies.
For that reason, the tendency for steepening by the gasdynamics is partially compensated by the combustion
processes, linear or nonlinear. As a result, in a chamber a limit cycle may be formed having very closely the
spatial structure and frequency of the unstable mode (commonly, but not always, the fundamental mode)
and relatively modest amounts of higher modes. It is that behavior that seems to be important in many
combustion problems, explaining in part why the approach taken in the approximate analysis has enjoyed
some success. Put another way, relatively small amounts of higher modes, presumed to arise from nonlinear
behavior, may in fact represent important action by the nonlinear processes.

Naturally the preceding is a greatly simplified and incomplete description of the events actually taking
place in a given combustion chamber. The essential conclusion that nonlinear gasdynamical processes are
partly augmented and partly compensated by combustion processes seems to be an important aspect of
all combustion instabilities. It appears that the idea was first explicitly recognized in work by Levine and
Culick (1972, 1974), showing that realistic limit cycles could be formed with nonlinear gasdynamics and
linear combustion processes. Perhaps the most important general implication of those works is that the
nonlinear behavior familiar in flows of pure nonreacting gases is not a reliable guide to understanding the
nonlinear behavior in combustion chambers.
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FIGURE 1.42. Steep-fronted waves observed in solid propellant rocket motors (Brownlee 1964).
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FI1GURE 1.43. A comparison of observed and simulated steep-fronted waves in a solid pro-
pellant rocket motor. (a) observed; (b) numerical simulation (Baum and Levine 1982).

For nonlinear problems, the governing equations obtained after spatial averaging have the form

d*ny, . .

5t Wi = F (i) + EYE (0 0) (1.29)

where FNE(n; m;) is the nonlinear force depending on all amplitudes 7;, including 7,, itself. Thus we may

regard a combustion instability as the time-evolution of the motions of a collection of nonlinear oscillators,

one associated with each of the classical acoustic modes for the chamber. In general the motions of the

oscillators may be coupled by linear as well as nonlinear processes, although linear coupling seems rarely to

be important. The analytical framework established by the dynamical system (1.29) will serve throughout
this book as the primary means for analyzing, predicting, and interpreting combustion instabilities.

Representation of unsteady motions in a combustion by expansion in acoustic modes (‘modal expansion’)
and application of spatial averaging was first accomplished by Culick (1961, 1963) using a Green’s function.
The work by Jensen and Beckstead cited above motivated extension to nonlinear behavior (Culick 1971 and
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1975). Powell (1968) and Zinn and Powell (1970a, 1970b) first used an extension of Galerkin’s method to
treat nonlinear behavior in liquid rockets; the method was subsequently extended to solid rockets by Zinn
and Lores (1972). In practice, application of a method based on modal expansion and spatial averaging is
normally useful only if a small number of modes is required. Yet there are a large number of experimental
results showing the presence of steep-fronted waves, often sufficiently steep to be interpreted as shock waves.
Hence an analysis of the sort followed here would seem to be quite seriously limited unless one is prepared
to accommodate a large number of modes. That is, one would expect that wave motions exhibiting rapid
temporal changes and large spatial gradients must contain significant amounts of higher modes. However
as discussion in this book will show, results have also established that due to fortunate phase relationships,
a surprisingly small number of modes serves quite well even to represent many features of waves having
steep fronts. The method gives quite a good approximation to both the limiting motions and the transient
development of disturbances into weak shock waves.

1.7. Analysis and Numerical Simulations of Combustion Instabilities

In this book, the vehicle for unification is a theoretical /computational framework originating in the late
1960s and early 1970s with treatments of instabilities in liquid rockets (Culick 1961, 1963; Powell 1968;
Zinn and Powell 1968; and Powell and Zinn 1971) and in solid rockets (Culick 1971, 1976). Those analyses
differed from previous work mainly in their use of a form of spatial averaging, in some instances related
to Galerkin’s method, to replace the partial differential equations of conservation by a system of ordinary
differential equations. The dependent variables are the time-dependent amplitudes of the acoustic modes
used as the basis for series expansion of the unsteady pressure. It is the process of spatial averaging over
the volume of the chamber that produces a formulation convenient for handling models of widely different
geometries and physical processes. Consequently, in return for the approximate nature of the analysis (for
example, the series must be truncated to a finite number of terms), one obtains both convenience and a
certain generality of applications not normally possible when partial differential equations are used directly.
In general form, this approach is applicable to all types of combustors. Different systems are distinguished
by different geometries and the forms in which the reactants are supplied (liquid, solid, gas, slurry, ...).
Those differences affect chiefly the modeling of the dominant physical processes.

Some analysis of combustion instabilities has customarily accompanied experimental work as an aid to
interpreting observations. The paper by Grad (1949) treating instabilities in solid rockets is probably the
first entirely theoretical work dealing with small amplitude acoustical motions in a mean flow field with
combustion sources. During the 1950s and 1960s, many theoretical works were published on the subject of
oscillations in solid rockets (e.g. Bird, McClure, and Hart 1963; Cheng 1954, 1962; Hart and McClure 1959,
1965; Cantrell and Hart 1964; Culick 1966) and in liquid rockets (e.g. Crocco 1952, 1956, 1965; Crocco
and Cheng 1956; Reardon 1961; Culick 1961, 1963; Sirignano 1964; Sirignano and Crocco 1964; Zinn 1966,
1968, 1969; Mitchell, Crocco, and Sirignano 1969). It was during that period that the view of a combustion
instability as a perturbation of classical acoustics was first extensively developed.

Most of the analyses cited in the previous paragraph were restricted to linear problems (those by Sirig-
nano, Zinn and Mitchell are notable exceptions). Their chief purpose was to compute the stability of small
amplitude motions. Indeed, since the earliest works on combustion instabilities, practical and theoretical
considerations were directed mainly to the general problem of linear stability: the reasoning is that if the
system is stable to small disturbances (e.g. associated with ‘noise’ always present in a combustion chamber)
then undesirable instabilities cannot arise. There is a flaw in that reasoning: The processes in a combustion
chamber are nonlinear, so a linearly stable system may in fact be unstable to sufficiently large disturbances.
In any case, oscillations in combustors reach limiting amplitudes due to the action of nonlinear processes.
Hence understanding nonlinear behavior is the necessary context in which one can determine what changes
to the system may reduce the amplitudes. Ultimately, a complete theory, and therefore understanding, must
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include nonlinear behavior, a subject covered at considerable length in this book, largely within the context
cited in the first paragraph.

Recognition of the practical implications of the deficiencies of a view founded on linear behavior motivated
the development of the technique of “bombing” liquid rocket chambers in the 1960s by NASA in its Apollo
program (Harrje and Reardon 1972). The idea is to subject an operating combustion chamber to a succession
of increasingly large disturbances (generated by small explosive charges) until sustained oscillations are
produced. Then the size of the disturbance required to “trigger” the instability is evidently a measure of the
relative stability of the chamber.® Another measure is the rate of decay of oscillations subsequent to a pulse
injected into a linearly stable system. What constitutes the correct ‘measure’ of relative stability cannot
of course be determined from experiments alone, but requires deeper understanding accessible only through
theoretical work. This is part of the reason that the nonlinear analyses cited above were carried out; also, an
extensive program of numerical calculations was supported (Priem and Hiedmann 1960; Priem and Guentert
1962; Priem and Rice 1968; and other works cited in the summary volume edited by Harrje and Reardon
1972). Owing to the limitations of computing resources at that time, those early numerical calculations
involved solutions to quite restricted problems, commonly sectors or annular regions of chambers. It was
not possible to compute what are now usually called ‘numerical simulations.” Moreover, the results were
often plagued—and were thus sometimes rendered invalid—by noise in the computations or difficulties with
stability of the numerical techniques (for example, see Beltran, Wright, and Breen 1966).

While the intense activities on instabilities in liquid rockets nearly ceased in the early 1970s, work
on numerical simulation of combustion instabilities in solid rockets began (Levine and Culick 1972, 1974;
Kooker 1974; Baum and Levine 1982). In contrast to the case for liquid rockets, it is a good approximation to
ignore chemical processes within the cavity of a solid rocket, an enormous simplification. Combustion occurs
largely in a thin layer adjacent to the solid surface and its influences can be accommodated as boundary
conditions. Consequently, with the growth of the capabilities of computers, it became possible to carry out
more complete computations for the entire unsteady field in a motor. Also during this period appeared one
of the earliest attempts to compare results of an approximate analysis with those obtained by numerical
simulation for the ‘same’ problem (Culick and Levine 1974), a strategy which has since become generally
accepted where it is applicable.

The main idea motivating that work was the following. At that time, the size and speed of available com-
puters did not allow numerical simulations of three-dimensional problems, nor in fact even two-dimensional
or axisymmetric cases. Moreover, no numerical calculations had been done of one-dimensional unsteady
transient motions in a solid rocket, with realistic models of the combustion dynamics and partial damping.
Approximate analysis of the sort mentioned above could be applied, in principle, to instabilities in arbitrary
geometries, but owing to the approximations involved, there were no means of determining the accuracy of
the results. Experimental data contain sufficiently large uncertainties that comparisons of analytical results
with measurements cannot be used to assess accuracy of the analysis. Hence it appeared that the only way to
assess the limitations of the approximate analysis must be based on comparison with numerical simulations.
It was also important to confirm the validity of the approximate analysis because of its great value for doing
theoretical work and for gaining general understanding of unsteady motions in combustion chambers.

That reasoning remains valid today. Despite the enormous advances in computing resources, it is true
here as in many fields, that approximate analysis still occupies, and likely always will, a central position.
A major reason is its great value in providing understanding. Numerical simulations advanced considerably
during the 1980s and important work is currently in progress. Accomplishments for systems containing
chemical processes, including combustion of liquid fuels, within the chambers far exceed those possible

S A quite different approach based on a statistical assessment of firings of many solid liquid propellant rockets of the same
design was developed in Russia in the 1950s and 1960s. The method was unknown in the West, the first reports appearing in
an international conference (Yang and Anderson, 1995).
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twenty years ago (see, for example, the early papers by Liang, Fisher, and Chang 1986; Liou, Huang, and
Hung 1988; Habiballah, Lourme, and Pit 1991; Kailasanath, Gardner, Boris, and Oran 1987a, b; Menon and
Jou 1988).

Numerical simulations of flows in solid rockets began more than fifteen years ago to incorporate current
ideas and results of turbulence modeling (Dunlop et al. 1986; Sabnis, Gibeling and McDonald 1985; Tseng
and Yang 1991; Sabnis, Madabhushi, Gibeling and McDonald 1989). The results have compared quite
favorably with cold flow experiments carried out using chambers with porous walls. There is no reason to
doubt that eventually it will be possible to produce accurate computations of the steady turbulent flow fields
in virtually any configuration expected in practical applications. A major step in that direction has been
the recent emphasis on use of large eddy simulations (LES).

Remarkable success has also been achieved with computations of unsteady one-dimensional motions in
straight cylindrical chambers (e.g. the early results reported by Baum and Levine 1982; Baum, Lovine, and
Levine 1988; Tseng and Yang 1991). Particularly notable are the results obtained by Baum, Lovine, and
Levine (1988) showing very good agreement with data for highly nonlinear unsteady motions induced in the
laboratory by pulses. Although parameters in the representation of the unsteady combustion processes were
adjusted as required to produce the good comparison, a minimal conclusion must be that the numerical
methods were already quite satisfactory more than fifteen years ago.

Numerical simulation will always suffer some disadvantages already mentioned. In addition, because
each simulation is only one case and the problems are nonlinear, it is difficult to generalize the results
to gain fundamental understanding. However, the successes of this approach to investigating complicated
reacting flows are growing rapidly and the methods are becoming increasingly important for both research
and practical application. Historically, we have seen that the three aspects of the subject—experimental,
analytical, and numerical simulations—began chronologically in that order. There seems to be no doubt
that, as in many other fields of modern engineering, the three will coexist as more-or-less equal partners. We
have therefore tried in this book to balance our discussion of methods and results of experiment, analysis,
and numerical simulation with much less emphasis on the last. The integration of those activities forms a
body of knowledge within which one may understand, interpret and predict physical behavior. For recent
results applicable to combustion instabilities in solid propellant rockets, see the notes for a course given at
the von Karman Institute (VKI) in 2001.

It is important to realize that experimental information about unsteady motions in combustion cham-
bers is very limited. Commonly only measurements of pressure are available. Accelerometers and strain
gauges mounted in a chamber may provide data from which some characteristics of the pressure field can be
inferred. Quantitative surveys of the internal flow are virtually unavailable owing to the high temperatures,
although optical methods are useful in laboratory work to give qualitative information and, occasionally,
useful quantitative data.

As a practical matter we are therefore justified in assuming that only the pressure is available, at most as
a function of time and position on the surface of the chamber. That restriction is a fundamental guide to the
way in which the theory and methods of analysis for combustion instabilities are developed. Throughout this
book we emphasize determining and understanding the unsteady pressure field. The approximate analysis
constituting the framework in which we will discuss instabilities is based on the pressure as the primary
flow variable. Very little attention will be given to methods of data analysis, an important activity directed
chiefly to the problem of inferring quantitative properties of instabilities from pressure records.
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1.8. A Précis of the Book

As an introduction to combustion instabilities, we intend to provide a broad foundation sufficiently deep
to allow reading the contemporary literature without excessive difficulty, with the exception of modern work
on numerical simulations. Many basic topics are simply not included, being assumed as part of the required
general background, or outside the intended scope. The general character of the material covered is perhaps
closer to applications than to basic research, but the roots in basic subjects are apparent throughout the
text.

It is helpful to view the subject as a merging of three kinds of dynamics: chemical dynamics; combustion
dynamics; and combustor dynamics; see the review by Culick (2000) which is concerned with solid rockets
but some of the ideas apply to combustion systems generally. Chemical dynamics is concerned with
behavior on a microscopic level and includes, among other topics, properties of elementary reactions (heats
of reaction, activation energies, kinetic rate constants, ...); reaction paths and kinetic mechanisms; and
products of reactions. Combustion dynamics implies the unsteady behavior of reacting systems exposed
to variations in the environment, notably pressure, velocity and temperature. The relevant processes occur
on a macroscopic scale—i.e. the medium may be regarded as a continuum for most purposes—but the scale
is normally much smaller than that of a practical combustion chamber. Two large classes of problems, for
example, comprise the dynamical responses of flames and of burning solid propellants.

Combustor dynamics is really the main subject of this book. Indeed, use of the term ‘combustion
instabilities’ is dictated more by historical usage than for other reasons. These dynamics evolve on the
scale of the combustion chambers in question. It is these dynamics that are observed in tests and that are
responsible for the troublesome consequences in practical systems. However, combustor dynamics cannot
be isolated from combustion dynamics, as explained in Section 1.1 and illustrated with Figure 1.1. The
dynamics of a combustion chamber is the dynamics of two coupled systems: the medium supporting the
motions and the combustion process. Put another way, we are concerned with a general problem of unsteady
gasdynamics whose existence depends on the actions of one or more mechanisms almost always’ arising from
combustion dynamics.

Two characteristics distinguish different combustion chambers: geometry; and the kind of reactants
(solids, liquids, gases, slurries, ...). In a formal sense, the details of the geometrical configuration are to a
large extent secondary matters, particularly in the theory based on spatial averaging. There are significant
quantitative differences among combustion systems arising from geometrical features, but one purpose of
this book is to show that the characteristics of combustion instabilities common to all systems are far more
significant and form much of the basis for understanding observed phenomena. Not surprisingly, then, the
most difficult part of the subject is identifying, understanding and modeling the mechanisms. It is the
mechanisms which most significantly differ among combustion systems. That is therefore the subject of
Chapter 2. Then Chapter 3, and Annex A, are quite general, being concerned with the equations of motion
and their forms most useful for the kinds of problems treated in the remainder of the book.

Much of Chapter 3 covers familiar ground, although the special use of the equations of motion for
two-phase flow is perhaps not widely known. The chief result of that chapter is the wave equation for the
pressure, constructed specially for treating nonlinear acoustic waves in combustion chambers. A significant
distinction from most treatments of acoustics is that careful accounting for a general flow field is crucial
matter for subsequent analysis of combustors; non-uniform average flow is an essential feature. In some
way all analyses of combustion instabilities have taken advantage of the smallness of characteristic Mach
numbers M, and M/, for the mean and unsteady flows. One strategy for constructing simplified forms of the
conservation equations, based on the assumption that M,, M/ are small, is explained in Chapter 3.

"The sole exceptions arise with mechanisms imbedded entirely within fluid mechanics.
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A method of spatial averaging is then applied in Chapter 4, to replace the small set of partial differential
equations by an infinite set of total differential equations. The procedure requires representation of the
flow variables as a synthesis of an infinite set of basis functions. In this work the basis functions are
classical acoustic modes for the chamber being studied, but the best choice is still a subject of research.
Time-averaging, or the method of two-time scaling may be used to simplify the formal problem further by
reducing the second-order equations, produced with spatial averaging, to first order equations. That step is
significant for both theoretical and practical purposes.

The remainder of the book is patently parochial, being dominated by the character and results of work
by the author, his students and his colleagues for many years. Chapter 5 is a quick review of those parts of
acoustics required later. Practically all of the material can be found in several well-known texts, but some
special requirements of the applications discussed here justify summarizing familiar material in accessible
form. Only those topics are covered that arise in investigations of combustion instabilities.

Chapter 6 covers the basic linear theory of combustion instabilities proper. Probably two technical
features most clearly distinguish the subject within the fields of combustion and fluid mechanics. First is
the simultaneous presence of a mean flow and unsteady motion, both having relatively low Mach numbers.
The second is the requirement that solutions be obtained within a bounded region of space for which the
boundary conditions are mixed, ranging from perfectly reflecting to perfectly radiating. For most problems
concerning stability of disturbances, experience has established that turbulence seems to play a very small
part and can be ignored. Hence the various contributions to linear stability are connected in some way with
the presence of an average flow and hence are measured by the characteristic Mach number M, of the steady
flow. The principal result is a formula for the wavenumbers of the perturbed acoustic modes, represented
in three-dimensions, or within the one-dimensional approximation. For reasons given in Section 1.5, the
emphasis in Chapter 6 is on solid rockets, but the general results apply to any type of system.

A broad spectrum of nonlinear behavior is covered in Chapter 7, beginning with examples of the special
problems treated with the general analysis worked out in the preceding chapters. A continuation method
is discussed in Section 7.7. Based on results obtained so far, this appears to be the most effective means
of handling nonlinear combustion instabilities represented by the method of spatial averaging based on
expansion in modes. Following a brief discussion of noise, some basic results obtained for pulsed instabilities
(subcritical bifurcations) are covered.

The last two chapters are descriptive, discussions of practical methods for controlling combustion in-
stabilities. Chapter 8 is a brief summary of ways to control instabilities passively. The motivations and
the explanations for success of the methods rest on the fundamental behavior discussed in earlier chapters.
However, in practice the actual problems are usually too involved to be treated analytically. Hence it is
important to understand their basis and to obtain results for simple problems which can be solved.

Although it had been suggested more than 30 years earlier, active control became subject to vigorous
research in the mid 1980s. But after rather intensive studies by many organizations, since roughly 2002
general interest in the subject has contracted, perhaps owing to the absence of successful applications.
There have been many demonstrations that active control works to reduce the amplitudes of combustion
instabilities, but no accompanying thorough explanations. Moreover, the power required has caused most
cases to be impractical. Chapter 9 is a short coverage of some of the interesting results, including a practical
application. Space and time restrictions have limited the present discussion which will be amplified in a later
edition. It’s a fascinating subject with wonderful possibilities, but achieving success for practical uses is a
great deal more difficult and subtle than most people foresaw. The subject has a great future that must be
built on basic understanding, which to a large extent is still absent.
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It is not the intent of this book to provide only formulas and descriptions of problems. Our emphasis is
on understanding the various kinds of combustion instabilities; and on developing and using one reasonably
general method for analyzing and treating the phenomena in all types of propulsion systems. FExperience
over many years has shown that the approach followed here is useful in practice as well as for theoretical
work. Familiarity with the basic principles, and with the procedure for their application, will give a sound
context for understanding and attacking real problems.
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CombustionDynamics and Mechanisms/ofl Combustion
Instabilities

Identifying the primary cause, the mechanism, is probably the single most important task in understanding
combustion instabilities in full-scale systems. The term ‘mechanism’ refers to that phenomenon or collection
of processes forming the chief reason that the instability exists. There may be more than one mechanism, but
in any case the ultimate reason for an instability is transfer of energy from the combustion processes, or the
mean flow, to unsteady organized motions. Instabilities are commonly observed as nearly periodic oscillations
having time-dependent amplitudes. As a practical matter, the chief goal is to reduce the amplitudes to
acceptable levels. For that purpose it is essential first to understand the cause, and then to work out the
connections with the chamber dynamics. Several of the mechanisms introduced in this chapter will be
investigated more thoroughly later in this book.

In the context defined by Figure 1.1, understanding the mechanism of combustion instabilities is equiva-
lent to understanding combustion dynamics. It is essential to keep in mind always that by its very definition,
combustion involves chemistry and chemical kinetics within the setting of fluid mechanics. Depending on the
mechanism, one or another of those phenomena may dominate. Hence, for example, in some cases involving
vortex formation and shedding, we may find that burning is not a central issue. Nevertheless, the presence
of the flow field supporting the vortices is itself produced by combustion of reactants. We may therefore jus-
tifiably include the phenomenon under the general label ‘combustion dynamics’, although we are stretching
the literal meaning of the term. The main topics covered in this chapter relate largely to the feedback path
in Figure 1.1.

The last section (2.7) of this chapter has a character different from the preceding material. It is an
analysis of a simple example, the Rijke tube, illustrating the use of a time lag or delay to help interpret a
mechanism, in this case heat addition from a wire heater. Familiar in other problems as a factor in causing
unstable behavior, the idea of a time delay was introduced as the earliest attempt to explain or interpret the
presence of combustion instabilities. The idea of delay as the basis for representing the action of a mechanism
remains probably the most common approach to interpreting instabilities. However detailed the calculations
may be, conclusions based on the presence of a time delay per se must not be confused with ‘understanding
the mechanism’ of a combustion instability. What is required for proper understanding is knowledge of the
physical origin of the delay. Only then may we be in a position to modify the system so as to affect the
instability in question.

To be definite, practically all discussions of the consequences of time delays are forced, in the absence
of deeper information, to assume some sort of ad hoc dependence of the delays on parameters defining the
physical characteristics of the system at hand. We assume in Section 2.7 that the time delay is constant. The
calculations then serve two purposes: to show explicitly the relation between a delay and linear stability;
and to work out simple examples of the general analysis developed in the following chapters. Taking the
time delay constant—in particular, independent of frequency—is the usual assumption and places a severe
restriction on the results. It is well-known, for example, that the effective time lag for solid propellants is a
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strong function of frequency. Assuming otherwise produces misleading if not seriously incorrect results for
the dynamical behavior of the system in question.

2.1. Mechanisms of Instabilities in Solid Propellant Rocket Motors

In some respects combustion in a solid propellant rocket chamber appears to present a less complicated
situation than those existing in any other types of combustor. The burning processes occur almost entirely
within a thin region, normally less than one millimeter thick, adjacent to the propellant surface. Although
some residual combustion commonly occurs when the propellant contains aluminum or other metallic addi-
tives and may affect unsteady global behavior, there is no unambiguous evidence that combustion within the
volume contributes significantly as a basic cause of combustion instabilities. We assume that to be the case,
leaving surface combustion and purely fluid mechanical processes as the chief origins of possible mechanisms.
Figure 2.1 is a composite sketch of the four mechanisms currently regarded as the chief possible causes of
instabilities in solid rockets. Of these, the dynamics of surface combustion is by far the most common.

— 1 a u'

|1y fmme 11 e

7 7.

N

(8 Pressure Coupling (b) Velocity Coupling

(c) Vortex Shedding (d) Residua Combustion
FIGURE 2.1. The four possible mechanisms for combustion instabilities in solid propellant rockets.

Vortex shedding from obstacles—as in the Shuttle solid rocket booster—or vortices produced at the
lateral surface (‘parietal vortex shedding’)—as may be the case in the Ariane 5 solid rocket booster—have
been identified as mechanisms only in large motors. Excitation of acoustic waves by vortices is of course
a well-known phenomenon in a wide variety of wind musical instruments. The idea that vortices might be
responsible for oscillations in a solid propellant rocket seems to have been proposed first by Flandro and
Jacobs (1974) but it has received particularly intense attention because of the problem in the Shuttle and,
during the past decade or so, in connection with the problem of pressure oscillations in the Ariane 5; a
particularly good discussion has been given by Vuillot and Casalis (2002).
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The dynamics of residual combustion far from the burning surface—most likely associated with aluminum
or other metal fuel additives not completely burned at the surface—remains poorly understood. Although
some attention has been given to the process (see Section 6.11), analysis of the dynamics is incomplete. No
calculations exist assessing quantitatively the possible contributions of residual combustion to linear stability
relative to those of surface combustion.

On the other hand, there is no disagreement that the dynamics of surface combustion is the dominant
mechanism causing most combustion instabilities in all types and sizes of solid rockets.

2.1.1. Qualitative Interpretation of the Basic Mechanism. The dependence of the burning rate
of a solid propellant on the pressure has long been known as a fundamental characteristic. Experiment
and theory for the combustion of gases show that the reaction rates vary strongly with both pressure and
temperature. It is therefore not surprising that the burning rate of a solid is sensitive to the impressed
temperature and pressure. What is surprising is that the processes in the gas and condensed phases in the
vicinity of the burning surface conspire to produce a dynamical response that exhibits significant dependence
on frequency. That dependence on frequency is particularly important because the response is noticeably
greater over a rather broad frequency range typically including some of the acoustic resonances of combustion
chambers. In that range the combustion processes act to amplify pressure fluctuations. That is, some of
the energy released in chemical reactions is transformed to mechanical energy of motions in the combustion
products. Hence the dynamics in the feedback path, Figure 1.1, not only provide feedback but as well promote
an unstable situation. The burning surface exhibits a sort of resonant behavior but without possessing the
spring-like (i.e. restoring) forces associated with a resonant oscillating system such as the simple mass/spring
oscillator. Hence the phase relations are different in the two cases.

Since the cavity in a solid rocket possesses its own acoustic resonances, we have a system of two coupled
oscillators. If it should happen that the resonant frequencies of the two oscillators are close, then conditions
clearly favor an instability. That is the situation commonly occurring in solid rockets and is the simplest
direct explanation for the widespread occurrences of instabilities in tactical as well as strategic motors (Price
1961, Blomshield, 2000).

—
—_—
—
T
—
—_—
—_—
SUB-
INERT SURFACE GAS PHASE ——  CHAMBER
HEATED SOLID FLOW
DECOM- INTERFACIAL

POSITION REGION

FI1GURE 2.2. Sketch of steady combustion of a solid propellant.

The essential features of the combustion processes dominating the behavior just described have long been
known. Figure 2.2 is an idealized interpretation showing the main characteristics of a burning composite
propellant. The physical character of the materials and the processes involved in their transformation from
solid propellant to products of combustion are quite well known. That knowledge has been gained through
the efforts of many people and organizations over many years. An excellent summary is the reference volume
edited by Davenas (1993). Ultimately it is the fluctuation of the velocity of gases leaving the combustion
zone that is the essence of the mechanism. Oscillation of the flow causes the surface to appear locally like

RTO-AG-AVT-039

COMBUSTION DYNAMICS AND MECHANISMS OF COMBUSTION INSTABILITIES

2-3



z?

COMBUSTION DYNAMICS AND MECHANISMS OF COMBUSTION INSTABILITIES ORCANIZATION

an oscillatory piston or acoustic speaker, a source of acoustic waves. Formally the situation is identical to a
planar array of monopoles having zero-average mass flow superposed on the mean flow due to combustion.
However, the fluctuation of burning rate is a consequence of fluctuating heat transfer so we can understand
the mechanism best by examining the behavior of the temperature profile. In Section 2.2.2 we will treat
the propellant as if it were a perfectly homogeneous isotropic material in the condensed phase, and use
the one-dimensional approximation throughout, from the cold condensed solid phase to the hot combustion
products. Figure 2.3 is one frame from a film of a burning solid taken at the Naval Weapons Center (Price et
al. 1982), suggesting that any sort of one-dimensional approximation seems unrealistic (See also Price 1984).
That is certainly true on the scale of the particle sizes (10s to 100s of microns).

FIGURE 2.3. View of the surface of a burning solid propellant containing aluminum (Price et al. 1982).

However, the variations of velocity and pressure in the chamber occur over distances of the order of
the chamber dimensions. Hence it is appealing to suppose that for analyzing interactions between the
combustion zone and the motions in the chamber, the heterogeneous character propellant can be overlooked
in some sense. For example, the linear burning rate of a propellant is measured without special regard for
spatial variations on the small scale of compositional inhomogeneities. No instrument is available to do
otherwise. That is not to say, of course, that the burn rate and the combustion dynamics do not depend on
spatial variations of the condensed material and the gas phase. Rather, we suppose that dependence on such
properties as the size distribution of oxidizer particles is accounted for by some sort of averaging procedure.
Thus, parameters appearing in the final results, such as A and B in the QSHOD model discussed here, must
depend on, for example, an average particle size. No rules exist for the averaging, but recently impressive
progress has been made for computed steady burning rates using a “random packing” model (Kochevets,
Buckmaster and Jackson 2001). In all of our discussion we adhere to the one-dimensional approximation as
far as possible, with no attention paid to the possible errors incurred. In any case it seems a good assumption
that if the averaging process is faithful, any errors are likely to be less than uncertainties arising in other
parts of the problem, e.g., material properties. We do not address consequences of the statistical nature of
the propellant surface which may result in random motions observable as noise in pressure records (e.g., R.L.
Glick, Private Communication). Some results for pressure oscillations in the presence of noise are covered
in Chapter 7, but possible connections with surface combustion are not investigated.

The mechanism in question here is, broadly speaking, primarily a matter of combustion dynamics. It
has become customary to represent the mechanism quantitatively as an admittance or response function. We
use the latter here, defined generally as the ratio of the fluctuation of the mass flow rate of gases departing
the combustion zone, to the imposed fluctuation of either the pressure or the velocity. Thus the response
function for pressure fluctuations (commonly referred! to as the “response to pressure coupling”) is defined
in dimensionless form as R,

_m'/m
T/

(2.1)

IThe term ‘coupling’ in the sense used here is intended to convey the idea that the surface combustion processes are
influenced by changes in time of the variable in question, here the pressure. We will be concerned largely with pressure coupling
and to a lesser extent with velocity coupling.
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where ()’ means fluctuation and ( ) is an average value. The average value T represents the average inflow
of mass normal to the surface, due to the propellant burning. In almost all applications, the fluctuations
may be approximated as steady sinusoidal oscillations, written as

m
—_— = —¢€
m M
. 2.2)a,b
li_E —iwt ( )
— = —¢
p p
and
m/m
iy (2:3)

where () denotes the amplitude of the oscillation, including both magnitude and phase. Because generally
the oscillations of mass flux rate are not in phase with the pressure oscillations, the function R, is complex,
the real part representing that part of m’/m that is in phase with the pressure oscillation.

Although the response function for pressure coupling is most commonly used, there is a second response
function, that associated with velocity coupling, which under some practical circumstances is far more
important. At this point we confine our remarks to the response function for pressure coupling. We return
to velocity coupling in a later discussion (Section 2.2.8).

A simple interpretation of the response function explains its importance to combustion instabilities.
According to the definition (2.3), a pressure oscillation having amplitude p/p produces the oscillation m/m
of mass flow into the chamber

m p

—_ sz_? (2.4)
Viewed from the chamber, the boundary appears then to oscillate. The apparent motion is entirely analogous
to that of a speaker or piston mounted at the boundary emitting waves into a room. Through a complicated
sequence of processes whose details are not germane here, those waves coalesce and combine with the original
pressure waves causing the fluctuations of mass flux. Whether or not that merging process augments or
subtracts from the existing wave system in the chamber depends on the phase between /m and p. The part of
m in phase with p increases the amplitude of the wave system and is therefore destabilizing. For a particular
motor, the tendency for combustion dynamics to drive instabilities is proportional to the integral of R, over
the entire area of burning surface, but weighted by the distribution of fluctuating pressure at the surface.
Hence it is clearly essential to know the response function for the propellant used.

All traditional composite propellants using ammonium perchlorate as oxidizer, as well as advanced
propellants using higher energy oxidizers and binder, burn in qualitatively similar fashion. The interface
between the condensed and gas phases is fairly well defined, may be dry or wet, and may exhibit local
dynamical activity owing to the presence of solid particles and responsive collections of liquid pools or
drops. The dynamics of the interfacial region is particularly noticeable in microcinematography when the
propellant contains aluminum. The metal collects in molten droplets, mobile and ignitable on the surface;
those not fully consumed are carried away by the gaseous products of the interface. The high temperature
at the surface is sustained by a balance between heat flow away from the interface, required to heat the cool
propellant advancing to the surface; energy required to effect the phase changes at and near the interface;
and the heat transfer supplied to the interfacial region from the combustion zone in the gas phase. It’s a
delicate balance, easily disturbed by changes in the chemical processes in the interfacial region, particularly
within the subsurface region in the condensed phase. Figure 2.4 is a sketch of the temperature field for two
elementary forms of the distribution of combustion. Note that for this figure we imagine that the temperature
exists in a spatially averaged sense. Local variations on the scale of oxidizer particles are smeared out in the
averaging procedure and explicit effects of inhomogeneities are absent.
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The essentials of the behavior represented macroscopically by response functions can be described as a
sequence of elementary steps, described here in simplified form with reference to Figure 2.4:

i i
T,
5 \/\
o X
(a) Flame Front (b) Distributed Combustion

FIGURE 2.4. Representation of the temperature field for a burning solid propellant.

(i) Suppose that for some reason the rate of reactions in the combustion zone increases-perhaps due to a
fluctuation of pressure, or temperature, or to increased local mixing associated with greater intensity
of turbulence locally in the chamber.

(ii) Increased reaction rates produce a rise in the rate of energy release and an increase of temperature
of the combustion zone.

(iii) Due both to radiation and heat conduction, the heat transfer from the combustion zone to the
interfacial region increases, having at least two possible consequences: the temperature at the surface
is increased; and the rate at which condensed material is converted to gas is also increased.

(iv) Because the temperature in the interfacial region rises, so also does the heat flow to the subsurface
region and further into the solid, tending to cool the interface.

(v) If there are subsurface reactions, the heat flow will tend to increase their rate, with consequences
depending on the associated energy release (or absorption) rate.

(vi) Exothermic subsurface reactions will act to maintain higher temperature locally, thereby encouraging
the conversion of condensed material to gas at the interface, but also tending to increase the heat
flow to the cooler solid.

(vii) The net result may be that if the fluctuation of heat flow, and reduction of temperature, at the
interface does not happen too quickly, the enhanced reaction rate assumed in Step (i) may produce
a fluctuation of mass flow leaving the surface, that is in phase with the initial perturbation. Hence
in this event the entire process is destabilizing in the sense that the initial disturbance has the result
that the disturbed mass flow into the chamber tends to augment that initial disturbance.

Whether or not the preceding sequence will be destabilizing depends entirely on details of the pro-
cesses involved. Notably, if sub-surface reactions are endothermic, then the sequence (v)—(vii) leads to the
conclusion that the reactions may cause the propellant combustion to be less sensitive to disturbances.

2.1.2. Early Historical Background Leading to the QSHOD Model. In many important re-
spects, problems of combustion instabilities in solid propellant rockets have raised questions, and forced
considerations, which are common to practically all combustion systems. The particulars are of course very
different, but a large part of the general behavior among the various devices is surprisingly similar. Much
is to be gained from understanding broadly the historical background of combustion instabilities in solid
rockets.

The problem was first identified in the Soviet Union and analyzed by Zel’dovich (1942) several years
before similar work in other countries. Margolin (1999) has given a brief incomplete account. Further
developments were for the most part simply not known in the West until twenty years later. To this day we
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have sparse knowledge of the field in the USSR, until the 1990s. We will give here a survey to convey an
idea of developments in the U.S., with brief references to progress in Western Europe.

In Chapter 1 we have noted some of the early research in the U.S., sponsored during World War II,
principally related to the development of tactical rockets. Perhaps the outstanding example is the 2.75 inch
rocket.? Problems with ‘anomalous’ or ‘rough’ burning caused the first uses of resonance rods and other
passive ‘fixes’, such as modifications of the internal configuration. Due to the urgency of development, and
crude instrumentation, little was accomplished in respect to discovering the source of the problem. The
entire program was moved from Caltech to the Mojave Desert before WWII ended, forming part of the
newly established Naval Ordnance Test Station (NOTS). E.W. Price, who had started his career at Caltech,
expanded his research on combustion instability. His sponsorship of Grad (1949) produced the first work
treating the problem of oscillations in a solid rocket as one of acoustics, a fundamental point of view.3

Before Grad’s work, although the notion that the unsteady motions were somehow related to acoustical
motions had certainly been discussed, it was only one among several ideas. Grad first worked out a quantita-
tive theory based on the assumption that the pressure fluctuations were ‘self-excited’ and associated initially
with small amplitude motions in a compressible medium, the products of combustion. The oscillation then
grows if they are unstable, developing into large amplitude motions which were often called ‘sonance’ or ‘so-
nant burning’, terms which have since been dropped. Grad did not propose a particular mechanism for the
unstable motions, but introduced a time lag supposed related to unsteadiness in the rate of decomposition
of the propellant in its conversion to gaseous products. The work had some definite results but for several
reasons—not least, perhaps, that the community was not yet in a state to make use of the analysis—the
approach was not developed until later by others.

In fact, despite continuing practical problems with ‘anomalous burning’, there seem for several reasons
to have been no further publications in the open literature until Smith and Sprenger (1952) gave a summary
of some of the experimental results obtained at the Aerojet Company.? They reported that ‘high-frequency’
oscillations having large amplitudes were accompanied by large excursions of pressure; the frequencies were
close to those of transverse acoustic modes. The general picture was to a considerable extent consistent with
that envisioned by Grad, but the paper contains some interesting data taken with laboratory motors. Figure
2.5 is adapted from their Figure 3, showing that the motion was without doubt mainly the first tangential
mode of the cylindrical chamber, having frequency proportional to a/R where R is the radius of the chamber.

Besides Smith and Sprenger’s contribution clarifying the qualitative nature of combustion instabilities
in solid rockets, they offered several important basic general observations about the mechanism. They were
first to understand that Rayleigh’s Criterion (or ‘principle’) could be extended to become an “explanation of
combustion instability phenomena without conflicting with Rayleigh’s original intentions ... . Interpreting
the oscillations during sonance as self-excited, the possible sources of energy and causes of damping must
be found, and the mechanism for self-excitation described.” This correct viewpoint seems to have been
barely noticed at the time. Their paper ends with a short description of a mechanism primarily related to
fluctuations in the rate of reaction and energy release. The importance of the thermal wave in the solid
phase was not yet recognized.

Geckler (1954)a,b, also working at the Aerojet Company, gave two summaries of theory and experiment
for the combustion of solid propellants, the second one dealing mainly with unsteady problems. He devoted

2The size was set by that of steel pipe readily available during early tests at Caltech. (E.W. Price, Private Communication)

3The analysis had actually been formulated initially by J.K.L. MacDonald of NOTS, who died early in the program; his
work was continued by Grad. MacDonald perished in an airplane crash, having taken a seat given up by E.W. Price.

4As true for many publications of research solid rockets until the 1990s, many details of the experiments, such as compo-
sitions and properties of the propellants used, and geometry of the test device, were not given.
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FIGURE 2.5. Measurements showing the presence of the lowest tangential mode during
‘sonant’ burning (Smith and Sprenger 1952).

much of his discussion to the results found by Smith and Sprenger, the remainder consisting of brief sum-
maries of Grad’s model of combustion with a time lag; and Cheng’s analysis which involves a more involved
(realistic?) model of the conversion of solid material to gaseous products involving a time lag.

During the early 1950s there was more activity in developing analysis of combustion instabilities in liquid
rockets than on the corresponding problems in solid rockets. Crocco and Cheng (1952, 1953) had begun
their work on one-dimensional notions that would lead to their monograph in 1956. It was reasonable that
some of the same ideas should be applied to solid rockets. (Cheng 1952a,b, 1959, 1960, 1962). The results,
however, are not applicable because the mechanism proposed is incorrect.

Cheng’s main idea is that “primary decomposition” causes the solid propellant to generate at a rate
m;(t). Then combustion of those gases produced at time ¢ is assumed to take place instantly and completely
at the later time ¢ + 7. The instantaneous rate of burning 7y (t) is

T (t) = <1 - %) gt — 7) (2.5)

This result is derived as equation (2.88) here, in the context of liquid rockets. Cheng considers briefly
and then discards the possibility that the rate of decomposition, ri7;, depends on the velocity parallel to the
surface. As explained later in Section 2.3.2, if the time lag is the period required for completion of unspecified
processes in the gas phase, and pressure is the controlling physical variable, then one finds (Cheng’s equation
5 in his 1954a paper):
ip(t) _ p"i(t)

my  [p(t— 1)

The decomposition rate is assumed to depend on pressure only, 7;(t) ~ p™(t) (Cheng uses n for s), and n

has the same meaning here as in equation (2.90). After linearization of (2.6), Cheng found the result for the
fluctuation of the flow velocity normal to a burning surface,

v'/a

o' /D

(2.6)

= —DBm, (2.7)

and
B=1—yn+~y(n—s)e T (2.8)
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The ratio (2.7) is, within a constant factor, the admittance function for the surface.

We will not cover Cheng’s analysis further. His model of the unsteady burning process has long ago been
shown to be wrong. It is interesting only as an example of an attempt to take advantage of an idea (the time
lag) which became widely used in analysis of combustion instabilities in liquid rockets. Cheng’s treatment
of the acoustical motions in the chamber added nothing new and in fact fell short of Grad’s results in many
respects.

During most of the 1950s there were few published papers on unsteady motions in solid rockets (or any
rockets for that matter). That meager production of ‘open literature’ does not give an accurate picture of
the work being done by industry and in government laboratories, in the USSR as well as in the West. As the
decade progressed, more pressure was exerted in the US to make the problems better known, and to involve
researchers other than the small number directly concerned in the development of hardware.® In 1954, Green
(1955) wrote a one-page negative critique of Cheng’s 1952 work, essentially calling attention to the errors
of interpretation of experimental results by Smith and Sprenger, noting particularly that combustion insta-
bilities had been found with ‘mesa burning’ propellants which have burning rates independent of pressure,
for some useful range of pressure. Green’s final observation was that limited observations suggested to him
that the presence of noise in the appropriate frequency range may precipitate instabilities. It’s an idea which
has been offered several times since; it has never been shown to be valid. Noise as the origin of substantial
oscillations in a combustion chamber is at the present time (2005) being studied in at least one development
program.

In the following year, Green (1956) gave a quite good summary of reported observations of instabilities
in solid rockets, beginning with early reports by Boys and Schofield (1942) in England, Ferris et al. (1945) in
the U.S. and the works cited here. Green was evidently concerned largely with “irregular reaction”, which
meant significant excursions of the mean pressure. He reported no data for oscillations; Figure 2.6 shows an
example of some irregular reaction with a composite propellant (composition unspecified).

Green was evidently pre-occupied with his observation that ‘irregular reaction’ occurred in rockets using
propellants having burning rates independent of pressure over substantial ranges. He then reasoned that the
basic cause was increasing decomposition rate in the solid phase, with heat transfer due to oscillatory velocity
parallel to the surface. Coupling of the temperature and velocity of the gas, near the surface, to the solid
material occurs throughout the heat transfer. Consequently the surface temperature of the solid fluctuates,
causing variations in the decomposition rate. By implicit assumption, the acoustical motion in the gas phase
is supported independently of the decomposition process. It was only a proposal, not supported by a model
or calculations.

With his next paper, Green (1958) attempted to work out a quantitative model founded partly on the
ideas just summarized. The analysis contains in rudimentary form an idea, the thermal wave, which became
part of the description now accepted as the basis for a good first approximation to unsteady combustion of
a solid propellant. It’s a purely thermal theory, temperature being the sole independent variable. Green’s
picture for his calculations is the same as Figure 2.4 here; his significant new contribution was inclusion of
the thermal wave in the solid material, with no decomposition. Thus Green’s calculations rested on solution
of the heat conduction equation (2.5) in the solid phase, with no source term. The basic result is a quadratic

5Mr. E.W. Price was particularly outspoken and effective in this respect. His efforts were notably influential beginning
with the Polaris program. In contrast, the system of classifying information at all levels in the USSR, as the open literature
reflects, never relaxed from practices adopted during World War II, continued until the ‘fall of the wall’. In the middle 1970s,
for example, an academic visitor to Moscow and Novosibirsk, was unable to learn from researchers in the field of combustion of
energetic materials that they even knew of anybody working on problems related to solid rockets. That extreme secrecy was
mainly a continuation of practices followed in World War II continued until the fall of the wall. The situation was different,
for example, in the field of gas lasers; the exchange of information was recognized as an important contribution to progress,
practically from the beginnings of the field.
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FIGURE 2.6. Mean pressure in a cylindrical motor operating with double-bore propellant
(52 inches long, 1 inch initial internal diameter) (Green 1956).

equation for the wavelength of thermal waves, the frequency being set by the oscillatory heat input expressed
in terms of a film coefficient.

Because he did not consider the complete problem involving the chamber oscillations—i.e. coupling
between motions in the chamber and the thermal waves in the solid was absent—Green was strictly unable
to find the conditions for oscillation. He therefore missed the true meaning of his results and tried to force
them to produce what he sought, the resonance condition fixing the frequency of oscillations, but without
dependence on the properties of the chamber. In doing so he introduced a time lag between the surface
temperature and the phase change solid — gas at the surface. As a result, the conclusions are of no use and
can be ignored.

The same thermal model was used by Nachbar and Green (1959) in an extended discussion of the
‘resonant condition’ defined by Green (1958). Thus there are no new ideas in the work. Some of their
conclusions are at minimum misleading; while the paper is part of the historical background, if offers little
of lasting value.

An interesting and significant note appeared in March 1958, a report of the first tests with an early
variant of a new device, the T-burner (Price and Sofferis 1958). Their sketch of the burner using a ‘full-
length charge’ is adapted for Figure 2.7. Various grains were used, including the extending parts way
into the chamber from the ends. The experimental program at the U.S. Naval Ordnance Test Station
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FIGURE 2.7. Sketch of the first test device having the form of a T-burner (adapted from
Price and Sofferis 1958).

was especially important for its emphasis on research directed to understanding the basic properties and
causes of combustion instabilities in solid rockets, as opposed to performing tests directed primarily to
solving a particular problem encountered in a development program. This work was conducted to help
clarify the “mechanism of excitation of instability”; and to study the influence of oscillatory behavior on the
average burning rate of propellant. Already many tests had established, albeit indirectly, that the burning
rate (7) increases, sometimes substantially, when the pressure oscillates. The burner shown in Figure 2.7
was specially designed to exhibit unstable longitudinal modes having frequencies comparable with those of
tangential modes in motors. Note that the oscillatory velocity would correctly be parallel to the burning
surface of the propellant shown in Figure 2.7, so the device provides a good approximation to the motions
in a tangential mode. In this sense the work constituted a significant departure from previous experiments
by providing a simulation rather than a re-creation of the actual problem.

The bulk of the short paper was devoted to using test results obtained with the new burner to check the
truth of five ‘contentions’ identified in the works of Grad; Smith and Sprenger; Cheng; Geckler; and Green.
One result concerns the mode excited—longitudinal, in contrast to the tangential modes observed in the
works cited. The remaining four were:

(i) the chamber oscillations were excited by pressure, not velocity oscillations;
(ii) the noise in the device (lower than in previous equipment) was not a “conspicuous factor in exciting
combustion instability”;
(iii) the average burning rate decreased at low chamber pressures (5001700 psi) and increased at higher
pressures;
(iv) the average burning rate was apparently unaffected by the low mean gas velocities present in the
tests.

Subsequent work in many laboratories have shown that (i), (iii) and (iv) are not generally true. Item (ii)
remains not generally settled; it is this author’s belief that while noise modifies some features of instabilities,
it is not a fundamental cause or mechanism of instabilities, or of increased amplitudes of modes.

Price (1958) gave a thorough, balanced review of combustion instabilities in solid rockets at the IXth TAF
Congress, a short time before a great deal of recent work became publicly available—i.e. was declassified.® It’s
a readable qualitative discussion of the field, containing a number of succinct observations still valid. Perhaps

6The papers by Grad (1949) and Cheng (1956) seem to be the first works in universities on combustion instabilities.
Not until 1960 did Brownlee publish the next account (Brownlee and Marble 1960) of work done at Caltech’s Jet Propulsion
Laboratory. At about the same time, Horton completed his Ph.D. thesis at the University of Utah (Horton 1961).
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the only real fault with the discussion is a short treatment of the ‘time lag’ assumed to be a crucial item in
the excitation process. While the notion of time lag as an important matter in discussions of combustion
instabilities in liquid rockets as recently as the late 1980s and 1990s, it was soon rendered obsolete in respect
to solid rockets by a well-grounded (albeit approximate) theory of the combustion response function for solid
propellants.”.

The entire field in the U.S. began to undergo significant changes of emphasis and even, one might argue,
direction, with the participation of F.T. McClure and his colleagues at the Johns Hopkins Applied Physics
Laboratory, beginning in early 1959. McClure enlisted the cooperation of the leading investigators, almost
all of whom were experimentalists working in government or industrial laboratories. Although the Technical
Panel on Solid Propellant Instability of Combustion existed for only a bit more than three years, its work had
a lasting influence. Its main publication is a useful collection of papers released in 1964, Technical Panel on
Solid Propellant Instability of Combustion—Scientific Papers 1960-1963. The effectiveness of the Technical
Panel was made possible by a decision taken at high levels within the Defense Department to allow open
publication of as much information as possible, a decision not to be underrated.

In 1959 Hart and McClure (1959) published the first work by the group at the Applied Physics Lab-
oratory. The work set a tone strongly influenced by the authors’ background as physicists. They tried to
extract the main attributes of the phenomena studied, and grounded them in basic principles; often observa-
tional details are recognized but gracefully ignored, in seemingly arbitrary fashion, to favor clarification and
simplification of the theory at hand. Hart and McClure settled on the interaction (or ”coupling”) between
acoustic waves and the burning surface as the principal cause of combustion instabilities. Further, they
chose to ignore the effects of erosivity in their first approximation to the coupling process. After estimates
of characteristic times for gas phase reactions; heat conduction in the solid and gas; mass transfer; and
reactions in the solid phase, they formulated a model which is essentially the same as the QSHOD model
discussed in Section 2.2. Figure 2.8(a) is an adaptation of Hart and McClure’s sketch of their model; Figure
2.8(b) shows a result for the real part of the admittance function. The details of the analysis have been
much simplified in later work (see Section 2.2) and need not be covered here.
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FIGURE 2.8. Adapted from Hart and McClure (1959). Part (a): a sketch of their model of
surface combustion; Part (b) a result for the quantity proportional to the real part of the
admittance function.

"The main shortcoming of a time lag representation is the unknown and important dependence on frequency. Thus the
assumption is commonly made that the lag is independent of frequency, a serious error for solid propellants and possibly for
liquid propellants as well
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In the following year, McClure, Hart and Bird (1960)a began a series of papers dealing with various
aspects of combustion instabilities in solid propellant rockets, not all of which had been treated, or even rec-
ognized, previously. They treated oscillations in a cylindrical motor with the unsteady combustion processes
represented in the manner formulated in the 1959 paper. The principal important new feature, original with
this work, was accounting for oscillations of the solid material. Combustion response to pressure oscillations
only was accounted for, but in a short section of the paper, the authors examined possible consequences of
erosive burning.

It is fairly evident that the normal modes of oscillation in a cavity containing a significant amount of
solid material may differ from those in a cavity filled with gas. That result was shown by McClure, Hart
and Bird. For applications there are in the first instance two questions to answer: How much material is
required to be “significant”?; and What are the actual properties of the material? In other words, roughly,
how compressible is the propellant, and how effectively does it dissipate mechanical motions? Subsequent
work over the following 10-15 years showed that motions of the solid could be ignored, so far as combustion
instabilities are concerned, except in certain large motors. The first question asked above can be answered
only for the particular cases one must deal with. Determining material properties under unsteady conditions
remains a difficult experimental matter usually carrying large uncertainty.

There are at least two important consequences of unsteady flow parallel to a burning surface: the steady
burning rate may be affected, a fairly direct extension of the familiar phenomenon of ‘erosive burning’; and
there can be a truly time-dependent process affecting unsteady changes in the burning rate, analogous to
the unsteady behavior accompanying rapid pressure fluctuations. It is the second type of ‘erosive burning’
which is of particular interest in the present context for it contains the possibility of coupling acoustic waves
to the combustion processes. In their first paper on the possible effects of unsteady erosive burning, Hart,
Bird and McClure (1960)a avoided the problem of formulating a theory of the process, but tried to construct
a general description which would fit into their structure for computing the acoustics of a chamber. Their
beginning point was the linearized representation of the burning rate expressed as the mean flow leaving the
surface in the normal direction,

N omy , % 8_p/ omy , omy o’
ml.ost) =me) + () o+ (Ge) B () Wi (ge) S 29)

where u’ is the unsteady (acoustic) velocity parallel to the burning surface. In this form, ( 66‘);’”5‘) contains
0

the usual erosion constant k for steady burning,

om _
<W)O = 'fn,ok (210)

The terms proportional to p’ and dp’/0t can be re-written using the definition of the admittance function.

We will not consider any further the analysis® by McClure, Hart and Bird, which consists mainly in
examining the possible effects of erosion in a cylindrical chamber. Probably the lasting value of the work
lies in the formulation of the boundary condition (2.9) which, perhaps in modified forms, has subsequently
been used by many others. The manner of incorporating the basic phenomenon of rectification has lasting
influence. On the basis of their incomplete calculations, the authors concluded that for reasonably large
values of k|u|, with k£ > 0, the erosive effect of the mean flow is stabilizing. The real importance of the paper
is probably the influence it had, calling the attention of others to the subject. However, the matter of the
effects of erosion—any sort—on stability remains to a large extent an unsolved problem.

By 1960 there was no dissension that the simple basic model of the combustion response of a burning
solid captured part of the observed behavior, qualitatively at least. To what extent quantitatively could not

81t is difficult to follow, contains typographical errors and does not account for all influences of the mean flow, even for a
cylindrical chamber.
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truly be assessed until more extensive and more accurate data became available. McClure, Hart and Bird
(1960) summarized the situation in a page-and-a-half note. In the following year, the same authors (1961)
added a few comments concerning the dependence of the propellant response (and, presumably, instabilities)
on a few properties: e.g. instabilities are more severe if the rate of heat release is higher, and the chamber
pressure is lower. Such conclusions should be regarded with caution, because the actual behavior depends
as well on the chamber geometry, flow field and properties of the particular propellant used. The authors
also attribute the known result of aluminum to suppress instabilities to its tendency (maybe) to reduce the
response function, by affecting surface combustion processes; or to its effect on losses (unspecified) in the
system. It would be several years before ‘particle damping’ would be generally accepted as the dominant
process.

Much of the work in the immediate future consisted in working out some of the consequences of ideas
introduced in the period ¢.1959-¢.1963. McClure, Bird and Hart (1962) discussed in greater detail their
formulation of the influence of erosion on axial modes. Their discussion contains their basic ideas but the
development is brief and really doesn’t do justice to the importance of the material. It is important to
realize that ‘erosion’ as treated by McClure et al., by Price, and others is really a matter of kinematics,
not dynamics. Further, despite many speculations and a modest amount of data, which sometimes has
questionable relevance, there is no physical theory of the unsteady ‘erosion mechanism’, now commonly
referred to as ‘velocity coupling. Two important features of velocity coupling were recognized in the early
1960s: the kinematic nonlinearity; and the dependence on the magnitude of the sum of the local mean and
unsteady gas velocities, causes the coupling of the surface combustion to the gas dynamics to vary with
position on the surface. The second property means that any ‘response function for velocity coupling’ will
necessarily depend on position, unlike the case for pressure coupling, for example R, defined by (2.3). We
will discuss velocity coupling further in Section 2.2.8.

The literature in this period was (and to some extent this is still true!) a mixture of classified and
unclassified documents. Even if available in principle, the latter may be difficult to locate and obtain. An
example is an excellent review by Price (1961) describing the fundamentals of the subject then understood
(much of the discussion remains valid) and summarizing in considerable detail virtually all practical examples
then known.

The group at APL was quite active in 1960-63, examining several problems which were central to
understanding practical aspects of combustion instabilities in solid rockets. With their previous papers cited
above, they had constructed a framework which gave the field generally a cohesiveness previously absent,
and helped identify the problems that demanded attention. A natural result was the division of processes
into ‘gains’ or ‘losses’. Thus two papers, Hart and Cantrell (1963), and Cantrell, McClure and Hart (1963)
dealt with an important source, acoustic damping or attenuation. The second was an attempt to compute,
by using a variational method, the acoustic losses on the side walls in an end-burning rocket, intended to
approximate conditions in some test devices. No further use of the method has been made. While the first
of these papers contains some interesting observations, it too has had no lasting consequences.

Extensive observations of unstable tangential modes had first been reported by Brownlee and Marble
(1960) and described in detail by Brownlee (1961). That form of instability had been a common problem
in tactical solid rockets, but hadn’t been subject to interpretation grounded in fundamental ideas until the
discussion by Bird, McClure and Hart (1963). The paper is directed mainly to consequences of varying
geometrical parameters, all the tests having been done with cylindrical motors. Following their previous
work, the authors organize their discussion explicitly around the balance of gains and losses of acoustic
energy. At the time, quantitative information was not available for most of the processes; the work is
interesting mainly as a measure of the state of the field—there are no specific results. The authors discuss
but discard erosive effects except for possible changes in the burning rate. Thus, gains of acoustic energy
are ascribed entirely to pressure coupling which could not be assigned a value with confidence.

2-14 RTO-AG-AVT-039



COMBUSTION DYNAMICS AND MECHANISMS OF COMBUSTION INSTABILITIES

Of the possible losses—essentially viscous or viscoelastic in the solid or gas—only gas-particle interactions
were found to provide (roughly) the correct behavior. The propellant did not contain aluminum and it is
questionable (even doubtful) that the combustion products contained the material (1% by mass of 0.5u
particles) postulated to account for the observed stability boundary. Consequently, neither the gains nor
the losses seem to have been satisfactorily explained or provided ideas more generally useful. However
unsuccessful it was, the paper remains as the first attempt to interpret observed stability boundaries, see
Section 6.7.3 for commentary based on later work.

Perhaps motivated partly by the serious lack of certain relevant information, Bird and Hart (1963)
gave an interesting survey of the difficulties associated with scaling. The authors recognized that, in a
sense, scaling steady combustion instability cannot be done: It is simply not possible to determine the
stability of a motor from the stability characteristics of a smaller, geometrically similar model: There are too
many processes having diverse dependencies on frequency. Nevertheless, people concerned with problems
of stability of small amplitude disturbances in full-scale motors may gain much from understanding the
rules governing scaling of the basic processes. It would be a mistake to expect formulation of concise,
strict scaling laws such as one finds, for example, in the field of aerodynamics. A fundamental reason is that
combustion instabilities necessarily mix time- and space-dependent physical behavior—e.g. wave propagation
in complicated geometries—and the physical properties of chemically active solids and gases. Hence useful
scaling laws are generally valid only over narrow ranges of the important parameters.

Except for a review, apparently the last paper from APL was essentially an effort by Cantrell and Hart
(1964) to derive a formula for the growth constant of unstable oscillations in a general form applicable to any
geometry. Although not stated in the account, a motivation was surely increasing concern with combustion
instabilities that could not readily be related to the modes of oscillation in a circular cylindrical chamber.
The authors’ central idea was to begin with the definition of the growth constant as one-half of the time
rate-of-change of time-averaged acoustic energy in a chamber,
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The analysis may appear at first acquaintance to be related to the variational method referred to above but
it is not. Moreover there is no theoretical connection with the method of least residuals developed by Powell
(1971) and Powell and Zinn (1971) or with the spatial averaging first used by Culick (1961) and which were
developed to become central to much of this book. The differences arise with definitions of the rates of
change of € in terms of processes at the boundary of the volume treated. We discuss the point in Section 6.9.

Equation 2.11 is a definition following from linear theory. Consequently it offers no beginning for
extension to nonlinear behavior. Furthermore, because practically no further use is made of the equation of
motion, this approach contains no hints for computation of the field variables (u, T, p) or the terms of their
orderly expansion in the Mach number of the mean flow. Thus the value of the work lies mainly with some
qualitative discussion of stability in T-burners and cylindrical rockets.

Hart and McClure (1965) brought the program on combustion instability at the Johns Hopkins Applied
Physics Laboratory to an end with a review paper covering mainly the state of theory in mid-1965. It’s a
summary of the field at that time, containing no ideas that had not previously appeared. They devote a
short section to comments on nonlinear behavior but, because the APL analytical work seems to be almost
irretrievably restricted to linear problems, the discussion does not initiate or suggest novel developments in
that direction.

The leadership and significant positive influence exerted by McClure and his colleagues at APL far
exceeded the value of their specific technical contributions. Their work on theory gave the field of combustion
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instabilities in solid rockets a flavor and a thrust which were new and permanent.® In addition to initiating
several lines of analytical work, the APL formulation of the basic acoustics problem greatly encouraged
continuation and expansion of the program to measure the response of surface combustion at NOTS under
E.W. Price. A thesis (Horton 1961) and three papers (Horton 1961, 1962; and Horton and Price 1961)
began the international activity of measuring the admittance function of propellant samples mounted in an
‘end-burner’, generically called the T-burner.!? (Figure 1.21.)

In his thesis, Horton (1961) reported the first measurements of an admittance function. Figure 2.9(a)
shows his results which were given in his second paper (Horton 1962).'! The picture in Figure 2.9(b) is a
record (taken with an ‘oscillograph’ which no longer exists!) of a particularly good T-burner firing (Horton
and Price 1962). Apparently Price had suggested to Horton during the latter’s thesis program that the
initial (final) periods would ideally show exponential growth (decay), i.e. the envelope of the oscillations
has the form e*®*; and that the information could be used in principle to compute the admittance function
for the burning surface. For linear behavior, equation (2.10) applies. For an acoustic field one can write

approximately e ~ |p/|? (see Section 5.4) and from the envelope of the pressure trace one can compute

1 djp'|

CT ] dt

Let ay be the value for the growth period and oy for the decay. If the losses are the same during the growth
and decay, and a. is due to the combustion driving only, then oy = . + g, s0

(2.12)

Qe = 0g — Oy (2.13)

Thus with (2.12) and (2.13) one can in principle find a.. In practice there are serious difficulties obtaining
accurate reproducible results, particularly for propellants containing aluminum; see the “T-burner manuals”

(Culick 1969, 1974).

It is an interesting aspect of Horton’s work that he worked out a simple method for using experimental
data to infer both the real and the imaginary parts of the response function. That is correctly the information
one should obtain from T-burner tests. Owing to experimental difficulties (apparently) it seems that Horton’s
is the only report for both parts of the response function. See the discussion in Section 6.7.

T-burner tests to characterize fully the dynamics of a propellant over ranges of pressure and frequency
are expensive. Moreover, the results generally carry significant experimental errors. Hence the T-burner
is best used to detect changes in dynamics, or generally for comparing propellants. Although hopes for
improvement may have been held high, the nature of results from T-burner testing has not changed greatly
in forty years. Nevertheless, there is still no better test apparatus and for qualitative purposes the T-burner
has not been superceded. Indeed, even with the measurement errors always present, no other method has
yet been proven more useful for obtaining qualitative data.

After McClure’s working group had been established, and more information became publicly available,
research on combustion instabilities in solid rockets attracted increasing attention. Brownlee, who had
begun work on the problem in Canada, carried out the first systematic measurements of stability boundaries
(Brownlee and Marble 1960); Smith (1960) and Shinnar and Dishon (1960) in the same AIAA volume
published papers on the response of a burning surface to changes in the environment. While both works
treated unsteady temperature profiles in the solid phase, neither emphasized the thermal wave. They could
not, therefore, find the very special and important contributions of the thermal wave to the surface admittance
function.

9For example, the early 1959 and 1960 papers attracted this author’s responsive attention at the end of his Ph.D. research
program. He subsequently was introduced to the solid rocket community by Mr. W.A. Berl, assistant to Dr. McClure.

10A center-vented symmetrical burner was first used by Price and Sofferis (1958) but the name T-burner was coined by
Dr. H.M. Schuey in honor, it seems, of the piece of plumbing he chose in 1963 to serve as the center vent.

11We should note particularly that Horton inferred both the real and imaginary parts of the admittance function. Most
reports of results obtained with T-burners show only the real part.
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FIGURE 2.9. The first reported values of the real and imaginary parts of the admittance
function for a burning surface. (a) experimental results inferred with the real and imaginary
parts of equation (5), Horton (1961); (b) pressure record for a T-burner firing (Horton and
Price 1962).

In the early 1960s attempts to measure the admittance function were made by more organizations—or
perhaps their efforts were finally made public. Watermeier (1961) at the Army Ballistic Research Laboratories
reported motion pictures of the burning surface (of a double-base propellant) exposed to the output of a
siren. Only qualitative observations were made. Two years later, Watermeier et al. (1963) and Strittmater et
al. (1963) discussed experimental investigations with modified forms of the T-burner, also using double-base
propellants. One interesting observation concerned the agglomeration of molten aluminum on the surface,
a “probable” cause for reduction of the admittance at low frequencies. Other features of the behavior of
molten aluminum in the vicinity of the burning surface were noted, but without quantitative measurements
no conclusions can be drawn. Wood (1963) also made measurements in a T-burner with propellant similar
to that described by Price and Sofferis. Although he tried to make direct connection between compositional
properties and the admittance function defined by McClure et al., Wood’s data and observations were too
crude to allow definite conclusions. The work marks a transitional step to more realistic representations
involving dynamical thermal behavior of the solid phase.

Denison and Baum (1961) produced a work which not only represented (in retrospect!) the culmination
and joining of several ideas but, because it is firmly based on fundamental behavior, has had lasting influence
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FI1GURE 2.10. A summary of the instability problems for solid propellant rockets in 1970
(Culick 1970).

on theoretical treatments of burning. At the time, the paper did not instantly attract widespread attention,
but its importance was gradually recognized.'> When Denison and Baum’s analysis appeared, its general
applicability was not immediately apparent. In 1968, Culick (1968) showed that at that time ten analyses
were equivalent to that of Denison and Baum in the sense that if parameters are given appropriate values
in each case, then the response function (2.3) is the same function of frequency. That recognition has
had important influence on experimental and theoretical work. Departures from the QSHOD model are
important, difficult to treat and are still a subject of research; Sections 2.2.5 to 2.2.8 contain examples.

Figure 2.10 is a complete summary of the various kinds of work proceeding on combustion instabilities
in solid propellant rockets, c. 1970.

2.2. Analysis of the QSHOD Model

The model we will analyze here is the simplest possible capturing a dominant contribution to the com-
bustion dynamics. Only unsteady heat transfer in the condensed phase causes true dynamical behavior, i.e.
dependence of the response to pressure coupling. That process must in any case be present. This problem

121n fact, the model defined by Denison and Baum was in a sense really an unnecessarily detailed special case of that
proposed twenty years earlier by Zel’dovich (1942) and developed by Novozhilov (1965). The first was unknown in the West
and the second was not recognized properly until the late 1960s. In simplest terms, an imperfect model of the gas phase in
Denison and Baum’s analysis is replaced by two sorts of experimental data in the Zel’dovich-Novozhilov model.

2-18

RTO-AG-AVT-039



COMBUSTION DYNAMICS AND MECHANISMS OF COMBUSTION INSTABILITIES

(model) is therefore the reference always used to assess the possible influences of other dynamical processes,
in particular those in the gas phase and decomposition in the condensed phase. The substance of the model
is defined by the following assumptions:

(i) quasi-steady behavior of all processes except unsteady conductive heat transfer in the condensed
phase;
ii) homogeneous and constant material properties, non-reacting condensed phase;
g g
(iii) one-dimensional variations in space;
(iv) conversion of condensed material to the gas phase at an infinitesimally thin interface.

The acronym QSHOD for this model derives from the five bold letters in assumptions (i)—(iii).

During the early years of this subject, from the mid-1950s to the mid-1960s, roughly ten analyses of the
response function were published in the Western literature, giving apparently distinct results. Culick (1968)
showed that, due to the fact that all of the models were based in the same set of assumptions (i)—(iv), the
results were dynamically identical. That is, all had the same dependence on frequency and, with appropriate
values for the various parameters involved, give coincident numerical values. Hence the term QSHOD is
a useful term referring to a class of models. Differences between the models are associated with different
detailed models of the steady processes, notably the flame structure in the gas phase.

A different approach to compute the combustion response was taken by Zel’dovich (1942) in Russia
and elaborated in great depth by Novozhilov (1965, 1973, 1996). The result has come to be known as the
Z-N model. That representation of the response has certain distinct advantages, most importantly giving
convenient connections between the parameters in the response function and quantities characterizing and
measurable in steady combustion. The idea is explained briefly in Section 2.2.4. However, an important
point often overlooked is that the dynamics contained in the basic Z-N model are the same as those in the
flame models treated within the general QSHOD model.

Analysis of the model sketched in Figure 2.1 amounts to quantitative representation of the sequence
(i)=(iv). Even in the simplest form described here, the problem is too complicated for a closed form solution.
Apart from recent results obtained numerically for the entire region, covering the cold solid to the hot
combustion products, the usual procedure familiar in many problems of this sort is based on solutions found
for the separate regions defined above; the results are then matched at the interfaces. The solutions and the
matching conditions are based on the one-dimensional equations of motion. In the reference frame selected
here, the origin is fixed to the average position of the burning surface, and under unsteady conditions all
interfaces move, a feature that must be correctly incorporated in the analysis.

2.2.1. Estimates of Some Characteristic Lengths and Times. It is helpful to have a qualitative
idea of the sizes of a few important variables. That information provides a context for understanding the
physical problem and a basis for making realistic approximations to simplify analyses. One way to view
the situation is shown in Figure 2.11, based on Figure 1 of Culick (2000). The four levels of dynamics—
chemical dynamics, combustion dynamics, combustor dynamics and motor (engine) dynamics—are each
characterized by different lengths and times. A typical size of a rocket, for example, is also the length scale
for engine and combustor dynamics, say one meter, to tens of meters. The burning zone for a solid propellant
is a millimeter or less. Hence the ratio of those lengths may vary from 103 to 10°. Chemical dynamics evolve
on a scale 1073 to 1079 smaller. Thus it is fairly clear that the details of phenomena associated with the
three different scales can, to a very good approximation, be treated separately, although they are ultimately
coupled. Averaging of processes on the smaller scale produces consequences that matter on the larger scale.
In this book we are concerned largely with unsteady motions on the scale of the device in question. But
those motions are commonly driven, e.g., at the boundaries, by forces and energy flow which originate at a
smaller scales.
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FIGURE 2.11. A view of the areas of research and their connections in solid propellant
rockets (Culick 2000).

Often, the mechanics of the unsteady motions require descriptions on a much smaller scale. The unsteady
response of a burning surface is a good example of that fact. We assume for present purposes that the
combustion processes generate a zone like that sketched in Figure 2.2, and make a few estimates of its
characteristics. Several discussions of approximate representations exist (e.g. Hart and McClure 1959); we
base our remarks on Culick and Dehority (1969) who computed the burning rate assuming a finite region
of uniform combustion. The flame thickness is roughly 0.54—500u for the thermal conductivity of the gas
varying from 2 x 107> to 2000 x 107> cal/s-cm-°K, the pressure less than 900 atmospheres and reasonable
values for other parameters (temperatures, heat of reaction, etc.); Table 2.1 is a list of the properties used
in the following remarks. We take 250u as a conservative estimate; as a rough guide, the thicker is a flame,
the greater is its tendency to behave dynamically, in contrast to quasi-staticallly.

Table 2.1 contains values of the properties we need for the following estimates. The characteristic time for
the chemical reaction process in the gas phase is the flame thickness divided by the average speed, 74 ~ 65/,
where 05 ~ 250yu. Thus 77 is the time for a particle to pass through the flame. We estimate the gas speed
from continuity, 4y = p,7p/pg and taking values from Table 2.1, u, ~ (1766)(0.01145)/(7.97) ~ 2.5m/s.
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Then the characteristic time for the steady reaction process is
of N 250 N (250)(1079)
ug  2.5m/s 2.5m/s
for a rather thick flame zone, 250y = 0.25 mm.

m~ 107% (2.14)

TfN

The period of an oscillation is the reciprocal of the frequency, 7, = 1/f = 27 /w,. For the chemical
activity in the gas phase to be treated as ‘quasi-static’, chemical changes must be fast relative to the acoustic
period, which implies

-

4 <1 (quasi-static chemical reaction) (2.15)

Ta
With the estimate just quoted, 10~ f, should be small for quasi-static reactions. This implies f, < 10,000
Hz. We conclude that while the chemistry in a solid propellant flame can probably be assumed to respond
quasi-statically over a useful frequency range, something less than 10,000 Hz, the approximation should
probably be examined more closely for higher frequencies.

TABLE 2.1. Typical Values of Combustion and Physical Properties.

mean pressure D
linear burning rate 7
chamber temperature

T
Prandtl number Pr =0.8

thermal conductivity of combustion gases Ay = 0.0838 J/K-m-s
thermal conductivity of solid propellant Ap = 0.126 J/K-m-s
thermal diffusivity of gases Kg = 3.97 X 1074 m2/s
thermal diffusivity of propellant Kp = 1.0 X 107" m? /s
specific heat of gas Cp =2020J/kg K
specific heat of condensed material C =0.68C,
propellant density pp = 1,766 kg/m3
gas density pg = T7.97 kg/m?
v (gas only) v =1.23
gas constant R=(y—1)Cp/y=37772J/kg K
speed of sound a=+/YRT = 1282m/s
speed of combustion products

at the burning surface Uy = (pp/p)Ts = 1.86m/s
Mach number at the

burning surface M, = 0.00173

For much of our needs, some sort of thermal theory serves quite well to describe both steady and unsteady
behavior of a burning propellant surface. The governing equation is then the energy equation which will have
a different form in each of the regions (solid, interfacial, gas, ...). An important question is: How quickly
does the flow respond to changes of conditions? A very fast response of the flow means that the distribution
of temperature in a region will be the same as it would be in steady state for the same boundary (or end)
conditions and values of energy sources. If, on the other hand, the state of the flow is not instantaneously
responsive, the temperature differs significantly from its steady form due to the presence of waves. A measure
of the departure from the ‘quasi-steady’ form is the ratio of the net flow of energy, into a fluid element, by
heat conduction to the rate of change of energy in the element,

0 oT oT
N, = — [ A\, — 5C, — 2.16
Ox < g 8x> / LT (2.16)
where = is measured normal to the burning surface, in the direction of greatest variations.

Suppose (cf. Figure 2.13) that the temperature changes by AT in distance Az and time At so we can
estimate N, as

(2.17)

N _ MAT AT A
T2/ At p,Co(An)
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where p is a representative density (gas or solid), C, is the specific heat and Az, At are the intervals of
space and time in question. For a wave motion, the period 7 = 1/f is a measure of the characteristic time.
Spatial variations occur over the flame thickness, Az ~ 0y, so

A K
N.o=—2—- =% (2.18
TG B )
where kg is the thermal diffusivity. For N. large, the rate of heat transfer to a layer dominates the rate
of change of energy within the layer having thickness §; then the term pC,0T /0t can be neglected in the
energy equation and the temperature field changes in quasi-static fashion. For the properties given in Table

2.1,

3.97 x 1074 6352
(250 x 10 6)2f  f
According to this result, the assumption of quasi-static behavior is not valid for frequencies above, say 1000—

1500 Hz, perhaps higher. In any case, the analysis is so much simpler when this assumption is made, that
it must be used in the initial stage, as a ‘first try’.

N, =

(2.19)

2.2.2. Calculation of the Response Function. The following remarks are based on the review cited
above, Culick (1968). Since that time much work has been done to determine the consequences of relaxing
the assumptions on which the following analysis (the QSHOD model) is based. We will later examine some of
those ideas. In this section we assume that the combustion proceeds as transformation of a condensed phase
at a single flat surface adjacent to the gas phase, requiring that solutions be matched at only one interface.
We choose a reference system with origin (x = 0) fixed!® to the average position of the interface. Hence
the cold unreacted solid material progresses inward from the left. Figure 2.12 shows this definition and the
matching conditions that must be satisfied at the interface. Note that the velocity i of the interface appears
explicitly in these conditions and is to be determined as part of the solution to the complete problem.

I, T )
< 1 ! - .
- | | 7 V= mlp, %s VELOCITIES
: — ﬁ —_—
! - -
T T R
I ' _ _
m=p,r ——> ! | %E lél/i};l;;‘ Po(% - %) ! :'—’ (¢ MASS FLUX
. =
—— L —
I =
HEATED I | = 1=
i — — ENERGY
SOLID ! ! == ( pa_T) | Ik—(kgg_l )S+ BALANCE
4 ox /s : :
Xy fe— .
2 1] > p(Vg-X9(C T+ Q)
x=0 ,
' pp(vp' XS)(CTS+Hp+ Qg) —’: :
Decomposition Ll
Region

(a) (b)

FIGURE 2.12. (a) reference system and (b) matching conditions for the QSHOD Model.

For the simple model used here, the analysis involves only three steps: solution for the temperature field
in the solid phase; solution for the temperature field in the gas phase; and matching the two solutions at
the interface. Because the temperature field is central to the analysis, the final results should correctly be

13 Alternatively, the reference frame may be fixed to the instantaneous position of the surface; it is therefore not an inertial
frame for the unsteady problem. For the linear problem, it is easy to show the equivalence of the results obtained with the two
choices of reference systems. If more than three regions are treated—e.g., when an additional decomposition zone is included
in the condensed phase—it may be more convenient to take xs = 0 for the reference frame, and account for the motions of all
interfaces relative to that plane, which is the time-averaged location of the solid-gas interface.
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regarded as a thermal theory of steady and unsteady combustion of a solid propellant. No diffusive processes
are accounted for and the pressure is uniform throughout the region considered: changes of the momentum
of the flow do not enter the problem.

(a) Solid Phase. The energy equation for the temperature in the solid phase assumed to have uniform
and constant properties, is

2
Ll e g, (2.20)
where U means time-averaged value; ( ), denotes propellant; ¢ is the specific heat of the solid; ™ = p,F
is the average mass flux in the reference system defined in Figure 2.12; and Qd is the rate at which energy
is released per unit volume due to decomposition of the solid (Qd > 0 for exothermic decomposition). We
assume Qg = 0 here, an assumption to be relaxed in Sections 2.2.5 and 2.2.6. It is convenient to use the
dimensionless variables

=L = (2.21)

where values at the interface are identified by subscript s and x, = X\,/ppc is the thermal diffusivity of the
propellant. Equation (2.20) becomes

gT _ 9T AP OT (2.22)

Solution to (2.22) with the time derivative dropped gives the formula for the normalized mean temper-
ature

T =T+ (1 —7c)ebr (2.23)
satisfying the conditions 7 = T4 = 1 at the surface and 7, = TC/TS far upstream (T = TC) in the cold

propellant.

For harmonic motions, set 7 = 7 + 7/ and'* 7/ = 7e~!, # being the amplitude, a complex function of

position in the solid material. Substitution in (2.22) leads to the equation for 7(¢,), easily solved to give

7' =7 eMreTivt (2.24)
where ) satisfies the relation
AA—1) = —iQ (2.25)
and (Q is the important dimensionless frequency,
0= A_P_gpw =22, (2.26)
mec T

For the numbers given in Table 2.1, Q ~ 20f. In order that 7" — 0 for  — —o0, the solution of (2.25) with
positive real part must be used; A = A\, — i\, and

1 1 241/2 1/2
A,,Q{Hﬁ[(lﬂﬁﬂ) +1}

A= 2%/5 {(1 +1602)1/2 — 1}

(2.27)a,b

Due to the choice of reference system, 7, in (2.24) is the fluctuation of temperature at the average position
of the interface (§, = 0). However, matching conditions at the interface requires values and derivatives of the
temperature at the interface itself, having position = and velocity ;. Values at the interface are calculated

4 Note that consistently throughout this book we use the negative exponential, exp(—iwt). In some of the literature the
positive exponential is used, so care must be taken when making comparisons of results.
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with Taylor series expansions about & = 0; only the first order terms are retained for the linear problem,
and on the solid side of the interface!®:

oT o1’ oT’ 02T’
/ _ el . — -
r@<x5>To_<o>+xs(dx)O_, ((%) (ax)o_m(axz)O_

Hence the required results for the upstream side of the interface cannot be completed until the interfacial
region is analyzed.

(2.28)

(b) Interfacial Region. Three relations govern the behavior at the interface: conservation of mass and
energy, and the law for conversion of solid to gas. The first two are established by considering a small control
volume placed about the true burning surface, as sketched in Figure 2.12. The volume is then collapsed to
give “jump” conditions associated with the total unsteady mass and energy transfer in the upstream (s—)
and downstream (s+) sides of the interface:

pp_ffs:_{l_@}ﬂ’sz_m_é
m Pps | T m
. 2.29)a,b
| or N I AR (2.29)a,
ory _ ], 0T o Pets] g
99z ot P o . m )

The mean gas density p near the surface is much smaller than the density of the condensed phase, for cases
of current interest, so the term 7/p, < 1 will hereafter be dropped. For an exothermic surface reaction, the
change Ly = hsy — hs— of the thermal enthalpy is positive and may be viewed as a ‘latent heat’. The heat
fluxes [A\,0T'/0x]s— and [A\j0T'/Ox|s4+ are respectively flows of heat from the interface to the condensed phase
and to the interface from the gas phase; note that (2.29)b has not yet been split into mean and fluctuating
parts.

An Arrhenius law has commonly been assumed for the conversion of solid to gas, giving the total surface
mass flux
ms = Bp"ee~Es/RoT: (2.30)

To first order in small quantities, the perturbed form of (2.30) is

! /
Ds — Bewniy! 4 pyeiwmL (2.31)
P

where E = E;/RoTs is the dimensionless activation energy for the surface reaction. Time delays or lags 7
and 7 are included in (2.31), but presently there is no way to compute them; hence they will largely be
ignored here except for some results given in Section 2.2.6.

For steady combustion, the energy balance (2.29)b, with (2.23) substituted for dT'/dz, becomes

(Ag%) =T+ L (2.32)

The linear unsteady part of (2.29)b is
T\’ T\’ -
<)\g%> . - <)\p%) N +mlLs +m(c, — )T, (2.33)

15The temperature is continuous at the interface, but on 2 = 0, the fluctuations TO/_ and Té+ computed from the solutions
for the solid and gas phase need not be continuous.
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Combination of (2.23) and (2.24) and the appropriate parts of (2.28) gives the formula for the heat transfer
into the condensed phase from the interface:

or\"  _ 1~ m,
In this result, the approximation in (2.29)a has been used. Substitution of (2.34) in (2.33) leads to the
boundary condition to be set on the unsteady heat transfer at the downstream side of the interface:

!

o\’ L ) ¢ , 1 — Ls) m
() e i n 8] e

m

This result contains two assumptions:

(ii) nonreacting condensed phase having constant and uniform properties

Normally, the first assumption is reasonable. However, the second is restrictive, possibly seriously so accord-
ing to some analyses; see Section 2.2.5. The important point is that (2.35) explicitly contains the transient
behavior (the dynamics) associated with unsteady heat transfer in a benign solid material. If no further
dynamics is attributed to the processes at the interface or in the gas phase, then the response function
found with this analysis reflects only the dynamics of unsteady heat transfer in the single homogeneous
condensed phase. That is the basic QSHOD result. Hence it is apparent that the form of the dependence
of the response function in frequency will necessarily in this case be independent of the model chosen for the
quasi-static behavior of the gas phase. The details of the model selected will affect only the particular values
of parameters appearing in the formula for the response function. The conclusion is true for the basic Z-N
model as well as for all flame models assumed to behave quasi-statically.

(¢) Gas Phase. To complete the analysis, it is best at this stage to choose the simplest possible model for
the gas phase. We assume that the thermal conductivity is uniform in the gas phase and that the combustion
processes (i.e. the rate of energy release per unit volume) are also uniform in a region beginning some distance
from the interface and extending downstream, ending at a location that is, by definition, the edge of the flame
zone. This is a useful model containing two simple limits: uniform combustion beginning at the interface;
and a flame sheet, obtained by letting the thickness of the combustion zone become infinitesimally thin.
Figure 2.13 is a sketch of the model. Analysis of the model for steady burning was given by Culick (1969)
with the following results.

!

Uniform

Combustion

FI1GURE 2.13. Sketch of the model of a solid propellant burning with uniform combustion
in the gas phase.
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The governing equation for this thermal theory is
dl  d dT
(A=) = : 2.36
" dw(gdx> PeQse (2.36)
where @ is the energy released per unit mass of reactant mixture (assumed to be constant), p, is the local

gas density and € is the local rate of reaction. At the downstream edge of the combustion zone, the boundary
conditions are

T=Ty;: fl—z =0 (z=uy) (2.37)a,b
where Tf is the adiabatic flame temperature. On the interface,
T =T, (2.38)
and the energy balance at the interface gives
(AQZ_D L =mle 1)+ L] (2.39)

For steady combustion, consideration of the energy flow across the gas phase gives

(xgz_f)H — 7 [Qf — ¢ (Ty —T)] (2.40)

On the other hand, integration of (2.36) across the combustion zone, and application of the boundary
conditions (2.37)a,b and (2.38) leads to

dT r -
()\g—> = /ngfédCC —mey, (T —Ts) (2.41)
dv ) . .
0
Because Q¢ is constant, comparison of (2.40) and (2.41) leads to the requirement on the overall reaction rate
o0
/ pgédr =m (2.42)
0

We assume A\, constant (an assumption that is easily relaxed) and transform from « to the dimensionless
variable (:

g
The energy equation (2.36) becomes
d*T
{Qd_g? = A? (2.44)
where the eigenvalue A2 is
O+
AZ = 2@ (2.45)
m%IQ)TS
and
W = pgé (2.46)

Generally, of course, ¢ and hence w and therefore A? are dependent at least on temperature, so A2 is implicitly
a function of (. However, we assume A? independent of ¢, defining the condition of uniform combustion.
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Then with ¢; the value of ¢ at the beginning of the combustion zone (where ignition is assumed to occur)
and (; the value at the downstream edge of the flame, the first integral of (2.44) gives

dT gf — Cz) 2
— =(>=— A 2.47
Thus
dT A 11
<Ag_> _ M@y <_ _ _> w (2.48)
de ), Cp G (/) m
For ¢y > (;, and in the limit of combustion beginning at the solid/gas interface so (; = 1,
dT A 1
(Ag—> _ MO w (2.49)
de ) . cp m

The assumption of quasi-steady behavior implies that the fluctuation of heat transfer at the surface is
given simply by the linearized form of (2.49):

ar\’ = o fw  m

We also find as the linearized form of (2.40):

dry’ S — _
(*q@) =m' Qs — ¢ (Ty = Ts)| — e, (T; — 1Y) (2.51)
s+
This equation gives a formula for the fluctuation of flame temperature,
' = = 1 T\’
T) =T+ = {%— (Tf—Ts)} - <Agd—> (2.52)
m | ¢p mcep dv ) .

Substitution of (2.50) for the last term gives the formula for computing 7 when the combustion is uniform.
In general, T]'c is not equal to the local fluctuation of temperature due to acoustical motions in the gas phase,
the difference appearing the temperature fluctuation associated with an entropy wave carried by the mean
flow departing the combustion zone.

By letting ¢; — (y, the corresponding results can be obtained for a flame sheet; see Culick (1969; 2002).
We will consider here only the case of a combustion zone having finite thickness; the response functions
found for the two cases differ only in small details.

To progress further, we must specify the form of w = p4é; the reaction rate per unit volume. For the
quasi-steady part of the processes, we assume that the mass flow provided by the surface is well-approximated
by the Arrhenius law (2.30) and its fluctuation is (2.31) with zero time delays,

m/ T/ p/

— =F=+n,— 2.53
e AL (2.53)
Due to the assumption of quasi-steady behavior, this formula represents the fluctuation of mass flow through-
out the gas phase.

Finally, we need an explicit form for w as a function of the flow variables. To construct a consistent
formula for the reaction rate in the gas phase, we equate the two results for heat transfer to the interface
during steady burning: (2.39), the energy balance for steady combustion, generally valid at the interface;
and (2.49) found for the special case of steady uniform combustion. For quasi-steady behavior in the gas
phase, we replace average by instantaneous values of the temperatures, giving the expression for w:

w = )\:gfm2 [c(Ts — T.) + Ly (2.54)
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We assume that the right-hand side can be written as a function of pressure only by approximating the
pyrolysis law m = a(T,)p" as

m=ap" =b(Ts — T,)°p" (2.55)
S0
1
a4 pn\*
T -T. = (3p") (2.56)
Then (2.54) becomes
1
Cp n\2 @ n—ng\*
— — s LS 2.57
w= st o (5 )" + L] (257)

wo_ R 2.58
w A2 ¢, v D (2.58)
where A? is given by (2.45) written for the steady problem,
>\ '
A2 = 2T (2.59)
™m chs
and
— pl—
w=[2(1+H)+—
c ¢
I (2.60)a,b
H=-——=
o(Ts —Te)

Instead of the calculations leading from (2.49) to (2.58) one could as well simply assume w’ ~ p’. The only
purpose of these remarks is to give an example of relating fluctuations of the reaction rate to the pressure
for a well-defined model of combustion in the gas phase.

(d) Construction of the Response Function. We find the formula for the response function in the following
way:

(i) Substitute the pyrolysis law (2.53) in (2.35) which combines the interfacial conditions for energy and
mass transfer:

T,
1 or\’ A\ T! c LA \ T L=\ p
— (N\g—=— ) =(A+Z]= 2 _1 =S 4n,|L s | = 2.61
chs<98m>s+ (+A>TS+<C +1—%>Ts+n<+ 3 = (2.61)
where
Ly
L= =
“hs - s (2.62)a,b
(1= )+ )
11) Substitute the reaction rate (2. mto the expression (2. or the heat loss from the gas phase to
ii) Substi h i 2.58) i h i 2.50) for the h loss f h h
the interface:
1 T\’ T. ' '
L - R (TP DA € i (2.63)
mcT s or ), Ts P ¢ m
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(iii) Equate (2.61) and (2.63) and use the pyrolysis law (2.53) to eliminate 77/T; this step leaves an
equation which can be rearranged to give the ratio defined to be the response function for pressure

coupling:

m' /m

R, = =

(AW + 2n,) +ns(A = 1)

PP A+A+[2EA2-HA+ S -

Write (2.64) in the form

1 +ns(A—1)

R:
o+ 44

(2.64)

(2.65)

For the assumed steady burning rate law, m = ap™, the fluctuation can be written for quasi-steady
(infinitely slow) changes of pressure and hence burn rate:

m'/m

=—F7= ="n
Yo/

(2.66)

Thus in the limit of zero frequency (A = 1), the right-hand side of (2.65) must equal n, giving the

condition

Define B and A with
and

Hence (2.65) becomes

FIGURE 2.14. Real and imaginary parts of a QSHOD response function computed with

C1 -
1+A+c
¢ =nB

CQZB—<1+A)

_ nB4+n,A-1)
PN+ 4-(1+A)+B

— Real Part
"""""" Imaginary part

equation 2.67: ny, =0, A = 6.0, B = 0.60.

(2.67)

Figure 2.14 shows typical results for the real and imaginary parts of this formulas when ns; = 0. Experi-
mental results given in the following section have long established that the QSHOD model captures a major
contribution to the dynamical behavior, due to unsteady heat transfer in the condensed phase. Thus it is
important to understand the preceding analysis. However, even with the large experimental errors associated
with all current experimental methods, it seems there is little doubt that other dynamical processes cannot
be ignored for many propellants, especially in the range of frequencies above that where the broad peak of

the real part of R, appears.
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An important reason for retaining pressure dependence in the pyrolysis law for the transformation
solid— gas (cf. equation 2.30) is that R, # 0 if ny # 0 even though n = 0, so the steady burning rate is
independent of pressure. The experimentally observed presence of pressure coupling for ‘mesa’ propellants
has long been an ill-explained feature of unsteady surface combustion still not well understood. More
generally, n should be taken as a function of pressure, a behavior reported in several of the references cited
but not covered here. See especially reports by the group at NWC (later NWAC).

A second deficiency of the QSHOD model of surface combustion response is that it contains no depen-
dence of the mean burning rate on oscillatory pressure. This effect had been reported already in some of the
earliest works on oscillations in solid rockets (for some measurements see Crump and Price 1961 and Eisel
1964). Figure 2.15 shows two examples. The observed changes of mean burning rate and mean pressure
with oscillatory conditions in a chamber is indeed a complicated and by no means well-understood matter.
In a motor, the oscillatory pressures and velocity (‘velocity coupling’) may both affect the mean burning
rate and pressure in ways which are quite likely to depend on the distributions of those quantities along the
burning surface. Consequently, the internal configuration of the propellant grain may be a significant factor.
Thus it is evident that a single response function defined for oscillatory pressures is only part of the story.

2.2.3. Measurements of the Response Function; Comparison of Experimental Results and
the QSHOD Model. For more than forty years, measurement of the response function has been the most
important basic task in research on combustion instabilities in solid rockets. That problem still exists.
Without accurate data, the truth of theoretical results cannot be assessed; predictions and interpretations of
instabilities in motors are uncertain; and the ability to screen propellants for optional behavior is seriously
compromised. Unfortunately, no entirely satisfactory method exists for accurate measurements of the com-
bustion response over practical range of operating conditions, irrespective of cost. Two recent final reports
of extended programs (Culick (editor), 2002, Caltech MURI; and Krier and Hafenrichter (editors), 2002,
UIUC MURI) have led to this conclusion after five years’ investigation of the five main existing methods:

) T-burner
) ultrasonic apparatus

(iii) laser recoil method

(iv) magnetohydrodynamic method
) microwave technique

A sixth method based on using a burner (e.g., an L* burner) in which bulk oscillations are excited, was not
investigated, partly because it is intrinsically limited to relatively low frequencies.

It is not our purpose here to review these methods; see the two MURI reports, Cauty (1999), and
references contained in those works for discussions of all but the last method. The microwave technique was
introduced in the 1970s (Strand et al. 1974, 1980) and has been continually improved, but the accuracy of
the data remains inadequate, particularly for metallized propellants for which the method is useless under
some conditions. The last work with the device was done in the late 1990s by a group in Russia and reported
by Zarko (1998).

(a) Ezamples of Early Data. The ultimate question for modeling and theory is: how good is the
agreement between predicted and measured values? It appears that the first extensive comparison for this
purpose were carried out many years ago (Beckstead and Culick, 1971) soon after the recognition that all
the available models/analyses were equivalent to the QSHOD (A,B) model. With only two parameters
available to adjust the theoretical results to fit data, the task of comparing theory and experiment became
manageable. At that time, only T-burner and limited L*-burner data were available. Figures 2.16 and 2.17
show two results.
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FIGURE 2.15. Experimental results for the change of burning rate of two double-base pro-
pellants (Crump and Price 1961).
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FIGURE 2.16. The real part of the response function vs. the non-dimensional frequency,
asw/r? for A-13 propellant: the solid curve is calculated from the QSHOD formula for the
values of A and B shown; the dashed curves represent the T-burner data at the indicated
pressures (Beckstead and Culick 1971).

One purpose of the report by Beckstead and Culick was to combine the formula for the QSHOD response
function with results obtained from analyses of the T-burner and the L*-burner to obtain formulas for the
parameters A and B in terms of measurable quantities. The main conclusion was that unique values of A and
B could not be obtained for a given propellant tested at a chosen value of operating pressure. Consequently,
large differences existed between the data and curves of the sort shown in Figure 2.16 and 2.17.
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FI1GURE 2.17. The real part of the response function vs. the non-dimensional frequency for
A-35 propellant; the curves were calculated from the QSHOD formula (Beckstead and Culick
1971).

Since that time, many examples of using the A, B model to fit data have been given. Most, if not all,
approach the matter as a two-parameter (A and B) curve fitted to data for the real part of the response
function only. Strictly, that tactic is incorrect and could produce misleading results. The proper approach
requires that the two-parameter representation be used to fit simultaneously the real and imaginary parts
of the response function. There are also cases in which investigators have failed to respect the distinction
between the response function R, ~ m'/p’ and the admittance function A, ~ u'/p" defined for velocity
fluctuations. That error arises due to failure to recognize which quantity a particular method actually
measures. For example, T-burners give R, directly, but the magnetohydrodynamic method provides data
for A, because it measures the unsteady velocity of the combustion products near the burning surface.
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FIGURE 2.18. Real part of the response function measured with T-burners (Price 1984).

The apparent reduction of the real part of the response function when the mean pressure is reduced, more
clearly shown by the latter data plotted in Figure 2.16, seems to be a common trend. Fifteen years later,
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Price (1984) reported similar results plotted in Figure 2.18. Although the pressure dependence of the surface
reaction (ns # 0) does seem to explain some of the trend, there still is no incontrovertible explanation. It’s
just one of many incomplete topics on the subject.

Without attention paid to those points, any comparisons between data and a model are suspect. Even
accounting for those common deficiencies, there is no doubt that the QSHOD model cannot and does not
accurately represent the dynamics of actual propellants. One would anticipate without experimental results
that the assumption of quasi-steady behavior in the gas phase must fail at high frequencies, commonly
believed to be around 1000 Hertz and higher. Moreover, observations of steady combustion have shown that
important decomposition processes take place in the sub-surface zone near the interface of most propellants.
Hence at least two improvements of the QSHOD model should be made.

(b) Some Results from the MURI Program. During the past 4045 years an immense amount of data
has been collected for the combustion dynamics of solid propellants. Some are accessible; much is not. It
is inappropriate here to try to give a thorough survey; it seems best in this limited space to quote a few
results from the most recent publications, covering work carried out in the period 1996-2001 in the Caltech
and UIUC MURI programs cited above. The research spanned the broadest possible range of activities
from basic propellant chemistry and synthesis to motor dynamics. Work in the research groups included a
complete range of experimental methods; modeling; theory and analysis; and numerical simulations, all for
both steady and unsteady combustion of propellants.

Three classes of propellants were tested, to determine their burning rate laws and their dynamical
behavior. Table 2.2 summarizes the main characteristics distinguishing the propellants in the three groups
referred to as Phase I, Phase 1T and Phase III. Further details and the chief motivations for selecting those
propellants are included in Attachment A of the Caltech MURI Final Report. All propellants were provided
to all research groups measuring response functions.

TABLE 2.2. Principal Characteristics of the MURI Propellants.

Manufacturer Oxidizers Binders Remarks

PHASE 1 Thiokol, Inc. AP HTPB e plateau and
biplateau propellants
e 11 formulations
including reduced
smoke and smokeless

PHASE IIA Thiokol, Inc. AP BAMMO/AMMO | e two formulations
with GAP reduced smoke
and smokeless

PHASE IIB CSD, Inc. AP/HMX HTPB/GAP e five aluminized
formulations, one
with some AP
replaced by HMX
and one with GAP
replacing HTPB

o AP size distributions

varied
PHASE III Alliant Techsystems, Inc. AP Nitrato-type e seven formulations
energetic including four
binders aluminized and

three smokeless

RTO-AG-AVT-039 2-33



z?

COMBUSTION DYNAMICS AND MECHANISMS OF COMBUSTION INSTABILITIES ORCANIZATION

2.2.4. The Zel’dovich-Novozhilov (Z-N) Model. Zel’dovich (1942) was first to consider true com-
bustion dynamics for solid propellants. He was concerned with problems of transient burning—i.e. what
happens to combustion of a propellant when the impressed pressure is changed rapidly—but not explicitly
with the response function. Novozhilov (1965) later used Zel’dovich’s basic ideas to find a formula for the
response of a burning propellant to sinusoidal oscillations of pressure. The result has exactly the same de-
pendence on frequency as the QSHOD model, i.e. it is identical with the formula obtained by Denison and
Baum (1961) four years earlier.

The basic Z-N model incorporates quasi-steady behavior of the burning in a clever and instructive
fashion. Moreover, the parameters—there are, of course, two corresponding to A and B in the QSHOD
model—are so defined as to be assigned values from measurements of steady combustion of the propellant in
question. Hence there is no need to become enmeshed in the details of modeling the combustion processes in
the gas phase. If the measurements could be done accurately, it would be possible to obtain good predictions
of the combustion response for propellants, subject of course to all the assumptions built into the QSHOD
model. Unfortunately, the required quantities are difficult to measure accurately. Confirmation of the results
still requires measurements of both the real and imaginary parts of the response function and comparison
with the predictions of the model.

The condensed phase and interfacial region are treated as described in Section 2.2 for the QSHOD model.
Instead of detailed analysis of the gas phase, that is, construction of a “flame model”, the assumption of
quasi-steady behavior is applied by using relations among the properties of steady combustion, the burning
rate and the surface temperature as functions of the initial temperature of the cold propellant and the
operating pressure:

m = m(Te,p)

2.
T, = T,(T., ) (2.68)a.b

The assumption is also made that these functions are known sufficiently accurately that their derivatives
can also be formed, introducing the four parameters

Olnm
UV =
olnp T
1 oT
M_TS_T(: alnﬁ T.
— Olnm
k(TSTC)< o )
(57)
TZN =
oT, 5

Subscript ZN is attached to r to distinguish it from the linear burning rate. It is not apparent from the
remarks here why the four parameters (2.69)a—d are significant in this theory; see the works of Novozhilov
(1965 and later).

(2.69)a,b,c,d

D

Recall that in Section 2.2 the sole reason for analyzing a model of combustion in the gas phase was
to produce a formula for the heat feedback, A\,(0T/0x)s4, to the interface. That is the central problem
here as well: to find the heat feedback from considerations of steady combustion and assume (the quasi-
steady approximation) that the form of the result holds under unsteady conditions. The trick is to work out
the relation between the feedback and the properties of steady combustion. It is in that process that the
parameters (2.69)a—d appear.
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The formula for the response function corresponding to (2.67) is usually written (e.g., Cozzi, DeLuca
and Novozhilov 1999)
o(A—1
R, — v+ oA — 1) (2.70)
ran A=) +k(x-1)+1

where
(S =UVUrzN — /,ka (271)
Comparison of (2.67) and (2.70) gives the formulas connecting the parameters in the two formulations:

1
S T (2.72)
TZN k TZN

Much emphasis has been placed in the Russian literature on the “boundary of intrinsic stability,” the
locus of values of (A,B), or (k,7zy) for which the denominator of (2.70) vanishes'®. Under those conditions,
the propellant burn rate suffers a finite perturbation in the limit of a vanishingly small change of pressure.
Hence, from measured values of v and rzy, one can infer how close an actual propellant is to that stability
boundary.

With these models, the opportunity exists to use experimental results to determine how accurately the
QSHOD approximations capture the combustion dynamics of solid propellants:

(i) infer v, p, k,rzn from tests of steady combustion;
(ii) measure the real and imaginary parts of Rp;
(iii) compute R, from (2.67) or (2.70) and compare with (ii)

There seem to be no published reports of results for this procedure, although some results exist for predictions
related to the boundary of intrinsic stability.

Novozhilov and his co-workers have investigated many other detailed aspects of the combustion dynamics.
However, experimental data to confirm the theoretical results either don’t exist or are too sparse to allow
definite conclusions. Hence despite the value of those results, we will not discuss them here.

2.2.5. Revisions and Extensions of the QSHOD Model. As we have already noted in Section
2.2.3, even with the large uncertainties accompanying the experimental results obtained with current meth-
ods, it is clear that the QSHOD model does not capture some important dynamical processes. Considerable
effort has been devoted to improving the model, with a certain amount of success, but unfortunately the
deficiencies in the experimental procedures still prevent definitive identification of the most significant con-
tributions. Thus there is only weak justification for developing three-dimensional models of the processes
for practical purposes. It seems that much is still to be gained by investigating extensions of the QSHOD
model.

Attention has been given to all three of the regions sketched in Figure 2.12. It is important to recognize
that simply changing the model for steady combustion—for example including a finite zone of decomposition
in the solid phase—will not change the form of the QSHOD result. To affect the frequency dependence of
the response function, any additional spatial zones or processes must also contain new dynamics (see, for
example, Culick 1969). One cause of ‘new dynamics’ is spatial non-uniformity of material properties when
conductive heat transfer is the dominant unsteady process. Here we attend mainly to contributions from
different processes which conceivably change the dynamics.

16This condition is analogous to the way in which instabilities are defined for a classical control system by finding the poles
of the appropriate transfer function
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(a) Additional Dynamics in the Condensed Phase. It seems that three types of processes have been
considered as modifications of the basic model of the condensed phase discussed in Section 2.2.2:

(i) temperature-dependent thermal properties;
(ii) phase transitions; and
(iil) decomposition zones.

Louwers and Gadiot (1999) have reported results for numerical calculations based on a model of HNF.
Melting at some interface within the condensed phase is accounted for, as well as energy released by sub-
surface reactions. Combustion in the gas phase is also treated numerically. The computed response functions
show that the new processes may increase the values of RZ(,T) by as much as 10-30% and more in the frequency
range above the peak. The peak value is unchanged.

Brewster and his students at the University of Illinois have produced a number of interesting works
treating additional dynamics related to chemical processes in the condensed phase and at the interface
(Zebrowski and Brewster, 1996; Brewster and Son, 1995). Much attention was given to this matter in the
MURI Programs (Culick 2002, Krier and Hafenrichter 2002). Gusachenko, Zarko and Rychkov (1999) have
investigated the effects of melting in the response function, finding quite significant consequences. Lower
melting temperatures and larger energy absorption in the melt layer increase the magnitude of the response
function.

Cozzi, DeLuca and Novozhilov (1999) worked out an extension of the Z-N method to account for phase
transition at an infinitesimally thin interface in the condensed phase. The analysis includes new dynamics by
allowing different properties of the thermal waves on the two sides of the interface. Additional heat release is
allowed only at the interface of the transition and with conversion of condensed material to gaseous products.
They found that the response function is increased by exothermic reaction at the internal interface and by
reduced temperature of the phase transition.

(b) Additional Dynamics in the Gas Phase. DeLuca (1990; 1992) has given thorough reviews of the
various models proposed for the gas phase. Most, however, involve no dynamics, so there are no effects on
the dependence of the response function on frequency. An example of truly dynamical effects is covered in
the next section, with references to previous works.

2.2.6. Some Results for a Special Extension of the QSHOD Model. The results summarized
in this and the following section have been reported in a Ph.D. Thesis (Isella, 2001) and in four publications
(Culick, Isella and Seywert, 1998; Isella and Culick, 2000a; 2000b; 2002). A purpose of the works was to
address in a small way some of the questions raised in our discussion of prior results. Chiefly two general
problems have been addressed in those works:

(1) develop a simple general analysis of the combustion dynamics of a solid propellant that will conve-
niently accommodate models of the relevant chemical and physical processes, especially those in the
interfacial region; and

(2) investigate the influences of small changes in the combustion response function on observable features
of the combustor dynamics, particularly properties of limit cycles.

Both of those problems were chosen to determine answers to the question: what properties of a solid
propellant are responsible for the often observed sensitivity of the dynamics of a solid rocket to apparently
small (sometimes not well-known) changes in the composition of the propellant. The main conclusions are:
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(i) small changes in the composition and thermodynamic properties of a propellant have significant
consequences for dynamical behavior due to pressure coupling only if the propellant is burning near
its intrinsic instability boundary; and

(ii) on the contrary, the dynamics due to velocity coupling may be much more sensitive to small compo-
sitional changes.

We do not compare with experimental results, and some of the behavior found may be unrealistic. Our
purpose is partly to demonstrate by some examples the sort of behavior one can obtain by altering the basic
QSHOD model. It seems that this strategy is an effective means of exploring possibilities in a quantitative
fashion. The very important task of establishing which processes are important (and under what condition)
has for the most part not been accomplished.

If the conclusions are true, then future work in the area of combustion instabilities must include intensive
attention to modeling and measuring the combustion dynamics—i.e. the response function—associated with
velocity coupling. In any case, there are several reasons arising with observed behavior of combustion
instabilities in solid rockets that velocity coupling should receive more attention than planned.

(a) The Model Framework. One important purpose of the work cited above was to construct a framework
within which it would be possible easily to investigate the consequences of various processes participating
in the combustion of a solid. Representation of the combustion dynamics must be in a form required for
analyzing the global dynamics (Section 3.3). The simplest approach is an extension of the well-known one-
dimensional analysis producing the QSHOD response function for pressure coupling (Culick 1968; Beckstead
et al. 1969; T’ien 1972; among many works). Others have followed a similar tack (e.g., Louwers and Gadiot
1999). The main novel aspects of the work described here are inclusion simultaneously of surface physical
dynamics (e.g., due to mobility of liquid or solid particles); dynamics, rather than quasi-steady behavior, of
the gas phase; and an elementary representation of velocity coupling. The behavior we find (calculate) may
not be realistic in all cases. Our main purpose is to show one way in which the QSHOD model can be used
is the initial approximation in a procedure to examine possible consequences of departures from the simplest
model.

On the submillimeter scale, a burning solid is heterogeneous both in the region adjacent to the interface
and in the gas phase where much of the conversion to products takes place. The flow field in the chamber,
in particular the unsteady acoustic field, has spatial variations normally of the order of centimeters and
larger. The dynamics of the combustion processes at the surface are formally accommodated as a boundary
condition, a response function of some sort, in the analytical framework for the global dynamics. Hence the
vast difference in characteristic scales is accommodated, in principle, by spatially averaging the combustion
dynamics. The averaging is done over a surface in some sense far from the interface so far as the propellant
combustion is concerned, but practically at the interface so far as the field within the chamber is concerned.
In that way, the results of solution to the “inner” problem of combustion dynamics in the surface region
are used as the boundary conditions for solution to the “outer” problem of the unsteady flow field in the
chamber.

We are not concerned here with the matter of spatial averaging: We assume it can be done, although it
may not necessarily be an easy or obvious process. It’s an important part of the general problem. Therefore
we proceed from the beginning with a one-dimensional analysis. The spatial framework for the model is
shown in Figure 2.19.

The strategy of the analysis is not novel and has been used in many previous works: Solve the relevant
equations, or postulate a model, governing the behavior in each of the three regions: solid phase; surface
layer; and gas phase, including the region called ‘combustion zone’ in Figure 2.19. A major purpose of the
analysis has been to determine the quantitative effects of the dynamics in the surface layer and gas phase
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FIGURE 2.19. Spatial definition of the model.

on the response function found from the QSHOD model. Hence throughout the work we assume the same
model for the solid phase: The basic dynamics is due to unsteady heat transfer in a homogeneous material
having uniform and constant properties.

Separate solutions or representations are obtained for each of the three regions. Unspecified constants
or functions are then eliminated by satisfying boundary conditions and applying matching conditions at the
two interfaces. Initially the authors intended to find such a form for the general behavior that different
models for the surface layer and gas phase could easily be substituted and their consequences assessed. That
goal has not been realized and probably is unattainable in a simple form. Results require detailed numerical
calculations before interesting information is obtained.

(b) Models of the Surface Layer. An important motivation this work was the idea that because the
dynamics of the gas phase are fast (owing to the relatively low material density), then the dynamics of
the surface region should have greater effect on the combustion response function in the range of lower
frequencies covering the resonances of many practical rockets. Two models of the region have been examined
in the analysis:

(i) first order dynamics represented by a constant time lag; and

(ii) unsteady heat transfer, with material properties different from those in the solid phase.

The idea of using a time lag is of course an old one, having been used by Grad (1949) in the first
analysis of combustion instabilities in solid propellant rockets, and later by Cheng (1954)a,b as part of
the Princeton group’s extensive investigations (a sort of technical love affair) of time lag representations of
unsteady combustion. The result (Isella 2001) for the fluctuation of mass flux is

m//m _ efiQt

— —Rp
P[P V1+ (@)

where R, is the response function found in the QSHOD theory. Thus R, has the familiar two-parameter
(A,B) representation. The dimensionless frequency is €2, eq. (2.26) 7 is the dimensionless time lag, equal
to the physical time lag divided by k,/7%. Figure 2.20 shows a typical result (A = 14; B = 0.85; 7 = 1.5).
The graphs illustrate clearly a basic problem with a time lag theory: if the time lag is assumed constant
(i.e. independent of frequency) the response (in this case the real part) possesses an oscillatory behavior
with period increasing with frequency. Such behavior has never been observed in experimental results and
is a consequence of an incorrect assumption, namely that the time lag is constant.

(2.73)

It is true that any response function for linear behavior can be written in a form showing a time lag, but
in general the time lag varies with frequency (Culick, 1968). If the physical model is sufficiently detailed,
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F1GURE 2.20. QSHOD response function with a time lag: thick line: QSHOD theory with
ns = 0, A = 14, B = 0.85; thin line: QSHOD model including a surface layer having first
order (time lag) dynamics.

the dependence of 7 on frequency is found as part of the solution. In particular, the QSHOD theory gives
7(§2) such that the amplitude of the response function decays smoothly for frequencies higher than that at
which the single peak occurs.

The second model for the surface is the only one considered for the results discussed here. It is based on a
simple representation of the dynamical behavior making use of the same solution as that for the homogeneous
solid phase, with two differences:

(i) the uniform and constant properties are different from those of the condensed solid material;

(ii) the solution is forced to satisfy matching conditions of continuous temperature and heat transfer at
the interfaces with the condensed phase and the gas phase.

(c) Models of the Gas Phase. In the following analysis, all combustion processes are assumed to occur
in the gas phase; upstream, only phase changes are accounted for, assumed to take place at the interfaces.
We assume distributed combustion of a simplified form, a single one-step reaction as previous treatments
have used (T’ien, 1972; Huang and Micei, 1990; Lazmi and Clavin, 1992). Solutions must then be found
numerically for the steady and linear unsteady temperature distributions, and subsequently matched to the
solution for the surface layer. For details, consult Isella (2001) and other references cited there and at the
beginning of this section.

2.2.7. Some Results for the Combustion Response Function. Many experimental results exist
suggesting that the responses of actual propellants tend often to be higher than that predicted by the
QSHOD model for some ranges of high frequencies; and possibly the existence of peaks in addition to that
associated with unsteady heat transfer in the condensed phase. Initially the strongest motivation for much
work on the response function has been the need to determine in simple and relatively crude fashion what
processes might have greatest effect on the values of the pressure-coupled response at frequencies greater
than that at which the peak magnitude occurs. Roughly what that means is finding one or more processes
having ‘resonant behavior’ or characteristic times in the appropriate range. Unfortunately the analysis is
sufficiently complicated that it has not been possible yet to deduce any explicit ‘rules of thumb.” Therefore,
we present here a few plots of computed results to illustrate the behavior. What we find may not be realistic.
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A purpose here is to illustrate what one may learn with a simple procedure. The basic or reference
response function computed from the simple QSHOD model is that shown in Figure 2.14. Influences of
dynamics in the surface layer and gas phase will be shown relative to that reference. Because of the immediate
availability of the results we extract details from the thesis prepared by Isella (2001). We will not compare
the results with observed behavior. The purpose here is only to show possible indications of deviations from
the basic QSHOD model, due to several well-defined processes.

(a) Influence of Gas Phase Dynamics. Figure 2.21 is the result when only the dynamics in the gas
phase is added to the QSHOD model. The results are similar to those found by T’ien (1972) and Lazmi
and Clavin (1992), not a surprising conclusion. As expected, the dynamics of the gas phase introduce a
single additional peak in the real part of the response function (~ m//p’). Due to the density fluctuation
p'(m'/im = p'/p+v'/0), the real part of the admittance function (~ v'/7) shows a negative depression where
the real part of the response function R, has a rise.

5

—— Real part of R,
1 2 N [ Imaginary part of R, 7]

—--- Real part of acoustic admittance

FIGURE 2.21. Combustion response, QSHOD model with gas phase dynamics (Isella 2001;
Isella and Culick 2000).

(b) Combined Influences of the Dynamics of the Surface Layer and the Gas Phase. The dynamics of
the surface layer itself are the same as those of the condensed phase, but with different values of the defining
parameters. Figure 2.22 illustrates the effects of changing the surface activation energy and the material
density on a function characterizing the response of heat transfer in the layer. The shape of this function
differs from that (Figure 2.14) of the basic response function because it is affected by the dependence of
several flow variables on frequency.

Finally, Figure 2.23 shows the result for one example of the response function with the dynamics of both
the surface layer and the gas phase accounted for. Evidently for the conditions examined here the dynamics
of the gas phase has a greater effect on the response, in the higher frequency range, than does the surface
layer.

2.2.8. The Combustion Response and Possible Sensitivity of Global Dynamics to Velocity
Coupling. A fundamental problem for practical applications concerns connections between the unsteady
motions taking place in a motor and the features of the combustion processes responsible for that behavior.
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FIGURE 2.22. Effects of activation energy and density on the dynamics of the surface layer
(Isella 2001; Isella and Culick 2000).
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Ficure 2.23. Combustion response function including the dynamics of the surface layer
and the gas phase (Isella 2001; Isella and Culick 2000).

This is far from a solved problem, but we are able to make some tentative observations in respect to both
linear and nonlinear characteristics that have already been observed or might be expected.

We will often use the term global dynamics to mean the dynamical behavior of the system in question,
a combustion chamber, its source of energy and, in some cases, peripheral equipment. Thus we intend the
term to have a general meaning, but generally we really mean global dynamics as indicated by the evolution
of the unsteady pressure. Recall that the pressure is the one variable we always have available, and it is
often the only variable measured. In this section we are examining only computed results interpreted as far
as possible in respect to physical behavior. Hence we have at our disposal

entire motion, but the amplitude of harmonics as well.

117

17The phases of the motion are also available but we will not consider them here.

not only the amplitude of the
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In certain respects, the behavior discussed in this section is well beyond the preparation provided so
far. We will be examining, without clarifying the basis, certain consequences of the dependence of nonlinear
behavior on linear behavior. The main indicator is the amplitude of the limit cycle, or the amplitudes of the
modal components of limit cycles. It happens, as we will see in Chapter 7, that the nonlinear gasdynamics do
not introduce physical parameters other than the properties of the gas. Thus when the linear parameters—
the growth rate and phase for each mode—are changed, those changes are reflected directly in the limit cycle.
In other words, the amplitudes in the limit cycle serve as a diagnostic revealing the consequences of changes
in the linear processes. Put another way, we evidently have a means of investigating the consequences for
the global dynamics of modifying the linear behevior of the system

The idea of somehow connecting linear and nonlinear behavior is of course not new, and is widely applied
in other fields. For example, without having a nonlinear theory as a basis for quantitative reasoning, early
discussions by Price, McClure and others used observations as the basis for discussing the subjects treated
here. We will not review experimental results. Levine and Culick (1972, 1974) appealed to both numerical
calculations and an early form of the analysis developed here in Chapters 3 and 4 to investigate some
properties of limit cycles with modest success. The approach was greatly extended by Levine and Baum
(1984, 1985) who produced substantial results. They obtained the first quantitative theoretical results for
subcritical bifurcations (pulsed instabilities) in solid propellant rockets. To obtain those results they needed
a nonlinear response function, explained in Section 7.11. Burnley (1996) and Burnley and Culick (1997)
confirmed a conclusion reached by Levine and Baum (1983) that a requirement for the subcritical bifurcation
seemed to be that the response should contain both velocity coupling and a threshold velocity (Section 7.11).
The question of what behavior of the response function is necessary remains open. Experimental results
support the results qualitatively, but there seems to be little possibility at the present time of making firm
quantitative connections with theory.

Currently an unsolved problem is the occasionally observed apparent sensitivity of the global behavior
to relatively small changes of propellant composition (see remarks (i) and (ii) in the introductory part of
Section 2.2.6). We assume that small changes of composition likely have relatively small effects on the
magnitude and phase of the response function. Therefore, we are really investigating the effects of small
changes in the response function on the observable global dynamics. The main (but tentative) conclusion
is that the sensitivity of the dynamics to changes in the response associated with velocity coupling may be
significantly greater than that for the response due to pressure coupling. The implications for directions in
future research are substantial.

Isella (2001) and Isella and Culick (2000) have reported the main results. Here we will only cite a
couple of examples. The idea is to use the framework described in Section 3.2 below to compute the
growth and limiting amplitudes for limit cycles. Essentially a modest parameter study has been done, the
response function itself (i.e. the combustion dynamics) being the parameter. Following the presentation first
introduced by Culick, Isella and Seywert (1998), it is helpful to display the response function as a function
of frequency, and the amplitudes of the modes forming a limit cycle, as two parts of the same figure, such
as Figure 2.24 prepared as a typical case for the QSHOD response function. The vertical lines in the upper
parts of the figures identify the non-dimensional frequencies. For these calculations the model chamber is
cylindrical, 0.6 m long, 0.025 m in diameter, operated at a chamber mean pressure equal to 1.06 x 107 Pa.
It is the same motor considered previously by Culick and Yang (1992).

Figures 2.24-2.27 show results obtained for the same motor and basic combustion response but including,
respectively, surface layer dynamics; a time delay; and dynamics of both a surface layer and gas phase, all
according to the analysis described above.
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FIGURE 2.26. Results of a simula-
tion including a time delay (7 =
1.5) (Isella 2001).
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FIGURE 2.27. Results of a simula-
tion including dynamics of a surface
layer and the gas phase (Isella 2001).

Owing to the significantly different dynamics added to the basic QSHOD model, the three examples
illustrated in Figures 2.26-2.27 show quite different response functions—all, it must be emphasized, rep-
resenting responses due to pressure coupling. The question here concerns indirectly the sensitivity of the
response function to changes of composition (not the qualitative dynamics) and consequently the sensitivity

of the global chamber dynamics.

In general, models based on pressure coupling do not seem to show dramatic sensitivity of the combustor
dynamics to small changes of composition. That result motivates investigation of similar problems with a
simple model of the response due to velocity coupling. The idea is based on the model introduced by Levine
and Baum (1988). This work is discussed at greater length in Section 7.11.1.

RTO-AG-AVT-039



z?

COMBUSTION DYNAMICS AND MECHANISMS OF COMBUSTION INSTABILITIES ORCANIZATION

Some recent work done on the dependence of the global dynamics on the functional form of the equations
used in the analysis by Ananthkrishnan et al. (2002, 2004) seems to show that the absolute value of the
velocity itself, as it appears in a simple model of velocity coupling, is sufficient to produce a subcritical
bifurcation (pitchfork) followed by a fold (saddle-node bifurcation). Those ideas are developed further in
Chapter 7; the point is that a subcritical bifurcation, followed by a fold or turning point, provides conditions
under which pulsed or triggered nonlinear instabilities may exist. Although we have not yet firmly established
the point, it seems that with the QSHOD basic model, the dynamics of a chamber seems to be much more
sensitive to velocity changes than pressure changes. The conclusion is apparently related to the way in which
the global dynamics depends on the unsteady velocity and the phases established among the components of
the motion. That is not a startling result in view of the different forms of the combustion terms provided
by velocity coupling, in contrast to pressure coupling, in the modal equations.

2.2.9. Generation of Vorticity and Vortex Shedding. There are two phenomena of rotational
flow that have significant influences on the stability and behavior of unsteady motions in solid propellant
rockets:

(1) generation of unsteady vorticity at burning surfaces; and

(2) coupling between acoustical motions and large vortices shed at obstacles or growing out of the region
adjacent to the lateral burning surface.

Both of these phenomena have motivated much interesting work that has flourished particularly in the past
10-12 years. Significant effort has been expended, mainly in the U.S. and France, on theory, analysis, nu-
merical simulations and experiments. The reasons for the strong interests are different for the two processes.
Both affect stability, but unlike the generation of distributed vorticity, shedding of large vortices has been
unambiguously identified as a mechanism in several large rockets, notably the Shuttle SRM, versions of the
Titan motor, and the Ariane 5 booster motors. Accordingly, several large research programs have been de-
voted to understanding the connections between vortex shedding and acoustic field. Blomshield and Mathes
(1993) have given the most thorough discussion of the problem existing in the Shuttle motors. Much infor-
mation exists in internal reports of continuing observations of Shuttle motors in flight, but little has been
done to determine how the oscillations might be reduced.

In contrast, the corresponding problem in the Ariane 5 has been the subject of a great deal of work in
France. See Vuillot and Casalis (2002) and several other papers in the course “Internal Aerodynamics in
Solid Rocket Propulsion” given at the von Karman Institute (2002). The reason for the intensive concern
has been the necessity to install vibration dampers between the solid boosters and the main vehicle. As a
result, the payload has been reduced by a significant amount, apparently as much as two hundred kilograms.

(a) Generation of Vorticity. The generation of vorticity at a burning surface is special to solid rockets.
It occurs whenever there is a variation of pressure fluctuation, and hence a fluctuating velocity, in the
direction tangential to a surface from which there is average mass flow normal to surface into the chamber.
The vorticity is created because the velocity inward is perpendicular to the surface—the ‘no-slip’ boundary
condition. Imposition of a tangential velocity fluctuation, due to the non-uniform pressure along the surface,
on the average inward flow constitutes an inviscid mechanism of vorticity generation. Moreover, conservation
of mass in the region close to the surface causes a periodic pumping action normal to the surface. Both
the vorticity generation and the pumping exist at the expense of work done by the impressed acoustic field
and therefore must involve exchange of energy with the acoustic field in the chamber. Sketches of the two
processes are shown in Figure 2.28.

An oversimplified and incomplete interpretation of the phenomenon due to the no-slip boundary condi-
tion is that the incoming average flow normal to the surface gains some kinetic energy because it must acquire
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FIGURE 2.28. Sketches illustrating two primary processes involved in the generation of
vorticity. (a) flow-turning; (b) ’pumping action’: oscillatory motion parallel to the boundary,
in the boundary layer, induces oscillatory motion normal to an impermeable wall; (¢) similar
to (b) with mean flow through the wall.

the oscillatory motion parallel to the surface. Thus there is effectively a “turning” of the flow in the direction
of its passage out the nozzle. In a rocket chamber, for example a cylinder, both the average and unsteady
velocities must become parallel to the axis of the chamber as the flow approaches the axis. The inelastic
acceleration of the mass flow causes a loss that is the unsteady counterpart of the loss accompanying mass
injection into a duct flow. This “flow-turning loss” was, not surprisingly, discovered in analysis of unsteady
one-dimensional flow with mass injection at the lateral surface (Culick 1973). However, the connection with
vorticity generation was not mentioned. It was Flandro (1995) who clarified the phenomenon in terms of
the unsteady production of vorticity, emphasizing the central importance of the no-slip boundary condition.
Flandro carried out the first rigorous formal analysis of the problem, work that has since prompted a stream
of calculations on the basic problem at hand, as well as variations (among them are Majdalani, 1999; Kassoy,
1999; Majdalani, Flandro and Roh, 2000; Malhotra, 2004).

At least five processes must be considered to assess completely the net effect of distributed vorticity on
the stability of acoustical motions in a combustion chamber:

) the generation process, Figure 2.28(a);
) the ‘pumping action’, Figure 2.28(c);
(iii) interaction of the vorticity with the acoustic field in the chamber;
(iv) interaction of the vorticity with the exhaust nozzle; and
) interactions between the generated vorticity waves and turbulence in the chamber.

In practice, the matter of stability in the context of combustion instabilities always means stability of pressure
oscillations. It is often helpful to interpret stability in terms of growth or decay of acoustic energy, but care
must be exercised: Because the problem in toto is very complicated, even in the limit of linear behavior it
is easy to obtain misleading, or incorrect, results. The presence of the mean flow and the various paths of
energy transfer make intuitive construction of an equation for the time evolution of acoustic energy a delicate
task. To ensure accurate theoretical results, the formalism developed here in Chapters 3—7 seems to offer
the best method; see, for example, Flandro (1995) and Section 6.9.

The ‘flow-turning’ contribution identified in the simple one-dimensional approximation by Culick (1972,
1973) was later shown by Flandro (1995) to be, surprisingly, exactly correct. Interpretation of the process,
a loss of energy for the acoustic field, in terms of generation of vorticity cannot be accomplished within the
one-dimensional approximation. It was somewhat misleading that Culick vaguely related the flow-turning
loss to viscous processes associated, at least partly, with flow in the acoustic boundary layer, a speculation
that misses the mark. That proposition led to calculations of corrections to the classical theory of the
acoustic boundary layer (Flandro 1974, Vuillot and Kuentzmann 1986) which have been superceded by the
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more recent works by Flandro (1995)a,b; Majdalani and Van Moorhem (1997) and Majdalani (2000) treat
essentially the same problem but contain some errors of understanding.

Unfortunately, the pumping action associated with the generation of vorticity was missed by Culick in
his one-dimensional analysis.'® Pumping in this context refers to a fluctuating velocity induced normal to
the surface if the acoustic velocity tangential to the surface is not uniform, a direct consequence of continuity.
This motion makes the surface appear as an effective oscillating piston tending, if the phase of the motion
is suitable, to drive waves in the chamber. Flandro (1995) has shown that for a cylindrical chamber with
uniform flow entering along the entire boundary, the net effect of the generation of vorticity and the pumping
is zero for purely longitudinal acoustic modes. Whether or not this energy gain is accounted for is the origin
of a controversy centered in the ‘true’ value of the flow turning, i.e. whether it is a loss, a gain, or has no
net effect. At this point, the correct answer seems to be that there is no net effect for a cylindrical chamber,
but the amount of loss or gain must be calculated separately for each geometry.

There is no question that the processes (i) and (ii) in the list given above are always present. Whatever
may be the net effect on stability, due to these two contributions only, nevertheless waves of vorticity are
generated at the surface and are carried by the average flow into the chamber. Subsequent interactions with
the acoustic field in the chamber may cause energy transfer to or from the acoustic field—there seems to be
presently no basis for giving a definite answer.

If the distributed vorticity survives passage to the nozzle, interactions with the non-uniform flow have
no direct effect on the stability of acoustic waves. Any energy transferred between the vorticity waves and
the mean flow has no consequences for the acoustic field. Thus, process (iv) will not contribute to stability.
However, it is conceivable that those interactions may be accompanied by generation of pressure waves. The
necessary analysis has not been carried out to determine whether the effect is stabilizing or de-stabilizing.
Crocco and Sirignano (1964) have given the most thorough treatment of the influences of supercritical nozzles
on stability including vorticity. No work has been done to clarify the case when the vorticity is that produced
in flow turning. Culick (1961, 1963) had earlier reported a few results for the behavior of three-dimensional
waves incident upon a choked exhaust nozzle, but he did not include vorticity.

On the other hand, the waves of vorticity must interact with the turbulence field necessarily present,
process (v). It seems most likely that as a result the vorticity is destroyed. If the destruction occurs close to
the burning surface, then the processes (iii) and (iv) become almost irrelevant to stability. We need account
only for the processes of generation and pumping. At the present state of analysis and understanding, this
seems to be the best resolution of the matter. Thus, for stability of longitudinal motions in a cylindrical
chamber, the net effect of flow-turning is zero, as Flandro has reasoned. Contrary conclusions have been
reached by others, partly supported by appeal to experimental results, which usually contain substantial
uncertainties. The preceeding reasoning rests entirely on the equations of motion.

We discuss further the theoretical basis for the preceding remarks in Chapters 6 and 7. Our conclusion
here is that generation of vorticity at a burning surface is a mechanism for combustion instabilities but its
influence on attenuation or amplification is often small, much smaller, for example, than the damping due
to a choked nozzle. Calculations must be done for the particular grain geometry in question—there is no
simple generalization that can be formulated.

(b) Shedding of Large Scale Vortices. So far as practical consequences are concerned, the production
of large vortices in motors has been far more significant than has the generation of vorticity discussed
above. The latter is present in all solid rockets, and contributes always to linear stability, although the

181n the same paper, Culick treated the phenomenon of ‘pumping’ as an interpretation of the way in which an acoustic
boundary layer on an impermeable surface attenuates waves. However, he overlooked the analogous process for a permeable
surface. The calculations for the acoustic boundary layer are given here in Annex D. See Section 6.9 for the correct one-
dimensional analysis.
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true quantitative value remains controversial. On the other hand, while the prediction and influences of
vortex shedding may contain uncertainties, it is fair to say that the general characteristics are well-known
and settled. Moreover, vortex shedding has been identified unambiguously as the mechanism for oscillation
observed in several large motors including the Space Shuttle SRM, the Titan IV SRMU and the Ariane 5
SRM. Note that the mechanism has apparently not been active in small operational motors.**

The main reason for that conclusion seems to be the required special near-coincidence between the
frequency of shedding and the frequency of an acoustic mode. Laboratory tests demonstrated that basic
feature (Magiawala and Culick 1979; Nomoto and Culick 1982; Aaron and Culick 1984). Satisfaction of the
condition requires suitable combinations of geometry, mean flow speed, thickness of shear layer at the origin
of the vortex shedding and acoustic frequency which depends mainly on the speed of sound and length of
chamber. Nevertheless, only a simple apparatus, sketched in Figure 2.29, is required to demonstrate the
phenomenon.

' L=128.0 |
g ‘
L ‘ i
5.1 V -—— _?:I | - )
! 342 ! O
(Variable)
Blower
(0-100 cfm)

FIGURE 2.29. Sketch of an apparatus for demonstrating the excitation of acoustic modes
by vortex shedding at a pair of annuli. All dimensions in centimeters (adapted from Culick
and Magiawala 1979).

Three forms of vortex shedding have been unambiguously identified as mechanisms for exciting pressure
(acoustic) oscillations in motors, illustrated in Figure 2.30: shedding from obstacles, usually annular rungs
of restrictors or inhibiting material (Flandro, 1986; Vuillot, 1995); shedding from backward-facing steps
and edges existing due to the geometry of the grain (Flandro, 1986 and Vuillot, 1995); and parietal vortex
shedding in which vortices are created as a consequence of instabilities of the mean velocity profile in the
vicinity of a burning surface (Casalis and Vuillot, 2002). The first two forms of vortices arise from unstable
shear layers so one may state that generally the presence of vortex shedding as a mechanism is due to an
instability of the average flow profile.

That conclusion suggests the obvious advice for avoiding this cause of pressure oscillations: Design the
grain to exclude all possibilities for unstable velocity profiles. Thus there must be no obstacles, backward
facing steps or edges, and the flow along burning surfaces must nowhere reach critical conditions for local
instability. In practice those constraints may be too severe to be satisfied entirely. The design problem will
then come down to producing a configuration in which the strength of the vortices, and their coupling to
the acoustic field, will be minimal even though not necessarily nonexistent.

Suppose, then, that one or more instabilities of the mean flow exist in a chamber. Is it necessarily so
that the vortices that may develop will excite and support unacceptable pressure oscillations? No, because
we are concerned here once again with a case of coupled oscillatory systems: The system of pressure waves
filling the chamber, and the array of vortices periodically shed from some relatively small region. The two

9The cases of vortex shedding from obstacles and from backward-facing steps have been unambiguously identified in
full-scale combustors. So far as the author is aware, parietal vortex shedding, in contrast to shedding from obstacles, has not
been shown definitely to exist in full-scale devices although it has been unquestionably identified in laboratory tests (Avalon
et al. 2000; Vuillot and Casalis 2002). The Ariane 5 is the most likely candidate, but the case still remains open to question;
direct observation has not been accomplished.
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FIGURE 2.30. Vortex shedding from (a) an annular obstacle composed of residual inhibitor
material; and (b) an edge of a backward facing step at a transition zone; (c) due to instability
of the mean flow near a burning surface (parietal vortex shedding). Parts (a) and (b) from
(Flandro 1986); Part (c) from Vuillot and Casalis (2002).

systems are coupled. The vortices, by some process such as that discussed below, may transfer a portion of
their energy to the pressure waves; and the pressure waves—or their associated velocity oscillations—have
strong influence on the initiation of the vortices by triggering, and, by frequency locking, on instabilities of
the mean flow.

That behavior has long been known (e.g., see Rockwell and Naudascher 1979 and Naudascher and
Rockwell 1980), implying that the oscillations found in rocket motors require near-coincidence between the
shedding frequency and the frequency of an acoustic mode of the chamber. The truth of that conclusion for
configurations appropriate to solid rockets seems first to have been demonstrated with the simple laboratory
tests cited above. Satisfaction of the condition requires appropriate combinations of geometry; mean flow
speed; suitable properties in the region of mean flow where the instability originates; and the acoustic
frequency, which depends mainly on the speed of sound and a characteristic dimension, usually the length
of the chamber. Sufficient data have been taken for the problem to construct useful scaling laws, ‘rules of
thumb’ for design; see the references cited.

The appearance of vortex shedding in the Titan motors caused formation of a very useful program of
extensive tests carried out in a subscale cold-flow model of the motor (Dunlap and Brown 1981; Brown et
al. 1981, 1985). Those tests produced extensive data for the internal flow fields, eventually including results
that formed part of the basis for the theoretical work on unsteady vorticity cited in the preceeding section.

In 1986, Flandro reported his elaboration and extension of the analysis he had carried out with Jacobs
twelve years earlier. The work brought together previous ideas of instability of a shear layer as the initiation
of a shear wave; growth and roll-up of the wave into a vortex; propagation of the vortex at a speed something
less than that of the average flow; and impingement of the vortices on a solid surface, producing a pulse
of pressure that can excite and sustain acoustic waves in the chamber. An acoustic pulse will propagate
upstream to the region of the shear instability, possibly to initiate another disturbance to be amplified within
the layer, later to develop into another vortex, etc., etc. The process will continue, becoming periodic when
the frequency of the vortex shedding is nearly equal to the acoustic frequency. In that work, Flandro also
fitted his results in the general analysis of linear instabilities covered here in Chapter 6.

2-48 RTO-AG-AVT-039



COMBUSTION DYNAMICS AND MECHANISMS OF COMBUSTION INSTABILITIES

When that behavior occurs in a rocket, toroidal vortices are shed from the inner edge of an annular
obstruction, as in the Shuttle and Titan motors, or from edges such as those at the transition from longitu-
dinal slots to the main cylindrical chamber (Figure 2.30(b)). The acoustic frequency is determined mainly
by the length of the chamber, while the vortex shedding frequency is influenced by the local geometry and
average flow. The local geometry determines the growth of the shear layer and in particular its momentum
thickness, a fundamental parameter defining the conditions for instability. Flandro’s analysis—an adaptation
of earlier work by Michalke (1965)—and experimental results, have confirmed that the vortex shedding is
characterized by the value of the Strouhal number, St, at which the growth rate of an unstable disturbance
is maximum. The Strouhal number is defined as the product of shedding frequency fs, times a characteristic
length 6, divided by a characteristic speed U, so the shedding frequency is given by the formula

U
fs =5t~ (2.74)

where St has some value roughly constant and set by the geometry. The frequencies of the acoustic modes
are only weakly dependent on the mean flow of the Mach number so small but do depend strongly on the
geometry. For a chamber having length L and closed at both ends?°, the longitudinal modes have frequencies
given by

h=h% (2.75)

where a is the speed of sound and £ = 1,2, ... identifies the mode.

The results reported by Nomoto and Culick (1982) confirm the truth of the preceding ideas for a simple
laboratory apparatus consisting of two annuli fitted in a tube, separated by some distance ¢ and having
a mean flow in the axial direction. Figure 2.31 is a photo of the flow in the vicinity of the two baffles.
Figure 2.32 shows some results with lines drawn according to (2.74) and (2.75) and data points indicating
the occurences of oscillations without regard to amplitude. For the conditions of the experiment, significant
oscillations were excited only in regions in which (2.74) and (2.75) are simultaneously satisfied. Note that the
separate diagonal lines for shedding frequency given by (2.74) represent cases in which there are 1,2,3,...
vortices existing between the annuli at any given time. This interpretation of the shedding frequency was
first given by Rossiter (1966).

FIGURE 2.31. Typical flow between the baffles when a pure tone is generated (Nomoto and
Culick 1982).

20 A rocket physically closed at one end and exhausting through a choked nozzle appears to acoustic waves as if it is
approximately closed at both ends.
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FIGURE 2.32. Experimental results for the excitation of acoustic modes by vortex shedding

(Nomoto and Culick 1982). Open circles identify conditions when significant oscillations
were observed. The length of the chambers from inlet to exhaust.

A potentially important implication of Figure 2.32 is that the dependence of the observed frequency
of oscillation may not have an obvious—or simple—dependence on the length and mean flow speed during
the firing of a solid rocket. In fact, as several researchers have noted (see, e.g., Vuillot 1995) the following
reasoning shows that the shift of frequency with time is a good basis for distinguishing vortex shedding as
the mechanism for oscillations. However, in practice, unambiguous distinction between this form of vortex
shedding and parietal vortex shedding as the primary cause of observed oscillations may not be easy (Vuillot
and Casalis, 2002).

Instabilities sustained by feedback involving combustion dynamics almost always show dependence on
geometry closely given by the formulas of classical acoustics: f, ~ 1/L. Thus, if there is little or no propellant
cast at the head end, the longitudinal frequency is nearly constant in time. Or, if, as usually is the case for
large motors, there are slots and fins at the head end, the effective length of the chamber tends to increase
during a firing and hence the frequency of oscillation decreases.

However, according to the results given in Figure 2.32, because the mean velocity may increase during
a burn as more propellant is exposed, the frequency of vortex shedding may increase. Coupling between the
process of vortex shedding and the acoustic modes occurs over a broad range of frequency. It is possible (and
has been observed) that the frequency suffers discrete changes, corresponding to transition between groups
of data points shown in Figure 2.32; that is, the state of the oscillating system shifts because the number of
shed vortices present between the shedding and impingement points changes.

The potentially important and very interesting second cause of vortex shedding was discovered several
years ago by Vuillot and his colleagues at ONERA while investigating the mechanism for unstable oscillations
observed in the Ariane 5 solid rocket boosters. Subscale firings of motors showed that large vortices were
initiated, grew, and were shed from the region near the burning surface. (Vuillot et al. 1993; Traineau et
al. 1997). Hence the phenomenon was called “parietal vortex shedding” by Lupoglazoff and Vuillot (1996).
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In an exemplary systematic research program, the group at ONERA have established most of the char-
acteristics of parietal vortex shedding relevant to practical applications. Some issues of scale apparently
remain, but very good agreement has been found between subscale hot firings; subscale tests with flow visu-
alization (Avalon et al. 2000); and numerical analyses of stability and vortex shedding. LeBreton et al. (1999)
have given a good review of the subject, including some results for the effects of residual combustion which
in this situation may not be negligible. Moreover, there is strong evidence of significant interaction between
shedding from obstacles and parietal vortex shedding. The strength and significance of those interactions
must clearly depend on the geometry and (changing) flow conditions in the chamber.

Possibly the most important aspect of this subject is weak understanding of nonlinear behavior. Ap-
parently only Aaron (1985) has attempted a simple explanation, with only modest success. No simple
explanation exists for the amplitudes of oscillations that can be generated by coupling with the shedding
of large vortices. According to LeBreton et al. (1999) parietal vortex shedding produces, in their examples,
larger amplitudes of oscillation than does shedding from an annulus (inhibitor ring in a segmented rocket).
It would clearly be a significant aid to design and development if a rule of thumb could be constructed to
place an upper limit to the amplitudes of oscillation caused by vortex shedding. Because the mechanism
involves conversion of mechanical energy of the near flow to acoustic energy, it is likely that the maximum
possible amplitudes must be much smaller than those that can be generated by coupling between acoustics
and combustion dynamics. However, even when the amplitudes are well below values causing damage to the
motor, the associated levels of oscillatory vibrations may be unacceptable to the payload.

2.2.10. Distributed Combustion. Combustion of the major components of a solid propellant—the
primary oxidizer and the binder in the case of composite solids—normally takes place to completion near
the burning surface. Thus the term ‘distributed combustion’ refers to combustion of particles as they are
carried into the volume of the chamber. In particular, almost all attention has been directed to residual
combustion of aluminum for which there is much photographic evidence. Steady combustion of aluminum
particles has long been and continues to be a subject of research owing to its vital importance to the efficiency
and performance of motors, and in the formation of slag, a general term referring to condensed material.

Relatively little notice has been taken of the possible influences of residual combustion on the stability of
motors. Probably the main reason for this lack of interest is the general view that the existence of combustion
instabilities in motors can be satisfactorily explained by other mechanisms, notably the dynamics of surface
combustion and vortex shedding. It appears that the dynamics of aluminum combustion within the volume
of the chamber must provide at most a small contribution to stability. There are at least two reasons for
this conclusion: the available data contain uncertainties too large to allow identification of the influences of
unsteady aluminum combustion; and any destabilizing tendencies of the particles are roughly compensated
by the attenuation of unsteady motions due to the presence of particles. The second effect is known to be
significant if the particles are inert and have suitable sizes for the frequencies of the instability in question.

Several works (Marble and Wooten 1970; Dupays and Vuillot 1998) have treated the effects of condensa-
tion and vaporization of non-burning particles, on attenuation of acoustic waves. Whether the attenuation
is increased or decreased depends on many factors, including the sizes of particles and the rates at which the
particles gain or lose mass. When, for example, a particle is vaporizing, it seems that in the presence of an
acoustic wave, the phenomenon of ‘low turning’ discussed in the preceding section should cause increased
attenuation for a given particle size and frequency. However, while the analysis by Wooten (1966) sup-
ports that conclusion, recent work by Dupays (2000) suggests that the result is not always true. Moreover,
suggestions have been made by investigators of combustion instabilities in ramjets (Sirignano et al. 1986)
and in liquid rockets (Grenda, Vanketaswaram and Merkl 1995) that the process of vaporization of liquid
drops is destabilizing. Those conclusions may be misleading, due to implied direct connections between the
vaporization and burning rates. It may in fact be the case that the destabilization found in practice is due
to combustion rather than vaporization per se.

RTO-AG-AVT-039 2-51



z?

COMBUSTION DYNAMICS AND MECHANISMS OF COMBUSTION INSTABILITIES ORCANIZATION

Owing to the necessary connection between vaporization and combustion of particles, the problem of
residual combustion presents certain difficulties of distinguishing what process is really responsible for at-
tenuation or driving of waves. The most extensive experimental work on the problem in the U.S. has been
done by Beckstead and his students (Beckstead, Richards and Brewster 1987; Raun and Beckstead 1993;
Raun et al. 1993; Brooks and Beckstead 1995).

One of the most compelling reasons for investigating the matter was the discovery of anomalous (and
still not completely understood) results obtained with a device called the ‘velocity-coupled T-burner’. In this
configuration, large areas of propellant are mounted in the lateral boundary to emphasize the interactions
between surface combustion and velocity fluctuations parallel to the surface. For reasons not discussed
here, Beckstead concluded that residual combustion was possibly a reason that unusually large values of
the response function were found. The idea was based partly on the suspicion that the tangential velocity
disturbances can strip incompletely burned aluminum from the surface. Subsequently, with both calculations
and further experiments (Raun and Beckstead 1993), Beckstead has strengthened his case that the effects
of unsteady residual combustion should not be dismissed out-of-hand. It is worth noting the conclusion by
Brooks and Beckstead (1995) that the greatest effect of residual combustion (of aluminum) on stability is
indirect, due to its effect on the mean temperature profile.

More recent work on distributed combustion has been carried out in France, motivated by the problem of
oscillations in the Ariane 5 motor discussed in Section 2.2.6. The program devoted first to non-reacting two-
phase flow and later to reacting flow began, apparently, with the dissertation by Dupays (1996). The most
recent discussion of the work seems to be the review articles prepared by Dupays et al. (2002), but a broader
view of the matter is presented in the excellent article by Fabignon et al. (2003). Aluminum combustion
is discussed, not at great length, in the context of acoustic oscillations driven by vortex shedding with the
Ariane 5. A main conclusion must be given close attention: Relatively small drops amplify oscillations,
but large drops (diameters 1254, burning to 60u) attenuate the motions. It appears that little further
work has been accomplished to investigate the reasons for this result which clearly has important practical
implications. Simulations of unsteady two-phase flow in the Ariane 5 P230 booster motor have also been
described by Lupoglazoff et al. (2000). See Section 6.11. It’s an important topic. The subject of the effects of
interactions between particles and gas seemed at one time to be quite well in hand. That view changed with
recognition that at the temperature of flows in solid rockets residual combustion distributed in a chamber
is likely significant under some realistic conditions. How significant, and how widespread the conditions are,
has not been defined. It’s an interesting subject that should be better understood.

2.3. Mechanisms of Combustion Instabilities in Liquid-Fueled Systems

Apart from differences in geometry, the primary distinctions between different propulsion systems are due
to the internal physical processes. Some are independent of geometry, but others—such as flow separation—
are not. In this and the following sections, we discuss the four oldest and main ideas that have been proposed
for explaining combustion instabilities in liquid-fueled systems: processes associated with droplet formation
and burning; interpretation with a time lag; convective waves; and vortex shedding and combustion. The
ideas are not new and much of the material covered was developed during the period 1950-1990. Relatively
little has been accomplished in general since that time, although in the past decade much has been done to
improve the level of detail. While all have been prompted by experimental results, they differ greatly in the
extent to which they have been developed.

2.3.1. Atomization, Droplet Vaporization and Burning. Some years after the time lag model
had been developed, work at the NASA Research Center (Priem and Guentert 1962 and Priem 1965) showed
that the stability of a liquid rocket motor could be controlled by varying the characteristics of the vaporiza-
tion process. The conclusion followed from the results of numerical solutions to the equations for nonlinear
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unsteady motions in a chamber. Source terms were approximated with models of the atomization, vapor-
ization and burning. Variations of characteristic parameters showed that atomization and vaporization were
the dominant rate processes determining the stability limits. That conclusion led to a series of studies
particularly emphasizing vaporization.

Because of the difficulty of extracting precise conclusions from numerical analyses, Heidmann and Wieber
(1966a, 1966b) devised a method for assessing the vaporization process alone. A droplet is injected axially
in a steady flow. An acoustic field is superposed having the spatial distribution of the lowest first tangential
mode for a cylindrical chamber, sin 6J;(k117). The motion and vaporization rate of the droplet is calculated
throughout its history. By superposing the results for an array of injected drops, assumed not to interact
with one another, one may find the local fluctuation of vaporization rate throughout the chamber. That is
the mass source term wj in the continuity equation for the gas phase (see Annex A).

Heidmann and Wieber (1966a) defined a “response factor”, N, to interpret their results:

_ N W/
N=>" o (2.76)
where Y here denotes the sum over all droplets in the volume considered. They gave results for N as a
function of various parameters. Typically, N shows a peak of about 0.6-0.9 in a frequency range 0.04—0.1
Hertz. Results obtained for n-heptane over fairly wide flow conditions were correlated with a dimensionless
parameter containing droplet size, chamber pressure, gas velocity and a dimensionless amplitude of the
oscillation.

In a later work, Heidmann and Wieber (1966b) used a restricted form of Rayleigh’s Criterion and a
simpler linear analysis to produce essentially the same conclusions. The new definition of the response factor
was

27 /w
J =—Lat
0
N = Z DT (2.77)

OK

These analyses amount to detailed examination of a particular process contributing to the time lag discussed
Section 2.3.2. Substitution of the real part of (2.94) in (2.77) gives

N =n(1 — coswr) (2.78)
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Heidmann and Wieber found that their numerical results could be approximated quite well in the range
Tyw < 1 by the values

n = 0.21

2.
T =4.57, (2.79)

where 7, is the mean droplet lifetime. This comparison is shown in Figure 2.33 taken from Heidmann and
Wieber (1966).

Note that the function (2.79) oscillates and therefore becomes a poor approximation for wr, > 1, as
show by the solid line in Figure 2.33. The vaporization rates seem physically reasonable for the conditions
shown, so one must conclude that the time lag model fails at higher frequencies. Subsequently, Tong and
Sirignano (1986a, 1986b, 1987) re-examined the problem of unsteady vaporization. With their more detailed
model including the effects of unsteady heat transfer in the gas phase, they concluded that their vaporization
rates are much higher than those found by Heidmann and Wieber.

More strongly, Tong and Sirignano proposed that unsteady droplet vaporization is a potential mechanism
for driving combustion instabilities. Heidmann and Wieber had earlier noted that the response factor they
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FIGURE 2.33. Vaporization response according to Heidmann and Wieber (1966).

calculated for the vaporization process was less than that calculated for the nozzle losses. Thus, although
vaporization itself did add energy to the acoustic field according to their analysis, the effect was too small
to be a mechanism for instabilities. Tong and Sirignano concluded that their results show sufficient energy
transfer from the vaporizing droplets to the acoustic field to qualify as a mechanism in actual systems?'.
Their conclusion is based solely on the p — v work done by the process of vaporization and does not include
any energy release due to combustion. The proposal is evidently wrong, for the following reasons reached by

reasoning from at least two points of view.

First, we must emphasize that none of the preceding conclusions involved combustion: The assertion is
that coupling between pure vaporization and the acoustic field produces net flow of energy to the oscillations
in the gas. The contrary conclusion was reached by Marble and Wooten(1970) and Marble (1969), that both
condensing and vaporizing droplets attenuate acoustical motions. In Section 2.2.10 we noted that recent
work at ONERA showed that a more complete analysis accounting for condensation and vaporization in
greater detail leads to slightly different conclusions.

The reason for the opposite conclusion seems to be that not all interactions between the droplets and
the acoustic field are accounted for in the calculations by Heidmann and Wieber, and by Tong and Sirig-
nano. Their conclusions were based on using Rayleigh’s Criterion, but only one term was considered. They
argued that by analogy with Rayleigh’s original statement concerning fluctuations of heat addition, the same
criterion should apply to mass addition. Therefore, as in equation (2.77), only the integral involving w; was
computed; a positive value indicates the possibility for driving the acoustic field. However, the derivation
given later will show that the correct form of the criterion involves several contributions. Considering only
those associated with the conversion of liquid to gas, the result can be found (Culick, 1988, Section 2.5)

y ,
Ae, = —n / dv / {(7 1) {5@} + (7 — 2w + <h; - fi> m}
PE; . / Py (2.80)

+¥ (513/ + m&z;) : ﬁ;,] dt

21Later application of this work to ramjet combustors is discussed briefly in Section 2.4.5
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There is indeed a term proportional to the integral of w/p/, but it is multiplied by (h; — €) which
contains the heat of vaporization. There are also significant amounts of energy transfer associated with the
terms involving 6Q)] + 6 F] which for non-vaporizing drops represent the attenuation of sound waves. Those
effects are included in the work by Marble and Wooten: Their results show that the accompanying energy
losses dominate, so that in fact if combustion is ignored, vaporizing droplets cause damping, not driving, of
unsteady gas motions.

We must emphasize that the conflicting results, and the conclusion that vaporization is not a mechanism
for driving combustion instabilities, rests on proper computation of the energy transfer. In the earlier work,
an incorrect or, rather, incomplete form of Rayleigh’s Criterion was used. It is certainly true that the process
represented by wjp’ alone does cause driving if the fluctuation of mass release has a component in phase
with the pressure fluctuation, but that is only part of the story.

Priem (1988) has used Heidmann and Wieber’s model of vaporization, combined with the model worked
out by Feiler and Heidmann (1967) for a gaseous fuel, to study combustion instabilities in the LOX/methane
system. He bases his conclusions concerning stability boundaries on numerical results for the combustion
responses, of which that for liquid oxygen is computed with equation (2.77) and the method described above;
and on corresponding results found for the losses associated with the exhaust nozzle and baffles. His results
seem to compare fairly well with some experimental work. The reason that this could be so—even though
vaporization causes net energy losses if all contributions are accounted for—is that the energy released by
combustion, immediately following vaporization, is the dominant factor. That is, in equation (2.79) the
terms involving energy transfer are larger than those representing losses. Comparison with experimental
results seems always to involve multiplicative factors which are determined to provide best fit to data, or are
absent in normalized forms. Then when good agreement was found, it seems that it is largely the qualitative
behavior that is being checked. The method is dated and no longer useful.

Despite the heavy emphasis, in many works, on vaporization as the rate controlling process, it is generally
recognized that other processes contribute and in some situations may be dominant. The injection process
itself may be affected under unsteady conditions due to the varying streams, impact of jets, and atomization
all are sensitive to unsteady flow fields. Those problems are extremely complicated, difficult to describe in a
fashion suitable for use in a general analysis, and are very much dependent on details of the hardware. Thus
the work has largely been experimental with some effort to correlate results in a form useful for design (e.g.,
Levine 1965; Sotter, Woodward and Clayton 1969; Webber 1972; Webber and Hoffman 1972). The time-lag
model has been used essentially as a means of correlating all of those processes without concern for details
(Reardon, Crocco and Harrje 1964; Reardon, McBride and Smith 1966). Summaries of experimental results
obtained prior to 1971 may be found in the reference volume edited by Harrje and Reardon (1972).

Of work in the 1980s, the most fundamental and detailed was that carried out at ONERA as a result
of problems due to combustion instabilities in the Viking motor. Special effort was made to understand the
unsteady behavior of the injectors used in that engine. The intentions of the research program were described
by Souchier, Lemoine and Dorville (1982); and by Lourme and Schmitt (1983). Considerable effort has since
been expended to characterize the steady and unsteady behavior as the basis for analyzing instabilities in the
engine (Lourme, Schmitt and Brault 1984; Lecourt, Foucaud and Kuentzmann 1986; Lourme 1986; Lecourt
and Foucaud 1987). The results range from detailed measurements of the spray (droplet size and velocity
distributions) to the more global unsteady response of the injector, using a device adapted from a method
developed for solid propellant rockets.

2.3.2. Interpretation With a Time Lag. Owing to the enormous complications associated with
analysis of the time-dependent behavior of liquid-fueled systems, representation of the dynamics with a time
lag was introduced early in theoretical work. The basic idea is simple, and quite general, related to the
familiar experience that a forced oscillating system will gain energy if the force has a component in phase
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with the velocity of the point of application. Stability of dynamical systems characterized in some sense
by a phase or time lag had been studied prior to the concern with combustion instabilities (for example,
see Callender et al. 1936 and Minorsky 1942). In 1941, Summerfield (1951) had observed low frequency
“chugging” during firings of a liquid rocket. Discussion with von Karman led to the idea of a time lag as
a possible explanation. Gunder and Friant (1950) independently introduced a time lag in their analysis of
chugging, but it was Summerfield’s paper and subsequent work at Princeton by Crocco that established the
time lag theory in the firm widely used.

The essential idea in all applications of the time lag is that a finite interval—the lag—exists between the
time when an element of propellent enters the chamber and the time when it burns and releases its chemical
energy. Such a time lag must exist in steady operation, and, since combustion is distributed throughout
the chamber, there is no unique value. Evidently a complete analysis of injection and subsequent processes
could then be interpreted in terms of multiple time lags; results exist only for approximate analyses.

Now suppose that at time ¢ the pressure in the chamber suddenly decreases, causing an increase in the
flow of propellant through the injector. The increased mass burns at some later time ¢ + 7, where 7 is the
time lag. If the pressure is increasing when the added mass burns, the energy released will tend to encourage
the pressure increase, a destabilizing tendency. This elementary process is easily interpreted with Rayleigh’s
Criterion. Assume that the pressure varies sinusoidally,

p = psinwt (2.81)
and that the energy occurs later with constant time lag 7,
Q' = Qsinw(t — 1) (2.82)
Integration of the product p’@Q" over one period 27 /w gives
t427 /w t427 /w
A AT
/ p'Q'dt' = pQ / sinwt’ sin(wt’ — wr)dt’ = pQ— coswT (2.83)
w
T t
Thus, according to Rayleigh’s Criterion (Section 6.6), we expect that net energy is added to the oscillation
if coswrT is positive, so the time lag must lie in the ranges
0< T 37 < 5T
T—, — <7< —,
2w 2w 2w
Suppose that the system is unstable and the 7 lies in the range 37/2w < 7 < 57 /w. Then the strategy for
fixing the problem is based on modifying the system so that 7 is either increased or decreased, placing its
value outside the range for instability.

.. ete. (2.84)

Because the processes subsequent to injection are surely dependent on the flow variables, pressure,
temperature, velocity, ..., it is unrealistic to assume that the time-lag is constant. The most widely used
form of the representation with a time lag are dominated by its dependence on pressure. Figure 2.34, taken
from Dipprey (1972), is a sketch illustrating the behavior for a sinusoidal pressure oscillation imposed on the
system. The total time delay to burning is supposed, in this case, to be composed of two parts due to the
propellant feed system and the combustion delay (injection, atomization, vaporization, mixing, and chemical
kinetics). It is the second part that is sensitive to the flow conditions in the chamber.

Let i denote the mass flow (mass/sec.) of propellant. At this point we are not concerned with details
and we need not distinguish between fuel and oxidizer. The arguments based on the idea of a time lag are
directed mainly to constructing a representation of the mass source term wy (mass/vol.-sec.) in the equation
for conservation of mass. Thus the result is intended to express the rate of conversion of liquid to gas in
a volume element of the chamber. There is no consideration of combustion processes in detail; the usual
assumption is that combustion occurs instantaneously, a view that determines how the time lag model ought
to be incorporated in the equations.
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FIGURE 2.34. Graphical definition of a simple time lag (Dipprey 1972).

Let (7, dV') denote the volume element at position 7 in the chamber and let (¢, dt) denote the small
time interval dt at time dt. The idea is that the amount of liquid w;dV dt converted to gas in the element
(7, dV) in the interval (¢, dt) was injected as ém(t — 7)d(t — 7) at the time ¢ — 7 in the interval d(t — 7).
Hence by conservation of mass,

wdV dt = 81 (t — 7)d(t — 7) (2.85)

According to earlier remarks, the time lag is supposed to be variable, and can be written as the sum of
average and fluctuating values, 7 = 7 4 7/. In steady-state operation, (2.85) is

widV dt = i (t — T) = 8y (t — T)dt (2.86)
Expanding ém(t — 7) in Taylor series for use in (2.85) we have
t—1

The second term is non-zero if the injected mass flow is not constant. There are many situations (notably
for low frequency instabilities) for which variations are important. But for instabilities at high frequencies,
variations of the propellant flow are generally not important. Hence we ignore the second term in (2.87) and
substitute (2.86) in (2.85) to find

w7, t) = (1 - %) (2.88)

The variations of the local conversion of liquid to gas depend in this simple fashion on the time-dependence of
the time lag. Note that 7 may in general depend on position: The reasoning here is quite widely applicable.

The difficult problem is of course to predict 7 — in fact it has never been done. Crocco introduced the
idea that the time lag is the period required for the processes leading to vaporization to be completed. He
assumed that this integrated effect can be represented by an integral over the time lag of some function f of
the variables affecting the processes

t
/ fip, T, @, @, ...} dt' = E (2.89)
t—7

The constant F is supposed to be a measure of the level to which the integrated effects must reach in order
for vaporization to occur. Almost all applications of the time lag model rest on the assumption that the time
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lag is sensitive only to the pressure. The function f may then be expanded to first order about its value at
the mean pressure,

Y. Ay L df
1) = 1@+ = 1) 149 5=
If f = cp™ then df /dp = ncp™~! and (df /dp)/f(p) = n/p. The interaction index n is defined as
__p 4
"TI@dp (2.90)
and f(p) is approximated as
1) = 1@ |14 %] (291)

This form is now used in approximate evaluation of (2.89).

First differentiate (2.89) with f(p) = f{p(t)} to find
dr
14

o0} - (1- 5 sttt =y =0

Substitution of (2.91) gives

1+ n@ / (f —
_d_Tzilpzl_i_n &_M (2.92)
dt 1+ n2 (%—T) D
Set w; = w; + wj in (2.88) and substitute (2.92) to find the basic result of the time lag theory:
P pt- T)}
p P

iakt
)

w; =Wn [ (2.93)

For analyzing linear stability, p’ = pe~ @ 1)() and w] = e~
Wy =wn(l —e ) (2.94)

where the usual approximation has been made, a7 < wr in the exponent.

SO

Equation (2.94) is a two-parameter representation of the conversion of liquid to gas. The two parameters,
the time lag 7 and the interaction or pressure index n, are unknown a priori. All work with the time lag
theory requires experimental measurements to determine their values. The general idea is simple. After
substituting (2.94) in the linearized conservation equations, solution is found for the stability boundary
(a = 0) with n and 7 as parameters. Experimental data for the stability boundary are used to determine n
and 7. The approximate range of values for 7 had been reasoned, e.g., by Crocco and Cheng (1956). Crocco,
Grey and Harrje (1960) were first to obtain sufficient data to confirm the value of this approach. Figure 2.35
reproduces some of their results for the time lag and interaction index inferred from tests with two injectors.
The data were taken for the stability boundary of the fundamental longitudinal mode and show the strong
dependence on fuel/oxidizer ratio.

Obviously, there are many limitations within the analysis itself. The analysis leading to (2.94) is entirely
phenomenological; the final result containing two parameters only is an enormous simplification of the real
situation, but there is no way to assess the imperfections. The formula (2.93) can be extended to include,
for example, dependence on velocity fluctuations (Reardon, Crocco, and Harrje 1964). Because the values
of all parameters must be found from experimental data, the difficulties become prohibitive.

The time lag model (it is, after all, not really a theory) is based on an appealing physical argument but
no processes are treated explicity. Probably the most serious deficiency is that no detailed treatment is given
of combustion, which is ultimately the source of the energy driving all combustion instabilities. Nevertheless,
the model has been the basis for some success in treating instabilities in liquid rockets, primarily as the basis
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Ficure 2.35. Early measurements of the time lag and pressure index in a gas rocket
(Crocco, Grey and Harrje, 1960).

for correlating data. The two-parameter representation provides a convenient framework for detecting trends
with design changes. Its illumination of basic physical processes and its predictive value are very limited
indeed.

2.3.3. Convective Waves. Following work by Kovasznay (1953), Chu and Kovasznay (1957) showed
one way of decomposing general small disturbances of a viscous compressible fluid into three classes: acous-
tic, viscous, and entropy waves. Acoustic waves carry no entropy changes, while viscous and entropy waves
have no accompanying pressure fluctuations. The direct effects of viscous stresses and heat conduction on
combustion instabilities are generally negligible except in the vicinity of surfaces. That entropy fluctua-
tions evidently have second order effects on the acoustic waves is implied by the formal analysis covered in
Chapter 3.

However, both viscous effects and non-uniform entropy may affect the acoustic field indirectly through
processes at the boundaries. First we examine here the possible influences of entropy fluctuations. These
fall within the general class of convective waves, that is, disturbances that are carried with the mean flow:
their propagation speed is the average flow speed. Entropy fluctuations are associated with the portion of
temperature fluctuations not related isentropically to the pressure fluctuation, such as non-uniformities of
temperature due, for example, to combustion of a mixture having non-uniformities in the fuel/oxidizer ratio.
In general, an entropy wave may be regarded as a non-uniformity of temperature carried with the mean flow.

As shown by Chu (1953) pressure waves incident upon a plane flame will cause generation of entropy
waves carried downstream in the flow of combustion products. Thus one should expect that when combustion
instabilities occur, there must be ample opportunity for the production of entropy fluctuations. That process
has negligible effect directly on stability (the coupling between acoustic and entropy waves is second order
within the volume) but there has long been interest in the possible consequences of entropy waves for the
following reason.
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When an entropy wave is incident upon the exhaust nozzle, it must pass through a region containing
large gradients of mean flow properties. A fluid element must retain its value of entropy and for this condition
to be satisfied, the pressure and density fluctuations cannot be related by the familiar isentropic relation,
op ~ v6p. As a result, within the nozzle, pressure changes are produced that will generate an acoustic
wave that will propagate upstream. Thus, an entropy wave incident upon an exhaust nozzle can produce an
acoustic wave in the chamber, augmenting the acoustic field due to other sources.

An artificial elementary example will illustrate the proposition. Consider a chamber admitting uniform
constant mean flow at the head end, say through a choked porous plate; the flow exhausts through a choked
nozzle (Figure 2.36). Suppose that at the head end a heater is placed, arranged so that its temperature
can be varied periodically, with frequency w. This action produces a continuous temperature or entropy

|

T
|
:/\7;)5
|
|
|

FIGURE 2.36. Sketch of a simple case with a single entropy wave (S) and acoustic pressure
waves (Pp, P_).

wave convected with the flow. An experimental realization of this situation has been described by Zukoski
and Auerbach (1976). We assume no losses within the flow, so a fluid element retains its entropy; small
perturbations s’ of the entropy satisfy the equation

68 o5’
= 4= = 2.
5 —|—u62 0 (2.95)
If S is the amplitude of the fluctuation at the heater (z = 0), the solution for s’ is
s = Semw(t=3) (2.96)

To simplify the calculations, assume that the flow speed is vanishingly small so that we may ignore its effect
on acoustic waves. Then the acoustic pressure and velocity fields can be expressed as sums of rightward and
leftward traveling plane waves:

p/ —_ [P+€ik:z + P_efik:z}efiwt

) ) ) 2.97)a,b
’U,l _ [UJrezkz + Uiefzkz]efzwt ( )

As usual, the complex wavenumber is k = (w — ia)/a. The acoustic pressure and velocity must in this
problem satisfy the classical acoustic momentum equation with no sources:
ou'  op
P—+——=0 2.98
Par * 0z (2.98)

Separate substitution of the forms for the rightward and leftward traveling waves shows that Uy, Py are
related by

WU+:P+ N p_an =—-P_ (299)

Assume that the head end acts as a perfect reflector for the acoustic waves, so

/
u =0 aa—i =0 (2=0) (2.100)a,b
In a real case (e.g., if the heater were actually a flame) the pressure fluctuations would cause fluctuations of

entropy at the head end. To represent this effect, set s’ proportional to p’ at z = 0:
s'=Ap (2=0) (2.101)
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Tsien (1952), Crocco (1953) and Crocco and Cheng (1956) have shown that the boundary condition at the
nozzle entrance may be written in the form

p +padiu + Ays' =0 (z=1) (2.102)

We may now show that the problem formulated here admits solutions representing steady acoustic
oscillations in the chamber, whose stability depends on the values of the coefficients Ay, A1, A3. We eliminate
the unknown amplitudes S, P, P_ and obtain a characteristic equation for the complex wavenumber k, by
satisfying the boundary conditions (2.99)-(2.102). Substitute equations (2.97)a,b and (2.99) into (2.100)a,b
to find

Py —P. =0 (2.103)
With (2.96) and (2.97)a, the condition (2.98) is satisfied if
S = Ag(Py + P_) (2.104)
Finally, substitution of (2.96), (2.97)a,b and (2.104) in (2.102) gives
(14 A))e*E + AgAze’ S L1PL 4+ [(1 4+ Ay)e L + Ag AP =0 (2.105)
With P_ = P, from (2.103) we have the characteristic equation
et = (1 ;1%11) [1— Ay + 240 Ape BT (2.106)

Generally Ag, A, Az are complex numbers. The real and imaginary parts of (2.106) provide transcendental
equations for the real and imaginary parts (w/a, a@/a) of k. The solutions are unstable if @ > 0, corresponding
to self-excited waves. Note that in the limiting case of no entropy fluctuations (Ag = 0) and a rigid wall
(A; — o0) at z = L, (2.106) reduces to e’?*2 = +1 or cos 2kL = 1 and sin 2kL = 0. Then k = nr/L and the
allowable wavelengths are A = 27 /k = 2L /n, the correct values for a tube closed at both ends.

This example suggests the possibility for producing instabilities if entropy waves are generated and if
those waves interact with the boundary in such a way as to produce acoustic disturbances. It is in fact a
genuine possibility that has been considered both in laboratory tests and as an explanation of instabilities
observed in actual engines. The difficulties in applying this idea are largely associated with treating the
processes responsible for causing the entropy waves.

In a combustion chamber, possible sources of entropy fluctuations may be distributed throughout the
chamber. Burning of non-uniform regions of fuel/oxidizer ratio and interactions of pressure distributions
with combustion zones are important causes, both producing non-isentropic temperature fluctuations. Thus
in general the property that in inviscid flow free of sources an element of fluid has constant entropy, is
inadequate. A proper description of entropy waves should be placed in the broader context accounting also
for convective waves of vorticity was worked out first by Chu and Kovasznay (1957). We cannot provide
a complete discussion here, but for later purposes it is helpful to have at hand the more general equation
governing entropy fluctuations.

Combination of the first law of thermodynamics for a perfect gas and the definition ds = dg/T', valid if
the heat transfer dq is not too abrupt, gives

dT’ _ p dpg
T pg pg

Now introduce the perfect gas law to eliminate the temperature change. Writing the result for motion
following a fluid element we have

ds =C,

1 Ds_1Dp 7 Dp, (2.107)
C,Dt pDt p, Dt '
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where D/Dt = 0/0t + i, - V is the convective derivative. From the calculations in Annex A, we find the
equation for entropy,

1 Ds 1R
o — Q4+ 6Q +Va+ @+ 6w - F + LV (pouy)
Co Dt pC Ps (2.108)

+ {(hl —e)+ %(5111)2} wl]

The right-hand side contains all sources of entropy changes including viscous effects, combustion and con-
version of liquid to gas.

Equation (2.108) completes the set of equations required for complete analysis of combustion instabilities
including entropy waves. See also Annex A and Chapter 3. The equations governing vorticity waves are
obtained by splitting the velocity field into two parts: the acoustic field which is irrotational, and the rota-
tional vorticity field which, if treated in all generality, includes turbulence as well as large vortex structures
and shear waves.

2.3.4. Vortex Shedding from Rearward-Facing Steps. The presence of unplanned swirling, spin-
ning or vortex motions in propulsion systems has long been recognized as a serious problem. They fall
broadly into two classes: those with angular momentum directed along the axis, usually (if the rocket itself
isn’t spinning) related to standing or spinning transverse acoustic modes of the chamber; and those having
angular momentum mainly perpendicular to the axis, associated with vortex shedding from bluff bodies or
rearward-facing steps.

Motions identified as forms of transverse or tangential modes do not normally qualify as mechanisms:
they are themselves the combustion instability. Male, Kerslake and Tischler (1954) gave an early summary of
severe transverse oscillations (“screaming” at 10 kHz) and noted what has always been a serious consequence:
greatly increased surface heat transfer.

Here we are concerned with vortex motions growing out of unstable shear layers. Those vortices, now
commonly called “large coherent structures” (Brown and Roshko 1974) are convected downstream at ap-
proximately the average speed of the two streams forming the shear layer. Figure 2.37 shows an example of
the observations made by Brown and Roshko for cold flow at relatively low Reynolds number. In propulsion
systems, the shear layers in question are generally formed in flow past bluff body flameholders (in thrust
augmentors) or past rearward-facing steps (in ramjet engines).

FI1GURE 2.37. Large-scale coherent structures in a mixing layer at 8 atmospheres in flow past
a splitter plate: upper stream (v; = 10 m/s) is He; lower stream is Ny, with pov3 = pyv?.
(Brown and Roshko 1974).

Observations of vortex shedding from flameholders, and recognition of the importance of this process as
a possible mechanism for combustion instabilities were first independently reported by Kaskan and Noreen
(1955), Rogers (1954) and Rogers and Marble (1956). Both experiments used premixed gaseous fuel and air
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flowing past a flameholder in a rectangular channel. However, the particular mechanisms proposed were very
different. Figures 2.38 and 2.39 taken respectively from Kaskan and Noreen (1955) and Rogers and Marble
(1956) clearly show the vortex shedding. Particularly Figure 2.39 shows a good example of the influence
of flow conditions on vortex shedding from a two-dimensional bluff body with combustion; in this case the
bluff body was a two-dimensional wedge. At approximately constant speed, when the equivalence ratio in
the premixed flow past the lip of the wedge was increased from about 0.75 to around 0.90 continuous vortex
shedding began, and high-frequency acoustic oscillations were sustained in the channel. The oscillations were
transverse to the axis of the channel.

Particularly noteworthy—and important—is the reasoning by Rogers and Marble for the presence of
the oscillations. They give an appealing argument based on the idea that delayed pulses of combustion,
producing pulses of pressure, occur periodically with the shed vortices. A vortex formed and shed from the
lip of the flameholder entrains fuel mixture from the free stream. A short period of time passes during which
the fresh (cold) gas mixes with hot combustion products entrained from the recirculation zone behind the
flameholder. At the end of the ignition delay, the mixture in the vortex burns vigorously, generating a pulse
of pressure which is supposed to reinforce the pressure oscillation in the chamber. For steady oscillations to
be sustained, this process must evidently occur at the same frequency as that of the wave motion. For the
tests typified by those shown in Figure 2.39, the ignition delay, according to results given by Zukoski and
Marble (1954), was about 0.00028 seconds, suggesting a frequency around 3600 Hz. The observed oscillations
(Figure 2.39) had frequencies in the range 3600-3900 Hz.

FIGURE 2.38. Photograph of vortices shed in a reacting flow (Kaskan and Noreen 1955).

Motivated partly by earlier observations of Blackshear (1953) and Putnam and Dennis (1953), Kaskan
and Noreen proposed a different mechanism, speculating that stretching of the flame front accompanying
roll-up in the vortex causes a pressure disturbance. Periodic disturbances generated by vortex shedding
may then sustain either transverse or longitudinal acoustic fields. (They observed both in their tests, but
transverse waves were most common.) As a quantitative basis for interpreting their results they modified a
theoretical relation derived by Chu (1953) for plane flames. Although they had modest success comparing
their reasoning with their data, Kaskan and Noreen did not provide a complete explanation of the closed-loop
process required to generate self-excited oscillations. This mechanism has subsequently received much notice
as a possible cause for combustion instabilities after the idea was revived in the 1980s in connection with
work on ramjet combustion. More recently, several groups have used the idea of changing flame to represent
a possible mechanism in problems of active control; for example see Section 2.5.

During the past twenty years, the idea that vortex shedding is a dominant factor in mechanisms for many
combustion instabilities in liquid-fueled systems has gained growing support. Practically all of the work has
been motivated by problems of longitudinal oscillations in ramjet engines. Even though the frequencies are
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FiGURE 2.39. Flow past a bluff body flameholder under two conditions of flow at ap-
proximately the same speed. (a) low equivalence ratio, $<0.75, no oscillations; (b) high
equivalence ratio ¢>0.90, acoustic oscillations in the channel (Rogers and Marble 1956).

substantially lower than those of the oscillations treated by Rogers and Marble, the essentials of the idea
seem to hold true.

The problem of longitudinal oscillations in ramjet engines was found quite early in their development
although the direct connection with instabilities in combustors was not immediately clear (Conners 1950).
Longitudinal oscillations in small ramjet engines was apparently first recognized by Hall (1978). Rogers
(1980a, 1980b) gave thorough summaries of the available experimental work. Those reports marked the
beginning of widespread attention and work which continued until the early 1990s. In particular, Rogers’
investigation served as the basis for an early analysis of the problem by Culick and Rogers (1983); that
work did not include a satisfactory mechanism. Vortex shedding as a possible mechanism for causing the
longitudinal modes in a ramjet engine seems to have been discussed first at a JANNAF workshop in 1979
(Culick 1980). Byrne (1981, 1983) gave the first detailed discussion of the mechanism. His 1983 paper is a
very nice description of the problem and touches on several problems understood only later, in particular
with work at the Naval Weapons Center. Apparently unaware of the earlier work by Rogers and Marble on
transverse oscillations, Byrne based his argument on established results for cold jet flows. He used known
results for the stability of shear layers and jets, vortex shedding and vortex merging to argue that the
frequencies of those processes taking place under the conditions occurring in ramjet engines are in the range
of frequencies of the oscillation actually observed. He supported his conclusions by good comparisons of
his estimated frequencies with data taken by others for both coaxial and side-dump configurations. Waugh
et al. 1983 showed modest success in their Appendix B correlating amplitudes of instabilities with Strouhal
number.

Since the early 1980s a great deal of attention has been given to the role of vortex shedding in dump
combustors, both in cold flow and in laboratory combustion tests (e.g., Keller et al. 1982; Smith and Zukoski
1985; Biron et al. 1986; Schadow 2001; Sterling and Zukoski 1987; Poinsot et al. 1987a,b; Yu et al. 1987a,b).
There is little doubt now that indeed the coupling between shed vortices and the acoustic field is the dominant
mechanism in dump combustors. That coupling may or may not be accompanied by energy release due to
combustion. The extent to which the same mechanism is active in contemporary thrust augmentors is less
well-established but there is good reason to believe that it is often the main cause.

Extensive experimental work on vortex shedding in shear layers and jets at room temperature has
provided a fairly complete picture of the formation of vortices; vortex pairing; and the general features of the
flow without heat addition (see Schadow et al. 1987b for a brief review of the literature relevant to problems
in ramjet engines). Tests in various configurations, including those appropriate to ramjets (e.g., Flandro et
al. 1972; Culick and Magiawala 1979; Dunlap and Brown 1981; Brown et al. 1981, 1983; Schadow et al. 1987,
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1989; Schadow and Gutmark 1992; Schadow 2001) established the ability of shed vortices to drive acoustic
resonances over a broad range of flow conditions. See Section 8.6 for further discussion of experimental work
on vortex shedding with no combustion. The works cited above have extended that conclusion to flows with
large heat addition accompanying combustion under circumstances simulating those found in actual ramjet
engines. We will discuss those results further in Section 8.6.

The obvious qualitative importance of combustion in large vortices has prompted several analytical
investigations of the process. Broadly the idea is that the shear layer is formed at the edge of a bluff body,
the high speed stream consisting of an unburnt mixture of reactants; the low speed stream is composed largely
of hot combustion products forming the recirculation zone behind the body. As Smith and Zukoski (1985)
and Sterling and Zukoski (1987) have shown, the shear layer exhibits widely varying degrees of stability
depending on the operating conditions. We are concerned here with cases when the layer is highly unstable,
a situation encouraged by the action of the acoustic velocity forcing oscillations of the layer at the lip. Large
vortices may then rapidly form, entraining unburnt mixture on one side of an interface, with the combustion
products on the other side. A flame is initiated at the interface and the question to be answered is: how does
the rate of combustion, and therefore heat release, vary as the vortex rolls up and propagates downstream?

Marble (1984) treated an idealized case of a diffusion flame initiated along a horizontal plane when
simultaneously the velocity field of a line vortex is imposed along an axis in the interface. Elements of flame
initially in the interface are caused to execute circular motions and are stretched by the vortex field, causing
an increase in the rate at which reactants are consumed. The expanding core contains combustion products
but as the vortex roll-up continues, the rate of consumption always remains greater than that for flame in
the flat interface having the same length as that in the rolled-up vortex. Karagozian and Marble (1986)
carried out a similar analysis accounting for the influence of stretching along the axis of the vortex. They
found that, following a transient period during which the core grows to its asymptotic form, the augmented
consumption rate is unaffected by axial stretching. In those cases the rate of heat release reached a constant
value monotonically: there is no distinguished period of pulsed combustion as required for the mechanism
for instability described above.

Subsequently, Laverdant and Candel (1987a,b; 1988) analyzed both diffusion and premixed flames in
the presence of vortex motion with finite chemical kinetics. Their analysis is entirely numerical giving good
agreement with the results obtained by Karagozian and Marble (1986) and Karagozian and Manda (1990)
for a vortex pair.

Norton (1983) also analyzed the influence of finite chemical kinetics in the problem posed and solved by
Marble (1984) who had assumed infinite reaction rates. Under some conditions, the heat release rate shows
a modest peak in time. However, neither his results, nor those of Laverdant and Candel, suggest the sort of
time delay to pulsed combustion one might like to see to complete the picture.

No work has been accomplished to determine whether or not the augmented reaction rates found in the
analyses are sufficient to explain the mechanism of instabilities driven by vortex combustion. On the other
hand, the experimental results reported by Smith and Zukoski (1985), Sterling and Zukoski (1987), and Yu
et al. (1987)a,b show vividly and beyond doubt that unsteady combustion associated with vortex motions
is a vigorous source indeed. Figure 2.40 is a sequence of photographs taken by Smith and Zukoski during
one cycle of a high amplitude oscillation. They propose the following mechanism. A vortex is initiated
at the edge of the step at a time determined partly by the local acoustic velocity. The vortex propagates
downstream, releasing energy of a rate that seems to reach maximum when the vortex impinges on the wall.
In order for impingement to occur at a favorable time during the acoustic oscillation, the propagation rate
and hence strength of the vortex must increase with frequency. Because the vortex strength depends on the
magnitude of velocity fluctuation initiating the motion at the lip, it is necessary that the steady amplitude
of the acoustic field increase with frequency. That behavior is observed. Moreover, numerical calculations
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by Hendricks (1986) have shown quite similar behavior for the unsteady flow induced by an abrupt change
of velocity past a rearward-facing step. Figure 2.41 is a sketch taken from Hendricks’ work showing the
development of a vortex calculated for those conditions.

= 2o D5
N{E“fr_o- .

FIGURE 2.40. Development of a vortex during one cycle of a pressure oscillation (Smith
and Zukoski 1985).

The essential ideas of vortex combustion as a mechanism for driving instabilities can be incorporated
in the approximate analysis developed here. There is ample experimental evidence that large vortices in
cold flow can sustain resonances in a duct; Flandro (1986) has shown one means of handling the process
analytically, based on direct fluid mechanical coupling between vortical and acoustic motions. See also Aaron
(1984) and Aaron and Culick (1985) for an elementary model of coupling associated with impingement of a
vortex on an obstacle. Tests with combustors have shown, however, that the amplitudes of oscillation are
substantially greater when burning occurs. That result is most likely due to the unsteady energy release.
We therefore assume that this is the main source of the driving.

Hence in the forcing function FX, equation (1.21), we retain only the term containing @', giving equation
(1.23) written now for the time-dependent amplitude of the n* mode:

d2n 2 8@’
A formula for ' must be constructed to account for the trajectory of the vortex and its associated rate of
energy release along the trajectory. To illustrate with a simple example, we consider excitation of longitudinal
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FIGURE 2.41. Development of a vortex at the interface of two unlike fluids (Hendricks 1986).

modes and assume that the vortex travels parallel to the axis. Within the one-dimensional approximation,
that implies averaging the presence of the vortex over planes transverse to the axis. The situation is sketched
in Figure 2.42. The origin z = 0 is at the step, which is not the location of a pressure anti-node. In fact, we
must allow the acoustic velocity to be non-zero at the beginning of the shear layer at z = 0, so the mode
shape is

Un(2) = cos(knz + ¢) (2.110)

FIGURE 2.42. An elementary model of combustion in vortices as a mechanism for driving
acoustic waves.

The values of k, and ¢ can be set by imposing a boundary condition at z = [ and choosing some location
z < 0 for a pressure anti-node. For example, if pressure anti-nodes occur at z = —6Lg and z = L + §Lq, the
two conditions must be satisfied

sin(—k,6Lo+ ¢) =0
sinfk, (L +6L1) 4+ ¢] =0

from which k, and ¢ can be determined. For the purposes here, the particular values of k, and ¢ are
immaterial. With (2.110), the acoustic pressure and velocity are

P’ =P (t) cos(knz + )
u = ;Tnn sin(k,z + ¢)

(2.111)

(2.112)a,b

For simplicity, assume that the vortices propagate with constant speed v, and are launched periodically
with period 7, at the times t = 0, 7,, 27y, - - -. Assume further that these are point vortices releasing energy
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at the rate ¢(t) each. Hence the energy release associated with a train of shed vortices can be represented
by o-functions moving with speed v,, multiplying the energy release:

Q'(z1t) = qu(t)8[z — vot] + q2(t)qlz — vo(t = 7o) + ga(£)8[z — vu(t — 27)] + -+

2.113
_qu Bz — wult — 47) (2419)
In accordance with the behav10r reported by Smith and Zukoski we should relate the strength of each vortex
and, therefore by assumption its energy release, to the velocity fluctuation causing its birth. For simplicity
we ignore the influence of the mean flow speed and set g; proportional to the acoustic velocity at the step
and at the time when the vortex is launched. Hence, we assume

q;(t) = qj(t)u'(O,qu,) = qJ( )Unﬁ(knv)

where ¢(t) is supposed to be common to all vortices. With (2.114) for ¢;(t), differentiate (2.113):

sin ¢ (2.114)

BQ Z Tn ]Tv sin ¢ {q] — vyt = j7)] = Tz — vu(t — j70)]} (2.115)

Now substitute (2.110) and (2.115) in the integral on the right-hand side of (2.107), with dV = S.dz
where S, is the cross-section area of the chamber:

/wnandV Se /cos (knz + ) Zﬁ" ' Sln¢{97 =0t = j7o)] = Qo2 — 0 (t = j7)]} d2
7=0

Use the properties

/ 5(z — a) f(x)dzx = f(a); / §(x — a)f(x)dx = — '(a)

to find:
GQ’
Vp——dV == S:. ) &, 14 (t) cos[knv,(t — j70)]
/ Z {73 ° : (2.116)
+ qj( )knvv sinfk, v, (t — 7))}
with
M (7o) .
ni = — sin 2.117
Thus we have an expression for the right-hand side of (2.107) representing the forcing due to a train of
burning vortices, launched at t = 0, 7, 27, ... from the lip of the step at z = 0. This model has been the

starting point for two analyses by Matveev and Culick, 2002b and 2003a; the following section is a summary
of the work.

By far most attention has been directed to vortex shedding as the most likely mechanism for combustion
instabilities in ramjet engines, although recently more attention has been paid to the phenomenon in gas
turbines. In addition to extensive experimental work related to those ideas, much has been done, both with
laboratory tests and analysis, to clarify the acoustical characteristics of the modes of oscillation. Much more
is known, and understood, about vortex shedding and its role as a mechanism for causing combustion insta-
bilities chiefly because that phenomenon is easily identified in experiments and is commonly encountered.
Although vortex shedding is arguably the dominant feature causing instabilities in dump combustors—and
might therefore be termed the most important mechanism—it cannot be separated completely from convec-
tive waves. Furthermore, neither mechanism can be understood apart from the acoustics of the chamber
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in which they occur; the type of mode that is unstable always provides some clues about the mechanism.
For convenience here we nevertheless treat the phenomena separately. One distinction between the two
mechanisms that seems to be true, is that if direct coupling between large vortices and the acoustics field
dominates, the frequencies of oscillations tend to be close to those of classical resonances. If convective waves
are involved, the frequencies may be quite different, as shown with the elementary example in Section 2.3.3.

As we discussed above, the earliest ideas based on vortex shedding were developed in the 1950s to
explain the occurrence of high frequency transverse or tangential waves in afterburners. Periodic combustion
of reactants entrained in large vortex structures served as sources of acoustic energy. If properly phased, the
sources may supply energy to an acoustic mode of the chamber. The fluctuations of velocity associated with
the mode initiate vortex shedding, completing the cycle.

Roughly two decades later vortex shedding was again proposed as a possible mechanism for instabilities
in solid rockets, but periodic combustion was not part of the argument (Flandro and Jacobs 1975; Culick
and Magiawala 1979). Laboratory tests in cold flow established the result that if vortices shed from a step or
corner impinge on an obstacle downstream, there is sufficient coupling with unsteady motions to excite the
sustain standing acoustic modes in a duct (Culick and Magiawala 1979; Dunlap and Brown 1981; Dunlap
et al. 1981; Nomoto and Culick 1982; Aaron and Culick 1985). In all those cases, longitudinal modes were
driven. Large “vortex-like” structures were observed in some flow visualization work on dump combustors
at AFWAL sometime in the late 1970s [Private communication, F.D. Stull].

Since 1980, a large number of experimental works have established both by visualization and quantitative
measurements that vortex shedding is a distinctive feature of dump combustors. (Schadow et al. 1985, 1987b;
Smith and Zukoski 1985; Brown et al. 1985; Biron et al. 1986; Sterling and Zukoski 1987; Poinsot et al. 1987;
Yu et al. 1987; Davis and Strahle 1987). All of those tests were performed either in cold flow or with premixed
gaseous reactants. The most extensive summary of the subject has been given by Schadow et al. (1987b)
who included also references to related work not discussed here.

The work by Schadow and co-workers at the Naval Weapons Center (e.g., see the summary by Schadow
and Gutmark 1992) is particularly noteworthy for its systematic progression from tests in cold flow to
experiments in dump combustors with burning, as well as for studies of vortex combustion in diffusion
flames. Their program used at least four different experimental facilities and involved both forced and self-
excited oscillations. They also performed limited tests in a water tunnel to show the formation of large
vortices in their configuration. Overall, the work at NWC established the existence of vortex shedding at
the frequencies of instabilities in realistic coaxial configurations. Moreover, they showed that combustion
processes drive oscillations to much higher amplitudes than found in the cold flow tests. We should emphasize
that for the cases cited earlier, of oscillations driven by vortex shedding in solid rocket motors, the vortices
were formed in essentially non-reacting combustion products. The amplitudes of such instabilities have
always been relatively small (<5% of mean pressure). Thus it seems true, as found also in the work by
others cited above, that truly large amplitude oscillations require the presence of combustion processes and
the conversion of heat released to mechanical energy.

Hegde et al. (1986, 1987) and Reuter et al. (1988) studied oscillations in a duct driven by a flame sheet,
in a situation similar to that devised by Kaskan and Noreen (1955) and by Dowling and co-workers at
Cambridge for afterburners (Figure 2.57). In the Georgia Tech tests by Hegde et al., the flame (or flames) is
stabilized on one or two wires spanning a duct. Under broad conditions, the flame is unstable and vortices
grow in the sheet. Interactions with the flow field are sufficiently strong to excite acoustic waves in the
duct. The authors proposed that fluctuations of the flame surface area—and hence of the reaction rate are
responsible. They gave data based on emitted radiation, showing that the oscillations of surface area are in
phase with the pressure variations. By Rayleigh’s Criterion (Section 6.6) for heat addition, it follows that
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the heat addition encourages growth of acoustic waves, a result established also by Sterling and Zukoski
(1987) for a dump combustor.

Although most experimental work related to vortex shedding in ramjets has been done with coaxial
configurations, the phenomenon has also been found in side-dump combustors. Stull et al. (1983) reported
early work with that geometry and Nosseir and Behar (1986) have examined similar cases in a small scale.
More extensive results with full-scale hardware were discussed by Zetterstrom and Sjoblom (1986) who
investigated a configuration having two or four inlets. Visualization in a water tunnel revealed the presence
of vortex shedding. Instabilities in the operating engines were avoided by modifying the fuel injection systems
in such a fashion as to minimize combustion within the vortices. That’s an important practical result clearly
supporting the general picture of vortex shedding as a dominant mechanism.

2.3.5. A Model for Vortex Shedding and Excitation of Acoustic Waves. Despite the wide-
spread recognition of vortex shedding as an important mechanism for the excitation of oscillations in dump
combustors, there is no analysis that captures the main features of the process. Since the early observation
and interpretations by Kaskan and Noreen (1955) and by Rogers and Marble (1956) there have been a num-
ber of experimental works, especially motivated by problems with ramjets in the 1980s and 1990s. There are
few theoretical works and they have produced only modest success. The basic ideas are probably understood
correctly, but until they have been successfully developed into a predictive theory, one cannot be sure. In
this section we summarize one recent attempt to construct a quantitative description of the basic process,
based on the model sketched in Figure 2.42.

Expressed in simplest terms, the central idea in most, if not all, treatments of the excitation of acous-
tic waves by vortex shedding and combustion is simply stated. Vortices are periodically generated, at a
backward-facing step in the present case, propagate downstream with little or no burning, and at some
later time undergo vigorous combustion, releasing “pulses” of energy. The energy added in a small volume
is accompanied by a rapid rise of pressure locally, which is available to augment the pressure in the flow.
Whether a sequence of such pulses will in fact cause a wave, or a mode of oscillation, to be sustained is
a matter to be worked out by available methods for solving problems of acoustics with sources in a finite
volume, a combustor. The simplest governing equation for the process is (2.109), with a damping term
included to agree with Matveev and Culick (2003):

dan
dt?

dnpn 9 v—1 / aQ
D = e n 2.11
dt ) pE2Z ¥ ot ( 8)

+ 2Cpwn

The unsteady motions are treated as one-dimensional, but small deviations can be accommodated in ,,(x).
That is a relatively minor deviation here. We are primarily concerned with the action of periodic burning
in vortices which are small compared with characteristic dimensions of the enclosing volume or chamber.
A basic assumption is that the burning occurs instantaneously and releases an amount of energy that is
proportional to the circulation T'; of the j** vortex. Passing to the limit of point vortices, we use the
expression for Q,

Q=05 Td(x—a;)6(t—t;) (2.119)

where (3 is a constant to be given a value later. To be definite, we suppose that instantaneous burning occurs
when a vortex strikes a wall or obstacle, Figure 2.43, or after an induction time as described by Rogers and
Marble (1956).

A shed vortex moves with the total flow velocity at the instantaneous position of the vortex. For the
case shown in Figure 2.42 a vortex located close to the boundary between the recirculation zone and the
primary flow moves with a speed #; which may be approximated as

;(t) = au(z;) +u' (), 1) (2.120)
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FIGURE 2.43. Vortex shedding from a backward-facing step, followed by impingement on an obstacle.

where o usually lies in the range 0.5 — 0.6 (Dotson et al. 1997) for segmented rocket motors. With (2.120)
substituted in (2.119), the equation governing 7, in the time interval (¢;_1,t;41) is
i+ 2CawnTin + wWatln = by (2;)T;0(t — ;) (2.121)

Following Andronov et al. (1987), (2.121) gives the usual result for the motion of an oscillator in the interval
(tj—1,t;j41) except at the instant ¢; when the jump conditions are satisfied:??

M (t54) = nn(t;=) = cibn(z5)A;
ﬁn(tj'i_) - ﬁn(tj_) =0
The relation (2.122)b means that the velocity is instantaneously unchanged while the amplitude 7,, changes

discontinuously by the amount ci,(z;)I'; at the instant ¢;. Such behavior is characterized as that of a
“kicked” oscillator.

(2.122)a,b

The time at which a vortex separates from the step, and its strength are modeled following the idea
introduced by Clements (1973). A vortex is formed from the vorticity contained within the thickness of the
boundary layer shed from the step. With a relatively simple argument the result for the circulation of a shed
vortex is

uD
= 557 (2.123)
where D is a characteristic dimension roughly equal to the momentum thickness of the boundary layer and
St is the Strouhal number for vortex shedding at frequency fs : St = fsiD. The formula (2.123) has the
interpretation that a vortex detaches from a step when its circulation reaches the “critical” value given by
the right-hand side of (2.123). Matveev and Culick propose that a vortex is shed in unsteady flow when its

circulation reaches the value given by (2.123) with @ replaced by the instantaneous velocity @ + u:
(1) = u(t)D
25t
The Strouhal number is assumed to have the same value in steady and unsteady flow. This formula shows
fairly good argument with experimental results for vortex shedding from a rising in oscillatory flow (Castro

1997). However, the result has been only weakly tested; perhaps most seriously, data is available only for
isothermal flows.?3

(2.124)

The model was used by Matveev to calculate a two-dimensional case, Figure 2.43, representative of the
experimental results reported by Smith (1985), Sterling (1987), Smith and Zukoski (1985), and Sterling and
Zukoski (1991). The damping coefficient was set according to information provided by Sterling and Zukoski,

1 n
o= — (0.135‘”— +0.015, /ﬂ> (2.125)
2T w1 Wn

22Damping is neglected (¢, = 0) for derivation of these conditions.
23Schadow and Gutmark (1992) have discussed vortex shedding for various geometries in isothermal and reacting flows.
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in which end losses are represented by the first term and the second term accounts for the attenuation due to
acoustic boundary layers. As identified by Smith, five acoustic modes were accounted for, having frequencies
(in Hertz) 180, 229, 385, 470, and 590. Values for the various parameters in the model, and reasons for the
choices, are given by Matveev and Culick (2002)b, (2003)a and by Matveev (2004). With (2.121), (2.122)a,b
and (2.124), the unsteady pressure field may be estimated. Figure 2.44 shows some results.

U =22 m/sec, experiment U=22 misec, modeling
1] (@) 1t ®) '
0.8 08
06 | 08
0.4 04 J
02 \Jd L& 02 .
DD 200 400 600 UD 200 400 \-‘6—03
Frequency [Hz] Frequency [Hz]
U =50 misec, experiment U =50 m/sec, modeling
1 © 11 @
08 o8
06 06
0.4 X 04
0.2 - W 02
UO 200 400 600 DD 200 _:00 600
Frequency [Hz] Frequency [Hz]

FIGURE 2.44. Normalized spectra of pressure fluctuations at the step of Figure 2.43 for two
mean flow velocities at the dump plane. (a), (c) experimental results (Smith 1985); (b), (d)
results from the kicked oscillator model.

In its present state, the ‘kicked oscillator’ model has no practical value except as a view or interpretation
of a mechanism for oscillations in a combustor. The analysis we have briefly and incompletely described is
suggestive and has wider possibilities than discussed here. This example illustrates the relative ease with
which results can be obtained without tedious integration of the partial differential equations governing
‘exact’ solutions.

2.4. Further Remarks on Particular Forms of Liquid-Fueled Systems

Most of the discussion in Section 2.3 was concerned with matters common to all types of liquid-fueled
systems. Much of the work was in fact carried out in the U.S. originally for liquid fueled rockets, the
strongest motivation being applications to engines intended for the Apollo vehicle. Some of the ideas and
methods developed for liquid rockets have subsequently been modified or extended for analysis of combustion
instabilities in augmentors and ramjets. Moreover, there are special problems peculiar to the different systems
themselves. We therefore examine now those particular matters.
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2.4.1. Combustion Instabilities in Liquid Rockets. Little work was done outside the USSR on
the problem of instabilities in liquid rockets during the 1970s. With the flight failure of an Ariane vehicle
due to combustion instability in a first stage Viking motor, a comprehensive research program was initiated
in France in 1981. Most of the available reports of that work have already been referred to and little more

needs to be added here.

Within the present context, the most important parts of the French work are the experimental and
analytical efforts to characterize the liquid spray; and the extensive numerical simulations of unsteady
motions, incorporating the results obtained for the propellant sprays. The problem causing the failure
involved coupling between the pressure oscillations in the chamber and structural vibrations of the injector
which is placed in the lateral boundary as sketched in Figure 2.45 taken from Souchier, Lemoine and Dorville
(1982). Figure 2.45(b) shows the computed distortion of the injector plane. As a result, the fuel and oxidizer
jets were shaken, causing (apparently) perturbations of the distribution and phase of the energy release,
thereby closing the loop and making possible self-excited motions.

COUVERCLE

¢ >
_ 4 e ¢3 ,’< .,”
/ BN ,T“ < AN
RN 7 ¢’
TRHEVAY -~ O
L i T DOME
TS ,—(\’ :\/‘
T jae
s LR, A
Y L.
INJECTEUR L=t
Ve LTS
[II'~~ ,'
Yz %
Mo AT
J S,
CONVERGENT A H,~— IJECTEUR
et
T
; X
T
Haket 5
Hi ]
______ 0o
oot
i 1
Yoot
I}
3

4

FI1GURE 2.45. Coupling between pressure oscillations, structural vibrations and the injec-
tion system (based on drawings appearing in Souchier, Lemoine and Dorville 1982).

Such effects on the injection processes have long been known to be a possible cause of instabilities
(Levine 1965; Harrje and Reardon 1972) but they have yet to be well-characterized.?* They are likely to be
particularly important in cases when the amplitudes of motion are large. It is quite possible that the forms
of the representation of the unsteady sources of mass and energy are strongly dependent on the amplitudes
of motion as well as on the hardware design. Such behavior is far outside any successes of the time lag model
and is likely to remain so. Careful experimental work is essential to clarify the situation.

During the mid-1980s, serious interest in developing new liquid-fueled rockets grew in the U.S., primarily
for use in proposed heavy lift launch vehicles. Because of their high densities and good performance, liquid
oxygen and hydrocarbon fuels were considered as propellants. In particular, methane was selected by the
NASA Lewis Research Center is the favored fuel. As a result, studies of combustion instabilities were carried
out at the Aerojet TechSystems Company and at the Rocketdyne Division of Rockwell International.

24The more recent work by Bazarov, cited briefly in Section 8.5, has done much to correct this situation.
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Rocketdyne designed and fabricated two engines, for the Lewis Research Center (LeRC) and for the
Marshall Space Flight Center(MSFC). Both used LOX/methane and had identical thrust chambers but
different injectors. The MSFC engine had an acoustic resonator; the LeRC engine had no damping device.
A small number of firings directed to determining stability characteristics were completed (Jensen, Dodson
and Trueblood 1988; Philippart and Moser 1988).

A computer program for analysis of instabilities was developed from an earlier program, IFAR. (Fang
1984, 1987; Fang and Jones 1987; Mitchell, Howell and Fang 1987; Nguyen 1988). The program IFAR
(Injector Face Acoustic Resonator) had been in existence for some years; the time lag model was used to
represent the combustion process. That program was revised and modified for application to both rectangular
and axisymmetric chambers to become HIFI (High Frequency Intrinsic Stability) (Nguyen 1988).

With all other variables and parameters specified, the values of n and 7 are calculated on the stability
boundary. Then to predict whether the engine is stable or not, the values of n and 7 must be determined.
Traditionally this has been done with correlations for injectors using hydrocarbon fuels, so as part of their
work the group at Aerojet performed sub-scale tests and carried out analysis of the injector response (Muss
and Pieper 1987; Nguyen and Muss 1987). The analysis and tests were intended to provide correlations of
n and 7 for the injector with those on the stability boundary calculated with the analyses cited above.

Aerojet carried out a program combining analysis, sub-scale tests using both rectangular and axisym-
metric chambers prior to full-scale firings. The chief purpose was to provide as certain as possible basis for
confidently predicting the stability of the large engines, thereby reducing development costs. This program
was described by Muss and Pieper (1988).

Philippart (1987) and Philippart and Moser (1988) reported comparisons of predictions of the sort
mentioned above, with firings of the two Rocketdyne engines. One operating condition was examined for
which the LeRC engine was stable and the MSFC engine was unstable. Three calculations of the stability
boundary in the n — 7 plane were done, using the program IFAR, HIFT and a modified from (NDORC) of
Mitchell and Eckert’s (1979) MODULE. Figure 2.46, taken from Philippart and Moser, shows the results
obtained with HIFI for the two engines. Results obtained with the other two programs differ in details
that are unimportant here. Also shown as filled regions are estimates of the ‘combustor response’ (i.e. the
values of n and 7) based on correlations for LOX/hydrogen injectors. Apparently the predictions of the
three codes agreed fairly well. However, there are uncertainties owing to differences between the codes; a
significant distinction is that IFAR and HIFI assume that combustion is concentrated in a transverse plane,
while MODULE is written for distributed combustion. Comparison with the test data is ambiguous and
must be viewed as estimates because the true characteristics of the injectors are unknown.

Jensen, Dodson and Trueblood (1988) gave an early progress report in their tests with the LeRC engine.
They measured growth rates and, using the MODULE program, inferred the necessary values of n and 7. Two
examples are shown in Figure 2.47. The striking result is that the values of the interaction index are found
to be considerably greater than those computed by Philippart and Moser and those provided by previous
correlations of data. It is impossible at this point to determine the cause for these differences. The existence
of such significant differences probably betrays the absence of a fundamental basis and understanding of any
ad hoc approach based on a time lag ‘model’.

Also at Rocketdyne some interesting work to analyze the characteristics of sprays vaporizing and burning
under steady conditions was reported by Liang et al. (1986, 1987a,b,c). The calculations were done for various
injector types placed in chambers, with provision for computing the internal flow field. When extended
to cover transient motions, this work seemed to be potentially an important contribution to analysis of
combustion instabilities but it seems that the potential was not realized. Indeed, it appears that among the
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FIGURE 2.46. Some results of calculations based on the n-r7 model (Philippart and Moser 1988).
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FIGURE 2.47. Comparison of calculations and some experimental results interpreted with
the n-7 model (Jensen, Dodson and Trueblood 1988).
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most important outstanding problems in the subject are the production of the liquid drops; unsteady spray
combustion; and incorporation of the results in a complete formation allowing realistic numerical simulations.

2.4.2. Application of the Time Lag Model to Gas and Liquid Rockets. By ‘time lag model’
we mean here the most common form, expressed by equation (2.94) for the unsteady conversion of liquid to
gas. Crocco and Cheng (1956) examined various elaborations, including spatial variations of the sensitive
time lag, but here we shall assume 7 to be uniform everywhere and the same for all elements of injected
propellant. Also we will not distinguish between oxidizer and fuel. Both assumptions have been adopted
in almost all applications, a notable exception being an analysis of chugging in which two time lags were
introduced (Szuch and Wenzel 1968).
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Although some analysis has been done of nonlinear behavior with the time lag model (see Chapter 7 for
work by Sirignano and Crocco 1964; Mitchell, Crocco and Sirignano 1969; and Mitchell and Crocco 1969)
by far most results, and all applications, have been worked out for linear behavior. To illustrate here, we
appeal to the approximate analysis described later. Although differences in detail will arise, the results will
contain all the essential ideas discussed in previous works.

Broadly, the central idea is to use the formula for the growth constant, «, evaluated on the stability
boundary, so o = 0. Those terms containing w will of course depend on the interaction index, n, and
the time lag, 7. If we assume that all other contributions to the formula are known, then the condition
a = 0 provides a relation between n and 7 that must, within the approximations used, hold on the stability
boundary.

There is no need to work out details here; see Chapter 6. The equation defining o will take the form
a=0 / " dV — Cy

where Cy, C5 are constants. The constant Cy contains the various effects of liquid/gas interactions, the
nozzle, mean flow/acoustics interactions and damping devices. Now with @, given by (2.94), its real part is
n(l — coswr), and for a = 0, the last equation gives

Cy

=t _q 2.126
Co [Wp2dV R ( )

n(l — coswt) =

The function G is supposed to be known, with value depending on the various parameters (geometrical,
etc....) defining the system. Then equation (2.126) is the relation between n and 7 referred to above.

Figure 2.48 shows the unstable regions defined by equation (2.126). This is a reproduction of Figure
4.2.2a, p. 180, in an article prepared by Crocco (Harrje and Reardon 1972). The calculations carried out
by Crocco were quite different from those summarized here, but the result has the same form, another
illustration of the fact that there is, in a deep sense, only one ‘linear stability problem’. Differences in detail
among analyses arise only because representations of processes, and therefore characteristic parameters, may
differ.
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FIGURE 2.48. A general representation of stability based on the n—7 model (Crocco, Figure

4.2.2a in Harrje and Reardon 1972).

In this normalized form, Figure 2.48 is a kind of universal chart for the n—7 model. The multiple regions
appear because of the factor 1 —coswr in (2.126) and correspond to the multiple peaks in the response, noted
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in respect to Figure 2.33. They are usually not physically realistic and are another reflection of limitations
of the elementary time lag model. A formulation of the n — 7 model showing only a single peak was reported
by Crocco (1966) but will not be discussed here.

For applications, equation (2.126) and Figure 2.48 have always been unfolded to give plots of n and 7
versus some characteristic parameter, such as the fuel/oxidizer ratio as in Figure 2.48 above; or in some
cases the stability boundaries have been presented in terms of system variables, with n and 7 parameters
along the curves.

An example of the latter is reproduced in Figure 2.49 taken from Crocco, Grey and Harrje (1960).
The preparation of this figure, and other quantitative results for n and 7, rests on extensive experimental
work. In all cases the strategy is the same: the stability boundary, marking the transition between stable
and unstable small amplitude waves, is located experimentally, as a function of the variables defining the
instabilities. Then the theoretical relation (2.126) is used to compute the required values of n and 7 along
the boundary.
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FIGURE 2.49. Stability boundaries inferred with the n — 7 model applied to a gas-fueled
rocket (Crocco, Grey and Harrje 1960).

That procedure has been used successfully to interpret longitudinal modes (Crocco, Grey and Harrje
1960) and transverse modes (Crocco, Harrje and Reardon 1962 and Reardon, Crocco and Harrje 1964).
By applying the method to large numbers of tests, extensive correlations have been worked out for the
interaction index and time lag as functions of geometric variables, injector design, propellant types and
operating conditions. A brief summary has been given by Reardon in Harrje and Reardon (1972), pp.
277-286. Figure 2.50 is an example of results for n and 7 determined from tests for storable hypergolic
propellants, with various types of injectors.

Having values of n and 7, one is now presumably in a position to return to the theoretical result for
the growth constant and apply the results to designing new systems. An obvious shortcoming is that the
data correlations can be assumed valid only for the systems actually tested. How far the results can be
extrapolated cannot be known with any confidence. Nevertheless, this semi-empirical approach has been
apparently used successfully both as a framework for correlating data and as an aid to design. It is essential
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FicURE 2.50. Experimental results for n and 7, using stable hypergolic propellants and
various injectors (Reardon, Figures 6.33 e and f in Harrje and Reardon 1972).

in this procedure that the same theoretical result for the growth constant be used for correlating the data
and for subsequent predictions. Otherwise, inconsistent and meaningless results will be obtained.

Although the ideas leading to the definitions of n and 7 are appealing, the time lag model should be
regarded truly as a framework for correlating data and not as a theory explaining fundamental mechanisms
of combustion instabilities. With a different two-parameter representation of the unsteady process, the left-
hand side of (2.126) might have a different functional form, but the formula could be used in the same fashion
to interpret stability boundaries. Only the forms of the correlations would be changed.

We must also note that because only the single formula for the growth constant (2.126) has been used,
the method described above uses one equation to determine two unknowns (n, 7). Thus in practice, some
difficulties may arise in obtaining consistent results. That trouble is avoided if, more correctly, both the real
and imaginary parts of the complex wavenumber are used. In that event, measured values of the frequency
are used and since (2.90) contains the imaginary part of the unsteady mass source (2.94), the two equations
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for the frequency and growth constant have the form
w = wy + Cs / oV — Cy
a=0 / " dV — Cy

Hence with (2.94)

nsinwr = ——en T -1 + Ca
Ca J vimdV (2.127)ab
C ' ’
1- =2
n(l — coswr) s T2 mav

The left-hand sides could equally be regarded, within a multiplier, as the real and imaginary parts of the
mass source,

(r)

W, =wmn(l - coswr)
@) (2.128)a,b
’lZJlZ = wynsin wr
~(r) ~ (1)
and correlations could be done with wui)’ = W, = n(l — coswt) and wlél = 0, = nsinwr instead of (n,

7). Thus, even though the heuristic afgument leading to w; in the form (2.128)a,b is based on a time
lag associated with motions of the propellant (a Lagrangian view), the end result is equivalent to a purely
Eulerian representation of local combustion process. The time lag associated with motions in space can be
reinterpreted as a phase lag in time at a fixed location in space.

The formulas (2.128)a,b have been deduced from the approximate analysis discussed in Section 2.3.2
and therefore have a particularly simple form. Although it is true that a linear analysis will always produce
two formulas, for the real and imaginary parts of complex wavenumber, the forms may be wildly different
in detail, depending in the method of solution. Crocco, Grey and Harrje (1960) solved their differential
equations directly, a method used later by Crocco, Harrje and Reardon (1962) and Reardon, Crocco and
Harrje (1964) to study transverse modes.

The time lag models of the combustion process have been used also in analysis of nonlinear behavior,
both for longitudinal oscillations (Sirignano and Crocco 1964; Mitchell, Crocco and Sirignano 1969; Crocco
and Mitchell 1969) and for transverse oscillations (Zinn 1966; Zinn and Savell 1968). In those and other works
discussed in Chapter 7, either n and 7 are assigned values; or the unsteady behavior is studied as a function
of n and 7 quite analogous to the handling of linear problems. Thus, sufficient experimental data had been
gained to support the time lag model that it could be used in a general fashion for theoretical work. However,
remarks above emphasize that this practice really amounts to using any combustion response having real and
imaginary parts related to n and 7 by equations (2.128)a,b. Expressing results and interpreting behavior in
terms of n and 7 carries no uniqueness.

2.4.3. Pogo Instabilities. The problem of low frequency POGO instabilities is well-documented and
understood. Due to the POGO instability in the Apollo vehicle, it is also probably the best known among
people otherwise not familiar with combustion instabilities.

Low frequency instabilities (‘chugging’) arise due to coupling between the fluid dynamics in the combus-
tion chamber, and the propellant supply system. They are perhaps the first sort of combustion instability
definitely identified and analyzed for liquid rockets (see the remarks at the beginning of Section 2.3.2). POGO
instabilities involve the further complication of coupling between the propulsion system and the structure of
the vehicle. The low frequency structural vibrations are the origin of the name, by analogy with the motions
of a POGO stick.
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During the 1960s, the POGO instability received much attention as a serious problem in several vehicles
including the Thor, Atlas, and Titan vehicles. Rubin (1966) has given a clear brief summary, including
particular emphasis on pump cavitation and wave propagation in the propellant feed lines. Those are
matters often overlooked by those concerned with motions in the combustion chamber. Yet they provide
significant contributions to time lags in the system and are crucial items in treating POGO instabilities.

More recent work in France was reported by Dordain, Lourme and Estoueig (1974) for the Europa II
and Diamant B vehicles; and by Ordonneau (1986) for the Ariane.

2.4.4. Combustion Instabilities in Thrust Augmentors. Augmentors or, as earlier forms are
called, ‘afterburners,’?® have a long history and offer the most varied examples of passive control applied to
propulsion systems. The main reasons for this special ranking are basic and simply expressed. First, the
geometry is typically ideal for the excitation and sustenance of acoustic oscillations. Figure 2.51 shows two
examples of widely used engines; both are turbofans with augmentors. In all designs the injection of fuel
takes place at the upstream end of the device. Although the boundary condition does not cause a velocity
fluctuation to vanish there, the value is relatively low and the pressure fluctuation can be relatively large.
Thus, the product u'p’ is likely to have a significantly non-zero positive real part, representing acoustic
energy flowing into the region.

FIGURE 2.51. Two examples of aircraft gas turbine engines with thrust augmentation (a)
General Electric F110 engine (taken from Jane’s All The World’s Aircraft, 1988-1989); (b)
Pratt and Whitney F100 engine (taken from Pratt and Whitney advertising material).

25The main difference between augmentors and afterburners is that the entire flow in the latter passes through the turbine
and therefore the afterburners. To simplify writing, we will use the term ‘augmentor’ to mean afterburner as well.
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Second, fuel is usually introduced through radial vanes, perhaps with circumferential supply tubes as well.
Those parts, whatever the configuration, are obstructions to the flow, and are sources of vortex shedding, a
potential cause of acoustic oscillations. Third, the conditions for instabilities in flow may be enhanced by a
bypass design in which the cold outer flow and the hot core from an unstable cylindrical shear layer between
them.

Finally, it is apparent from Figure 2.51 that the system has low losses. Thus it has long been standard
practice to incorporate acoustic liners as integral parts of thrust augmentors. That is, they are part of a
design and not added later when a problem arises. It is virtually guaranteed that as the operational envelope
of any augmentor is expanded, problems with oscillations will be found.

Since high frequency or ‘screech’ instabilities were first encountered as a serious problem in the late
1940s and early 1950s, liners have been developed largely by trial and error to act as passive control devices
designed to suppress the oscillations. The staff of the Lewis Laboratory?® (1954) compiled most of the
existing data and performed some tests to provide a basis for general guidelines for design; Harp et al. (1954)
reported the results of extensive tests, also at Lewis Laboratory. Of the methods investigated to solve the
problem, including baffles and vanes as well as adjusting the distribution of injectors, perforated liners worked
best. Groups at Pratt and Whitney Aircraft and the United Aircraft Research Laboratory had already tried
Helmholtz resonators and in 1953 demonstrated the first successful use of perforated liners is a full-scale
afterburner on a J57. The physical basis for the success of liners is explained in Chapter 8.

Despite several attempts to develop analytical methods and a more quantitative basis for design, treat-
ment of combustion instabilities in thrust augmentors has remained almost entirely an empirical matter.
Kenworthy, Woltmann and Corley (1974) reported the results of an experimental program devoted to study-
ing screech instabilities in three different designs of augmentors. The report also contains analysis used to
correlate data and to provide some guidance for design of acoustic liners. This seems to be the last reported
work on high frequency instabilities in full-scale augmentors; the mechanisms remain obscure. Chamberlain
(1983) gave the most recent status report: it seems that little has changed over several decades in respect
to augmentors shown in Figure 2.51.

Perforated liners effectively attenuate the high frequency oscillations related to radial and tangential
acoustic nodes. Low frequency instabilities, often called ‘rumble’, tend to be more troublesome. Liners are
ineffective at low frequencies and the problem of rumble is solved or reduced in practice by careful control
and coordination of the distribution of injected fuel and the nozzle opening. It’s a costly process to develop
the system, inevitably requiring several designs of the injection system and flameholders, and expensive
full-scale tests in altitude simulation test facilities.

The problem of combustion instabilities in thrust augmentors is arguably more difficult then that in
liquid rockets for at least two reasons: the processes involved in flame stabilizations are sensitive to pressure
and velocity fluctuations; and the device is usually required to perform over a wider range of operating
conditions. The first explains the importance of injector and flameholder design. As a result of the second,
the high and low frequency instabilities are typically found in different regions of the flight envelope. Figure
2.52, reproduced from the excellent summary of early work by Bonnell, Marshall and Rieche (1971) illustrates
the point.

Instabilities in the lower frequency range became increasingly troublesome with the development of
turbofan engines, a consequence of the geometry (see Figure 2.53 taken from Bonnell, Marshall and Rieche
(1971) and Figure 2.54 taken from Zukoski (1985)). In the pure turbojet, the fluctuations may propagate
upstream past the turbine disk but the turbine generally seems to act as a good reflector. In fan engines,
it is common that the entire length of the fan duct participates in the oscillations, reducing the frequencies

26Now the NASA Glenn Research Center.
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sometimes as low as 50 Hz. See Nicholson and Radcliffe (1953) for an early report of very low frequency
oscillations; observations in turbofans have been discussed by Bonnell, Marshall and Rieche (1971); Mach
(1971); Ernst (1976); Underwood et al. (1977); and Cullom and Johnsen (1979). Figure 2.55 reproduces
power spectral densities taken from turbofan augmentors [Bonnell, Marshall and Rieche (1971)]. Because
of the rotating parts, spectra of the acoustic field in gas turbine engines tend to exhibit a greater variety of
discrete oscillations than do those for liquid rockets. The peaks at the higher frequencies in Figure 2.55(b)
are ‘screech’ modes.

ALTITUDE LOW-FREQUENCY
INSTABILITY

STABLE COMBUSTION

HIGH-
FREQUENCY
INSTABILITY

FLIGHT MACH NUMBER

FIGURE 2.52. Schematic flight envelope showing typical regions of high- and low-frequency
instabilities in thrust augmentors (Bonnell, Marshall and Rieche 1971).
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FIGURE 2.53. Sketches of the evolution of the geometry of gas turbine engines (Bonnell,
Marshall and Rieche 1971).
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FIGURE 2.54. Pratt and Whitney F100-PW-100 Augmented Turbofan Engine. (1) three
stage fan; (2) bypass air duct; core engine compressor(3), burner(4), and turbine(5); (6)
fuel injectors for core engine gas stream; (7) fuel injectors for bypass air stream; (8) flame
stabilizer for afterburner; (9) perforated afterburner liner; (10) afterburner case; nozzle

closed to minimum area (11) and opened to maximum area(12). (Zukoski 1985, Figure
21.0.2).
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FIGURE 2.55. Spectra of pressure oscillations observed in thrust augmentors. (a) low-
frequency range (‘rumble’); (b) high-frequency range (‘screech’). (Bonnell, Marshall and
Rieche 1971).

The combustion processes in an augmentor differ in several fundamental respects from those in a liquid
rocket. Only fuel is injected as liquid; the oxidizer is unburnt oxygen in the fuel-lean flows from the bypass
and the core engine. There are no impinging fuel and oxidizer liquid stream, but the formation of drops and
vaporization of the fuel must obviously occur. Normally, it is intended that the fuel drops should be entirely
vaporized prior to ignition in the core flow so burning occurs in the fuel/air gaseous mixture. Because the
flame propagation speed is less than the flow speed, a continuous source of ignition is required, normally
supplied by the wake of a bluff body, the flameholder. Clearly, the performance of such a system depends
not only on the flow conditions and physical properties of the fuel but also very strongly on the geometry
of the injectors and flameholders. In the cooler bypass flow, vaporization is not completed upstream and
liquid impinges on the flameholders; then liquid may be torn off the flameholder by the high speed of gas
stream, or the liquid layer vaporizes. Zukoski (1985) has provided a thorough and readable discussion of the
combustion processes in afterburners. Figure 2.56 taken from his article, illustrates the general features of
the flow in the vicinity of various flameholders.
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FIGURE 2.56. Flow in the vicinity of typical flameholders emphasizing the recirculation
zones (Zukoski 1985).

According to the preceding remarks, it appears unlikely that vaporization of the fuel droplets is a
dominant mechanism for combustion instabilities in augmentors. Nevertheless it is certainly quite possible
that interaction of the acoustic field with the injection system could produce fluctuations of the fuel flow and
hence subsequent fluctuations of fuel/oxidizer ratio and heat release in combustion. The process might be
modeled most simply in terms of a time lag but there seems to be no treatment of this sort in the published
literature.

One would suspect that processes associated with the flameholder may dominate. That view is generally
supported by practical experience with the strong effects of flameholder design on instabilities. We have
discussed in Section 2.3.4 the mechanism based on vortex shedding and combustion suggested by Rogers
and Marble (1956). Their argument is persuasive and there has never been evidence disproving that process
as a possible mechanism of screech. Similar ideas also can be applied to describe a possible ‘rumble,” a low
frequency instability (see Section 8.6). Theoretical developments and the necessary laboratory tests have
not been carried far enough to incorporate the proposal in an analysis suitable for general design work with
arbitrary geometries.

Russell, Brant, Ernst, and Underwood (1978), worked out a one-dimensional analysis of instabilities
in augmentors; the work is also discussed by Underwood et al. (1977). Broadly the analysis represents
the acoustic field as a synthesis of up and downstream traveling acoustic waves, and entropy waves, as in
the example discussed earlier here in Section 2.2.3. The unsteady heat sources are derived as models of
mixing and combustion in the wakes of the flameholders. Bypass and core flows are treated separately and
superposed in parallel. It’s a linear analysis; the equations for the time-dependent variables are solved by
applying the Laplace transform. Conditions for stability are determined by applying the Nyquist criterion.
It is difficult to understand all details of the analysis from the available (abbreviated) description. Although
some success was evidently achieved with this work, it seems not to have been widely applied. Moreover,
the results are mainly in a computer program which has not furthered general understanding of the problem
although it may have been useful in treating particular cases.
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Over a period of several years Dix and Smith and co-workers developed an analysis based on the for-
mulation published by Culick (1963) for liquid rockets. See Dix and Smith (1971) and references cited there
for a description of the work. Although that sort of approach should be useful in treating augmentors, that
analysis has also not be widely applied. It is important to note that while their linear analysis is correct, Dix
and Smith committed some basic errors in trying to extend their calculations to nonlinear behavior. The
results they have reported for the influences of the amplitudes of oscillations are wrong.

A different course of recent work in instabilities in augmentors was reported by Dowling and Bloxsidge
(1984); Langhorne (1988) and Bloxsidge, Dowling, Hooper and Langhorne (1988) at Cambridge University.
Laboratory experiments were done in a configuration intended, roughly, to represent a longitudinal segment
of an augmentor (Figure 2.57). A flame stabilized on a single vee gutter in a duct supplied with premixed
gaseous reactants entering through a choked nozzle. With modifications that may have significant influences
on the unsteady behavior, this has long been a common configuration (Kaskan and Noreen 1954; Hegde
et al. 1986, 1987, 1988; Reuter et al. 1988). The work by Kaskan and Noreen has already been described
briefly (see Figure 2.38). They worked with a flame stabilized on a vee gutter whereas Hegde and co-workers
at Georgia Tech used one or two wires to stabilize the burning, although their work has presumably been
directed to applications in ramjet engines.
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FIGURE 2.57. A flame stabilized on a gutter in a tube (Langhorne 1988).

All of these works are concerned in some broad sense with flames and flame instabilities. The instabilities
are often ultimately manifested as vortices, so the mechanism for the instabilities discussed here could be
classified as vortex shedding and combustion, as discussed in Section 2.3.5. Another similarity among these
works is the use of electromagnetic radiation to identify the heat released by combustion products.

Langhorne (1988) concludes that for the device shown in Figure 2.57, two types of coupling exist between
the burning processes and pressure oscillations. The transition between the two occurred in a narrow range
of stoichiometric ratio around 0.65. For ¢ < 0.65 a convective wave of entropy or spots of high temperature
appeared to propagate well downstream of the flameholder. With increasing ¢, that convective aspect seemed
to have been confined to a short length and in the remainder of the duct the heat release (as measured by
radiation from Cs and C') seemed to be in phase with the pressure oscillation. No results of flow visualization
are available to confirm the behavior directly, but vortex shedding apparently may be involved.

At least partly as a result of the two kinds of coupling, two frequencies of instability were observed
with larger amplitudes produced at higher stoichiometric ratios. Bloxsidge, Dowling, Hooper and Langhorne
(1988) have worked out an interesting and useful one-dimensional analysis to interpret their observations.

Certain aspects of the Cambridge results are similar to those reported by Heitor, Taylor, and Whitelaw
(1984), Sivasegaram and Whitelaw (1987) and by the Georgia Tech group (Hegde et al. 1990). The reasons
for the similarities and yet only partial reconciliation of differences are not known; a sufficiently general
analysis has not been constructed to accommodate all the results on a common basis. There is little doubt
that more than one mechanism may act, one or another dominant under different conditions. Because this
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is a relatively well-defined situation, (a premixed flame in a duct) the problem merits further attention both
experimentally and theoretically to bring clearer understanding of the behavior.

The work at Cambridge seems to have been partly motivated by the idea of using feedback control of
combustion instabilities. In fact the results just described were soon followed by laboratory work at Ecole
Centrale (Poinsot et al. 1988) concerned also with active control. Those are the beginnings of modern work
on active control of combustion instabilities, the subject of Chapter 9.

2.4.5. Combustion Instabilities in Ramjet Engines. Particularly from the late 1970s to the early
1990s, substantially more attention has been paid to combustion instabilities in ramjet engines then can
be discussed here. Much progress has been made but several essential problems remain unsolved, mainly
associated with the conversion of liquid fuel to gaseous reactants; coupling between combustion processes
and the unsteady motions; and the inlet/diffuser.

Sketches of two typical configurations are shown in Figure 2.58. Most contemporary liquid-fueled ramjets
are “integral ramjet engines.” The combustion chamber is initially filled with solid propellant that is burnt
to boost the vehicle to supersonic speed. Liquid propellant is injected upstream of the region where the flow
area abruptly increases at the “dump plane.” Flame stabilization is achieved through continuous ignition by
the hot combustion products in the recirculation zone. In some designs additional bluff body flameholders
may also be used; and occasionally continuous burning of a pilot light may be required.

COAXIAL DUMP COMBUSTOR

w FUEL
O \\*
®) >
e / o~

é

SIDE DUMP COMBUSTOR

F1GURE 2.58. Two simple ramjet configurations using stabilization at abrupt changes of area.

Zukoski (1985) has given a thorough discussion of steady flame stabilization in thrust augmentors.
Much of that material applies with virtually no change to the corresponding problems in ramjet engines. The
presence of the rearward-facing step and the sensitivity of shear layers and recirculation zones to fluctuations
in the flow are major factors in the problem of combustion instabilities in ramjet engines.

Much of the material we have covered for liquid-fueled rockets and thrust augmentors is relevant as
well to ramjet engines. There are, however, several distinguishing features. First, unlike the case for liquid
rockets but similar to that for afterburners, spray combustion seems a lesser issue. Although the published
evidence is perhaps not wholly conclusive, (see, e.g, Edelman 1981, Edelman et al. 1981 and Harsha and
Edelman 1982), it appears that in operating engines, the liquid droplets are largely vaporized before the
flow reaches the zones of flame stabilization and combustion. Hence the processes in those regions involve
mostly gaseous reactants, a great simplification for carrying out research on combustion instabilities; very
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little experimental work has been done recently in the coupling between spray combustion and unsteady
motions. Laboratory tests have for the most part used gaseous fuels.

That is not to say that transient processes of droplet heating and vaporization are unimportant, for they
are surely influential in arranging the distribution of fuel over the plane at the entrance to the combustor.
But there is no operational or experimental evidence to support the proposal by Tong and Sirignano (1986a,
1986b, 1987) that the unsteady conversion of liquid to vapor is a potential mechanism for instabilities. This
matter has already been discussed in Section 2.3.1 with the conclusion that if all processes except combustion
are accounted for, the presence of evaporating liquid drops is a stabilizing influence on unsteady motions.2”
We will not consider further problems associated with injection, atomization and vaporization. However, it
is true that insufficient attention has been paid to the distribution of fuel/oxidizer ratio in the flow. Little is
known of the details, either theoretically or experimentally; yet laboratory tests (e.g., Schadow et al. 1987b)
have shown that the distribution of fuel can have a substantial effect on instabilities, a fact that has long
been known qualitatively from experience gained in engine development (Rogers 1980a, 1980b; Grenleski et
al. 1977). There seems to be no evidence of coupling between oscillations in the flow and the fuel supply
system. Thus no oscillations have been observed in ramjets corresponding to ‘chugging’ or POGO instabilities
in liquid rockets.

2.4.6. Unsteady Behavior of the Inlet/Diffuser. So far as combustion instabilities are concerned,
the principal feature distinguishing ramjet engines from liquid-fuel rockets and afterburners is the in-
let/diffuser. Within the inlet a system of shock waves exists to provide the mass flow and stagnation
conditions demanded by the conditions set in the combustion chamber and exhaust nozzle. Under normal
operating conditions the shocks are located downstream of the geometric throat in the expanding supersonic
flow. The position of the shocks depends chiefly in the stagnation pressure in the combustion chamber;
increasing the stagnation pressure causes the shocks to move upstream where the Mach number and there-
fore loss of stagnation pressure are less. It is this sensitivity of the flow in the inlet to pressure changes
downstream that has caused longitudinal oscillations to be such a serious concern in ramjet engines. In the
late 1970s (Hall 1978, 1980; Rogers 1980a, 1980b) first qualitative and later limited quantitative relations
were established between the amplitudes of pressure oscillations and the loss of dynamic pressure margin.

Since those early works, extensive tests by Sajben and co-workers (Chen, Sajben and Krontil 1979;
Sajben, Bogar and Krontil 1984; Bogar, Sajben and Krontil 1983a, 1983b) have shown that the unsteady
behavior is greatly more complicated due to flow separation and instability of shear layers. High speed
schlieren pictures (see also Schadow et al. 1981) have shown large shock oscillations as well as the formation
of vortex structures. Although computations based in the one-dimensional approximation to flow in the
diffuser (Culick and Rogers 1983; Yang 1984; Yang and Culick 1984, 1985, 1986) are useful and seem to
capture some of the dominant features of the behavior, it is quite clear that the true motions can be simulated
well only by numerical analysis based on the Navier Stokes equations for two- or three-dimensional flows
(Hsieh, Wardlaw and Coakley 1984; Hsieh and Coakley 1987; and references cited there).

There is evidence that under some conditions inlets exhibit self- excited or ‘natural’ oscillations. Energy
is transferred from the mean flow to the fluctuations associated at least partly with separated flow. Although
a one-dimensional calculation (Culick and Rogers 1983 and an approximation to some of Sajben’s data by
Waugh et al. 1983, Appendix D) suggests the possibility that the inlet may drive combustion instabilities,
there is no firm evidence from tests with combustors that those conclusions hold. Most experimental results
strongly suggest that the major source of driving unstable motions is likely associated with processes in
the combustion chamber. Nevertheless, because the flow from the inlet is the initial state for flow in the
chamber, it is fundamentally important that processes in the inlet be well-understood. In that respect, as
we remarked above, perhaps the greatest deficiency is knowledge of the history of the injected fuel and the
distribution of liquid droplets and gaseous fuel at the inlet phase.

27This conclusion is not generally true. See the discussion in Section 6.13.
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In practice, the first indications of combustion instabilities are almost always fluctuations in recordings of
the pressure. If there is only one pressure transducer, one can infer only the amplitude and frequency—best
displayed as a power spectral density. While the frequency alone may suggest what modes are involved, the
configurations used for ramjet combustors are sufficiently complicated that the modes are not always easily
identified. Moreover, in laboratory tests there may be an upstream plenum chamber and other parts of the
apparatus that participate in the oscillations. As a general rule, it is essential that measurements of the
pressure be taken at several locations in order to provide unambiguous identification of the modes. Sufficient
care should be taken that distributions of both the amplitude and relative phase can be determined. This
information has also proven extremely useful for confirming the results of analyses.

Dump Plane
Windowed | Combustor
Inlet JP-4 |
Plenum ! Cqu! lgniter Nozzle
| L #r !
| 1 =)
i =
SHK DMP * i i i 1NOZ
s ] 26 36 406 50 80 70

Pressure Transducers

FIGURE 2.59. Model used for measurements in the inlet to a dump combustor (Crump et al. 1986).

The most extensive measurements of mode shapes in dump combustors were made at the Naval Weapons
Center by Schadow and co-workers. A summary of the results, with references to the previous work, was
published by Crump et al. (1986). Figure 2.59 shows the geometry of the sub-scale laboratory device; some
results of measurements and analysis are reproduced in Figure 2.60. A case in which a bulk mode is excited
in the combustion chamber (175 Hz) is shown in Figure 2.60(a); the fundamental wave mode was excited in
the chamber excited for the case shown in Figure 2.60(b) (540 Hz). The calculated results were based on a
one-dimensional analysis (Yang 1984) in which combustion was ignored and the mean flow was accounted
for only in the inlet. The good agreement is further evidence of the point emphasized already that the mode
shapes and frequencies for combustion instabilities are often well-approximated by results based on classical
acoustics. Here we also find that the one-dimensional approximation works well. For those calculations,
the inlet shock was represented with the admittance function computed by Culick and Rogers (1983). It is
apparently a good approximation that for these cases, the shock system is highly absorbing: the reflected
wave has much smaller amplitude than the upstream-traveling incident wave. That fact, and the presence
of the high speed average flow, explains why the relative phase varies linearly in the inlet.

Clark and Humphrey (1986) have also reported fairly good results obtained with a one-dimensional
analysis applied to a side-dump configuration. The engine was supplied from a large plenum through inlets
that were not always choked. Although the frequencies of oscillation, phase distributions throughout the
device, and amplitude distributions within the combustor were predicted well, the amplitude distributions
within the inlets diffuser considerably from the measured results. The reasons for the differences are not
known. Yang and Culick (1985) later carried out a numerical analysis including vaporization of the liquid
fuel and were able to predict quite well both the distribution and level of the pressure field.

A series of tests in a coaxial combustor have been reported by Sivasegaram and Whitelaw (1987),
intended to examine the consequences of changing geometric parameters and fuel/air ratio. Data are given
for frequencies and sound intensity at one location. Mode shapes were evidently not measured and no results
of analysis are cited. It would appear that these data offer an opportunity for a straightforward application
of a simple one-dimensional analysis.
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F1GURE 2.60. Comparison of measured and calculated mode shapes in the inlet of a labo-
ratory dump combustor (Crump et al. 1986).

The one-dimensional approximation with the average flow accounted for works surprisingly well for rapid
estimates of mode shapes and frequencies. It is worthwhile remarking on its application. Few exact solutions
exist for arbitrary variations of cross-section area S.(z), but in the case of ramjet configurations it is generally
required to obtain results for piecewise variations. The problem comes down to solving the wave equation

2 A ~
M +kyp = _@idSc
dz? dz S. dz

where dS,./dz vanishes everywhere except at discontinuities of area where it is infinite.

Hence the general procedure is straightforward to find normal modes of the chamber. In uniform sections,
the pressure field is represented by the usual forms, A;cos(kez + ¢;) or its equivalents, where A;, ¢; are
associated with segment i, and k; is the wavenumber for mode ¢. These solutions are matched at the
discontinuities by requiring continuity of the acoustic pressure and mass flow. Eventually the amplitudes
A; can be found to within a multiplicative constant, and the values of hy, are determined as roots of the
characteristic equation.

This sort of analysis has long been known to give satisfactory results if the changes of area are not too
large (see Section 5.7.2 and more complete analyses by Culick, Derr, Price 1972; Derr and Mathes 1974).
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Simple resonance tests at room temperature have confirmed the calculations, a method that is still useful
for investigating the acoustic modes of combustion chambers. For application to actual systems, significant
differences between these approximate results and observed values may arise due to uncertainties in the
boundary conditions at the inlet and exit planes.

2.4.7. The Time Lag Model Applied to Combustion Instabilities in Ramjet Engines. During
the past seven years, Reardon (1981, 1983, 1984, 1985, 1988) has used the time lag model to-correlate and
interpret the extensive data taken by Davis (1981). The time lag model is unwieldy (at best) to use if
combustion is allowed to be distributed and the time lag is variable. Hence as in many previous applications
to liquid rockets, Reardon assumes that the energy release is concentrated in a transverse plane; that the
parameters (n, 7) are constant; and that the flow field is one-dimensional. Then the combustion response
is given by the part of equation (2.94) depending on frequency; to represent concentrated combustion, the
average distribution w; is replaced by é-function. A modest change in the argument allows one to use this
form for the unsteady conversion of liquid to vapor, or for unsteady energy release.

Reardon assumes that the oscillations observed by Davis are bulk modes in the combustor: the pressure
is essentially uniform in space and pulsates in time. Hence the mode shape () is approximately constant
and one may assume that the total unsteady energy release due to combustion processes in the chamber,
E., is given by

. . . pl
E.=En(l —e™")=
p
The rate of change of energy in the chamber is the net result of energy released by combustion and the rates
at which energy is convected in and out of combustor:
dE .

YV Ec Ezn - Eou
ar + t

This relation is the basis for Reardon’s treatment of the experimental results.

As we discussed earlier, in applications of the time lag model to instabilities in liquid rockets, both
parameters (n, 7) were determined by matching a theoretical result to experimental results for the stability
boundary. The idea then is that those values of (n, 7) can be used to predict the stability characteristics
for new (but in some sense similar) designs. In this case, Reardon has chosen to use values of n calculated
by Crocco and Cheng (1956) and to compute the time lag independently, using previous results obtained
by others. In short, Reardon essentially assumes that the combustion model is known (defined by the two
parameters (n, 7) with concentrated combustion) and then uses the relation for the balance of energy in the
chamber to correlate data.

Stability of oscillations may be determined by application of the Nyquist criterion after the unsteady
energy balance is rewritten by using the Laplace transform. This possibility arises because, as we have briefly
described earlier, the problem of self-excited combustion instabilities can be interpreted as a linear system
with a negative feedback loop. The stability criterion, expressed with the growth constant «, depends
on other processes included in the energy balance. The formal result may therefore be used to test the
importance of those processes by comparison with data.

Reardon has used this procedure to study the effects of several processes and geometrical parameters,
with mixed results. It seems that this sort of approach suffers from the intrinsic limitation noted earlier: It is
really only a method for correlating data and therefore in the first instance has little predictive value without
assurance that the models used are accurate. Confidence in the results comes only from good correlations
with data over broad ranges of parameters. The results to date do not seem to provide that confidence.
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2.5. Dynamics of Flames and Flame Sheets as a Mechanism

Interpreted in the broadest sense, the dynamics of flames includes mechanisms which may be active in
any system based on the conversion of energy by combustion processes. Conventionally the term has come
to refer only to situations in which the flame or flames are rather well-defined and not spread out in space.
What is probably the first example of a “combustion instability” remains virtually a canonical example.
In 1777, (that’s only 50 years after Newton’s death!) Byron Higgens (1777) recorded his observations of a
“singing flame”, published twenty-five years later in Nicholson’s Journal. The phenomenon has attracted
much attention as a curiosity, as a simple informative example of fundamental behavior, and as an elementary
guide to understanding the complexities presented by actual combustion systems.

Figure 2.61 is a sketch of Putnam’s apparatus which is easily assembled for observation of a basic singing
flame. Two variations are shown, to demonstrate the influence of changing the upstream boundary condition.
Figure 2.62 shows some results (Putnam 1945) obtained for the two cases sketched in Figure 2.61. Putnam
(1971, pp. 9-16) has given a good brief discussion of Jones’ observations.

<——— Combustion tuibe ———

Diffusion flame

| |

L, L,

L L

N Gaseous fuel \S
/ supply tube —

Inlet to fuel
supply tube
Critical flow

B N orifice

¢
—

s
3

Plenum chamber

(a) Acoustically Open Inlet (b) Acoustically Closed Inlet
FIGURE 2.61. Simple apparatus for demonstrating a singing flame (Putnam 1971).

The connections between the behavior of the singing flame and results obtained for the Rijke tube
(Section 2.7) are fairly evident; they will not be pursued here. These elementary situations are instructive
examples of phenomena causing the excitation of acoustic waves by energy released in combustion processes.

Prior to the late 1940s and early 1950s, there was virtually no effort to work out true theories of flames.
There were no detailed quantitative representations having predictive value. The idea that at atmospheric
pressure most of the chemical reactions in a combustion process take place quickly and in thin regions had
long been known, but there were few quantitative consequences. That view, that flames are thin, is at least
implicit in practically all of the literature alluded to in the paragraph above. Then, a few years after World
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FIGURE 2.62. Location of the flame shown in Figure 2.61 to maintain a continuous tone,
i.e. ‘singing’ (Putnam 1971).

War 11, the field of combustion began to develop in the form now understood, most clearly the subject broadly
covered by the proceedings of the Combustion Institute. Within that extensive field, the representation of
reacting flows with thin flames, or ‘lame sheets’ became and has remained a useful model developed for
many research and practical applications.

Consequently, it was a natural development that unsteady problems of combustion in gaseous systems
should be modeled and analyzed with reaction zones treated as flame sheets. A significant increase of
activity occured in the late 1980s with accomplishments at Ecole Centrale, Paris (Poinsot et al. 1987) and
at Cambridge University (Bloxsidge et al. 1988). Those were the first of many works based on variations of
similar apparatus at approximately atmospheric pressure. In both programs, the primary goal was successful
application of active control to problems of combustion instability. A similar strategy was followed in work
at M.ILT. (Annaswamy et al. 2000 and Fleifel et al. 2000).

All of those works involve models of combustion zones as flame sheets. The analyses are closely tied to
investigations of active control and are therefore more appropriately discussed in Chapter 9.

2.6. Fluctuations of Mixture Ratio as a Mechanism

The influence of mixture ratio, or more precisely its fluctuations, in combustion instabilities received
little attention until oscillations caused serious problems in the development of combustors for gas turbines.
Reduced emissions, perhaps most importantly NO,, oxides of nitrogen, has been a practical goal for more
than fifteen years. Pressure to adopt stronger regulations has increased with time, one consequence being
significantly greater investments of people, money and time devoted to research. Many related special topics
of research have been, and are investigated; fluctuations of fuel/oxidizer ratio (F/O) hold a special position
due to their direct connection with local reaction rates, energy release and therefore potential effects on the
presence of combustion instabilities.

2-92 RTO-AG-AVT-039



COMBUSTION DYNAMICS AND MECHANISMS OF COMBUSTION INSTABILITIES

An interesting question is: Why do changes in the design, or operation of gas turbines to achieve lower
emission of NOy lead to combustion instabilities? The reason can be explained quite simply. First we
should note that there are three main mechanisms for the formation of NO (nitrogen oxide) in combustion
of conventional fuels: (1) oxidation of nitrogen contained in the fuel, the principal source of NO in the
combustion of coal; (2) production of NO early in flame zones, at a rate faster than that predicted by quasi-
equilibrium calculations (called ‘prompt’ NO); and (3) oxidation of atmospheric nitrogen. It is the last that
is the main cause of NO production by gas turbines.

Production of NO is commonly estimated by the ‘Zel’dovich mechanism’, an approximation to the more
accurate mechanism. The approximation by an overall reaction (Zel’dovich et al. 1985) is
69,460

d[NO] 1 _ g
— = L5 x 1017ﬁ[02]eq[N2]6qe T(OK)

The rate of production of nitric oxide is strongly dependent on temperature, the origin of the descriptive label
‘thermal NO’. For example, if the temperature is increased by 90°K at 2200°K, the rate doubles. Conversely,
the practical implication is that less NO is produced at lower temperatures.

In the interest of reducing pollution by NO (more generally NOy), combustion should be encouraged
at low temperatures. However, at lower temperatures, the rate of production of another pollutant, carbon
monoxide, is increased. At high temperatures, the equilibrium of COs and CO is shifted as CO4 dissociates
to form more CO. Thus in practice, the production, or rather the equilibrium concentration of carbon
monoxide, is minimum in a range of temperature not too high, not too low. Figure 2.63 shows some results
of calculations carried out at the United Technologies Research Center (UTRC). It follows from these results
that combustion is most favorably accomplished in a range of moderate temperature.
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F1GURE 2.63. Concentrations at equilibrium of carbon monoxide and oxides of nitrogen
(T. Rosfjord, UTRC; published in AGARD Report 820, Schadow et al. 1997).

The combustion temperature is reduced from its normal—i.e., traditionally accepted—value by operating
the combustor at lower values of the equivalence or fuel/oxidizer ratio. But as F/O is reduced to give
desirably lower levels of NOy, the combustor operates near the lean blowout limit. Then the combustion
zone becomes sensitive to fluctuations and approaches a condition under which it is both statically and
dynamically unstable. Flame ‘anchoring’ and stabilization become insecure and can be lost due to small
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disturbances. Local motions of the combustion zone may then couple to the chamber dynamics (acoustic)
and grow into a combustion instability. The global consequences of that sequence of events is displayed in
Figure 2.64. It is this general behavior that has motivated substantial and widespread research on combustion
instabilities during the past decade and more.

100 T T T
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FIGURE 2.64. General behavior as the equivalence ratio is reduced near the lean blowout
limit (T. Rosfjord, UTRC; published in AGARD Report 820, Schadow et al. 1997).

Eventually the mixture ratio holds a special position as a state variable identifying the change of the
operating point of a combustor, as in Figure 2.63. It does not directly follow that F/O is in any sense
a ‘mechanism’. On the other hand, because the fuel/oxidizer ratio affects directly such basic properties as
energy release (or heat of reaction) and flame speed, it is quite easy to make a convincing case that variations
of F/O can certainly produce oscillations. For example, imposing changes in F/O is a convenient means of
initiating combustion instabilities in numerical simulations.

Probably the experiments reported by Langhorne (1988) and Langhorne, Dowling and Hooper (1990)
were the first works to make explicit use of fuel/oxidizer fluctuations in studies of combustion instabilities.
Since then, research on the role and consequences of unsteady variations of mixture ratio has been carried
out by several groups; see, for example, reports by Lieuwen and Zinn (1998); Richards, James and Robey
(1999); and by Cho and Lieuwen (2003). Those and other works have been motivated mainly by intentions
to develop practical methods of active control, for application to problems of combustion instabilities in lean
premixed systems as explained above. That is a principal subject of Chapter 9.

2.7. The Rijke Tube: Simplest Example of Thermoacoustic Instabilities

One of the fundamental guiding principles in the field of feedback control is that time delays can cause
serious problems with stability and control. We have already mentioned on several occasions the presence
of a time delay as a factor in instabilities. It is preferable to view a time delay as a characteristic of the
mechanism of an instability rather than a mechanism per se. In this section we will treat two physical
mechanisms—energy addition from an electrical heater and from a flame sheet—each of which present time
delays. In both cases, delays exist between the action of a flow variable (pressure or velocity) and the energy
added to the flow. That is, the delays arise in the internal feedback path shown in Figure 1.1.
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The role of a time delay is clearly displayed in these special situations. Because heat addition is the
root mechanism, the oscillations observed experimentally are often called ‘thermoacoustic instabilities.” Un-
derstanding their behavior is a significant aid to comprehending more complicated instabilities generated by
mechanisms quite different in their details.

A second purpose of this section is to introduce the analytical framework developed in the following
chapters. The general formalism is quite generally applicable to combustors of any shape operating with any
form of reactants, solid, liquid or gaseous. Simple examples share many of the features of the behavior found
even in the most complicated applications to operational systems. Consequently, much of general value can
be learned from investigating the details of an elementary example.

2.7.1. The Electrically Driven Rijke Tube. Rijke (1859) invented and first studied his device nearly
150 years ago. The experimental results were described and explained by Rayleigh (1878, 1945) as the chief
basis for his formulation of the principle that came to be known as Rayleigh’s Criterion (Chu 1956; Zinn 1986;
Culick, 1987a, 1992). In recent years the Rijke tube has received much attention because of its potential
relations to combustion instabilities generally and for other reasons as well. Raun et al. (1993) have published
the most complete summary of work with the Rijke tube to 1993. The article contains a virtually complete
set of references and useful comments on much of the observed physical behavior, including experimental
confirmation of Rayleigh’s Criterion. Still a basic ‘rule of thumb’ in the field of combustion instabilities,
Rayleigh’s Criterion is derived here in Chapter 6.

Figure 2.65 is a sketch of the device to be analyzed here, the form of the device originally used. A tube
open at both ends is supported vertically and contains an electrically heated grid mounted some distance £,
above the lower end. In the original form of the tube used by Rijke, in place of the grid, a screen is heated
by a flame which is subsequently removed. Soon after the flame is removed, a tone of growing intensity is
produced. After maintaining a seemingly constant level for some time, the tone decays and ceases as the
screen cools. Rijke attributed the sound to periodic heating and expansion of the air rising through the
tube, alternating with compression due to cooling by the walls. Twenty years later, partially motivated by
his belief that cooling by the walls was too slow to be a controlling process, Rayleigh gave his explanation
for the excitation of the tone. He related the cause to the location of the heated screen relative to the form
of the acoustic field. It is in that work that we find the succinct statement of conditions under which heat
addition will cause oscillations, the famous ‘Rayleigh’s Criterion’ explained in Section 6.6.

z=L ——

z=0 —

FIGURE 2.65. Sketch of an electrically heated Rijke tube.

Rayleigh’s reasoning was not intended to include explicitly quantitative details of the phenomenon.
Another twenty years passed before Pflaum (1909) incorrectly attributed the origin of the sound to friction
between the rising current of air and the heater. The idea was essentially an analogy between the tones
produced in a Rijke tube and the oscillations excited by wind blowing past electric wires or telephone lines
(or a flexible bridge!). Thus the heater served only as the prime mover of the rising air.
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In 1937, more than a quarter century after Pflaum’s work, Lehmann (1937) carried out experiments
with the notable addition of a fine screen above or below the heater. Some of his observations misled him to
formulate a ‘theory’ predicting that the amplitude of oscillation should continually increase with the draft
velocity, not having the maximum value shown by experiments. Lehmann’s conclusions had no influence, for
not until fifteen years later did Neuringer and Hudson (1952) carry out what might be regarded as the first
‘modern’ discussion of the problem. They assumed that the time-dependent heat transfer depended mainly
on the gradient of the local instantaneous velocity. Lehmann’s experimental conditions served to define
variables of the flow required in the calculations. The results found by Neuringer and Hudson were not
extensive, but satisfied the authors that the local velocity gradient contributes crucially, suggesting further
that turbulence is likely an important factor. There is little concrete connection between the analysis and
observations cited in their discussion.

Carrier (1954) carried out the most detailed analysis of the Rijke tube driven by heat transferred from a
heater made of wires or strips of metal. The work was apparently prompted by some experiments carried out
by Bailey, who later gave an extended account of tests he performed with a Rijke tube operated with a gas
burner (Bailey 1957). The greater part of Carrier’s paper is devoted to a careful analysis of the mechanism,
unsteady heat transfer from the heater to the gas stream; and to construction of the wave field in the tube.
Carrier gave only brief comments regarding comparison with experimental results. The analysis has much
instructional value.

Three papers by Merk (1956b, 1957a,b) began with a calculation of one-dimensional motions in flow of
premixed combusting gases, and ended with a detailed examination of some possible unstable motions in a
Rijke tube. Merk’s calculations are linear, for one-dimensional flow and involve use of admittance functions.
He eventually uses Carrier’s result for the complex transfer function for a metal heater made of thin ribbons.
The unsteady heat transfer to the air flow is then proportional to the velocity parallel to the ribbon, with
a small phase difference. The physical content of Merk’s model of the Rijke tube is essentially the same as
Carrier’s but his discussion of the observable behavior is much more extensive. He obtained a result for the
neutral stability curve given below.

In a short note, Maling (1963) gave what is probably the simplest quantitative analysis of the linear
behavior of the Rijke tube. The unsteady pressure is taken to obey the wave equation with a heat source
(energy/mass-time) and no explicit effects of mean flow:

p 19 (y—1) 94
00> @ o T a ot
The heater is supposed to be an infinitesimally thin screen providing energy at a rate proportional to the
velocity. In the notation used here, p'(z,t) = p(z)e™"*** and ¢ = F(a)u’, so
2 A
P k2p = Lfl)ka(a)a(xh —)8(x — x1) (2.130)
dx? a
where the heater is located at zj, and € is a small quantity required when the momentum equation is satisfied
just upstream of the heater. As in Merk’s analysis, Maling used Carrier’s results to set F'(@). Limited test
results with a three-foot tube and a blower in plenum chamber upstream of the tube established the lower
limit speeds for oscillations, 0.84, 0.87, 0.91 m /s with total heater powers equal to 930, 1100, and 1290 Watts.
Those can be viewed only as qualitative results because precise behavior is very sensitive to construction
imperfections.

(2.129)

The first experiments with a horizontal Rijke tube were done by Friedlander in his thesis work reported
by Friedlander, Smith and Powell (1964). Limited tests served only to establish correlations among some
variables, mainly the sound pressure level, heater location, tube length and flow velocity which was provided
by external means not described. The length of the tube could be adjusted by moving pistons which, while
admitting flow, closed the ends. Apparently the observed behavior was consistent with the calculations by
Maling. Insufficient details are given in the note to make further use of the report.
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Saito (1965) seems to have misunderstood some of the previous work (e.g., he did not fully appreciate
the basic nature and generality of Rayleigh’s Criterion), and he incorrectly criticized application of Merk’s
calculations to an electrical heater. The apparatus he used is not described well, and several of his pho-
tographs are not clear. His Figures 7 and 8 clearly show that oscillations in his Rijke tube grow out of a
linear instability. Unfortunately the work seems not to have fulfilled the author’s hope for a new theory, or
even for providing the experimental basis for a new theory.

The most extensive experimental results to that time were provided by Marone and Tarakanovskii
(1967) using conventional square tubes having various lengths, an electrical heater and a controlled flow of
air provided by a fan. Their basic results are reproduced in Figure 2.66. Unfortunately, the velocity V,
which appears in the Strouhal number, St = wd/V, where d is the diameter of the heater, was not given
in the paper. The results are therefore qualitative and have limited value. From Figure 2.66(a) it is clear,
however, that a longer tube (lower frequency and lower losses/length) has a larger region of oscillation for
a given heater power. Figure 2.66(b) shows that for a given tube, the region of oscillations increases with
heater power. Marone and Tarakanovskii also give some results obtained when an unheated auxiliary grid
was installed. Oscillations at the fundamental frequency could then, under some conditions, be excited by a
heater placed in the upper half of the tube. That apparent violation of Rayleigh’s Criterion has never been
explained. Owing to the incompleteness of the information, a satisfactory explanation probably cannot be
worked out with the given data alone.
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FIGURE 2.66. The effect of tube length and heater location on the generation of oscillations
in a Rijke tube, St = wd/V; (a) heater power input 500W, (b) L = 1.3m (Marone and
Tarakanovskii 1967).

In a short note, Marchenko and Timoshenko (1970) later gave incomplete results for some aspects of
nonlinear behavior. For example, they found that the ratio of the amplitudes of the second harmonic to that
of the fundamental decreased linearly as the heater was moved from 20% to 30% of the tube length. Their
data is suggestive but too little to advance understanding.

Collyer and Ayres (1972) briefly explored the generation of harmonics in a Rijke tube by one or two
screen heaters appropriately placed in the tube. They reported exciting as many as nine harmonics in a
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cold 79 cm tube and eight harmonics when it was ‘hot’; the average temperatures were 28°C and 68°C
respectively. Apart from a brief comment regarding an explanation for the presence of the second harmonic
noted by Marchenko and Timoshenko, the authors merely report their observations without interpretation
or explanation. Thus the work adds little to explaining the behavior of the Rijke tube.

Apparently inspired partly by Saito’s work a dozen years earlier, and motivated by some fundamental
weakness of both the available experimental results and analyses, Kalto and Sajiki (1977) reported quite
extensive results for the onset of oscillations, but gave no analysis. Their apparatus was a vertical tube with
supporting equipment essentially the same as Saito’s. Figure 2.67 shows an example of their results which
were always plotted as heater power versus flow rate measured in liters per minute. They show the usual
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FIGURE 2.67. The effect of a second heater on the stability of oscillations; adapted from
Figure 7 of Kalto and Sajiki (1977).

broad region of oscillations with a single heater placed at one-quarter of the tube length from the lower end.
A series of tests were carried out with a second heater at one-quarter of the length from the top. The power
to the second heater was constant, equal to 100W. When placed at the middle of the tube, the second heater
had no effect, a result to be expected on the basis of Rayleigh’s Criterion. Kalto and Sajiki examined the
consequences of changing other variables, including tube length and form of the heater, which we will not
discuss here.

The last of the papers from the University of Tokyo covers results obtained by Madarame (1981) who
paid particular attention to the rates at which energy flows to the oscillations. It is unfortunate that the
author ignores two hundred years of previous work on the problem: the only citations are the papers by
Saito, and Kalto and Sajiki; and the book on boundary layer theory by Schlicting (1968). Madarame reports
data for the growth of oscillations and for the limiting amplitude. Some effects, for example, of flow rate and
heater power input are given for several lengths of tube. The author found fairly good agreement between
observations and a simple analysis for small oscillations and for flow rates which are not high. Madarame
speculates that transition to turbulent flow may be responsible for some of the anomalies found.

Probably the first thorough analysis of the stability of small motions in a Rijke tube was worked out
by Kwon and Lee (1985). Their best result was the curve of stability limits reproduced here as Figure
2.68. Despite the obviously good agreement, which shows that the calculations contain some truth, the
analysis does not constitute a theory of the Rijke tube, nor do Kwon and Lee make such a claim. Only the
example shown in Figure 2.68 was given in the paper; the authors note that in other cases they examined,
the experimental values of heat input were larger than predicted for large flow rates and smaller for low flow
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FIGURE 2.68. A prediction of a stability limit (Kwon and Lee 1983) with data reported by
Kalto and Sajiki (1977).

rates. Kwon and Lee attribute those differences to a faulty representation of the heat provided by the heater
for low flow rates, and to an unaccounted for increase of mean temperature 7T, in the tube. In fact, even
crude measurements demonstrated that their assumption that 7}, is equal to the temperature of the air at
the inlet to the tube is simply not valid.

Kwon and Lee define their “stability limit” for oscillations as the condition when the generation of power
by the heater and absorbed by the gases exactly equals the acoustic energy dissipated in the tube. Convection
of energy at the ends, and radiative losses were estimated to be negligible so the condition for oscillations
is equality of the absorption of power and the rate at which acoustic energy is lost due to viscous effects,
including heat conduction at the lateral boundary (Appendix C). The rates of generation and dissipation
are

(’7 - 1>pm&m T Eg
W, = WEQOWP\ sin { 7 (2.131)
T2 Rpump, [ Um\ /2 v—-1
W, = Tl () <1 + —) iip|? 2.132
2\/5 w \/ﬁ | P‘ ( )
where ( )m denotes values at the ‘mean temperature’ of the gas flow; |a,| is the magnitude of the peak

velocity oscillation; 7, is the mean kinematic viscosity; Qo is the “overall steady heat input to the air from
the heater”; and F is an efficiency factor measuring the part of heat release in phase with the pressure.
Equating (2.131) and (2.132) leads to the formula for Qo:

_ V2rR(0) P <1 L1 1)
Esin (27% ) VPr

Qo (2.133)
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The heat input is least when sin (271'%’) =1,0rf, = %, a well-known result. Some additional ancillary

calculations are required (see the paper by Kwon and Lee) but the preceding conveys the gist of the matter.

In the greater part of practical cases, the presence of oscillations in combustors is simply not wanted.
Hence the main problem is avoiding them in the first place, or supressing them when they do appear. It seems
to be generally true that if an existing combustion system is developed further in the interest of improving its
performance in some sense, then unwanted oscillations of pressure will inevitably appear. That is one reason
why the Rijke tube has continued to attract attention; it is the simplest system displaying many aspects of
general behavior. Given the problem, the practical question arises—how can the oscillations be avoided or
suppressed? With an interesting paper, Sreenivasan, Raghu and Chu (1985) used an electrically-driven Rijke
tube to introduce the idea and first example of actively controlling acoustic oscillations. Their basic idea
was to convert “acoustic to thermal energy so that the acoustic oscillations are quenched and the system is
stabilized.”

The apparatus Sreenivasan et al. used was a vertical tube with a primary heater mounted in the bottom
half and a control heater in the upper half. As part of their study the authors measured the temperature of
the air system to be 26°C before the primary heater, 92°C before the control heater and 97° in the exhaust.
Thus the temperature rise was about 30% of the initial ambient value, not the small change assumed by
Kwon and Lee. As a point we will return to in Chapter Nine, the oscillations in the tube were suppressed
by using control heater power roughly 3% of the primary heater power, whereas the acoustic power was
approximately 1/100 as much. Active control may be very costly.

Subsequent to the work just described, the Rijke tube has been used either in slightly different forms
using various fuels to provide the driving power from combustion (e.g. Putnam and Dennis, 1954, who
apparently made the first flame-driven Rijke tube; and Raun and Beckstead, 1993, among many); or as the
object to investigate the application of active control. The recent investigation by Matveev (2003) seems
to be the latest based on the historically ‘conventional’ form of the electrically powered tube. Matveev and
Culick 2002a—d; 2003b,c have discussed the work. Matveev took special care to obtain data having precision
as high as possible, a demand that required lengthy tests to reach thermal equilibrium or, better, steady-
state. The apparatus was a perfected form of that described by Pun (2001) and sketched in Figure 2.69.
Figure 2.70 shows two examples of experimental results and calculations for the stability boundary with two

/ Damping chamber
~ / Thermocouple array
Rijke tube
Heater power
/ rods

> -

Pressure Air flow
transducer

FIGURE 2.69. A sketch of the horizontal Rijke tube used by Matveev (2003).

positions of the heater. The crossed short lines represent experimental error bars; the heavier short vertical
lines illustrate the shifts of the computed stability boundary when the impedance of the chamber is assigned
an uncertainty of £ 20%.
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F1GURE 2.70. Comparison of experimental data and calculations for stability boundaries
of the Rijke tube in Figure 2.69. Heater position: (a) 1/4 tube length; (b) 1/8 tube length.

These results support the conclusion that we can compute the stability of the electrically driven Rijke
tube quite well, but considerable care is required. See Matveev and Culick (2003) for a more detailed
discussion. Even in the crudest execution of the experiment, three elementary results are found, implicit in
the references cited, if not discussed explicitly:

(a) If the heater is in the lower half of the tube steady acoustic oscillations can be sustained;
(b) The frequency of the sound is close to the fundamental frequency @/2L of the tube;
(c) If the tube is tilted, the intensity of sound decreases and is zero when the tube is horizontal.

Correspondingly, three basic questions are raised:

(i) What determines the frequencies of the observed oscillations?
(ii) Why does the location of the grid matter?
(iii) Why does the vertical orientation of the tube affect the oscillations?

All three questions can be answered with linear analysis of the field in the tube and consideration of
modest nonlinear behavior of the heat transfer from the heater. The steps in the procedure followed in
Section 2.7.2 are in direct correspondence with those followed in the general method.

2.7.2. Mean Field in the Rijke Tube. The hotter gas above the heater rises, inducing a draft in the
tube. In steady flow there is an abrupt rise, in the limit a discontinuity, of temperature across the heater.
Continuity of mass flow requires??

ﬁLﬂLSC == ﬁUHUSC (2134)

where S, is the cross-section area. Subscripts ( )r and ( )y denote values in the lower and upper regions

of the tube; and ( ) stands for average value.

We assume that the average flow is uniform above and below the heater, and that the perfect gas law
holds with the gas constant having the same value throughout, p = pRT. In this low speed flow the pressure
is approximately uniform except for a negligible change across the heater due to viscous effects (drag and

28Gtrictly, careful derivation of this relation gives puS. = constant. We assume 5 = P U; see discussion of the equations
for the average flow in Chapter 3.
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heat transfer). Hence certainly as a good first approximation, we have the simple relation connecting the
density and temperature ratios across the heating grid

= (2135)

2.7.3. Acoustic Field in the Rijke Tube. The simplest representation of the acoustic field is based
on the assumptions that the mean flow has negligible effects on the unsteady field; and that viscous losses
at the lateral walls may be ignored. Then the classical acoustic conservation equations for one-dimensional
motions apply:

o’ o' _
_ou'  op
Momentum Par + Free 0 (2.137)
o _ou iy
Pressure (Energy) e + Py, = (v—1)Q6(x—£,) (2.138)

The effect of the heater is represented by the fluctuation @’ of heat exchanged between the grid and the
flow, assumed to occur in the infinitesimally thin plane at = ¢,. These familiar equations are derived in a
more general context in Chapters 3-5; see Sections 3.3 and 5.1.

The idea now is to solve (2.136)—(2.138) separately in the regions upstream and downstream of the
heater. Because ()’ = 0 outside the heater, the solutions represent freely traveling waves. Then the field in
the tube will be found by applying suitable boundary conditions at the ends, and matching conditions at
the heater.

The required matching conditions are obtained by integrating the conservation equations over a small
region containing the heating grid, Figure 2.71, ({; — §) < x < ({4 + 6) and then letting 6 — 0.

-3 l+38

—3d

u (£-38) u (f+9)

FIGURE 2.71. Region of integration for obtaining matching conditions.

Applying the procedure to the differential equation (2.136) for conservation of mass gives

Ly+6 £y+6

so for small 6,
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For 6 — 0 we have
Puty, = Py, (2.139)
This result is the formal statement that the acoustic mass flux is constant through the heater.
Similarly, the momentum equation (2.137) leads to continuity of the acoustic pressure,
Doy =P (2.140)

Integration of the energy equation (2.138) across the heater introduces the influence of the unsteady heat
addition:

lg+s £4+6 ) £4+5

ap _Ou - Y

Edw—i— / vp%dx =(y—1) / Qy0(r — {)dx
bg—5 bg—5 bg—5

For § — 0:
7 (uf,+ —uh,— ) = (v = D@,

so the discontinuity of the velocity fluctuation is

3!
=+ (v - 1)% (2.141)
Combination of (2.139) and (2.141) gives
1 Y - = Y
up == (v — I)Q—f DUy = M('y— I)Q—f (2.142)a,b
T 7D -1 7D

There is only one source of energy for the acoustic field in this form of the problem, the heating grid. We
will ignore all losses at the ends and lateral boundary of the tube. Depending on the heat transfer between
the grid and unsteady motions of the gas, a small amplitude disturbance may grow or decay. That is, we are
really concerned at this point with stability of waves in the tube. We examine the matter in two ways: by
finding the wave field in the tube subject to appropriate boundary conditions and the matching conditions
just derived; and with a method based on spatial averaging. In practice, the chief difference between the two
approaches is that the second approach gives the desired result for stability without requiring knowledge of
the actual acoustic field.

2.7.4. Acoustic Field and Stability by Matching Waves. The method used in this section has
often been applied to problems involving planar waves. Several examples have appeared in the literature
of combustion-driven oscillations, e.g., Dowling 1995; Candel 1992, 2001. Here we have only to use the
matching conditions derived above to join representations of standing waves on the two sides of the heater.
In the regions between the heater and the ends, the linearized momentum and energy equations are

_ou’ 3_p’ B

p— + =0
ap,at gfj (2.143)a,b
ot TPy =0

The wave equation for the pressure is formed by differentiating (2.123)b with respect to time and replacing
ou' /0t by (2.123)a.

For P, p constant and @* = 7p/p, the result is
82]7/
ot?

_, 0%
- aQW =0 (2.144)
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Solutions of the form p’ ~ e*eX® are easily found, appropriate combinations then form representations

of standing waves. We ignore radiation of acoustic energy from the ends of the tube, a condition that is
enforced by requiring that the pressure fluctuations vanish:
/

p'(0;t) =0
,( ) (2.145)a,b

p'(Lit) =0
It is convenient to use the complex form for the time dependence; a solution to (2.144) for the lower part of
the tube, satisfying (2.125)a is

ph(2;t) = Pre”sin(kpz) (0<z <L) (2.146)

where (2 is the complex frequency and kj, is the complex wavenumber:
QA =w+ia

k= Qfa, = — +i—
ary, ay,

(2.147)

As defined here, « is positive for an unstable wave.

The acoustic momentum equation (2.123)a is satisfied, with (2.146) for the pressure, if the corresponding
velocity fluctuation is

P :
up (z;t) = i cos(krx) (0<x <ty (2.148)
pLaL

Similarly, the solutions in the upper part?? of the tube are

P (x;t) = Pre” ™ sinky (L — )
P
Puau

e—iQt cos kU(L _ .fC) (gg <z S L) (2149)avb

With these solutions, application of the conditions (2.140) for continuity of acoustic pressure and (2.141)

for the discontinuity of velocity fluctuation gives the two equations relating the unknown amplitudes Pp and
PUI

PL Sin(kng) = PU sin kU(L — ég)

Py cos by (L — £y) = — Py (foU> cos(kply) — i (”UfU
prar vp

> (= )0 e (2.150)a,b
g9

The heat exchanged between the grid and the flow likely depends on both the pressure and velocity, but in
the absence of experimental and theoretical results, it is reasonable simply to assume that Q; is proportional
to the velocity fluctuation with a time lag. But what velocity fluctuation? As an approximation, we assume
that the average value across the heater is a reasonable choice, so

Q= % [}, (bgst — 7o) + upy (git — 7)) (2.151)
Substitution in (2.145)b and rearrangement leads to
—&Pr, cos(kply) = Py cosky (L —{y) (2.152)

29Note that there is a sign change in u’L because x is replaced by L — z. Also, the complex frequency € has the same
value throughout the tube because we assume ‘steady’ waves—‘steady’ except for slow growth or decay.
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- =DQu ,iQr,
g=Tulu 1t (2.153)
prar 1 — O=DQu iar, '
2vp

Division of (2.145)a by (2.152) gives the transcendental equation for the complex eigenvalue Q (recall kj, =
Q/EL and ky = Q/EU)I

Etan(kply) = —tanky (L — £y) (2.154)

The last equation can only be solved numerically in general, but for the case of weak heating, an
instructive result is readily obtained by expansion about the limit of no heating. When @y = 0 so the gas
properties are uniform, { = 1; after expansion of (2.154) the dependence of £, drops out and we recover the
classical condition setting the wavenumbers in an open-open straight tube:

sinkL =0
and

kL =0,m,2m, - Im (2.155)

When weak heating is assumed, the wavenumbers differ slightly from (2.155); for the first mode (¢ = 1)
set30

1
kp =ky =~ z(ﬂ' +0) (2.156)
and the problem comes down to determining 6. Then to first order in 6,

tan(krly) = tan(m + 6)%

tankr (L — £,) = tan(m + 0) (1 — %)

(2.157)a,b

It is sufficient for the purposes here to consider the special case ¢;/L = 1/4, when the heating grid is one-

quarter of the tube length from the inlet. Experimentally it is well-known that the first mode is excited

when the heater is in the lower half of the tube. With ¢,/L = 1/4, substitution of (2.157)a,b in (2.154) gives
1 3

& tan Z(?T—i—é) = —tan Z(T&'—F(S) (2.158)

where £ differs from unity by an amount of the order of §. If we assume ?L’—?L’ =1+ € and set

-1 iQ
A= —Q.e" ™ 2.159
= Que (2150)
Then & (2.153) becomes
1+ A
=(1 ~]1 2A
1 (—&-6)17A + (e +24)
to first order in small quantities. Also to first order in 6,
1 1+2 )
tan — §) 2 —=2 21+ -
an4(7r+ ) —% + 5

1—3
tan%(ﬁJré)% 1 §<1§6>

30We ignore the small increase in the speed of sound in the flow through the grid. This affects the frequency slightly and
even less the growth or decay constant (time averaging part of the wavenumber).
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Substitution of these approximations in (2.158) leads to

1-36
1+ (e+2A) = 2o~ 1-26
T2
and
s=—S oA (S22 0 cosan, ) —il=10, sn0 (2.160)
= 2 = 2 2]3 m Tu 2}_) w SN LTy, .

Now by definition, the complex wavenumber and frequency are related by
Q w a 1
a_a '@ L(7T +9)
the second equality following from (2.156). Hence, with (2.160) we find
a 1 -1 ay-—1
w:’ﬂ'——§<€+7QuCOSQTu) s a:z%
But since « is first order in small quantities we must replace €2, by the unperturbed classical frequency,
w = 7%, so the first order approximations to the frequency and growth constant are

- 1 _
<€—U2—U — 1> + ’YTQU cos (WETU>:|
PrL AL p L

ay—1 . a
a=———Q,sin | 7—=Ty
L 2p L

Q. sin Q7,,

a 1
Ww=7T—=—=

2

h

(2.161)a,b

Because the growth constant o must be positive for the mode to be unstable, we have the simple criterion
for instability that the time lag 7, must be in the range

L
0< T, < = (2.162)

The period of the fundamental mode is 27 /wy = 27 /ak = 2L /a. Hence the condition (2.162) requires that for
unstable oscillations the heat addition should not lag the velocity oscillation by more than one-half period.
Similar results can be obtained for higher modes. For excitation of oscillations, there is also a restriction on
the location of the heater, not easily found with the analysis given here. Both restrictions on the temporal
and spatial properties of the heater are readily obtained with the method based on spatial averaging.

2.7.5. Stability Analyzed by a Method of Spatial Averaging. The generic character of the
mechanism examined in the preceding section is better shown with a special case of the analytical framework
developed in Chapters 3 and 4. We use the same example, but initially without the restriction to energy
addition at an infinitesimally thin grid. Hence the speed of sound must be treated as a function of position
in the tube. However, the mean pressure is constant and uniform, and formation of the wave equation as in
the steps leading to (2.144) now gives

a2p/_£ a28_}9/ :EGQI
ot?2  Ox Ox C, Ot

which we write in the form appropriate for small changes in the speed of sound,

0% _,0% _ ROQ 9y dia’

W_%W_aw_ax dx

= @3 + 6a?, a3 being constant,

(2.163)

where @2

. RoQ o dsa
T C, ot Ox dx

(2.164)

2-106 RTO-AG-AVT-039



COMBUSTION DYNAMICS AND MECHANISMS OF COMBUSTION INSTABILITIES

The boundary conditions set at the ends of the tube are
/
p'(0;t) =0
/( ) (2.165)a,b
p(Lit) =0

We assume always the classical acoustic problem for motions with no perturbations. Here the definition
of the unperturbed problem is clear: Q" and da> /dx vanish. Since we are normally interested in determining
what effects the perturbations have on the known classical behavior, we concentrate on analyzing the dif-
ference between the actual and classical problems. The idea is to construct the spatially averaged weighted
difference in the following way.

Let p) denote the pressure in the fundamental mode of classical motion satisfying the homogeneous wave
equation and the same boundary conditions as for the actual problem:

82171 28 D1

o2 ag 022 =0 (2.166)
P1 (0, t) =0
pi(Lit) = 0 (2.167)a,b

Multiply (2.163) by p1, (2.158) by p’, subtract the results and integrate over the volume of the tube to give

L L

a2p/ 82 82p/ 8
/ {pl 72 P i } Sedr — /{pl—ax2 -7 I Q}de— /hS dx (2.168)
0 0

Integrate the second integral by parts and substitute the boundary conditions (2.165)a,b and (2.167)a,b to
find
r 82 02 r op’ 9]
D1 P ;1 OP1
Sedx = — —p'—| S.d
/{ 8:(:2} — /{plax p@az} et
0

ox Ox Oox Ox

0
op’ 3]71
2 2] e

From earlier results we take pj| = P sinwtsinkjz, so in the first integral of (2.168),

p
o2 vk
where w; = agk;. We assume that the spatial dependence of the motion is not much affected by the

heat addition,®! but the amplitude 7;(¢) varies in time, in a manner to be determined; thus for the actual
oscillation we assume the form

P =pm(t)sinkyx (2.169)

31 This is a key step clarified in Chapter 4.
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Substituting p; and p’ in the first integral of (2.168) we have

P1g o2
0 0

82}?/ a2p1 L
/ [ —p } S.dx = / [P1 sinwitsin kqx (1_91'7'1 sin ko — wf}_ml sin k:la:)] S.dx

L
= Ppsinwit (’fh + w%m) Se /sin2 kizxdx
0

Inserting these results in (2.163) leads to

L
d*m 1 .
e +win = p—E%Q/hsmklde (2.170)
0
and
L
2 2 L
Ef = /sm kixdr = 3 (2.171)
0
With h given by (2.164), equation (2.170) becomes
L . L
d*n 9 2(R/Cy) [ 0q’ 2 [ Op déa?
=————- [ sink doe — — | =———d 2.172
a2 e 7L /bm YW T30 ) or dx (2.172)
0 0

To simplify the calculations we will ignore the change §a? in the speed of sound, and for comparison with
the results found in the preceding section, we specialize (2.172) to the case of a thin heating region. For
some further generality we assume that the fluctuations of heat addition depend on both the local velocity
and pressure fluctuations. Hence we add a term to the representation (2.151) to give

Q= {% [, (Cg; t = Tu) +upr (Ggit = 7)) + Qpp (L3 t — Tu)} 8(x — Lg) (2.173)

It is a great advantage of the method based on spatial averaging that in the right-hand side of (2.172)
we can use, as a first approximation,3? the unperturbed classical forms for the pressure and velocity fields.
Thus the discontinuity in the velocity fluctuation at the grid is ignored and (2.173) becomes

Q' = {Quu' (Lg;t — ) + Qpp (Lygit — 7))} S(x — £,) (2.174)
The unperturbed form for p’ is (2.169); the corresponding form for v’ is

/ m
~ —cosk 2.175
U e cos k1x ( )

This formula is justified as the zeroth order approximation for the velocity fluctuation because together
(2.169) and (2.175) satisfy the unperturbed acoustic momentum equation (2.137) providing k? = w?/a* and
(as zeroth approximation) n; satisfies the wave equation without perturbations; substitution in (2.137) gives

5] 0 9
en (% cos kw) + &(@71 sinkjz) =0
This equation leads to
d2
dtzl +wim =0 (2.176)

where w? = @2k?.

32The matter of correct systematic approximations, an iterative procedure, is discussed in Chapter 4.
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Substitution of (2.162) and (2.175) in (2.174) gives the formula for Q' to be used in (2.172):

. ., d .
Q = {% cos kléganl (t —7u) + Qppsinkyzm (t — Tp)} 6(x —Ly) (2.177)
1
Then
Q' Quuw? iy d
5 {— fyk’ll cos(k1€g)m(t — Tu) + QpPsin /ﬁxam(t —7p) ¢ 6(z — L) (2.178)

where we have used (2.176) as an approximation in the first term.

Finally, use (2.177) in (2.172) and rearrange the result to give
d*n R/Cy . o d R/C,
_9 in2 kil | —
a2 @p—p —sin"kuly| Zm ~PLk
This equation represents the behavior of a linear oscillator with time delays associated with internal feedback.

To determine stability, we assume that the amplitude 7; is a sinusoid with slowly growing or decaying
amplitude:

(t—m7p) + wi | m(t) + Qu sin 2k Lgny (t — Tu):| =0 (2.179)

m(t) = Ce ™% (2.180)
where C' is constant and the complex frequency is
Q=w+ia (2.181)

For instability, a must be positive with the sign convention chosen here. Both a and the difference between
the actual (w) and unperturbed (w;) frequencies are small: || < wy and |w — w| K wy. Substitute (2.180)
in (2.179) to find

—02 = 2A(—iQ)e ¥ + Wi (1 + Be') = 0 (2.182)
where
A= QP% sin k£,
(2.183)a,b
R/C, .
B= in 2
Quw_?Lkl sin 2k 4,

Expanded to show the real and imaginary parts, (2.182) is
[—w2 + w?(1 + Bcos w1Ty) — 2Aws sinwy 7p) + i[—20aw1 = 2Awy coswy T, + w?Bsin w1Tu] =0

where second order quantities have been ignored.?® The brackets must vanish separately and we have the
approximations for the frequency and growth (or decay) constant.

w A . 1
— =1— —sinw7p, + zBcosw T,
w1 w1 2

a A 1. .

— = —coswTp + =Bsinwi 7y,

w1 w1 2

With (2.183)a,b, these formulas are

i 1-Qp % sin? kily| sinwimp + Qy chv sin 2k, £, | coswi Ty
w1 wlL 2'7ka1

R/C R/C (2.184)a,b
(% =Qp {TLU sin? klég} coswiTp + Qu {2%5[/]:)1 sin lefg} Sin w7y,

The conditions for instabilities immediately follow from (2.184)b as the conditions under which a/w > 0.
For ‘velocity coupling’, heat addition dependent on velocity fluctuations, the conditions are: 0 < wy7, < T

33The perturbations represented by A and B are small, of first order, as are |a| and |w — w1].
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and 0 < 2k1¢, < m; and for ‘pressure coupling’, the single condition must be satisfied: —7/2 < wy7, < 7/2.
Hence with wy = w7, we have the conditions for the first mode to be unstable:

T1

Pressure Coupling : 1 <7 < % (2.185)
0<7< %

Velocity Coupling : I (2.186)
0<ty < 3

where 71 = 1/f; = 2L/a is the period of the fundamental mode. There is no restriction on the location of
the heater because the pressure fluctuations is in-phase at all points along the tube. The velocity fluctuation
suffers a m phase change at the center, so the velocity fluctuations in the upper and lower halves are w
out-of-phase.

We are now able to answer two of the three questions posed at the end of Section 2.7.1. To question (i),
the answer is that the frequencies are closely those of the classical acoustic modes and hence are determined
mainly by the length of the tube and the temperatures distribution axially. According to the calculations
just completed, the position of the grid matters because it selects the phase between the acoustic pressure
and velocity fluctuations. That conclusion, which answers question (ii), is certainly contained in the results
of the method based on matching waves, but is difficult to extract. With the method based on spatial
averaging, the conclusion is immediate.

It is particularly to be noted that observations have established that for a Rijke tube excited either by
an electrical grid or by a sample of heated gauge, the first mode is excited only if the source of heating is in
the lower half of the tube. Hence the results (2.186) demonstrates what is intuitively evident, that convective
heat transfer dependent on velocity fluctuations is most probably the basic mechanism. That is likely also
true for a tube driven unstable by a flame, but the observational results are too limited to make a definite
statement.

2.7.6. Nonlinear Behavior due to Rectification. It seems that the observed dependence of the
oscillations on vertical orientation of the Rijke tube is probably due to the need for a draft, an average flow
through the tube (question (iii), Section 2.7.1). In this section we use the method of spatial averaging to
demonstrate that assertion, but without quantitative results for the amplitudes of oscillation. The starting
point is the simplified oscillator equation (2.172) for the first mode and include only the heat source on the
right-hand side

Q'
ot

L
+wf171 = 2%/sin kix

d2771
dt?

dx (2.187)
0

Other than the somewhat vague requirement of ‘smallness’, no restrictions have been placed on Q. In
particular, it need not be linear. Two sorts of elementary nonlinear behavior are likely found in practice:
rectification, and saturation. The latter refers to an upper limit to the amount or rate of energy supplied
to the wave system by whatever processes dominate the mechanism. We will return to some aspects of
saturation later in the context of the control and limit cycles. Here we consider rectification associated with
convective heat transfer as the only nonlinear process present.3*

Convective heat transfer depends mainly on the relative speed of the flow past the surface and less so in
the direction. For example, for flow normal to a wire, Figure 2.72(a), the rate of heat transfer should be the

same in the two cases. On the other hand, a preferred flow direction for maximum heat transfer rate may be

34In particular we ignore the significant effects of nonlinear gasdynamics, covered in Chapter 7.
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FIGURE 2.72. (a) Hlustrating the independence of heat transfer on flow direction; (b) illus-
trating possible dependence of heat transfer on flow direction due to microscopic properties
of the surface.

caused by microscopic characteristics of the surface, one case being shown in Figure 2.72(b). We ignore that
type of behavior and assume that the heat transfer depends only on the magnitude of the relative velocity,

Q= f([a)) (2.188)

We also assume for application to the Rijke tube that the flow is always parallel to the axis, having both
mean and fluctuating components; the total and average rates are then

Q=f(a+d]); Q= f(al) (2.189)

Hence the fluctuation is

Q"= f(u+u')) - f([aul) (2.190)

The simplest possibility, sufficient for the reasoning here, is that Q is proportional to [z, i.e. f([u]) = K|al,

and (2.190) becomes

u/

Q =K {[u+u| - ﬂ|}Kﬂ|{‘1+E

- 1} (2.191)

This formula contains three sorts of behavior illustrated in Figure 2.73. To interpret the meanings of
Figure 2.73, we assume that the fluctuations of heat transfer is given by (2.191). Hence Q/ is proportional to
the values lying in the heavy lines with lower sketches of the three parts. For small values of the fluctuation,
|w'|/[@| < 1, the heat transfer fluctuates entirely at the frequency of the imposed velocity fluctuation, Part
(a). As |u/|/[u| increases and is greater than unity, rectification occurs and there are components of heat
transfer at other frequencies, including a steady (DC) value, as Part (b) shows. Finally, if there is no average
velocity, rectification is complete, as Part (c) indicates, and there is no oscillation of heat transfer at the
frequency of the imposed oscillatory flow. The behavior just described seems to offer a likely explanation
for the third observation and question (iii) listed at the end of Section 2.7.1. If an operating Rijke tube is
tilted from the vertical, the amplitude of the oscillation is reduced, finally disappearing before the tube is
horizontal. That is also why an electrically drive tube, conveniently mounted horizontally, must be equipped
with a system for forcing air through the tube. It is an important advantage of such an arrangement that
one has control over the flow rate (Matveev and Culick, 2002).

2.7.7. A Simple Analysis of the Flame-Driven Rijke Tube. Many laboratory devices for studying
thermoacoustic instabilities and their control are essentially straight ducts or tubes with one end closed to
permit injection of liquid or gaseous reactions. Combustion takes place downstream, usually anchored by
some sort of flameholder. The simplest approximation to the energy addition by combustion is a flat flame (a
‘flame sheet’) perpendicular to the axis, as sketched in Figure 2.74. A configuration of this type is effectively
a Rijke tube closed at one end. Hence stability of the system can be investigated with analysis that is chiefly
a paraphrase of that covered in Sections 2.7.4 to 2.7.5. First we use the method based on spatial averaging,
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FIGURE 2.73. Three sorts of nonlinear behavior due to rectification distinguished by the
relative values of the mean and fluctuating components of velocity: graphs of Q'/K, eq.

(2.191), with x = 4/a.
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FIGURE 2.74. A basic flame-driven Rijke tube.
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beginning again with the oscillator equation (2.170) with only the heat addition accounted for:
L

d? R/C, [ 8Q

dtzl + Wiy = E/EQ / » ;i dzx (2.192)
1

0

The modal function p; must now be chosen to satisfy the boundary condition of zero velocity normal to
the entrance plane at x = 0; for the fundamental mode:
p) = Pysinwitcoskyz = py sinwit

and

™
= — 2.1
]{?1 o7 ( 93)a7b

Note that the wavelength, \; = 27 /k; = 4L and the tube is a ‘quarter-wave tube’. The corresponding
value of the mode shape for the acoustic velocity is

Uy = — =L coswitsin ki (2.194)
pa

With p; given by (2.149), E = L/2 and the oscillator equation is

L .

d’n, R/C, [ oqQ’

72 +win =2 - /COSkliL’ 5 dx (2.195)
0

It is commonly assumed that the fluctuation of energy addition from an infinitesimally thin flat flame is

proportional to the velocity fluctuation, with time lag 7,:
Q' = Qou/(L;t — 7,)86(x — 0) (2.196)
The question again arises: what velocity should be used? Following reasoning in Section 2.7.5, we ignore the

spatial discontinuity due to the heat addition and assume the relation (2.175) for «’, but with the current
mode shape sin kqz:

P d d
u(zt —71) = —12—7)(15 — 7y)—(cos ki)
ki db de (2.197)
1. .
= —m(t—Ty k
’yklm( Tu) Sin kyx
The fluctuation of heat addition is
. P
Q' = —7717’71 (t — 7o) sinkyz6(x — £) (2.198)
1
which gives to first order in small quantities:
ol
P
882 = Tln(t — Ty)sinkix
; 22 (2.199)
10 2 .
= t— w) S k;
T wim (t — 7)) sinkx
Substitution in the oscillator equation (2.194) gives
d2
dtzl +win =k (t — 1) (2.200)
with
R Pl QO 2 .
= — sin 2k 4 2.201
Cy YpLky H T (2.201)
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Now assume solution of the form
m = Ne*'e ™' = Ne ™' ; Q=w+ia (2.202)
Substitution in (2.200) leads to the complex algebraic equation for « and w:

[—w? + wi — KcoswiTy] + i [—2aw + K sinw; 7] (2.203)
where again we ignore quantities of higher than first order. The real and imaginary parts of (2.203) must
vanish, giving to first order:

w
— =1—=KcoswiTy
w1 2

" (2.204)a,b

K .
— = ——_sinwiTy
w1 2w?

Since a > 0 for an instability, and with s given by (2.201), the fundamental mode is unstable if
sin 2k ¢sinwy, <0 (2.205)
which is satisfied if
(a) sinwir, <0 and sin2k ¢ >0

or (b) sinwym, >0 and sin2kf <0
In the first case,
3_7T
2

and fg<2kll€<g

With ky = /2L and wy = 27 f1 = 27/7 these two inequalities become (% < 0 is excluded):

w17
2 17y

T1< <3
— < Ty < =T
4 4!
¢ 1
0< =< =
L 2

(2.206)

In the second case (b) above,

7T< <
T s < I
2 D)

T 3T
— < 2kl < —
g Seb<g

which become

T1 T1
Ll Ty < —
4 v 4

' (2.207)

1<<1
2 L

Together, the two cases offer the ranges for the time delay and flame location

N < <
I T
4 u

3m
4

¢ (2.208)a,b
—<1
0< T <

The differences between these results for the flame-driven Rijke tube and (2.185) and (2.186) for the
electrically-heated case arise entirely because the mode shapes of the fundamental modes differ (a quarter-
wave in the present case and a half-wave for the electrically-driven tube).

Solution by matching waves in the manner of Section 2.7.4 produces similar results, but as in that
calculation, the restriction on the location of the heating zone, (2.208)b, cannot be obtained (Poinsot and
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Veynante 2001; Candel et al.2001). The analyses covered here have shown, even for these simple cases,
the ease with which the method based on spatial averaging can be applied. Moreover, matching waves is
successful only for problems of longitudinal motions. The analytical framework based on spatial averaging
is not only applicable to combustors of any shape, but accommodates any form of reactants—solid, liquid,
or gaseous.
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CHAPTERB

Equations/for UnsteadyMotions|inl Combustion Chambers

The examples described in Chapter 1, and many others, establish a firm basis for interpreting unsteady
motions in a combustor in terms of acoustic modes of the chamber. That view has been formalized during
the past fifty years and has led to the most widely used methods for interpreting combustor dynamics. In
this and the following chapter, we present the foundations of a particularly successful version of methods
based on expansion in normal acoustic modes and spatial averaging. We assume familiarity with the basic
ideas of classical fluid dynamics and acoustics. Chapter 5 covers the principles and chief results of classical
acoustics required as part of the foundation for understanding combustion instabilities. The discussions in
Chapters 3 and 4 are quite formal, intended to serve as the basis for a framework within which unsteady
motions, especially combustion instabilities, may be treated for all types of combustors. Hence the physical
model for which the formalism is developed is quite general.

3.1. Modes of Wave Motion in a Compressible Medium

In this section, the term ‘modes’ refers not to natural motions or resonances of a chamber but means
rather a type or class of motions in compressible flows generally. The brief discussion here is intended to
address the question: How is it possible that apparently coherent, nearly classical acoustic waves exist in
chambers containing highly turbulent non-uniform flow? It’s a fundamentally important observation that
such is the case. The explanation has been most thoroughly clarified by Chu and Kovasznay (1957), who
combined and elaborated some results known for nearly a century. Their conclusions most significant for
present purposes may be summarized as follows:

(i) Any small amplitude (linear) disturbance may be synthesized of three modes of propagation: entropy
waves or ‘spots’, small regions having temperatures slightly different from the ambient temperature
of the flow; vortical or shear waves characterized by nonuniform vorticity; and acoustic waves.

(ii) In the linear approximation, if the flow is uniform, the three types of waves propagate independently,
but may be coupled at boundaries (e.g. nozzles) or in combustion zones.

Entropy and vortical waves having small amplitude propagate (are ‘convected’) in a uniform field with the
mean flow speed, but acoustic waves propagate with their own speeds of sound. Moreover, in the linear limit,
only acoustic waves carry disturbances of pressure. All three types of waves possess velocity fluctuations. If
the medium is non-uniform or the unsteady motions have finite amplitudes, the three modes become coupled.
As aresult, each of the waves may then carry pressure, temperature and velocity fluctuations. Little extension
of the fundamental theory has been accomplished (see Chu and Kovasznay) and what understanding exists
has been gained from considerations of particular problems. Some of the consequences of these types of
modal coupling arise in the theory developed here, but much remains to be investigated.

Long experience has established the wide applicability of the basic physical model of combustion in-
stabilities as acoustic waves propagating in a non-uniform flow. Vorticity and entropy waves accompany
turbulence in a combustor but may also have other origins, such as flow separation, the unsteady behavior
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of injection devices, and interactions of the acoustic field with other processes, notably flow injected at the
lateral boundaries. Consequently, both the average and time-varying velocity fields in a combustor comprise
irrotational and rotational motions. Observational evidence for combustion instabilities suggests that the
rotational motions are in some sense often secondary, initially one of the chief guiding principles for the for-
malism developed in this chapter, but they cannot be ignored. In fact, both steady and unsteady rotational
motions participate significantly in combustion instabilities in solid propellant rockets. Several examples of
the generation and behavior of vorticity have been intensively studied in the past ten years. We will discuss
some of the results in Chapter 6.

The main idea at this point is that in lowest approximation the unsteady field can be expressed as a
synthesis of classical acoustic modes having time-varying amplitudes. Then the purpose of the analysis is to
work out a means for computing the changes of those amplitudes due to various perturbations. Departures
from the simplest classical acoustic behavior arise from the actions of the other physical and chemical
processes taking place in a combustion chamber. All of those processes, except basic gasdynamics, are
assumed to have relatively weak effects, producing small shifts of the classical acoustic frequencies and, more
significantly, small fractional changes of the modal amplitudes during a period of oscillation. Hence there
are two small quantities naturally characterizing the procedure: A reference Mach number for the unsteady
velocity is a measure of the acoustic amplitudes; and a typical Mach number of the average flow measures
perturbations of the classical acoustic behavior. Much of this chapter is concerned with reduction of the
general equations of motion by expansion in those two small parameters. In applications of the formalism
and interpretation of the results, it is essential to understand and maintain the distinction between the roles
of the two parameters. Failure to do so leads to confusion and false conclusions.

Despite the emphasis on the acoustic field, this procedure does not exclude the existence of rotational
motions. In the expansion procedure they arise from inhomogeneous terms in the equations for the higher
order terms. This fundamental point has been missed by several workers in this field and has led at least to
misunderstandings and occasionally to misleading or incorrect analyses. The origins of the difficulties will be
clarified in later discussions, particularly in Chapter 6, but in view of the considerable confusion about the
matter, it is important to begin addressing the matter here. It is not a new idea. Flandro (1967) in his Ph.D.
thesis first used the general expansion procedure developed in this chapter to work out a problem involving
interactions between acoustic and vorticity fields leading to roll torques in solid propellant rockets. He and
others have subsequently investigated other examples of the influences of vorticity on acoustic waves using
this approach, occasionally with controversial and sometimes incorrect results. (See, for example, Flandro
1995; Culick et al. 1991; Culick 1998; Swenson and Culick 1998; Seywert and Culick, 1998; Flandro and
Malhotra 1995; Malhotra, Flandro and Roh 2000; Malhotra and Flandro 2001, 2002; Majdalani and Van
Moorhem 1998; Majdalani 2004; Flandro and Majdalani 2003.)

3.2. Equations of Motion in a Reacting Flow

Combustion systems commonly contain condensed phases: liquid fuel or oxidizer, and combustion prod-
ucts including soot and condensed metal oxides. Hence the equations of motion must be written for two
or three phases consisting of at least one species each. For investigating the dynamics of combustors, it
seems entirely adequate to consider two phases (gas and a condensed phase comprising both liquid and solid
particles). The properties of each phase are represented as mass averages of the properties of all member
species. For a medium consisting of a multicomponent mixture of reacting gases and, for simplicity, a single
condensed phase, it is a straightforward matter to construct a system of equations representing a single
fluid. The procedure is explained in Annex A. As a result we can treat combustor dynamics under broad
conditions as unsteady motions of a fluid having the mass-averaged properties of the actual medium.! The
dimensional governing equations are (A.59)—-(A.64):

IWe now use Cy,7, R, ... to stand for the mass-averaged properties represented by boldface symbols in Annex A.
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Ip

Conservation of Mass: o +u-Vp=—pV-u+W (3.1)

Conservation of Momentum: — p {aa—ltl +u- Vu} =-Vp+F (3.2)
. or

Conservation of Energy: pC, wn +u-VI'| =—pV-u+9Q (3.3)
19)

Equation for the Pressure: a—]t) +u-Vp=—ypwV -u+? (3.4)

Ds 1
Equati the Ent : — ==38 .
quation for the Entropy Poi =T (3.5)
Equation of State: p= RpT (3.6)

Definitions of all symbols are given in Annex A.

It is particularly important to realize that the source functions W, ¥, Q, P and § in principle contain
all relevant processes in the systems to be analyzed here. They include, for example, the modeling and
representations of the actions of actuation mechanisms used for active control. Eventually, the most difficult
problems arising in this field are associated with modeling the physical processes dominant in the problems
addressed.

For both theoretical and computational purposes it is best to express the equations in dimensionless
variables using the reference values:

L : reference length
Pry Pry Iy @y reference density, pressure, temperature and speed of sound
Cyr, Cpr, R, : reference values of Cy,Cp, R

Then define the dimensionless variables represented by M, and for simplicity use the same symbols used for
dimensional variables:

u P D T Cy Cp
M=—; — ; — ; — —=T; Cy; Cp;
a'l‘ ' pT _}p7 pTa’% _>p’ TT' - ' Cp'f' - v CPT - b
R a, s
— R; —t—t; — s
Chpr L Chpr
The dimensionless source functions are
L L L L S
W — W; 5F - F; 59— G P - P — — 38
PrGy Praz prag PrQy prarCyy
For consistent definitions, p, = p,R,T; and R, = C,, = C,, so in dimensionless form, the relations

R=C,—C, and v = C,/C, still hold.

Substitution of these definitions in equations (3.1)—(3.6) leads to the set of dimensionless equations for
the single fluid model:

D
Mass: P _ —pV-M+W (3.7)
Dt
DM
Momentum: Por = -Vp+F (3.8)
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DT
Energy: 'OCUE =-—pV-M+Q (3.9)
Pressure: Z—It) =—pV -M+? (3.10)
Ds 1
Entropy: P = ?S (3.11)
State: p = pRT (3.12)
and
D 0
Z 1 M- 1
Dt~ ot + v (3.13)

We emphasize again that the source terms accommodate all relevant physical processes and can be interpreted
to include the influences of actuation used in active control.

3.3. Two-Parameter Expansion of the Equations of Motion

The general equations (3.7)—(3.12) are written in the form suggestive of problems that are dominated
by fluid mechanical processes, a tactic dictated by the observations described earlier. This point of view
is the basis for the approach taken here to construct a general framework within which both practical and
theoretical results can be obtained by following systematic procedures.

We are not concerned at this point with simulations or other methods relying essentially on some sort of
numerical analysis and large scale computations. The nature of the problems we face suggests perturbation
methods of solution. If the source terms W, ... were absent from (3.7)—(3.11), the homogeneous equations
then represent nonlinear inviscid motions in a compressible fluid: Nonlinear acoustics in a medium without
losses. One useful method for investigating such problems is based on expansion of the equations in a small
parameter, e, measuring the amplitude of the motion. Specifically, € can be taken equal to M/, a Mach
number characteristic of the fluctuating flow, e = M.

The problems we are concerned with here are defined essentially by the non-zero functions W, ... .
Because observed behavior seems to be dominated by features recognizable as ‘acoustical’, those sources which
excite and sustain the actual motions must in some sense be small. They should therefore be characterized
by at least one additional small parameter. It has become customary to select only one such parameter,
p = M,, a Mach number M, characterizing the mean flow, for the following reasons.?

Any operating combustion chamber contains an average steady flow produced by combustion of the fuel
and oxidizer to generate products. The intensity of the flow, partly measurable by the Mach number, is
therefore related to the intensity of combustion; both processes can in some sense be characterized by the
same quantity, namely the Mach number of the average flow. Thus many of the processes represented in the
source functions may be characterized by p, in the sense that their influences become vanishingly small as
1 — 0 and are absent when p = 0.

It is important to understand that the two small parameters € and p have different physical origins.
Consequently, they also participate differently in the formal perturbation procedures. Familiar nonlinear gas
dynamical behavior is, in the present context, governed by the parameter ¢; steepening of compressive waves

2We will use the symbols ¢ and p rather than M. and M, to simplify writing, and to emphasize the special positions held
by the two independent sorts of perturbations.
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is a notable example. In the expansion procedure worked out here, the term ‘nonlinear behavior’ refers to
the consequences of terms higher order in e.

On the other hand, the parameter p characterizes perturbations of the gasdynamics due in the first
instance to combustion processes and the mean flow. Terms of higher order in u, but linear in e, represent
linear processes in this scheme. Failure to recognize this basic distinction between ¢ and p can lead to
incorrect applications of formal procedures such as the method of time-averaging. Instances of this point
will arise as the analysis is developed.

3.3.1. Expansion in Mean and Fluctuating Values. There is no unique procedure for carrying
out a two-parameter expansion. We begin here by writing all dependent variables as sums of mean () and
fluctuating ()" parts without regard to ordering:

p=p+p, M=M+M,..., W=W, F=F+F, ... (3.14)

We take the fluctuations of the primary flow variables (p’, M', p/, T', ') to be all of the same order in
the amplitude ¢ of the unsteady motion. Generally, the source terms are complicated functions of the flow
variables and therefore their fluctuations will contain terms of many orders in €. For example, suppose
W = kp3. Then setting p = p + p’ and expanding, we have

W=k(@+p)* =k|p°+3p°0 +3pp % +p°
Hence we define orders of the fluctuations of the source W and write
W=W+W, + W)+ W, +W,+...

where the subscript denotes the order with respect to the amplitude: Here, for the example, W = kp? and
W, = (3kp)p 2. All source functions are expressed in this general fashion, but modeling is required to give
explicit formulas.

Most combustors contain flows of relatively low Mach number, say |[M| < 0.3 or so. Thus we can assume
that for a broad range of circumstances, processes depending on the square of M, i.e. of order ;?, probably
have small influences on the unsteady motions. We therefore neglect all terms of order p? and higher in the
equations. As a practical matter, the equations are greatly simplified with this assumption which we adopt
throughout this work.

After substituting all variables split into sums of mean and fluctuating values, and collection of terms
by orders, we can rewrite (3.7)—(3.13) as

D7 _ _ /
{—p+pv.M+M-vp—W} + {a—pﬂ»v-M’}

Dt ot (3.15)
+[M-Vp +pV-M+M -Vp+ V- (M) -W =0
DM/ - oM _ _ DM
p +Vp—F| + |p—=—+ VD |+ |p(M-VM' + M- VM) + p' —
Dt ot Dt (3.16)
M/ _ _ ’
+ {p/aat +pM' - VM' +p' (M- VM' + M’ - VM)} +[pPM VM| -F =0
DT _ oT’ _ _ T _
{pCvE +pV-M — Q} + C, {p 5 +pV-M’} + {pr (M-VT'+M'-VT) +Cy,o’ﬁ +p'V-M
T’ - _
+ {Cvpaa—t +Cop (M-VT'+ M -VT) 4+ C,p'M' - VT' + p'V - M’} +[CopM’ - VT = Q' =0
(3.17)
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Dﬁ _ v _ _ v T ap' _ /} Y / ’ _ ’ v
— +wWV-M—-p+wV-M-P|+|—=+wV-M |+ M-Vp+ M -Vp+p'V-M
{Dt VP p+p } {m VP [ P P+ ] (3.18)
+ M VY +9p'V-M]-P =0
Ds - 0s' - _Ds _ _
T— — T— oM -Vs' + p'T— +pI'M'-V5+ pT'"M - Vi
|:,0 Dr 8} {p 5‘t}+{p Vs +p Dt+p Vs+p Vs}
Ds = ! —
o794 g OD5 | e s 4 Vs + T L 4 T v (3.19)
ot ot ot
!
|:p T/aat (pT/ + p/T) M/ . VSI + p/T/ (M/ . V§ + M . Vs/):| + [p/TIMI . vsl] o S/ — O
(p—RpT| + [p — R(PT" + p'T)] + [-RY'T'] =0 (3.20)
where the convective derivative following the mean flow is
D 0
— =—+M- 21
DL = + \Y (3.21)

As a convenience in writing, it is useful to introduce some symbols defining groups of ordered terms.
The set of equations (3.15)—(3.20) then become:

v W]+ (L py M)+ (oW 0 22)

[p@ V- ﬂ i (ﬁl‘f i w) (M (Mo + M+ {MJ}a—F =0 (3.23)

M) T+ (T + D)+ (T -2 =0 (320
{—p—I—vpV-l\_/I—iP}—k(pC O v A[)—f—{[p]}l—i—{p}Q—?’:O (3.25)

75y =8|+ (575 ) + (et (oho () + ()-8 =0 (326)
[p— RoT] + {p — RoT}, +{RpT}, =0  (3.27)

The definitions of the bracketed terms {p},, --- etc. are given in Annex A, Section A.6; the subscript
{ 1}, on the brackets identifies the orders of terms with respect to the fluctuations of flow variables, and
the square brackets [ ] indicate that the terms are first order in the average Mach number. We have
shown here in each equation terms of the highest order fluctuations generated by the purely fluid mechanical
contributions plus sources that must be expanded to orders appropriate to particular applications. Only the
entropy equation produces terms of fourth order.
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Time derivatives of quantities identified with the mean flow are retained to accommodate variations
on a time scale long relative to the scale of the fluctuations. This generality is not normally required for
treating combustion instabilities and unless otherwise stated, we will assume that all averaged quantities are
independent of time.

3.3.2. Equations for the Mean Flow. At this point we have two choices. Commonly the assumption
is made that the variables of the mean flow ‘satisfy their own equations’. That implies that the brackets [ ]
vanish identically. With the time derivatives absent, the equations for the mean flow are:

M-Vp+pV-M=W (3.28)
pPM-VM +Vp=5F (3.29)
pC,M -VT +pV-M = Q (3.30)
M.-Vp+9pV-M =P (3.31)
pIM -Vs=3$§ (3.32)

p= RpT (3.33)

This set of equations certainly applies when the average flow is strictly independent of time and there are
no fluctuations. The time derivatives cannot be ignored when the flow variables change so slowly that the
motion may be considered as ‘quasi-steady’ and fluctuations are still ignorable.

It is possible that when fluctuations are present, interactions among the flow variables cause transfer
of mass, momentum and energy between the fluctuating and mean flows, generating time variations of the
averaged variables. Then the appropriate equations are obtained by time-averaging (3.22)—(3.27) to give®

Dp \ / 1 T - —
Do+ VM =W TG, - [, + W 530
DM - _
ppp + V=5~ {MJ}, - M}, - (M}, - (M}, + F° (3.35)
DT
pCopr +0V - M =0 [T}, (T}, - [T, + @ (3.36)
Dp o = —
o TPV M =P —{p}; —{p}, + 7 (3.37)
_Ds - — —
PTo7 =8 —{sh —{shy —{s}s = {ls]}, — {s}4 +8 (3.38)
p=RpT —{pT}, —{pT}, (3.39)
3Note that the fluctuations of the source terms denoted by W’ - - etc., actually contain squares and higher order products

of the dependent variables; hence their time averages will generally be non-zero.
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If the mean flow is strictly independent of time, then time averages of all first-order brackets, { },,
must vanish. For generality we allow them to be nonzero. There seem to be no analyses in which their
variations have been taken into account.

The two sets of equations governing the mean flow in the presence of unsteady motion define two distinct
formulations of the general problem. In the first, equations (3.28)—(3.33), computation of the mean flow is
uncoupled from that of the unsteady flow. Hence formally we are concerned with the stability and time
evolution of disturbances superposed on a given, presumed known, mean flow unaffected by the unsteady
motions. That is the setting for all investigations of combustion instabilities founded on the splitting of
small flow variables into sums of mean and fluctuating values. This approach excludes, for example, possible
influences of oscillations on the mean pressure in the chamber (often called ‘DC shift’), not an unusual
occurrence in solid propellant rockets. When they occur, DC shifts of this sort are almost always unacceptable
in operational motors. They may be directly affected by the fluctuations, or they may be largely due to
changes in the mean burning rate.

In contrast, the set (3.34)—(3.39) is strongly coupled to the fluctuating field. The situation is formally
that producing the problem of ‘closure’ in the theory of turbulent flows (see, for example, Tennekes and
Lumley, 1972). We will not explore the matter here, but note only that the process of time averaging
terms on the right hand sides of the equations introduces functions of the fluctuations that are additional
unknowns. Formal analysis then requires that those functions be modeled; perhaps the most familiar example
in the theory of turbulence is the introduction of a ‘mixing length’ as part of the representation of stresses
associated with turbulent motions. The set (3.34)—(3.39) also can be used to compute ‘DC shifts’ for specified
fluctuations of the flow variables. No results have been reported.

Numerical simulations of combustion instabilities do not exhibit the problem of closure if the complete
equations are used, avoiding the consequences of the assumption (3.14). Thus, for example, the results
obtained by Levine and Baum (1982, 1988) do show time-dependence of the average pressure in examples
of instabilities in solid rockets. Another possible cause of that behavior, probably more important in many
cases, is nonlinear dependence of the burning rate on the pressure or velocity near the surface of a solid
propellant rocket. Within the structure given here, that behavior arises from time-averaged functions of p/,
M’, ... contained in the boundary conditions.

We use in this book the formulation assuming complete knowledge of the mean flow, given either by
suitable modeling or by solution to the governing equations (3.28)—(3.33). This may in some cases be an
important omission. Probably the most important consequence is that the effect of oscillations on burning
rate and mean pressure in solid propellant rockets is not covered. See Section 2.1, for example Figure 2.6.
This is often, especially in tactical rockets, a significant matter which has been treated by the author only
with preliminary calculations in the present scheme. Flandro (private communication) is currently working
on this problem.

3.3.3. Systems of Equations for the Fluctuations. The general equations of motion (3.22)—(3.27)
and those for the mean flow written in Section 3.3.1 contain a restriction only on the magnitude of the average
Mach number. Such generality blocks progress with the analysis and for many applications is unnecessary.
The set of equations (3.22)—(3.27) must be simplified to forms that can be solved to give useful results. Many
possibilities exist. We follow here a course that previous experience has shown to be particularly fruitful for
investigations of combustor dynamics. The choices of approximations and tactics are usually motivated by
eventual applications and the type of analysis used.

3-8 RTO-AG-AVT-039



EQUATIONS FOR UNSTEADY MOTIONS IN COMBUSTION CHAMBERS

First we assume that the mean flow is determined by its own system of equations; that is, we avoid
the problem of closure and use the first formulation, equations (3.28)—(3.33), discussed in Section 3.3.1.
Consequently, the mean flow is taken to be independent of time and the combinations in square brackets [ |,
equations (3.22)—(3.27), vanish identically; we write the equations in the form

%’; +pV-M' = —{[pl}1 — {p}2 + W (3.40)
POV = (M} — (M) — [} — {[M]} + (3.41)

_oT , ’
502 5V M = ([T (T)a — (T)s — [(T)a] 4 @ (3.42)
aa—f +9pV - M’ = —{[pl}1 — {p}2 + ¥ (3.43)
T = (sl — (sha — (lslh2 — {85 — {s}a +8 (3.44)

The various brackets are defined in Section A.6 of Annex A. They are formed to contain terms ordered with
respect to both the mean Mach number and the amplitude of the fluctuations:

{[ 1}1: 1% order in M;
{ }2:0" order in M;
{[ 1}2: 1% order in M;
{ 13:0" order in M;
{ 14:0" order in M;

1% order in M/, O(pue)
2" order in M/, O(e?)
274 order in M/, O(ue?) (3.45)
3" order in M/, O(e?)
O(e%)

4% order in M/, O(&*

No terms have been dropped in passage from the set (3.15)—(3.19) to the set (3.40)—(3.44), but fluctuations
of the sources W', - |8’ are not now classified into the various types defined by the brackets (3.45).

We have put the equations in the forms (3.40)—(3.44) to emphasize the point of view that we are
considering classes of problems closely related to motions in classical acoustics. If the right hand sides are
ignored, (3.40)—(3.44) become the equations for linear acoustics of a uniform non-reacting medium at rest.
The perturbations of that limiting class arise from four types of processes:

(i) interactions of the linear acoustic field with the mean flow, represented by the terms contained in the

square brackets within curly brackets, {[ ]}1;

(ii) nonlinear interactions between the fluctuations, represented by the curly brackets conveniently re-
ferred to as: { }o, second order acoustics; { }3, third order acoustics; and { }4, fourth order

acoustics;

(iii) interactions between the mean flow and nonlinear acoustics to second order, represented by {[ ]}s;

(iv) sources associated with combustion processes, represented by the source terms W, F, Q' P" and §'.

By selectively retaining one or more of these types of perturbations we define a hierarchy of problems of
unsteady motions in combustors. We label these classes of problems O, I, II, III, IV according to the orders

RTO-AG-AVT-039
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EQUATIONS FOR UNSTEADY MOTIONS IN COMBUSTION CHAMBERS

T

ORGANIZATION

of terms retained in the right hand sides: the left hand sides contain only the terms of order ¢ = M/, the

equations for classical linear acoustics.

O. Classical Acoustics, (=0, — 0)

Perturbations to first order in € are retained on the right-hand sides of (3.40)—(3.44):

o’

M/ /
wr +pV- W
3'/
875
T/
PO G 409 M =2 (3.46) ave
c’()?p +9pV-M' =7
_0s’
_T_ _ /
ot S

I. Linear Stability, O(e, ue)

Retain interactions linear in the average Mach number and in the fluctuations on the right-hand

sides:
3p _ / )
5 TPV M =l +W
P —{M]}: +5
o - / /
Pcva— +pV-M' = —{[T]} +9Q (3.47) a-e
o/
S +BY M = —{[pl} +
0
7Ta_i =—{lsh +8

II. Second Order Acoustics, O(e, e, €?)

Retain the linear interactions and the nonlinear second order acoustics on the right-hand sides:

a9’

M/
o +pV

P o

T’

5Cy— + pV - M’ =
pCh pr +pV

/
8_p+fyﬁv.M/:

ot
__0s’
r ot

—({[T1}1 +{T}2) + 2
—({lpl}1 + {p}2) + %
—({[s]}1 + {s}2) + &

—({lel}1 + {p}2) + W'
—({(M}1 + {M}5) + 5

(3.48) a-e
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III. Third Order Acoustics, O(e, uc, €2, %)

Retain the linear interactions and the nonlinear acoustics up to third order on the right-hand

sides:
W pv M = ([l + o) + W
PO + 90 = ~({[MJ}1 + (M} + (M) + 7
502 5V M = ([T + T + {T}) + @ (3.49) ave
W B9 M = (Il + (o) + 7
PTo = ~({ls]h + )2 + {s}) + 8

IV. Mean Flow/Nonlinear Acoustic Interactions, O(e, ue, 2,3, ue?)

Retain all terms on the right-hand sides of (3.40)—(3.44) except {s}4 in (3.44). No results have
been obtained for this class of problems.

Several other classes of problems possible to define in this context will not be considered here since no
results have been reported. There is some indication that problems in class IV may have some important
consequences but no theoretical results exist.

In each class of problems, the source terms W’, - - - must be expanded to orders consistent with the orders
of the fluid-mechanical perturbations retained.

3.4. Nonlinear Wave Equations for the Pressure Field

Practically all of the subsequent material in this book will be either directly concerned with pressure
waves, or with interpretations of behavior related to pressure waves. The presence of unsteady vorticity
causes important revisions of such a restricted point of view, as we have already mentioned, but the basic
ideas remain in any event. Hence the wave equation for pressure fluctuations occupies a meaningful position
in all five classes of problems defined in the preceding section. Its formation follows the same procedure used
in classical acoustics.

Define M and R to contain all possible terms arising in the sets of equations constructed for the problems
O-1V:

/
ﬁagf +Vp =-M+F (3.50)
/
%l; +9pV -M' = -R+ 7P (3.51)
where
M= {{M]}; + {M}s + {M}5 + {M
{M]}1 + {M}a + {M}3 + {[M]}2 (3.52)ab
R ={[pl}1 +{r}2
RTO-AG-AVT-039 3-11
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Differentiate (3.51) with respect to time and substitute (3.50) for OM’/0t:

82p’ 1, 1 , oR o

81&2 4+ vpV - —;Vp—ﬁ(M—ff) ——E‘i‘ﬁ
Rearrange the equation to find

1 a2p/
2 _
ittt (3.53)
with
1 10 1
h=—-pV-|= -5 —=—(R-P)+=Vp-Vp .54
) pV L}(M 5")}+a28t( )+ﬁVp Vp (3.54)

The boundary condition for the pressure field is found by taking the scalar product of the outward
normal, at the chamber boundary, with (3.50):

Ay = —f (3.55)
oM N
f:pat n+M-9F)-n (3.56)

Replacing M and R by their definitions (3.52)a,b, we have the formulation based on the inhomogeneous
nonlinear wave equation and its boundary condition:

/ 1 82p/ o
VI - e = (3.57)a.b
h-Vp =—f
with
h— {—pv.%{[M]}l + = A ol | 1 v Vp} { v —{M}2+ - a{;’t}ﬂ

(3.58)

1 i} ) o107

pV#MHpV;mm4+PW;9;m}
F=p n o [+ (M) + (M + ((M])] -9 (3.59)

With this formulation, the wave equations and boundary conditions for the classes of problems defined
in Section 3.3 are distinguished by the following functions h and f:

O. Classical Acoustics

1. 1o
ho—pv 3: — at
(3.60)a,b
!
fo=pT a7 n
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EQUATIONS FOR UNSTEADY MOTIONS IN COMBUSTION CHAMBERS

I. Linear Stability

hr = |=pV - ;{[ ]}1+a1 3{[;0]}1 + = V Vp} {pv-%?'—a—lzaaj;
(3.61)a,b
a !
fi=rp gf A (M)} -

Allowing F’ and P’ to be non-zero gives the opportunity for representing sources of mass, momentum,
and energy both within the volume and at the boundary. The first term in f; accounts for motion of
the boundary.

II. Second Order Acoustics

1 1 8{[p}}1 1 1 9{p}2
hat = [—pv-g{[Mnl AN 20| 4 oV M+ 2
_ , 1 8?’
’ { v ? @ ot (3.62)a,b
oM .
fir = po kA (M)} + {M}2) 54
III. Third Order Acoustics
oo 1 Hplhh 1-_ 1 1 9{p}2
hlll—{ pvV ﬁ{[ [} T +/3VP VP 4| =PV ﬁ{M}2+EL2 ot
_ 1., 1097
oM’ PR
frr =p—~ a4+ 0-[{[M]}1 + {M}z + {M}s] -5 -
IV. Mean Flow/Nonlinear Acoustics Interactions
1
hrv =hiir — pV - 5{[M]}2
(3.64)a,b

frv =frr +h- %{[M]b

With these forms for the functions h and f, the definitions of the classes of problems considered here
are complete, giving the basis for the analysis worked out in the remainder of this book. Only problems
within classical acoustics can be solved easily. All others require approximations, both in modeling physical
processes and in the method of solution. Modeling will be discussed in the contexts of specific applications;
a few remarks help clarify the approximate method of solution described in the following chapter.
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Remarks:

(i) The equations derived here are written with the dimensionless variables defined in Section 3.1. This
is an important point to recall when results are written in terms of dimensionless variables. Annex D
contains the corresponding results in dimensional variables.

(ii) The classes of problems O-IV defined here are described by inhomogeneous equations that even
for linear stability cannot be generally solved in closed form. The chief obstacles to solution arise
because the functions h and f contain not only the unknown pressure but also the velocity and
temperature. For given functions ¥’ and P’, numerical solutions could be obtained for a specified
combustor and mean flow field. The results would apply only to the special case considered. To
obtain some understanding of general behavior it would be necessary to consider many special cases,
a tedious and expensive procedure.

(iii) Therefore, we choose to work out an approximate method of solution applicable to all classes of
problems. Numerical solutions, or ‘simulations’ then serve the important purpose of assessing the
validity and accuracy of the approximate results.

(iv) The approximate method of solution described in the following chapter is based first on spatial aver-
aging, followed by an iteration procedure involving extension of the expansion in two small parameters
defined in this chapter. This method has been most widely used and confirmed in applications to
combustion instabilities in solid propellant rockets, but it can be applied to problems arising in any
type of combustor.

(v) Instabilities in solid rockets have been particularly helpful in developing the general theory for at
least three reasons: 1) the mean flow field, nonuniform and generated by mass addition at the bound-
ary, requires careful attention to processes associated with interactions between the mean flow and
unsteady motions; 2) more experimental results for transient behavior have been obtained for solid
rockets than for any other combustion system; and 3) although still far from being satisfactorily un-
derstood, the dynamics of burning solid propellants is better known than for any other combustion
system.

(vi) The fluctuations of the source terms, W', F', ... 8§ will be made explicit as required in particular
applications.

(vii) No assumptions have been made restricting either the average or the time-dependent velocity fields
to be irrotational. Moreover, all viscous effects can be accommodated with suitable definitions of the
source terms.

(viii) For reasons explained earlier, the wave equations are written for the pressure which, in lowest ap-
proximation, is associated only with acoustic waves. However, on the right-hand sides (i.e., in the
functions h and f) the total unsteady velocity appears. Hence by suitable decomposition (see Sec-
tion 7.9) coupling between, say, vorticity and acoustic waves can be investigated. In particular, this
formulation allows calculation of the effects of vorticity on stability (Flandro 1995). However, we
must emphasize that the methods and results worked out in the following chapters are intended to
be relatively easy to apply. The price of this property is their approximate character.

(ix) The most significant omission at this stage is accounting for turbulence. In principle, modeling of
turbulence could be included in the derivation of the general equations. However, that strategy would
bring unnecessary complications and erect serious obstacles to obtaining useful results with minimal
effort. For applications to practical situations, the effects of turbulence seem to be definitely secondary.
Theoretical justification for ignoring the possible effects of random or statistical fluctuations in the
flow is based on the work of Chu and Kovasznay (1957).
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CHAPTERM™

ModallExpansion and[Spatial_ Averaging; AnlIterative[Methodlof
Solution

From the point of view expressed by Figure 1.1, we are concerned in this chapter with representing the
combustor dynamics. The procedure, often called ‘modeling’, is based on the equations of motion constructed
in the preceding section and hence in principle will contain all relevant physical processes.! For the purposes
here, all modeling of combustor dynamics and of combustion dynamics—the mechanisms and feedback in
Figure 1.1—must be done in the context developed in Chapter 1. Thus we always have in mind the idea
of wave motions somehow generated and sustained by interactions between the motions themselves and
combustion processes, the latter also including certain aspects of the mean flow within the combustor.

The simplest model of the combustor dynamics is a single stationary wave, a classical acoustic resonance
as in an organ pipe, but decaying or growing due to the other processes in the chamber. In practice, the
combustion processes and nonlinear gasdynamical effects inevitably lead to the presence of more than one
acoustic mode. We need a relatively simple yet accurate means of treating those phenomena for problems
of the sort arising in the laboratory and in practice. Modeling in this case begins with construction of a
suitable method for solving the nonlinear wave equations derived in Section 3.4. In this context we may
regard the analysis of the Rijke tube covered in Section 2.7 as a basic example of the procedure stripped of
the formalism covered in this chapter.

The chief purpose of the analysis constructed here is to devise methods capable of producing results
useful for prediction and interpretation of unsteady motions in full-scale combustion chambers, as well as
for laboratory devices. That intention places serious demands on the methods used for at least two reasons:

(i) processes that must be modeled are usually complicated and their theoretical representations are
necessarily approximate to extents which themselves are difficult to assess; and

(ii) almost all input data required for quantitative evaluation of theoretical results are characterized by
large uncertainties.

In this situation it seems that for applications and, as it will turn out, for theoretical purposes as well, the
most useful methods will be based on some sort of spatial averaging. Formal solution of the partial differential
equations, even for linear problems, is practically a hopeless task except for very special cases involving simple
geometries. Direct numerical simulations (DNS), or numerical solutions to the partial differential equations,
are not real alternatives for practical purposes at this time, and alone are not attractive for obtaining basic
understanding. However, as we will see later, numerical methods offer the only means for assessing the
validity of approximate solutions, and can always be applied to more complicated (realistic?) problems than
we can reasonably handle with the analytical methods discussed here. In any event, one should view theory
and analysis on the one hand, and numerical simulations on the other, as complementary activities. Recent
experiences have shown that careful coordination of the analytical procedures and numerical simulations
with experimental observations is the most effective strategy for treating combustion instabilities in actual

IThat seems to be what some people (apparently electrical engineers) mean by the term ‘physics-based modeling.” What
would otherwise be the basis for acceptable modeling of a physical system has not been explained.
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combustion systems. With the foundation of basic theory, numerical simulations offer very powerful means
for improving understanding.

The greater part of the material on analysis and theory of combustion instabilities in this book is based
on a method of spatial averaging. It is important to notice that the elementary example worked out in Section
2.7 already shows the superior results possible with the method of averaging in contrast to an approximate
solution not involving averaging. The essential idea is of course not new, the method being nearly identical
with similar methods used in other branches of continuum mechanics. There are a few special characteristics
associated with applications to combustor that will appear in the course of the following discussion.

4.1. Application of a Green’s Function for Steady Waves

The method used later to analyze nonlinear behavior has its origins in an early analysis of linear combus-
tion instabilities in liquid rocket engines (Culick, 1961, 1963). That work was based on solution to problems
of steady waves by introducing a Green’s function. It is an effective strategy for this application because
departures from a known soluble problem are small, due either to perturbations within the volume or at the
boundary, all of order y in the context developed in Chapter 3. Mitchell (1993) has made the most extensive
use of Green’s functions in this context.

The problem to be solved is defined by the equation derived in Section 3.4,

V2 — i@ =
a2 otz (4.1)a,b
n-Vp' =—f

with @ constant, and h and f given by (3.61)a,b for linear stability. Because here h and f are assumed
linear,? various methods are available to build general solutions by applying the principle of superposition
to elementary solutions representing steady waves. Hence we assume that the fluctuating pressure field is
a steady wave system within the given chamber, having unknown spatial structure varying harmonically in
time:

p/ — ﬁefidkt (42)
where k is the complex wavenumber, also initially unknown,
1
k=—-(w+ia) (4.3)
a

As defined here, o positive means that the wave has growing amplitude, p’ ~ e*!. Of course the wave is not
strictly stationary, a condition existing only if o = 0, certainly true when h = f = 0, as in classical acoustics.

Even when h, f are non-zero, it is still possible that a = 0, now defining a state of neutral stability. In
general one must expect o # 0; it is a basic assumption in all of the analysis covered in this book that « is
small compared with w, so the waves are slowly growing or decaying—they are ‘almost’ stationary, and their
spatial structure does not change drastically with time. However, the results obtained are quite robust and
seem often to be usable even when a/w is not small.

In the first instance, the problem here is to determine the spatial distribution p and the complex
wavenumber k. For steady waves we can write

h = f@ize_iakt : f — er—iakt

2Sections 4.1 and 4.2 cover linear behavior only; Sections 4.3-4.6 include nonlinear behavior.
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where again k is a small parameter® characterizing the smallness of h and f. Substitution in (4.1)a,b and
dropping the common exponential time factor gives

V2p + k*p = wh
n-Vp=—rf
This is of course a well-known classical problem thoroughly discussed in many books. Many methods of
solution are available for the linear problem. We use here a procedure based on introducing a Green’s

function discussed, for example, by Morse and Feshbach (1952, Chapter 9). This is an attractive method for
several reasons, including:

(4.4)a,b

(i) Conversion of a differential equation into an integral equation, and the iterative method of solution
this suggests, is an effective means for minimizing the consequences of the uncertainties inherent in
problems of combustor dynamics;

(ii) Explicit results can be obtained for real and imaginary parts of the complex wavenumber in forms
that are easily interpreted and remarkably convenient both for theoretical work and for applications;

(iii) The method has motivated a straightforward extension to nonlinear problems, with considerable
success. (Chapter 7)

Define a Green’s function satisfying the homogeneous boundary condition and the wave equation homo-
geneous except at the single point where a source is located, having zero spatial extent and infinite strength
such that its integral over space is finite. Thus the source is represented by a delta function §(r — rg) and
G(r|rp) is determined as a solution to the problem

2G(r|ro) + k2G(r|rg) = 6(r — o)
n-VG(rjrg) =0

The notation r|ry as the argument of G(r|ry) represents the interpretation of the Green’s function as the
wave observed at point r due to a steady oscillatory point source at rg.

(4.5)a,b

Multiply (4.4)a by G(r|rp), (4.5)a by p(r), subtract the results and integrate over volume (in the present
case the volume of the chamber) to find

/// (r[ro)V2p(r) — p(r)V>C (r|ro)] dv+k2/// (xlro)p(r) — H(X)G(x|ro)] AV
—K///G rlro)h(r)dV - /// 5(r — ro)dV

Because G(r|rg) and p(r) are scalar functions the second integral on the left-hand side vanishes. The first
integral is rewritten using a form of Green’s theorem, and the basic property of the delta function is applied
to the second integral on the right-hand side:

/// F(r)6(r —rg)dV = F(ro) (r,rpin V) (4.7
%

(4.6)

Hence (4.6) becomes

) 6alr0) Vi) - p)VG(airo)] fas = [[ [ Glriro)ie)av  pixa)

S
where 11 is the outward normal at the surface of the volume V' in question.

3Later, x will be identified with p introduced in Section 3.3 but it is useful in this discussion to maintain a distinction.
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Now apply the boundary conditions (4.4)b and (4.5)b and the last equation can be written in the form

///G rlro)h dv+#grs|ro (r.)dS (4.8)

Subscript ( )s means the point r lies on the boundary surface (actually on the inside surface of the boundary).
Because the operator for scalar waves is self-adjoint (see Morse and Feshbach 1953, Chapter 10), the Green’s
function possesses the property of symmetry

G(r|rp) = G(rp|r) (4.9)

This property has the appealing physical interpretation that the wave observed at r due to a point source
at ro has the same amplitude and relative phase as for the wave observed at ry when the point source is
located at r. With (4.9) we can interchange r and r¢ in (4.8) to find for the steady field at position r:

=K // G I‘|I‘0 }L I'O dVQ + #G ‘I‘OS rOg)dSO (410)

Equation (4.10) is not an exphclt solution for the pressure field, but is rather an integral equation,
because the source functions h and f in general depend on the fluctuating pressure and velocity fields
themselves. However, because the sources are assumed to be small perturbations of the classical field having
no sources, £ is small and p will not differ greatly from a solution to the homogeneous problem defined by
h = f = 0. The result (4.10) represents the solution to the inhomogeneous problem; the complete solution
is (4.10) plus a homogeneous solution. We will take advantage of the smallness of x to find an approximate
explicit solution for p by an iterative procedure discussed in Section 4.1.1.

Whatever tactic one may choose to follow, the result (4.10) is of no practical value without having a
representation of G(r|rg). The most convenient form of G(r|rg) for our purpose is expansion in eigenfunc-
tions v, (r), here the normal modes of the classical acoustics problem with no sources in the volume and
homogeneous boundary conditions; G(r|ry) is therefore expressed as a modal expansion,

where the 1, satisfy*
V2¢n + k?ﬂ/}n =0
n-Viy, =0

/ / / Yy (T) U (v)dV = E26,n (4.13)

Substitute (4.11) in (4.5)a, multiply by 1, (r) and integrate over the volume to find

// meA V2, dV + k2 // meAnz/)ndV ///z/)m §(r —ro)dV

With (4.7), (4.12) and (4.13), this equation produces the formula for A,:

wn (I‘())
k2 — k2

(4.12)a,b

and are orthogonal functions,

A, =

(4.14)

4Equations (4.12)a,b really are essential to the following general results. They can be altered, e.g. # - Vb, = —g(r), but
subsequent formulas must be carefully checked.
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Thus the expansion (4.11) for G(r|ro) is

Z = kf” o) (4.15)

n=0

the modal expansion of the Green’s function. Substitution of (4.15) in (4.10) leads to the formal modal
expansion of the pressure field,®

= RZ E2 /4}2 // Un( rO (ro)dVp + #wn ros)f I'Os )dSo (4.16)

Suppose that for x tending to zero, p(r) approaches the unperturbed mode shape ¥ y; let the corresponding
function p be denoted py, so

PPN = N (4.17)

Now separate the N** term from the sum in (4.16) and write

p(r) =¥n(r )Eg —12) /// W (ro)h(ro)dVo + #¢N ros) f(ros)dSo
(4.18)

+/€Z E2 k2 // U (ro)h(ro)dVo + #1% ros) f (ros)dSo
s
where the prime in the summation sign means that the term n = N is missing. The eigenvalues associated
with the eigenfunction ¢y (r) is kx. This form is consistent with the requirement (4.17) only if the factor
multiplying ¢ (r) is unity, giving the formula for the perturbed wavenumber

]i = kN + E2 // wN I‘O h I‘O dVO #wN I'Og I'Og)dS() (419)

and (4.18) becomes

( ) wN + KJZ E2 k2 // wn I‘O I'0 d‘/b #d}n rOs r08>d50 (420)

Another more direct derivation of (4.19) very useful in later analysis, may be had by first multiplying
(4.4) by ¢y and integrating over the volume:

/V// On VPV + K /V// YnpdV = K/V// YnhdV

Application of Green’s theorem to the first integral gives

| /V/ / PVpndV + j(Zf [0,V = V] - B + /V/ / InpdV = /V / / InhdV

5The form of (4.16) has been seriously misunderstood by many interested in methods for analyzing and interpreting
combustion instabilities. According to (4.12)b, the velocity associated with each of the basis functions must vanish on the
surface enclosing the volume considered. Hence the representation (4.16) seems also to imply that the velocity of the actual
(perturbed) field must also vanish at the boundary, even with h and f non-zero. That is, the approximate solution for p(r,t)
and u(r,t) cannot satisfy the correct (perturbed) boundary conditions. This conclusion is incorrect, following from the implied
assumption that as r — rg on the boundary, the limit as r — r¢ in the sum (4.16) is equal to the sum of the limits of each
of the terms in (4.16). The point is made by example in Annex F; see also Footnote 8 and related remarks at the end of this
chapter.
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after inserting V2 = —k3¢ny and Vi - i = 0, rearrangement gives

= f [f wdiv / / U (e)h(r)dV + #W rs)f (4.21)

The integral of 1xp in the denominator of (4.21) can be evaluated by using (4.20) and is exactly E%,
providing the series in (4.20) converges. Hence (4.21) is identical to (4.19). This simple calculation has
shown that (4.18) and (4.20) are consistent.

The preceding calculation contains several basic ideas lying behind much of the analysis used in this book.
In summary, the original problem described by the differential equation (4.4)a and its boundary condition
(4.4) are converted to an integral equation, in this case (4.10), established by introducing a Green’s function.
This is not an explicit solution because the functions h and f generally depend on the dependent variable
p. However, formulation as an integral equation provides a convenient basis for approximate solution by
iteration.

4.1.1. Approximate Solution by Iteration. To apply an iterative procedure, it is necessary first to
give the Green’s function G(r|ry) explicit form. The natural choice for problems of waves in a chamber is a
series expansion in the natural modes of the chamber, a modal expansion, (4.15). For the small parameter
k tending to zero (i.e. all perturbations of the classical acoustics problem are small), a straightforward
argument produces the formula (4.19) for the wavenumber and the integral equation (4.20) for p(r).

Apparently, equation (4.20) must be solved to give p before the wavenumber can be computed with
(4.19). We should emphasize that for many practical purposes, it is really k that is required, because its
imaginary part determines the linear stability of the system (a = 0). The great advantage of this approach
may be seen clearly with a simple example. Suppose f = 0 and h = H(r)p in (4.4)a,b. Then (4.20) and
(4.19) become

p(r) =Yn(r +nz EQW =y // Y H (r0)p(ro)dVy (4.22)
k2 —kN+E2 // N H (10)p(ro)dVo (4.23)

Because k is assumed to be small, solution by successive approximation, i.e. an iterative procedure, is a
natural way to proceed. The initial (zeroth) approximation to the mode shape p is (4.22) with x = 0,
p(©) =y, Substitution in (4.23) gives k? correct to first order in &:

(kD = E2 // H(ro)y%dVy
(4.24)
Iy
— 2 4+ Y

where Iy stands for the integral,

In = // H(ro)yxdVo
/.
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Calculation of p to first order in & requires setting p and k2 to their zeroth order values on the right-hand
side of (4.22), p(© =, (k) = k%

W(r) = ¢n(r +K«Z E2 — ///1% (ro)¥ndVo

=YN + KON

and oy stands for the series

Z B 5 // H (ro) % (ro)dVy

Substitution of this formula for p under the integral in (4.23) then gives the second approximation (k2)(2)
to k2:

()@ =k + Eig /// YnH(ro)(Yn + kon)dVy
N JJ.

(4.25)
= (BN + k2 // YN H(ro)ondVy

A wonderful property of the procedure is already apparent: Calculation of the wavenumber to
some order [ in the small parameter requires knowing the modal functions only to order [ — 1.
That is the basis for the current standard practice of computing linear stability for solid propellant rockets
(the “Standard Stability Prediction Program,” Nickerson et al. 1984) using the unperturbed acoustic modes
computed for the geometry in question.%7

The “perturbation-iteration” procedure just described is an old and widely used method to obtain
solutions to nonlinear as well as linear problems. Often much attention is paid to achieving more accurate
solutions by carrying the iterations to higher order in the small parameter. That is a legitimate process
providing the equations themselves are valid to the order sought. In Chapter 3 we emphasized the importance
of the expansion procedure largely for that reason. If the equations are valid, say, only to second order in
the amplitude (¢), there is no need—in fact no justification—to try to find a solution to order £* and higher.
Similar remarks apply to the expansion in the average Mach number (u); see footnote 2 in Chapter 3. The
procedure is fully explained in Section 4.6 for the equations derived in Section 3.4.

4.2. An Alternative Derivation of the First Order Formula

The results (4.19) and (4.20) for the complex wavenumber and mode shape can be instructively obtained
in a different way. Both formulas provide means for computing the differences k? — k%, and p — 1) between
the actual (perturbed) quantities and the unperturbed quantities. It is reasonable that those results should
somehow follow from comparison of the perturbed (x # 0) and unperturbed (x = 0) problems. The idea is
to average the difference between the two problems weighted respectively by the other’s mode shape. That
is, subtract p times equation (4.12)a from 1), times (4.4)a and integrate the result over the volume of the

SFailure to respect this basic property of the procedure has rendered useless some discussions of the subject. For example,
the lengthy discussion by Van Moorhem (1982) is largely irrelevant to the spacially averaged representation treated here and
in earlier works. For reasons different from those offered by Van Moorhem, some of the results in question are incomplete, as
discussed in Chapters 6 and 7.

"Calculation of the solution, the mode shape to order I, also requires modal functions to order | — 1; see Section 4.6.2.
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chamber:

/// [on V2 — pV2hy] dV+/// 2 %pdvo_,_@///ww

Now apply Green’s theorem to the first integral, substltute the boundary condltlons (4.4)b and (4.12)b and
rearrange the result to find (4.21):

If k2 is to be calculated to first order in &, then p must be replaced by its zero order approximation p = .
Because the correction to k% contains the multiplier , any contributions of order x multiplying  give terms
of order k2. Hence to first order, (4.26) of course becomes (4.19).

This approach does not provide a recipe for computing the modal or basis functions to higher order.
That does not cause difficulty here because we have the procedure given in the preceding section. We will find
later that the simple derivation just given suggests a useful extension to time-dependent nonlinear problems.
In that situation there is no result corresponding to (4.20) for computing the mode shapes to higher order.
That deficiency is a serious obstacle to further progress with a simplified form of the general procedure, a
subject of current research.

4.3. Approximate Solution for Unsteady Nonlinear Motions

The method covered in the preceding two sections, based essentially on the use of Green’s functions,
was the first application of modal expansions and spatial averaging to combustion instabilities (Culick 1961,
1963). In the early 1970s the procedure was extended to treat nonlinear problems, necessarily involving
time-dependence (Culick 1971, 1975). We summarize that approach here; an alternative formulation based
on a form of Galerkin’s method is discussed in the following section.

We begin with the general problem (4.1)a,b and assume an approximation p’(r) to the pressure field as
a truncated expansion in a set of basis functions ,,,

M
t) = Dr Z nm(t)¢m(r) (427)

where for simplicity—mnot an essential assumption—we take p, to be the average pressure in the chamber,
uniform in space and constant in time. In this work we will always take the 1,, to be acoustic modes defined
by the geometry, the distribution of average temperature and suitable boundary conditions.® We would like
the right-hand side of (4.27) to become more nearly equal to the actual pressure field in the combustor as
more terms are included in the series, so that p’ = p’ in the limit:

Pt = Jim j(rt)= lm p, S (@) (4.28)

m=1

8The selection of boundary conditions is part of the art of applying this method. Examples covered later will clarify the
point. For the present, it is helpful to think of the v, as classical acoustic modes for a volume having rigid walls and the
same shape as the combustion chamber in question. The 1), therefore do not satisfy exactly the boundary conditions actually
existing in a combustor. Hence the right-hand side of (4.27) is an approximation in three respects: the series is truncated
to a finite number of terms; it does not satisfy the correct boundary conditions; and the basis functions are assumed to be
solutions to the scalar Helmholtz equation with the homogeneous boundary condition @i - Vi, = 0. The 1y, alone do not
represent solutions with the perturbations taken into account. However, the solution carried out to the next order does satisfy
the boundary conditions to first order. This important point is discussed in Chapter 10 of Morse and Feshbach (1952). The
approximate nature of the modal expansion will be clarified as the analysis proceeds. See also Annex F for an example making
the point.
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Because the 1, do not satisfy the correct boundary conditions, this pointwise property certainly cannot be
satisfied at the boundary. It is reasonable, however, to expect convergence in an integral-squared sense; that
is, the integral of the square of the difference between the exact solution and (4.27) satisfies

Jdm [f] [p%r,t) - zjv_[; o] a0 (4.29)

We will not prove this properly, but assume its truth.

Convergence in the sense asserted by (4.29) is a common idea arising, for example, in formal treatments
of Sturm-Liouville problems; see Hildebrand (1952) for a very readable discussion. The matter of convergence
of approximate solutions in the present context is more complicated because one must take into account the
fact that the governing equations and their solutions are expanded in the two small parameters p and e
introduced in Chapter 3. We will also not discuss that problem.

The synthesis of the pressure field expressed by (4.27) does not restrict in any practical fashion the
generality of the method. For definitions here we assume that the modal functions satisfy the homogeneous
Neumann condition f - Vi, = 0, but for some applications a different boundary condition, perhaps over
only part of the boundary, may serve better. Hence we will assume here that the 1, are eigensolutions to
the problem (4.12)a,b.

We require that the approximation (4.27) to p’ satisfy equation (4.1)a. Multiply (4.12)b written for ¢n

by p'(r,t), subtract from (4.1)a written for p’ multiplied by ¢, ; then integrate the difference over the volume
of the chamber to give

[ v st [ 55 fff o= f o
\4

Apply Green’s theorem to the first integral, substitute the boundary conditions and rearrange the result to

give
/// 12 a;t;’deV + k:N // pYNdV = — /// hyndV + '#wadS (4.30)
v S

Now substitute the modal expansion (4.27) in the left-hand side:

an /// (%) pnav - kpan // VbV = B D P (431)

’E
wﬁ

a

where

Fy - pE2 / / IV + #mds (4.32)

and a, is a constant reference speed of sound. The second sum in (4.31) reduces, due to the orthogonality
of the vy, to n, E2. Under the first integrals, write

A, =1- (%)2 (4.33)

Then the first sum in (4.31) is

iﬁm(t) | /V/ [ (= 80) oV = Bty - mf_o int) /V/ [ Auvnwav (4.3
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With these changes, equation (4.31) becomes
1M
i+ ko = By Y in(®) [ [ [ Auonav (4.35)
N m=0 MR
v

The sum on the right-hand side represents part of the effect of a non-uniform speed of sound in the chamber
(if A, # 0). To simplify writing we will ignore this term until we consider special problems. For solid rockets
it is normally a negligible contribution. If the combustor contains flame sheets, the temperature is piecewise
uniform and this term also doesn’t appear, but the presence of the discontinuities generates corresponding
terms arising from Fy (see Annex E). Thus there are useful situations in which we deal with the system of
equations:

iin +winy = Fx (4.36)

This result, a set of coupled nonlinear equations with the forcing function Fi given by (4.32), is the basis
for practically all of the analysis and theory discussed in the remainder of this book. A corresponding result
is given in Annex B for a purely one-dimensional formulation. In anticipation of later discussions, several
general remarks are in order.

(i) The formulation expressed by (4.36) accommodates all relevant physical processes. In the derivation
of the conservation equations in Annex A, only inconsequential approximations (for present purposes)
were made, notably the neglect of multi-component diffusion and the representation of the reacting
multi-phase medium by a single-fluid model. However, only the basic gasdynamics are known explic-
itly. All other processes must be modeled in suitable forms.

(ii) Despite the apparent generality of (4.36), attention must be paid to an assumption implied in the
application of Green’s theorem in spatial averaging. That is, the functions involved must possess
certain properties of continuity within the volume of averaging. The condition is not satisfied, for
example, at a flame sheet, where the velocity is discontinuous, an important exception. Annex E
introduces the method for handling such cases.

(iii) The selection of functions for the modal expansion (4.27) is not unique; possible alternatives must
always be considered. What works best depends on the nature of the boundary conditions. The closer
the boundary is to a rigid reflecting surface, the more effective is the choice #i - Vi, = 0, meaning
that the acoustic velocity vanishes on the boundary. Because a combustor must provide for inflow of
reactants and exhaust of products, it is simply not possible that the actual enclosure be everywhere
rigid and perfectly reflecting. For @i - Vi), = 0 to be a good approximation, as it should be for the
modal expansion to serve successfully as a zeroth approximation to the pressure field, the boundary
must be ‘nearly’ reflecting. Choked inlets and outlets satisfy the condition if the Mach number at
the chamber side is small (that is, the flow within the volume is consistent with the assumption
i < 1). Also, the dynamical response of burning solid propellants is normally such that requiring
n - Vi, = 0 is appropriate. Over a broad useful range of practical conditions, defining the basis
functions with (4.12)a,b is therefore a reasonable choice. Exceptions are not rare, however, and care
must be exercised. For example, a Rijke tube will contain a heater, or a thin combustion region within
the duct. Continuous functions 1,, may not be good zeroth approximations to the actual behavior
discontinuous at the heating zone; moreover, in that case ¥, = 0 at the ends is the proper choice
for boundary conditions on the basis functions. More generally, if the temperature field is highly
non-uniform, then the zeroth order expansion functions should take that feature into account.

(iv) An enormous advantage of the result (4.36) is its clear interpretation. A general unsteady motion
in a combustor is represented by the time-evolution of a system of coupled nonlinear oscillators in
one-to-one correspondence with the unperturbed modes 1,,. Although the left-hand side of (4.36)
describes the motion of a linear oscillator, the forcing function Fn will in general contain terms
in 7, representing linear and nonlinear damping, springiness and inertia. Consequently, it is easy
to find familiar nonlinear differential equations as special cases of (4.36). Such special results aid
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greatly the interpretations of complicated observed behavior in terms of simpler elementary motions.
Thus it is important to understand the connections between parameters defining the oscillators, the
characteristics of the modes, and the definitions provided in the process of spatial averaging.

(v) Different problems are distinguished chiefly in two respects: Geometry of the combustor; and the
form of the forcing function Fj. The forcing function contains the influences of gasdynamics explic-
itly, but all other processes must be modeled, either with theory or based on experimental results.
The geometry and the boundary conditions determine the modal expansion functions v, and the
frequencies w,. For complicated geometries, as for many large solid propellant rockets and for most
gas turbine combustors, computation of the ¢, and w, has been a time-consuming and expensive
process. That situation is gradually changing with the development of more capable software (e.g.,
French 2003; French and Flandro 2003).

(vi) The relatively general context in which the oscillator equations (4.36) have been derived does not
exclude simpler problems which can either be treated as special cases or constructed without reference
to the procedures worked out here. (See, e.g., Section 2.6) However, it is then often more difficult to
be certain that all important processes are accounted for or properly ignored.

4.4. An Alternative Application of Spatial Averaging: The Method of Least Residuals

With a series of works beginning in the late 1960s, Professor B.T. Zinn and his students developed and
applied a different method based on spatial averaging, an interesting extension of Galerkin’s method. See
Powell (1970); Powell and Zinn (1969; 1971a,b; 1974); Zinn and Powell (1968; 1970); Lores and Zinn (1973).
There are necessarily some similarities with the method discussed in the preceding two sections; in particular
the formal results should agree in detail, or at least be reconcilable. There are, however, distinct differences
both in the sequence of historical developments and in many important matters of applications.

In respect to the historical developments, the Georgia Tech group was first to apply spatial averaging to
analyze nonlinear behavior, in liquid propellant rockets. They were also first to demonstrate several nonlinear
phenomena confirmed later in works published by others. Those results are reviewed here in Chapter 7. It
was three years after the first Georgia Tech report that Culick independently worked out a much simplified
form of the method described in Section 4.2, to explain nonlinear behavior observed in a laboratory device,
the T-burner, used to measure the combustion dynamics of solid propellants. At that time, there was
practically no communication (or mutual attention) between the liquid and solid rocket communities at the
research level, a condition that blocked certain benefits, but which has since been corrected.

Recently, Seywert and Culick (1998) showed that when applied to the same equation, the two methods
lead to the same formal result (4.28). To establish that conclusion, we follow the formal procedure discussed
by Finlaysen and Scriven (1966) as extended by Powell (1970); Powell and Zinn (1969, 1971a) and Zinn
and Powell (1968, 1970) to account for the inhomogeneous boundary conditions. The method is in fact
quite general, capable of handling much more elaborate problems than that for which the method covered
in Section 4.3 has been worked out. Here we take a direct route to make the main point most clearly. Write
the wave equation (4.1) and its boundary condition as

E(r,t)=0 437k
B(r,t) =0 (4:37)a,
where
1 a2p/
E / — 2.0 = _
(p):=V =z !
(4.38)a,b
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The Galerkin method is based on expansion of the dependent variables in a set of basis functions ¢,,. Here
we suppose that there is only the single variable p’ in the problem? defined by (4.37). The approximation p
expressed as the expansion truncated to M terms is assumed to become equal to the solution p as M — oc:
M
lim p= 1li = 4.
Jim p= lim 1 U Pm =P (4.39)

m=
At this stage the functions ¢, are undefined. The modified Galerkin method consists in spatially aver-
aging, with a weighting function, the governing equation and its boundary condition, both applied to an
approximation p, and requiring that the difference vanish:

/// E(p)pndV — ‘#.B(ﬁ)ngdS —0 (4.40)
v 5

The spatial weighting function ¢x need not be one of the basis functions, but we made that choice to
establish the equivalence of the methods without unnecessary complications.

Now substitute the definition (4.36) for E and B:

/// <V2ﬁ’ B %%) ondV = # (f- VP + f) pndS =0 (4.41)
v s

Apply Green’s theorem to the first term to give

/V/ / VP ondV = g{ ('Voén —onVp') -ndS — | /V/ / PV2pndV

and choose ¢y = ¥ defined by (4.12):

// VI §ndV = — ﬁwm' CAdS + K, ///ﬁ’z/)NdV
14 S i

Substitution in (4.41), with ¢y = ¢ and some rearrangement leads to the result identical to (4.30):

/// %%wmv + k% /// PondV = — // .thdV + #‘wadS (4.42)
Vv v i %

Owing to the care taken to recognize the approximation to p’ with a truncated expansion, p’ appears here
in place of p’ in (4.30).

The preceding remarks establish the equivalence of the methods only for the case when the equations of
motion are written for the fluctuations of the flow variable and then combined to form the wave equation
for the pressure. It should be apparent from the discussion in Sections 4.1-4.3 that the method developed
there, and used throughout the remainder of this book, is restricted to that formulation. In contrast,
the Galerkin method is not constrained to any particular form of the governing equations; of course the
problem to be analyzed must lend itself to definition of basis functions. In that sense, the modified Galerkin
method is potentially more general than the method discussed in Sections 4.1-4.3 and used throughout this
book. However, the method has not been extended beyond the applications investigated by the group at
Georgia Tech many years ago and for several reasons seems not to have motivated others to pursue even
similar applications. In almost all their work, the Georgia Tech group introduced a form of a potential for
the unsteady velocity. Combined with sometimes vague usage of expansion parameters and ordering, that
practice renders the method awkward to use and the results difficult to interpret.

9The other variables of the flow field must also be expanded, the procedure being the same as that followed in the method
based on the results of Section 4.3.
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4.5. Application of Time-Averaging

To this point the expansion procedure based on two small parameters has been used only to derive the
systems of equations describing successively more difficult classes of problems listed in Section 3.3.2. Later
we will see how an iterative method based partly on the expansion reduces those systems of equations to
more readily soluble forms. In this section we apply time-averaging to convert the second-order equations
(4.36) to first order equations. First, two remarks:

(i) Use of time-averaging is motivated by the experimental observation that combustion instabilities
commonly show slowly varying amplitudes and phases of the modes contributing to the motions.
That behavior is a consequence of the relative weakness of the disturbing processes and is therefore
measured by the small parameter i characteristic of the Mach number of the mean flow. It is essential
to understand that it is not the amplitudes themselves (i.e. the parameter €) that matters. Thus the
application of time-averaging in the present context is not intended to treat nonlinear behavior in p,
but is based on the idea that there is only weak coupling between the mean flow and the unsteady
motions, proportional to the Mach number of the average flow. Nonlinear behavior of higher order
in € is a distinct matter, formally unaffected by the time-averaging.

(ii) Two-time scaling (Kevorkian and Cole, 1996; Cole 1968) is an alternative method to time-averaging.
The results obtained are identical up to second order acoustics (Sections 3.3.3(IT) and 3.4), a conclu-
sion not proved here but consistent with similar previous works in other fields.

According to the discussion in Section 3.3.3, we can characterize the functions h and f, and hence the
forcing function Fl, as sums of terms each of which is of order p and of zeroth or first order in €. Thus if
we reactivate the ordering parameters p and e, the right-hand side of (3.45)b, for example, has the form

€
e { (MI} + 2 (0 | +7
The divergence of these terms eventually appears in h and F},. Hence we are justified in taking F,, of order
; to show this explicitly write (4.36) as
iin + Wiy = pGy (4.43)

In any event, for 1 small, the ny differ but little from sinusoids so (without approximation) it is reasonable
to express ny(t) in the equivalent forms

nn(t) = ry(t)sin (wnt + dn(t)) = An(t) sinwnt + By(t) coswnt (4.44)
and
An(t) =rnycosony ; By =rnsingy

rN = \/A%V#*B]QV i ON = tan~! (g—N>
N

One way to proceed follows a physical argument based on examining the time evolution of the energy of the
oscillator having amplitude ny (Culick 1975). The energy €y is the sum of kinetic and potential energies,

(4.45)

1., 1
En(t) = 5k + RN (4.46)

The time-averaged values of the energy and power input to the oscillator, due to the action of the force
uGy, are

t+7 t+7
1 ) 1 .
(En) = - / Endt' 5 (uGnnn) = - / uGNnHndt’ (4.47)
t t
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Conservation of energy requires that the time-averaged rate of change of energy equal the time-averaged rate
of work done by uG  on the oscillator:

d )
From (4.44), the velocity is
NN = wnrN cos (wyt + dn) + |7n sin (wyt + dn) + q'bNrN cos (wnt + én) (4.49)

Following Krylov and Bogoliubov (1947) we apply the ‘strong’ condition that the velocity is always given by
the formula for an oscillator is force-free-motion,

NN = wnTN cos (Wnt + dn) (4.50)

Hence (4.49) is consistent with this requirement only if

fNSin(th+¢N)+¢N7'N cos (Wnt+ ¢dn) =0 (4.51)

Now use the definitions (4.44), (4.46) and (4.50) to find

1
En = gw?\,r?\,
(4.52)a,b

uwGNIN = pGNwNTN cos (Wt + dn)

The statement “slowly varying amplitude and phase” means that the fractional changes of amplitude
and phase are small in one cycle of the oscillation and hence during the interval of averaging 7, if 7 is at
least equal to the period of the fundamental mode:

T d’I’N T d¢N
_— 1; ——— 1 4.53
ry dt <h 2 dt < (4.53)

These inequalities imply that ry and ¢n may be treated as constants during the averaging carried out in
(4.47). To see this, imagine that ry for example, is expanded in Taylor series for some time ¢; in the interval
T, t<ti <t4+T:
dTN
ry(t)=rn(t) +(t—t1) | — +
dt /.
For rn slowly varying, 7 doesn’t vary much during a period and may be assigned some average value.

The increment ¢ — ¢; has maximum value 7; so the second term is negligible according to the first of (4.47).
Therefore 7y (t) ~ rxn(t1) for any ¢; in the interval of averaging and the assertion is proved.

Substitution of (4.52)b in (4.48) then gives

t+7
d .
w?erﬂ — MWNTN / G cos(wnt’ + ¢ )dt’
dt T
t
which gives
d 1 t-|—i7'
N ’ /
—_— = u— G 3 t dt 4.54
TR e ~cos(wnt’ + ¢n) (4.54)

t
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Because rn (t) and 7y (t) are nearly constant in the interval (¢, ¢+ 7), this relation implies the equation before
averaging,

dr
d—év = %GN(t) cos(wnt + odn) (4.55)

The corresponding equation for the phase ¢y (t) before averaging is found by first rearranging (4.51) to
give

d
TN% cos(wnt + dn) = =7y sin(wnt + dn)

which becomes, after substitution of (4.55),

T'ng% = *ﬁGN(t) sin(wyt + ¢n) (4.56)

Now time average this equation over the interval 7; the left-hand side is approximately constant for theorem
give above, and the equation for ¢y (t) is

t+1
d 1 .
TN% = —,um ( Gy sin(wyt’ + ¢n)dt’ (4.57)
i

With the relations (4.45), equations (4.54) and (4.57) can be converted to equations for Ay and By:

t+7
dA
eoN _ B Gy coswnyt'dt
dt WNT
t
(4.58)a,b
dB t+1
4PN _ _L 3 ! 4!
TR / Gy sinwpyt'dt
t

Whichever pair one chooses to use, (4.54) and (4.57) or (4.55), the general formal problem of solving a system
of coupled second order equations (4.43) for the oscillators, has been converted to the simpler approximate
formal problem of solving a system of coupled first order equations. The essential basis for that conversion
is the removal of the fast oscillatory behavior with the definition (4.44), a transformation made reasonable
because the changes of amplitudes and phases take place on a much slower (i.e. longer) time scale than
do the oscillations. The presence and role of two time scales is more evident in the following alternative
derivation.

From the second equality of (4.44), we find the velocity
NN = wn [An coswnyt — By sinwyt] + Ay sinwyt + By coswnt
Now enforce the condition corresponding to (4.51),
Ay sinwyt + By coswyt = 0 (4.59)

and the velocity is

NN = wn [Any coswnyt — By sinwyt] (4.60)
Substitution in (4.43) gives

wN | An coswyt — By sinwyt| + wi [~ AN sinwyt — By coswyt]

+w% [Ay sinwyt + By coswyt] = pGy
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and

A'N COSUJNt — BN Siant = LGN
wWN

Multiply by coswyt and substitute (4.59) for By coswyt to give

Ay cos? wnt — sinwnt |—Apy sinwyt| = LGN coswpt
WN

SO

dA

d_tN = %GN coswpt (4.61)
Similarly,

dB

d—tN = —ﬁGN sinwyt (4.62)

Now introduce two time-scales, 7, the first scale, of the order of the period of the fundamental oscillation
(in fact, we might as well set 7/ = 27w /wy; and 75, the slow scale characterizing transient changes of the
amplitudes and phases of the oscillations. Two corresponding dimensionless time variables can be defined,
ty =t/75 and t; = t/75. Thus we consider the amplitudes and phases to be functions of the slow variable ¢,
while the forcing functions Gy depend on both ¢ and to because they depend on the ny, (i =1,2,...)

ny = An(ts) sin (27rw—Ntf> + By (ts) cos <27r°"—Ntf> (4.63)
w w1
In terms of the dimensionless time variables, is

1dA
— N iGN coswpnt
Ts dts WN

and averaging over the fast variable we have

tyt+7y A t+7y
1 "1 dApn w1 ' WN
— dat, = —— G 2r——t; | dt/
/ Ts dtl, f WN Tf . NCOS< le f f
ty ty

Ts

On the left-hand side, dAx/dt, is assume to be sensibly constant in the interval 74 and we have

t+T7y
1 dAN 12

WN
@ e / Gy (t;,t,) cos <27Tw—1t’f> dt'y (4.64)
ty

Those parts of G depending on t/, are taken also to be constant and if we now rewrite this equation in
terms of dimensional variables, we recover (4.58)a with 7 = 74 = 27 /w. Similar calculations will produce
again (4.58)a. Note that due to the nonlinear coupling, the amplitude and phases of all modes normally
change on roughly the same scale as that for the fundamental mode; thus the single interval of averaging
works for all modes.

Krylov and Bogoliubov (1947) discuss procedures for carrying the results of time-averaging to higher
order in the small parameter characterizing the expansion. Here, however, the parameter is u, a Mach
number characteristic of the mean flow. Hence, as emphasized in Chapter 3, extension to higher order
in p is not justified without re-deriving the basic equations to account for higher orders in the
mean flow from the beginning.
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With uGpy replaced by Fl, letting N — n, and 7st; = t, we find the usual forms of the time-averaged
equations,

aa, 1 [
LA /Fn cos wyt'dt’
dt WnT .
¢
(4.65)a,b
dB v
dtn =07 / F, sinw,t'dt’

t

Inserting the definitions of ¢; and ty in (4.63), and replacing N by n, we have the expression for 7, (t):

N (t) = Ay (t) sin(wpt) + By, (t) cos(wpt) (4.66)

In Chapter 7 we will use a continuation method to assess the ranges of parameters and other conditions
for which the first order equations give accurate results when compared with solutions to the complete
oscillator equations. In the development of the theoretical matters described in this book, the sets of first
order equations, (4.65)a,b, have been central. They remain extremely useful both for theoretical work and
for applications.

4.6. The Procedure for Iterative Solution to the Oscillator Equations

The oscillator equations (4.35) and (4.36) are not yet in a form that can be readily solved because the
functions Fl, defined by (4.32) contain not only p’ but also the dependent variables p’, T and u’ in the
functions h and f. With the two-parameter expansion as the basis, the iteration procedure provides a means
for expressing Fiy in terms of p’ only to first order in e. Thus eventually the oscillator equations become a
system soluble for the modal amplitudes 7y (). There are of course approximations required, but the orders
of their effects can always be estimated in terms of the parameters € and p. To appreciate how the procedure
is constructed, it is helpful always to keep in mind the correspondence between the smallness of € and p,
and the distortions they represent of the unperturbed classical acoustic field.

There are two classes of distortions or perturbations: Those represented by higher orders of ¢, arising
as nonlinear effects of finite amplitudes,'® classified generally as energy transfer between modes; and those
measured by u, consequences of interactions, hence energy transfer, between the steady and unsteady fields.
Each of those types of perturbations may be identified within the volume in question and at the boundary.
Quite generally, then, we must take into account perturbations of the classical acoustic field, associated with
three kinds of energy transfer: Linear transfer between the mean and fluctuating motions; nonlinear transfer
between modes, or mode coupling, independent of the average flow field; and nonlinear energy transfer
between the mean flow and fluctuating fields. Those three kinds of energy transfer characterize, respectively,
the Problems I; II; III; and IV defined in Section 3.3. The way in which we view and accommodate those
perturbations determines our choice of basis functions ¥y used in the modal expansion'! (4.27). In this
work we are not accounting for nonlinear energy transfer between the mean flow and fluctuating fields; i.e.
those contributions represented by terms O(ue?), are ignored as in Section 3.4.

10Recall that in this work, nonlinear behavior is measured in terms of the amplitude e of the unsteady motions. It is
intrinsic to their derivation (Chapter 3) that the governing equations are linear in p, i.e. in the Mach number of the mean
flow. Hence, with those equations, expansions and solutions cannot legitimately be carried further then first order in pu. The
procedures developed here can be carried formally to higher order in e.

HThe expansion is not adequate for treating Problem IV defined in Section 3.3. In that case the basis functions must
include distortions of order u.
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4.6.1. Iteration on the Mach Number of the Mean Flow. To simplify the discussion here we
assume that the functions h and f contain only four sorts of terms: small, roughly of order &, but not strictly
ordered because they are independent of the fluctuating field; linear in the fluctuations, and hence of order
¢; bilinear in the mean flow speed and the fluctuations, and hence of order eu; and nonlinear terms in the
fluctuations of order €2 and 3. The terms are additive, so the two functions can be written formally by
rearranging (3.63)a,b in the form

E(hoo + th) + 8Mh11 + 62h20 + 83h30

"= . . (4.67)a,b
[ =¢e(foo + fi0) +epfir + €= fao +€° fao

where hgp and fpo do not depend on the unsteady field and hence constitute true forcing functions.

The terms hig and fig are linear in the fluctuations and independent of the mean flow speed. They can
be immediately combined with the wave operator on the left-hand side of the oscillator equations, showing
that they represent attenuation and frequency shifts of classical acoustic modes. A particularly clear and
important example is the viscous acoustic boundary layer on a rigid impermeable wall discussed in Annex C
and Section 5.9.

Almost all of the processes responsible for linear instabilities in a combustion system are contained in
the functions hy; and fi; with possible contributions from hiy and fig. At this stage, it is not clear what
phenomena might be represented by the quadratic and cubic nonlinearities not included here. Detailed
investigations are required to address the question.

The special reason for retaining those terms shown in (4.67)a,b is the following. Within the ordering
procedure followed here, only the unperturbed classical modes 1, are required to generate explicit equations
for the modal amplitudes with the oscillator equations (4.36). To see the problem, substitute (4.67)a in the
right-hand side of the wave equation (4.1)a for p':

1 0%
2 _ 2 3
’ ?W = g(hoo + th) + ephi1 +e“hog + €°hsg (468)
The functions hg, hig, h11, ... are found by identification with (3.58) and the definitions of the brackets

given in Section A.6. While hq1, hog and hgg can be found explicitly with those formulas, hog and hig arise
from ¥ and P’ and are determined by the models of processes other than the fluid mechanics covered by
the compressible Euler equations. The acoustic boundary layer, for example, contributes to h1g and fiq; see
Section 6.5 for another example.

In the iterative procedure, the parameter i defines the iterations so that nonlinear behavior governed
by € is present at each stage to the order selected. The zeroth approximation is the classical acoustic field
given by the modal expansions with time dependent amplitudes:

M
p/O = pz Tim (t)wm (I‘)
°M (4.69)a,b
;o T (1)
uo = Cl2 ZO: 7]{72” vi/}m (r)

The expansion for the velocity field has been chosen so that term by term the expansions satisfy the classical
acoustic momentum equation free of perturbations

_Oup,
P ot

+Vpp =0 (4.70)

4-18 RTO-AG-AVT-039



MODAL EXPANSION AND SPATIAL
AVERAGING; AN ITERATIVE METHOD OF SOLUTION

Correspondingly, the values of density and temperature fluctuations are set by the adiabatic relations,

o
()" ()
p D T P

Set p=p+p,p=p+p,T =T+ T and expand to find to second order

2
Po _ 170 7*(@)
p YD 292\ p

(4.71)a,b

T _v=1pp _7=1(p\’
T Y D 272

B p

Then the equation for the first approximation, p’), to p’ is found by setting the fluctuations of flow
variables in h equal to their classical values and retaining only terms of appropriate order. To see how this
works, begin with (2.78)a,b. Define the function G

1 0P
=pV - —5" - =L 4.72
S=»p 1= =35, (4.72)
The form of G is unspecified, but we assume that the processes represented lead to terms of all orders retained
in the problem at hand. Then with the ordering parameters shown and the acoustic approximations (4.69)a,b
substituted for all fluctuations, indicated by the subscript ( )o, (3.63)a,b give!?

1 5{[P]}1

1
h:=h11128[900+910}0 +eu {—pV-;{[M}}lﬁ- + = V Vp + G111

o
1 10
+e? {—pv —{M}: + = = ip}s + 920 (4.73)
p ot o
1
+ &3 {—pV -—{M}s + 930}
p o
oM’ . _ [ OM' .
rimtim=elp(G5) - @] aranls(GE) +0MH- @]
VAT o) t/n o)
oM’ oM’ (4.74)
+¢? {P( P > +{M}z — (F)20| +¢° {P( 3 > +{M}3—(T)30}
t /20 o t /50 o
Substitution of 4.73 and 4.74 into the oscillator equations (4.36),
. 2 a’
N +WNIN = ———3 hrrrondV + () frirvndS (4.75)
prEy . A L

produces the equations for the amplitudes of the unperturbed modes.

Because the basis functions 1), satisfy the boundary conditions for the unperturbed problem, pf,(r,t)
given by (4.69)a, also does not satisfy the actual boundary conditions—it is the zeroth approximation. It is
the first order approximation to the pressure field that satisfies the correct boundary conditions, which are
first order in p. Similarly, the unsteady velocity to zeroth order is given by the expansion (4.69)b and not
only doesn’t satisfy the actual boundary conditions but is clearly an irrotational field, V x uy, = 0.

12Second and third order terms are shown for completeness in (4.73) and (4.74); they will not be needed until the discussion
of nonlinear behavior in Chapter 7.
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4.6.2. Zeroth and First Order Solutions for the Eigenvalues and Basis Functions. On several
occasions, researchers in this field, and users of results, have seriously misunderstood the meaning of the
preceding procedure. Its purpose is to give the first order (in p) results for the time-evolution of modal
amplitudes (which to zeroth order are constant in the scheme outlined here) and the first order (in u)
formulas for the eigenvalues of steady oscillations when the perturbations are accounted for in first order
(in €) i.e. linear stability. The complex eigenvalues for steady waves are found by setting!?

NN = ,rA]Nefi&k:t
h = he~iakt (4.76)a,b
f — fe—i(ikt
Substitution in (4.75) gives
l_lz “opop R ap R
v (@K +w}) = ——5 /// hpndV + #wads (4.77)
pEN . .
1% 5
Equation (4.77) is useful only if h and f are linear in the fluctuations, for then every term has e =% as

a factor. Hence from (4.67)a,b only the terms hig, h11, fi0 and fi; can be retained. The formula (4.77) for
the eigenvalues of the perturbed (actual) problem to first order is

72 n n R R
(ak)? = w3 + ]ﬁE—JQV e / / / haotndV + # Frotnds
Y i

" // hiypndV + #fmwjvds
JJ. X

This is essentially the result used widely for examining the linear stability of combustion chambers, the
subject of Chapter 6.

(4.78)

Now the question is—how can the eigenfunctions, the mode shapes, corresponding to (4.78) be com-
puted. In fact the first order modes have never been computed and are not required if one is satisfied with
perturbations to the order carried in (4.78). We return to (4.68) written now for steady waves, with the
exponential time dependence; so p’ = pe~"** .. We also drop the terms hgg, hoo and hsg, giving the
equation for pi:

V2p) 4+ k2pMV) = chyg + ephiy (4.79)

Continuing the iteration procedure, the eigenfunction of zeroth order, v,, and its gradient V1),, are substituted
in the right-hand side wherever p’ and u’ appear. Hence (4.79) becomes an inhomogeneous equation with
the right-hand side given, say H(r):

vZpD 4 k2pM) = K (4.80)
with
H= €iL10 + €/JiL11 (4.81)

L3Here ak is the complex frequency in the actual motion, i.e. containing perturbations to first order from the basis (modal)
functions.
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This equation is most conveniently solved using the Green’s function defined in Section 4.1, leading to
the solution (4.20), here having the form

W(r) = ¢n(r) + Z E2 k2 / / U HAV + ﬂwns ds (4.82)

where J, is the boundary condition extracted from (4.67)b consistent with the manner in which (4.67)a was
handled,

F, = efio +epfin (4.83)

Although (4.82) seems to satisfy the same boundary conditions as the classical mode shape—because
each term contains 1,—that is not the case. The reason has to do with the behavior of the infinite series
representing the Green’s function, equation (4.15). Near the boundary, the function behaves as a delta-
function and (4.82) does satisfy the correct boundary condition. The result is not proved here; a good
discussion of the matter may be found in Morse and Feshbach (1952). See Annex F for a simpler example.

Finally, the velocity field must be computed to first order by using the linear form of the momentum
equation (3.47)b:

P —{M]} + 5 (4.84)

Again the zeroth order acoustic values are substituted in the right-hand side, and for steady waves, with the
mode shape for the pressure given by (4.82), we have for steady waves

ipakM'®D = —vpM — ey {[M]}y + eFro + endFry (4.85)

It is particularly important to notice that this first order field is in general not irrotational, possibly
the most commonly misunderstood result of the entire procedure developed here. Even though the basis
functions used in the zeroth order modal expansion expressed an irrotational field, the field computed to
first order may be rotational. Put another way, the approximate procedure proposed and advocated here
really does have the potential for handling approximately a wide variety of realistic problems with minimal
difficulty. The unspecified function ¥’ is key in that respect. One has virtually complete freedom in choosing
that function. Especially, F can be constructed so that M’ satisfies a given boundary condition. For example,
one may require that the velocity should be normal to the boundary when there is incoming flow, generally
accepted to be the case for a burning solid propellant (Flandro 1995a). This matter will be discussed further
in Section 6.9, where some aspects of the 'flow-turning problem’ are examined.
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CHAPTERIH

SomeFundamentalslof[Acoustics

According to the experiences related in Chapter 1, combustion instabilities may be regarded as unsteady mo-
tions closely approximated as classical acoustical motions with perturbations due ultimately to combustion
processes. That view, initially an empirical conclusion, motivated the general form of the analytical frame-
work constructed in Chapter 4. Relatively little knowledge of classical acoustics is required to understand
and apply that construction formally.

However, interpretation of the details of observed behavior, and effective use of the theory to develop
accurate representations of actual motions in combustors require firm understanding of the fundamentals
of acoustics. The purpose of this chapter is to provide a condensed discussion of the basic parts of the
subject most relevant to the main subject of this book. We therefore ignore those processes distinguishing
combustion chambers from other acoustical systems, and restrict attention to the Problem O defined in
Sections 3.3.3 and 3.4.

5.1. The Linearized Equations of Motion; The Velocity Potential

We will be concerned here with unsteady motions in a pure non-reacting gas at rest. The governing
equations are (3.46) for Problem O, Classical Acoustics, leading to the corresponding wave equation and its
boundary condition, equations (3.52) with ho and fo given by (3.60)a,b for constant average density p and
written with dimensional variables:

V2p/ . %8227/ -V ’3-/ - iaj)/
a 8t2 CL2 (9t (51)a7b

8/
ﬁ~Vp/:—ﬁa—1;-ﬁ—f:F/-

=33

In the absence of condensed material, the definitions (A.34) and (A.58) of the unperturbed functions F and
P are:

F=V-T,+m, —uw, (5-2)
T:CE T, V-u-V-q- Q.|+ RTw. (5.3)

where
T, : viscous stress tensor (force/area)
q : rate of conductive heat transfer (energy/area-s)
m, : rate of momentum addition by external sources (mass-velocity /volume-s)
w, : rate of mass addition by external sources (mass/volume-s)
Q. : rate of energy addition by external sources (energy/volume-s)

Thus the function F contains all processes causing changes of momentum of the gas, except for that due
to internal pressure differences; and P represents all sources of energy addition except that due to internal
work by the pressure, accounted for by the term pV - u in equation (A.47). The linearized forms of the
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source terms will be constructed as required for specific problems. For most of this chapter we will treat
only problems for which hp and fo vanish, giving the simplest equations for classical acoustics,
2y 1OV _
a? ot? (5.4)a,b
n-Vp =0

With no sources in the volume or on the boundary, motions exist only for initial value problems in which
the pressure and its time derivative are specified at some initial time, ¢g.

In this case, the wave equation is used to describe freely propagating waves following an initial disturbance
or, when the boundary condition (5.4)b is enforced, the normal modes for a volume enclosed by a rigid
boundary. The condition 1 - Vp’ = 0 means that the velocity normal to the boundary is zero, because the
acoustic velocity is computed from the acoustic momentum (3.46)b written in dimensional form with F = 0:

i
7 vy (5.5)
SO
i Vp' =ﬁ% (A-u')
from which
a ,. . /
E(n u):fgn'Vp:O (5.6)

Hence 1 - u’ = 0 always

We have just derived the equations for classical acoustics by specializing the general equations of unsteady
motion. It is also useful to arrive at the same conclusion in a slightly different way, beginning with the
equations for inviscid motion in a homogeneous medium:

Conservation of Mass: % +V-(pu)=0 (5.7)
. ou

Conservation of Momentum: - +pu-Vu+Vp=0 (5.8)
, 0 1, 1,

Conservation of Energy: Pa e +3u +pu-Vie+ Ju )+ V-(pu)=0 (5.9)

Equation of State: p=pRT (5.10)

Remove the kinetic energy from the energy equation by subtracting u- (momentum equation) to give

De
— +pV-u=0 5.11
p Di +pV-u ( )
where % = % +u-V( ). Because all irreversible processes have been ignored the entropy of a fluid
element remains constant, g—: = 0, a result that follows directly by substituting the mass and energy

equations in the thermodynamic definition of the entropy of an element:

D D D
s_,Pe_pDo_ ooy

Ps _ ‘u) = 12
"Dt = PDi 5D pV -u) =0 (5.12)
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Taking the density to be a function of pressure and entropy, we can write for an isentropic process

_ (o 0P\ 4= (22\ g,— L
dp—<as)pd8+<ap>sdp—<8p Sdp—azdp (5.13)

a® = (%)S (5.14)

will turn out to be the speed of propagation of small disturbances, the ’speed of sound’. With this definition,
we can rewrite the continuity equation (5.7) for the pressure:

0
a—]t)+pa2V~u+u-Vp:O (5.15)
This result is quite general: in particular, its derivation did not involve using the special characteristics of a
perfect gas.

where

Alternatively, we may derive this equation for the special case of a perfect gas for which de = C,(T)dT
and the equation of state is (5.10). Add T times (5.7) to C; ! times (5.11) with de = C,dT’; then use (5.10)
to find

dp R
— 14+ — . . = 5.16
8t+( +Cv>pV ut+u-Vp=0 (5.16)

But R =C), — C,, so R/C, =~ — 1 for a perfect gas. Comparison of (5.14) and (5.15) gives the formula for
the speed of sound in a perfect gas:

a’ = \/ij = \/YRT (5.17)

For an isentropic process of a perfect gas, equation (5.13) can be integrated,
dp = a*dp = ﬁdp
P

which gives
.
P =po (£> (5.18)
Po

where pg, po are constant reference values.

We may now eliminate the density from the momentum equation (5.8) to find

Ju 1 /po 1/2
—+u-Vu+—<—) Vp=10 5.19

ot po \ P (5:19)
Finally, we obtain the wave equation for the pressure by differentiating (5.16) with respect to time and
substituting (5.19) and a? = yp/p:

— L _iLlLy. | —L | =wV-(u-V Vu——(u-V 5.20
o2 ) Do (p/po)l/.y P (u u) ( p) ( )

7ot ot

The boundary condition is defined by taking the component of (5.19) normal to the boundary:

1/2
ﬁ~Vp:—<p£0> po{ﬁ-?}—?—l—ﬁ-V(u-Vu) (5.21)
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Equation (5.20) and its boundary condition are easily linearized by assuming that the gas is at rest and
that the fluctuations are all of the same order. To second order in the fluctuations we find

82]7/ 202,/ ’ / op ’ a9 ., /
p/ p/ p/ 2 (5'22)
orfo @ 0]
Po Po Po
/ 1 ’ /
i vy = —poaal; i — po {; <;’—0> aa‘; At (u’~Vu’)} (5.23)

Equations (5.4)a,b are recovered when the second order terms are neglected and u’ - i = 0.

5.1.1. The Velocity Potential. It is often convenient to introduce scalar and vector potentials ® and
A from which the velocity is found by differentiation (Bachelor, 1967):

u=-V®+VxA
With this representation, the dilatation and curl (rotation) of the velocity field are separated:
V-u=-V0; Vxu=VxVxA (5.24)

In general, both potentials are required if the mean velocity is non-zero or sources are present in the flow.
The boundary conditions may also induce non-zero rotational flow. Here only the scalar potential is required
for small amplitude motions because in that limit, the classical acoustic momentum is (5.5); taking the curl
with uniform average density gives

0]
Pa (Vxu')=-Vx(Vp)=0
Hence if V x u’ = 0 initially, it remains so and we can take A = 0.

The acoustic equations for momentum, (3.46)b and (3.46)d in dimensional variables with ¥ = P =0
are

/
1
o p (5.25)a,b
P ovou =
En +9pV-u =0

Differentiate the first with respect to time and insert the second to give the wave equation for the velocity
fluctuation,

82 /
at‘; —@Vu=0 (5.26)
Now substitute u’ = —V® to give
Pd L, _,
Vv W —a“V®| =0
which is satisfied if the terms in brackets are a function of time only, so
Pe 5

The right-hand side represents a source field for the potential, uniform over all space. We may absorb f(t)
by defining a new potential ®; = & + ft dt’ (ft f(t1)dt; and relabel ®; — ® to find! the wave equation for
d:

9%d

5E a’Vie =0 (5.28)

L Alternatively, one can reason that when the velocity is found by taking the gradient of ®+ JJ f, the term in f contributes
nothing and hence can be simply dropped. The desired solution is unaffected by setting f = 0.
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When the velocity potential is used, the acoustic velocity is calculated with A =0
u =-Vo (5.29)

The acoustic pressure is found by setting ' = —V® in the momentum equation (5.25)a, giving
0P 1
.
D
This solution is satisfied if the terms in parentheses are a function of ¢ only, g(t), so

v =r (G +a0)) (530)

As above, we may define a new potential ®(¢) + ft g(t")dt' = ®4(t) and hence absorb g(t) so we may redefine
$; — & and

~

=

I
b|®
S

(5.31)

The conditions under which the acoustic field can be completely described by a velocity potential alone
are precise and, so far as problems involving combustion are concerned, very restrictive. Any analysis or
theory based on the velocity potential alone must also include demonstration that the vector potential can
be ignored, i.e. set equal to a constant or zero. In general, the presence of a non-uniform mean flow field and
various kinds of sources in the problems we are concerned with in this work, require that the velocity field
be derived from both scalar and vector potentials. Use of the unsteady pressure as the primary flow variable
provides a simpler approach for many purposes, but, as we will find later, apparently possesses unavoidable
fundamental limitations.

5.2. Elementary Solutions to the Linear Wave Equation

The basic property of linear problems is that the principle of superposition applies. Solutions for com-
plicated problems can often be constructed by superposing elementary solutions. Probably the most serious
practical difficulty in the use of most methods of solution arises with the need to find solutions for volumes
and boundaries not being simple shapes. Hence the basic solutions discussed briefly in this section are rarely
usable directly. However, with their simplicity comes the opportunity to understand certain properties of
wave motions generally.

5.2.1. Plane Waves. Choose z to be the direction of propagation. Hence the wave fronts, or planes
of constant phase, are normal to the x-axis. The wave equation is

82])/ 5 82])/
—a = 5.32
oz~ ! 9x2 (5:32)
which can be factored in the form when a is constant,
0 0 0 ad\ ,
Zra—=) (= —g= =0 5.33
<8t+a8m> <8t “ax>p (5:33)
A general solution has the form
p'(z;t) = f(x +at) + g(x — at) (5.34)
where:
f(x + at) represents a wave traveling to the left
g(z — at) represents a wave traveling to the right
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The density follows from the linear relation for small amplitude isentropic motions,

, by 1 _ _
=—==—= t —at 5.35
=35 = [f(e+at) +g(z —at)] (5.35)
and the velocity follows upon integration of the linear momentum equation:
o’ 1 0p a .. _ , _
- _ — t) — —at 5.36
Oz vp 0x  ~p? i (w+at) = (x —at)] (530
Hence
= —% [f(x + at) + g(x — at)] (5.37)

The important relations follow from comparison of (5.34) and (5.37):
/

For a wave traveling to the right: « = %
a
p (5.38)a,b

/

For a wave traveling to the left: ' = —g—a
Interpretation of these formulas is easily established by considering a compressive wave, an abrupt increase
of pressure. If the front travels to the right into a gas at rest, u’ is positive, i.e. to the right. Due to the
acceleration of gas by the rising pressure, the motion of the gas is in the same direction as the progression
of the front. Thus, a compressive disturbance traveling to the left is followed by leftward motion of the gas.
Similarly, (5.38) show that an expansion or rarefaction disturbance produces motion of the gas opposite to
that of the wave.

The initial value problem illustrates well the use of the general solution (5.34).

Problem: Find the subsequent motion given the initial conditions on the distribution of
pressure and its rate of change:

p'(x;0) = P(x)
o, (t =0) (5.39)a,b
X (@0) = Q)

Solution to the problem means finding the functions f(x + at) and g(x — at) by applying (5.39) to (5.34) to
give

f(x) +9(z) = P(x)

a1 @)~ @) = Q) 40
Simple manipulation (see, for example, Sneddon 1957) leads to
a+at
p(x;t) = % [P(x +at) + P(x — at)] + 2—1& / Q(&)d¢ (5.41)
zlat

This result is a general solution to the initial value problem. As an illustration, consider an initial stationary
pulse of pressure, so dp/0t = 0, Figure 5.1. Because of the pressure differences on both edges, for ¢ > 0, the
pulse splits into two pulses traveling to the left and right, each having amplitude equal to half the initial
amplitude. Both the pressure and velocity disturbances are non-zero within the pulses and zero outside.

For applications to waves in a chamber, the ability to satisfy boundary conditions is essential. The
solution (5.34), for example, can be used to represent incidence and reflection from a planar surface bounding
a semi-infinite space and an initial rectangular pulse, Figure 5.2. Now the initial condition is (5.39) with
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FI1cURE 5.1. Wave motions subsequent to an initial pressure pulse at rest.

P(x - a,t

~1P(ad-x) % J%////%’T
i / '

/

FI1GURE 5.2. Reflection of a pressure pulse from a rigid surface.

Q@ = 0 and P(x;0) representing a rectangular pulse located some distance to the right of the surface at « = 0.
The solution (5.41) must satisfy the boundary condition at z = 0 for all times:

p'(0;t) =0
/ x=0; t>0 5.42
%i;(o;t)zo ( ) (5.42)

Note that the ‘surface’ here is not a physically rigid surface but has been chosen as a convenience to require
that the pressure disturbance always vanish there. The solution (see Sneddon 1957) is

L [P(z +at) + P(z — at)] > at
Plait) = (5.43)
[P(z +at) — P(x — at)] r < at

N|—=
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This result represents the wave system arising, the splitting of the initial pulse and its image system in the
space to the left of x = 0. Thus the formalism has led to a special case of the method of images. The
behavior of pulses in a combustor is a practical application of this method.

5.2.2. Spherical Waves. Although it is often helpful to regard processes generating pressure waves
as distributions of point sources, we will rarely use this point of view explicitly, because we will usually deal
directly with continuous distributions (the functions h introduced Section 3.4). Nevertheless it is important to
understand the fundamental differences between elementary planar and spherical waves. The wave equation
for spherical waves is (5.4)a written in spherical coordinates with no dependence on the polar and azimuthal
angles (e.g. see Sneddon 1957, Landau and Lifschitz 1959, and many other standard references):

a2p/ 9 1 28p/
-0 = — | =0 5.44
oz 2 (r or > (5.44)
This equation is transformed to the equation for planar waves by writing p’ as
1
p(rit) = —¢(r;t) (5.45)
Then (5.44) becomes
Py L,
— —a"— =0 5.46
oz~ ¢ or2 (5.46)
Hence a general solution for the pressure has the form
1
p'(r;t) = = [F(at +r) + G(at — r)] (5.47)

r
where:

F(at + r) represents an inward traveling wave
G(at — r) represents an outward traveling wave

Corresponding to the initial value problem solved in the preceding section, we seek a solution subject to
the initial conditions:
p'(r;0) =V (r)
op (t=0, allr) (5.48)
E(T; 0) =W(r)

We required p’ to be finite at the origin, r = 0, so

W/ (r:1)]. o = Lim = [F(at +r) + Gat — )] < o0

r—0 ;
1
= Ling - [F(at) + G(at)] < oo
This condition is satisfied only if
G(&) =—F(&)
and the general solution takes the form
1
p(rit) = - [F(at +r)+ F(at — r)] (5.49)

To satisfy the initial conditions (5.48) the function F'(£) must satisfy the two equations

F(&) — F(=¢) =¢V()
1 (5.50)a,b
FI(§) = F'(=¢) = =W ()

a
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If the medium is initially at rest everywhere, then W = 0. Corresponding to (5.43), the solution for
spherical waves is

) = 1 {(at +r)\V(at+r)—(at —r)V(at —r)  (r<at) (5.51)

T 2r | (at+r)\V(at+r)+ (r—at)V(r—at)  (r > at)

For example, suppose that a small spherical region of radius ry about the origin has uniform increased
pressure 6p initially, so

V() = {65) ’ fffgo

Then (5.51) gives

p/(r;t) = %(&t — ?”) X { 0 (&ti_ 7“) ><§€
(5.52)

P (rst) = —5-(r —af) x

r

op 0<(r—at)<rg
0 (r—at) <&

In Figure 5.3 this result is compared with the corresponding result for the rightward traveling wave generated
by an initially pressurized region at the origin. The spherical wave propagating outward consists of a
triangular compressive wave followed immediately by a triangular rarefaction wave. The rarefaction is
generated by reflection at the origin of the compressive wave propagating inward from the initially pressurized
region. That inward traveling wave is the counterpart of the leftward traveling wave not shown here, for
the planar case. Upon reflection at the origin, the compressive wave becomes a rarefaction wave, as for the
reflection of planar waves illustrated in Figure 5.2.

INITIAL
""" /PHESSURE

Y FIELD
: ...3PR
: fo* R A_. $ i

0 R SPo B I/ro fo+ R r

2 o
Spherical Wave
apo """ -
= 3po
E 2
: !
a Xo- R Xo Xo+R X
Plane Wave

FiGure 5.3. Comparison of spherical and planar waves produced by regions of increased pressure.
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5.2.3. Cylindrical Waves. Cylindrical waves possess a special peculiarity: They always have a wake.
The reason can be seen from Figure 5.4 showing the way in which spherical, planar and cylindrical waves
are produced by point sources. The solid concentric circles represent wavefronts generated by sequences of
infinitesimally short pulses. A single point source generates purely circular fronts in three-dimensions. An
infinite flat sheet of uniformly and continuously distributed point sources emitting in phase produces planar
waves.

A
p
- P
Point Source Planar Array Linear Array
(spherical waves) (plane waves) (eylindrical waves)

FIGURE 5.4. Generation of spherical, planar and cylindrical waves by point sources.

Cylindrical waves are generated by an infinite linear array of point sources. When an observation is
made, the first disturbance observed is that emitted by the closest point on the line. But no matter where
the observer is located, signals arrive at all times, the later signals arriving from sources further away in the
line. The pressure at an observation point is computed by superposing the signals from the entire linear
array:

[ Gt —

P(pit) = / G =r),, (5.53)
. 7'

where p, 7, and z are defined in the sketch. With r? = p? 4 22 and setting ¢ = at —r, d¢ = —dr, the integral

can be rewritten to give

/ _ G(§)dg
p <p> t) - 2;00 \/m (554)
For large t,
1 Eo—at
Plot—oc) = [ GOE  (6<e<t+ (5.59)
&o

Hence the observed signal for a cylindrical wave can never be discrete: there is always a ‘wake’. Morse and
Feshbach (1952) and Morse and Ingard (1968) give extended discussions, including solutions to the wave
equation for cylindrical waves.

5.3. An Estimate of the Influence of Internal Heat Conduction on the Propagation of
Acoustic Waves

Acoustic waves impress gradients of velocity and temperature on the medium, therefore inducing viscous
stresses and heat conduction. Those processes necessarily cause dissipation of mechanical energy, the waves
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decay in space and time, and the entropy of the medium increases. However, for many purposes and over
broad ranges of conditions we may neglect those dissipative influences. The purpose of this section is to
discuss one simple way to estimate the effects of heat conduction on steady sinusoidal waves. The effects of
internal viscous stresses may be treated in similar fashion.

With Fick’s law for heat conduction, the linearized term V - q" in (5.3) is
V.4 =V-(-AVT)

For one-dimensional motions along the x-axis, and constant coefficient of heat conduction, A., we have

0T’
V-qd=-\\—" 5.56
q 57 (5.56)
The linearized form of the energy equation 3.41 is therefore
o1’ ou’ 0%/
a0, I 2y LY (5.57)

ot Ox ¢ ot2

With W, F = 0 and in dimensional form, the acoustic continuity and momentum equations (3.40) and
(3.41) for one-dimensional motions in a source-free medium at rest are:

ﬁ_p’ _ou’

+p—=0
agu, g;, (5.58)a,b
7ot tor =Y
Substitute (5.58) in (5.57) to give
T/ 2T/ = /
5,2 o _ e (5.59)

ot "Coxr  por
Because energy is dissipated, the motions are not isentropic so we cannot assume p’ ~ p’. However we can
eliminate the pressure as a dependent variable by taking it as a function of density and temperature, and

writing
), (57)
/ / !
p = (— P+l=—=| T (5.60)
op) r oT o
Now combine (5.58)a with (5.60) to form a second equation in the density and temperature fluctuations:
82 / p) 82 ! p) 82T/
L P (2 =0 (5.61)
ot? op ) O0x? or), oxz?

To illustrate the point, it is simplest to consider the case of sinusoidal traveling waves, for which the
fluctuations are?

p/ — ﬁei(ka:fwt) : T/ — Tei(k:vfwt) (562)

and k is the wavenumber. In general, k and w are complex quantities. Substitution in (5.59) and (5.61)
gives the pair of simultaneous algebraic equations

{iw—i— Ac kﬂTA—z[ p k“}p 0

pCly p?C,
dp
# (7
[ or P

. 0 R

T {w2k2 (a—p =0
P/

2We will consistently use e~“? for harmonic time dependence. Thus sinusoidal wave traveling to the right, in the positive

x-direction, will have the form e*(**=«%) g function of kz — wt = k(x — at), as suggested by (5.34).

(5.63)
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Non-trivial solutions exist for 7" and p only if the determinant of coefficients vanishes, giving the dispersion

relation
‘ Op D op Ae k2 Op
2| (9P op 2 Ae BT L2 (0P a2l _
z{k [<3P>T+P20v <8T ; w +[30u » k 90 ) w 0 (5.64)

To interpret this result, imagine that plane waves traveling according to (5.62) are generated by an
oscillating boundary perpendicular to the z-axis, at * = 0. Therefore we take the frequency w to be real
and given. Solution to (5.64) will give the real and imaginary parts of k? and hence of k, say k = k,. + ik;.
Then the spatial part of the exponentials in (5.63) become

ezk:x — ezkrme—kim

Consequently, k;” is the characteristic length for propagation in space: the amplitude of the traveling wave
is reduced to 1/e of its initial value after traveling a distance x = k;. Planes of constant phase travel with
the speed of sound, the ‘phase velocity’ in this case, and the real part of k is related to the frequency and
wavelength A by:
a 27
kp=—=— 5.65
r w )\ ( )

If heat conduction is ignored, A\, = 0 and, because w is real, so also is the wavenumber,

_|(or p_(9p
e [(&a)ﬁ 7C, (8T>p

Thus the waves travel with unchanging amplitude and wavelength.

—1/2

(5.66)

Rather than examine the behavior when heat conduction is not ignored, let us determine the conditions
under which its influence is negligibly small. We can estimate the conditions by requiring that the term
representing heat conduction on the right-hand side of (5.57) should be much smaller than, say, the first
term on the left-hand side:

or, with (5.62),

Ao (—K?) T‘ < )pc,,(m)f‘

Hence we require

Ac k|?
(ﬁ?) % <1 (5.67)

If this condition is satisfied, then the real part of (5.64) is negligibly small, holds, and the speed of sound is

_w_(op p_(op Ae |k
“‘k‘<8p>f+p20v <8T o e o 0 (5.68)

Thermodynamics for a two-state system gives the result

3)- @), (3,6, 3), 2,
- () - (2 -

for negligible internal heat conduction and isentropic flow.

SO
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For the inverse limit when ,A—C & is indefinitely large, (5.64) gives

a: 1/ gﬁ \/_ <pc &:' o> (5.70)

for a perfect gas. This is the limit for infinitely fast internal heat conduction, so the process of sound
propagation is isothermal.

To be specific, consider sound waves in air at ambient conditions:

1
Ae = 0.73 x 10° CiK a=3x10" &
g— S
_ _ g cal
=12x107% —= C, =0.17
P x cm3 Y g—°K

Hence

R LI 10,
=4x10"
<pC’1,> w  pC, a” %

which less than .01 for w < 25 x 10%s~!. This result confirms, and explains, the familiar fact that acous-
tic waves in the audio range 10-20,000 s~' propagate isentropically under everyday circumstances. The
influences of viscous stresses can be estimated in a similar manner.

This conclusion also holds for combustion chambers if the amplitudes of waves are not too large. It
is a great simplification that we will ignore internal viscous stresses and heat conduction in practically
all problems of combustion instabilities. However, if the waves grow to large amplitudes (‘large’ must
be characterized in the particular problem at hand) then the losses—referred to as ‘shock losses’—due to
viscous stresses and heat conduction may not be negligible. For problems of combustion instabilities, those
circumstances are more likely to arise in combustors having higher densities of energy release, notably liquid
and solid rockets.

5.4. Energy and Intensity Associated with Acoustic Waves

In this section we establish definitions of energy density and the intensity—i.e. the flow of energy—
for classical acoustic waves. The definitions are only approximate under the more complicated conditions
existing in a combustor but the general ideas remain.

Following Landau and Lifschitz (1959) we return to the basic energy equation (5.9) for inviscid flow.
The idea is to establish a connection between the rate of change of something (the energy) within a volume
and the flow of something (the intensity) through the closed boundary of that volume. Integrate the energy
equation over a volume fixed in space; and apply Gauss’ theorem to the terms on the right-hand side:

2 oo D)o 7 e - 5 e
:_#<e+“;>pu-d5—#pu-ds

This relation must be written to second order in the isentropic fluctuations; for example,

L 1, [9%(pe)
=p -
2 Op

+...
pe

pe = pé+p' P(pe)} +
Jdp s
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Eventually the result is

%/aﬂ/:—#su-dS—#p’u’-dS (5.71)

e==-—+-pu (5.72)

where

is the acoustic energy per unit volume and p’u’ is the intensity, the flux of acoustic energy through an area
normal to the direction of propagation (energy/area-s).

The first term on the right-hand side of (5.71) is third order in the fluctuations and must be dropped.
Hence we have the important result interpreted in Figure 5.5.

Oe o
8t+v (P'u’)=0 (5.73)

>

ue

FIGURE 5.5. Acoustic energy and intensity.

Table 5.1 summarizes the basic properties of plane sinusoidal waves. Brackets ( ) denote time averages
over some interval 7; for any scalar function 1, its time average is

t+71

w) =7 [ var

The dimensions of intensity are energy/sec.-area. Physical devices, such as piezoelectric microphones, can
be built to measure intensity directly: the output, in volts, say, is proportional to the intensity of a wave
incident upon the sensitive element. But the response of the human ear is not linear with intensity; the
output (i.e., what one “hears”) is more closely proportional to the logarithm of intensity. That is, what
seems to be a doubling of “loudness” corresponds to a ten-fold increase of intensity. To avoid use of large
numbers, it has therefore become the practice to use a logarithmic scale for expressing acoustic energies and
intensities.

A sound wave is one decibel more intense if its intensity is increased by %/10. The difference of level for
two sound waves, in decibels, is defined to be

I

dB = 101log;, <I—2> (difference in level) (5.74)
1

It is conventional to choose as an absolute basis the intensity of a wave which is barely audible at 1000 Hz.

The rms amplitude of such a wave is

1
dB = 10log; (I_> (level)
0
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where
(2 x 107%)?
o= —F—"—>.
Poao
Thus,
pI‘IIlS
B=20log——— =74+ 201 .
d 0log 5% 104 74+ 20log,, (5.75)

With the numbers given above, the relation between dB and pressure is shown in Figure 5.6.

175

dB

125 -

10° 102 10 1
PRESSURE, psi

FIGURE 5.6. A graph of decibels versus pressure (Ibs./in”).

Finally it is interesting to see the frequency response for the human ear, sketched below.

150

THRESHOLD OF PAIN

dB

AUDIBLE RANGE

1
20 100 1000 10000 20000
FREQUENCY, Hz

FIGURE 5.7. A graph showing the audible range of hearing for a typical human subject
(adapted from Morse 1948).

Note that 1 dyne/cm? = 74 dB and one atmosphere is 10° dynes/ cm?. From these two figures it is clear
that any steady wave which can be heard without pain has a sufficiently small amplitude that linearization
of the equations of motion is reasonable.
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ORGANIZATION

where (

Wave to Right

p/+ :ﬁ+€7i(wt7ka:)
u/+ :ﬁ+e—i(wt—kw)
A D+
U+ " poao
2
— P+
€+ = oao

<p+> = %lﬁi

o
p
<€+> = 2p0+ag

.2
p
<l+> = QPOJ:IO

More generally: p’ = pe~"

Wave to Left

p/ :ﬁ_efi(wH»ka:)
u = ﬁie—i(cut-‘rkw)
i = —L=
- pPoao
P2
E_ = —
Poao
/2
— o oy _ p_
l=p_u_= poad
)t
2\ _ 152
(p=)=3p

)* denotes complex conjugate.

5.5. The Growth or Decay Constant

TABLE 5.1. Results for Rightward and Leftward Traveling Sinusoidal Waves.

In practice, due to natural dissipative processes, freely propagating waves and oscillations in a chamber

will decay in space and time if there is no external source or energy. If there is an internal source of energy,
waves may be unstable, having amplitudes increasing in time. The basic measure of the growth or decay of
waves is the constant appearing in the exponent describing the sinusoidal spatial and temporal dependence
of small amplitude waves, the definitions (5.62). For ‘standing’ or ‘stationary’ waves in a chamber, the

wavelength, and hence wavenumber, is real and constant, but the frequency is complex:

and the variables of the motion have the behavior in time

w— w+ix

€

—i(wtia)t —

e—iwt at

(&

For the definition (5.76), e < 0 means that the waves decay.

(5.76)

(5.77)
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Normally in practice, }%‘ < 1, implying that the fractional change of amplitude is small in one cycle
of the oscillation. Thus when time averaging is carried out over one or a few cycles, e®* may be taken as
constant, and the average energy density computed with (5.72) and (5.73), is

) = ezt L [PL L oo (5.78)
4 | pa?
Hence we have the important interpretations which serve as the basis for measuring values of a:
_ 1 dpl
p| dt
1 dg)
~2(e) dt
The sign of « is a matter of definition and has no fundamental significance. Thus, if the time dependence is
taken to be e!(“ it then a < 0 means that waves are amplified.

(5.79)a,b

The formulas (5.79)a,b define local values of the growth constant. It is often more meaningful to know
the value for the entire volume of the system in question, found by using [(g)dV rather than (¢):

1 d

5.6. Boundary Conditions: Reflections from a Surface

In the absence of other sources, the linearized boundary condition on the pressure at a surface is the
first term of (5.1), here in dimensional form:

ou’
h-Vp =—p -1 5.81
n-Vp' =—p—- 1 (5.81)
The acoustic surface impedance z, is defined by
1

Yo = — (5.83)

Then for harmonic motions, p’ = pe~ ! we can rewrite (5.81) as

pw
n-Vp = —ip—p' = —ipwyap’ (5.84)

Za
The units of impedance are (pressure/velocity) = (density x velocity). Hence for the medium, the product pa
is called the characteristic impedance, having value 42 g/cm?-s. for air at standard conditions. Dimensionless

forms are defined as:

acoustic impedance ratio: Co = =
a
# (5.85)
acoustic admittance ratio: Na = C_
a
In general, impedance functions are complex; the real and imaginary parts are called:
Re(z,): acoustic resistance
. (5.86)
Im(z,): acoustic reactance
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From (5.82) and (5.83), the surface admittance is

and the dimensionless surface admittance ratio is
___pa*M'-h M)
A
where M) is the fluctuation of the Mach number normal to the surface.

(5.87)

If the surface is impermeable, the velocity at the surface is the velocity of the surface itself. However, if
the surface is permeable, or, as for a burning propellant, mass departs the surface, then the impedance and
admittance functions are defined in terms of the local velocity fluctuations presented? to the acoustic field,
no matter what their origin.

Quite generally then, the admittance function represents the physical response of processes at the surface.
It is of course an assumption that in response to an impressed pressure fluctuation, the fluctuation of velocity
normal to the surface is proportional to the pressure change. Alternative definitions of quantities representing
the acoustic boundary condition at a surface will arise when we consider special situations.

5.6.1. Reflections of Plane Waves at a Surface. Confinement of waves in a chamber to form modes
necessarily involves reflections at the boundary surfaces. In solid propellant rockets the processes causing
reflection are complicated, being responsible not only for confining the waves but also are the dominant
means for transferring energy to the oscillating field in the chamber. Even at inert surfaces, more than the
simple process of reflection is involved. Viscous stresses and heat conduction in the region adjacent to a
surface cause dissipation of energy, discussed in Section 5.9.

Here we assume that all activity at the surface can be represented by a complex impedance or admittance
function. The calculation follows that discussed by Morse and Ingard (1968). We consider reflection of a
planar wave, Figure 5.8, allowing for the possibility of unequal angles of incidence and reflection; for simplicity
we assume that there is no transmitted wave. The incident wave travels in the direction defined by the unit
vector k; and the wavenumber vector is

21 ~
k=—k (5.88)
A
We can represent the acoustic pressure and velocity in this plane wave by
p(r;t) = gi(k; - T — wt)

, k. « (5.89)a,b
it) = —=gilki T —wt
W(rit) = 2l — o)

Similar formulas hold for the reflected wave with k; replaced by k, lying in the direction defined by the
unit vector k,.. The representations are therefore those shown in Table 5.2

Because the frequency is the same for the incident and reflected waves, so are the magnitude of the
wavenumber:

w
kil = — = [k:[ =k (5.90)

3For burning propellants, care must be taken with definition of the surface at which the boundary condition is imposed.
Usually the velocity at the ‘edge’ of the combustion zone in the gas phase is the most convenient choice. Thus the admittance
presented to the acoustic field is not precisely that at the burning surface itself.
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=>

FIGURE 5.8. Reflection of a plane wave.

TABLE 5.2. Some Formulas for Incident and Reflected Plane Waves.

Incident Wave Reflected Wave
pi = 9i(&) pr = g(&)
w, = kiZgi(&) w, = kg (&)
& = kior—wt & = keor—wt
= k(xsinb; —ycosb;) — wt = k(zsinf, —ycosh,) — wt

Reflection is assumed to occur at y = 0. By definition of z,, the surface impedance, with the normal

velocity outward from the surface equal to u/y =u i = —u’ -0 where fi is the unit outward normal vector:
P’ _ gi(kx sin§; — cot) + g, (kx sin 0, — cot)
Za =\ = = ; ; (5.91)
uy/ o cos 0;g;(kxsind; — cot) — cos 0,.g, (kx sin 6, — cot)

In general z, is variable along the surface. Suppose that in fact z, is constant, independent of x. That can
be true if

b0 =0 (5.92)
9r(&) = Bgi(¢) '
Then (5.91) becomes
__1+p
wcosf = .
Zq COS paT— 3 (5.93)
and the complex reflection coefficient 3 is related to the surface impedance by
:zacosﬂfﬁd (5.94)

zq cos O + pa

This result is special because no transmitted wave has been accounted for. For example, if z, = pa—perfect
impedance matching exists at the interface—(5.93) gives § = 0 when 6 = 0, so there is no reflected wave.
That is true in one sense because in physical terms z, = pa means that the same gas exists in both sides of
the interface. Thus we are simply describing wave propagation in a continuous medium. On the other hand,

RTO-AG-AVT-039
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the physical picture treated here accommodates no transmitted wave, which means that when there is no
reflection, processes must exist at the interface providing perfect absorption.

Now suppose 6 # 0 but z, = pa. Then (5.93) gives 5 non-zero, i.e. partial absorption, and some of the
incident wave is reflected.

5.7. Wave Propagation in Tubes; Normal Modes

The simplest form of combustor is a straight tube, having generally non-uniform cross section and
not necessarily axisymmetric. Although the changes of cross section may be abrupt—even discontinuous—
experience has shown that good results may be obtained by assuming that the velocity fluctuations are
uniform at every section and parallel to the axis: the flow is treated as one-dimensional. The governing
equations are given in Annex B, equations (B.2)—(B.4) with no sources:

Conservation of mass: N + S—C%(ﬁu S.)=0 (5.95)
Conservation of momentum: ,588—1;/ + g—g =0 (5.96)
Conservation of energy: ﬁCvaa—rl; +]55ic%(u’50) =0 (5.97)
The wave equation for the pressure is:
2

5.7.1. Waves in Closed Tubes.
(a) Normal Modes for a Tube Closed at Both Ends.

Results for a tube closed at both ends not only contain many ideas basic to general oscillations in
chambers, but also are widely useful for practical applications. For a tube closed by rigid walls, the boundary
conditions at the ends are that the velocity must vanish. The momentum equation (5.96) then states that
acceleration and therefore the pressure gradient must vanish at the ends for all time:

op’

p 0 (x=0,L; allt) (5.99)

General linear motions within the tube can be constructed as superpositions of normal modes defined
in general by two properties:

i) sinusoidal variations in time

ii) the motion at any point bears always a fixed phase relative to that at any other point in the volume

Those conditions imply here that the pressure can be expressed as

P (z;t) = p(x)e 1okt (5.100)
where k is the complex wavenumber, related in general to the complex frequency by the formula
ak = w + i (5.101)

5-20 RTO-AG-AVT-039



SOME FUNDAMENTALS OF ACOUSTICS

Because there are no dissipative processes in this problem, o = 0 so the wavenumber is real. Substitution of
(5.100) in (5.98) with S, independent of z gives

d*p R
-3+ k*p=0 (5.102)

A solution to (5.102) satisfying (5.99) at z = 0 is p = A cos kz. To satisfy the condition at © = L, cos kL = 0.

Then k can assume only certain values k;, called characteristic or eigen values:*
ky :z% (1=0,1,2,-) (5.103)

Corresponding to each k; is a characteristic function, or eigenfunction,

l@ = A, cos(kx) (5.104)
b

For the problems we treat in this book, the motions represented by the k;, p;, and w; are usually called
normal modes, ak; = w; being the normal or modal frequency, and p;, 4; are the mode shapes of pressure
and velocity. All of these terms are used for two- and three-dimensional motions as well.

A normal mode is characterized by its frequency and the spatial distributions, or ‘shapes’ of all dependent
variables. The mode shape for the velocity is derived from the mode shape (5.104) by integrating the acoustic
momentum equation (5.96) written for 4;:

1dp k
—iak;u; = _jﬁ = TlﬁAl sin k;x
pdx p
Thus
iy = i A sin kyw (5.105)
pa
or, written as the Mach number of the mode,
~ 1
Afl = i—Al sin kll‘ (5106)
Y

(b) Normal Modes for a Tube Open at Both Ends.

In this case, the pressure is assumed fixed at the ends, for example because the tube is immersed in a
large reservoir having constant pressure, and p’ = 0. For isentropic motions, % = %% so p' = 2zp/ and the
continuity equation (5.95) is

8 / _28 /
a_i“L%a_laL: =0 (5.107)

Hence if p’ is fixed, the velocity gradient must vanish at the ends. Set p’ = Ae~" sin kx and substitute in

(5.107)
a . a2 ou’
igkAe_"akt sinkx = aT_u
P p Ox

4Qnly for I > 1 do we find wave modes. For | = 0, a qualitatively different mode exists for which the pressure is uniform
in the volume but pulsates at a frequency well below that for the fundamental wave mode. The velocity is practically zero and
the oscillator is sustained by some sort of external action. A prosaic example is the low frequency sound one can create by
blowing across the narrow opening at the neck of a bottle. In this case the mode is called the Helmholtz mode and the bottle
is behaving as a Helmholtz resonator. Corresponding very low frequency modes have been observed in both liquid and solid
rockets.

RTO-AG-AVT-039 5-21



z?

SOME FUNDAMENTALS OF ACOUSTICS ORGANIZATION

The left-hand side vanishes (and hence du'/Ox = 0) at = 0 for any k, but at © = L, we must have
sinkyL = 0. Hence k; = (2] + 1)% and the normal mode shape and frequency are

p

and the mode shape for the velocity is

SRS

N
L= M = i= A coskz (5.109)
¢!

(c¢) Normal Modes for a Tube Closed at One End and Open at the Other.

Reasoning similar to the above leads in this case to the normal modes when the tube is closed at z = 0:

P . _ 7Y =12
5 = Ajcos(kyz) <k:l = (20 + 1)2L) (l=1,2,---)
U 1

o —i—A;sin(kx)

a v

5.7.2. Normal Modes for Tubes Having Discontinuities of Cross-Sectional Area. Combus-
tors having discontinuous area distributions are commonly used in solid propellant rockets and in various
laboratory devices. Consider the example sketched in Figure 5.9. The boundary conditions at the ends are:

| x=fL

FIGURE 5.9. A uniform tube having a single discontinuity.

dp
v=0: 5 =0 (5.110)a,b
c=BL: p=0

Possible solutions in the regions to the left and right of the discontinuity are:

g:Acoskx (0<z<IL)
P (5.111)a,b

‘g:Bsink(ﬁL—m) (L<x<pL)

Note that k& = w/a is the same throughout the tube because the motion occurs everywhere at the same

frequency.

Completing the problem comes down to determining the conditions for matching the solutions. Two are
required:

i) continuity of pressure:

>

(L—¢)—p(L+e)] =0

3>

lim |

e—0
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which gives

AcoskL = Bsin(f — 1)kL (5.112)

ii) continuity of acoustic mass flow:

Integrate the wave equation (for harmonic motions) across the discontinuity,

L+e d d
p 20 &
—(S.— + k*S.p| dx =
'/{dgc(sder Sp}x 0
L—e

Because p is continuous, this relation becomes

i .
(9),.-(2), )

dr ) ;.. dx ), _.
Thus, with p constant and % ~ 1

(pscﬁ)LJ,-g - (ﬁscﬁ)L_e (5.113)

After substituting the waveforms (5.111)a,b, and using (5.112) we find the transcendental equation
for the modal wavenumbers:

lim

e—0

% tan kL = cot k(8 — 1)L (5.114)
2

This method of solving a problem with discontinuities is only approximate: a practical question is: how
large are the errors? To gain some idea of the errors incurred, tests at ambient temperature (‘cold flow tests’)
were carried out by Derr, Mathis and Brown (1974) for the geometry of a T-burner used for measuring the
combustion response of burning solid propellants. Results are shown in Figure 5.10. The measured values
of both the frequencies and the mode shapes are surprisingly well-predicted by this theory. The principal
reason is that the influence of a discontinuity is confined to a relatively small region near the change of area,
but the characteristics of the normal modes depend on the motion in the entire volume.

16F T T T T T ]

|
[

o b

1.5 ﬁ:‘c Do -

o - 02 04 08 08 il 1.0
DIMENSIONLESS GRAIN LENGTH, p

FIGURE 5.10. Comparison of experimental and theoretical results for normal frequencies in
a T-burner at ambient temperature. (Derr, Mathis and Brown, 1974).
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5.8. Normal Acoustic Modes and Frequencies for a Chamber

We now consider a volume of any shape enclosed by a rigid boundary and containing a uniform gas at
rest. Unsteady small amplitude motions therefore satisfy the linear wave equation (5.4)a and its boundary
condition (5.4)b requiring that the velocity normal to the boundary vanish at all times. By this definition
given in Section 5.7.1, normal modes are solutions to this problem, which oscillate sinusoidally in time and
have fixed phase relations throughout the volume. We assume the form® p’ = 1e~%%**_ The formal problem
is to find ¢ satisfying the scalar wave equation, also called the Helmholtz wave equation, with vanishing
normal gradient at the surface:

V2 + k=0

5.115)a,b
Vi =0 (5.115)a

There are many well-written books covering this problem and its solution, for example Hildebrand
(1952); Morse and Feshbach (1952); Morse and Ingard (1968); Matthews and Walker (1964); and Jeffries
and Jeffries (1946). The simplest approach is based on the method of separation of variables, applicable
for closed form solutions in thirteen coordinate systems; see, e.g., Morse and Feshbach (1952). In practical
applications to combustors of these exact solutions, only rectangular and circular cylindrical chambers are
important. Otherwise, apart from special cases such as that treated in Section 5.7.2, the normal modes and
frequencies must be found by numerical methods.

5.8.1. Normal Modes for Rectangular Chambers. The wave equation in Cartesian coordinates is

%Y 0% 0%

4+ — + k=0

Ox? * Oy? + 072 +EY
and 72 - Vi) must vanish on the six flat surfaces each perpendicular to a coordinated axis, Figure 5.11.
Applying the method of separation of variables leads to a solution having the form

¥ = Acos(kyx) cos(kyy) cos(k, z) (5.116)
and
k? =k + k) + k? (5.117)
The boundary conditions must be satisfied:
0
—¢ =0 on r=0,L
oz
oY a a
- _ = —= = 11
3y 0 on Yy ) (5.118)a,b,c
8_¢ =0 on z = —9 é
0z 272
Reasoning similar to that given in Section 5.7.1 leads to the values of the wavenumbers
T
ky =1—
L
m
ky = my (5.119)a,b,c
k.= nZ
c

5Consistent with the general character of this problem, we replace p by ), introducing a common notation for normal
modes. The velocity potential ® satisfies the same pair of equations (5.115)a,b, a result reflected by equation (5.31) which for
sinusoidal motions means that p’ and ® are proportional: p’ = iakp®.
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FiGURE 5.11. Rectangular chamber.

\VA
/

and the mode shapes are

T T a T b
Vimn = Apmn COS (lza:> cos mg <y + 5) cos nz <z + 5) (5.120)

The distributions of pressure therefore have the same form in all directions; of course the components
(5.119)a,b,c of the wave number can assume any of the allowed values, and the frequency is given by (5.117),
w = ak.

5.8.2. Normal Modes for a Circular Cylindrical Chamber. Let x be the polar axis (Figure 5.12)
and the wave equation in circular cylindrical coordinates is
10 ([ oy 1 0% 0% 9
S (P — L T P4k =0 5.121
ror <T8r>+r2892+8x2+ v ( )

The boundary condition requires that i - Vi vanish at the ends and on the lateral boundary:

8—1/) =0 rx=0,L
Oz (5.122)
o _ 0 =R
or "=
Application of the method of separation of variables leads to a solution of the form
Y(r,z,0;t) = A {E?I?Zg} cos kjxJ,, </€mn%> (5.123)

To satisfy the boundary conditions, the values of k; are integral multiples of /L as above and the k£, are
the roots of the derivative of the Bessel function:

dJm (Kmn)

= 12
e 0 (5.124)
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F1GURE 5.12. Circular cylindrical coordinates.

Figure 5.13 shows the lowest six modes in the transverse planes, and the identifying values of n and m. More
extended results are given in standard texts and collections of special functions, for example Jahnke and
Emde (1938).

m=0, n=0 m=0 n=! m=0, n=2

m=1, n=0 m=1, n=1 m=1, n=2

nmi=2, n=0

F1GURE 5.13. The first six transverse modes in a circular cylinder.

5.9. Viscous Losses at an Inert Surface

Dissipation of energy at inert surfaces is often a significant contribution to the losses of acoustic energy
in a combustion chamber. The problem of computing the losses offers a particularly good opportunity to
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illustrate different points of view. We will compute the losses in three different ways, all directly dependent
on characteristics of the acoustic boundary layer. To simplify the analysis we assume that the average tem-
perature is uniform throughout, having the value T,. Solutions for the velocity and temperature distributions
within the acoustic boundary layer are derived in Annex C, equations (C.14)a,b with the time dependence
included:

U (2, y;t) = de(2) [1 — e ] e ™!

[ : 5.125)a,b
Tl(mv Y; t) = Te(x) {1 — eiA\/ﬁy} e iwt ( )

Note that the local values of the velocity and temperature impressed on the layer are shown explicitly to
be functions of position along the surface. The idea is that the solution for the boundary layer flow applies
locally, but variations are induced along the surface by the distributions of velocity .(x) and temperature
Te(x) in the external flow. The simplest example is a cylindrical tube closed at both ends, Figure 5.14.
Shaded regions indicate the acoustic boundary layers.

e e = —-—

FIGURE 5.14. Acoustic velocity and temperature distributions for the fundamental mode
in a closed tube.

5.9.1. Dissipation of Energy Within the Acoustic Boundary Layer. The theory of the acoustic
boundary layer predicts a result, confirmed by experimental observations, that the influences of viscous
stresses are confined to a thin layer having thickness §. That is, §/R; < 1 in the range of audio frequencies
and for tubes having radius R; greater than a centimeter or so. With the formula (C.6), the ambient
properties of air given after equation (5.70), and Pr = Cpu/A. = 0.73 for air

1) 1 20 1 v 2
E:E@:mﬁ“m (5:126)

If f=9Hz, 6/R; ~ .06/R;, where R; is in centimeters, and the assertion is proved.

Consequently, we can treat the acoustic boundary layer on the lateral boundary of a circular cylinder
as if it were locally on a flat surface and the results of Annex C apply directly. We find the total rate of
energy dissipation in the tube by integrating the energy dissipation over the acoustic boundary layer, i.e.
over y > 0. Because the layer is thin and the non-uniformities of the flow properties decay exponentially
in y, we integrate over all y from zero to infinity. Application of the formula (C.19) for the rate of entropy
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production in this flow gives® (per unit volume)

AN\ 2
ds _ 1| (di\® A (dT
at ~ T, |["\ay) T2\ ay

Then the rate of energy dissipation per unit volume is

A\ 2
de - ds di\> A (dT
=T, === L = 5.127
dt dt “(d;,) 7 <dy> (5.127)
where either the real or the imaginary parts of 4 and T must be used. The time-averaged energy dissipation

per unit are of surface is therefore the time average of the integral of (5.127) over the entire acoustic boundary
layer:

2m oo AN 2
1 da\* A [dT
— | dt - = = d 5.128
27r./ / M(Cly) i (dy> / (5128)
0o 0
This formula gives
time-averaged energy 1/ K 1157
: () = - |2 421 |2 (5.129)
loss per unit surface area 2vp 2 al, Pr|bl,
where | |, means the maximum value in the oscillation and v = u/p is the kinematic viscosity.

Suppose that a standing wave is sustained in a tube, like the one sketched in Figure 5.14, by a speaker
or piston. If the source of waves is suddenly cut off, the amplitude of the standing wave system will decay
exponentially in time according to the discussion in Section 5.5, the decay constant being given by the
formula 5.80:

o= m% /<5>dV (5.130)

and [(e)dV is the total time-averaged energy in the tube. Here energy losses at the ends are ignored and
compute % [{e)dV as the integral of (¢), the formula (5.129) over the lateral area of the tube with

Pe = A cos(kix)

A
°~ 7a sin (ki) (5.131)a,b,c

2

A
(&) = s (nRiL)

>

The time-averaged total energy is computed with 5.78 and the total time-average rate of dissipation is

A fiyay = — L [ I g2
dt/ @ =—5-\ /% {1+ \/ﬁ}Al(thL) (5.132)

Hence we find

L W{ 7_1} (5.133)

a=——/— |1+
Ry 2 v Pr

Early measurements by several groups, e.g. Henderson and Donnelly (1962), gave a result roughly 8-10%
higher than that predicted by (5.133). That was a puzzling situation for about fifteen years. The analysis
for laminar flow—i.e. for sufficiently low amplitudes of the motion—should, one has reason to expect, be

SFor purposes of estimation, it is sufficiently accurate to take the value of v for combustion products to be the same as air
at standard conditions, v ~ 0.2 cm? /s, and to assume that the average temperature has everywhere its ambient value, Te.
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more accurate than that. Yet the experiments seem to have been done carefully and with good precision.
Eventually, however, it turned out that the experiments must be carried out with extreme care indeed. With
superb work exemplifying how carefully measurements must be made to obtain accurate results for acoustic
losses, Quinn, Colclough and Chandler (1976) determined « with an error of 0.069%(!) compared with
(5.133).

This example has wide implications in the field of combustion instabilities. Experiments designed to
confirm theoretical and analytical results must be carefully carried out with the greatest possible precision;
also, uncertainties in the results should be reported, a practice too often ignored. That requirement is a direct
consequence of the fact that acoustical motions, despite their ‘loudness’ to human ears, contain relatively
small amounts of energy and therefore are sensitive to small changes in the system containing them.

5.9.2. Another Way of Computing the Decay Constant. The second method of computing the
decay constant due to losses in the acoustic boundary layer is based on the method of spatial averaging. We
begin with the dimensional forms of the linearized equations including viscous stresses and heat conduction,
(5.1)—(5.3) but no external sources and mean flow and with the velocity zero at the boundary:

1 0% 1 0%
2./ = _ B A
Vir-mae =V a2 ot (5.134)a,b
A-Vp = -F i
and

G
R

UJ/ _ . /
o,V

+kp=nh
. R (5.135)a,b
Vp=—f
where
h=V -F— Tkﬂv q
a Gy (5.136)a,b
f=-0-%

The procedure described in Section 4.1 leads to the formula for the complex wavenumber for the n**
mode,

k=K% + w2 - { / hp,dV + # fwnds} (5.137)

where the volume integrals extend over the entire volume of the tube and the surface integral is computed
only over the lateral boundary because losses at the end are ignored. For the viscous effects in the boundary

layer,
- - dzﬁm ~
F=V 7, = <u e >z

dg 2T
V-g= -2 =-\——
1=y dy?

(5.138)a,b
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Substitution in the bracketed terms on the right-hand side of (5.137) with px and A. constant gives:

[(v5)vaav - 22 [V @yv.av

vV .

- # <n3') bndS
:_%%/(v-qwndv— /?-vwndv

Zk Rf T ' dQUx d'l;[}n
= — A d d
a C, l/)" Vo / dy? dx v

Because the viscous effects are significant only near the wall we can take the incremental element of volume
to be dV = dydS and write the integrals for 1, = ¥;(x) a purely longitudinal mode shape:

[ O v = #wds/ o o () as
’ 0
[ ar= s | Gha=— o (5),

The derivatives dT/ dy and da/dy are significant only within the thin acoustic boundary layer and become
negligible at the outer edge, y/é large. Now use the results (C.14)a,b to evaluate the derivatives at the

surface:

| / b dV + # fndS

(5.139)

ar\ VPt <d—“> — AL,
dy 0 dy 0
= (v =1\ pe i dpe
— AP (122 ) Pe =\ 2P
Yy )b pw dx

Inserting these results in (5.139) gives

/mpldv+ #fwlds <—C£)\ > {)\\/ T< ) #wlpedS}
(5.140)
[ (e o
K pw JI dx ]5 dac
where dS is the increment of the lateral surface, dS = (2rR;)dz.

The mode shapes for the acoustic pressure in a closed-closed uniform tube is (5.104). As the wave decays,
its shape is very little different from the normal mode shape at the same (or nearly) the frequency. Hence
we can replace p. by 1, = p.A; cos kjx, and we have the two integrals

L

%wlds = q A /cosQ(klx)da: =R LA
. (5.141)a,b
ﬂi <—> %dS = thlk?/sin(klx)dx =R, LA,
der \ p
0
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In (5.140), the values of k& and w are nearly” those for the normal mode; replacing k — k;, w — w; and
substituting (D.14)a-d in (5.140), we eventually find

/hwldV+ #fwlds - @( —4) (%thAl> (1 + %) (5.142)
With [¢2dV = 3(wR?L), (5.137) becomes

L ) .
K =k +p*—Azf¢?dV {/ hapdV + #mds}
g2, 1 ARp, VW y—1
= k2 + B oD { (1—i) (TR2ZLA) |2 : <1+ Jﬁ>} (5.143)
B kip (2 )
=k (1)?<E> 7(”@)

o= () () - (2

Because o < w, (5.143) is approximately

(2 (5) 0o (7))5 (0 2)

of which the imaginary part is

The left-hand side is

1 jvw v—1
a=——y/— |1+ 5.144
Ry 2 < \/Pr> ( )

which is exactly (5.133).

5.9.3. Still Another Way of Computing the Decay Constant. A third method for computing
the decay constant is instructive for several reasons. First it is a good illustration of the usefulness and at
least for the problem considered here, accuracy of the one-dimensional approximation. Second, it illustrates
an important consequence of the conservation of mass that has other applications. And third, related to
the second, the analysis answers a fundamental question about the problem at hand: how does it happen
that dissipation of energy taking place in the thin acoustic boundary layer is communicated to the waves
outside the boundary layer? That is, the wave fronts remain very nearly planar in transverse sections, yet
the amplitude decays in time due to processes confined to the thin layer near the wall. If the wave fronts (loci
of constant phase) did not remain planar, the frequency would change with time, behavior not observed.

We base the analysis on the equations for unsteady one-dimensional flow constructed in Annex B. For the
problem at hand, we imagine striking a control surface at the edge of the acoustic boundary layer, represented
by the dashed line in Figure 5.15. The unsteady flow field within the acoustic boundary layer, the shaded
region, is given by the results found in Annex C, repeated above as equations (5.125)a,b. Within the volume
outside the boundary layer, a steady planar acoustic field exists, sustained by the motion of one end, for
example. The velocity of the piston face need not be large and we may approximate the acoustic field by a
classical resonant mode. Thus in (5.125)a,b we set the frequency equal to w; and @.(v) is given by (5.105).
As explained in Annex C, the flow within the boundary layer is reasonably taken to be incompressible and
the equation for conservation of mass is

0, n 0v,
ox oy

=0 (5.145)

"These characterizations ‘not very different’ and ‘nearly’ can be rendered more rigorous in the context of the procedure
explained in Chapters 3 and 4. The point here is that including deviations of order M, from k; introduces corrections of order
M?2 which must be ignored for reasons explained in the places cited.

RTO-AG-AVT-039

SOME FUNDAMENTALS OF ACOUSTICS



SOME FUNDAMENTALS OF ACOUSTICS ORGANIZATION

FIGURE 5.15. Definition of the lateral control surface.

Consequently, a velocity normal to the wall is induced within the acoustic boundary layer because the
external velocity has non-zero gradient parallel to the wall. Chester (1964) has given the formula for v/, for
the linearized boundary layer theory used here:

o) = 7 (14228 [ Lt
vl (x,t) = W<1+\/ﬁ)/8xue(m’t T)\/F (5.146)
0

lth

For the standing acoustic wave, the {*" acoustic mode, from (5.105) we have

! . di A .
E)aue = ’“‘”td—ul — iaky =L cos ket (5.147)
x x Y
Substitution in (5.146) leads to the formula for v.:

vé:iﬂAl [ = < >coskl / _
T
B 0

W v v - 1 —zwn‘ 76 i€
=i—A;/— 1+ coskjx dr
¥ l\/;< \/Pr> SN, ) \/5

I 1 ) )
= %AM/ V;jl <1 + \/P_r> cos kyze” it = et (5.148)

We will need the real part of the spatial dependence:

1 | VW -1
v L + COS KT .
e l 2 /PT‘ l ( )

Now we focus attention on the acoustic field within the control surface shown in Figure 5.15. All
influences of the boundary layer are contained in the velocity by v, representing oscillatory pumping of fluid
through the surface. Hence we have a simple one-dimensional flow with distributed periodic sources of mass
momentum and energy at the boundary. There is, of course, no net flow through the boundary, the time
average of (5.148) being zero.

We begin with equations (B.3) and (B.5) written for constant cross-section area and no sources within
the volume. The linearized forms are

/
o t ax (5.150)a,b
L e =2,
ot " Por

5-32 RTO-AG-AVT-039



SOME FUNDAMENTALS OF ACOUSTICS

where F], and P}, are given by (B.14) and (B.16). With mean velocity zero and pure gas, those definitions
become

Fio=0
R 1 - B _ (5.151)a,b
Pl = 5 (hos — € + C,T) Q/(mg)’dq
The stagnation and ambient average temperatures are uniform and equal everywhere, so
BOS - éCl + C’UT = (Cp - Cv + C’U)T = CPT (5152)
With no average flow inward,
(m2) = v} (5.153)
where v/, is given here by (5.148). Hence (5.151)b is
,2 3
P = g— / puldg (5.154)

After combining (5.150)a,b in the usual way to form the wave equation, and substituting (5.152) and

(5.154), we have
% 1 0% 1o [ _,
- = =—<o 77 [ Predq
ox?2 a2 ot? S. Ot
For v/ uniform on the perimeter of a transverse plane, the integral on the right-hand side becomes pv., (27 R;)
and the last equation is

Fp 1P 2 O

o2 @2 o2 R ot

(5.155)

Owing to the perturbation caused by the fluctuating mass flow at the boundary, the national modes of
the chamber have frequencies w slightly different from w;, the classical values. Set p’ ~ p| = pA; cos kjz and
vl = bee” ™ in (5.155), giving

2
pA; cos(kjx)(—kP + k*) = —Eﬁ(—iwﬁg)
t

2wip (—1414) VW < fy—1>
~Nj— LA — [ 1+ — ) coskx
Ry 0 V2 v Pr :

Rearrangement leads to the formula for the complex wavenumber

N 2wip o vwy v—1
=k +1- — (1 5.156
RV <+m> (5150

The real part again gives the formula (5.133).

5.9.4. First Order Correction to the Mode Shape. In the model analyzed here, the essential idea
is that the influence of the acoustic boundary layer is exerted on the bulk flow by the motions induced
normal to the wall. A force of interaction is generated tangential to the wall, having the proper phase to
attenuate the waves in the tube. That process must alter the mode shape to a form consistent with the
first order correction to the acoustic eigenvalue. One way to determine the distortion is to compute the first
order correction to the zeroth order basis function by following the procedure described in Chapter 4. An
alternative approach is based directly on the differential equation for the pressure subject to the boundary
condition set by the radial ‘pumping’ velocity (5.149). The mass source term is the density times (5.149)
and the boundary condition on the radial gradient of the pressure mode shape is

R .

n-Vp=—iwppr - = iwpe?t = iw—w

; (5.157)
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where ¢ is given by (5.149). After substitution for @, this relation gives the explicit form

dp , A
d—f = (1—9)k*28p (5.158)

5= %g {1 + 7\/%” (5.159)

For axisymmetric motions in a circular cylindrical tube, the scalar wave equation for the pressure is

where

10 8]3 8 p 2 A
ror <Tar> o2 R (5.160)
with solution
p = Z Z A cos kpxJo(vpnT) (5.161)
where
v =k k2 (5.162)

The boundary condition (5.160) sets the permissible values of v, and hence the wavenumber k:

{%Jg(vmr)

There are an infinite number of the v,,, so that, for example, for the first longitudinal mode, the pressure
field is

= (1= )k*2B8Jo(vmRe) (5.163)
r=R.

= Cos < ) Z A Jo (o) (5.164)
For simplicity here, only the first term will be treated; v,, = v1 and in (5.163) the function Jy(v; R.) appears.

Now one expects that the corrections will be small, so k should not be very different from %,,, and the
expansion can be used

1
Jo(vir) = 1 — Z(ulr)2 (v1 — 0) (5.165)
Thus,
d 1
{%Jo(vﬂ“) n ~ _§U%Rc

and (5.163) is approximately
_—UlR = (1-i)k*?3 {1 — i (UlRC)ﬂ
If the second order term on the right-hand side is ignored, substitution of (5.162) gives
—%Rc(k2 — ki) = (1-i)k*?B
SO

2

v = (K — k) ~ — (1= k326 (5.166)
C

Again write k = (w — i) /ag with a < w on the left-hand side; because the second term on the right-hand

side represents a small correction, set k = w/ag. Equation (5.166) therefore gives approximately

w2 ow w1 2 2 N 8/2
(5) -5 =(2) —mu-a(z) o (5167
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from which the imaginary part is easily shown to be exactly 5.144 again.

But now the first term of (5.164), with (5.165) and (5.166), gives a formula for the distorted one-
dimensional (planar) pressure field:

1
D =~ cos 7TT:EJO(Ulr) ~ cos W—Lx 1- Z(k2 — k)2

It is easy to show, using the definition (5.159) of 3, that (5.166) is
2
(k2 — k2) = a—f(l —i)ag (5.168)
0

where o now stands for the attenuation coefficient (5.144) computed for purely one-dimensional waves, the
real part of (5.167). Because (1 —i)? = —2i, the distorted pressure field can be written

2
1+i <°"—O2“°> 7'2] (5.169)
a

0

. T
D A cos —
L

This pressure field is now to be used in the expression for w = 21[%{’, with » = R. (because the pressure
in that formula is the pressure impressed on the boundary layer):

R . 200 T [ wag 2 5
=—(1 —_— — |1 — | RZ 5.170
w (1414) - cos — +z<a8> : ( )

Finally, use this new result for the source term in the solution for the wavenumber associated with the
one-dimensional problem:

9 2
B2 =k - =0 (1) 1+¢(‘*’—‘§°> R (5.171)
ag g
The real and imaginary parts are
w 2 w1 2 20
— ) =— 1—-(1 — 5.172
() = () {-0r0%) 617
a=—(1-Qap (5.173)
where
waop 2
_ [ WX o
= < - Rc> (5.174)

Thus, as anticipated, the distortion of the plane wavefronts produces a reduction in the value of the
attenuation constant, which is in the right direction to give better agreement with experimental results. For
R.=5cm and f =500 Hz,

2
(27)(500) 9 9
= |—— (25 =278 x10
[ ox 107 (2 “0
and for ag = 20sec™!, ¢ ~ 30 x 10~7. The correction is therefore very small and cannot explain the
discrepancy between the predicted and observed values. Although only the first term in the series (5.164)
has been retained, it is unlikely that the last conclusion would be changed upon including further terms in
the series.

The preceding calculation illustrates two points: it is an example of determining the effect of a boundary
layer in its external driving flow, here a standing plane wave; and the result supports the idea that the
zeroth order basic functions really are close approximations, over most of the chamber, to the actual mode
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shapes. In this case, the small differences occur in a thin zone at the lateral boundary. The corrected mode
shape calculated here satisfies the actual boundary condition to first order. However, the zeroth order mode
shape not satisfying the correct boundary condition nevertheless yields the exact result for the first order
eigenvalue (the decay constant) when used in the perturbation-iteration procedure constructed in Chapter 4.

5.10. Propagation of Higher Modes in Tubes; Cut-off Frequencies

In Section 5.7 we constructed the normal longitudinal modes for tubes of finite length. For the cases
considered, the wavefronts are planar and the flow properties are always uniform over all transverse sections.
The pressure, for example, at a chosen location undergoes a perfect sinusoidal oscillation in time, having
maximum amplitude in time and bearing a fixed phase with respect to the pressure at any other location.
Those properties define such a normal mode as a stationary or standing wave.

A stationary wave may be regarded as the superposition or synthesis of two traveling waves progressing
in opposite directions. We may interpret that result in two ways: 1) the waves are confined to the tube and
suffer reflection at the ends, suffering a 180 degree phase change up each reflection and reversing its direction
of travel; or 2) two waves each infinitely long and traveling in opposite directions interfere destructively
at the locations of the ends of the tube so as to maintain the correct boundary conditions. The second
interpretation corresponds to the case for reflection of pulses worked out in Section 5.2.1 and illustrated in
Figure 5.2.

Either of those two interpretations suggest a question regarding propagation of plane waves in a tube.
What if, because of some sort of disturbance, the wave fronts are distorted? That is, suppose that the wave
fronts, while still perfectly plane, suffer some distortion so that the distribution of the flow properties are
not uniform in transverse sections. How then is propagation of that wave affected? Any such distortion can
be synthesized of two-dimensional normal modes in transverse planes superposed on a traveling wave. Hence
we assume the form for pressure wave traveling in the positive x-direction:

P (x,y, 2;t) = Acos(kyy) cos(k,z)e! k=) (5.175)
The frequency is unspecified, w = ak. This wave must satisfy the wave equation
82p/ N 82]?/ 82]9/ 1 82]?/
ox?  Oy? 022 a2 o2
Substitution of (5.175) produces the relation among the wavenumbers

k2 -kl -k +k =0

=0

and
ky = /K2 — (kg + k2) (5.176)

must be positive and real for propagation in the positive x-direction. The formulas (5.119)a,b,c give the two
transverse wavenumbers and (5.175) is

() - [+ ()] )

Consequently, if &, is to be real, the frequency of the wave must be larger than a critical value w,:

w > Wwe (5.178)

o=y (2T) 4 (B’ (5.179)

with
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The frequency w. is called a “cutoff frequency” for the following reason. Substitute (5.176) in (5.144):
i(L\/w2—w2r—w
p = By, 2)e (FVTeRet) (5.180)
If w < we, the exponential factor can be written
e Preiwt (5.181)

where the attenuation constant ( is

o (w<w) (5.182)

Two main conclusions follow from this calculation:

i) If m = n = 0, the waves are purely planar longitudinal (or axial) and w. = 0. That is, waves having
any frequency will propagate freely, with no attenuation, and can form standing waves in a tube of
finite length, closed or open.

i) If m,n # 0, the cut off frequency is finite and only waves having frequency greater than the cut
off frequency will propagate freely and under suitable conditions will form standing waves. Traveling
waves having the transverse structure specified by the given values of m and n will decay exponentially
in space, with attenuation constant 3 given by (5.150)a,b.

In practice, the existence of the phenomenon of ‘cutoff’ may arise if a chamber has slots or passages
extending outward. Suppose that the chamber possesses a normal mode having relatively low frequency
and a shape such that the amplitude of the pressure varies over the opening of the smaller passage. Then
that mode tends to force generation of waves having spatial structure in the cross section of the passage.
Therefore the cutoff frequency for oscillations in the passage is finite. If the frequency of the chamber mode
is less than that cutoff frequency, the excited waves will have amplitude decaying with distance into the
passage. Consequently, a pressure transducer placed at the far end of the passage will register a pressure
amplitude much less than that existing in the chamber at that location. If data are obtained only with
that transducer, then a misleading impression is obtained for the oscillating pressure in the main chamber.
To interpret the data correctly, it is clearly necessary to understand well both the nature of the possible
structure of the chamber modes and the phenomenon of cutoff frequency.

The decay of waves as they travel down a tube seems a strange result in view of the fact that no
dissipative processes have been accounted for. Resolution of this paradoxical result can be reached by
examining reflection and interference of waves traveling in directions not parallel to the axis of the tube. Off-
axis propagation is associated with the non-uniform structure of the higher order modes and the reflections
occur because of the boundary conditions set on the lateral surfaces. Morse and Ingard (1968) supply the
details of this interpretation.

5.11. The Impedance Tube

Perhaps the simplest yet most widely useful acoustical instrument is the impedance tube, known for
over one hundred years. Its true origin seems to have been lost. We follow Morse’s analysis (Morse 1948),
but the most efficient and effective method for obtaining data is probably that worked out by Baum (1980);
the references must be consulted for thorough discussions.

Figure 5.16 shows the essential features of the basic impedance tube. At one end is mounted the test
sample of which the impedance or admittance function is to be measured. The other end is fitted with a
piston or equivalent apparatus (e.g. a loudspeaker) whose frequency can be controlled. Measurements are
taken when the frequency is constant. The piston then causes (‘radiates’) waves having amplitude p_ to the
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left. If there are no distributed losses along the tube or its walls, a wave has constant amplitude and phase
between the piston and a thin region of transition at the face of the sample. In that thin region waves are

generated and propagate both to the left and the right.

.(L—‘,L‘\‘/'\
N D

P,

DRIVER

x=0 \\— TEST SAMPLE

FIGURE 5.16. The basic impedance tube.

When the system has reached a steady state of oscillation, the region outside the transition zone contains
a standing wave. The standing wave is the superposition of a wave p_ propagating to the left from the piston,
and a wave py propagating to the right, the net result of reflections from the sample and the transition region.
The phase and amplitude of the wave p, are different from those of wave p_ due to the action of the test
sample. We assume there is no mean flow, so with no distributed losses (or gains) of energy along the tube,
the steady waves are represented by the two amplitudes of pressure and velocity:

A

ﬁ— — Ae—ikx (CL) 4 = — e—ikw
Poao
. B .
~ kx ~ ikx
pyr = Be' c Uy = —
+ (c) ST
where k is a real wavenumber.
The total pressure and velocity oscillations are
. . . B .
= A —ikx B ik _ A —ikx = ikx
P e + be {e + Ae
= — A e—ik:x + B eikm — _ A |:e—ik:9c _
£oao Poao Poao
Define
d) = T + Z"/Tﬂo
and
B = —Ae*
so (5.184)a,b become
13 = A [efika: . ikz+2zp]
ﬁ, I A {efika: + 6ikm+2w}
Poao

On the face of the test sample at © = 0, the impedance is

p

1—e2

c= {QL_O = POt ey

Thus the phase 1 is related to the impedance by

o2V — 1 — z/poag
14+ z/poag

(b)

E eikm:|

(5.183)a—d

(5.184)a,b

(5.185)

(5.186)

(5.187)a,b

(5.188)

(5.189)
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Values of 1 may be inferred from measurements of the envelope of the modal structure along the axis
of the impedance tube; (5.187)a becomes

pla) = —Ae? [V — emhe=V] = 9 Ae¥ sin k(v + ik)
Write
b+ ika = m(a +i8) (5.190)
with
2z

a=qay and [=p[y+ 5y (5.191)

The magnitude of the pressure oscillation in the standing wave is

Ip| = 2AJe?|| sin kn(a + iB)| = 24e™ \/cosh2 o — cos? w3 (5.192)
Within this idealized picture of the pressure field, one needs only the maxima and minima of |p|:

1 3
Maxima: |plmae = 24" coshma @ [y + 2% — +—t—= -

A2 (5.193)a,b
Minima:  |p|min = 24" *Vcoshma—1 @ [y + QX =41,+2,...

A sketch of |p| is given in Figure 5.17

The real part of ¥, a = oy, may be found from the ratio of the maxima and minima,

Plmar _ ot ra (5.194)

x=0 Ax:?u’241

FIGURE 5.17. Sketch of |p| when distributed losses are ignored.

Values of 3, and hence the imaginary part of 1, are related to the locations of the maxima and minima.
From (5.193)b, the first minimum occurs at Sy + %mmm = 1 which gives

2
ﬁo =1- Xxmm (5195)

According to these results for the idealized impedance tube having no losses except at the test sample,
only three measurements (|p|maz, |Plmin, Tmin) are required to give 1 and hence the impedance at one
frequency. In practice, use of the impedance tube is considerably more complicated. Even when the sample
presents a well-defined surface to the acoustic field, the distributed losses cannot be ignored. Procedures for
taking them into account are well-known in the field; the experimental methods required to handle them
may become fairly involved. Baum (1980) has given a good discussion of the method he devised, perhaps
the most effective available.®

The impedance tube remains the best apparatus for determining the impedance function of an inert
surface. Efforts to adapt the method for measuring the impedance (or admittance) function of active surfaces

8This statement is based solely on the author’s experience with his students, many years ago.
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have not led to results useful for routine applications. The best example is probably Baum’s effort to measure
the admittance of a burning surface. Offering prospects of overcoming rather serious shortcomings of the
T-burner and other devices prospects, the impedance tube posed its own problems which have not been
overcome (Baum 1980). A short survey of applications of the impedance tube to measure the admittances
of gaseous injectors has been given in the article by Brown, Culick and Zinn included in the collection edited
by Boggs and Zinn (1978).
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CHAPTER6

Linear(Stability[oflCombustor Dynamics

All problems of unsteady motion in combustion systems can be divided into the two classes: linearized
and nonlinear. From the earliest discoveries of their transient behavior until the late 1950s, ‘combustion
instabilities’ implied small amplitude unsteady (and unwanted) motions growing out of a condition of linear
instability. Even with the expanding awareness that the nonlinear properties must be understood as well,
linear behavior always remained an essential part of understanding all aspects of combustion instabilities,
including the consequences of nonlinear processes.

The literature of linear combustion instabilities contains many papers dealing with special problems.
There seems often to be a tendency to regard the results as somehow disconnected. However, apparent
differences arise chiefly from the differences in the processes accounted for and in the choices of models for
those processes. So long as the problems are dominated by oscillating behavior in combustors, probably
most, if not practically all, of the results can be obtained in equivalent forms by suitable applications of the
methods explained here. That statement is not as outrageous as it may seem, following as it does from the
generality of the expansion procedures and the method of averaging covered in Chapter 4.

6.1. Historical Background of Linear Stability !

Among the earliest interpretations of combustion instabilities was the idea of unstable disturbances
having small amplitude. That idea lies behind the characterization of small oscillations and is commonly
assumed to explain the initial stage, and hence the origin, of an oscillation in a combustion chamber. In
fact it is a widely observed motion in solid rockets, but the cases in other systems are often not so clearly
defined. The latter are often regarded as ‘nonlinear’ in some sense. Of the wide range of possible behavior,
linear motions are most easily and rigorously described, and form the context within which the greater part
of understanding combustion instabilities has been developed. We will examine some important aspects of
nonlinear behavior in Chapter 7.

Although there were earlier considerations of oscillations in solid propellant rockets, the first analysis of a
combustion instability seems to be that worked out by Grad (1949). At the suggestion of E.W. Price (private
communication), Grad considered the problem of unsteady motions in a solid propellant rocket. Although he
did not ignore the average flow entirely, he managed to avoid treating the details of the velocity field within
the chamber away from the burning surface. He used an approximation to the mean flow based on a separate
analysis. Eventually Grad worked out simple formulas for perturbations of the wavenumber. However, the
calculations are difficult to follow and, so far as this writer knows, the results have never been checked against
observations. A natural result of the analysis is that high frequency oscillations are possible. Grad closed his
paper with the footnote that “high frequency oscillations have actually been observed recently in experiments
performed at Inyokern, California.” That place was the Naval Ordnance Test Station (NOTS) which became
the Naval Weapons Center (NWC) and is now the Naval Air Warfare Center (NAWC). Researchers at China

LA more thorough account of early developments of linear stability is given in Chapter 2.
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Lake have had remarkable influence on the fields of steady and unsteady combustion of solid propellants
continuously since the beginnings during World War II.

Grad’s analysis and interpretation of his results were largely ignored, perhaps because combustion insta-
bilities in such a well-developed form did not constitute a pressing problem and because accurate data were
lacking. Moreover, when troublesome instabilities were encountered in solid rockets, they were eliminated or
reduced by making changes in the system.? The situation changed markedly in the late 1950s. Apparently
the development of large motors was the main stimulus. The need to develop theoretical, computational,
and experimental methods then became clear. In the U.S. a very substantial effort grew, widespread but
well-coordinated. A particularly important outgrowth of the coordination was the organization that in 1963
became JANAF and subsequently the JANNAF (Joint Army/Navy/NASA/Air Force) Sub-Committee. Ap-
parently the initial efforts in JANAF were largely exerted by the solid rocket community, which we will tend
to first here.

In the period covering the late 1950s to the middle 1960s, the special ad hoc group, “The Technical Panel
on Solid Propellant Instability of Combustion”, accomplished much in urging and coordinating research on
instabilities in solid rockets. A useful collection of papers “Scientific Papers 1960-1963” produced by the
panel gives a quite complete coverage of work by the group which included participants from Canada and
Europe. The titles of the papers correctly suggest that they truly covered the field and set the agenda for
much of the research carried out in the following decades.

The dominant group in theoretical developments during this period was that at the Johns Hopkins Ap-
plied Physics (JHU) Laboratory, mainly McClure, Hart, Bird and Cantrell. Although they treated unsteady
erosive burning (McClure, Bird and Hart 1960b and McClure, Hart and Bird 1962), their results were not
extensive; the subject has still not advanced very far. That is practically the only nonlinear subject that
they treated deeply enough to obtain results, limited though they were. Thus, almost all the theoretical
work dealt with linear stability. One of their most important accomplishments—which may not seem so
impressive now—was to gain universal recognition of the admittance function of a burning surface as pos-
sibly the most important quantity to know accurately as an essential part of the basis for determining the
stability of a motor. That is a consequence of the thorough fashion in which the JHU group formulated the
general problem. In fact, that approach to the overall problem had considerable impact on the development
of the theoretical aspects as well as on the general understanding of the field.

A large boost was given activity in the field of instabilities in solid propellant rockets. when a problem
arose with the ballistic missile Minuteman II, an instability in the third stage (see Section 1.3). From its
first use in the late 1950s (Price and Sofferis 1958) the T-burner had become generally accepted as the
test device for giving data on the admittance or response function for a burning surface. The Minuteman
problem led to a great deal of effort based on the device in the late 1960s and in the 1970s. Many important
research programs devoted to the T-burner and to other subjects were sponsored by the Air Force Rocket
Propulsion Laboratory (AFRPL).? Simultaneously, work on all aspects of instabilities in solid rockets was
actively pursued at the Naval Weapons Center, China Lake. It was during this period that work was begun
to develop ‘standard stability prediction’ programs.

2E.W. Price (1992) has given the best historical account of oscillatory combustion in solid propellant rockets in the U.S.
from the beginning (c. 1948) to 1991. Apparently no comparable document exists for experiences in other countries although
there are scattered brief descriptions.

3The author is particularly indebted to AFRPL for supporting programs under which the method of nonlinear analysis
described in this book was largely developed. Much of the work, especially in the early stages, was accomplished at Hercules,
Inc. where the author served as consultant to a group headed by Dr. Merrill Beckstead. The methods were initiated largely
under the sponsorship of the Air Force and the Navy, especially with the encouragement and support of E.W. Price.
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The growth of understanding and theory of instabilities in liquid propellant rockets followed a path
virtually independent of the work on solid propellant rockets in the U.S.# After the early experimental work
reported by Gunder and Friant (1950), discussed also by Yachter (1950), and by Summerfield (1950) who first
used a time lag following the suggestion of von Karman, Crocco (1951)a, b developed the idea of the time lag
for low-frequency oscillations. ‘Low’ means here that the propagation of disturbances within the chamber
was ignored. Higher frequency instabilities, those which are close to normal acoustic modes of the chamber
being studied, were then investigated by Crocco and Cheng (1956). They treated only one-dimensional
motions in that work.

In his second paper referenced above, Crocco (1951)b essentially formulated the problem subsequently
analyzed at great length by the Princeton group, the last published paper on the subject apparently being
that by Zinn (1968). Figure 6.1 is a sketch of the situation. During the nearly two decades of work, the
method of analyzing the unsteady flow field changed considerably but the prescription of the unsteady
injection processes remained virtually unaltered, taking only two or three different forms. Because the
injection of mass is restricted to the planar interface at the head end, the ‘injector plane’, the influx of
material imposes a boundary condition on the flow of gases within the chamber. That condition is quite
simply related to the velocity or mass flux which, following Crocco, is expressed in terms of the time lag.
The reasoning has been summarized in Section 2.3.2, leading to a formula (2.88) for the source of mass wy
containing two unknown quantities, the time lag 7 and the ‘pressure index’ n:

wy = iy (1 - %) (6.1)

Injection % \—/
Concentrated at = — :
the Head End (m, u!) |5 N /'\
— Choked Nozzle
Uniform Flow (uy, my)
in the Chamber
(u', T, p")

FIGURE 6.1. Basic physical model of a liquid rocket used in the Princeton theoretical work
(1950-1968).

As explained in Section 2.3.2, this formula is used for the fluctuation of the mass source in the equation
for conservation of mass. When the equations are linearized and written in terms of complex quantities, the
real and imaginary parts of the equations effectively serve as two formal conditions determining n and 7 as
functions of the other variables in the problem.

The first extended theoretical account of linearized combustion instabilities was given in the book by
Crocco and Cheng (1956) partly covered in previous papers by the authors. For the most part, the work is
really a lengthy discussion and analysis of the linearized formulation of the situation sketched in Figure 6.1.
Because the governing equations are not spatially averaged, for simplicity only one-dimensional problems are
treated. The text contains an informative extended discussion of the time lag formulation and its linearized
form. Appendix B of the book is a calculation of the admittance for a choked nozzle, an elaboration of the
works by Tsien (1952) and Crocco (1953).

41 have been unable to locate any survey reports from the USSR during this or earlier times. See Natanzon (1999) for brief
mention of early work on instabilities in the Soviet Union, and for a good summary of the principal Russian work available,
including nonlinear analysis and experimental work. The recent book by Dranovsky (2006) covers test methods and results
very thoroughly, but contains no theory dealing with fundamental dynamical processes.
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In 1961 Culick (1961, 1963) worked out the first analysis of combustion instabilities using a Green’s
function and spatial averaging; the analysis was carried out for liquid rockets. That formulation allowed
easy handling of linear three-dimensional problems, requiring calculation of the corresponding admittance
function for the nozzle. More complete results for the admittance were later reported by Crocco and Sirignano
(1967). Three-dimensional oscillations with the approximations shown in Figure 6.1 were analyzed by Scala
(1955); Reardon (1961); Crocco, Reardon, and Harrje (1962); and Reardon, Crocco and Harrje (1963). The
latter two papers contain limited experimental results.

Probably the greatest motivation for working so diligently to develop theory and prediction methods
for solid rockets is the intrinsic limitation of single, short firing times. Thus, much effort has traditionally
been devoted to transient behavior, particularly the growth of the amplitude during an unstable firing. The
situation is quite different for liquid rockets, and especially for airbreathing systems that present opportunities
for relatively long controllable test runs. It is perhaps, therefore, understandable that less attention has been
paid to certain details of transient behavior in liquid-fueled systems.® An exception to that practice was
the early work by Crocco and co-workers, developed especially in the book written with Cheng. The text
was devoted almost entirely to linear unstable motions including transients, and had much useful influence
in the subject of instabilities in liquid rockets.® Subsequently there were many papers published on linear
instabilities in various systems.

In the 1980s there was renewed strong interest, both in the U.S. and in Europe, in small vehicles using
dump combustors as the basic internal configuration for ramjets. As a result, active research programs were
conducted to examine theoretical and experimental problems flowing largely from this simple configuration.
The kinds of problems considered were, however, somewhat different from most of those traditionally studied
as they were presented for solid and liquid rockets. Probably the most significant difference was that
largely nonlinear motions were important,” in respects not previously encountered in rocket engines. This
characteristic had the far-reaching consequence that computational fluid dynamics became an essential part
of progress. One of the first analyses using CFD was the interesting work by Jou and Menon (1986, 1990).
Now CFD is widely used to study internal flows, although its practical use is only in early development. The
subject is mentioned only briefly in this book.

Despite the rapid growth, broad applications, and truly fundamental importance of numerical methods
for internal flows, the approximate literal analysis of internal flows remains an extremely important basis for
understanding and designing propulsion systems. Together, this and the following chapter cover the most
important practical aspects of the analytical method developed in this book. All results obtained are based
on application of the method of spatial averaging.

6.2. Zero-Dimensional Instability of a Bulk Mode

Oscillations characterized by nearly uniform amplitude and phase in a chamber have arisen in practically
every type of combustion system. Because the pressure oscillation is nearly independent of position, the
velocity fluctuation is approximately zero. These oscillations occur at relatively low frequencies and are
often caused by processes confined to the surface of the chamber, or to openings permitting flow. The most
familiar related example is the sound produced when one blows past the opening of a bottle. In that case,
the term ‘Helmholtz mode’ is often used to identify the origin of the tone; in discussions of combustion
systems, one often finds the descriptive name ‘bulk mode’, and for solid propellant rockets the special name

51 believe that relatively less attention to the fine points of true transient behavior, while no doubt motivated by practical
concerns, is responsible for a tendency to acquire less understanding of the behavior of disturbances in liquid-fueled systems.

6As a personal note, the author is forever indebted to Professor Crocco, for that work motivated his thesis work (Culick
1960).

7An exception enjoying several useful applications was the elementary linear analysis by Culick and Rogers (1981), which
included a simple analysis of the choked inlet duct to determine its admittance function.
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‘L* instability’ is applied. It is the last we treat here in some detail, although in simplified form, to introduce
some of the basic ideas of computing linear instability.

Akiba and Tanno (1959) adapted the analysis by Crocco and Cheng (1956, Chapter 2) of a low frequency
instability in liquid rockets® to the corresponding problem in solid rockets. The main difference between
applications to the two classes of systems is in the models used for unsteady combustion. In the limit of
linear behavior there are really no basic distinctions, another example of the practical value to be gained
from studying systems other than that of immediate concern.

Although Akiba and Tanno apparently had no concern with particular problems in motors, Sehgal and
Strand (1964) worked at the Jet Propulsion Laboratory (later officially named JPL) and were involved with
development of motors for space vehicles. Because of operations at low pressures requiring lower structure
weights, L* instability became an important problem. The first published concern with the behavior, partic-
ularly its connection to intermittent extinction, was documented by Anderson, Strehlow, and Strand (1963).
While the subsequent analysis by Sehgal and Strand differed only in certain details from Akiba and Tanno’s,
their lasting contribution was the first comparison of theory and experiment, shown here in Figure 6.2. The
two theoretical lines arise from details of the analysis which produces two intersections of curves defined in
the specification of the boundary of the stable and unstable regions of operations. No reason was given that
one of the theoretical curves is favored by the experimental results. The definitions of the dimensionless
critical time constant (7). and characteristic chamber length L* are

=2
7
njcr cr “2
4 RT njljcr ——
I* KCD f( ) - 2n (63)

2

a

where & is the thermal diffusivity; cp is the discharge coefficient; T is the flame temperature; and a is the

constant in the linear burning rate law. Equation (6.3) therefore predicts quite well the behavior L* ~ p=2"
shown in Figure 6.2, prepared using the properties of the propellant tested, JP1-534.

The two analyses just mentioned differed mainly in their representations of unsteady burning of a
solid propellant. Akiba and Tanno drew on Green’s model (See Section 2.1.2), while Sehgal and Strand
worked out their own analysis of the combustion response, an incomplete® form of Denison and Baum’s
earlier approximate theory (Section 2.2.2). Both treatments followed Tsien’s lead in application of a form
of Nyquist’s theorem (Annex G and Chapter Nine) to study the stability of the system. Tsien used a
modification of the theorem suggested by Satche (1949) to handle an exponential necessarily accompanying
introduction of a (constant) time lag in the combustion process.!® Although neither treatment required a
time lag in the same way followed by Tsien, both used Satche’s modification of Nyquist’s theorem. That
is an unnecessary complication as Beckstead, Ryan, and Baer (1966) and the next paper by Coates, Cohen
and Harvill (1967) implicitly showed.

Following previous authors, Coates et al. began their analysis with the transfer function G,, for the
motor
dmyg G,

which follows directly from the block diagram drawn in Figure 6.3.

8The discussion by Crocco and Cheng is an extension and elaboration of the original paper by Tsien (1953), based on
essentially the same ideas. Tsien also proposed possible use of feedback control; see Chapter Nine.

90ne consequence of the incompleteness is failure to reach the correct limit for zero frequency; see equation (12) and
accompanying comment, in Coates et al. (1967).

10The analyses by Tsien; Crocco and Cheng; Akiba and Tanno; and by Sehgal and Strand were based on Laplace transforms,
applied, naturally, to linear problems. Hence the presence of a constant time lag 7 in the coupling between, for example, the
heat or mass sources, and the pressure fluctuations, produces exponentals, e~ 57, in the characteristic equation.
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FIGURE 6.2. L* versus chamber pressure, showing the stability limit for oscillations (Sehgal
and Strand 1964).
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FIGURE 6.3. Block diagram of the system, adapted from Figure 1 of Coates, Cohen, and
Harvill (1967).

The transfer function G, for the combustion dynamics is given by Denison and Baum’s result, (2.67)
here; G, is the transfer function for the chamber dynamics. For the model of the L* burner used in the
works cited, and explained in the next section, the equation for the unsteady chamber pressure is,

/ /

d/p P m
— (= £ - 6.5
7 dt< p) ST (6.5)
The Laplace transform is
P M
(1+ STc)—(,S) = ,(S) (6.6)
D m
SO
1
G, = 6.7
1+ s7, (6.7)
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Denison and Baum'’s result, (2.67), gives G, completing the basis for the calculation discussed by Coates,
Cohen, and Harvill. Figure 6.4 reproduces two results the authors found in support of their calculations.
The solid lines are computed from this result

1 172
L S (6.8)
L* kI2¢* (1n)er
where (7,,)en = (7.72/K)er. Beckstead (1965) obtained the data for Utah TF propellent.
0.4 T T
0.015 T T
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B O 7] Il 1
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(a) (b)

FIGURE 6.4. L* instability data for two propellants (a) Utah TF (University of Utah) and
(b) JPL-534 (Jet Propulsion Laboratory) (Coates, Cohen, and Harvill 1967).

Besides having very low frequencies and nearly uniform but sinusoidal (i.e., pulsating) pressure fields
when oscillations are excited, instabilities of the bulk mode often lead to intermittent unsteady behavior
commonly referred to as ‘chuffing.” Figure 6.5 shows both types of behavior leading to extinction of com-
bustion. Identifying the stability boundary unambiguously, given that loss of stability does not necessarily
mean growth of an oscillation out of noise, presents problems under these conditions. The difficulties are
both experimental and interpretive, treated at some length in the references. We will not discuss the subject
here except to note that whatever the precursor behavior, the limit of stability seems to define a sufficiently
narrow band of values, L* and pressure or burning rate, that a line is a reasonable approximation, Figures
6.2 and 6.4. Put simply, it makes sense to speak of the ‘L* stability limit.’

Chuffing was not a new phenomenon, discovered quite early as one aspect of L* instability. The earliest
written record seems to have been prepared by Crawford et al. (1945) although earlier informal reports have
been suggested on several occasions. Some early British experiences were discussed by Huffington (1954).
An indication of the problem’s practical persistence is conveyed by the session on “Nonacoustic Combustion
Instability” included in the ATAA Solid Propellant Rocket Conference, January 1964. FEisel et al. (1964)
reported results of tests with an L* burner and a very long ‘acoustic’ burner having adjustable length as
long as sixty (!) feet. Several records of chuffing at low frequency instabilities from the paper by Yount and
Angelus (1964) are reproduced in Figure 6.6 showing well the intermittent behavior sometimes observed.

Oberg (1968) addressed the problem displayed by Figure 6.5 which had led to the idea of ‘nonacoustic’
instabilities in contrast to ‘acoustic’ instabilities of the sort described in Chapter One. It was his correct
contention that ‘acoustic’ and ‘nonacoustic’ instabilities are in fact closely related. Of those working in the

RTO-AG-AVT-039

6-7



LINEAR STABILITY OF COMBUSTOR DYNAMICS

FIGURE 6.5. Two examples of natural cessation of L* instabilities (a), growth of oscillations
ending in extinction; (b) chuffing, leaking to extinction (Beckstead, Ryan, and Baer, 1966).

PRESSURE, PSI
- §
i
@

___._—"'I 1 SEC

(A} Development Maotor
(B) Small Experimental Motor

FIGURE 6.6. Five pressure records of chuffing (A) and low frequency instabilities (B) (Yount
and Angelus 1964).

field, he was first to recognize that an L* instability is the limit, as the frequency tends to zero, of the wave
or acoustical modes. Oberg showed the result explicitly for longitudinal motions; Culick (1968) subsequently
proved that the conclusion holds generally, with a calculation repeated here in Section 6.6.

A straightforward description of the bulk mode or L* instability is based on the assumption that the
frequency is so low that all processes respond essentially instantaneously. This requires that the travel time
of a small disturbance in the chamber, and in the nozzle, be much less than the period of the oscillation.
The pressure then remains sensibly uniform throughout and pulsates in time.

With this assumption, all variations in space are ignored, and in particular the conservation of momentum
need not be considered. Mainly one is concerned with the conservation of mass. Let Sy be the area of burning
surface Sy the area of the nozzle throat, V' the volume, and ¢* the usual characteristic velocity. The total
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mass of gas in the volume is pV at any instant; its rate of change must equal the difference between the rate
at which mass enters, and the rate at which it leaves,

d p
—(pV) =mSy — S;— 6.9
Lov) = mS, -5, L (69)
where m = p,r is the mass flux at the burning surface. The relation defining ¢* as the ratio of Sip to
a4l
the total mass flux out the nozzle ¢* = Syp/m = /RT/T, with I'? = 7<%> s strictly valid only in

steady flow (Altman et al. 1960). Its use here is justified by the assumption that the transit time of a fluid
element through the nozzle is much less than the period of oscillation. This is sometimes referred to as the
“zero-length” approximation to the time-dependent behavior of a nozzle. Note that (6.9) applies to any
geometry; it is not restricted to end burners.

We assume that the thermodynamic state of the gases is uniform in the chamber, and that combustion
occurs only in a thin zone near the propellant surface; residual combustion is ignored. Further, it is assumed
that the gases can be described by the equation of state for a perfect gas, p = pRT. Thus we have two
equations in three variables (p, p, T") because the mass flux from the surface m is assumed to be a function
of pressure only. The principle of conservation of energy provides a third relation, but it will be handled
shortly in a simplified manner.

Now we form a linearized problem in familiar fashion by writing p = p+ p’... etc. and by ignoring
squares and higher order terms. Then the linearized equation of state is
p/ p/ TI
e B 6.10
5T (6.10)
Similarly, equation (6.9) can be expanded as follows:
d p/ T/ m/ Stﬁ p/ C*/
W (Z - =) = sy = - 22 (E -5 6.11
Pra\s — T (mSe) 2 = \p e (6.11)
Because ¢* ~ /T, ¢* /¢* =T’ /2T and the last equation can be written
pv . d/p mSy | m' p  pVerd T 17’
A _(T) = | BT _E 22 _<_,) — (6.12)
Sip dt\p =B mo P Sip dt\T 2T

In steady flow, conservation of mass requires
mySy = Sip/c" (6.13)

and with the equation of state, we find the characteristic time 7,
pve: Ve L*e*

=———=""=r, 6.14
Sp S RT RT (6.14)
where the conventional definition of L* is

L*=V/S, (6.15)

Thus the equation for the pressure fluctuation is

dp m P d T’ 17

— () =— - — (= i 6.16
Tdt(p) m ;3+{Tdt(T>+2T} (6.16)

To simplify the discussion further, consider the extreme case in which the oscillations are so slow, and
mixing is so thorough, that the temperature is not only uniform in the chamber but also constant, so 7" = 0.

Then the last equation is
d /p m’
— (=) =—— 6.17
T dt ( ]5) m ( )

STSE
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With m = psr,m//m = r'/F, and if the burning always responded instantaneously to a change of
pressure, r ~ p", one could write

=0
Il
S
h~]) |’B\

(6.18)

and (6.17) would become

d/p p’
e—(=)]=n-1)= 6.19
K dt ( D > <n ) P ( )
The solution to this equation is immediate:

/ n—1
L_ (Zi_) e< £ >t (6.20)
p p/o
where (p'/p)o is the fluctuation at ¢ = 0. Thus, if n > 1, a small disturbance will grow without limit. This
is well-known behavior: motors using propellants with n close to unity are very sensitive to small changes
in pressure and if n is positive, the system is unstable. That is the first criterion established for stability if
combustion in a solid!! propellant rocket, found by Malina (Karman and Malina, 1940).

The relation (6.18) is valid only in the limit of very low frequencies. In general, the burning rate of

a propellant exposed to a sinusoidal pressure oscillation will vary sinusoidally also, but not in phase with

the pressure, as shown in Section 2.2.2, equation (2.66), for the simplest realistic case. That behavior is
represented by the response function Ry,

! /

m_ gV

p

m

r . ip/
- (R +iry)E (6.21)

The response function is a complex function of frequency, and can be written as

R, =R\ +iR\) = |R,|(cos ¢ + isin @) (6.22)
For harmonic motions,
]i: _ Pe—i(w+ia)t
p

= Petemiwt (6.23)

If the growth constant « is positive, then the oscillation is unstable and grows exponentially in time. In all
problems of linear stability, the principal task is to compute the growth constant. Substitution of (6.21) and
(6.23) into (6.17) leads to

ro(a+iw)P = [R{) +iRVIP — P (6.24)

The amplitude P is a common factor, and the real and imaginary parts of (6.20) give the two equations
Real Part aT, = R](f) -1 (6.25)
Imaginary Part WTe = Rz(f’) (6.26)

The response function is a fundamental quantity in all problems of combustion instability in solid propel-
lant rockets. It is a dynamical property of the propellant, summarizing all the linear behavior for unsteady-
burning. There is presently no way to calculate the response function for a real propellant. As we have
emphasized in Chapter 2, the most important current experimental problem is its measurement.

HWith only minor changes of definitions and interpretation, the same result follows for liquid or gaseous propellant rockets.
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-1F | —— Real Part
........... Imaginary part

3 . .
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FIGURE 6.7. Real and Imaginary parts of a simple response function (see the same result,
Figure 2.14).

Equation (6.25) shows that a sinusoidal oscillation is unstable if the real part of the response function

is greater than unity. The frequency of an unstable oscillation is then given by (6.26); obviously Rg) must
be positive for this relation to make sense.

There have been many attempts to compute the response function. Many of these actually produce
the same result,'? discussed in Section 2.2. The main feature is that the response function depends on two
parameters (called A and B) and is a function of the dimensionless frequency

_wr (6.27)

where £ is the thermal diffusivity of the propellant. The real and imaginary parts of R have the form shown
in Figure 6.7, a repeat of Figure 2.14. In this case, according to (6.26), a bulk-mode instability can occur
only for frequencies such that the dimensionless frequency is below the value )y at which R,(f’) passes through

zero. Let Q* be the value of Q at which Rl(f) =1, so @ = 0. Then a sinusoidal fluctuation is unstable if
lies in the range

"<Q<Q,. (6.28)
Equation (6.26) becomes

72\ wk 72 ;

S et — R®
(%)%= 0= (6.29)

On the stability boundary, when Q = Q*,
= K 7 *

7, = WR](D)(Q ) (6.30)

With 7 = ap”, and 7, = L*¢*/RT, this relation gives

kRT RY(Q*)7 1
“lee "o (6.31)

*

The group in brackets is almost independent of pressure, so equation (6.31) gives the result that on the
stability boundary, L* ~ p—2". This result has been verified by experimental results such as those given in
Figure 6.2 and 6.4.

121n the past 10-15 years, efforts have been reported to formulate more realistic forms. The broad characteristics and roles
of the real and imaginary parts of the response function remain. That’s a useful mnemonic aid. See, however, Section 6.9.3.
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For a # 0, (6.26) again gives (6.31), but with Q > Q*; dividing the two results one finds

(L*)a>0 _

(L*)aZO

The right-hand side is less than unity, so the unstable region in the plot L* versus p lies below the stability
boundary as shown in Figure 6.2.

R ()
R (@)

(%) (6.32)

Equations (6.25) and (6.26) for steady sinusoidal motions follow from the simple model of the combustion
dynamics used as the basis of equation (6.17) for general (but linear) time-dependent behavior. Experimental
results first confirmed that the picture was correct. For practical applications, and especially as part of the
effort to determine the transient behavior of burning propellants at higher frequencies, there was much
interest in obtaining firm results for the response function over broad frequency ranges. A reasonable
beginning is to determine the extent to which L* instability may be used to distinguished quantitative
differences among propellants.

To do so requires correlating data with the complex equation (6.24) which produces the two real equa-
tions (6.25) and (6.26). The two equations allow determination of two parameters. It is a lucky result that
Denison and Baum’s results (2.66) contains only two parameters, A and B. Then the question is—can A
and B be determined from experiments, uniquely for each propellant? Put another way, will the parameters
A and B define the dynamical behavior of solid propellants? To answer the question, we must determine
how well this theory explains observed behavior.

It is easy to solve (6.25) and (6.26) for A and B to find
Biha + Bahy

A=Q 6.33
aifs —azfh (6.33)
Oélhg + O[lhl
B=——7—-——+ 6.34
Brha + B2l (6.34)
where hy = 14 a7, hs = wr, and
a1 = hg(l — )\7") —+ hl)\z
Qo = hl(l — )\r) — hz)\z
B = (hy — m)Ar — B Ay (6.35)a,b,c,d
B2 = (ha —n)A\i + hiA,
function A of dimensionless frequency was defined by equation (2.26)a,b;
A= 1+ L[+ 1602)02 4117
3 {1+ 550+ o ) (6.36)a,b
Ai =5 [(1+160%)12 —1]

Equations (6.25) and (6.26) with Denison and Baum’s result for R}, define the two families of curves
drawn in Figure 6.7 for a = 0, the only condition for which data are available. Acceptable results must
have A > 0 (by definition of A) and must also lie to the left of the line for intrinsic stability.'> Evidently
Denison and Baum’s result may represent the dynamics of A-35 (A=14, B=0.8) but not those of A-13.
Possible reasons for the difference have not yet been explained. The two propellants had the same oxidizer
particle size distribution and differed by only 1% in the amounts by mass. A-13 had 24% by mass of PBAN
binder; A-35 contained 25% of an estane type of polyurethane binder. One might guess that the difference
in dynamical behavior suggested by Figure 6.8 is related to the different binders, but details are lacking.

13The term “intrinsic stability” refers to unlimited growth of a disturbance in the burning rate which is dependent only
on the dynamics of the propellant and which occurs without an external disturbance.
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FIGURE 6.8. The L*-chart for determining the parameters A and B. Data for the propel-
lants A-13 and A-35 lie in the indicated regions. (Beckstead and Culick 1971).

6.3. A Formal Solution to the Problem of Linear Stability

By ‘solution’ we mean here formulas for calculating the amplitudes 7, (t) of modes retained in the
expansion for the pressure field, p/(r,t) = pXn, (t)Y, (r). The amplitudes satisfy the oscillator wave equations
(4.36) with N replaced by n:

dnp

dt?
where F stands for the generalized ‘force’ associated with the exercise of control; and F,, is the spatial
average of that part (sometimes called the “projection” on the basis function ) of the internal processes
affecting the motion of the n'" oscillator, given by (4.30):14

+winy, = F, + FS (n=1,2,...) (6.37)

=2
B frwnav+ froash  -re) (6.39)
and

E? = / Y2V (6.39)

Here we will suppress F¢ because we are concerned only with the internal behavior of the system.'® In
general, the F,, contain contributions associated with the motions of oscillators other than the nt"—i.e., the
modes are coupled. For analysis of linear stability we are justified in ignoring that coupling, for reasons
given by Culick (1997). Each F,, is a linear function of the amplitude and velocity of the oscillator, having

141n this chapter and subsequently we will often indicate integration over volume by single integral signs, as here, to avoid
unnecessary use of [[f.

15The functions F and P implicitly contain all effects of control; the generality of subsequent calculations is therefore not
reduced by removing Ff.
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the form
F, = F', + Fg% (n=1,2,...) (6.40)

where the F7 and F are constants, depending only on the mode.

With these assumptions, the oscillator equations (6.37) are the uncoupled set

d*n 2 dn

dt; —ng—:+(w3—Fg) m=0 (n=1,2,...) (6.41)
Because the equations are uncoupled, the normal modes v, for the corresponding classical acoustic problem
are also the normal modes for the linear problem of combustor dynamics. The general problem of determining
linear stability has therefore come down to the problem of determining the stability of the normal modes.
In the usual fashion we assume sinusoidal time dependence with complex frequency Q (Q = ak below):

Ma(t) = Hpe” ™ (n=1,2,...) (6.42)
Equation (6.41) gives the quadratic equation for €2,,:
Q* +iFIQ — (w2 — F) =0 (6.43)

having solution

1_. 1 1 2\ 2
— g FM U U

n

where we take the (4) sign on the radical to give a positive real frequency. Hence the amplitudes are
Mo (t) = e FitemionV/1=C% (6.45)
with the definition
1 N2
(o =—\/Fil + 1 <FJZ) (6.46)
The n'" mode is stable of
F1<0 (6.47)

That is, the coefficient of 7),, in the expression for F,, must be negative for the nt" mode to be stable. That
formal condition means that the n*” mode has positive damping.

According to the methods of Fourier analysis, an arbitrary disturbance at some initial time (say ¢ = 0)
in the chamber can be synthesized of the normal modes. The time-evolution of the disturbance is therefore
determined by the 7, (¢). In particular, an arbitrary disturbance in a combustor is stable if (and only if) all
of the normal modes are stable and we arrive at the general result for the linear stability of a combustor:

(i) Write the linearized function for the force acting on the n'* oscillator (spatially averaged acoustic
mode) in the form

Fn = F n P
i+ Fl—

(ii) Then any initial disturbance in a combustor is stable if and only if all the F7 are negative:

Linear Stability <= F7 <0 (all n)
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The preceding calculation, and its conclusion, illustrate further a point first made in Chapter 3: We have
found a means of computing the linear stability of a combustor without knowing the actual linear motions
themselves. The complex frequency (6.44) is in fact the frequency for the actual linear modes including
the influences of all the processes accounted for. But calculation of the F and F? with the formula
(6.38) requires knowledge only of the unperturbed normal modes—their frequencies w,, and shapes 1, (r).
The formal statement of this property is that the eigenvalues (€2,) to any order in the relevant expansion
parameter (here M, := u defined in Chapter 3) can be computed knowing the eigenfunctions (¢/,,) only to
one less order. The eigenvalues €2, are here given to first order in the Mach number of the average flow
but only the unperturbed classical eigenfunctions 1, are required. This is the basic characteristic of the
expansion procedures with spatial averaging that makes the method devised here so useful in practice, as we
have emphasized in Chapter 4; examples of this important result are widespread in the field of combustion
instabilities generally, but may be found especially in the literature for solid rockets.

6.4. An Alternative Calculation of Linear Stability

An equivalent calculation of the result for linear stability makes direct use of the formula for the wavenum-
ber. Write B o
Nn = ﬁne—zakt : Fn — Fne—zakt
and substitute in (6.37) with F¢ ignored to find (ak)? = (ak,)? — F},/fi,, or

n

1 /4 L
(ak)? = (akn)* - o (F,S” + z‘F,S”) (6.48)
where ()" and ()@ identify real and imaginary parts. With'® ak = w + ia, this formula is
1 /- .o
w? +i(20w) — o = w2 — " (FT(LT) + iF,g”)

Because a and F), are first order in the expansion parameter and terms of higher order must be dropped!”,
we ignore a? with respect to w?. Then the real and imaginary parts of the last equation give

w?=w? — ALFT(LT)

L (6.49)a,b

__ L s
@ 2wy, "

where w has been set equal to w,, in the right-hand sides to ensure that higher order terms are not retained.
Now take the square root of the first equation and again drop higher order terms to find
1 B
2wy, Tn
1 B

- 2wy Ty

w = wp

(6.50)a,b

The system is unstable if ﬁ',(f) is negative, so « is positive. This condition is essentially a generalized form
of Rayleigh’s Criterion discussed further in Section 6.6.

After higher order terms are dropped from (6.44), the real and imaginary parts of Q = ak = w + i« are

, 2em (6.51)a,b
S — ]
(6% B n

16Thus a > 0 for instability: e~ i@kt = ¢—i(wHia)t — p—iwteat which grows without limit in time when o > 0.
17Recall remarks in Chapters 3 and 4.

RTO-AG-AVT-039 6-15



= %§

LINEAR STABILITY OF COMBUSTOR DYNAMICS OREANIZATION

Comparison of (6.50)a,b and (6.51)a,b gives the connections between the two representations of the forcing
function:

io(r)
F = F”
Tin
(i) (6.52)a,b
. 1 Fy'
=
" Wn Tn

Generally F;, will contain several processes, each of which will depend linearly on 7,, and d—gtﬂ, and appears
additively in F},. Hence, formulas corresponding to (6.52)a,b apply to each of the individual processes. They
are often useful, if only for checking correctness, in detailed calculations.

6.5. Linear Stability with a Heat Source and Motion of the Boundary

As a first approximation to problems of combustion instabilities it is useful to ignore all processes
involving interactions between the unsteady and steady fields, and focus attention on the two generic causes
of instabilities: time-dependent energy addition and motions of the boundary. With suitable interpretation
the second may represent the influence of unsteady combustion of a solid propellant. Then in dimensional
variables the linearized pressure and momentum equations (3.46)d and (3.46)b, and the boundary condition
(3.57)b on the pressure fluctuations are

op’ _ ’ R .,
N +pV-u' = c. Q (6.53)
ou’ ,
0 =0 6.54
P o + Vp (6.54)
!
A-vp = —ﬁaa—l; h (6.55)
Now form the wave equation as in Section 3.4, so the problem is governed by the two equations
1 82p/
2./ = —_ h
VP - o (6.56)a,b
n-Vp' =—f
where
ho LR
a? C, 0Ot (6.57)a,b
Fo _ou’ a
~ ot

The expansion procedure and application of spatial averaging leads to the explicit oscillator equations

(4.36):
d*n, a’ 1 R OQ o’

As a simple example, consider the one-dimensional problem of waves excited in a tube fitted with a
piston, Figure 6.9, and with distributed heat addition provided, say, by an electrically heated coil. Only
longitudinal modes are considered, and

1
by, = cos(kpx) kn=mn E? = §SCL (6.59)

T
L b
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FIGURE 6.9. A tube with distributed heat addition and an oscillating piston to drive waves.

where S, = mR? is the cross-section area of the tube. We ignore any average motion in the tube, and suppose
that the average thermodynamic properties are maintained constant and uniform by suitable steady heat
losses through the walls of the tube. The heat addition and motion of the piston are sinusoidal, having
phases ¢¢g and ¢, with respect to pressure oscillations:

O = ‘Q - ’e—i(akt-&-qﬁQ)
(@) o (6.60)a,b
) 5 = ] e b0
Hence for use in h and f:
o 04 4 .
@ = —iak ‘Q(m)‘ e iaktt+eq)
ot (6.61)a,b

3] L
g (w, - ) = —iak [iy| e~ (akt+ou)

With 7, = f,e " substitution in the oscillator equations (6.58) leads to
a’ 1 R
[—(ak)* + w2] Hn = _I%% {_EC’_U(_MI{:) / cos(knx)

—ipak # cos(kpz)|i,le ™ dS’}

After some rearrangement, and setting ak = w + ia, we find

Q(x)‘ e e dv

)

ey

-2 (z
o a 1 R /
= _— —8S. n
(w+ia)? = w? +i(w +ia) P5.L) Z0. cos(kpx) "

+ S ‘ P| 7l¢u

Tin

Because |Q| and |ii,| are small perturbations we can write this equation to first order in small quantities:

L
) ~ Q) il
w? +i(20w) = W2 + iw,— oL C%/cos(kn:r) o 6%¢de+p(—12%ez¢udaz
0
Take the real and imaginary parts to find
L “
2 [ 1 f QW) i
2 2 n ~2 |Up|
w” =w, + ——< — | cos(kpx sin podx + pa sin ¢y,
oL\ O, (kn) " qdz +pa -
. (6.62)a,b
L .
1 R/o(k)Q(x))o¢d+2|p| .
a=—<¢ — [ cos(kpx cos T+ pa COS ¢y,
0
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Internal feedback, and hence a condition for instability, exists if either or both of |Q| and |Gp| depend
on the fluctuating pressure (or velocity). For example, set

|Q‘ = QOﬁnwn = C]oﬁn cos kpx

(6.63)a,b
|ip| = uoiin
and (6.62)a becomes
w? = w? + 2w, (Agosin ¢q + Bugsin ¢,,)
where
1 R vy
=50, : B = 7 (6.64)

To first order in small quantities we find the results for the frequency and decay or growth constant:

w = Wy, + Aqo sin ¢ + Bug sin ¢,
orm e I (6.65)a,b
a = Aqo cos pg + Bug cos ¢y,

Remarks:

(i) The n'* mode is unstable if Agg cos ¢ + Bug cos ¢y, > 0.
(il) If 0 < ¢y < 5 then a necessary condition for instability is 0 < ¢ < 3.

(iif) Instability of the n‘* mode is encouraged if |Q(z)| cos k,x is larger, i.e., if the heat addition is greater
where the mode shape of the pressure takes its largest values, an example of Rayleigh’s Criterion.

It is important also to notice that due to the spatial averaging, one cannot distinguish among the ultimate
effects of volumetric and surface processes. There is an equivalence of the influences of the various processes,
their importance in respect to position within the chamber being dominated by their location relative to the
mode shapes. That characteristic has far-reaching consequences in applications to combustion chambers.

6.6. Rayleigh’s Criterion and Linear Stability

As part of his research on the excitation of acoustic waves by heat addition'® in chambers, Lord Rayleigh
(1878, 1945) formulated the following explanation for the production of tones in a Rijke tube:

“If heat be periodically communicated to, and abstracted from, a mass of air
vibrating (for example) in a cylinder bounded by a piston, the effect produced
will depend upon the phase of the vibration at which the transfer of heat takes
place. If heat be given to the air at the moment of greatest condensation, or be
taken from it at the moment of greatest rarefaction, the vibration is encouraged.
On the other hand, if heat be given at the moment of greatest rarefaction, or
abstracted at the moment of greatest condensation, the vibration is discouraged.”

That paragraph has become probably the most widely cited ‘explanation’ for the presence of combustion
instabilities generally. For easy reference, the explanation has long been referred to as “Rayleigh’s Criterion.”

It is important to realize that Rayleigh addressed only the conditions under which unsteady heat addition
‘encourages’ oscillations, i.e., is a destabilizing influence. Other processes, stabilizing or destabilizing, are

18 The literature in the 19t* century included many works on ‘singing flames’ which also formed part of the background
for Rayleigh’s Criterion. It was only in the late 20t" century that the close basic connections between the behavior of ‘singing
flames’ and the Rijke tube were understood.
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neither excluded nor included, and there is certainly no implication that satisfaction of the criterion is either
a necessary or a sufficient condition for instability to exist. Several published examples exist of quantitative
realizations of the criterion (Putnam and Dennis 1953, Putnam 1971; Chu 1956a; Chu 1956b; Zinn 1986;
Culick 1987, 1992). The purpose of this section is to establish a generalized form of Rayleigh’s Criterion by
using the analysis based on spatial averaging, and to show the equivalence of Rayleigh’s Criterion and the
principle of linear stability.

The main idea is that a positive change of the time-averaged energy of a modal oscillator in a cycle
of oscillation is exactly equivalent to the principle of linear instability, that the growth constant should be
positive for a motion to be unstable. To establish the connection we use the oscillator equations,

d*ny, 2
gz T Wnln = (6.66)
The instantaneous energy'® of the n'" oscillator is
1
u = 2 (2 + i) (6.67)

and the change of energy in one cycle is the integral over one period of the rate at which work is done by
the force F,:

t+7y
Ae, = / Fo(# )i ()t (6.68)
T
Under the integral, F;, and 7, must be real quantities; here we use the real parts of both functions,
Mo = ﬁne_iakt — |ﬁn|€_iakt

f i b1 —i(a - . 6.69)a,b
F, = Fne—zakt — |Fn‘e—z(akt+¢F) — ‘Fn| (COS br + isin ¢F> e —lakt ( )

We measure all phases with respect to the pressure, so 7, is real and, being the maximum amplitude, is
positive. Substitution in the oscillator equations gives

1 E,
k= 22 (W?L - T)
n

of which the real and imaginary parts are to first order in small quantities:

F, E,
wQZwTZL—Re — :wTQL— —|cosop
Tin n
R . (6.70)a,b
-1 F, -1 | F,| .
a, =—1Im| — = — | sin¢p
2wy, Tn 2wn | Ty,

The oscillator’s motion is stable if «;, is negative (see Footnote 9), i.e. if the imaginary part of E), is positive.

Also for use in (6.68) we have

i = =] e~ = aklale T FHE) iy e (5
S0
Re(1y,) = wy || cos (wnt + g) = —wp|7n| sinwpt (6.71)
The real part of F,, is
Re(F,) = |F,| cos (wnt + ¢p) = |Fy| {cos wnt cos pp — sinwytsin ¢} (6.72)

19¢,, is not the energy of the n*" acoustic mode, which is given by the integral of (5.72) over the volume of the chamber.
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FIGURE 6.10. The Caltech dump combustor.

Hence the right-hand side of (6.68) is
t+7n t+7n

. 1
Ag, = / Re(Fy,)Re(n,)dt = w|F,| / {sin2 wpt'singp — Esin2wnt’ cos¢p} dt’

- ~ 1 Tn .
=l 2 sin
Substitution of (6.33)b leads to the formula
Ae,, = 270 Wn | |? (6.73)

which establishes the desired connection between Rayleigh’s Criterion and linear stability.

Remarks:

(i) Positive a,, (the system is linearly unstable) implies that the average energy of the oscillator increases,
and vice-versa.

(ii) Rayleigh’s original criterion is equivalent to the principle of linear instability if only heat exchange
is accounted for and is neither a necessary nor a sufficient condition for existence of a combustion
instability.

(iii) The extended form (6.73) of Rayleigh’s Criterion is exactly equivalent to the principle of linear
instability, all linear processes being accounted for.

Putnam (1971) has made the most extensive use of Rayleigh’s Criterion in practical situations. His book
and papers give many examples of applying the Criterion as an aid to making changes of design to avoid
oscillations generated by heat release, particularly in power generation and heating systems.

In the past fifteen years many groups have been making direct observations on laboratory systems to
check the validity of the Criterion’s implications. The key step is based on the assumption that radiation by
certain intermediate species in hydrocarbon reactions (CH and OH are the most common identifiers) can be
interpreted as a measure of the rate of chemical reactions taking place and hence of the rate at which energy
is released. Simultaneous measurements are made of the spatial distribution of radiation in a system, and of
the pressure oscillations. The results then allow at least a qualitative assessment of the extent to which the
oscillations are being driven by the energy released in the combustion field, or whether other mechanisms
may be active and important. It is an important method with many useful applications. However, there
are serious matters of interpretation, e.g., due to poorly known rates of collisional de-activation of radiating
species. Measurements of time-dependent energy release is an active research topic.

6-20

RTO-AG-AVT-039



LINEAR STABILITY OF COMBUSTOR DYNAMICS

RADIATION —

-"'-v
e
G BEQ

Fd WEAK OSGILLATIONS
- < NO DRIVING BY -
- HEAT ADDITION

STROMG OSCILLATIONS
- WITH DRIVING BY *
HEAT ADDITION

1 1
00 0.4 08 1.2 16
z (in)

FIGURE 6.11. Experimental confirmation of Rayleigh’s Criterion. Data obtained from
chemiluminescence of OH (Sterling and Zukoski, 1991).

It seems that the first report of simultaneous measurements of pressure and radiation allowing confirma-
tion of Rayleigh’s Criterion appeared in a Ph.D. thesis (Sterling, 1987; Sterling and Zukoski, 1991). Figure
6.10 is a sketch of the dump combustor used as the test device, and Figure 6.11 shows the main result. The
integral of AE over the volume of the chamber (here the integral over the length is equivalent) is a measure
of the severity of oscillations. For the case shown in the lower portion of the figure, the integral of AE over
the length is clearly positive, consistent with the observed presence of oscillations.

6.7. Some Results for Linear Stability in Three Dimensions

The term ‘stability of motions’ has several meanings for flows in combustion chambers, including:

(i) the stability of laminar steady flow when viscous and inertial properties of the medium dominate,
leading to formation of large vortices or to turbulence, a field of distributed vorticity if the steady
flow is unstable;

(ii) the stability of shear layers, commonly producing large scale vortex motions when a shear layer is
unstable;

(iii) the stability of laminar flame fronts, responsible for one source of turbulent combustion when fronts
are unstable;

(iv) the stability of small disturbances which, when the compressibility and inertia of the medium dominate
the motions, can develop into acoustic waves.
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In terms of the modes of motion mentioned in Section 3.1 and discussed further in Section 3.3, the phe-
nomena (i)—(iii) are classified as waves of vorticity and the fourth comprises acoustic waves which, depending
on the physical situation, may possess or generate vorticity as well. The perturbations must in some sense
be small, as we have stressed with examples we examined in Chapter 2 and already in the present chapter.
Even these ‘small’ perturbations produce realistic and useful results. According to remarks we made in
connection with the derivation of the formalism in Chapter 3, the results derived there are general; further
progress depends on modelling and more explicit calculations.

We discuss in the following section results for motions that are ‘one-dimensional’, an approximation
that holds a special position in fluid mechanics generally for two reasons: It is often a surprisingly accurate
approximation; and solution to a one-dimensional problem is enormously simpler than its three—dimensional
counterpart. This has been a particularly productive approach to analyzing combustion instabilities. While
it might seem logical to cover the simpler analysis first, we believe that some of the special aspects of the
subject are more readily understood by working out the three-dimensional results first. As ‘special aspects’
we have in mind especially the contributions of ‘flow-turning’ and ‘pumping’ associated with flow at or
through lateral surfaces of a combustion chamber. Those phenomena will be treated in a more rigorous
fashion using the proper three-dimensional formalism in Sections 6.9 and 6.12 which accommodate vorticity,
the true physical origin of both flow-turning and pumping. In his work, Flandro (1995 and later works) has
been careful to emphasize this connection.

6.7.1. Linear Stability of Three-Dimensional Motions. The formulas (6.14)a,b are general, re-
stricted only by the approximations used in formulating the analytical framework. Hence the problem of
obtaining results specific to any given problem apparently comes down to finding explicit forms for F)! and
F, by evaluating the integrals defining F,, equation (6.38). Section 3.3 and Annex A contain details forming
the functions h and f given to second order, defined by (3.62)a,b. Here we need only the linear parts, i.e.
terms of order ¢ and of order pe in the expansions.

While the use of dimensionless variables is virtually a practical necessary for systematic development
of the formal expansions in Chapters 3 and 4, there are certain advantages here in working with primitive
dimensional variables. According to the results of Section 6.3, we know everything about linear stability
once we know the driving force F), in the system of oscillator equations. To make the procedure as clear as
possible, we repeat some of the results and display some details where it seems helpful. The nonlinear wave
equation and its boundary condition are (D.3)a,b:

2./ iaQP/ _
a2 oz (6.74)a,b
n-Vp' =—f
The linear parts of (D.4)a,b are
o 10 =, 10¥
h—*pV'{[u]}1+?a{[p]}1+V~3" T2 6750
ou’ (6.75)a,
f=pgr-a+ph-{uh -5 0

where
{[u}p=p@@ Vu' +u'- Vo)
{lplh =a-Vp +9p'V-a

Expansion of the pressure fluctuation in normal modes is the representation we use for the zeroth order
approximation to the pressure field,

(6.76)a,b

M
Pt) = P im(t)m(r) (6.77)
m=0
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]\4.()

u'(r,t) = R, Vi) (r) (6.78)
After spatial averaging has been carried out, the system of oscillator equations is (4.36),
d277n 2
72 + wy,nn = Fy, (6.79)
with the definition (4.32)
aQ - ap
F, = Bz {/ hn,dV + #ffz/)n,dS} (6.80)
We write the linear contributions to Fj,
a’ 1 ou’ o
F, = _]% {p[l + =1+ # o AndS / F . Vi,dV — wndv} (6.81)

and from Annex D, equations (D.10)a,b:

I = /(ﬁ-Vu’ +u' - Vi) - Vi,dV
(6.82)a,b

0
I, = 8t/(fypv a+a-Vp ),dV

With use of two vector identities, I; can be re-written
Ilz/V ) - VippdV — /u x V x 1) - Vap,dV — /(ﬁxqu’)-andV
The first integral can be put in the more convenient form
/ V(i) Vi,dV = # u' )V, - fdS — / ')V, dV = k2 / (- u),dV

because on the boundary surface Vi), is everywhere parallel to the surface, so Vi, -n = 0. Hence I; is
more simply

I =k /(ﬁ “u ) dV — /(u’ x V x ) - Vip,dV — /(ﬁ x Vxu') - Vi,dV (6.83)
and the ‘force’ acting on the n'” oscillator is

=2
o= {MQ/(ﬁ-u'mdv—p/(u'xVxﬁmxvxu’)-vwndv

+i2/( 'v--+--v’)wdv+#la—w-‘wds (6.84)

/
- /3" VpdV — a—12 o7 z/)ndV}

This form can be simplified further since within the linear approximation, we take u’ and p’ equal to
their unperturbed acoustic values in the volume integrals in F},?%; for harmonic motions the u!” terms of

(6.77) and (6.78) are

p/ _ ﬁe*’i(lknt —_ ﬁﬁnwnefi&knt
; . , 6.85)a,b
u/ — ﬁe—zaknt - a ’f/nv'@[]ne_zaknt ( )
Ykn

20In the surface integral, du’/ot - fi is a non-zero perturbation because u’ is not given by the classical acoustic value at
the surface. For example, this term could represent the influence of motions of a loudspeaker set in a wall. Thus we correctly
set u/ = tie*@nt and i is left to be specified according to the desired boundary condition.
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Then F = Fe—iakt P = Pe—iakt [ — [ c—idkt and 6.84 becomes
9
. a

1 1
F =5 — (—ipa Z [ (a- _ i+ i . Vv
n nnﬁE3< ipaky) {7 Q/(u Vihn )P dV iz t/(Wn x Vxa+axVxVi,) Vid

+7% (VnV -0+ L. Vb )by dV + #i : fu/)ndS}
pa vy Tin

&2 A kn T
+— F -Vi,dV —i— | P, dV
pE; . a.
The integrand of the second integral vanishes because the first term in the parentheses is perpendicular to

V4, and in the second, V x V,, = 0. From the definition of the speed of sound, vp/pa> = 1 and the
amplitude of the force is

. a2 2 f i
F, = ﬁnl%(iﬁdkn) {; /(ﬁ V) ndV + /w,%v -adV + ﬂi : fwnds}
" . " 6.86
. a’ F Ky P (6.86)
=5 — -V, —i——1, | dV
pEZ | |0 a fn
Use the identity
1
(B V)i = 5 [V (@v7) =03V -1
and combine terms to write £}, in the form
. a> } 1 -1
By = s (ipahy) {# [i A+ -a- ﬁ@/}n} ndS + 1= /wiv : ﬁdV}
PEZ I L g Yo 6.7
a2 F k, P (6.87)
+7]n — / - vwn — 1 A_wn av
E2 ) | a

Four remarks are important:

(i) The mean flow field may be rotational (V x @ # 0) and time-averaged sources of mass are accommo-
dated (V-4 #0).

(ii) With the iterative procedure discussed in Chapters 3 and 4, the substitutions of classical acoustic
mode shapes are required in the right-hand side, except in the surface integral where the correct
boundary condition on the velocity must be used:

/ ’ 1 dn,

p/ = p:; = 137771,(t)7/)n(r) ;=10 = W?vwn (688)

(iii) The calculations in Section 4.6 have shown that to first order in the average Mach number, the
unsteady field may also be rotational. However, the greatest influences of rotationality have not been
included here. Those are represented by two terms associated with behavior at a burning surface,
discussed in Sections 6.9 and 6.12. There are also some important effects associated with vorticity,
contained in the terms Igo and I,o. They have been dropped from (6.87), but they will be discussed
later in Sections 6.12 and 7.4.

(iv) The processes of ‘pumping’ and ‘flow-turning’ are implied by these results, but are obtained only
after considerable further calculations discussed in Sections 6.9 and 6.12. The integrals containing F
and P are central in this respect, containing pieces related to production of vorticity. See the last
remark in the introduction to this section. It’s true that there is a bit of ‘after-the-fact’ flavor here,
but that is within the spirit of the construction of 6.79 and 6.87. These do not, and are not intended
to, constitute a ‘theory’ based on first principles. To give ' and P’ specific forms for particular
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processes, requires using special results calculated independently of the apparatus constructed here,
namely those found by Flandro (1995)a. The required computations have not been done.

Now we follow the procedure explained in Section 4.1 to find the formula for the complex wavenumber.
For linear harmonic motions (6.37) and (6.48) give

i
'2 2 n
Bk = —lﬁn (6.89)

Substitution of (6.87) in (6.89) gives
R g2 = it {# Pu-ﬁ—kﬁ-ﬁwn} wndS—i—(v—l)/in-ﬁdV}

n }”
1 /
pEn

This formula is actually quite general due to the functions F and ﬁ), which have not been assigned specific
forms, for reasons examined in Section 6.7; at least two important processes, ‘flow-turning’ and ‘pumping’
are not shown explicitly.

. ) (6.90)
T ity
Tn a Mn

dav

Let the right-hand side be denoted by iK so (6.90) is
k2 — k2 =iK =iK") + K®

Because k = (w +ia)/a and k,, is real, this equation can be expanded to give

2 2 2 ,
(@) - (3) +i (2%) - (“’T") = iK™ — g (6.91)
a a a a
All parts of the right-hand side of (6.90) written in dimensionless form are of first order in the Mach number
of the mean flow. Hence the last equation shows that a? is of second order and can be ignored. Similarly,
the real part is of the same order, so w differs from w,, by terms of first order and

2 2 _
(2) - () =(CE-=2)(E+2)~ (5-22) (=) +o@r) (6.92)
a a a a a a a a a

Thus, for use in (6.90), k% — k2 ~ (w — w,) (2w, /a?) + i(2w,a/a?) 50 w — w, = %K(“ and a = %K(i).
With these approximations, and K" K() replaced by their explicit forms, (6.91) leads to the formulas for
w — wp and a:
F(r) ko P
a Tn

av (6.93)

_ n
n

1 a® a2
—Wn = S5 -1 ndS i ——
WP # P4 2ompE2 /

1 ()
o= gz {5 avn @ ez as+ -1 [ aav)
AL L (6.94)
_2wan,%/ Vet R

With slight rearrangement, the formulas (6.90), (6.93) and (6.94) have been given as (86)—(88) by Culick
and Yang (1992)%!

21Here, with p’ = pe~ %@t and ak = w + ia, e 10kt = ete—iWt gtability requires a < 0, i.e. a must be negative.
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Both w—w,, and «a are sums of contributions from the various processes accounted for. Most importantly,
the formula for the growth constant has the form

o = (a>combustion + (a)meanﬁow/acoustics + (a)nozzle
+ (a)particles + (a)injectionsystem (695)

+ (a)irlertsurfaces + -

By suitable interpretation of the first two integrals in (6.93), the first three pieces of o are given explicitly;

the last three are generated by the terms involving SA-'(Z) and P and hence cannot be written explicitly at
this point.

For most combustion systems, the six contributions shown explictly seem to cover practically all dy-
namical behavior, with the exception of two surface contributions mentioned in note (iv) above. Those are
fundamentally important in solid rockets; see Section 6.9. Interactions of the oscillations with turbulence
may also be significant but that subject remains essentially undeveloped; no results have been reported for
the effects of turbulence on instabilities in full-scale systems. Descriptions of some major contributions to
(6.95) are given in Section 6.6.

That the growth constant representing the difference between gains and losses of acoustic energy has
the form (6.95) for a linear system has long been known (McClure et al. 1960). At least implicitly, (6.95)
has been a part of all considerations of combustion instabilities. However, extensive data giving good
quantitative results for the transient growth of oscillations have been obtained only for solid propellant
rockets and related laboratory devices. Despite the widespread attention to the problem in liquid rockets
(see, for example, Crocco and Cheng 1956, Crocco 1965 and Harrje and Reardon 1972), including theoretical
predictions, and observations of stability boundaries, little experimental data exists for the values of « itself
under conditions of true linear instability. The same can be said of other liquid and gas-fueled systems:
Emphasis in most treatments has been on the stability boundary where a = 0.

When « is negative (i.e.,small disturbances decay) its value may be regarded as a measure of the stability
margin of the system. During development of the liquid rockets for the Apollo vehicle, an experimental
method for assessing the stability margin was worked out, based on measurement of the decay of disturbances
following injection of a small explosive charge (Harrje and Reardon 1972, Chapters 9 and 10). There seem to
be no reports of efforts to determine the values of the various contributions to the decay constants determined
in those tests. The same may be said of the very extensive experimental work carried out in Russia over
many years (Dranovsky 2006).

There may be other reasons for those conclusions but the main one seems to be due to an intrinsic
difference in the nature of the systems. A liquid or gas-fueled system can be tested repeatedly, so as a practical
matter, improvement of the dynamical behavior can be pursued on a trial-and-error basis. Development of
the F-1 engine (Oefelein and Yang 1993) is perhaps the outstanding example. The processes responsible for
the instabilities are so complicated that theory and experiments directed to understanding the mechanisms
in detail would have been expensive, time-consuming and perhaps even impossible to complete successfully
with the tools available forty years ago.

In contrast, no solid rocket can be retested without repeating the expensive process of cleaning and
preparing the motor case and nozzle; manufacturing propellant; loading the motor; and allowing the material
to cure. Moreover, there is likely no control of the firing. Hence, practically from the beginnings of solid
rocketry, attention has been paid to time-dependent behavior during tests. When linear stability theory
became available, it was natural to develop sufficiently good instrumentation and methods of data processing
to obtain accurate values for a and its constituent parts. In recent years, great efforts have been expended on
measurement and interpretation of the growth constant for many solid rockets and under many experimental
conditions.
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The growth constant has a useful quantitative interpretation. With the definition

—iwt jat

—iakt _ pAefi(uH»ioz)t _ ]36 e ,

p'(r,t) = p(r)e

we find the ratio of values of two peaks of the oscillation at a fixed location, occurring at times ¢; and
to =t1 +mT =t + m27/w.

—iw(ti+m3T) jats

ol _ e e .
|p/1|peak e—iwt1 paty ’
because e~ 2™ = cos m27 + isinm2m = £1. Hence the peak value is e times larger when m2na/w = 1, or
w
@ e’

Hence, f/a is the number of cycles required for the peak value of the pressure oscillation to increase by e (or
decrease by 1/e if @ < 0). This interpretation suggests the potential practical value of measuring transient
growths and decay. Normally, many tens or perhaps hundreds of cycles are required for e-folding of the peak
values. That is the best and most convincing evidence for the essential assumption on which the analysis
is based, that perturbations of the acoustic field are ‘small’, implying « and w — w,,, equations (6.93) and
(6.94) are both small compared with w.

6.7.2. The Admittance and Response Functions for a Burning Surface. The term G- 1i in the
surface integral, equation (6.90), arises from the part pdu/0t - i1 of f, equation (6.38). Although -4 =0
is required for the basis functions used here, it is allowed to be non-zero in f to account for motion of the
surface in the actual problem; in other words, it is a perturbation. In general, the boundary surface is
not rigid. At burning surfaces, the unsteady combustion process produces fluctuations of burning rate, and
hence velocity, of the order of the average Mach number. A model of the processes involved and calculation
of the fluctuations have been discussed in Section 2.2. The response function R, defined for the fluctuation
of mass flux, by the relation (2.4), is given in its simplest form as equation (2.52).

It is a convention in classical acoustics, that has become standard practice in the subject of this book,
to replace fluctuations of the velocity at the boundary by admittance functions. The idea is that if a small
pressure fluctuation is imposed on a boundary, the surface will move, at a velocity proportional, in first
approximation, to the pressure fluctuation. In solid rockets, there are chiefly three classes of boundaries:
inert impermeable surfaces; burning surfaces; and areas through which flow may pass, mainly the exhaust
nozzle. Most other systems contain only the first and third types.

No exposed surface in a solid rocket chamber is truly inert, but erosion of insulation material is slow
compared with combustion rates. Thus, we may consider the material to be inert as a good first approxima-
tion. In that case, there is negligible motion of the surface, and the acoustic field is influenced primarily by
viscous effects confined to an acoustic boundary layer, treated in the following section.

Burning surfaces and regions of flow through the boundary may be treated together. From the definition

of mass flux, my = —psu - 0, and with the perfect-gas law, we have
N ATS .
=2 _aa="+Lu.q (6.98)
Ps Ts

where subscript s denotes the value at the surface. The minus sign appears on @ - i because 0 is positive
outward but @ and my, are positive inward (i.e., into the chamber). The quantity AT} represents the difference
between the actual temperature change T and the isentropic temperature fluctuation associated with the
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pressure disturbance:

AT, =T, — 110, (6.99)
v D

With vp = pa?, and p/p = Hnthn, (6.98) can be solved for the combination appearing in the first integral of

(6.90):

7 AT& n
nln( ), + (0 )Yy = (% —a- nT) f—n (6.100)

Analysis of the unsteady response of a burning surface produces most directly results for fluctuations of
the mass flux my, whereas measurements provide directly the combination on the left-hand side of (6.100).
Hence, two functions have been introduced in the literatur