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Foreword 

Propulsion systems, which are one of the priority activities of the Applied Vehicle Technology Panel of 
NATO’s Research and Technology Organisation, are frequently confronted by unexpected and unsteady 
behaviors known by the generic name of “combustion instabilities”. Many solid propellant rockets, liquid 
propellant engines, ramjets and main or reheat combustors of turbojets have been affected by these types 
of problems during development. Combustion instabilities were identified at the start of the 1950s as an 
endemic disease and were then the subject of research aimed at understanding their origins, explaining 
how they developed and, eventually, predicting their levels. The researchers were very quickly convinced 
of the difficulty of the problem, which is essentially due to two factors: firstly, the difficulty of taking 
detailed measurements of the internal flow in engines, because of the extremely severe physical conditions 
inside them, and secondly, the close coupling between numerous unsteady mechanisms related to fluid 
mechanics, combustion, two-phase flows, etc. The work done on this subject in the United States has had 
a profound influence in all Western countries and I had the good fortune, when I was asked to study the 
question for the French Armament Procurement Agency (DGA), to meet Professors Fred Culick and  
Ed Price, then later Professor Gary Flandro and other US Navy, US Air Force and NASA specialists. 
These contacts were determining factors for the direction of French work. 

Today, Professor Fred Culick proposes a summary entitled “Unsteady Motion in Combustors for 
Propulsion Systems” in the form of an AGARDograph. There are very few scientists in the world who 
have accumulated such in-depth expertise and experience on the subject and the RTO should be grateful to 
Professor Fred Culick for having put all this acquired knowledge at the service of NATO’s technological 
research. An attentive reading of the document prepared reveals that it is a truly comprehensive survey,  
in the literal sense of the word. What Professor Fred Culick has done is to put several decades of research 
into an understandable form, thus endowing the work with a true encyclopaedic nature, both by the variety 
of situations examined and by the abundance and exhaustiveness of the references used. Due to his great 
teaching ability, Professor Fred Culick has also been able to conduct a quite weighty mathematical 
analysis with thoroughness and accuracy and to establish the indispensable link between observations 
made on engines and predictions arrived at by calculation. Furthermore, if only one of the work’s qualities 
had to be pointed out, I, for my part, would opt for Professor Fred Culick’s exceptional ability to give 
physical meaning to the equations. 

I therefore think that the AGARDograph prepared by Professor Fred Culick is bound to become a 
worldwide reference on the difficult but always topical subject of combustion instabilities. 

 

Dr. Paul KUENTZMANN 
ONERA, France 

Former PEP/AGARD member 
Former AVT/RTO member 

RTB member 
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Avant-propos 

Les systèmes propulsifs, qui constituent l’une des priorités des activités de la Commission Applied 
Vehicle Technology de la Research and Technology Organisation de l’OTAN, sont fréquemment 
confrontés à des comportements instationnaires imprévus connus sous le nom générique « d’instabilités de 
combustion ». De nombreux moteurs-fusées à propergol solide, moteurs-fusées à ergols liquides, 
statoréacteurs, foyers principaux ou de rechauffe de turboréacteurs ont connu ce type de problème en 
cours de développement. Identifiées au début des années 50 comme une maladie endémique, les 
instabilités de combustion ont dès lors fait l’objet de recherches pour en comprendre l’origine, en 
expliquer le développement et, à terme, en prévoir les niveaux. Les chercheurs ont été très tôt convaincus 
de la difficulté du problème, qui tient pour l’essentiel à deux aspects : d’une part, à la difficulté de réaliser 
des mesures détaillées de l’écoulement dans les moteurs, en raison des conditions physiques très sévères 
qui y règnent, et, d’autre part, du fait du couplage étroit de nombreux mécanismes instationnaires relevant 
de la mécanique des fluides, de la combustion, des écoulements diphasiques, etc. Les travaux conduits sur 
ce thème aux Etats-Unis ont imprégné tous les pays occidentaux et j’ai eu la chance, lorsque j’ai été 
chargé d’étudier la question pour la DGA française, de rencontrer les Professeurs Fred Culick et Ed Price, 
puis ultérieurement le Professeur Gary Frandro et d’autres spécialistes de l’US Navy, de l’US Air Force et 
de la NASA. Ces contacts ont été déterminants pour orienter les travaux français. 

Le Professeur Fred Culick propose aujourd’hui sous la forme d’un AGARDograph une synthèse intitulée 
« Unsteady Motions in Combustion Chambers for Propulsion Systems ». Il existe très peu de scientifiques 
au monde qui aient accumulé une expertise et un expérience aussi approfondies sur le sujet et la RTO doit 
être reconnaissante au Professeur Fred Culick d’avoir mis tout cet acquis au service des recherches 
technologiques de l’OTAN. Une lecture attentive montre que le document préparé constitue une véritable 
Somme, au sens littéral du mot. Le Professeur Fred Culick a en effet remis en forme plusieurs décennies 
de recherche, conférant ainsi à l’ouvrage un caractère véritablement encyclopédique, tant par la variété des 
situations examinées que par l’abondance et l’exhaustivité des références utilisées. Grâce à un sens 
pédagogique aigu, le Professeur Fred Culick a également su conduire, avec rigueur et précision, une 
analyse mathématique assez lourde, et établir la liaison indispensable entre observations réalisées sur 
moteurs et prévisions de calcul. Si en outre une seule qualité de l’ouvrage devait être mise en exergue, 
j’opterais pour ma part sur l’exceptionnelle faculté du Professeur Fred Culick à donner un sens physique 
aux équations. 

L’AGARDograph préparé par le Professeur Fred Culick m’apparaît donc devoir devenir l’ouvrage 
mondial de référence sur le sujet difficile mais toujours d’actualité des instabilités de combustion. 

 

Docteur Paul KUENTZMANN 
ONERA, France 

Ex membre PEP/AGARD 
Ex membre AVT/RTO 

Membre RTB 
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Unsteady Motions in Combustion Chambers  
for Propulsion Systems 

(RTO-AG-AVT-039) 

Executive Summary 
Combustion instabilities were discovered in the late 1930s as anomalies in firings of solid and liquid 
rockets. During World War II, experience gradually suggested that certain problems encountered in 
development and actual use of solid rockets were especially associated with pressure oscillations having 
relatively high frequencies ranging from a few hundred to several thousand Hertz. Associated problems 
were structural vibrations; greatly increased surface heat transfer rates; sometimes impaired performance; 
and, in extreme cases, failure of the combustion system and destruction of vehicles. By the 1950s, forms 
of combustion instabilities had been identified in all types of rockets, gas turbines, thrust augmentors and 
ramjets. The problem continues to the present time and will always be found in combustion systems, 
particularly those intended to provide high performance. Eliminating instabilities therefore becomes an 
important task in a development program. 

This study includes a wide span of material ranging from summaries of practical examples of combustion 
instabilities to the present status of the field; and results of a method for analysis of the general problem. 
Following a summary of practical problems in Chapter 1, a lengthy discussion is given in Chapter 2 of the 
best known mechanisms for oscillations in the various kinds of systems. Chapters 3 and 4 summarize a 
widely used general method of analyzing general unsteady motions in a combustion chamber, based on 
expansion in normal modes and spatial averaging of the equations of motion. The result is a formulation 
focused on the behavior of a set of coupled nonlinear oscillators.  

Chapter 5 is a summary of those parts of classical acoustics required to understand linear behavior and the 
elementary aspects of unsteady behavior in combustors. Chapters 6 and 7 are devoted to the theory of 
linear and nonlinear behavior respectively, with examples taken from experience with combustion 
systems. In Chapter 8 the subject of passive control is covered, giving a brief summary of experience, with 
several examples. The last section of the chapter describes work which has been done on some of the 
connections between the generation and shedding of large vortices and combustion in dump combustors. 

The book ends with Chapter 9, a brief coverage of active control applied to combustors. This subject has 
important potential applications not yet realized. It is particularly interesting because, in an elementary 
way, the framework of modern active control fits naturally into the scheme formulated here in Chapters 3 
and 4. Eight Appendices to the book contain treatments of special topics referred to in the text. 
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Mouvements instables dans les chambres de 
combustion des systèmes de propulsion 

(RTO-AG-AVT-039) 

Synthèse 
A la fin des années 30, on avait découvert des instabilités de combustion, qui constituaient des anomalies 
dans les tirs de fusées à combustible solide et liquide. Au cours de la Deuxième Guerre Mondiale, 
l’expérience a progressivement suggéré que certains problèmes rencontrés lors du développement et de 
l’exploitation des fusées à combustible solide étaient particulièrement associés à des oscillations de 
pression ayant des fréquences relativement élevées entre quelques centaines et plusieurs milliers de Hertz. 
Ces problèmes étaient accompagnés de vibrations de structure, de taux de transfert de chaleur de surface 
largement augmentés, de dégradation des performances dans certains cas et, dans des cas extrêmes de la 
défaillance du système de combustion et de la destruction des véhicules. Au cours des années 50, des formes 
d’instabilité de combustion ont été identifiées sur tous les types de fusées, de turbines à gaz, d’augmentateurs 
de poussée et de stato-réacteurs. Le problème se poursuit à l’heure actuelle et existera toujours sur les 
systèmes de combustion, en particulier ceux destinés à assurer des performances élevées. C’est pourquoi 
l’élimination des instabilités est devenue un point important des programmes de développement. 

Cette étude recouvre un large éventail de sujets, allant des synthèses d’exemples pratiques d’instabilités de 
combustion à l’état actuel du domaine et aux résultats d’une méthode d’analyse du problème général.  
Le Chapitre 1 donne une synthèse des problèmes pratiques, le Chapitre 2 donne une description détaillée 
des mécanismes les plus connus relatifs aux oscillations sur les différents types de systèmes. Les Chapitres 
3 et 4 résument une méthode générale largement utilisée pour l’analyse des mouvements instables 
généraux dans une chambre de combustion, en fonction de l’expansion en modes normaux et d’une 
moyenne spatiale des équations de mouvement. Il en résulte une formulation axée sur le comportement 
d’un ensemble d’oscillateurs non linéaires couplés.  

Le Chapitre 5 est un résumé des domaines de l’acoustique classique nécessaires à la compréhension du 
comportement linéaire et des aspects élémentaires du comportement instable des chambres de combustion. 
Les Chapitres 6 et 7 sont consacrés à la théorie des comportements linéaires et non linéaires respectivement, 
avec des exemples tirés de l’expérience sur les systèmes de combustion. Le Chapitre 8 traite le sujet du 
contrôle passif et donne un bref aperçu de l’expérience, ainsi que différents exemples. La dernière section de 
ce chapitre décrit le travail réalisé sur certaines liaisons entre la génération et la chute des grands 
tourbillons et la combustion dans les chambres de combustion largables. 

L’ouvrage se termine par le Chapitre 9, qui traite brièvement du contrôle actif appliqué aux chambres de 
combustion. Ce sujet comporte des applications potentielles importantes qui n’ont pas encore été réalisées. 
Il est particulièrement intéressant car, de manière élémentaire, le cadre du contrôle actif moderne s’adapte 
naturellement aux schémas formulés dans les Chapitres 3 et 4. Les huit Annexes de l’ouvrage décrivent le 
traitement de sujets spéciaux mentionnés dans le texte. 



Phenomena referred to generally as combustion instabilities are fundamentally related to the stability of
motions in a combustion chamber. Their existence is normally inferred from observations of well de¯ned
oscillations of pressure or structural distortions. Instabilities of combustion processes themselves are rarely
contributing factors, the chief exceptions being possible intrinsic instabilities of solid propellants, and the
weakening of °ame stabilization mechanisms near the lean operating limits of gaseous and liquid fueled
systems. Broadly, then, the appearance of a combustion instability is due to a loss of stability of the
composite dynamical system comprising the combustion processes and the chamber itself, containing the
medium which supports waves associated with the unstable motions.

Combustion instabilities have been found in all types of systems. The reason is simple and fundamental:
In a combustor, by design the combustion processes generate high power densities under conditions when
the losses of energy are small. Only weak coupling between °uctuations of the combustion power and the
°ow of the medium is su±cient to produce undesirable °uctuations of pressure and kinetic energy in the
°ow. Mainly three characteristics of a system in°uence its dynamical behavior: the physical state in which
reactants are introduced (solid, liquid, gas); the geometry of the system; and the speci¯c mechanism causing
the instabilities to occur. It is therefore possible to construct a general analytical framework su±ciently
comprehensive to capture most, if not all, of the main features of instabilities in any combustion system.
One purpose of this book is to describe an approach that has been applied successfully to a broad range of
problems arising in laboratory devices and in full-scale systems.

The approach follows a well-travelled path which consists essentially in constructing reduced-order mod-
els of dynamical behavior by ¯rst applying a method of spatial averaging. Formally the dynamics of the
continuous °ow system having an in¯nite number of degrees of freedom is represented by the dynamics of a
system of coupled nonlinear oscillators in one-to-one correspondence with the natural acoustic modes of the
combustor in question. Long understood from experience in several ¯elds, the idea leads to an analytical
framework that is easily applied to laboratory test devices, sub-scale tests and to full-scale combustion sys-
tems of all sorts. Representation constructed of acoustic modes is not so restrictive as ¯rst appears, neither
in respect to the perturbing processes, nor in respect to linearity. So long as the amplitudes are not `too'
great, quite general motions can be synthesized. For realistic applications, the greatest di±culties arise in
modeling the dominant physical and chemical processes; and in determining certain material and dynamical
properties.

I make no attempt in this work to give a survey of possible methods of analysis; nor do I cover much
more than the single method, with major applications. In particular, I do not discuss the many analyses
based on solutions to partial di®erential equations. Considerable experience has demonstrated that relying
on the averaged equations is an e®ective strategy both for understanding physical behavior and for obtaining
useful results for practical problems. But I certainly do not claim any sort of universality.

This book ranges over a broad spectrum of topics from the physical foundations, experimental results
and mathematical methods, to summary examinations of some experiences with combustion instabilities in
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operational systems. The text is organized roughly into three main parts. Chapters 1 and 2 cover practical
examples of combustion instabilities; their interpretation in elementary terms; and lengthy discussions, in
Chapter 2, of the chief mechanisms for instabilities in laboratory and full-scale systems. A substantial part
of Chapter 2 is devoted to unsteady combustion in solid propellant rockets. Some may consider that the
emphasis is misplaced particularly because there is at the present time much greater concern with instabilities
and oscillations in gas turbines, covered cursorily in Chapter 9.

There are good reasons for the space devoted to basic problems arising in solid rockets. Practical
considerations forced by combustion instabilities have been present since the late 1930s; with changes of
design and propellant systems they continue and will likely always be present. Perhaps the most important
reason for such intense theoretical considerations is the fundamental property that a solid rocket, or a test
sample of solid propellant, can be ¯red only once. There is accordingly enormous motivation, always present
in planning test programs based on solid propellants, for maximizing the information gained from a single
¯ring. That explains the concern with transient behavior, the periods of growth and decay of oscillations.
The rates of change exhibited in the envelopes of oscillatory motion are determined by the averaged in°uences
of all contributing physical processes. To understand those rates and their combined consequence, requires
attention to the basic behavior of the system, a central motivation throughout this book.

An interesting peripheral issue in the history of solid rockets is the matter of national security and
classi¯cation. In the very late 1950s and early 1960s, success was achieved in releasing some material for
late publication and in relaxing restrictions on availability of current work. The story of that process is
part of the main subject here because o±cial rules may have direct e®ect on the style certainly, but also on
the content and quality of research. Section 2.2 serves partly to make the point in respect to combustion
instabilities in solid rockets.

Chapters 3, 4 and 5 form the second part of the book, covering largely theoretical and analytical matters.
The conservation equations for a two-phase °ow are developed in Annexes A and B. Their approximation
by a single °uid model is the basis in Chapter 3 for extracting systems of equations for the averaged and
time-dependent motions. The latter are then simpli¯ed by expansion in two small parameters, characteristic
Mach numbers of the mean and °uctuating °ows. Five classes of problems are identi¯ed according to the
orders of terms retained in the expansion; the classes include classical acoustics, linear stability, and three
types of nonlinear problems.

The method of approximate analysis used in this book is developed in Chapter 4. In outline it follows
well-known strategies for analyzing dynamical systems: A modal expansion; spatial averaging with suitable
weighting functions, chosen here to be the unperturbed acoustic modes; and, as an optional possible tactic for
further simplifying the equations, application of time-averaging. The spatially averaged equations, a system
of ordinary nonlinear second order equations, are solved by a perturbation-iteration procedure that produces
systems of equations for the amplitudes of the modes, having forms systematically de¯ned according to the
two-parameter expansion procedures. The procedure is well-founded and has long been used in other ¯elds.

An important property, long known but explicitly emphasized here, is that the results are not restricted
to irrotational velocity ¯elds. That true property is contrary to a criticism often incorrectly directed to
this method, most recently in three papers given in August 2004. If the analysis is applied correctly (al-
beit additional modeling may be required), it is entirely capable of treating problems in which vorticity is
important, always to some approximation. Moreover, also contrary to criticisms attempted several times in
the literature, the approximate solution satis¯es the correct perturbed boundary conditions, not those set
on the basis functions used in the modal expansion. Annex F is included to address this point.

Owing to confusion and mis-interpretation of the points just made, I should be more speci¯c. The
following remarks are expanded in Chapter 4. For linear harmonic motions, the ¯rst order approximation in
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¹Mr, the Mach number of the mean °ow, is equation (4.82), which is (4.20) written in di®erent symbols:

p̂(1)(r) = ÃN (r) +

1X0

n=0

Ãn(r)

E2n (k
2 ¡ k2n)

8<:
ZZZ
V

Ãn(r0)ĥ(r0)dV0 +

ZZ
S

°Ãn(r0s)f̂(r0s)dS0

9=; (4.82)

The prime on the summation sign signi¯es that the N th term is missing. This expression represents the
actual pressure ¯eld perturbed from the N th classical acoustic mode ÃN (r) by the processes accounted for
in the perturbation functions. The corresponding formula for the perturbed Mach number ¯eld is (4.85),
and the wavenumber of the actual motion is given by (4.19) written for the N th mode:

i¹½¹akM0(1) = ¡rp̂(1) ¡ "¹f[M̂]g1 + "F̂̂F̂F10 + "¹F̂̂F̂F11 (4.85)
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E2N

8<:
ZZZ
V

ÃN (r0)ĥ(r0)dV0 +
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S

°ÃN (r0s)f̂(r0s)dS0

9=; (4.19)

What has apparently been confusing is the well-known property of this kind of perturbation/iteration
procedure that the ¯rst order properties of the actual N th mode can be calculated if the properties of the N th

unperturbedmode are known. Thus in the work here, besides the perturbations ĥ and f̂ , only the wavenumber
and mode shape of the N th unperturbed classical acoustic mode are required to calculate the properties,
including the wavenumber (4.19), of the actual perturbed N th mode. To this level of approximation one
does not need to know explicitly, for example, the pressure and velocity ¯elds of the actual modes treated.
But nevertheless they are implicit. In particular, the classical unperturbed modes are for irrotational °ow
but the °ows of actual perturbed modes are rotational, deducible, for example, from (4.82) and (4.85). The
wavenumber (4.19) is therefore the wavenumber of a rotational wave.

Results for a given problem require the functions ĥ(r) and f̂(r). The procedure developed in Chapters
3 and 4 is intended only to provide a framework within which particular forms of h and f are placed; the
forms themselves must be worked out as a separate chore for a chosen problem.

A few words about the property that the method really is `approximate' are needed. There are two
small parameters measuring smallness in the method: A characteristic average Mach number ¹Mr measuring
in the ¯rst instance the intensity of the mean °ow; and a Mach number M0

r indicative of the amplitude of
°uctuations, most clearly the amplitude of acoustic velocity waves. It is the nature of perturbation methods
that accuracy|somehow de¯ned by comparison with the `true' results which are normally not known|is
lost as the sizes of the small parameters are increased. The way in which accuracy deteriorates is simply not
known, not is it investigated here, because the real value of the method often lies less with its accuracy than
with the ease with which it may produce results indicative of trends produced by changes in a system.

In Chapter 5, classical acoustics is reviewed, chie°y to summarize those results most relevant to problems
of combustion instabilities. Much of the material is well-known and available in many texts, but some special
topics are included to give a fairly complete muster of the purely acoustical results most commonly useful
in the ¯eld of combustion instabilities.

The third part, the remainder of the body of this book, includes subjects common to many engineering
¯elds but covered here with emphasis on applications to combustion systems: linear stability (Chapter 6);
nonlinear behavior (Chapter 7); passive control (Chapter 8); and feedback control (Chapter 9). Examples of
results and, when possible, comparison of predictions with observations, are scattered throughout those four
chapters, to convey a sense of the current state of the ¯eld; and to suggest some of the areas where e®ort
is required to achieve continued progress. Chapters 6 and 7 contain much material which is basic to the
subject and is covered in some detail. In contrast, Chapters 8 and 9 are mainly descriptive. Chapter 8 is an
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incomplete survey of the principal methods of passively controlling combustion instabilities, the important
measures taken in practice; the last section of the chapter covers a simple example to illustrate the matter
for an idealized thrust augmentor. Chapter 9 is an introduction to feedback control of combustion systems.
I had intended to cover much more, but owing to constraints on time of preparation, the discussion has been
cut short.

Although the idea of trying to manage combustion instabilities by some means of active control was ¯rst
suggested by W. Bollay in 1951 and investigated in detail by Professor H.S. Tsien in 1952, results in the
laboratory and in full-scale systems were not achieved until the past ¯fteen years or so. Despite the early
enthusiasm, and subsequent achievement of a few impressive results, feedback control is still far from routine
applications. Chapter 9 is included to provide a sketchy idea of how far the subject has progressed; and
some indication of how much remains to be done. I believe that signi¯cant basic progress towards routine
practical applications in this area awaits clearer basic understanding of the systems to be controlled. The
subject merits continued attention, particularly at the fundamental level. There are many opportunities
for extended research, not merely directed e®orts intended to produce short-term `pay-o®s'. Success will
contribute much to practical applications as well as to basic understanding.

There are eight annexes. The ¯rst two deal with formation of the equations of motion. Annex A
is a fairly detailed and complete derivation of the equations for multi-component reacting °ows in which
one component is liquid or solid and the remainder are gases. The equations are combined to give the
set governing °ows of an equivalent mass-averaged °uid. Annex B gives the basis for the one-dimensional
approximation, extremely important for practical applications. Annexes C and D cover topics which are
important for special problems, but which don't ¯t well in the body of the text. Annex C establishes
the correct formula for viscous attenuation of a planar acoustic wave at a rigid surface by using the one-
dimensional approximation. It's remarkable that the result is exact. Equally important, this is the basis for
the `pumping' process accompanying unsteady conversion of solid to gas at a burning surface, a topic treated
in Chapter 6. Some general aspects of vorticity and entropy °uctuations are covered in Annex D. It is often
useful to model combustion zones as °ame sheets; special considerations may arise when that approximation
is used with spatial averaging. Examples are treated in Annex E. Annex F is included to help clarify some
of the reasons that the approximate method of solution (Chapter 4) works well. The discussion is intended
mainly to suggest how it is that the expansion for the acoustic ¯eld to ¯rst and higher order satis¯es the
correct perturbed boundary conditions even though the basis functions do not. Annex G is an extended
discussion of the Nyquist Criterion, with examples, intended to provide part of the background required
for understanding some of the works on feedback control covered or cited in Chapter 9. The last annex,
H, is included to call attention to methods related to the method of averaging and used in other ¯elds as
approximations to nonlinear behavior.

It perhaps comes as a surprise to many that computational methods, especially computational °uid
dynamics (CFD), are given almost no space in this book except for references. There are several reasons,
mainly the fact that to the present time CFD has not been part of the mainstream of work on combustion
instabilities. That circumstance is probably due partly to the backgrounds of the people working in the ¯eld,
but largely because until rather recently, CFD would have o®ered little help for solving practical problems
in which combustion instabilities are central. However, as in many ¯elds of engineering, the situation is
changing rapidly.

I certainly don't intend to imply that numerical computations of reacting unsteady °ows have not been
attempted. There are many examples. For instance, some of the earliest e®orts are cited in NASA SP-194,
\Liquid Rocket Instability" covering work carried out in the 1960s in support of the Apollo Program. In the
early 1970s computation of transient unstable oscillations in solid rockets were limited to a few periods by the
machines available. Much progress has been made since that time. For both research and practical purposes,
constraints remain still but are rapidly becoming less severe. Nevertheless, even when CFD reaches the level
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of providing perfect simulations of real problems, we will still confront the problem of understanding. I
believe that analysis|especially approximate methods|will always ¯ll that basic need.

The main reason that CFD has otherwise been relatively helpless in this subject is that problems of
combustion instabilities involve physical and chemical matters that are still not well understood. Moreover,
they exist in practical circumstances which are not readily approximated by models suitable to formulation
within CFD. Hence, the methods discussed and developed in this book will likely be useful for a long time
to come, in both research and practice.

In the past decade especially, increasingly detailed simulations have appeared, providing ever more
faithful approximations to unsteady °ows in combustion chambers. Those developments are particularly
important in the ¯eld of solid propellant rockets for which it is necessary to deal with quite elaborate
internal geometries. The signi¯cant task remains to incorporate in analysis using CFD both the realistic
nonlinear behavior and valid models of unsteady (and eventually nonlinear) combustion dynamics. It seems
to me that eventually the most e®ective ways of formulating predictions and theoretical interpretations of
combustion instabilities in practice will rest on combining methods of the sort discussed in this book with
computational °uid dynamics, the whole con¯rmed by experimental results.

Probably at this time the most promising formulation of CFD for unsteady °ows in combustors is some
form of large eddy simulation (LES). Some quite good results have been obtained for realistic geometries,
although the methods are far from complete and are certainly not yet available for routine computations
or practical design work. The °ow ¯elds computed always have characteristics which apparently can be
interpreted as turbulent motions similar to those found in real combustors. How faithfully the actual ¯elds
are reproduced remains an open question.

As a practical matter, the methods used in this book fall somewhere between CFD and the semi-empirical
methods commonly used in design work, at least in the initial stages. There is often|especially, but not only,
in industry|a tendency to avoid practicing analysis, particularly in carefully constructed approximate forms,
in favor of more appealing (dazzling?) methods requiring extensive computing resources, which may produce
appealing multi-colored pictures. Extraordinarily important for many reasons, CFD in its various forms must
be developed as far as possible. But suppose CFD could produce perfect results entirely equivalent to perfect
experimental results. For some, that would evidently be a state of Nirvana. But others wonder whether our
understanding of physical behavior would be correspondingly expanded. The sorts of results discussed in
this book, and the procedures followed to obtain them, help serve the implied purpose.

On the other hand, I have also avoided in this book any calculations involving turbulence. That practice
raises a serious question: Are the results computed with no e®ects of turbulence valid for practical °ows which
inevitably are highly turbulent? Certain experimental results and measurements carried out for full-scale
devices have long suggested that narrowly and tentatively the answer is `yes'. On the basis of fundamental
considerations by Chu and Kovasznay (1957), discussed brie°y in Annex D and Sections 3.1 and 7.9, a
somewhat more de¯nitive positive answer is available. For most of the purposes here, it seems that the
in°uences of turbulence can be safely overlooked. (But see Section 7.9.) One must especially be aware of the
assumption when experimental and theoretical results for variations in time, or the corresponding spectra,
are compared, for it is surely true that eventually the e®ects of turbulence must be accounted for.

If the preceding is accepted as a reasonable interpretation of the broad development of the subject, a
corollary conclusion is that convenient approximations to actual behavior are essential. The ability to capture
the essence of a phenomenon in a short statement, or perhaps a formula, is evidence of understanding.
Naturally one must always possess as well some understanding of the limitations of approximations if they
are to be truly useful. An attractive feature of the methods discussed here is the ease with which one may
deduce such \rules of thumb." Examples are scattered throughout the text.
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In this book I try to give a fair idea of the historical aspects of combustion instabilities from roughly 1950
to the present. I hope that the foundations of the subject are su±ciently well covered that the essentials of the
phenomenon in any type of chemical propulsion system may be understood. Although I have tried to include
examples of instabilities in all types of propulsion systems now used, I make no claims of completeness. I
realize that for want of space, or to avoid excessive reproduction of readily accessible material, I have
excluded many good examples. To the best of my knowledge, I have tried to give proper credit to the
principal contributors associated with the various ¯elds. I have included more extensive attributions, as well
as wider coverage, of certain parts of the material, in three versions of a short course devoted to the subject
(Culick 2000a, 2001, 2002a).

Finally, I must vent a few comments on the problem of ¯nancial support by government agencies and
others. Not surprisingly, as a subject which so often deals with problems, not desirable attributes, of practical
systems, combustion instabilities has traditionally become a `hot topic' only when there are serious problems
in costly systems. Too often, support has been given for short-term quick ¯xes, and then has been withdrawn
when the problems are managed. It is apparently not fertile ground for research program managers who seek
to support career-building `break-throughs'. Steady progress based partly on advances in contributing ¯elds
such as instrumentation, measurement techniques and computational resources generally, unfortunately,
fails to o®er obvious prospects of stardom. My own experience is that the subjects discussed in this book
capture much of the basic ideas and materials common to broad areas of applied science and engineering.
Consequently, even during periods when there are no particularly pressing practical problems, there is a
need and ample justi¯cation for a well-grounded research program having rather general applications, and
meriting continuous support over many years. Only in this way will there be a (small) community educated
as required and having experience in the ¯elds of practical applications covered here.

This book has depended on many works and direct help of others, beginning with my Sc.D. dissertation
and my supervisor Professor Morton Finston (1919{1986) who gave me complete freedom in my choice of
topic and in details of development, both of the subject and of myself. To him I remain forever grateful.
Professor F.E. Marble sponsored my move out of student life at MIT to Caltech and from the beginning to
the present has been generous with his advice, critiques and cogent opinions. During the time our careers
touched, I bene¯tted much from friendship with Professor E.E. Zukoski (1927{1995). We collaborated most
closely in projects involving the Caltech dump cumbustor; the best example is covered in Section 7.8. Mr. E.
W. Price, then at the Naval Ordinance Test Station (1965), ¯rst gave me a long-term consulting arrangement,
but more importantly, a seemingly endless supply of ideas, problems, and knowledgeable discussions. His
personal contributions to the ¯eld of solid rocketry and his in°uence on its development are his unique legacy.
Ed's careful reading of Chapter 2, especially Sections 2.1 and 2.2, followed by his lengthy and carefully written
comments (initially a mixed review!) happily caused me to make signi¯cant changes greatly improving the
text. Once again I am sincerely grateful to him for his friendship and help.

Professor M.W. Beckstead was ¯rst a co-author with me when he was working at NOTS, and later,
when he had joined Hercules, Inc., gave me intellectual and ¯nancial support for my ¯rst work on nonlinear
combustion instabilities, leading eventually to my 1974 paper. He has been a collaborator and co-author for
many years. Dr. R. L. Derr was, and still is, a close supporter and friend whose opinion I value second to
none. We share more than three decades of good memories ranging from late-night chats to a memorable low-
level pass over Death Valley. I ¯rst met Professor Gary Flandro when he was a doctoral student at Caltech;
we have remained mutual admirers and friends, sharing many interests including aeronautical history and
model aircraft. We continue our professional collaboration and friendly competition. Mr. Jay Levine and I
¯rst became acquainted in the early 70s when I helped him a little with the basis of some of the ¯rst numerical
calculations of unsteady motions in solid propellant rockets. Our relationship has always been and remains
close and respectful. Mr. Norman Cohen was long a professional friend, but in the past few years, through
the Caltech MURI program, we have worked closely and pro¯tably; I have bene¯tted enormously. Professor
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Vigor Yang was wonderful as a student with me, but he soon became a professional colleague, co-author,
supporter and personal friend. Our meaningful and satisfying friendship will never cease.

My consulting activities have had considerable in°uence on the subjects and material covered in this
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CHAPTER 1

Combustion Instabilities i n Propulsion S ystems

Chemical propulsion systems depend fundamentally on the conversion of energy stored in molecular bonds
to mechanical energy of a vehicle in motion. The ¯rst stage of the process, combustion of oxidizer and fuel,
takes place in a vessel open only to admit reactants and to exhaust the hot products. Higher performance
is achieved by increasing the rate of energy release per unit volume. For example, the power densities in
the F-1 engine for the Apollo vehicle (1960s), and the Space Shuttle main engine (1970s) are respectively 22
gigawatts/m3, and 35 gigawatts/m3. The power densities in solid rockets are much less. For a cylindrical
bore, the values are approximately 0.25(r=D) gigawatts/m3, where r is the linear burning rate, typically a few
centimeters per second, and D is the diameter. Thus the power densities rarely exceed one gigawatt/m3. An
afterburner on a high-performance ¯ghter may burn fuel at the rate of 75,000 pounds per hour, generating
roughly 450 megawatts for a short period in a volume of perhaps (1 m3), giving power densities around
0.3{0.4 gigawatts/m3.

These are indeed very large power densities. To appreciate how large, consider the fact that the average
power consumption per person in a developed country is about 4 kilowatts (roughly the same as that
for astronauts). In the United States, with approximately 195 million people in 1965, the total power
consumption was about 1,000 gigawatts. Hence, for a few minutes, the ¯ve F-1 engines in the ¯rst stage of
the Apollo produced power equivalent to nearly 1% of the entire power consumption of the U.S. at that time
| in a very small volume. We cannot be surprised that such enormous power densities should be accompanied
by relatively small °uctuations whose amplitudes may be merely annoying or possibly unacceptable in the
worst cases.

We are concerned in this book with the dynamics of combustion systems quite generally. The motivation
for addressing the subject arises from particular problems of combustion instabilities observed in all types
of propulsion systems. By \combustion instability" we mean generally an oscillation of the pressure in
a combustion chamber, having a fairly well-de¯ned frequency which may be as low as 10{20 Hz or as
high as several tens of kilohertz. Typically the instabilities are observed as pressure oscillations growing
spontaneously out of the noise during a ¯ring. As a practical matter, combustion instabilities are more likely
encountered during development of new combustion systems intended to possess considerable increases of
performance in some sense. The present state of theory and experiment has not provided a su±ciently strong
foundation to provide a complete basis for prediction. Hence there are only a few guidelines available to help
designers avoid combustion instabilities.

Under such conditions, it is extremely important to pay attention to the experience gained in the
laboratory as well as in full-scale tests of devices. Moreover, because of the many properties of the behavior
common to the various systems, much is to be gained from understanding the characteristics of systems
other than the one that may be of immediate concern. It is therefore proper to begin with a survey of
some typical examples drawn from many years' experience. Theory is an indispensable aid to making sense
of observational results. Conversely, discussion of various experimental observations is a natural place to
introduce many of the basic ideas contained in the theory.
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From the beginning of this subject, the central practical question has been: What must be done to
eliminate combustion instabilities? Traditionally, the approach taken has been based on passive measures,
largely ad hoc design changes or notably for solid propellant rockets, favorable changes of propellant compo-
sition. During the past few years, considerable e®ort has been expended on the problem of applying active
feedback control to combustion systems. It's an attractive proposition to control or eliminate instabilities
with feedback control, particularly because one implication, often made explicit, is that the use of feedback
will somehow allow one to get around the di±cult problems of understanding the details of the system's
behavior. Many laboratory, and several full-scale demonstrations, apparently support that point of view.
However, for at least two reasons, serious application of feedback control must be based on understanding
the dynamics of the system to be controlled:

(i) all experience in the ¯eld of feedback control generally has demonstrated that the better the controlled
plant is understood, the more e®ective is the control;

(ii) without understanding, development of a control system for a full-scale device is an ad hoc matter,
likely to involve expensive development with neither guarantee of success nor assurance that the best
possible system has been designed.

Therefore we begin this book with a survey of combustion instabilities observed in various systems. The
theoretical framework is constructed to accommodate these observations, but later emerges also as a perfect
vehicle for investigating the use of active feedback control (Chapter 9).

1.1. Introduction

For the kinds of propulsion systems normally used, combustion chambers are intended to operate under
conditions that are steady or change relatively slowly. The central questions addressed here concern the
stability and behavior subsequent to instability of steady states in combustors. If a state is unstable to small
disturbances, then an oscillatory motion usually ensues. Such combustion instabilities commonly exhibit
well-de¯ned frequencies ranging from 15 Hz or less to many kilohertz. Even at the highest amplitudes
observed in practice, the instabilities consume only a small fraction of the available chemical energy. Thus,
except in extremely severe instances, the oscillations do not normally a®ect the mean thrust or steady power
produced by the systems. Serious problems may nevertheless arise due to structural vibrations generated by
oscillatory pressures within the chamber or by °uctuations of the thrust. In extreme cases, internal surface
heat transfer rates may be ampli¯ed ten-fold or more, causing excessive erosion of the chamber walls.

An observer usually perceives an unstable motion in a combustion chamber as \self-excited," a conse-
quence of the internal coupling between combustion processes and unsteady motion.1 Except in cases of
large disturbances (e.g. due to passage of a ¯nite mass of solid material through the nozzle), the amplitude
of the motion normally seems to grow out of the noise without the intrusion of an external in°uence. Two
fundamental reasons explain the prevalence of instabilities in combustion systems:

i) an exceedingly small part of the available energy is su±cient to produce unacceptably large unsteady
motions;

ii) the processes tending to attenuate unsteady motions are weak, chie°y because combustion chambers
are nearly closed.

Those two characteristics are common to all combustion chambers and imply that the possibility of
instabilities occurring during development of a new device must always be recognized and anticipated.

1An alternative explantion, that observed combustion instabilities are (or may be) motions driven by the noise present in
combustors is explored in Section 7.9; see also Figure 1.34.
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Treating combustion instabilities is part of the price to be paid for high-performance chemical propulsion
systems. It is a corollary of that condition that the problem will never be totally eliminated. Advances in
research will strengthen the methods for solution in practical applications, and will provide guidelines to
help in the design process.

The fact that only a small part of the total power produced in a combustor is involved in combustion
instabilities suggests that their existence and severity may be sensitive to apparently minor changes in the
system. That conclusion is con¯rmed by experience. Moreover, the complicated chemical and °ow processes
block construction of a complete theory from ¯rst principles. It is therefore essential that theoretical work
always be closely allied with experimental results, and vice versa. No single analysis will encompass all
possible instabilities in the various practical systems. There are nevertheless many features common to all
combustion chambers. Indeed, it is one theme of this book that the characteristics shared by propulsion sys-
tems in many respects dominate the di®erences. While it is not possible to predict accurately the occurrence
or details of instabilities, a framework does exist for understanding their general behavior, and for formulat-
ing statements summarizing their chief characteristics. For practical purposes, the theory often serves most
successfully when used to analyze, understand, and predict trends of behavior, thereby also providing the
basis for desirable changes in design. Experimental data are always required to produce quantitative results
and their accuracy in turn is limited by uncertainties in the data.

Special problems may be caused by combustion instabilities interacting with the vehicle. Because the
frequencies are usually well-de¯ned in broad ranges, resonances with structural modes of the vehicle or with
motions of components are common. Perhaps the best known form of this sort of oscillation is the POGO
instability in liquid rockets. Strong couplings between chamber pressure oscillations, low-frequency structural
vibrations, and the propellant feed system sustain oscillations. The amplitudes may grow to unacceptable
limits unless measures are taken to introduce additional damping. A striking example occurred in the Apollo
vehicle. The central engine of the cluster of ¯ve in the ¯rst stage was routinely shut o® earlier than the others
in order to prevent growth of POGO oscillations to amplitudes such that the astronauts would be unable
to read instruments. Comments on the vibrations and the early shut o® may be heard in communications
recorded during the launch phase of several Apollo missions.

In the U.S., and possibly in other countries, notably Germany and Russia before and during World War
II, combustion instabilities were probably ¯rst observed in liquid rocket engines. Subsequent to the war,
considerable e®ort was expanded in Russia and in the U.S. to solve the problem, particularly in large engines.
Probably the most expensive program was carried out during development of the F-1 engine for the Apollo
vehicle in the years 1962{1966, reviewed in a useful report by Oefelein and Yang (1993).

Liquid-fueled air-breathing propulsion systems also commonly su®er combustion instabilities. Axial
oscillations in ramjet engines are troublesome because their in°uence on the shock system in the inlet
di®user can reduce the inlet stability margin. Owing to their high power densities and light construction,
thrust augmentors or afterburners are particularly susceptible to structural failures.

For any thrust augmentor or afterburner, conditions can be found under which steady operation is not
possible. As a result, the operating envelope is restricted by the requirement that combustion instabilities
cannot be tolerated. Due to structural constraints placed on the hardware, combustion instabilities in
afterburners are particularly undesirable and are therefore expensive to treat.

In recent years combustion instabilities in the main combustor of gas turbines have become increasingly
troublesome. The chief reason is ultimately due to requirements that emission of pollutants, notably oxides
of nitrogen, be reduced. A useful strategy, particularly for applications to °ight, is reduction of the average
temperature at which combustion takes place. Generation of NO by the thermal or `Zel'dovich' mechanism
is then reduced. Lower combustion temperature may be achieved by operating under lean conditions, when
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Figure 1.1. Schematic diagram of a combustion system as a feedback ampli¯er.

the °ame stabilization processes tend to be unstable. Fluctuations of the °ame cause °uctuations of energy
release, which in turn may produce °uctuations of pressure, exciting acoustical motions in the chamber.

Finally, almost all solid rockets exhibit instabilities, at least during development, and occasionally motors
are approved even with low levels of oscillations. Actual failure of a motor itself is rare in operations, but
vibrations of the supporting structure and of the payload must always be considered. To accept the presence
of weak instabilities in an operational system one must have su±cient understanding and con¯dence that
the amplitudes will not unexpectedly grow to unacceptable levels. One purpose of this book is to provide
the foundation for gaining the necessary understanding.

In the most general sense, a combustion instability may be regarded as an unsteady motion of a dynamical
system capable of sustaining oscillations over a broad range of frequencies. The source of energy associated
with the motions is ultimately related to the combustion processes, but the term `combustion instability,'
while descriptive, is misleading. In most instances, and always for the practical problems we discuss in this
book, the combustion processes themselves are stable: Uncontrolled explosions and other intrinsic chemical
instabilities are not an issue. Observations of the gas pressure or of accelerations of the enclosure establish the
presence of an instability in a combustion chamber. Excitation and sustenance of oscillations occur because
coupling exists between the combustion processes and the gasdynamical motions, both of which may be
stable. What is unstable is the entire system comprising the propellants, the propellant supply system, the
combustion products that form the medium supporting the unsteady motions, and the containing structure.

If the amplitude of the motions is small, the vibrations within the chamber are often related to classical
acoustic behavior possible in the absence of combustion and mean °ow. The geometry of the chamber is
therefore a dominant in°uence. Corresponding to classical results, traveling and standing waves are found
at frequencies approximated quite well by familiar formulas depending only on the speed of sound and the
dimensions of the chamber. If we ignore any particular in°uences of geometry, we may describe the situation
generally in the following way, a view valid for any combustion instability irrespective of the geometry or
the type of reactants.

Combustion processes are sensitive to °uctuations of pressure, density, and temperature of the envi-
ronment. A °uctuation of burning produces local changes in the properties of the °ow. Those °uctuations
propagate in the medium and join with the global unsteady ¯eld in the chamber. Under favorable conditions,
the ¯eld develops to a state observable as a combustion instability. As illustrated schematically in Figure
1.1, we may view the process abstractly in analogy to a feedback ampli¯er in which addition of feedback
to a stable oscillator can produce oscillations. Here the oscillator is the combustion chamber, or more pre-
cisely, the medium within the chamber that supports the unsteady wave motions. Feedback is associated
with the in°uences of the unsteady motions on the combustion processes or on the supply system, which in
turn generate °uctuations of the ¯eld variables. The dynamical response of the medium converts the local
°uctuations to global behavior. In the language of control theory, the ¯eld in the chamber is the `plant,'
described by the general equations of motion.
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The diagram in Figure 1.1 illustrates the main emphases of this book. Broadly, the subjects covered
divide into two categories: those associated with the plant|the °uid mechanics and other physical processes
comprising the combustor dynamics; and those connected primarily with the feedback path, chie°y combus-
tion processes and their sensitivity to time-dependent changes in the environment, the combustion dynamics.
The theory we will describe encompasses all types of combustion instabilities in a general framework having
the organization suggested by the sketch. External forcing functions are accommodated as shown in the
sketch, but the causes associated with the feedback path are far more signi¯cant in practice.

Figure 1.1 is motivated by more than a convenient analogy. For practical purposes in combustion systems,
we generally wish to eliminate instabilities. Traditionally that has meant designing systems so that small
disturbances are stable, or adding some form of energy dissipation to compensate the energy gained from
the combustion processes, that is, passive control. However, in the past few years interest has grown in the
possibility of active control of instabilities. If that idea is to be realized successfully, it will be necessary to
combine modern control theory with the theory developed in this book. The development of much of control
theory rests partly on the use of diagrams having the form of Figure 1.1. It is advantageous to think from
the beginning in terms that encourage this merger of traditionally distinct disciplines.

We will return to the subject of control, both active and passive, in the last two chapters of this book.
Any method of control is rendered more e®ective the more ¯rmly it rests on understanding the problem to be
solved. Understanding a problem of combustion instabilities always requires a combination of experiment and
theory. For many reasons, including intrinsic complexities and inevitable uncertainties in basic information
(e.g., material properties, chemical dynamics, turbulent behavior of the °ow ¯eld, ...), it is impossible to
predict from ¯rst principles the stability and nonlinear behavior of combustion systems. Hence the purpose
of theory is to provide a framework for interpreting observations, both in the laboratory and full-scale
devices; to suggest experiments to produce required ancillary data or to improve the empirical base for
understanding; to formulate guidelines for designing full-scale systems; and globally to serve, like any good
theory, as the vehicle for understanding the fundamental principles governing the physical behavior, thereby
having predictive value as well.

All theoretical work in this ¯eld has been carried out in response to observational and experimental
results. We therefore spend much of the remainder of this introductory chapter on a survey of the charac-
teristics of combustion instabilities observed, and occasionally idealized, in the systems to be analyzed in
later chapters.2 The general point of view taken throughout the book will then be formulated in heuristic
fashion, based on experimental results.

1.2. Historical Background

Some of the consequences and symptoms of combustion instabilities were ¯rst observed in the late 1930s
and early 1940s, roughly at the same time for liquid and solid propellant rockets, and apparently somewhat
earlier in the Soviet Union than in the U.S. With the later development of turbojet engines, high-frequency
instabilities were found in thrust augmentors or afterburners in the late 1940s and early 1950s. Although the
problem had been encountered in ramjet engines in the 1950s, it became a matter of greater concern in the
late 1970s and 1980s. The introduction of compact dump combustors led to the appearance of longitudinal
or axial oscillations that interfered with the inlet shock system, causing loss of pressure margin and `unstart'
in the most severe cases. Owing to availability, almost all of the data cited here as examples will be derived
from liquid rockets, solid rockets and laboratory devices. Figure 1.2 is a qualitative representation of the
chronology of combustion instabilities. Due to the accessibility of documentation and the experiences of the
author, particular cases cited are mainly those reported in the U.S. We will be mainly concerned in this book

2A few references to papers and books are given in this chapter as guides to the literature. Later chapters contain more
complete citations as the topics are treated in greater detail.
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with oscillations in solid rockets; liquid and gas rockets; thrust augmentors or afterburners; ramjets; and, to
a lesser extent, gas turbines.
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Figure 1.2. A chronology of combustion instabilities.

Several reviews of early experiences with combustion instabilities have been prepared for liquid rockets
(Ross and Datner 1954) and for solid rockets (Wimpress 1950; Price 1968; Price and Flandro 1992). The
details are not important here, but the lessons learned certainly are. Often forgotten is the most important
requirement of good high-frequency instrumentation to identify and understand combustion instabilities
in full-scale as well as in laboratory systems. Until the early 1940s, transducers and instrumentation for
measuring pressure had inadequate dynamic response to give accurate results for unsteady motions. Ross
and Datner note that \Prior to 1943, the resolution of Bourdon gauges, photographed at 64 and 128 fps,
constituted the principal instrumentation." Recording oscillographs were introduced sometime in 1943, but
not until the late 1940s were transducers available with su±cient bandwidth to identify instabilities at higher
frequencies (hundreds of hertz and higher).

The situation was even more di±cult with solid rockets because of the practical di±culties of installing
and cooling pressure transducers. Probably the experience with cooling chamber and nozzle walls helps
explain why quantitative results were obtained for instabilities in liquid rockets earlier than for solid rockets
(E. W. Price, private communication). Prior to the appearance of high-frequency instrumentation, the
existence of oscillations was inferred from such averaged symptoms as excessive erosion of inert surfaces
or propellant grains due to increased heat transfer rates; erratic burning appearing as unexpected shifts in
the mean pressure; structural vibrations; visible °uctuations in the exhaust plume; and, on some occasions,
audible changes in the noise produced during a ¯ring.

Experimental work progressed for several years before various unexplained anomalies in test ¯rings were
unambiguously associated with oscillations. By the late 1940s, there was apparently general agreement
among researchers in the U.S. and Europe that combustion instabilities were commonly present in rocket
motors and that they were somehow related to waves in the gaseous combustion products. In addition to
measurements with accelerometers, strain gauges, and pressure transducers, methods for °ow visualization
soon demonstrated their value, mainly for studies of liquid propellant rockets (Altseimer 1950; Berman and
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Logan 1952; and Berman and Scharres 1953). Characteristics of the instabilities as acoustic vibrations, or
weak shock waves, were revealed.

It is much more di±cult to observe the °ow ¯eld in a solid rocket motor and during the early years of
development, the only results comparable to those for liquid rockets were obtained when excessive chamber
pressures caused structural failures. Partially burned grains often showed evidence of increased local burning
rates, suggesting (possibly) some sort of in°uence of the gas °ow. The same events also produced indications
of unusual heating of the unburned solid propellant, attributed to dissipation of mechanical vibrational
energy (Price and Flandro, 1992). Subsequently that interpretation was con¯rmed by direct measurements
(Shuey, H.C. 1970-1975, related to the author by Mr. E.W. Price).

High-frequency or `screech' oscillations were also ¯rst encountered in afterburners in the late 1940s; as
a result of the experience with rockets and the availability of suitable instrumentation, the vibrations were
quickly identi¯ed as combustion instabilities. The sta® of the Lewis Laboratory (1954) compiled most of the
existing data and performed tests to provide a basis for guidelines for design.

Thus by the early 1950s many of the basic characteristics of combustion instabilities had been discovered
in both liquid-fueled and solid-fueled systems. Many of the connections with acoustical properties of the sys-
tems, including possible generation of shock waves, were recognized qualitatively. Although the frequencies
of oscillations found in tests could sometimes be estimated fairly closely with results of classical acoustics,
no real theory having useful predictive value existed. During the 1950s and the 1960s the use of sub-scale
and laboratory tests grew and became increasingly important as an aid to solving problems of combustion
instabilities occurring in the development of new combustion systems of all types.

1.2.1. Liquid and Gas-Fueled Rockets. During the 1960s, the major e®orts on combustion insta-
bilities in liquid rockets were motivated by requirements of the Apollo vehicle. Harrje and Reardon (1972)
edited a large collection of contributions summarizing the work during that period. Essentially nothing ad-
ditional was required to treat instabilities in the Space Shuttle main engine, and in the U.S., new programs
speci¯cally dealing with liquid rockets did not appear again until the mid 1980s (Fang 1984, 1987; Fang and
Jones 1984, 1987; Mitchell, Howell, and Fang 1987; Nguyen 1988; Philippart 1987; Philippart and Moser
1988; Jensen, Dodson, and Trueblood 1988; and Liang, Fisher and Chang 1986, 1987.) Subsequent to a °ight
failure of an Ariane vehicle due to combustion instability in a ¯rst-stage Viking motor, a comprehensive re-
search program was begun in France in 1981 (Souchier et al. 1982; Schmitt and Lourme 1982; Habiballah et
al. 1984, 1985, 1988, 1991; Lourme et al. 1983, 1984, 1985, 1986).

The problem of instabilities in liquid rockets received greatest attention in the development of the man-
carrying vehicles for °ight to the moon. Both the U.S. and the U.S.S.R. expended great e®ort on the problem.
Because virtually all the necessary information is conveniently available, we examine the experience in the
U.S., a canonical example. Oefelein and Yang (1992, 1993) have given a good summary of the program;
their e®ort is the basis of the remarks here.

Instabilities in liquid rockets are simpler than in solid rockets, to some extent because the basic internal
geometry of the system is simpler. Serious complications are introduced by the °ow and mixing of reac-
tants. Practically the only in°uence that the existence of instabilities had on the con¯guration of the F-1
was on the form of axial ba²es attached to the face of the injector at the head end of the motor; and on
the details of the injector which in°uenced the interactions between the jets of fuel and oxidizer. Once the
general form of injector had been chosen|impinging jets of fuel and oxidizer|the number of variables was
signi¯cantly reduced. Nevertheless, considerable freedom in the details of the injector remained. Conse-
quently, development of the F-1 from October 1962 to September 1966 involved more than 3200 full-scale
tests. Approximately 2000 of those tests were conducted as part of Project First, the program carried out
to solve the problems arising with combustion instability in the F-1.
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During Project First, the global geometry of the chamber and nozzle was not a matter of concern; we
shall assume the geometry as given and essentially ¯xed. Three basic injectors were initially examined, all
involving impinging jets. All showed spontaneous instabilities, that is, unacceptable oscillations without any
external disturbances. Figure 1.3 shows a typical pressure trace taken at the beginning of the program.
Because it was known that ba²es were e®ective for reducing the sort of transverse oscillations observed,
a con¯guration was chosen with thirteen compartments on the injector face, formed by barriers oriented
normal to the face of the injector, extending about 7.6 cm. downstream from the injector face. Figure 1.4(b)
is a picture of the injector, about one meter in diameter.

Figure 1.3. Pulses of the injected fuel stream in the F-1 engine (Oefelein and Yang 1993).

An informative collection of simpli¯ed pictures of the various sorts of injection elements was published
by Rocketdyne, Inc. (Jaqua and Ferrenberg 1989), reproduced here in Figure 1.5. The con¯gurations are of
course sketched in simpli¯ed forms, but one important point is quite clear. If the formation of sheets and
clouds of unlike drops depends on impingement of jets or liquid streams, then one expects the process to be
sensitive to perturbations, particularly when there is a component of the disturbance normal to the plane of
the sheet. Hence the e®ectiveness of ba²es of the sort shown in Figure 1.4(b) is related to the shadowing of
the injected streams.

~19'

(a)

~ 40"

(b)

Figure 1.4. (a) The F-1 engine and (b) the face of the injector showing the fourteen ba²es
(Oefelein and Yang 1993).
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Figure 1.5. Injection elements commonly used in liquid rockets (Jaqua and Ferrenberg 1989).

The example of the F-1 and experience with reducing the combustion instability forms a basic canonical
case. As shown in Figure 1.3, the instability had a frequency of about 440 Hz. and amplitudes greater
than the mean chamber pressure in the chamber without ba²es, but about 65% of the mean pressure in
the chamber with ba²es. Hence development proceeded with the ba²es in place. Changes in the details
of the injector design|such as hole sizes and the angles of impingement of the jets|eventually eliminated
resurging. A method of pulsing or `bombing' was then used to assess the stability of an injector, rated
according to the damping time of a pulse. The procedure was entirely empirical since no theory existed
(and still doesn't). During this stage, the phenomenon of `resurging' was often observed as an instability,
an example is shown in Figure 1.6. However, by November 1965, the engine exhibited acceptable damping
times (c. 45 ms or less) following pulse amplitudes of acceptable magnitude. Figure 1.7 shows an example
obtained with a °ight quali¯ed injector subjected to a 13.5 grain bomb.
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Figure 1.6. Resurging subsequent to a bomb-induced perturbation (Oefelein and Yang 1993).

Figure 1.7. Decaying pressure induced initially by a pulse from a 13.5 grain bomb (Oefelein
and Yang 1993).

There seems little doubt that the mechanisms for the instabilities were understood quite well in broad
outline, if not in quantitative detail, for this kind of injector. Stretching downstream from the face of the
injector there were three fairly well-de¯ned regions. The ¯rst contains the spray fans generated by the
injection jets; the next contains fuel drops breaking up and vaporizing; and the last, where only vapor exists,
may be characterized by mixture ratio variations in space. Imposition of time-dependent properties, notably
pressure and velocity, produces °uctuations of properties which in turn can generate °uctuations of the local
burning rate. Thus all three regions can contribute to the tendency to instability.

The F-1 provides an example of an instability in a liquid oxygen (LOX) hydrocarbon (HC) system with
injectors based on impinging jets. As the experience suggests, the con¯guration having jets impinging on
one another seems to be quite sensitive to external perturbations. It appears for example, that the jets could
be misaligned rather easily, leading possibly to an instability. Hence many designers have favored coaxial
injectors, but it is not our purpose here to make a case for any particular kind of injector, which in any
case may depend on the propellants in question. Perhaps the most common form of injector in general is
based on coaxial °ow; examples producing jets with and without swirl are shown in Figure 1.8. Summaries
of recent research on coaxial injection elements in the context of combustion instabilities have been given by
Hulka and Hutt (1995). They also give a good summary of U.S. experience from the late 1950s to the early
1990s.

An entirely di®erent form of injector was introduced by TRW, Inc. for the lunar descent module of the
Apollo vehicle; it was invented by G.W. Elverum at Caltech's Jet Propulsion Laboratory, and later developed
at TRW (Elverum et al. 1967). The need for a throttleable engine was satis¯ed by a pintle design, sketched
in Figure 1.9. Figure 1.10 is a photograph of a cutaway model of the engine. Thrust could be varied from
1000 to 10,000 pounds by moving the pintle.

The engine gained a deserved reputation for stability. Figure 1.11 shows the decay several pulses in a
test of the engine at TRW. As a result of such testing, the engine has been widely viewed as `absolutely'
stable. However it is important to realize that one can state only that the engine is acceptably stable for
the fuel and oxidizer used (nitrogen tetroxide and A-50, a 50/50 mixture of hydrazine and unsymmetrical
dimethylhydrazine, called UDMH) and for a certain range of operating conditions. Limitations have been
shown on more than one occasion, to the embarrassment of test program managers.
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(a) (b)

Figure 1.8. Simpli¯ed forms of coaxial injectors. (a) pure shear coaxial element; (b) coaxial
element producing swirl (Hulka and Hutt 1995).

Figure 1.9. Pintle injector in the lu-
nar excursion module (LEM) descent
engine of the Apollo vehicle (Harrje
and Reardon 1972).

Figure 1.10. Cutaway display model
of the mixing head of the TRW pin-
tle engine (courtesy of Jack L. Cherne,
TRW retired).

Instability problems also arose during development of the Space Shuttle main engine (SSME), which
developed 500K pounds of thrust, but the di±culties were overcome. Three SSMEs are used on the Shuttle.
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Figure 1.11. Decay of pulses injected in the TRW LEM engine (Harrje and Reardon 1972).

Figure 1.12 is a drawing of the engine showing the coaxial elements and the oxidizer elements serving also
as ba²es.

Figure 1.12. Cutaway drawing of the main injector assembly of the Space Shuttle main
engine (Courtesy of Rocketdyne, Inc.).

Russian experience with combustion instabilities in liquid rockets was not well-known in the West until
the 1990s although some publications were available, e.g. Natanzon (1984) which later appeared in English
translation. The propulsion community in the U.S. generally did not learn of Russian research concerned
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(a) (b)

Figure 1.13. The RD-0110 engine (a) general view of the basic engine; (b) the injector
face (Rubinsky 1995).

with operational rockets until the conference held at Pennsylvania State University in 1993 (\Liquid Rocket
Engine Combustion Instability", 1995). Subsequently an updated English translation of Natanzon's work
appeared (Natanzon 1999). That work o®ers a good coverage of some fairly recent Russian work as well as
a useful summary of many topics basic to the dynamics of liquid rockets. Russian experimental work on
instabilities in liquid engines is covered in the book by Dranovsky (2006).

Rubinsky (1995) published what is likely the ¯rst thorough account of Russian experience with a problem
of combustion instability in a liquid rocket engine, the RD-0110. The system used coaxial injectors (referred
to as \bipropellant centrifugal atomizers") supplying liquid oxygen and a hydrocarbon fuel; the engine
produced 67,000 pounds of thrust with a chamber pressure of 1000 psi. Chamber diameter is 7.1 inches,
length 10.6 inches and throat diameter 3.3 inches. Figure 1.13 shows the engine and the face of the injector.
The engine was used in the Soyuz vehicle with four motors powering the upper stage, Figure 1.14.

Extended development work eventually reduced the instability to a problem occurring once out of about
300 thrust chambers. It was a problem from ignition to 0.1 seconds or so. Installation of longitudinal ribs
made of combustible felt solved the problem; Rubinsky (1995) describes the matter in detail. Figure 1.15
shows a chamber with ribs.

1.2.2. Combustion Instabilities in Thrust Augmentors. The situation in respect to instabilities
in afterburners3 seems to have changed little in fundamental respects in more than 20 years. Early work

3Increased thrust was obtained from early gas turbines by adding a second combustion chamber downstream of the turbine.
The exhaust of the turbine is oxidizer rich, limitations being set on the mixture ratio for combustion (i.e., temperature) according
to material properties. All of the °ow entering the inlet then passed through both combustors; the second combustor was
conventionally called an afterburner. With the development of bypass engines, the 'afterburner' received some air which had
not passed through the main combustor. Hence the device became known as a 'thrust augmentor', referring to its purpose to
augment the thrust, without implying the source of air.
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Figure 1.14. Four RD-0110 engines
mounted in the upper stage of the
Soyuz vehicle (Rubinsky 1995).

Figure 1.15. RD-0110 engine cut-
away to show combustible ribs in-
tended to attenuate a tangential mode
(Rubinsky 1995).

showed that high-frequency oscillations (`screech') could be treated over fairly broad operating conditions
by installing passive suppression devices|usually acoustic liners|and by adjusting the distribution and
scheduling of the injected fuel. Problems increased as high-bypass engines were developed because the large
annular °ow passages allowed waves to propagate upstream to the compressor. As a result, instabilities
occurred with longer wavelengths and hence lower frequencies (Bonnell et al. 1971; Kenworthy et al. 1974;
Ernst 1976; Underwood et al. 1977; Russell et al. 1978). Figure 2.54 is a sketch showing an example of an
augmented engine which exhibited low-frequency instabilities. Because considerable e®ort|and cost|has
been spent to try to reduce or eliminate instabilities in augmentors by passive means, the subject will be
examined in Chapter 8. See also Section 2.4.4.

Low frequencies are not easily attenuated, so modi¯cations in the supply system and appropriate sched-
uling of the fuel injection are the main strategies for treating these modes. In any case, it appears that all
afterburners are subject to operational constraints set by the need to avoid combustion instabilities. Both
because of the operational constraints and because of the high costs incurred during development to give
current operating envelopes, combustion instability in afterburners remains an attractive subject of research.

Broadly, then, the inevitable appearance of instabilities has led to a basic general strategy followed
generally in the development of new afterburners. To the greatest extent possible, acoustic liners are installed
in the lateral boundaries. These are e®ective for attenuating relatively high frequency oscillations historically
called 'screech.' Such vibrations normally involve °uctuations in planes transverse to the axis of the burner,
so the liners on the case of the burner work quite well.

Oscillations in the direction of °ow are in general much more di±cult to eliminate. In fact their presence
seems often to set operating limits on the afterburner. Those limitations occur mainly in two regions of
the basic operating envelope: at lower Mach numbers and high altitude; and at high Mach number and low

COMBUSTION INSTABILITIES IN PROPULSION SYSTEMS 

1 - 14 RTO-AG-AVT-039 

 

 



altitude. The limits are found from ground tests of the engine, a signi¯cant development cost for a new
engine.

In general, current information for instabilities in afterburners is unavailable. The most recent work
reported in the open literature deals with possible use of active control mainly to widen the operating
envelope. An example of modest success at Rolls-Royce has been reported by Moran et al. (2001).

1.2.3. Combustion Instabilities in Ramjet Engines. Instabilities in liquid-fueled ramjet engines
are similar in many respects to those in afterburners, an example of the general property that the character
of the oscillations is determined largely by the types of propellants used and the geometry of the chamber. In
both systems, the steady combustion processes are stabilized behind blu® °ameholders. Hence with suitable
interpretation, many results of research are applicable to both types of systems. In the late 1970s and 1980s,
research programs on combustion instabilities in ramjet engines were initiated by several western countries
(see, for example, Hall 1978; Culick 1980; Culick and Rogers 1980; Clarke and Humphrey 1986; Humphrey
1987; Sivasegaram and Whitelaw 1987; ZetterstrÄom and SjÄoblom 1985; Biron et al. 1987; Culick and Schadow
1989). Figure 1.16 is a sketch of a stylized combustor representing the sort of con¯guration commonly used
in liquid-fueled ramjets.

Figure 1.16. Stylized con¯guration of a liquid-fueled ramjet (United Technologies Corp. 1978).

Possibly the most interesting and fundamental result of work during that period was demonstration
of the importance of coupling between acoustical motions and large coherent vortex structures shed by a
rearward facing step or a °ameholder, ¯rst emphasized by Byrne (1981, 1983). That phenomenon, with or
without combustion processes, arises in many situations and will likely long continue to be the subject of
research. Problems associated with generation of unsteady vorticity and vortex shedding arise in all types
of combustors. Much e®ort has been expended in this area, a subject that will arise often in this text.

A typical example is that investigated thoroughly in the dump combustor at Caltech (Smith, 1985;
Sterling, 1987; Zsak, 1993; Kendrick, 1995). Figure 1.17 is a sketch of the con¯guration, in which the °ow is
subsonic throughout, with premixed gaseous reactants introduced from a plenum chamber and exhausting
to the atmosphere. Even for liquid-fueled ramjets, vaporization of the fuel often occurs so rapidly that
combustion downstream of the dump plane occurs in a gaseous mixture. The general character of the
stability diagram for this geometry has been found in other experimental programs as well: for a given °ow
rate, the most intense oscillations occur in the vicinity of stoichiometric proportions of the fuel oxidizer.

The waveform and spectrum for the limiting behavior of an unstable oscillation are shown in Figure
1.18. Evidently the spectrum consists of a small number of peaks imbedded in a background of `noise'
spread over the entire frequency range covered. In this respect the motion seems to be dominated by two

COMBUSTION INSTABILITIES IN PROPULSION SYSTEMS 

RTO-AG-AVT-039 1 - 15 

 

 



Figure 1.17. The Caltech dump combustor.

oscillations having frequencies 530 Hz. and 460 Hz. and subharmonics. Estimates based on the assumption
of axial acoustic motions have shown (Sterling 1987; Sterling and Zukoski 1987, 1991; Zsak 1993) that the
two oscillations are normal modes of the system. Explanation of the nonlinear mechanism responsible for
the sub-harmonics has not been given. It is interesting and signi¯cant that the `noise' exhibited in the
spectrum seems to appear as a kind of random modulation of the amplitude of the waveform reproduced
in Figure 1.18(a). That interpretation is supported by the approximate analysis of nonlinear acoustics and
noise covered here in Chapter 7.

(a) (b)

Figure 1.18. Waveform and spectrum for an instability in the Caltech dump combustor.

Although this example is special, it does illustrate the chief features of combustion instabilities generally:
well-de¯ned organized oscillations within an apparently random ¯eld, normally called noise. It is quite
common that there are more peaks in the spectra than appear in Figure 1.18(b), and that the frequencies
tend to be close to those of the normal acoustics modes of the chamber in question. The quantitative aspects
vary widely, but the physical behavior suggested by these results broadly de¯nes the general problem to be
addressed by the theory.

The dump combustor has been a favored con¯guration for laboratory tests having a variety of forms and
purposes. We will appeal often to results of such tests. Particularly, the con¯guration is prone to generate
large vortices generated in various forms, a widely studied phenomenon. The dump combustor continues to
be a favorite con¯guration for research as well as applications. Early work by Schadow and his colleagues
has been extended by many followers. (Schadow et al. 1981, 1983, 1984, 1985, 1987a, b)
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1.2.4. Combustion Instabilities in Gas Turbines. Until fairly recently, combustion instabilities in
gas turbines had received much less attention than in other systems. We distinguish here main combustors
from afterburners which have always exhibited troublesome oscillations. Traditionally, and it is still true,
relatively little information has been available about such instabilities in practical systems, for proprietary
reasons. However it is probably true for several reasons, mainly relatively large acoustic losses in the
combustors, that until fairly recently serious combustion instabilities had been quite rare in gas turbines.

The situation changed with increased emphasis on reducing air pollution. At about the same time, the
use of gas turbines for stationary power generation increased. Thus serious concern with any development
problems also increased and was not so restricted by proprietary considerations owing to the widespread
implications. A strategy for reducing emission of a major pollutant, NO, is to lower the average tempera-
ture at which primary combustion occurs, in accordance with the Zel'dovich mechanism for producing NO
(Zel'dovich et al. 1985). Unfortunately, at lower temperatures achieved by operation at lower local values
of fuel/air ratio, the processes stabilizing the °ame are less stable and tend to encourage the excitation of
oscillations.

As a result, during the past ten{twelve years combustion instabilities have become a serious problem
in the development of stationary power generation systems based on combustion, mainly of hydrocarbon
fuels. That is not a subject central to this book but the problems are in some cases similar and the methods
discussed here are applicable. The subject of combustion instabilities in gas turbines has become important
for very practical reasons, but basic problems remain unsolved. Chapter 9 is an abbreviated discussion of
instabilities and their active control in gas turbines.

1.2.5. Combustion Instabilities in Solid Propellant Rocket Motors. Instabilities in solid pro-
pellant rockets were the ¯rst examples discovered, as early as the late 1930s. For reasons which will become
clear in this book, unsteady motions in full-scale solid propellant motors and in laboratory devices have
probably been the subject of more research than in any other type of system. Accordingly, much of our
approach to understanding instabilities in combustion chambers generally can be traced to experiences with
solid rockets. An excellent authoritative summary of the research and practical sides of the subject is the
short historical article by Price (1992).

Since the late 1950s, serious concern with instabilities in solid propellant motors has been sustained by
problems arising in both small (tactical) and large (strategic and large launch systems) rockets. The volume
of collected papers compiled and edited by Berle (1960) provides a good view of the state of the ¯eld at the
end of the 1950s in Western countries. The level of activity remained high and roughly unchanged through
the 1960s, due entirely to the demands of the Cold War: The use of solid rocket boosters in systems for
launching spacecraft, and for changing trajectories, came later. During the 1950s and 1960s strong emphasis
was already placed on sub-scale and laboratory tests, a strategy dictated at least partly by the large costs
of full-scale tests. As a result, more is understood about combustion instabilities in solid rockets than for
other systems. Moreover, methods and viewpoints developed by the solid rocket community have strongly
in°uenced the approaches to treating combustion instabilities in other systems. The theory developed in
this book is an example of that trend.

Many earlier cases exist of combustion instabilities in solid rockets, but a particularly striking example
arose in the late 1960s and was documented in the AIAA/ASME Joint Propulsion Meeting in 1971. It was a
problem with the third stage of the Minuteman II launch vehicle that initially motivated considerable research
activity during the following decade, sponsored largely by the Air Force Rocket Propulsion Laboratory. The
causes of three failures in test °ights had been traced to the presence of combustion instabilities. Thorough
investigation showed that although oscillations had been present throughout the history of the motor, a
signi¯cant change occurred during production, apparently associated with propellant Lot 10. A record of
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the pressure during a °ight test is given in Figure 1.19. The broadening of the trace is due to the presence
of `high' frequency oscillations, close to 500 Hz. Figure 1.20 shows the main observable features.

Figure 1.19. Flight test record of pressure in a Minuteman II, stage 3.

The oscillations existed during the ¯rst ¯fteen seconds of every ¯ring and always had frequency around
500 Hertz. Whatever had occurred with production Lot 10 caused the maximum amplitudes of oscillations
to be unpredictably larger in motors containing propellant from that and subsequent lots. The associated
structural vibrations caused failures of a component in the thrust control system.

This example exhibits several characteristics common to many instances of combustion instabilities in
solid rockets. In test-to-test comparisons, frequencies are reproducible and amplitudes show only slight
variations unless some change occurs in the motor. Any changes must be of two sorts: either geometrical,
i.e. the internal shape of the grain; or chemical, consequences of variations in the propellant. Chemical
changes, i.e. small variations in the propellant composition, are most likely to a®ect the dynamics of the
combustion processes and indirectly other physical processes in the motor. That is apparently what happened
in the Minuteman.

Between production of propellant Lots 9 and 10, the supplier of aluminum particles was changed, be-
cause the original production facility was accidentally destroyed. The new aluminum di®ered in two respects:
shapes of the particles, and the proportion of oxide coating on individual particles. Testing during investi-
gation of the instability led to the conclusion that consequent changes in the processes responsible for the
production of aluminum oxide products of combustion generated smaller particle sizes of Al2O3. The smaller
sizes less e®ectively attenuated acoustic waves; the net tendency to excite waves therefore increased. As a
result, the motors were evidently more unstable and also supported larger amplitudes of oscillation. The
second conclusion was purely speculative at the time of the investigation, but can now be demonstrated
with the theory covered in this book. Nevertheless, the details explaining why the change in the aluminum
supplied led eventually to the signi¯cant changes in the combustion products remain unknown.

Subsequent to the Minuteman problem, the Air Force Rocket Propulsion Laboratory supported a sub-
stantial program of research on many of the most important problems related to combustion instabilities
in solid rockets. Broadly, the intellectual centroid of that program lay closer to the areas of combustor
dynamics and combustion dynamics than to the detailed behavior of propellants. The synthesis, chemistry,
and kinetics of known and new materials belonged to programs funded by other agencies in the U.S. and in
Europe, notably ONERA in France. By far most of the related work in Russia has always been concerned
with the characteristics and combustion of propellants, with relatively little attention to the dynamics of
combustors.

Investigations and problems of combustion instability in solid rockets have been far more numerous and
widespread than for any other system. It is likely an accurate statement that more is generally understood
about the problem of oscillations in combustors because of work done to treat the problem in solid rockets.
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Figure 1.20. Frequencies and amplitudes of combustion instabilities in the Minuteman
II, stage 3 motor: (a) change of behavior after Lot 1-10 (Fowler and Rosenthal 1971); (b)
frequencies and amplitudes measured during static tests (Bergman and Jessen 1971).

We will mention only a few examples here and refer to others where appropriate in the following text. As
Figure 1.2 suggests, much had been accomplished prior to the Minuteman problem. A useful selection of
papers was given in a session at the AIAA/ASME Joint Propulsion Meeting, 1971.

In the late 1960s and 1970s there was considerable e®ort in the U.S. to \solve" the problem of instabilities
in solid rockets. Similar research was carried out in Europe, especially in France. Considerable progress
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was made, both theoretically|notably the foundation of a method for analyzing nonlinear behavior|and
experimentally, especially methods to measure the response function of solid propellants improved at several
U.S. companies, at the Naval Air Warfare Center, China Labs (NAWC) and at ONERA in France. But
problems of instabilities in motors continued to arise without prediction.

At that time it was known that there remained some di±culties with the theory and serious compu-
tational restrictions. That is true as well today although progress continues to be made. The most recent
large research program devoted to the subject in the U.S. was the Multidisciplinary University Research
Initiative (MURI), \Investigations of Novel Energetic Materials to Stabilize Rocket Motors." Although the
research was primarily concerned with properties and behavior of energetic propellants, some of the work
necessarily was devoted to general problems of time-dependent combustion. One conclusion, con¯rming once
again previous work, is that there is no method giving accurate and widely useful results for the propellant
response function. An idea of how di±cult the problem is may be gained from the fact that at least ¯ve
methods have been used, several extensively, and none has been found satisfactory for all purposes.

There seems to be general agreement that for most practical purposes the T-burner serves best. This
device, sketched in Figure 1.21, in principle gives data for the response of a small °at sample of propellant
to a pressure oscillation. Variants have been devised to give results for the response to velocity °uctuations,
with only modest success. First discussed by Price and So®eris (1958), by far most work with the T-burner
has been done at NAWC. Price (1992) has given the most authoritative summary of instabilities in solid
rockets, including the development of T-burners. The most recent discussions of T-burners have been given
by Blomshield et al. (1996) and Blomshield (2000).

Exhaust

Exhaust

Exhaust

(a)  Basic T-Burner  

(b)  Pulsed T-Burner 

(c)  T-Burner with Variable Area Test Samples 

Pulser

Figure 1.21. A sketch of the basic T-burner and two variants.

Blomshield (2001) has also compiled a large list of examples of instabilities in operational motors. Figure
1.22 taken from that work is an impressive array of motors that have exhibited instabilities. The examples
cover more than 45 years.
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Figure 1.22. A partial summary of U.S. solid propellant motors (1951{1997) having prob-
lems of combustion instabilities (Blomshield 2001).

Not covered in the summary just cited is the case which has generated more e®ort than any other in the
recent past|the Ariane 5 Booster. Both the Shuttle and the Ariane 5 booster motors exhibited relatively
low level longitudinal oscillations. However, the excursions of pressure in the Ariane 5 have consistently been
larger and due to installations of counter-measures, may have cost payload.4 The problem has motivated a
large amount of very good research and has led to the discovery of a new source of pressure waves called
\parietal vortex shedding" discussed further in the following section. Whereas the sort of vortex shedding
already mentioned, and commonly found in combustors, occurs at edges, parietal vortex shedding arises
when vortices are formed near a boundary through which °ow enters a volume. Computations and several
tests in laboratory devices of established reality of the phenomenon. It appears, however, that disagreement
still exists concerning the importance of parietal vortex shedding in the full-scale Ariane 5.

As the research activities related speci¯cally to solid rockets decreased during the 1980s and new pro-
grams began for liquid-fueled systems, the communities, previously quite separate, grew closer together.

4As part of the vehicle design|before the ¯rst tests|mechanical damping devices were installed between the booster
motors and the main vehicle. The problem is particularly bothersome in practice because for odd acoustic modes, there is a
large ampli¯cation factor (about ten for the Ariane 5) relating fractional thrust oscillations to fractional pressure oscillations.
(P. Kuentzmann, private communication.)
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For example, prompted by contemporary concern with problems in ramjets, a workshop sponsored by JAN-
NAF (Culick 1980) was organized partly with the speci¯c intention to bring together people experienced in
the various propulsion systems. During the 1980s there was considerable interchange between the various
research communities and since that time, a signi¯cant number of people have worked on both solid and
liquid-fueled systems. That shift in the sociology of the ¯eld has provided the possibility and much of the
justi¯cation for this book. Events of the past decade have con¯rmed that the ¯eld of combustion instabilities
is very usefully approached as a uni¯cation of the problems arising in all systems.

In Europe during the 1990s, work on combustion instabilities in solid propellant rockets was motivated
largely by low frequency oscillations in the booster motors for the Ariane 5. The most intensive and compre-
hensive recent work in the U.S. has been carried out in two Multidisciplinary University Research Initiatives
(MURI) involving 15 di®erent universities (Culick 2002a, Krier and Hafenrichter 2002). An unusual charac-
teristic of those programs, active for six years beginning in 1995, was the inclusion of coordinated research
on all aspects of problems of combustion instabilities in solid propellant rockets, from fundamental chemistry
to the internal dynamics of motors. Results of recent works will be covered here in the appropriate places.

1.3. Mechanisms of Combustion Instabilities

The simplest and most convenient characterization of an unstable oscillation is expressed in terms of the
mechanical energy of the motion. Linear theory produces the result that the rate of growth of the amplitude
is proportional to the fractional rate of change of energy, the sum of kinetic and potential energies. The
idea is discussed further in the following section. What matters at this point is that the term `mechanism'
refers to a process that causes transfer of energy to the unsteady motion from some other source. Thus,
mechanisms form the substance of the feedback path in Figure 1.1. Generally there are only three sorts
of energy sources for unsteady motions in a combustor: the combustion processes; the mean °ow, which of
course itself is caused by combustion; and a combination of combustion and mean °ow simultaneously acting.
The distinction is important because the physical explanations of the energy transfer are very di®erent in
the three cases.

Just as for steady operation, the chief distinctions among combustion instabilities in di®erent combustors
must ultimately be traceable to di®erences in geometry and the states of the reactants. The root causes,
or `mechanisms', of instabilities are imbedded in that context and are often very di±cult to identify with
certainty. Possibly the most di±cult problem in any particular case is to quantify the mechanism. Solving
that problem requires ¯nding an accurate representation of the relevant dynamics.

1.3.1. Mechanisms in Liquid-Fueled Rockets. Combustion instabilities ¯rst became a serious prob-
lem in liquid rockets and remain a matter of basic concern during development. The chief mechanisms remain
those known for many years, associated with the propellant feed system; the injection system; the processes
required for conversion from liquid to gas; and combustion dynamics. There seem to be no examples caused
primarily by vortex shedding, mean °ow/acoustics interactions, or convective waves (of entropy or vorticity).

Figure 1.23 is a broad summary of the main processes taking place in a liquid rocket combustion chamber
(Culick and Yang 1993) The listing and categorization serves only as a rough general guide. Particular
situations may introduce additional processes.

In order to construct a dynamical model of a combustion chamber, it is necessary to place the processes
of Figure 1.23 in space. This is not the occasion to pursue that matter in detail, which must in any case
be done for each given design. Figure 1.24, adapted from Bazarov (1979), conveys the general idea. One
approach to analyzing linear stability is based on combining the transfer functions according to a diagram
like Figure 1.24. Then the problem may be posed in the manner of feedback control theory. Each process
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Figure 1.23. An approximate schematic summary of the important rate processes in a
liquid rocket combustor (Culick and Yang 1993).

suggested or alluded to in Figure 1.23 must then somehow be represented by a transfer function. That may
be a di±cult and complicated task particularly due to the coupling between the processes.

Figure 1.24. A simpli¯ed diagram for the dynamics of a liquid rocket engine (adapted
from Bazarov 1979).
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The mechanisms causing instabilities di®er in detail, and perhaps grossly, depending on the type of sys-
tem. Generally there are three types of system depending on the choice of reactants: liquid oxygen/hydrogen
(LOX/H) typi¯ed by the engines RL-10, J-2, Space Shuttle main engine (SSME), and the Vulcain (Euro-
pean Space Agency); liquid oxygen/hydrocarbon (LOX/HC) of which some examples are the Apollo F-1,
the Atlas, and the RD-0110 (Russian); and those systems using storable propellants such as those based on
nitrogen tetroxide (N2O4) as the oxidizer with fuels commonly hydrazine, monomethylhydrazine (MMH) as
in the French Viking motor in the Ariane 1-4, and unsymmetrical dimethylhydrazine (UDMH). The TRW
pintle engine which was used in the Lunar Descent Vehicle is perhaps the most famous engine using storable
propellants.

For a given choice of reactants, the most signi¯cant in°uence on the instabilities is the injection system.
In this context the main classes of injectors are impinging jets; shear and swirl coaxial injectors; showerheads;
and impinging sheets. Changes of the geometry may produce a large variety of injectors, many of which are
shown in Figure 1.5. Each of these devices exhibits its own mechanism for instability, possibly di®erent in
important respects, and subtly dependent on operating conditions. It is not possible to o®er generalizations.
Figure 1.25 suggests the variety of mechanisms that may arise in a coaxial injector.

Figure 1.25. A sketch showing some of the processes taking place in a coaxial injector
(Vingert et al. 1993).

1.3.2. Sensitivity of Combustion Processes; Time Lags. Combustion processes are sensitive to
the macroscopic °ow variables, particularly pressure, temperature and velocity. Even slow changes of those
quantities a®ect the energy released according to rules that can be deduced from the behavior for steady
combustion. In general, however, representations of that sort, based on assuming quasi-steady behavior,
are inadequate. Combustion instabilities normally occur in frequency ranges such that genuine dynamical
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behavior is signi¯cant. That is, the transient changes of energy release do not follow precisely in phase with
imposed changes of a °ow variable such as pressure.

The simplest assumption is that the combustion processes behave as a ¯rst order dynamical system
characterized by a single time delay or relaxation time. That idea was apparently ¯rst suggested by von
Karman as a basis for interpreting instabilities discovered in early experiments with liquid propellant rockets
at Caltech (Summer¯eld 1941). That representation, which came to be called the `n¡¿ model' was developed
most extensively by Crocco and his students at Princeton during the 1950s and 1960s. Time delays may be
due, for example, to processes associated with ignition of reactants. Subsequent to injection as the reactants
°ow downstream, ¯nite times may be required for vaporization, mixing, and for the kinetics mechanism to
reach completions. Both e®ects may be interpreted as a convective time delay. Under unsteady conditions,
the initial state of the reactants, their concentrations, pressure, and velocity, also °uctuate, causing the delay
time to be both nonuniform in space and in time. As a result, the rate of energy release downstream in the
chamber is also space- and time-dependent, and acts as a source of waves in the combustor.

In the case of liquid-fueled systems, interactions of the injected streams, formation of sheets and break-up
into drops are processes sensitive to pressure and particularly velocity °uctuations. Those are purely °uid-
mechanical processes impossible to treat analytically and pose extremely di±cult problems for numerical
simulations. No complete numerical analyses exist and only much simpli¯ed models have been used in
numerical simulations of combustion instabilities. The dynamics of a combustion system are not likely to be
well-represented by an n¡ ¿ model.

If a time-lag model is used, either further modeling and calculations must be carried out, or an assumption
must be made for the dependence of the time lag on frequency. It is usual that the time lag is assumed
constant. Then the response of the system exhibits unrealistic resonances as the frequency increases. An
example is shown later in Figure 2.20 for combustion of a solid propellant. Realistic behavior is found only
by taking the lag itself to be a function of frequency. The choice is largely arbitrary unless the physical basis
for the model is improved.

Purely gaseous-fueled systems present possibilities for di®erent physical models that also leads to ¯rst-
order behavior. It is an old idea that even in complicated geometries, combustion in a non-premixed system
must occur at least partly in elements of di®usion °ames. If the gaseous reactants are premixed then in
simple con¯gurations such as tubes, or dump combustors, combustion may occur in large stable °ame sheets
of the °ow is laminar, or in fragments of premixed `°amelets' when the °ow is turbulent. In all of these cases
it is reasonable to anticipate that at any given time the rate of energy release is roughly proportional to the
area of the °ame sheets. Then °uctuations of the velocity or processes responsible for ignition and extinction,
will cause °uctuations of the energy release rate. Models of this process lead to an equation representing
¯rst order behavior (For example, see Poinsot et al. 1988; Candel et al. 1992; McManus et al. 1993; Dowling
1995; Annaswamy et al. 2000).

The approximation of ¯rst order behavior fails entirely for the dynamics of burning solid propellants
(Culick 1968). Although in good ¯rst approximation dominated by unsteady heat transfer in the condensed
phase, a di®usive process, the combustion dynamics in this case exhibits behavior closer to that of a second
order system. The frequency response of that burning rate tends normally to have a large broad peak centered
at a frequency falling well within the range of the frequencies characteristic of the chamber dynamics. Hence
there is a clear possibility for a resonance and instability suggested by the diagram in Figure 1.1.

1.3.3. Vortex Shedding and Vortex/Mean Flow Interactions. Generation of oscillations by the
average °ow is due to causes roughly like those active in wind musical instruments. In all such cases, °ow
separation is involved, followed by instability of a shear layer and formation of vortices. Direct coupling
between the vortices and a local velocity °uctuation associated with an acoustic ¯eld is relatively weak; that
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is, the rate of energy exchange is in some sense small. However, the interaction between the velocity (or
pressure) °uctuation and the initial portion of the shear layer is normally a basic reason that feedback exists
between the unsteady ¯eld in the volume of the combustor and vortex shedding.

Figure 1.26 conveys the idea of one way in which shed vortices may excite oscillations. The local
acoustic velocity ¯eld determines the times at which individual vortices are shed at an edge. By some means
of coupling, the vortices then act to generate an acoustic ¯eld, but with a lag between the shedding and
generation processes. The acoustic ¯eld so generated is local and the process of ¯lling the chamber is another
matter. However, it seems to be generally true that acoustic ¯elds generated by vortex shedding are never
as intense as the stronger ¯elds produced by the combustion processes directly.

Byrne (1981, 1983) seems to have been ¯rst to suggest that vortex shedding could be responsible for
instabilities observed in dump combustors. The idea was developed very actively in the 1980s, both in
systems operating at room temperature without combustion (Schadow et al. 1981, 1983, 1984, 1985) and in
combustors (Schadow et al. 1985, 1987a, 1987b).

Acoustic
Field

Shedding
Process Shed

Vortices

Acoustic Field Generated
by Coupling between Shed
Vortices and the Existing

Acoustic Field

u

Figure 1.26. Generation of an acoustic ¯eld by vortex shedding.

Unsteady combustion in vortices was one of the early mechanisms proposed as a cause of combustion
instabilities in combustors using blu® body °ameholders (Kaskan and Noreen 1955, Marble and Rogers
1956). It was essentially re-discovered in the 1980s during tests of dump combustors (Smith and Zukoski
1985; Daily and Oppenheim 1986; Sterling and Zukoski 1991, for example). Several attempts have been made
to quantify the mechanism with analysis (Norton 1983; Karagozian and Marble 1986) and with numerical
simulations (Laverdant and Candel 1988; Samaniego and Mantel 1999). Insu±cient progress has been made
to construct a model suitable for general analysis of combustion instabilities. Thus there is currently no
basis for predictions of combustor dynamics excited by this mechanism, although there are recent simpli¯ed
attempts for special situations by Matveev and Culick (2002, 2003a) and by Matveev (2004) . Special cases
have been discussed in connection with particular experimental results; see, for example, Sterling 1993 and
Sections 2.3.4 and 2.3.5.

It has long been known experimentally that vortices shed in a chamber more e®ectively generate acoustic
waves if they impinge in an obstacle downstream of their origin (Flandro and Jacobs, 1975; Culick and
Magiawala, 1979; Nomoto and Culick, 1982; Flandro, 1986). The ¯rst practical examples of this phenomenon
were found in the solid rocket booster for the Shuttle launch system in the 1970s and the Titan motor (Brown
et al. 1981, 1985). It was that problem that motivated the works just cited, but since then vortex shedding
has been recognized as a mechanism for generating acoustic oscillations in other systems as well, notably
the booster motors on the Space Shuttle and on the Ariane 5. A particularly good summary and discussion
of the subject has recently been given by Vuillot and Casalis (2002). Owing to their involvement with a
problem of pressure oscillations in the Ariane 5 booster motors, the authors focus special attention on a very
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di®erent form of vortex shedding. Laboratory tests and numerical simulations have established the existence
of a process called `parietal vortex shedding' in which large coherent vortices grow out of the region of shear
near a surface through which °ow enters the chamber. The °ow can either be issuing from a burning solid
propellant or may be the °ow inward of °uid through a permeable boundary.

It happens that the amplitudes of oscillations in the Ariane motors are signi¯cantly greater than those
found in the Space Shuttle booster motors. In the latter case, vortices are de¯nitely created by instability
of the shear layer formed in °ow past an obstacle. The reasons for the di®erence in amplitudes in the
two cases may be due to di®erences in geometry. One proposal rests on special conditions in the Ariane,
possibly encouraging \parietal vortex shedding", but the problem is not satisfactorily resolved. Parietal
vortex shedding involves growth of vortices initiated in the region adjacent to a transpiring surface, such as
a burning solid.

1.3.4. Operation Near the Lean Blow-Out Limit. Combustion instabilities have not historically
been a serious problem in gas turbine main combustors. Although instabilities have certainly been observed
for many years, they have not been persistently troublesome. Due to proprietary considerations almost no
detailed results for full-scale machines have been made public, a situation that has recently been changing.
In the past few years combustion instabilities have become a serious problem in gas turbines because of the
need to operate close to the lean blowout limit of premixed gaseous reactants as part of the strategy to
reduce generation of pollutants, notably NOx.

As the operating condition approaches the lean blowout limit, combustion processes (`°ame dynamics'),
including °ame stabilization, are more sensitive to °uctuations than under operation at higher mixture
(F=O) ratios. The sensitivity extends to °ame fronts and zones as well as to the stabilization processes,
shear layers and recirculation zones. The latter, associated with injection and stabilization, may possess
multiple dynamical states, i.e. special bifurcations and hysteresis.

The dynamical behavior of the premixer and injection devices may contribute to instabilities in various
ways. Internal resonances, for example, may be excited by oscillations in the chamber, causing perturbations
of the energy released in the combustion processes downstream of the injector. There may also be undesirable
coupling between elements of an array of premixers and injectors. Such dynamical behavior may also be
turned to advantage to extend the operating range of stable operation. That strategy was successfully
pursued on several occasions in the Russian liquid rocket community.

It is likely that °uctuations of the mixture or fuel/oxidizer ratio (F=O) play an important role in the
dynamics of gas turbine combustors (Lieuwen et al. 2001). If the F=O ratio of the reactants is at all sensitive
to conditions in the combustion chamber, there is an obvious feedback path connecting the combustor
and combustion dynamics. The possibility has arisen previously in other combustion systems, but at least
anecdotal evidence has suggested that serious attention must be paid to °uctuations of mixture ratio as a
fundamental mechanism for instabilities in gas turbines.

There is considerable evidence that the ratio of a \convective timescale" and the dominant acoustic
period (1/f) may be the determining parameters, or at least an important one, governing mixture ratio
°uctuations in a given situation. Lieuwen et al. (2001) and Cohen et al. (2003) have given particularly useful
discussions of the matter. Unfortunately the situation is clouded because the ¯rst case, shown in Figure 1.27,
is a discussion of an axisymmetric con¯guration and the second, Figure 1.28, is concerned with experiments
using a two-dimensional dump combustor. The ratio ¿cf was around unity or less for the tests with the
con¯guration shown in Figure 1.27, but two or greater for the two-dimensional combustor, Figure 1.28.
It seems that explanations of the observed behavior are more convincing when considered separately than
when taken together. There is no single reasoning, no matter how lengthy, that explains satisfactorily the
observations. The actual case, like the others treated here, is too complicated for such a simple result.
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Figure 1.27. A form of axisymmetric
lean premixed combustor (Lieuwen et
al. 2001).

Figure 1.28. A typical 2-D dump
combustor (Cohen et al. 2003).

Much remains to be learned about instabilities in gas turbines, although the subject has been greatly
clari¯ed in the past 10{12 years. We will not cover the material thoroughly in this volume, mainly because
we are concerned primarily with other types of systems which are of more concern for the applications most
signi¯cant for aerospace systems. Moreover, the causes of instabilities in gas turbines to a large extent
seem to be distinct from those in rockets, afterburners and ramjets. In the most fundamental sense, that
conclusion is perhaps illusory. Chapter 9 is devoted to a largely qualitative discussion of some of the recent
topics addressed in work on instabilities in gas turbines.

1.3.5. Mechanisms in Solid-Fueled Rockets. No disagreement exists that the predominant mecha-
nisms for instabilities in solid propellant rockets is the sensitivity of burning surfaces to pressure and velocity
°uctuations. A large part of Chapter 2 is devoted to the basic essentials, including, in Section 2.2, a de-
tailed derivation of the simplest response of a burning surface to pressure °uctuations. During the past ¯ve
decades, a great amount of resources has been consumed in an e®ort to develop methods for measuring the
response. Success, however, has been spotty and far short of what is required both for practical and for
research purposes. It is an outstanding problem in the ¯eld that merits continued work, especially to devise
a new method.

Quite a di®erent mechanism also exists, involving the shedding of large vortices and subsequent excitation
and interactions with acoustic waves. Vorticity/acoustic coupling is actually a relatively widely recognized
mechanism, not only in solid rockets, because its existence does not rest on combustion processes. The
importance of vortex shedding in dump combustors, the usual con¯guration of ramjet engines, has long
been established as a major mechanism. Thus, if one is concerned with the possibility that the process is
important in a solid propellant motor, attention should be paid to the characteristics of the phenomenon in
ramjets. The point is not, of course, that the two sorts of situations are in some sense the 'same' but there
are similarities and much may be learned from comparisons of results. No such comparative studies exist.

Partly because a solid propellant rocket cannot be repeatedly tested in the same manner as other systems,
more attention has been given combustion instabilities in this kind of combustor than for any other. It is
possible, but not likely, that any important mechanisms of instabilities have been overlooked or are unknown.
The practical problem, as we will see, is quantifying the contributions well enough to obtain good results.

1.3.6. Combustion Dynamics. Except for instabilities sustained by the purely °uid mechanical mech-
anism of vortex shedding, all practical cases of combustion instabilities involve combustion dynamics in some
form. It is hardly an exaggeration to claim that understanding combustion dynamics is ultimately the most
important fundamental problem in the subject of combustion instabilities. Broadly the term refers to the
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property possessed by any chemically reacting system that the rate at which energy is released is sensitive,
i.e. responds, to the rates of change of pressure, temperature, density and mixture ratio. For solid and
liquid propellants, the combustion dynamics is usually more conveniently expressed in terms of the rate of
conversion of the condensed phase to gaseous combustion products.

In the limit of small changes (i.e. for linear behavior), dynamical response functions for combustion
systems are entirely analogous to transfer functions used in the subject of controls. They are fundamental
to analysis of the stability of combustion systems and to application of the principles of feedback control.

Introduction of response functions as general de¯nitions is part of the basis on which combustion in-
stabilities, or, more widely, the dynamics of combustion systems, can be investigated and understood with
minimal appeal to the particulars of the combustion dynamics of a speci¯c type of system. However, ap-
plications of the theory require close attention to the details of the system at hand. Modeling combustion
dynamics on theoretical grounds only carries serious limitations due to the complexities of the systems.
Hence experimental methods and, to an increasing extent, numerical simulations are essential to treating
combustion instabilities in practical systems.

1.4. Physical Characteristics of Combustion Instabilities

Owing to the di±culty of making direct measurements of the °ow ¯eld within a combustion chamber,
virtually all that is known about combustion instabilities rests on close coordination of experiment and
theory. The subject is intrinsically semi-empirical, theoretical work being founded on observational data
both from full-scale machines and laboratory devices. Conversely, the theoretical and analytical framework
occupies a central position as the vehicle for planning experimental work and for interpreting the results. The
chief purposes of this section are to summarize brie°y the most important basic characteristics of observed
instabilities; and to introduce the way in which those observations motivate the formulation of the theoretical
framework.

In tests of full-scale propulsion systems, only three types of data are normally available, obtained from
pressure transducers, accelerometers, and strain gauges. Measurements of pressure are most direct but are
always limited, and often not possible when the necessary penetration of the enclosure to install instruments is
not allowed. Hence the unsteady internal pressure ¯eld is often inferred from data taken with accelerometers
and strain gauges. In any case, because it is the fundamental variable of the motions, the pressure will serve
here as the focus of our discussion.

Figure 1.29 shows examples of pressure records from measurements taken with three di®erent solid
propellant rockets. They show many of the features commonly observed for combustion instabilities. The
transient records 1.29 (a) and (b) exhibit the exponential growth characteristic of a linear instability. That
behavior is most clearly exposed by plotting the logarithm of the peak values versus time, giving a straight
line because p » e®t means log p » ®t. The result is of course not precise because the oscillation is not
a pure sinusoidal motion and indeed, the case 1.29(b) shows development of steep fronts, often preceding
evolution into approximately triangular waveforms accompanied by an increase in the average burning rate
and chamber pressure. In any case, the transient growth usually slows and the oscillation becomes a limit
cycle possibly containing several frequencies. Figure 1.29(c) is an example showing behavior often observed
for instabilities in solid rockets for which the best measurements of transients have been made.

Figure 1.30 shows details of a test record taken during ¯ring of a full-scale solid rocket. Development
of steep waves and higher harmonics are clearly evident. Note also the rise of mean pressure accompanying
the appearance of higher harmonics at time D. As shown also in Figures 1.29 (b) and (c), that is not an
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(a)

(b) (c)

Figure 1.29. Transient growths and \limit cycles" of combustion instabilities.

unusual occurrence. In the case giving the records shown in Figure 1.30, the instability was eliminated with
a change of the internal con¯guration, consistent with the ideas pursued in this book.

Figure 1.30. Growth of a nonlinear instability in a solid rocket showing the unsteady
pressure. Note the increased spectral content of the signal as the amplitude increases.
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A convenient and quickly informative method of displaying characteristics of an unstable ¯ring is the
\waterfall" plot, of which examples are shown in Figures 1.31 and 1.32. Spectra for a sequence of times are
plotted on the same axes, the vertical axis serving as the measure of pressure as well as indicating the time
intervals at which the spectra are taken. Figure 1.31 is the waterfall plot starting early in the test of a stable
motor. A test having an instability, such as that shown in Figure 1.30 is reproduced in Figure 1.32.

Figure 1.31. A waterfall plot taken
during a stable ¯ring (Brown 1995).

Figure 1.32. A waterfall plot show-
ing an instability, having fundamental
frequency < 200 Hz but with develop-
ing components at higher frequencies
(Brown 1995).

The cases chosen here have been examples of fully developed instabilities. The well-de¯ned peaks re°ect
the clear presence of several frequencies in the waves, the larger amplitudes occurring at the lower frequencies,
as commonly happens. A substantial background of broad-band noise is of course always present due to
turbulent °uctuations of the °ow, noise emission by combustion processes, and possibly other unsteady
motions such as °ow separation. Some recent laboratory tests have shown that the level of noise depends on
the presence and amplitude of combustion instabilities, but the cause is unknown and no such observations
exist for full-scale combustors.

Much of this book is devoted to understanding the origins of the behavior illustrated by the examples in
Figures 1.3, 1.6, 1.7, 1.29 and 1.30. The classical theory of acoustics has provided the basis for understanding
combustion instabilities since early recognition that some unexpected observations could be traced to pressure
oscillations. Many basic results of classical acoustics have been applied directly and with remarkable success
to problems of instabilities. It is often taken for granted that well-known acoustics formulas should be
applicable|their use can in fact be justi¯ed on fundamental grounds. However, in the ¯rst instance, it is
surprising that they work so well, because the medium is far from the ideal uniform quiescent gas assumed
in the classical acoustics of resonating chambers.

On the other hand, non-classical behavior is not di±cult to ¯nd. It has been ¯rmly established with
tests using both liquid and solid rockets that instabilities involving \subcritical bifurcations" are common.
That is, a combustor may be stable to small disturbances but may exhibit an instability if subjected to a
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su±ciently large disturbance. An example of such behavior for a liquid rocket has been cited with Figures
1.6, 1.7 and 1.11. Figure 1.33 shows a typical result found for solid rockets. The subject of subcritical
bifurcations is discussed in Section 7.11.

Figure 1.33. A severe pulsed instability in a solid rocket; an example of a subcritical
bifurcation (Blomshield 2001).

A combustion chamber contains a non-uniform °ow of chemically reacting species, often present in
condensed as well as gaseous phases, exhausting through a nozzle that is choked in rockets, ramjets, and
afterburners. Moreover, the °ow is normally turbulent and may include regions of separation. Yet estimates
of the frequencies of oscillations computed with acoustics formulas for the natural modes of a closed chamber
containing a uniform gas at rest commonly lie within 10{15 percent or less of the frequencies observed for
combustion instabilities, if the speed of sound is correctly chosen.

There are three main reasons that the classical view of acoustics is a good ¯rst approximation to wave
propagation in combustion chamber: (1) the Mach number of the average °ow is commonly small, so
convective and refractive e®ects are small; (2) if the exhaust nozzle is choked, incident waves are e±ciently
re°ected, so for small Mach numbers the exit plane appears to be nearly a rigid surface; and (3) in the
limit of small amplitude disturbances, it is a fundamental result for compressible °ows that any unsteady
motion can be decomposed into three independent modes of propagation, of which one is acoustic (Chu
and Kovazsnay 1956). The other two modes of motion are vortical disturbances, the dominant component
of turbulence, and entropy (or temperature) waves. Hence even in the highly turbulent non-uniform °ow
usually present in a combustion chamber, acoustic waves behave in good ¯rst approximation according to
their own simple classical laws. That conclusion has simpli¯ed enormously the task of gaining qualitative
understanding of instabilities arising in full-scale systems as well as in laboratory devices.

Of course, it is precisely the departures from classical acoustics that de¯ne the class of problems we
call combustion instabilities. In that sense, this book is concerned chie°y with perturbations of a very old
problem, standing waves in an enclosure. That point of view has signi¯cant consequences; perhaps the
most important is that many of the physical characteristics of combustion instabilities can be described and
understood quite well in a familiar context. The remainder of this chapter is largely an elaboration of that
conclusion.

The most obvious evidence that combustion instabilities are related to classical acoustic resonances
is the common observation that frequencies measured in tests agree fairly well with those computed with
classical formulas. Generally, the frequency f of a wave equals its speed of propagation, a, divided by the
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wavelength, ¸:

f =
a

¸
(1.1)

On dimensional grounds, or by recalling classical results, we know that the wavelength of a resonance or
normal mode of a chamber is proportional to a length, the unobstructed distance characterizing the particular
mode in question. Thus the wavelengths of the organ-pipe modes are proportional to the length, L, of the
pipe, those of modes of motion in transverse planes of a circular cylindrical chamber are proportional to the
diameter, D, and so forth. Hence (1.1) implies

f » a

L
longitudinal modes

f » a

D
transverse modes

(1.2)a,b

There are two basic implications of the conclusion that the formulas (1.2)a,b, with suitable multiplying
constants, seem to predict observed frequencies fairly well: evidently the geometry is a dominant in°uence
on the special structure of the instabilities; and we can reasonably de¯ne some sort of average speed of
sound in the chamber, based on an approximation to the temperature distribution. In practice, estimates
of a use the classical formula a =

p
°RT with T the adiabatic °ame temperature for the chemical system

in question, and with the properties ° and R calculated according to the composition of the mixture in the
chamber. Usually, mass-averaged values, accounting for condensed species, seem to be close to the truth. If
large di®erences of temperature exist in the chamber, as in a °ow containing °ame fronts, nonuniformities
in the speed of sound must be accounted for to obtain good estimates of the frequencies.

Even for more complicated geometries, notably those often used in solid rockets, when the simple formulas
(1.2)a,b are not directly applicable, numerical calculations of the classical acoustic motions normally give
good approximations to the natural frequencies and pressure distributions. Thus quite generally we can
adopt the point of view that combustion instabilities are acoustical motions excited and sustained in the
¯rst instance by interactions with combustion processes. That the classical theory works so well for estimating
frequencies and distributions of the unsteady motions means that computation of those quantities is not a
serious test of a more comprehensive theory. What is required ¯rst of a theory of combustion instabilities is
a basis for understanding how and why combustion instabilities di®er from classical acoustics.

In particular, two global aspects of minor importance in much of classical acoustics, are fundamental to
understanding combustion instabilities: transient characteristics and nonlinear behavior. Both are associ-
ated with the property that with respect to combustion instabilities, a combustion chamber appears to an
observer to be a self-excited system: the oscillations appear without the action of externally imposed forces.
Combustion processes are the sources of energy which ultimately appear as the thermal and mechanical
energy of the °uid motions. If the processes tending to dissipate the energy of a °uctuation in the °ow are
weaker than those adding energy, then the disturbance is unstable.

1.5. Linear Behavior

When the amplitude of a disturbance is small, the rates of energy gains and losses are usually proportional
to the energy itself which in turn is proportional to the square of the amplitude of the disturbance; the
responsible processes are said to be linear because the governing di®erential equations are linear in the °ow
variables. An unstable disturbance then grows exponentially in time, without limit if all processes remain
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linear. Exponential growth of the form A0e
®t, where A0 is the amplitude of the initial small disturbance,

is characteristic of the initial stage of an instability in a self-excited system, sketched in Figure 1.34(a). In
contrast, the initial transient in a linear system forced by an invariant external agent grows according to
the form 1 ¡ e¡¯t, shown in Figure 1.34(b). The curve e®t is concave upward and evolves into a constant
limiting value for a physical system only if nonlinear processes are active. However, the plot of 1¡ e¡¯t is
concave downward and approaches a limiting value for a linear system because the driving agent supplies
only ¯nite power.
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Figure 1.34. Transient behavior of (a) self-excited linearly unstable motions; (b) forced motions.

Data of the sort sketched in Figure 1.34 leave no doubt that the unstable motions in combustion chambers
are self-excited, having the characteristics shown in Figure 1.34(a). The physical origin of this behavior is
the dependence of the energy gains and losses on the motions themselves. For combustion instabilities,
the `system' is the dynamical system whose behavior is measured by the instrument sensing the pressure
oscillations. Thus, in view of earlier remarks, the dynamical system is in some sense the system of acoustical
motions in the chamber coupled to the mean °ow and combustion processes (recall Figure 1.1).

It is a fundamental and extremely important conclusion that by far most combustion instabilities are
motions of a self-excited dynamical system. Probably the most signi¯cant implication is that in order to
understand fully the observed behavior, and how to a®ect and control it, one must understand the behavior
of a nonlinear system. When the motion in a combustion chamber is unstable, except in unusual cases of
growth to destruction, the amplitude typically settles down to a ¯nite value: the system then executes a
limiting motion, usually a periodic limit cycle. For practical applications, it is desirable to know how the
amplitude of the limit cycle depends on the parameters characterizing the system. That information may
serve as the basis for changing the characteristics to reduce the amplitude, the goal in practice being zero.
In any case, good understanding of the properties of the limit cycle will also provide some appreciation for
those variables which dominate the behavior and to which the motions may be most sensitive, a practical
matter indeed.

Our global view, then, is that a combustion instability is an oscillatory motion of the gases in the
chamber, which can in ¯rst approximation be synthesized of one or more modes related to classical acoustic
modes. The mode having lowest frequency is a `bulk' mode in which the pressure is nearly uniform in space
but °uctuating in time. Because the pressure gradient is everywhere small, the velocity °uctuations are
nearly zero. This mode corresponds to the vibration of a Helmholtz resonator obtained, for example, by
blowing over the open end of a bottle. The cause in a combustion chamber may be the burning process
itself, or it may be associated with oscillations in the supply of reactants, caused in turn by the variations
of pressure in the chamber. In a liquid rocket, structural oscillations of the vehicle or the feed system may
also participate, producing the POGO instability (Rubin 1966; Dordain, Lourme, and Estoueig 1974).
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Structural vibrations of a solid rocket are not normally in°uential in that fashion, but an instability
of the bulk mode (there is only one bulk mode for a given geometry) has often been a problem in motors
designed for use in space vehicles. In those cases, the term L*-instability has been used because the stability
of the mode is predominantly a function of the L* of the motor and the mean pressure (Sehgal and Strand
1964). The instability is associated with the time lag between °uctuations of the burning rate and of mass
°ux through the nozzles: That time lag is proportional to the residence time, and hence L*, for °ow in the
chamber. L*-instabilities occur in motors quali¯ed for space °ight because they arise in the lower ranges of
pressure at which such rockets operate.

Whatever the system, most combustion instabilities involve excitation of the acoustic modes, of which
there are an in¯nite number for any chamber. The values of the frequencies are functions primarily of the
geometry and of the speed of sound, the simplest examples being the longitudinal and transverse modes of
a circular cylinder, with frequencies behaving according to (1.2)a,b. Which modes are unstable depends on
the balance of energy supplied by the exciting mechanisms and extracted by the dissipating processes. We
consider here only linear behavior to illustrate the point.

In general the losses and gains of energy are strongly dependent on frequency. For example, the attenu-
ation due to viscous e®ects typically increases with the square root of the frequency. Other sources of energy
loss associated with interactions between the oscillations and the mean °ow tend to be weaker functions of
frequency. That is the case, for example, for re°ections of waves by a choked exhaust nozzle. The gains of
energy usually depend in a more complicated way on frequency.

The sources of energy for combustion instabilities, i.e. the mechanisms responsible for their existence,
present the most di±cult problems in this ¯eld. For the present we con¯ne our attention to qualitative
features of energy exchange between combustion to unsteady motions. For example, the magnitude of the
energy addition due to coupling between acoustic waves and combustion processes for a solid propellant
normally rises from some relatively small quasi-steady value at low frequencies, passes through a broad
peak, and then decreases to zero at high frequencies. Recent experimental results suggest that °ames may
exhibit similar behavior (for example, Pun 2001). Energy is transferred to a pressure oscillation having a
particular frequency at a rate proportional to the part of the coupling that is in phase with the pressure at
that frequency.5 Figure 1.35 is a schematic illustration of this sort of behavior.

In Figure 1.35, the gains exceed the losses in the frequency range f1 < f < f2. Modes having frequencies
in that range will therefore be linearly unstable. An important characteristic, typical of combustion chambers
generally, is that in the lower ranges of frequency, from zero to somewhat above the maximum frequency
of instability, the net energy transfer is a small di®erence between relatively larger gains and losses. That
implies the di±culty, con¯rmed by many years' experience, of determining the net energy °ow accurately.
Unavoidable uncertainties in the gains and losses themselves become much more signi¯cant when their
di®erence is formed. That is the main reason for the statement made earlier that analysis of combustion
instabilities has been useful in practice chie°y for predicting and understanding trends of behavior rather
than accurate calculations of the conditions under which a given system is unstable. The ultimate source
of all of these di±culties is the fact, cited in Section 1.1, that the motions in question consume and contain
only small portions of the total energy available within the system. Hence in both laboratory tests and in
operational systems one is confronted with the problem of determining the characteristics of essentially small
disturbances imbedded in a complicated dynamic environment.

The best and most complete data illustrating the preceding remarks have been obtained with solid
propellant rockets. There are several reasons for that circumstance. First, the ignition period | the time to
cause all of the exposed propellant surface to begin burning | is relatively short and the average conditions in

5It is possible, due to the behavior of the phase, that in a range of high frequencies the combustion processes may in fact
extract energy from the acoustic waves and hence contribute to the losses of energy.
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Figure 1.35. Qualitative dependence of (a) energy gains and losses; and (b) the frequency
response of a combustor.

the chamber quickly reach their intended values. Unless oscillations are severely unstable, and grow rapidly
during the ignition transient, there is a good opportunity to observe the exponential growth characteristic
of a linear instability. The measurements shown in Figure 1.29 are good examples.

Secondly, it is probably true that more e®ort has been spent on re¯ning the measurements and predictions
of linear stability for solid rockets than for other systems because of the expense and di±culty of carrying out
replicated tests. There is no practical routine way of interrupting and resuming ¯rings, and it is the nature
of the system that an individual motor can be ¯red only once. Particularly for large motors used in space
launch vehicles, successive ¯rings involve great expense. Development by empirical trial-and-error is costly
and there is considerable motivation to work out methods of analysis and design applicable to individual
tests.

In contrast, liquid-fueled systems can be ¯red repeatedly. Trial-and-error has long been a strategy for
development of both liquid rockets and air-breathing systems. It seems that attention in that sort of work
has generally been focused on modi¯cations to reduce amplitudes (as in `bombing' tests) rather than on
determining the stability of small-amplitude motions. Very little data exists for values of growth constants,
and most of those results have been obtained for model or sub-scale laboratory devices. There are examples
of stability boundaries inferred from `bombing' tests of the sort mentioned earlier and theoretical results
exist, but there seem to be no investigations comparable to those carried out for solid rockets. A Standard
Stability Prediction (SSP) program has been available for solid rockets for 25 years (Lovine et al. 1976,
Nickerson et al. 1983) and is now the subject of a development program (French 2003); no such product in
a general form exists for liquid rockets or for other propulsion systems.

We have already noted in Section 1.2 that much progress was achieved in analyzing and understanding
combustion instabilities in solid rockets from the late 1960s into the 1980s when there was little work on
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liquid rockets. During that period, computing resources, microprocessors, and therefore techniques of data
acquisition and processing advanced enormously. Hence by comparison with the situation for solid rockets,
the subject of combustion instabilities in liquid-fueled systems, especially liquid rockets, did not bene¯t as
greatly from the general progress of supporting technologies. That situation is changing. Naturally, the
problem of instabilities in gas turbines has only relatively recently been subject to widespread attention and
therefore has not su®ered the same historical de¯ciencies.

Finally, liquid or gaseous fueled systems are intrinsically more di±cult to analyze and understand because
of the more complicated chemical processes and coupling with the unsteady °ow ¯eld. It is true that
combustion of a heterogeneous solid propellant containing many ingredients, often including a metal, is very
complicated indeed and far from completely understood in general. However, from the point of view of
treating combustion instabilities, there is the great advantage that under most conditions, virtually all of the
signi¯cant combustion processes are completed within a thin zone near the solid propellant itself. Coupling
to the unsteady °ow ¯eld may therefore be represented as a boundary condition. Combustion of liquid
fuels is necessarily distributed throughout the volume of the chamber. Making accurate approximations
to the spatial dependence is di±cult, requiring quite careful treatment of many rate processes, including
chemical kinetics and transfer of energy between liquid and gaseous phases. The elementary dynamics of
the combustion processes are poorly understood relative to the situation for solid rockets.

1.5.1. Gains and Losses of Acoustic Energy; Linear Stability. It is a general result of the theory
of linear systems that if a system is unstable, a small disturbance of an initial state will grow exponentially
in time:

amplitude of disturbance » e®gt (1.3)

where ®g > 0 is called the growth constant. If a disturbance is linearly stable, then its amplitude decays
exponentially in time, being proportional to e¡®dt and ®d > 0 is the decay constant. The de¯nition (1.3)
implies that for a variable of the motion, say the pressure, having maximum amplitude p̂0 in one cycle of a
linear oscillation:

p0(t) = p̂0e®g(t¡t0) (1.4)

where p̂0 is the amplitude at time t = t0. Then if p
0
1, p

0
2 are the peak amplitudes at time t1, t2,

p̂2
p̂1
=
p0(t = t2)
p0(t = t1)

=
e®g(t2¡t0)

e®g(t1¡t0)
= e®g(t2¡t1) (1.5)

The logarithm of (1.5) is

log
p̂2
p̂1
= ®g(t2 ¡ t1) (1.6)

In practice, t2 ¡ t1 is usually taken equal to the period ¿ , the time between successive positive (or negative)
peaks. Then the logarithm of the ratio p̂2=p̂1 for a number of pairs of successive peaks is plotted versus the
time t1 or t2 at which the ¯rst or second peak occurs. The line is straight, having slope ®g. Figure 1.36
shows a good example of both exponential growth and decay of pressure oscillations. The measurements
were taken in a small laboratory device, a T-burner.

Whatever the system, the analytical treatment of linear stability is essentially the same. There is really
only one problem to solve: ¯nd the growth and decay constants, and the frequencies of the modes. Determin-
ing the actual mode shapes is part of the general problem, but is often not essential for practical purposes.
Typically, both the frequency and the mode shape for small-amplitude motions in a combustion chamber
are so little di®erent from their values computed classically as to be indistinguishable by measurement in
operating combustors. By \classical" we mean here a computation according to the equations of classical
acoustics for the geometry at hand, and with account taken of large gradients in the temperature, which
a®ect the speed of sound. The presence of combustion processes and a mean °ow ¯eld are not accounted for
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Figure 1.36. Exponential growth and development of a limit cycle out of a linearly unstable
motion (Perry 1968).

explicitly, but it may be necessary, for satisfactory results, to include a good approximation to the boundary
condition applied at the exhaust nozzle, particularly if the average Mach number is not small.

Hence the linear stability problem is really concerned with calculations of the growth and decay constants
for the modes corresponding to the classical acoustic resonances. An arbitrary small amplitude motion can,
in principle, be synthesized with the results, but that calculation is rarely required for practical applications.
Results for the net growth or decay constant have been the central issue in both theoretical and practical
work. In combustors, processes causing growth of disturbances and those causing decay act simultaneously.
Hence an unstable disturbance is characterized by a net growth constant that can be written ® = ®g ¡ ®d.
Because the problem is linear, the growth constants can quite generally be expressed as a sum of the
contributions due to processes accounted for in the formulation, as for example:

® := ®g ¡ ®d = (®)combustion + (®)nozzle + (®)mean °ow + (®)condensed + (®)structure + ¢ ¢ ¢ (1.7)

The labels refer to processes of interaction between the acoustic ¯eld and combustion, the nozzle, the
mean °ow, condensed species, the containing structure, : : : . Structural interactions comprise not only the
vibrations mentioned earlier as a necessary part of the POGO instability, but also quite generally any motions
of mechanical components, including propellant. For example, in large solid propellant rockets, motions of
the viscoelastic material of the grain may be a signi¯cant source of energy losses through internal dissipation
(McClure, Hart and Bird 1960a).

The stability boundary|the locus of parameters marking the boundary between unstable (® > 0) and
stable (® < 0) oscillations|is de¯ned by ® = 0 in (1.7). That statement is a formal statement of the physical
condition that the energy gained per cycle should equal the energy lost per cycle:

®g = ®d (1.8)

Usually the main source of energy is combustion and in terms of the contributions shown in (1.7), this
relation becomes

(®)combustion = ¡(®)nozzle ¡ (®)mean °ow ¡ (®)condensed ¡ (®)structure (1.9)

There are situations in which the acoustic/mean °ow interactions may provide a gain of energy. That is,
energy is transferred from the average °ow to the unsteady motions (as happens, for example, in wind
instruments and sirens), but there is no need to consider the matter at this point.
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As simple as it appears, equation (1.7) de¯ning ®, and its special form (1.8) de¯ning the stability
boundary, are basic and extremely important results. There is no evidence, for any propulsion system,
contradicting the view that these results are correct representations of actual linear behavior. Di±culties in
practice arise either because not all signi¯cant processes are accounted for, or, more commonly, insu±cient
information is available to assign accurately the values of the various individual growth or decay constants.

As examples, Figure 1.37 shows stability boundaries for longitudinal oscillations in a gas-fueled labora-
tory rocket motor (Crocco, Grey, and Harrje 1960) and Figure 1.38 shows the results of calculations for a
large, solid propellant rocket (Beckstead 1974). Those examples illustrate the two uses mentioned above for
the formula (1.9). In the case of the gas-¯red rocket, the calculations contained two parameters not known
from ¯rst principles, namely n and ¿ arising in the time-delay model of the interactions between combustion
and the acoustic ¯eld. All other parameters de¯ning the geometry and the average °ow ¯eld were known.
The purpose of the work was to compare the calculations with measurements of the stability boundary to
infer values of n and ¿ .
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Figure 1.37. Stability boundaries for a laboratory gas-fueled rocket (Crocco, Grey, and
Harrje 1960).

The purpose of the results reproduced in Figure 1.38 was to predict the stability of a full-scale motor
prior to test ¯ring. In that case, all of the parameters appearing in (1.7) must be known. Usually some of
the information is available only from ancillary laboratory tests, notably those required to characterize the
coupling between propellant combustion and the acoustic ¯eld.

Indeed, an important application of the formulas (1.11) and (1.12) is to do exactly that for the laboratory
device called the \T-burner". It is not necessary to restrict attention to the stability boundary if good
measurements of the growth constant can be made. Then if all the losses can be computed, one can ¯nd the
value of the growth constant due to combustion (or, more generally all energy gains) as the di®erence

®combustion = ®¡ ®losses (1.10)

Results for ®combustion can either be adapted for use directly in computing the stability of a motor; or
they can be interpreted with models of the combustion processes to obtain better understanding of unsteady
combustion. That procedure has been used extensively to assess the combustion dynamics of solid propellants
and to investigate trends of behavior with operating conditions and changes of composition.
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The growth constant has a simple interpretation beyond that given by (1.6) as the slope of a semi-
logarithmic plot of the peak amplitudes versus time: twice ® is the fractional rate of change of time-
averaged energy in the classical acoustic ¯eld. We will prove the result more rigorously in Chapter 5 but
this interpretation is so central to all problems of linear stability that it is useful to have it in hand from the
beginning. By the de¯nition of ®, both the pressure and velocity oscillations have the time dependence

p0 » e®t cos!t; u0 » e®t sin!t
multiplied by their spatial distributions. The acoustic energy density is the sum of the local kinetic energy,
proportional to u02, and potential energy, proportional to p02:

K.E. » e2®t cos2 !t; P.E. » e2®t sin2 !t
If we assume that the period of oscillation, ¿ = 2¼=!, is much smaller then the decay rate, 1=®, then the
values of these functions averaged over a cycle of the oscillation are proportional to e2®t. Hence the acoustic
energy density is itself proportional to e2®t. Integrating over the total volume of the chamber we ¯nd that
the total averaged energy hEi in the acoustic ¯eld has the form

hEi = hE0ie2®t (1.11)

where hE0i is a constant depending on the average °ow properties and the geometry. We then ¯nd directly
from (1.11) the result claimed:

2® =
1

hEi
dhEi
dt

(1.12)
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Another elementary property worth noting is that 1=® is the time required for the amplitude of oscillation
to decay to 1=e of some chosen initial value. Also, the fractional change of the peak value in one cycle of
oscillation (t2 ¡ tl = ¿ = 2¼=!) is

jp02j ¡ jp01j = ±jp0jm » e®t1 ¡ e®t2 = e®t2
h
e®(t1¡t2) ¡ 1

i
where j jm denotes the magnitude of the peak amplitude. We assume as above that the fractional change
in one period ¿ is small so

e®(t1¡t2) ¼ 1 + ®(t1 ¡ t2) = 1 + ®¿
The amplitude itself is approximately proportional to e®t2 or e®t1 and we can write the fractional change as

±jp0jm
jp0jm ¼ ®¿ = ®

f
(1.13)

where f is the frequency in cycles per second, f = 1=¿ . The dimensionless ratio f=® is a convenient measure
of the growth or decay of an oscillation. According to the interpretation of 1=® noted above, (1=®)=¿ = f=®
is the number of cycles required for the maximum amplitudes of oscillation to decay to 1=e or grow to e
times an initial value.

The ratio ®=f must be small for the view taken here to be valid. Intuitively, ® must in some sense be
proportional to the magnitude of the perturbations of the classical acoustics problem. We will ¯nd that the
most important measure of the perturbations is a Mach number, ¹Mr, characterizing the mean °ow; for many
signi¯cant processes, ®=f equals ¹Mr times a constant of order unity. Roughly speaking, then, the measured
value of ®=f is an initial indication of the validity of the view that a combustion instability can be regarded
as a motion existing because of relatively weak perturbations of classical acoustics.

1.6. Nonlinear Behavior

It is a fundamental and extremely important conclusion that combustion instabilities are motions of
a self-excited nonlinear dynamical system. Probably the most signi¯cant implication is that in order to
understand fully the observed behavior, and how to a®ect or control it, one must ultimately understand the
behavior of a nonlinear system. When the motion in a combustion chamber is unstable, except in unusual
cases of growth to destruction, the amplitude typically settles down to a ¯nite value: the system then executes
a limiting motion, usually a periodic limit cycle. For practical applications, it is desirable to know how the
amplitude of the limit cycle depends on the parameters characterizing the system. That information may
serve as the basis for changing the characteristics to reduce the amplitude, the goal in practice being zero.
In any case, good understanding of the properties of the limit cycle will also provide some appreciation for
those variables which determine the behavior, and to which the motions may be most sensitive, a practical
matter indeed.

Rarely do the motions in a combustion chamber exhibit clear limit oscillations of the sort commonly
encountered with simpler mechanical systems. A particularly good example of a limit cycle in a T-burner
is shown in Figure 1.36. It appears that combustion devices are subject to in°uences, probably not easily
identi¯ed, that prevent constant frequencies and amplitudes in the limit motions. The motions seem not
to be limit cycles in the strict sense. However, experience gained in the past few years suggests that the
deviations from the well-de¯ned behavior of simpler systems are normally due to secondary in°uences. There
are several possibilities, although not enough is known about the matter to make de¯nite statements. Recent
analysis (Burnley, 1996; Burnley and Culick, 1999) has demonstrated that noise, and interactions between
random and acoustical motions can cause departures from purely periodic limit cycles appearing very similar
to those found in pressure records for operating combustors (Figure 1.39). The random or stochastic motions
are likely associated with °ow separation, turbulence, and combustion noise.
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Figure 1.39. A computed limit cycle and its normalized spectrum executed by a single
nonlinear acoustic mode in the presence of noise (Burnley and Culick 1996).

Probably other causes of departures from strictly periodic limit cycles are associated with the parameters
characterizing steady operation of a combustor; and with `noise' or random °uctuation of °ow variables. As
we have already emphasized, the unsteady motions require only a negligibly small part of the energy supplied
by the combustion processes. Relatively minor variations in the combustion ¯eld, due, for example, to small
°uctuations in the supplies of reactants, may alter the rates of energy transfer to instabilities and hence
a®ect features of a limit cycle. Similarly, adjustments in the mean °ow, notably the velocity ¯eld and
surface heat transfer rates, will directly in°uence the unsteady ¯eld. Laboratory experiments clearly show
such phenomena and considerable care is required to achieve reproducible results. In solid propellant rockets,
the internal geometry necessarily changes during a ¯ring. That happens on a time scale much longer than
periods of unsteady motions, but one obvious result is the decrease of frequencies normally observed in tests.
Because there is ample reason to believe that the phenomena just mentioned are not essential to the global
nonlinear behavior of combustion instabilities, we ignore them in the following discussion.

1.6.1. Linear Behavior Interpreted as the Motion of a Simple Oscillator. Intuitively we may
anticipate that nonlinear behavior may be regarded in ¯rst approximation as an extension of the view of
linear behavior described in the preceding section, made more precise in the following way. Measurement of
a transient pressure oscillation often gives results similar to those shown in Figure 1.34(a). The frequency in
each case varies little, remaining close to a value computed classically for a natural resonance of the chamber,
and the growth of the peak amplitude during the initial transient period is quite well approximated by the
rule for a linear instability, e®t. Thus the behavior is scarcely distinguishable from that of a classical linear
oscillator with damping, and having a single degree of freedom. The governing equation for the free motions
of a simple mass (m)= spring (k)= dashpot (r) system is

m
d2x

dt2
+ r

dx

dt
+ kx = 0 (1.14)

It is surely tempting to model a linear combustion instability by identifying the pressure °uctuation, p0, with
the displacement x of the mass. Then upon dividing (1.14) by m and tentatively replacing x by p0, we have

d2p0

dt2
+ 2®

dp0

dt
+ !20p

0 = 0 (1.15)
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where 2® = r=m and the undamped natural frequency is !0 =
p
k=m. The familiar solution to (1.15) has the

form of the record shown in the lower part of Figure 1.34(a), p0 = p̂0e®t cos−t where − = !0
p
1¡ (®=!0)2

and ½̂0 is the value of p
0 at t = 0.

The preceding remarks suggest the course we should follow to investigate the linear behavior of combus-
tion instabilities, and indeed is the motivation behind the general view described earlier. But this is purely
descriptive heuristic reasoning. No basis is given for determining the quantities `mass,' `damping coe±cient,'
and `spring constant' for the pressure oscillation. The procedure for doing so is developed in Chapter 4;
the gist of the matter is the following, a brief description of the method used later to analyze combustion
instabilities.

According to the theory of classical acoustics for a sound wave, we may identify both kinetic energy
per unit mass, proportional to the square of the acoustic velocity u0, and potential energy per unit mass,
proportional to the square of the acoustic pressure p0. The acoustic energy per unit volume is

1

2

Ã
¹½u02 +

p02

¹½¹a2

!
(1.16)

where ¹½ and ¹a are the average density and speed of sound. This expression corresponds to the formula for
the energy of a simple oscillator,

1

2
(m _x2 + kx2) (1.17)

Now consider a stationary wave in a closed chamber. Both the velocity and pressure °uctuations have
spatial distributions such that the boundary condition of no velocity normal to a rigid wall is satis¯ed. Hence
the local pressure p0 in equation (1.15) must depend on position as well as time. However, the frequency
!0 depends on the geometry of the entire chamber and according to equation (1.12), we should be able to
interpret 2® in equation (1.15) as the fractional rate of change of averaged energy in the entire volume.
Therefore, we expect that the parameters m, k, and r implied by the de¯nitions ® = r=2m and !0 = k=m
must be related to properties of the entire chamber. The approximate analysis used in most of this book
is based partly on spatial averaging de¯ned so that the properties ascribed to a particular mode are local
values weighted by the spatial distribution of the mode in question, and averaged over the chamber volume.

Locally in the medium, the `spring constant' is supplied by the compressibility of the gas, and the mass
participating in the motion is proportional to the density of the undisturbed medium. When the procedure
of spatial averaging is applied, both the compressibility and the density are weighted by the appropriate
spatial structure of the acoustical motion. As a result, the damping constant and the natural frequency are
expressed in terms of global quantities characterizing the °uctuating motion throughout the chamber. We
will ¯nd rigorously that in the linear limit, an equation of the form (1.15) does apply, but instead of p0 itself,
the variable is ´n(t), the time dependent amplitude of an acoustic mode represented by

p0n = ¹p´n(t)Ãn(~r) (1.18)

where ¹p is the mean pressure and Ãn(~r) is the spatial structure of the classical acoustic mode identi¯ed by
the index ( )n. Hence the typical equation of motion is

d2´n
dt2

+ 2®n
d´n
dt

+ !2n´n = 0 (1.19)

The constants ®n and !n contain the in°uences of all linear processes distinguishing the oscillation in a
combustion chamber from the corresponding unperturbed classical motion governed by the equation

d2´n
dt2

+ !2n0´n = 0 (1.20)
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if dissipation of energy is ignored. Because damping in a mechanical system causes a frequency shift, the
actual frequency is not equal to the unperturbed value, !n0.

For technical reasons not apparent at this point, it is convenient to regard the linear perturbing process
as a force Fn(´n; _́n) is acting on the `oscillator' and equation (1.19) is written

d2´n
dt2

+ !2n´n = F
L
n (´n; _́n) (1.21)

The superscript ( )L identi¯es the `force' as linear, and for simplicity !2n0 is written !
2
n. We will consistently

use the symbol !n for the unperturbed classical acoustic frequency. If there is no linear coupling between the
modes (typically linear coupling is small), the force FLn consists of two terms, one representing the damping
of the mode and one the frequency shift:

FLn = ¡¢!2n´n + 2®n _́n (1.22)

Equations (1.21) and (1.22) produce (1.19) with !2n replaced by !
2
n +¢!

2
n.

With the above reasoning we have heuristically constructed equation (1.21) as the fundamental equation
for a linear combustion instability corresponding to a classical acoustic mode of the chamber. Its simplicity
masks the fact that a great amount of e®ort is required to determine realistic functions FLn (´n; _́n) applicable
to the motions in a combustion chamber. The approximate analysis developed later provides a framework for
accommodating all linear processes but does not contain explicit formulas for all of them. Most importantly,
there are terms representing interactions between combustion processes and the unsteady motions, but their
computation requires modeling the mechanisms that cause combustion instabilities. Some of the purely
gasdynamical processes, arising with coupling between mean and °uctuating motions, are given explicitly.

According to classical acoustic theory, a closed chamber of gas at rest has an in¯nite number of normal or
resonant modes. The spatial structures (mode shapes) and resonant frequencies are found as solutions to an
eigenvalue problem. A general motion in the chamber, having any spatial structure, can then be represented
as a linear superposition of the normal modes. The process of spatial averaging, leading to equation (1.20),
amounts to representing any motion as an in¯nite collection of simple oscillators, one associated with each
of the normal modes. That interpretation holds as well for equation (1.21) except that now each mode may
su®er attenuation (®n < 0) or excitation (®n > 0). It is this point of view that allows natural extension of
the analysis to nonlinear behavior.

1.6.2. Combustion Dynamics and Stability. Determining the linear stability of a system theo-
retically comes down to computing the value of the constant ®, equation (1.21). With the model of an
instability as a simple oscillator acted upon by a force dependent on the motion, the governing equation for
the amplitude is (1.21). For simplicity, assume only one mode is active and that the driving force is entirely

due to °uctuations of the rate of heat _Q0 provided to the °ow. This type of motion is commonly called a
`thermo-acoustic instability.' In simplest form the equation for the amplitude ´1(t) := ´(t) is

d2´

dt2
+ !21´ = (° ¡ 1)

Z
@ _Q0

@t
ÃdV (1.23)

where Ã(r) is spatial distribution of the pressure for the mode, the `mode shape', de¯ned so the pressure
°uctuation is p0 = ¹p´Ã(r). Derivation of equation (1.23) follows from the procedure worked out in Chapters
3, 4, and 6.

Suppose that the heat release rate is sensitive only to pressure and write its °uctuation as

_Q0 =
_Q0

p0
p0 = Rp0 = ¹pR´Ã (1.24)
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where R is the response function, here having dimensions of inverse time,

[R] =
[Energy=Volume]1t
[Energy=Volume]

= t¡1

Substitution of (1.24) in (1.23) and identi¯cation of ® by comparison of the result with (1.19) leads to a
formula for ®:

d2´

dt2
+ !21´ =

·
(° ¡ 1)¹p

Z
RÃ2dV

¸
d´

dt
= 2®

d´

dt
(1.25)

and ® is proportional to the response function,

® =
° ¡ 1
2

¹p

Z
RÃ2dV (1.26)

The equation governing the amplitude is

d2´

dt2
¡ 2®d´

dt
+ !21 = 0 (1.27)

with solution

´(t) = Ae®t cos(!tt+ Á) (1.28)

where A and Á are constant and !2t = !
2
1 ¡ ®2. Suppose R is a real constant, i.e. the °uctuation _Q0 of the

heat release rate is in phase with the pressure °uctuation p0. If R, and hence ®, is positive, the oscillation
is driven by the response of the heat release to the pressure °uctuations.

This example is the simplest illustration of the direct connection between oscillations in a combustor and
combustion dynamics represented here by a response function. The idea has enormously wide applications
in all of the systems discussed in this book.

1.6.3. Nonlinear Behavior Interpreted as the Motion of a Nonlinear Oscillator. In view of
the observation that measurements often show development of limit cycles like those shown in Figure 1.40,
it is tempting simply to add a nonlinear term to the oscillator equation (1.21) and assume that a combustion
instability involves only a single mode. Thus, for example, we could add to the right-hand side a force
FnLn = c1´

2
n+c2 _́

2
n+c3´n _́n+c4j´nj+ ¢ ¢ ¢ where the constants c1,: : : may be chosen by ¯tting the solution to

data. Culick (1971) showed that quite good results could be obtained with this approach applied to limited
data. Figure 1.40 shows one example. Of course this is a purely ad hoc approach and provides no means of
computing the coe±cients from ¯rst principles.

Following the early result shown in Figure 1.40, Jensen and Beckstead (1972) applied that procedure to
extensive data taken in laboratory devices intended for measuring the characteristics of unsteady burning of
solid propellants. The chief result was that the data could be matched equally well with rather broad ranges
of the constants, and no particular kind of nonlinearity seemed to dominate the motions. Consequently,
representation with a single mode was not successful. Even though analysis of pressure records for limit
cycles often showed relatively small (it seemed) amounts of harmonics of the principle mode, it appeared
necessary to account for two modes at least, with coupling due to nonlinear processes.

In other contexts, that conclusion is surely not surprising. The development of a small amplitude com-
pressive disturbance into a shock wave is the oldest and most familiar example in gasdynamics. Steepening
of a smooth wave arises primarily from two nonlinear in°uences: convection of the disturbance by its own
motion, and dependence of the speed of sound on the local temperature, itself dependent on the wave motion.
A good approximation to the phenomenon is obtained if viscous stresses and heat conduction are ignored.
If the disturbance is regarded as a combination of various modes, the °ow of energy from modes in the low
frequency range to those having higher frequencies is favored by the nonlinear gasdynamic coupling. The
rapid growth of the higher-frequency modes having shorter wavelengths produces the steepening, eventually
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Figure 1.40. An example of ¯tting T-burner data with the model of a simple nonlinear
oscillator (Culick 1971).

limited, in real °ows, by the actions of various e®ects, mainly viscous. In a combustion chamber possible
consequences of nonlinear combustion processes cannot be ignored. For example, there is much evidence ac-
cumulated in recent years that in some small gas-fueled combustors, the combustion processes may dominate
the nonlinear behavior (see, for example, Dowling 1997).

In extreme cases of combustion instabilities, particularly in liquid and solid rockets, the approximately
sinusoidal motions, substantially systems of stationary waves, may be absent or evolve into a di®erent form.
The motions then appear to be weak shock waves, or pulses having measurable width, propagating in the
chamber. Instabilities of that type are commonly produced subsequent to excitation by ¯nite pulses. Figure
1.41 shows examples observed in liquid rockets, typically involving motions mainly transverse to the axis.
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They were discovered relatively early in the development of liquid rockets (e.g. Ross and Datner 1954) and
were identi¯ed as `spinning' transverse modes. Their presence is particularly harmful due to the greatly
increased surface heat transfer rates causing unacceptable scouring of the chamber walls.

Figure 1.41. Steep-fronted waves observed in a liquid propellant rocket motor (Ross and
Datner 1954).

The corresponding cases in solid rockets usually are longitudinal motions. They rarely occur in large
motors and seem to have been ¯rst observed in pulse testing of laboratory motors (Dickenson and Jackson
1963; Brownlee 1960; Brownlee and Marble 1960). An example is reproduced in Figure 1.42 (Brownlee,
1964). Often this sort of instability is accompanied by a substantial increase of the mean pressure, seriously
a®ecting the steady performance of the motors. The primary cause of the pressure rise is evidently the
increased burn rate, although precisely why the rate increases is not well understood. More recently, these
pulsed instabilities have been the subject of successful comparisons between laboratory test results and
numerical simulations (Baum and Levine 1982; Baum, Levine, and Lovine 1988). Figure 1.43 shows an
example of their results.

For combustion instabilities, the situation is very di®erent from that for shock waves in a pure gas
because the processes governing the transfer of energy from combustion to the gasdynamical motions cannot
be ignored and in general depend strongly on frequency. Indeed, it may happen, as seems sometimes to be
the case for combustion of solid propellants, that the coupling may cause attenuation of higher frequencies.
For that reason, the tendency for steepening by the gasdynamics is partially compensated by the combustion
processes, linear or nonlinear. As a result, in a chamber a limit cycle may be formed having very closely the
spatial structure and frequency of the unstable mode (commonly, but not always, the fundamental mode)
and relatively modest amounts of higher modes. It is that behavior that seems to be important in many
combustion problems, explaining in part why the approach taken in the approximate analysis has enjoyed
some success. Put another way, relatively small amounts of higher modes, presumed to arise from nonlinear
behavior, may in fact represent important action by the nonlinear processes.

Naturally the preceding is a greatly simpli¯ed and incomplete description of the events actually taking
place in a given combustion chamber. The essential conclusion that nonlinear gasdynamical processes are
partly augmented and partly compensated by combustion processes seems to be an important aspect of
all combustion instabilities. It appears that the idea was ¯rst explicitly recognized in work by Levine and
Culick (1972, 1974), showing that realistic limit cycles could be formed with nonlinear gasdynamics and
linear combustion processes. Perhaps the most important general implication of those works is that the
nonlinear behavior familiar in °ows of pure nonreacting gases is not a reliable guide to understanding the
nonlinear behavior in combustion chambers.
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Figure 1.42. Steep-fronted waves observed in solid propellant rocket motors (Brownlee 1964).

Figure 1.43. A comparison of observed and simulated steep-fronted waves in a solid pro-
pellant rocket motor. (a) observed; (b) numerical simulation (Baum and Levine 1982).

For nonlinear problems, the governing equations obtained after spatial averaging have the form

d2´n
dt2

+ !2n´n = F
L
n (´n; _́n) + F

NL
n (´i; _́i) (1.29)

where FNLn (´i; _́i) is the nonlinear force depending on all amplitudes ´i, including ´n itself. Thus we may
regard a combustion instability as the time-evolution of the motions of a collection of nonlinear oscillators,
one associated with each of the classical acoustic modes for the chamber. In general the motions of the
oscillators may be coupled by linear as well as nonlinear processes, although linear coupling seems rarely to
be important. The analytical framework established by the dynamical system (1.29) will serve throughout
this book as the primary means for analyzing, predicting, and interpreting combustion instabilities.

Representation of unsteady motions in a combustion by expansion in acoustic modes (`modal expansion')
and application of spatial averaging was ¯rst accomplished by Culick (1961, 1963) using a Green's function.
The work by Jensen and Beckstead cited above motivated extension to nonlinear behavior (Culick 1971 and
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1975). Powell (1968) and Zinn and Powell (1970a, 1970b) ¯rst used an extension of Galerkin's method to
treat nonlinear behavior in liquid rockets; the method was subsequently extended to solid rockets by Zinn
and Lores (1972). In practice, application of a method based on modal expansion and spatial averaging is
normally useful only if a small number of modes is required. Yet there are a large number of experimental
results showing the presence of steep-fronted waves, often su±ciently steep to be interpreted as shock waves.
Hence an analysis of the sort followed here would seem to be quite seriously limited unless one is prepared
to accommodate a large number of modes. That is, one would expect that wave motions exhibiting rapid
temporal changes and large spatial gradients must contain signi¯cant amounts of higher modes. However
as discussion in this book will show, results have also established that due to fortunate phase relationships,
a surprisingly small number of modes serves quite well even to represent many features of waves having
steep fronts. The method gives quite a good approximation to both the limiting motions and the transient
development of disturbances into weak shock waves.

1.7. Analysis and Numerical Simulations of Combustion Instabilities

In this book, the vehicle for uni¯cation is a theoretical/computational framework originating in the late
1960s and early 1970s with treatments of instabilities in liquid rockets (Culick 1961, 1963; Powell 1968;
Zinn and Powell 1968; and Powell and Zinn 1971) and in solid rockets (Culick 1971, 1976). Those analyses
di®ered from previous work mainly in their use of a form of spatial averaging, in some instances related
to Galerkin's method, to replace the partial di®erential equations of conservation by a system of ordinary
di®erential equations. The dependent variables are the time-dependent amplitudes of the acoustic modes
used as the basis for series expansion of the unsteady pressure. It is the process of spatial averaging over
the volume of the chamber that produces a formulation convenient for handling models of widely di®erent
geometries and physical processes. Consequently, in return for the approximate nature of the analysis (for
example, the series must be truncated to a ¯nite number of terms), one obtains both convenience and a
certain generality of applications not normally possible when partial di®erential equations are used directly.
In general form, this approach is applicable to all types of combustors. Di®erent systems are distinguished
by di®erent geometries and the forms in which the reactants are supplied (liquid, solid, gas, slurry, : : : ).
Those di®erences a®ect chie°y the modeling of the dominant physical processes.

Some analysis of combustion instabilities has customarily accompanied experimental work as an aid to
interpreting observations. The paper by Grad (1949) treating instabilities in solid rockets is probably the
¯rst entirely theoretical work dealing with small amplitude acoustical motions in a mean °ow ¯eld with
combustion sources. During the 1950s and 1960s, many theoretical works were published on the subject of
oscillations in solid rockets (e.g. Bird, McClure, and Hart 1963; Cheng 1954, 1962; Hart and McClure 1959,
1965; Cantrell and Hart 1964; Culick 1966) and in liquid rockets (e.g. Crocco 1952, 1956, 1965; Crocco
and Cheng 1956; Reardon 1961; Culick 1961, 1963; Sirignano 1964; Sirignano and Crocco 1964; Zinn 1966,
1968, 1969; Mitchell, Crocco, and Sirignano 1969). It was during that period that the view of a combustion
instability as a perturbation of classical acoustics was ¯rst extensively developed.

Most of the analyses cited in the previous paragraph were restricted to linear problems (those by Sirig-
nano, Zinn and Mitchell are notable exceptions). Their chief purpose was to compute the stability of small
amplitude motions. Indeed, since the earliest works on combustion instabilities, practical and theoretical
considerations were directed mainly to the general problem of linear stability: the reasoning is that if the
system is stable to small disturbances (e.g. associated with `noise' always present in a combustion chamber)
then undesirable instabilities cannot arise. There is a °aw in that reasoning: The processes in a combustion
chamber are nonlinear, so a linearly stable system may in fact be unstable to su±ciently large disturbances.
In any case, oscillations in combustors reach limiting amplitudes due to the action of nonlinear processes.
Hence understanding nonlinear behavior is the necessary context in which one can determine what changes
to the system may reduce the amplitudes. Ultimately, a complete theory, and therefore understanding, must
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include nonlinear behavior, a subject covered at considerable length in this book, largely within the context
cited in the ¯rst paragraph.

Recognition of the practical implications of the de¯ciencies of a view founded on linear behavior motivated
the development of the technique of \bombing" liquid rocket chambers in the 1960s by NASA in its Apollo
program (Harrje and Reardon 1972). The idea is to subject an operating combustion chamber to a succession
of increasingly large disturbances (generated by small explosive charges) until sustained oscillations are
produced. Then the size of the disturbance required to \trigger" the instability is evidently a measure of the
relative stability of the chamber.6 Another measure is the rate of decay of oscillations subsequent to a pulse
injected into a linearly stable system. What constitutes the correct `measure' of relative stability cannot
of course be determined from experiments alone, but requires deeper understanding accessible only through
theoretical work. This is part of the reason that the nonlinear analyses cited above were carried out; also, an
extensive program of numerical calculations was supported (Priem and Hiedmann 1960; Priem and Guentert
1962; Priem and Rice 1968; and other works cited in the summary volume edited by Harrje and Reardon
1972). Owing to the limitations of computing resources at that time, those early numerical calculations
involved solutions to quite restricted problems, commonly sectors or annular regions of chambers. It was
not possible to compute what are now usually called `numerical simulations.' Moreover, the results were
often plagued|and were thus sometimes rendered invalid|by noise in the computations or di±culties with
stability of the numerical techniques (for example, see Beltran, Wright, and Breen 1966).

While the intense activities on instabilities in liquid rockets nearly ceased in the early 1970s, work
on numerical simulation of combustion instabilities in solid rockets began (Levine and Culick 1972, 1974;
Kooker 1974; Baum and Levine 1982). In contrast to the case for liquid rockets, it is a good approximation to
ignore chemical processes within the cavity of a solid rocket, an enormous simpli¯cation. Combustion occurs
largely in a thin layer adjacent to the solid surface and its in°uences can be accommodated as boundary
conditions. Consequently, with the growth of the capabilities of computers, it became possible to carry out
more complete computations for the entire unsteady ¯eld in a motor. Also during this period appeared one
of the earliest attempts to compare results of an approximate analysis with those obtained by numerical
simulation for the `same' problem (Culick and Levine 1974), a strategy which has since become generally
accepted where it is applicable.

The main idea motivating that work was the following. At that time, the size and speed of available com-
puters did not allow numerical simulations of three-dimensional problems, nor in fact even two-dimensional
or axisymmetric cases. Moreover, no numerical calculations had been done of one-dimensional unsteady
transient motions in a solid rocket, with realistic models of the combustion dynamics and partial damping.
Approximate analysis of the sort mentioned above could be applied, in principle, to instabilities in arbitrary
geometries, but owing to the approximations involved, there were no means of determining the accuracy of
the results. Experimental data contain su±ciently large uncertainties that comparisons of analytical results
with measurements cannot be used to assess accuracy of the analysis. Hence it appeared that the only way to
assess the limitations of the approximate analysis must be based on comparison with numerical simulations.
It was also important to con¯rm the validity of the approximate analysis because of its great value for doing
theoretical work and for gaining general understanding of unsteady motions in combustion chambers.

That reasoning remains valid today. Despite the enormous advances in computing resources, it is true
here as in many ¯elds, that approximate analysis still occupies, and likely always will, a central position.
A major reason is its great value in providing understanding. Numerical simulations advanced considerably
during the 1980s and important work is currently in progress. Accomplishments for systems containing
chemical processes, including combustion of liquid fuels, within the chambers far exceed those possible

6A quite di®erent approach based on a statistical assessment of ¯rings of many solid liquid propellant rockets of the same
design was developed in Russia in the 1950s and 1960s. The method was unknown in the West, the ¯rst reports appearing in
an international conference (Yang and Anderson, 1995).
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twenty years ago (see, for example, the early papers by Liang, Fisher, and Chang 1986; Liou, Huang, and
Hung 1988; Habiballah, Lourme, and Pit 1991; Kailasanath, Gardner, Boris, and Oran 1987a, b; Menon and
Jou 1988).

Numerical simulations of °ows in solid rockets began more than ¯fteen years ago to incorporate current
ideas and results of turbulence modeling (Dunlop et al. 1986; Sabnis, Gibeling and McDonald 1985; Tseng
and Yang 1991; Sabnis, Madabhushi, Gibeling and McDonald 1989). The results have compared quite
favorably with cold °ow experiments carried out using chambers with porous walls. There is no reason to
doubt that eventually it will be possible to produce accurate computations of the steady turbulent °ow ¯elds
in virtually any con¯guration expected in practical applications. A major step in that direction has been
the recent emphasis on use of large eddy simulations (LES).

Remarkable success has also been achieved with computations of unsteady one-dimensional motions in
straight cylindrical chambers (e.g. the early results reported by Baum and Levine 1982; Baum, Lovine, and
Levine 1988; Tseng and Yang 1991). Particularly notable are the results obtained by Baum, Lovine, and
Levine (1988) showing very good agreement with data for highly nonlinear unsteady motions induced in the
laboratory by pulses. Although parameters in the representation of the unsteady combustion processes were
adjusted as required to produce the good comparison, a minimal conclusion must be that the numerical
methods were already quite satisfactory more than ¯fteen years ago.

Numerical simulation will always su®er some disadvantages already mentioned. In addition, because
each simulation is only one case and the problems are nonlinear, it is di±cult to generalize the results
to gain fundamental understanding. However, the successes of this approach to investigating complicated
reacting °ows are growing rapidly and the methods are becoming increasingly important for both research
and practical application. Historically, we have seen that the three aspects of the subject|experimental,
analytical, and numerical simulations|began chronologically in that order. There seems to be no doubt
that, as in many other ¯elds of modern engineering, the three will coexist as more-or-less equal partners. We
have therefore tried in this book to balance our discussion of methods and results of experiment, analysis,
and numerical simulation with much less emphasis on the last. The integration of those activities forms a
body of knowledge within which one may understand, interpret and predict physical behavior. For recent
results applicable to combustion instabilities in solid propellant rockets, see the notes for a course given at
the von Karman Institute (VKI) in 2001.

It is important to realize that experimental information about unsteady motions in combustion cham-
bers is very limited. Commonly only measurements of pressure are available. Accelerometers and strain
gauges mounted in a chamber may provide data from which some characteristics of the pressure ¯eld can be
inferred. Quantitative surveys of the internal °ow are virtually unavailable owing to the high temperatures,
although optical methods are useful in laboratory work to give qualitative information and, occasionally,
useful quantitative data.

As a practical matter we are therefore justi¯ed in assuming that only the pressure is available, at most as
a function of time and position on the surface of the chamber. That restriction is a fundamental guide to the
way in which the theory and methods of analysis for combustion instabilities are developed. Throughout this
book we emphasize determining and understanding the unsteady pressure ¯eld. The approximate analysis
constituting the framework in which we will discuss instabilities is based on the pressure as the primary
°ow variable. Very little attention will be given to methods of data analysis, an important activity directed
chie°y to the problem of inferring quantitative properties of instabilities from pressure records.
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1.8. A Pr¶ecis of the Book

As an introduction to combustion instabilities, we intend to provide a broad foundation su±ciently deep
to allow reading the contemporary literature without excessive di±culty, with the exception of modern work
on numerical simulations. Many basic topics are simply not included, being assumed as part of the required
general background, or outside the intended scope. The general character of the material covered is perhaps
closer to applications than to basic research, but the roots in basic subjects are apparent throughout the
text.

It is helpful to view the subject as a merging of three kinds of dynamics: chemical dynamics; combustion
dynamics; and combustor dynamics; see the review by Culick (2000) which is concerned with solid rockets
but some of the ideas apply to combustion systems generally. Chemical dynamics is concerned with
behavior on a microscopic level and includes, among other topics, properties of elementary reactions (heats
of reaction, activation energies, kinetic rate constants, : : : ); reaction paths and kinetic mechanisms; and
products of reactions. Combustion dynamics implies the unsteady behavior of reacting systems exposed
to variations in the environment, notably pressure, velocity and temperature. The relevant processes occur
on a macroscopic scale|i.e. the medium may be regarded as a continuum for most purposes|but the scale
is normally much smaller than that of a practical combustion chamber. Two large classes of problems, for
example, comprise the dynamical responses of °ames and of burning solid propellants.

Combustor dynamics is really the main subject of this book. Indeed, use of the term `combustion
instabilities' is dictated more by historical usage than for other reasons. These dynamics evolve on the
scale of the combustion chambers in question. It is these dynamics that are observed in tests and that are
responsible for the troublesome consequences in practical systems. However, combustor dynamics cannot
be isolated from combustion dynamics, as explained in Section 1.1 and illustrated with Figure 1.1. The
dynamics of a combustion chamber is the dynamics of two coupled systems: the medium supporting the
motions and the combustion process. Put another way, we are concerned with a general problem of unsteady
gasdynamics whose existence depends on the actions of one or more mechanisms almost always7 arising from
combustion dynamics.

Two characteristics distinguish di®erent combustion chambers: geometry; and the kind of reactants
(solids, liquids, gases, slurries, : : : ). In a formal sense, the details of the geometrical con¯guration are to a
large extent secondary matters, particularly in the theory based on spatial averaging. There are signi¯cant
quantitative di®erences among combustion systems arising from geometrical features, but one purpose of
this book is to show that the characteristics of combustion instabilities common to all systems are far more
signi¯cant and form much of the basis for understanding observed phenomena. Not surprisingly, then, the
most di±cult part of the subject is identifying, understanding and modeling the mechanisms. It is the
mechanisms which most signi¯cantly di®er among combustion systems. That is therefore the subject of
Chapter 2. Then Chapter 3, and Annex A, are quite general, being concerned with the equations of motion
and their forms most useful for the kinds of problems treated in the remainder of the book.

Much of Chapter 3 covers familiar ground, although the special use of the equations of motion for
two-phase °ow is perhaps not widely known. The chief result of that chapter is the wave equation for the
pressure, constructed specially for treating nonlinear acoustic waves in combustion chambers. A signi¯cant
distinction from most treatments of acoustics is that careful accounting for a general °ow ¯eld is crucial
matter for subsequent analysis of combustors; non-uniform average °ow is an essential feature. In some
way all analyses of combustion instabilities have taken advantage of the smallness of characteristic Mach
numbers ¹Mr and M

0
r for the mean and unsteady °ows. One strategy for constructing simpli¯ed forms of the

conservation equations, based on the assumption that ¹Mr, M
0
r are small, is explained in Chapter 3.

7The sole exceptions arise with mechanisms imbedded entirely within °uid mechanics.
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A method of spatial averaging is then applied in Chapter 4, to replace the small set of partial di®erential
equations by an in¯nite set of total di®erential equations. The procedure requires representation of the
°ow variables as a synthesis of an in¯nite set of basis functions. In this work the basis functions are
classical acoustic modes for the chamber being studied, but the best choice is still a subject of research.
Time-averaging, or the method of two-time scaling may be used to simplify the formal problem further by
reducing the second-order equations, produced with spatial averaging, to ¯rst order equations. That step is
signi¯cant for both theoretical and practical purposes.

The remainder of the book is patently parochial, being dominated by the character and results of work
by the author, his students and his colleagues for many years. Chapter 5 is a quick review of those parts of
acoustics required later. Practically all of the material can be found in several well-known texts, but some
special requirements of the applications discussed here justify summarizing familiar material in accessible
form. Only those topics are covered that arise in investigations of combustion instabilities.

Chapter 6 covers the basic linear theory of combustion instabilities proper. Probably two technical
features most clearly distinguish the subject within the ¯elds of combustion and °uid mechanics. First is
the simultaneous presence of a mean °ow and unsteady motion, both having relatively low Mach numbers.
The second is the requirement that solutions be obtained within a bounded region of space for which the
boundary conditions are mixed, ranging from perfectly re°ecting to perfectly radiating. For most problems
concerning stability of disturbances, experience has established that turbulence seems to play a very small
part and can be ignored. Hence the various contributions to linear stability are connected in some way with
the presence of an average °ow and hence are measured by the characteristic Mach number ¹Mr of the steady
°ow. The principal result is a formula for the wavenumbers of the perturbed acoustic modes, represented
in three-dimensions, or within the one-dimensional approximation. For reasons given in Section 1.5, the
emphasis in Chapter 6 is on solid rockets, but the general results apply to any type of system.

A broad spectrum of nonlinear behavior is covered in Chapter 7, beginning with examples of the special
problems treated with the general analysis worked out in the preceding chapters. A continuation method
is discussed in Section 7.7. Based on results obtained so far, this appears to be the most e®ective means
of handling nonlinear combustion instabilities represented by the method of spatial averaging based on
expansion in modes. Following a brief discussion of noise, some basic results obtained for pulsed instabilities
(subcritical bifurcations) are covered.

The last two chapters are descriptive, discussions of practical methods for controlling combustion in-
stabilities. Chapter 8 is a brief summary of ways to control instabilities passively. The motivations and
the explanations for success of the methods rest on the fundamental behavior discussed in earlier chapters.
However, in practice the actual problems are usually too involved to be treated analytically. Hence it is
important to understand their basis and to obtain results for simple problems which can be solved.

Although it had been suggested more than 30 years earlier, active control became subject to vigorous
research in the mid 1980s. But after rather intensive studies by many organizations, since roughly 2002
general interest in the subject has contracted, perhaps owing to the absence of successful applications.
There have been many demonstrations that active control works to reduce the amplitudes of combustion
instabilities, but no accompanying thorough explanations. Moreover, the power required has caused most
cases to be impractical. Chapter 9 is a short coverage of some of the interesting results, including a practical
application. Space and time restrictions have limited the present discussion which will be ampli¯ed in a later
edition. It's a fascinating subject with wonderful possibilities, but achieving success for practical uses is a
great deal more di±cult and subtle than most people foresaw. The subject has a great future that must be
built on basic understanding, which to a large extent is still absent.
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It is not the intent of this book to provide only formulas and descriptions of problems. Our emphasis is
on understanding the various kinds of combustion instabilities; and on developing and using one reasonably
general method for analyzing and treating the phenomena in all types of propulsion systems. Experience
over many years has shown that the approach followed here is useful in practice as well as for theoretical
work. Familiarity with the basic principles, and with the procedure for their application, will give a sound
context for understanding and attacking real problems.
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CHAPTER 2

Combustion Dynamics and M echanisms of Combus tion
Instabilities

Identifying the primary cause, the mechanism, is probably the single most important task in understanding
combustion instabilities in full-scale systems. The term `mechanism' refers to that phenomenon or collection
of processes forming the chief reason that the instability exists. There may be more than one mechanism, but
in any case the ultimate reason for an instability is transfer of energy from the combustion processes, or the
mean °ow, to unsteady organized motions. Instabilities are commonly observed as nearly periodic oscillations
having time-dependent amplitudes. As a practical matter, the chief goal is to reduce the amplitudes to
acceptable levels. For that purpose it is essential ¯rst to understand the cause, and then to work out the
connections with the chamber dynamics. Several of the mechanisms introduced in this chapter will be
investigated more thoroughly later in this book.

In the context de¯ned by Figure 1.1, understanding the mechanism of combustion instabilities is equiva-
lent to understanding combustion dynamics. It is essential to keep in mind always that by its very de¯nition,
combustion involves chemistry and chemical kinetics within the setting of °uid mechanics. Depending on the
mechanism, one or another of those phenomena may dominate. Hence, for example, in some cases involving
vortex formation and shedding, we may ¯nd that burning is not a central issue. Nevertheless, the presence
of the °ow ¯eld supporting the vortices is itself produced by combustion of reactants. We may therefore jus-
ti¯ably include the phenomenon under the general label `combustion dynamics', although we are stretching
the literal meaning of the term. The main topics covered in this chapter relate largely to the feedback path
in Figure 1.1.

The last section (2.7) of this chapter has a character di®erent from the preceding material. It is an
analysis of a simple example, the Rijke tube, illustrating the use of a time lag or delay to help interpret a
mechanism, in this case heat addition from a wire heater. Familiar in other problems as a factor in causing
unstable behavior, the idea of a time delay was introduced as the earliest attempt to explain or interpret the
presence of combustion instabilities. The idea of delay as the basis for representing the action of a mechanism
remains probably the most common approach to interpreting instabilities. However detailed the calculations
may be, conclusions based on the presence of a time delay per se must not be confused with `understanding
the mechanism' of a combustion instability. What is required for proper understanding is knowledge of the
physical origin of the delay. Only then may we be in a position to modify the system so as to a®ect the
instability in question.

To be de¯nite, practically all discussions of the consequences of time delays are forced, in the absence
of deeper information, to assume some sort of ad hoc dependence of the delays on parameters de¯ning the
physical characteristics of the system at hand. We assume in Section 2.7 that the time delay is constant. The
calculations then serve two purposes: to show explicitly the relation between a delay and linear stability;
and to work out simple examples of the general analysis developed in the following chapters. Taking the
time delay constant|in particular, independent of frequency|is the usual assumption and places a severe
restriction on the results. It is well-known, for example, that the e®ective time lag for solid propellants is a
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strong function of frequency. Assuming otherwise produces misleading if not seriously incorrect results for
the dynamical behavior of the system in question.

2.1. Mechanisms of Instabilities in Solid Propellant Rocket Motors

In some respects combustion in a solid propellant rocket chamber appears to present a less complicated
situation than those existing in any other types of combustor. The burning processes occur almost entirely
within a thin region, normally less than one millimeter thick, adjacent to the propellant surface. Although
some residual combustion commonly occurs when the propellant contains aluminum or other metallic addi-
tives and may a®ect unsteady global behavior, there is no unambiguous evidence that combustion within the
volume contributes signi¯cantly as a basic cause of combustion instabilities. We assume that to be the case,
leaving surface combustion and purely °uid mechanical processes as the chief origins of possible mechanisms.
Figure 2.1 is a composite sketch of the four mechanisms currently regarded as the chief possible causes of
instabilities in solid rockets. Of these, the dynamics of surface combustion is by far the most common.

u
p' (t)

m + m'(t)

u'u

m + m'(t)

(a)   Pressure  Coupling                                                     (b)   Velocity  Coupling

(c)   Vortex  Shedding                                                       (d)   Residual  Combustion

Figure 2.1. The four possible mechanisms for combustion instabilities in solid propellant rockets.

Vortex shedding from obstacles|as in the Shuttle solid rocket booster|or vortices produced at the
lateral surface (`parietal vortex shedding')|as may be the case in the Ariane 5 solid rocket booster|have
been identi¯ed as mechanisms only in large motors. Excitation of acoustic waves by vortices is of course
a well-known phenomenon in a wide variety of wind musical instruments. The idea that vortices might be
responsible for oscillations in a solid propellant rocket seems to have been proposed ¯rst by Flandro and
Jacobs (1974) but it has received particularly intense attention because of the problem in the Shuttle and,
during the past decade or so, in connection with the problem of pressure oscillations in the Ariane 5; a
particularly good discussion has been given by Vuillot and Casalis (2002).
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The dynamics of residual combustion far from the burning surface|most likely associated with aluminum
or other metal fuel additives not completely burned at the surface|remains poorly understood. Although
some attention has been given to the process (see Section 6.11), analysis of the dynamics is incomplete. No
calculations exist assessing quantitatively the possible contributions of residual combustion to linear stability
relative to those of surface combustion.

On the other hand, there is no disagreement that the dynamics of surface combustion is the dominant
mechanism causing most combustion instabilities in all types and sizes of solid rockets.

2.1.1. Qualitative Interpretation of the Basic Mechanism. The dependence of the burning rate
of a solid propellant on the pressure has long been known as a fundamental characteristic. Experiment
and theory for the combustion of gases show that the reaction rates vary strongly with both pressure and
temperature. It is therefore not surprising that the burning rate of a solid is sensitive to the impressed
temperature and pressure. What is surprising is that the processes in the gas and condensed phases in the
vicinity of the burning surface conspire to produce a dynamical response that exhibits signi¯cant dependence
on frequency. That dependence on frequency is particularly important because the response is noticeably
greater over a rather broad frequency range typically including some of the acoustic resonances of combustion
chambers. In that range the combustion processes act to amplify pressure °uctuations. That is, some of
the energy released in chemical reactions is transformed to mechanical energy of motions in the combustion
products. Hence the dynamics in the feedback path, Figure 1.1, not only provide feedback but as well promote
an unstable situation. The burning surface exhibits a sort of resonant behavior but without possessing the
spring-like (i.e. restoring) forces associated with a resonant oscillating system such as the simple mass/spring
oscillator. Hence the phase relations are di®erent in the two cases.

Since the cavity in a solid rocket possesses its own acoustic resonances, we have a system of two coupled
oscillators. If it should happen that the resonant frequencies of the two oscillators are close, then conditions
clearly favor an instability. That is the situation commonly occurring in solid rockets and is the simplest
direct explanation for the widespread occurrences of instabilities in tactical as well as strategic motors (Price
1961, Blomshield, 2000).

CHAMBER
FLOW

GAS  PHASEINERT
HEATED SOLID

SUB-
SURFACE
DECOM-
POSITION

INTERFACIAL
REGION

r

Figure 2.2. Sketch of steady combustion of a solid propellant.

The essential features of the combustion processes dominating the behavior just described have long been
known. Figure 2.2 is an idealized interpretation showing the main characteristics of a burning composite
propellant. The physical character of the materials and the processes involved in their transformation from
solid propellant to products of combustion are quite well known. That knowledge has been gained through
the e®orts of many people and organizations over many years. An excellent summary is the reference volume
edited by Davenas (1993). Ultimately it is the °uctuation of the velocity of gases leaving the combustion
zone that is the essence of the mechanism. Oscillation of the °ow causes the surface to appear locally like
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an oscillatory piston or acoustic speaker, a source of acoustic waves. Formally the situation is identical to a
planar array of monopoles having zero-average mass °ow superposed on the mean °ow due to combustion.
However, the °uctuation of burning rate is a consequence of °uctuating heat transfer so we can understand
the mechanism best by examining the behavior of the temperature pro¯le. In Section 2.2.2 we will treat
the propellant as if it were a perfectly homogeneous isotropic material in the condensed phase, and use
the one-dimensional approximation throughout, from the cold condensed solid phase to the hot combustion
products. Figure 2.3 is one frame from a ¯lm of a burning solid taken at the Naval Weapons Center (Price et
al. 1982), suggesting that any sort of one-dimensional approximation seems unrealistic (See also Price 1984).
That is certainly true on the scale of the particle sizes (10s to 100s of microns).

Figure 2.3. View of the surface of a burning solid propellant containing aluminum (Price et al. 1982).

However, the variations of velocity and pressure in the chamber occur over distances of the order of
the chamber dimensions. Hence it is appealing to suppose that for analyzing interactions between the
combustion zone and the motions in the chamber, the heterogeneous character propellant can be overlooked
in some sense. For example, the linear burning rate of a propellant is measured without special regard for
spatial variations on the small scale of compositional inhomogeneities. No instrument is available to do
otherwise. That is not to say, of course, that the burn rate and the combustion dynamics do not depend on
spatial variations of the condensed material and the gas phase. Rather, we suppose that dependence on such
properties as the size distribution of oxidizer particles is accounted for by some sort of averaging procedure.
Thus, parameters appearing in the ¯nal results, such as A and B in the QSHOD model discussed here, must
depend on, for example, an average particle size. No rules exist for the averaging, but recently impressive
progress has been made for computed steady burning rates using a \random packing" model (Kochevets,
Buckmaster and Jackson 2001). In all of our discussion we adhere to the one-dimensional approximation as
far as possible, with no attention paid to the possible errors incurred. In any case it seems a good assumption
that if the averaging process is faithful, any errors are likely to be less than uncertainties arising in other
parts of the problem, e.g., material properties. We do not address consequences of the statistical nature of
the propellant surface which may result in random motions observable as noise in pressure records (e.g., R.L.
Glick, Private Communication). Some results for pressure oscillations in the presence of noise are covered
in Chapter 7, but possible connections with surface combustion are not investigated.

The mechanism in question here is, broadly speaking, primarily a matter of combustion dynamics. It
has become customary to represent the mechanism quantitatively as an admittance or response function. We
use the latter here, de¯ned generally as the ratio of the °uctuation of the mass °ow rate of gases departing
the combustion zone, to the imposed °uctuation of either the pressure or the velocity. Thus the response
function for pressure °uctuations (commonly referred1 to as the \response to pressure coupling") is de¯ned
in dimensionless form as Rp,

Rp =
m0=m
p0=p

(2.1)

1The term `coupling' in the sense used here is intended to convey the idea that the surface combustion processes are
in°uenced by changes in time of the variable in question, here the pressure. We will be concerned largely with pressure coupling
and to a lesser extent with velocity coupling.
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where ( )0 means °uctuation and ( ) is an average value. The average value m represents the average in°ow
of mass normal to the surface, due to the propellant burning. In almost all applications, the °uctuations
may be approximated as steady sinusoidal oscillations, written as

m0

m
=
m̂

m
e¡i!t

p0

p
=
p̂

p
e¡i!t

(2.2)a,b

and

Rp =
m̂=m

p̂=p
(2.3)

where ^( ) denotes the amplitude of the oscillation, including both magnitude and phase. Because generally
the oscillations of mass °ux rate are not in phase with the pressure oscillations, the function Rp is complex,
the real part representing that part of m0=m that is in phase with the pressure oscillation.

Although the response function for pressure coupling is most commonly used, there is a second response
function, that associated with velocity coupling, which under some practical circumstances is far more
important. At this point we con¯ne our remarks to the response function for pressure coupling. We return
to velocity coupling in a later discussion (Section 2.2.8).

A simple interpretation of the response function explains its importance to combustion instabilities.
According to the de¯nition (2.3), a pressure oscillation having amplitude p̂=p produces the oscillation m̂=m
of mass °ow into the chamber

m̂

m
= Rp

p̂

p
(2.4)

Viewed from the chamber, the boundary appears then to oscillate. The apparent motion is entirely analogous
to that of a speaker or piston mounted at the boundary emitting waves into a room. Through a complicated
sequence of processes whose details are not germane here, those waves coalesce and combine with the original
pressure waves causing the °uctuations of mass °ux. Whether or not that merging process augments or
subtracts from the existing wave system in the chamber depends on the phase between m̂ and p̂. The part of
m̂ in phase with p̂ increases the amplitude of the wave system and is therefore destabilizing. For a particular
motor, the tendency for combustion dynamics to drive instabilities is proportional to the integral of Rp over
the entire area of burning surface, but weighted by the distribution of °uctuating pressure at the surface.
Hence it is clearly essential to know the response function for the propellant used.

All traditional composite propellants using ammonium perchlorate as oxidizer, as well as advanced
propellants using higher energy oxidizers and binder, burn in qualitatively similar fashion. The interface
between the condensed and gas phases is fairly well de¯ned, may be dry or wet, and may exhibit local
dynamical activity owing to the presence of solid particles and responsive collections of liquid pools or
drops. The dynamics of the interfacial region is particularly noticeable in microcinematography when the
propellant contains aluminum. The metal collects in molten droplets, mobile and ignitable on the surface;
those not fully consumed are carried away by the gaseous products of the interface. The high temperature
at the surface is sustained by a balance between heat °ow away from the interface, required to heat the cool
propellant advancing to the surface; energy required to e®ect the phase changes at and near the interface;
and the heat transfer supplied to the interfacial region from the combustion zone in the gas phase. It's a
delicate balance, easily disturbed by changes in the chemical processes in the interfacial region, particularly
within the subsurface region in the condensed phase. Figure 2.4 is a sketch of the temperature ¯eld for two
elementary forms of the distribution of combustion. Note that for this ¯gure we imagine that the temperature
exists in a spatially averaged sense. Local variations on the scale of oxidizer particles are smeared out in the
averaging procedure and explicit e®ects of inhomogeneities are absent.
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The essentials of the behavior represented macroscopically by response functions can be described as a
sequence of elementary steps, described here in simpli¯ed form with reference to Figure 2.4:

T
f

Ts

0 x
1

xf

T0

T
f

T0

Ts

0 xf

(a)  Flame Front                         (b)  Distributed Combustion  

Figure 2.4. Representation of the temperature ¯eld for a burning solid propellant.

(i) Suppose that for some reason the rate of reactions in the combustion zone increases-perhaps due to a
°uctuation of pressure, or temperature, or to increased local mixing associated with greater intensity
of turbulence locally in the chamber.

(ii) Increased reaction rates produce a rise in the rate of energy release and an increase of temperature
of the combustion zone.

(iii) Due both to radiation and heat conduction, the heat transfer from the combustion zone to the
interfacial region increases, having at least two possible consequences: the temperature at the surface
is increased; and the rate at which condensed material is converted to gas is also increased.

(iv) Because the temperature in the interfacial region rises, so also does the heat °ow to the subsurface
region and further into the solid, tending to cool the interface.

(v) If there are subsurface reactions, the heat °ow will tend to increase their rate, with consequences
depending on the associated energy release (or absorption) rate.

(vi) Exothermic subsurface reactions will act to maintain higher temperature locally, thereby encouraging
the conversion of condensed material to gas at the interface, but also tending to increase the heat
°ow to the cooler solid.

(vii) The net result may be that if the °uctuation of heat °ow, and reduction of temperature, at the
interface does not happen too quickly, the enhanced reaction rate assumed in Step (i) may produce
a °uctuation of mass °ow leaving the surface, that is in phase with the initial perturbation. Hence
in this event the entire process is destabilizing in the sense that the initial disturbance has the result
that the disturbed mass °ow into the chamber tends to augment that initial disturbance.

Whether or not the preceding sequence will be destabilizing depends entirely on details of the pro-
cesses involved. Notably, if sub-surface reactions are endothermic, then the sequence (v){(vii) leads to the
conclusion that the reactions may cause the propellant combustion to be less sensitive to disturbances.

2.1.2. Early Historical Background Leading to the QSHOD Model. In many important re-
spects, problems of combustion instabilities in solid propellant rockets have raised questions, and forced
considerations, which are common to practically all combustion systems. The particulars are of course very
di®erent, but a large part of the general behavior among the various devices is surprisingly similar. Much
is to be gained from understanding broadly the historical background of combustion instabilities in solid
rockets.

The problem was ¯rst identi¯ed in the Soviet Union and analyzed by Zel'dovich (1942) several years
before similar work in other countries. Margolin (1999) has given a brief incomplete account. Further
developments were for the most part simply not known in the West until twenty years later. To this day we
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have sparse knowledge of the ¯eld in the USSR, until the 1990s. We will give here a survey to convey an
idea of developments in the U.S., with brief references to progress in Western Europe.

In Chapter 1 we have noted some of the early research in the U.S., sponsored during World War II,
principally related to the development of tactical rockets. Perhaps the outstanding example is the 2.75 inch
rocket.2 Problems with `anomalous' or `rough' burning caused the ¯rst uses of resonance rods and other
passive `¯xes', such as modi¯cations of the internal con¯guration. Due to the urgency of development, and
crude instrumentation, little was accomplished in respect to discovering the source of the problem. The
entire program was moved from Caltech to the Mojave Desert before WWII ended, forming part of the
newly established Naval Ordnance Test Station (NOTS). E.W. Price, who had started his career at Caltech,
expanded his research on combustion instability. His sponsorship of Grad (1949) produced the ¯rst work
treating the problem of oscillations in a solid rocket as one of acoustics, a fundamental point of view.3

Before Grad's work, although the notion that the unsteady motions were somehow related to acoustical
motions had certainly been discussed, it was only one among several ideas. Grad ¯rst worked out a quantita-
tive theory based on the assumption that the pressure °uctuations were `self-excited' and associated initially
with small amplitude motions in a compressible medium, the products of combustion. The oscillation then
grows if they are unstable, developing into large amplitude motions which were often called `sonance' or `so-
nant burning', terms which have since been dropped. Grad did not propose a particular mechanism for the
unstable motions, but introduced a time lag supposed related to unsteadiness in the rate of decomposition
of the propellant in its conversion to gaseous products. The work had some de¯nite results but for several
reasons|not least, perhaps, that the community was not yet in a state to make use of the analysis|the
approach was not developed until later by others.

In fact, despite continuing practical problems with `anomalous burning', there seem for several reasons
to have been no further publications in the open literature until Smith and Sprenger (1952) gave a summary
of some of the experimental results obtained at the Aerojet Company.4 They reported that `high-frequency'
oscillations having large amplitudes were accompanied by large excursions of pressure; the frequencies were
close to those of transverse acoustic modes. The general picture was to a considerable extent consistent with
that envisioned by Grad, but the paper contains some interesting data taken with laboratory motors. Figure
2.5 is adapted from their Figure 3, showing that the motion was without doubt mainly the ¯rst tangential
mode of the cylindrical chamber, having frequency proportional to ¹a=R where R is the radius of the chamber.

Besides Smith and Sprenger's contribution clarifying the qualitative nature of combustion instabilities
in solid rockets, they o®ered several important basic general observations about the mechanism. They were
¯rst to understand that Rayleigh's Criterion (or `principle') could be extended to become an \explanation of
combustion instability phenomena without con°icting with Rayleigh's original intentions : : : . Interpreting
the oscillations during sonance as self-excited, the possible sources of energy and causes of damping must
be found, and the mechanism for self-excitation described." This correct viewpoint seems to have been
barely noticed at the time. Their paper ends with a short description of a mechanism primarily related to
°uctuations in the rate of reaction and energy release. The importance of the thermal wave in the solid
phase was not yet recognized.

Geckler (1954)a,b, also working at the Aerojet Company, gave two summaries of theory and experiment
for the combustion of solid propellants, the second one dealing mainly with unsteady problems. He devoted

2The size was set by that of steel pipe readily available during early tests at Caltech. (E.W. Price, Private Communication)
3The analysis had actually been formulated initially by J.K.L. MacDonald of NOTS, who died early in the program; his

work was continued by Grad. MacDonald perished in an airplane crash, having taken a seat given up by E.W. Price.
4As true for many publications of research solid rockets until the 1990s, many details of the experiments, such as compo-

sitions and properties of the propellants used, and geometry of the test device, were not given.
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Figure 2.5. Measurements showing the presence of the lowest tangential mode during
`sonant' burning (Smith and Sprenger 1952).

much of his discussion to the results found by Smith and Sprenger, the remainder consisting of brief sum-
maries of Grad's model of combustion with a time lag; and Cheng's analysis which involves a more involved
(realistic?) model of the conversion of solid material to gaseous products involving a time lag.

During the early 1950s there was more activity in developing analysis of combustion instabilities in liquid
rockets than on the corresponding problems in solid rockets. Crocco and Cheng (1952, 1953) had begun
their work on one-dimensional notions that would lead to their monograph in 1956. It was reasonable that
some of the same ideas should be applied to solid rockets. (Cheng 1952a,b, 1959, 1960, 1962). The results,
however, are not applicable because the mechanism proposed is incorrect.

Cheng's main idea is that \primary decomposition" causes the solid propellant to generate at a rate
_mi(t). Then combustion of those gases produced at time t is assumed to take place instantly and completely
at the later time t+ ¿ . The instantaneous rate of burning _mb(t) is

_mb(t) =

μ
1¡ d¿

dt

¶
_mi(t¡ ¿) (2.5)

This result is derived as equation (2.88) here, in the context of liquid rockets. Cheng considers brie°y
and then discards the possibility that the rate of decomposition, _mi, depends on the velocity parallel to the
surface. As explained later in Section 2.3.2, if the time lag is the period required for completion of unspeci¯ed
processes in the gas phase, and pressure is the controlling physical variable, then one ¯nds (Cheng's equation
5 in his 1954a paper):

_mb(t)

_mb

=
pn¡s(t)

[p(t¡ ¿)]n¡s (2.6)

The decomposition rate is assumed to depend on pressure only, _mi(t) » pn(t) (Cheng uses n for s), and n
has the same meaning here as in equation (2.90). After linearization of (2.6), Cheng found the result for the
°uctuation of the °ow velocity normal to a burning surface,

v0=a
½0=p

= ¡Bvb (2.7)

and

B = 1¡ °n+ °(n¡ s)e¡i!¿ (2.8)
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The ratio (2.7) is, within a constant factor, the admittance function for the surface.

We will not cover Cheng's analysis further. His model of the unsteady burning process has long ago been
shown to be wrong. It is interesting only as an example of an attempt to take advantage of an idea (the time
lag) which became widely used in analysis of combustion instabilities in liquid rockets. Cheng's treatment
of the acoustical motions in the chamber added nothing new and in fact fell short of Grad's results in many
respects.

During most of the 1950s there were few published papers on unsteady motions in solid rockets (or any
rockets for that matter). That meager production of `open literature' does not give an accurate picture of
the work being done by industry and in government laboratories, in the USSR as well as in the West. As the
decade progressed, more pressure was exerted in the US to make the problems better known, and to involve
researchers other than the small number directly concerned in the development of hardware.5 In 1954, Green
(1955) wrote a one-page negative critique of Cheng's 1952 work, essentially calling attention to the errors
of interpretation of experimental results by Smith and Sprenger, noting particularly that combustion insta-
bilities had been found with `mesa burning' propellants which have burning rates independent of pressure,
for some useful range of pressure. Green's ¯nal observation was that limited observations suggested to him
that the presence of noise in the appropriate frequency range may precipitate instabilities. It's an idea which
has been o®ered several times since; it has never been shown to be valid. Noise as the origin of substantial
oscillations in a combustion chamber is at the present time (2005) being studied in at least one development
program.

In the following year, Green (1956) gave a quite good summary of reported observations of instabilities
in solid rockets, beginning with early reports by Boys and Scho¯eld (1942) in England, Ferris et al. (1945) in
the U.S. and the works cited here. Green was evidently concerned largely with \irregular reaction", which
meant signi¯cant excursions of the mean pressure. He reported no data for oscillations; Figure 2.6 shows an
example of some irregular reaction with a composite propellant (composition unspeci¯ed).

Green was evidently pre-occupied with his observation that `irregular reaction' occurred in rockets using
propellants having burning rates independent of pressure over substantial ranges. He then reasoned that the
basic cause was increasing decomposition rate in the solid phase, with heat transfer due to oscillatory velocity
parallel to the surface. Coupling of the temperature and velocity of the gas, near the surface, to the solid
material occurs throughout the heat transfer. Consequently the surface temperature of the solid °uctuates,
causing variations in the decomposition rate. By implicit assumption, the acoustical motion in the gas phase
is supported independently of the decomposition process. It was only a proposal, not supported by a model
or calculations.

With his next paper, Green (1958) attempted to work out a quantitative model founded partly on the
ideas just summarized. The analysis contains in rudimentary form an idea, the thermal wave, which became
part of the description now accepted as the basis for a good ¯rst approximation to unsteady combustion of
a solid propellant. It's a purely thermal theory, temperature being the sole independent variable. Green's
picture for his calculations is the same as Figure 2.4 here; his signi¯cant new contribution was inclusion of
the thermal wave in the solid material, with no decomposition. Thus Green's calculations rested on solution
of the heat conduction equation (2.5) in the solid phase, with no source term. The basic result is a quadratic

5Mr. E.W. Price was particularly outspoken and e®ective in this respect. His e®orts were notably in°uential beginning
with the Polaris program. In contrast, the system of classifying information at all levels in the USSR, as the open literature
re°ects, never relaxed from practices adopted during World War II, continued until the `fall of the wall'. In the middle 1970s,
for example, an academic visitor to Moscow and Novosibirsk, was unable to learn from researchers in the ¯eld of combustion of
energetic materials that they even knew of anybody working on problems related to solid rockets. That extreme secrecy was
mainly a continuation of practices followed in World War II continued until the fall of the wall. The situation was di®erent,
for example, in the ¯eld of gas lasers; the exchange of information was recognized as an important contribution to progress,
practically from the beginnings of the ¯eld.
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PROPERTIES  OF  PROPELLANT  AND  ITS  PRODUCTS

FLAME  TEMPERATURE

SPECIFIC  HEAT RATIO

SPECIFIC  IMPULSE AT 1000 psia  215 lbs (sec/lbm)

AVG.  MOLECULAR  WEIGHT

SPEED  OF  SOUND                                 3300 ft/sec

EROSIVE  BURNING  CONSTANT        5.5 X 10     sec/ft

        (in terms of linear velocity)

-4

PROPERTIES  OF  CHARGE

INITIAL  K      71

INITIAL   J      0.734

NORMAL BURNING RATE

vs  PRESSURE  − 40

1.27

             3970  R

         22.9

Figure 2.6. Mean pressure in a cylindrical motor operating with double-bore propellant
(52 inches long, 1 inch initial internal diameter) (Green 1956).

equation for the wavelength of thermal waves, the frequency being set by the oscillatory heat input expressed
in terms of a ¯lm coe±cient.

Because he did not consider the complete problem involving the chamber oscillations|i.e. coupling
between motions in the chamber and the thermal waves in the solid was absent|Green was strictly unable
to ¯nd the conditions for oscillation. He therefore missed the true meaning of his results and tried to force
them to produce what he sought, the resonance condition ¯xing the frequency of oscillations, but without
dependence on the properties of the chamber. In doing so he introduced a time lag between the surface
temperature and the phase change solid! gas at the surface. As a result, the conclusions are of no use and
can be ignored.

The same thermal model was used by Nachbar and Green (1959) in an extended discussion of the
`resonant condition' de¯ned by Green (1958). Thus there are no new ideas in the work. Some of their
conclusions are at minimum misleading; while the paper is part of the historical background, if o®ers little
of lasting value.

An interesting and signi¯cant note appeared in March 1958, a report of the ¯rst tests with an early
variant of a new device, the T-burner (Price and So®eris 1958). Their sketch of the burner using a `full-
length charge' is adapted for Figure 2.7. Various grains were used, including the extending parts way
into the chamber from the ends. The experimental program at the U.S. Naval Ordnance Test Station
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Figure 2.7. Sketch of the ¯rst test device having the form of a T-burner (adapted from
Price and So®eris 1958).

was especially important for its emphasis on research directed to understanding the basic properties and
causes of combustion instabilities in solid rockets, as opposed to performing tests directed primarily to
solving a particular problem encountered in a development program. This work was conducted to help
clarify the \mechanism of excitation of instability"; and to study the in°uence of oscillatory behavior on the
average burning rate of propellant. Already many tests had established, albeit indirectly, that the burning
rate (¹r) increases, sometimes substantially, when the pressure oscillates. The burner shown in Figure 2.7
was specially designed to exhibit unstable longitudinal modes having frequencies comparable with those of
tangential modes in motors. Note that the oscillatory velocity would correctly be parallel to the burning
surface of the propellant shown in Figure 2.7, so the device provides a good approximation to the motions
in a tangential mode. In this sense the work constituted a signi¯cant departure from previous experiments
by providing a simulation rather than a re-creation of the actual problem.

The bulk of the short paper was devoted to using test results obtained with the new burner to check the
truth of ¯ve `contentions' identi¯ed in the works of Grad; Smith and Sprenger; Cheng; Geckler; and Green.
One result concerns the mode excited|longitudinal, in contrast to the tangential modes observed in the
works cited. The remaining four were:

(i) the chamber oscillations were excited by pressure, not velocity oscillations;
(ii) the noise in the device (lower than in previous equipment) was not a \conspicuous factor in exciting

combustion instability";
(iii) the average burning rate decreased at low chamber pressures (500{1700 psi) and increased at higher

pressures;
(iv) the average burning rate was apparently una®ected by the low mean gas velocities present in the

tests.

Subsequent work in many laboratories have shown that (i), (iii) and (iv) are not generally true. Item (ii)
remains not generally settled; it is this author's belief that while noise modi¯es some features of instabilities,
it is not a fundamental cause or mechanism of instabilities, or of increased amplitudes of modes.

Price (1958) gave a thorough, balanced review of combustion instabilities in solid rockets at the IXth IAF
Congress, a short time before a great deal of recent work became publicly available|i.e. was declassi¯ed.6 It's
a readable qualitative discussion of the ¯eld, containing a number of succinct observations still valid. Perhaps

6The papers by Grad (1949) and Cheng (1956) seem to be the ¯rst works in universities on combustion instabilities.
Not until 1960 did Brownlee publish the next account (Brownlee and Marble 1960) of work done at Caltech's Jet Propulsion
Laboratory. At about the same time, Horton completed his Ph.D. thesis at the University of Utah (Horton 1961).
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the only real fault with the discussion is a short treatment of the `time lag' assumed to be a crucial item in
the excitation process. While the notion of time lag as an important matter in discussions of combustion
instabilities in liquid rockets as recently as the late 1980s and 1990s, it was soon rendered obsolete in respect
to solid rockets by a well-grounded (albeit approximate) theory of the combustion response function for solid
propellants.7.

The entire ¯eld in the U.S. began to undergo signi¯cant changes of emphasis and even, one might argue,
direction, with the participation of F.T. McClure and his colleagues at the Johns Hopkins Applied Physics
Laboratory, beginning in early 1959. McClure enlisted the cooperation of the leading investigators, almost
all of whom were experimentalists working in government or industrial laboratories. Although the Technical
Panel on Solid Propellant Instability of Combustion existed for only a bit more than three years, its work had
a lasting in°uence. Its main publication is a useful collection of papers released in 1964, Technical Panel on
Solid Propellant Instability of Combustion|Scienti¯c Papers 1960{1963. The e®ectiveness of the Technical
Panel was made possible by a decision taken at high levels within the Defense Department to allow open
publication of as much information as possible, a decision not to be underrated.

In 1959 Hart and McClure (1959) published the ¯rst work by the group at the Applied Physics Lab-
oratory. The work set a tone strongly in°uenced by the authors' background as physicists. They tried to
extract the main attributes of the phenomena studied, and grounded them in basic principles; often observa-
tional details are recognized but gracefully ignored, in seemingly arbitrary fashion, to favor clari¯cation and
simpli¯cation of the theory at hand. Hart and McClure settled on the interaction (or "coupling") between
acoustic waves and the burning surface as the principal cause of combustion instabilities. Further, they
chose to ignore the e®ects of erosivity in their ¯rst approximation to the coupling process. After estimates
of characteristic times for gas phase reactions; heat conduction in the solid and gas; mass transfer; and
reactions in the solid phase, they formulated a model which is essentially the same as the QSHOD model
discussed in Section 2.2. Figure 2.8(a) is an adaptation of Hart and McClure's sketch of their model; Figure
2.8(b) shows a result for the real part of the admittance function. The details of the analysis have been
much simpli¯ed in later work (see Section 2.2) and need not be covered here.
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Figure 2.8. Adapted from Hart and McClure (1959). Part (a): a sketch of their model of
surface combustion; Part (b) a result for the quantity proportional to the real part of the
admittance function.

7The main shortcoming of a time lag representation is the unknown and important dependence on frequency. Thus the
assumption is commonly made that the lag is independent of frequency, a serious error for solid propellants and possibly for
liquid propellants as well
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In the following year, McClure, Hart and Bird (1960)a began a series of papers dealing with various
aspects of combustion instabilities in solid propellant rockets, not all of which had been treated, or even rec-
ognized, previously. They treated oscillations in a cylindrical motor with the unsteady combustion processes
represented in the manner formulated in the 1959 paper. The principal important new feature, original with
this work, was accounting for oscillations of the solid material. Combustion response to pressure oscillations
only was accounted for, but in a short section of the paper, the authors examined possible consequences of
erosive burning.

It is fairly evident that the normal modes of oscillation in a cavity containing a signi¯cant amount of
solid material may di®er from those in a cavity ¯lled with gas. That result was shown by McClure, Hart
and Bird. For applications there are in the ¯rst instance two questions to answer: How much material is
required to be \signi¯cant"?; and What are the actual properties of the material? In other words, roughly,
how compressible is the propellant, and how e®ectively does it dissipate mechanical motions? Subsequent
work over the following 10-15 years showed that motions of the solid could be ignored, so far as combustion
instabilities are concerned, except in certain large motors. The ¯rst question asked above can be answered
only for the particular cases one must deal with. Determining material properties under unsteady conditions
remains a di±cult experimental matter usually carrying large uncertainty.

There are at least two important consequences of unsteady °ow parallel to a burning surface: the steady
burning rate may be a®ected, a fairly direct extension of the familiar phenomenon of `erosive burning'; and
there can be a truly time-dependent process a®ecting unsteady changes in the burning rate, analogous to
the unsteady behavior accompanying rapid pressure °uctuations. It is the second type of `erosive burning'
which is of particular interest in the present context for it contains the possibility of coupling acoustic waves
to the combustion processes. In their ¯rst paper on the possible e®ects of unsteady erosive burning, Hart,
Bird and McClure (1960)a avoided the problem of formulating a theory of the process, but tried to construct
a general description which would ¯t into their structure for computing the acoustics of a chamber. Their
beginning point was the linearized representation of the burning rate expressed as the mean °ow leaving the
surface in the normal direction,

mb(p; ve; t) = mb(p) +

μ
@mb

@p

¶
0

p0 +
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@mb
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¶
0
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(2.9)

where u0 is the unsteady (acoustic) velocity parallel to the burning surface. In this form,
³
@m
@ju0j

´
0
contains

the usual erosion constant k for steady burning,μ
@m

@ju0j
¶
0

= m0k (2.10)

The terms proportional to p0 and @p0=@t can be re-written using the de¯nition of the admittance function.

We will not consider any further the analysis8 by McClure, Hart and Bird, which consists mainly in
examining the possible e®ects of erosion in a cylindrical chamber. Probably the lasting value of the work
lies in the formulation of the boundary condition (2.9) which, perhaps in modi¯ed forms, has subsequently
been used by many others. The manner of incorporating the basic phenomenon of recti¯cation has lasting
in°uence. On the basis of their incomplete calculations, the authors concluded that for reasonably large
values of kjuj, with k > 0, the erosive e®ect of the mean °ow is stabilizing. The real importance of the paper
is probably the in°uence it had, calling the attention of others to the subject. However, the matter of the
e®ects of erosion|any sort|on stability remains to a large extent an unsolved problem.

By 1960 there was no dissension that the simple basic model of the combustion response of a burning
solid captured part of the observed behavior, qualitatively at least. To what extent quantitatively could not

8It is di±cult to follow, contains typographical errors and does not account for all in°uences of the mean °ow, even for a
cylindrical chamber.
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truly be assessed until more extensive and more accurate data became available. McClure, Hart and Bird
(1960) summarized the situation in a page-and-a-half note. In the following year, the same authors (1961)
added a few comments concerning the dependence of the propellant response (and, presumably, instabilities)
on a few properties: e.g. instabilities are more severe if the rate of heat release is higher, and the chamber
pressure is lower. Such conclusions should be regarded with caution, because the actual behavior depends
as well on the chamber geometry, °ow ¯eld and properties of the particular propellant used. The authors
also attribute the known result of aluminum to suppress instabilities to its tendency (maybe) to reduce the
response function, by a®ecting surface combustion processes; or to its e®ect on losses (unspeci¯ed) in the
system. It would be several years before `particle damping' would be generally accepted as the dominant
process.

Much of the work in the immediate future consisted in working out some of the consequences of ideas
introduced in the period c.1959{c.1963. McClure, Bird and Hart (1962) discussed in greater detail their
formulation of the in°uence of erosion on axial modes. Their discussion contains their basic ideas but the
development is brief and really doesn't do justice to the importance of the material. It is important to
realize that `erosion' as treated by McClure et al. , by Price, and others is really a matter of kinematics,
not dynamics. Further, despite many speculations and a modest amount of data, which sometimes has
questionable relevance, there is no physical theory of the unsteady `erosion mechanism', now commonly
referred to as `velocity coupling. Two important features of velocity coupling were recognized in the early
1960s: the kinematic nonlinearity; and the dependence on the magnitude of the sum of the local mean and
unsteady gas velocities, causes the coupling of the surface combustion to the gas dynamics to vary with
position on the surface. The second property means that any `response function for velocity coupling' will
necessarily depend on position, unlike the case for pressure coupling, for example Rp de¯ned by (2.3). We
will discuss velocity coupling further in Section 2.2.8.

The literature in this period was (and to some extent this is still true!) a mixture of classi¯ed and
unclassi¯ed documents. Even if available in principle, the latter may be di±cult to locate and obtain. An
example is an excellent review by Price (1961) describing the fundamentals of the subject then understood
(much of the discussion remains valid) and summarizing in considerable detail virtually all practical examples
then known.

The group at APL was quite active in 1960{63, examining several problems which were central to
understanding practical aspects of combustion instabilities in solid rockets. With their previous papers cited
above, they had constructed a framework which gave the ¯eld generally a cohesiveness previously absent,
and helped identify the problems that demanded attention. A natural result was the division of processes
into `gains' or `losses'. Thus two papers, Hart and Cantrell (1963), and Cantrell, McClure and Hart (1963)
dealt with an important source, acoustic damping or attenuation. The second was an attempt to compute,
by using a variational method, the acoustic losses on the side walls in an end-burning rocket, intended to
approximate conditions in some test devices. No further use of the method has been made. While the ¯rst
of these papers contains some interesting observations, it too has had no lasting consequences.

Extensive observations of unstable tangential modes had ¯rst been reported by Brownlee and Marble
(1960) and described in detail by Brownlee (1961). That form of instability had been a common problem
in tactical solid rockets, but hadn't been subject to interpretation grounded in fundamental ideas until the
discussion by Bird, McClure and Hart (1963). The paper is directed mainly to consequences of varying
geometrical parameters, all the tests having been done with cylindrical motors. Following their previous
work, the authors organize their discussion explicitly around the balance of gains and losses of acoustic
energy. At the time, quantitative information was not available for most of the processes; the work is
interesting mainly as a measure of the state of the ¯eld|there are no speci¯c results. The authors discuss
but discard erosive e®ects except for possible changes in the burning rate. Thus, gains of acoustic energy
are ascribed entirely to pressure coupling which could not be assigned a value with con¯dence.
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Of the possible losses|essentially viscous or viscoelastic in the solid or gas|only gas-particle interactions
were found to provide (roughly) the correct behavior. The propellant did not contain aluminum and it is
questionable (even doubtful) that the combustion products contained the material (1% by mass of 0.5¹
particles) postulated to account for the observed stability boundary. Consequently, neither the gains nor
the losses seem to have been satisfactorily explained or provided ideas more generally useful. However
unsuccessful it was, the paper remains as the ¯rst attempt to interpret observed stability boundaries, see
Section 6.7.3 for commentary based on later work.

Perhaps motivated partly by the serious lack of certain relevant information, Bird and Hart (1963)
gave an interesting survey of the di±culties associated with scaling. The authors recognized that, in a
sense, scaling steady combustion instability cannot be done: It is simply not possible to determine the
stability of a motor from the stability characteristics of a smaller, geometrically similar model: There are too
many processes having diverse dependencies on frequency. Nevertheless, people concerned with problems
of stability of small amplitude disturbances in full-scale motors may gain much from understanding the
rules governing scaling of the basic processes. It would be a mistake to expect formulation of concise,
strict scaling laws such as one ¯nds, for example, in the ¯eld of aerodynamics. A fundamental reason is that
combustion instabilities necessarily mix time- and space-dependent physical behavior|e.g. wave propagation
in complicated geometries|and the physical properties of chemically active solids and gases. Hence useful
scaling laws are generally valid only over narrow ranges of the important parameters.

Except for a review, apparently the last paper from APL was essentially an e®ort by Cantrell and Hart
(1964) to derive a formula for the growth constant of unstable oscillations in a general form applicable to any
geometry. Although not stated in the account, a motivation was surely increasing concern with combustion
instabilities that could not readily be related to the modes of oscillation in a circular cylindrical chamber.
The authors' central idea was to begin with the de¯nition of the growth constant as one-half of the time
rate-of-change of time-averaged acoustic energy in a chamber,

® =
1

2

1

E

dE

dt
(2.11)

The analysis may appear at ¯rst acquaintance to be related to the variational method referred to above but
it is not. Moreover there is no theoretical connection with the method of least residuals developed by Powell
(1971) and Powell and Zinn (1971) or with the spatial averaging ¯rst used by Culick (1961) and which were
developed to become central to much of this book. The di®erences arise with de¯nitions of the rates of
change of Ein terms of processes at the boundary of the volume treated. We discuss the point in Section 6.9.

Equation 2.11 is a de¯nition following from linear theory. Consequently it o®ers no beginning for
extension to nonlinear behavior. Furthermore, because practically no further use is made of the equation of
motion, this approach contains no hints for computation of the ¯eld variables (u; T; p) or the terms of their
orderly expansion in the Mach number of the mean °ow. Thus the value of the work lies mainly with some
qualitative discussion of stability in T-burners and cylindrical rockets.

Hart and McClure (1965) brought the program on combustion instability at the Johns Hopkins Applied
Physics Laboratory to an end with a review paper covering mainly the state of theory in mid-1965. It's a
summary of the ¯eld at that time, containing no ideas that had not previously appeared. They devote a
short section to comments on nonlinear behavior but, because the APL analytical work seems to be almost
irretrievably restricted to linear problems, the discussion does not initiate or suggest novel developments in
that direction.

The leadership and signi¯cant positive in°uence exerted by McClure and his colleagues at APL far
exceeded the value of their speci¯c technical contributions. Their work on theory gave the ¯eld of combustion
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instabilities in solid rockets a °avor and a thrust which were new and permanent.9 In addition to initiating
several lines of analytical work, the APL formulation of the basic acoustics problem greatly encouraged
continuation and expansion of the program to measure the response of surface combustion at NOTS under
E.W. Price. A thesis (Horton 1961) and three papers (Horton 1961, 1962; and Horton and Price 1961)
began the international activity of measuring the admittance function of propellant samples mounted in an
`end-burner', generically called the T-burner.10 (Figure 1.21.)

In his thesis, Horton (1961) reported the ¯rst measurements of an admittance function. Figure 2.9(a)
shows his results which were given in his second paper (Horton 1962).11 The picture in Figure 2.9(b) is a
record (taken with an `oscillograph' which no longer exists!) of a particularly good T-burner ¯ring (Horton
and Price 1962). Apparently Price had suggested to Horton during the latter's thesis program that the
initial (¯nal) periods would ideally show exponential growth (decay), i.e. the envelope of the oscillations
has the form e§®t; and that the information could be used in principle to compute the admittance function
for the burning surface. For linear behavior, equation (2.10) applies. For an acoustic ¯eld one can write
approximately " » jp0j2 (see Section 5.4) and from the envelope of the pressure trace one can compute

® =
1

jp0j
djp0j
dt

(2.12)

Let ®g be the value for the growth period and ®d for the decay. If the losses are the same during the growth
and decay, and ®c is due to the combustion driving only, then ®g = ®c + ®d, so

®c = ®g ¡ ®d (2.13)

Thus with (2.12) and (2.13) one can in principle ¯nd ®c. In practice there are serious di±culties obtaining
accurate reproducible results, particularly for propellants containing aluminum; see the \T-burner manuals"
(Culick 1969, 1974).

It is an interesting aspect of Horton's work that he worked out a simple method for using experimental
data to infer both the real and the imaginary parts of the response function. That is correctly the information
one should obtain from T-burner tests. Owing to experimental di±culties (apparently) it seems that Horton's
is the only report for both parts of the response function. See the discussion in Section 6.7.

T-burner tests to characterize fully the dynamics of a propellant over ranges of pressure and frequency
are expensive. Moreover, the results generally carry signi¯cant experimental errors. Hence the T-burner
is best used to detect changes in dynamics, or generally for comparing propellants. Although hopes for
improvement may have been held high, the nature of results from T-burner testing has not changed greatly
in forty years. Nevertheless, there is still no better test apparatus and for qualitative purposes the T-burner
has not been superceded. Indeed, even with the measurement errors always present, no other method has
yet been proven more useful for obtaining qualitative data.

After McClure's working group had been established, and more information became publicly available,
research on combustion instabilities in solid rockets attracted increasing attention. Brownlee, who had
begun work on the problem in Canada, carried out the ¯rst systematic measurements of stability boundaries
(Brownlee and Marble 1960); Smith (1960) and Shinnar and Dishon (1960) in the same AIAA volume
published papers on the response of a burning surface to changes in the environment. While both works
treated unsteady temperature pro¯les in the solid phase, neither emphasized the thermal wave. They could
not, therefore, ¯nd the very special and important contributions of the thermal wave to the surface admittance
function.

9For example, the early 1959 and 1960 papers attracted this author's responsive attention at the end of his Ph.D. research
program. He subsequently was introduced to the solid rocket community by Mr. W.A. Berl, assistant to Dr. McClure.

10A center-vented symmetrical burner was ¯rst used by Price and So®eris (1958) but the name T-burner was coined by
Dr. H.M. Schuey in honor, it seems, of the piece of plumbing he chose in 1963 to serve as the center vent.

11We should note particularly that Horton inferred both the real and imaginary parts of the admittance function. Most
reports of results obtained with T-burners show only the real part.
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Figure 2.9. The ¯rst reported values of the real and imaginary parts of the admittance
function for a burning surface. (a) experimental results inferred with the real and imaginary
parts of equation (5), Horton (1961); (b) pressure record for a T-burner ¯ring (Horton and
Price 1962).

In the early 1960s attempts to measure the admittance function were made by more organizations|or
perhaps their e®orts were ¯nally made public. Watermeier (1961) at the Army Ballistic Research Laboratories
reported motion pictures of the burning surface (of a double-base propellant) exposed to the output of a
siren. Only qualitative observations were made. Two years later, Watermeier et al. (1963) and Strittmater et
al. (1963) discussed experimental investigations with modi¯ed forms of the T-burner, also using double-base
propellants. One interesting observation concerned the agglomeration of molten aluminum on the surface,
a \probable" cause for reduction of the admittance at low frequencies. Other features of the behavior of
molten aluminum in the vicinity of the burning surface were noted, but without quantitative measurements
no conclusions can be drawn. Wood (1963) also made measurements in a T-burner with propellant similar
to that described by Price and So®eris. Although he tried to make direct connection between compositional
properties and the admittance function de¯ned by McClure et al. , Wood's data and observations were too
crude to allow de¯nite conclusions. The work marks a transitional step to more realistic representations
involving dynamical thermal behavior of the solid phase.

Denison and Baum (1961) produced a work which not only represented (in retrospect!) the culmination
and joining of several ideas but, because it is ¯rmly based on fundamental behavior, has had lasting in°uence
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Figure 2.10. A summary of the instability problems for solid propellant rockets in 1970
(Culick 1970).

on theoretical treatments of burning. At the time, the paper did not instantly attract widespread attention,
but its importance was gradually recognized.12 When Denison and Baum's analysis appeared, its general
applicability was not immediately apparent. In 1968, Culick (1968) showed that at that time ten analyses
were equivalent to that of Denison and Baum in the sense that if parameters are given appropriate values
in each case, then the response function (2.3) is the same function of frequency. That recognition has
had important in°uence on experimental and theoretical work. Departures from the QSHOD model are
important, di±cult to treat and are still a subject of research; Sections 2.2.5 to 2.2.8 contain examples.

Figure 2.10 is a complete summary of the various kinds of work proceeding on combustion instabilities
in solid propellant rockets, c. 1970.

2.2. Analysis of the QSHOD Model

The model we will analyze here is the simplest possible capturing a dominant contribution to the com-
bustion dynamics. Only unsteady heat transfer in the condensed phase causes true dynamical behavior, i.e.
dependence of the response to pressure coupling. That process must in any case be present. This problem

12In fact, the model de¯ned by Denison and Baum was in a sense really an unnecessarily detailed special case of that
proposed twenty years earlier by Zel'dovich (1942) and developed by Novozhilov (1965). The ¯rst was unknown in the West
and the second was not recognized properly until the late 1960s. In simplest terms, an imperfect model of the gas phase in
Denison and Baum's analysis is replaced by two sorts of experimental data in the Zel'dovich-Novozhilov model.
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(model) is therefore the reference always used to assess the possible in°uences of other dynamical processes,
in particular those in the gas phase and decomposition in the condensed phase. The substance of the model
is de¯ned by the following assumptions:

(i) quasi-steady behavior of all processes except unsteady conductive heat transfer in the condensed
phase;

(ii) homogeneous and constant material properties, non-reacting condensed phase;
(iii) one-dimensional variations in space;
(iv) conversion of condensed material to the gas phase at an in¯nitesimally thin interface.

The acronym QSHOD for this model derives from the ¯ve bold letters in assumptions (i){(iii).

During the early years of this subject, from the mid-1950s to the mid-1960s, roughly ten analyses of the
response function were published in the Western literature, giving apparently distinct results. Culick (1968)
showed that, due to the fact that all of the models were based in the same set of assumptions (i){(iv), the
results were dynamically identical. That is, all had the same dependence on frequency and, with appropriate
values for the various parameters involved, give coincident numerical values. Hence the term QSHOD is
a useful term referring to a class of models. Di®erences between the models are associated with di®erent
detailed models of the steady processes, notably the °ame structure in the gas phase.

A di®erent approach to compute the combustion response was taken by Zel'dovich (1942) in Russia
and elaborated in great depth by Novozhilov (1965, 1973, 1996). The result has come to be known as the
Z-N model. That representation of the response has certain distinct advantages, most importantly giving
convenient connections between the parameters in the response function and quantities characterizing and
measurable in steady combustion. The idea is explained brie°y in Section 2.2.4. However, an important
point often overlooked is that the dynamics contained in the basic Z-N model are the same as those in the
°ame models treated within the general QSHOD model.

Analysis of the model sketched in Figure 2.1 amounts to quantitative representation of the sequence
(i){(iv). Even in the simplest form described here, the problem is too complicated for a closed form solution.
Apart from recent results obtained numerically for the entire region, covering the cold solid to the hot
combustion products, the usual procedure familiar in many problems of this sort is based on solutions found
for the separate regions de¯ned above; the results are then matched at the interfaces. The solutions and the
matching conditions are based on the one-dimensional equations of motion. In the reference frame selected
here, the origin is ¯xed to the average position of the burning surface, and under unsteady conditions all
interfaces move, a feature that must be correctly incorporated in the analysis.

2.2.1. Estimates of Some Characteristic Lengths and Times. It is helpful to have a qualitative
idea of the sizes of a few important variables. That information provides a context for understanding the
physical problem and a basis for making realistic approximations to simplify analyses. One way to view
the situation is shown in Figure 2.11, based on Figure 1 of Culick (2000). The four levels of dynamics|
chemical dynamics, combustion dynamics, combustor dynamics and motor (engine) dynamics|are each
characterized by di®erent lengths and times. A typical size of a rocket, for example, is also the length scale
for engine and combustor dynamics, say one meter, to tens of meters. The burning zone for a solid propellant
is a millimeter or less. Hence the ratio of those lengths may vary from 103 to 106. Chemical dynamics evolve
on a scale 10¡3 to 10¡6 smaller. Thus it is fairly clear that the details of phenomena associated with the
three di®erent scales can, to a very good approximation, be treated separately, although they are ultimately
coupled. Averaging of processes on the smaller scale produces consequences that matter on the larger scale.
In this book we are concerned largely with unsteady motions on the scale of the device in question. But
those motions are commonly driven, e.g., at the boundaries, by forces and energy °ow which originate at a
smaller scales.

COMBUSTION DYNAMICS AND MECHANISMS OF COMBUSTION INSTABILITIES 

RTO-AG-AVT-039 2 - 19 

 

 



INGREDIENT  and  PROPELLANT  SYNTHESIS

COMBUSTOR  DYNAMICS

Analysis

of

Combustor

Dynamics

Numerical

Simulations

of
Chamber Flows

COMBUSTION  DYNAMICS

Dynamics of Burning Propellants

Response Function; Residual Combustion

CHEMICAL  DYNAMICS

Modeling

Steady

Combustion

Measurements

Steady Combustion

Ingredients

Propellants

Aluminum

Measurements

Combustion

Dynamics

Modeling

Combustion

Dynamics

Measurements

Thermal Decomposition

Species Concentrations

Kinetics

Analysis

Thermochemical

      Properties

Kinetics

MOTOR  DYNAMICS

Figure 2.11. A view of the areas of research and their connections in solid propellant
rockets (Culick 2000).

Often, themechanics of the unsteady motions require descriptions on a much smaller scale. The unsteady
response of a burning surface is a good example of that fact. We assume for present purposes that the
combustion processes generate a zone like that sketched in Figure 2.2, and make a few estimates of its
characteristics. Several discussions of approximate representations exist (e.g. Hart and McClure 1959); we
base our remarks on Culick and Dehority (1969) who computed the burning rate assuming a ¯nite region
of uniform combustion. The °ame thickness is roughly 0:5¹{500¹ for the thermal conductivity of the gas
varying from 2£ 10¡5 to 2000£ 10¡5 cal/s-cm-±K, the pressure less than 900 atmospheres and reasonable
values for other parameters (temperatures, heat of reaction, etc.); Table 2.1 is a list of the properties used
in the following remarks. We take 250¹ as a conservative estimate; as a rough guide, the thicker is a °ame,
the greater is its tendency to behave dynamically, in contrast to quasi-staticallly.

Table 2.1 contains values of the properties we need for the following estimates. The characteristic time for
the chemical reaction process in the gas phase is the °ame thickness divided by the average speed, ¿f » ±f=¹ug
where ±f ¼ 250¹. Thus ¿f is the time for a particle to pass through the °ame. We estimate the gas speed
from continuity, ¹ug = ½p¹rb=¹½g and taking values from Table 2.1, ¹ug » (1766)(0:01145)=(7:97) ¼ 2:5m/s.
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Then the characteristic time for the steady reaction process is

¿f » ±f
¹ug
» 250¹

2:5m/s
» (250)(10¡6)

2:5m/s
m » 10¡4 (2.14)

for a rather thick °ame zone, 250¹ ´ 0:25mm.

The period of an oscillation is the reciprocal of the frequency, ¿a = 1=f = 2¼=!a. For the chemical
activity in the gas phase to be treated as `quasi-static', chemical changes must be fast relative to the acoustic
period, which implies

¿f
¿a
¿ 1 (quasi-static chemical reaction) (2.15)

With the estimate just quoted, 10¡4fa should be small for quasi-static reactions. This implies fa < 10; 000
Hz. We conclude that while the chemistry in a solid propellant °ame can probably be assumed to respond
quasi-statically over a useful frequency range, something less than 10,000 Hz, the approximation should
probably be examined more closely for higher frequencies.

Table 2.1. Typical Values of Combustion and Physical Properties.

mean pressure ¹p = 1:06£ 107 Pa
linear burning rate ¹rb = 0:0078[¹p=(3:0£ 106)]0:3 = 0:01145m/s
chamber temperature ¹T = 3539K
Prandtl number Pr = 0:8
thermal conductivity of combustion gases ¸g = 0:0838 J/K-m-s
thermal conductivity of solid propellant ¸p = 0:126 J/K-m-s
thermal di®usivity of gases ·g = 3:97£ 10¡4m2/s
thermal di®usivity of propellant ·p = 1:0£ 10¡7m2/s
speci¯c heat of gas Cp = 2020 J/kg K
speci¯c heat of condensed material C = 0:68Cp
propellant density ½p = 1; 766 kg/m3

gas density ¹½g = 7:97 kg/m3

° (gas only) ° = 1:23
gas constant R = (° ¡ 1)Cp=° = 377:72 J/kg K
speed of sound ¹a =

p
°RT = 1282m/s

speed of combustion products
at the burning surface ¹vb = (½p=½)¹rb = 1:86m/s

Mach number at the
burning surface ¹Mb = 0:00173

For much of our needs, some sort of thermal theory serves quite well to describe both steady and unsteady
behavior of a burning propellant surface. The governing equation is then the energy equation which will have
a di®erent form in each of the regions (solid, interfacial, gas, ...). An important question is: How quickly
does the °ow respond to changes of conditions? A very fast response of the °ow means that the distribution
of temperature in a region will be the same as it would be in steady state for the same boundary (or end)
conditions and values of energy sources. If, on the other hand, the state of the °ow is not instantaneously
responsive, the temperature di®ers signi¯cantly from its steady form due to the presence of waves. A measure
of the departure from the `quasi-steady' form is the ratio of the net °ow of energy, into a °uid element, by
heat conduction to the rate of change of energy in the element,

Nc =
@

@x

μ
¸g
@T

@x

¶,
¹½Cv

@T

@t
(2.16)

where x is measured normal to the burning surface, in the direction of greatest variations.

Suppose (cf. Figure 2.13) that the temperature changes by ¢T in distance ¢x and time ¢t so we can
estimate Nc as

Nc =
¸g¢T

(¢x)2

,
¹½Cv¢T

¢t
=

¸g¢t

¹½gCv(¢x)2
(2.17)
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where ¹½ is a representative density (gas or solid), Cv is the speci¯c heat and ¢x, ¢t are the intervals of
space and time in question. For a wave motion, the period ¿ = 1=f is a measure of the characteristic time.
Spatial variations occur over the °ame thickness, ¢x » ±f , so

Nc =
¸g

¹½gCv±2ff
=
·g
±2ff

(2.18)

where ·g is the thermal di®usivity. For Nc large, the rate of heat transfer to a layer dominates the rate
of change of energy within the layer having thickness ±f ; then the term ¹½Cv@T=@t can be neglected in the
energy equation and the temperature ¯eld changes in quasi-static fashion. For the properties given in Table
2.1,

Nc =
3:97£ 10¡4

(250£ 10¡6)2f =
6352

f
(2.19)

According to this result, the assumption of quasi-static behavior is not valid for frequencies above, say 1000{
1500 Hz, perhaps higher. In any case, the analysis is so much simpler when this assumption is made, that
it must be used in the initial stage, as a `¯rst try'.

2.2.2. Calculation of the Response Function. The following remarks are based on the review cited
above, Culick (1968). Since that time much work has been done to determine the consequences of relaxing
the assumptions on which the following analysis (the QSHOD model) is based. We will later examine some of
those ideas. In this section we assume that the combustion proceeds as transformation of a condensed phase
at a single °at surface adjacent to the gas phase, requiring that solutions be matched at only one interface.
We choose a reference system with origin (x = 0) ¯xed13 to the average position of the interface. Hence
the cold unreacted solid material progresses inward from the left. Figure 2.12 shows this de¯nition and the
matching conditions that must be satis¯ed at the interface. Note that the velocity _xs of the interface appears
explicitly in these conditions and is to be determined as part of the solution to the complete problem.
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Figure 2.12. (a) reference system and (b) matching conditions for the QSHOD Model.

For the simple model used here, the analysis involves only three steps: solution for the temperature ¯eld
in the solid phase; solution for the temperature ¯eld in the gas phase; and matching the two solutions at
the interface. Because the temperature ¯eld is central to the analysis, the ¯nal results should correctly be

13Alternatively, the reference frame may be ¯xed to the instantaneous position of the surface; it is therefore not an inertial
frame for the unsteady problem. For the linear problem, it is easy to show the equivalence of the results obtained with the two
choices of reference systems. If more than three regions are treated|e.g., when an additional decomposition zone is included
in the condensed phase|it may be more convenient to take xs = 0 for the reference frame, and account for the motions of all
interfaces relative to that plane, which is the time-averaged location of the solid-gas interface.
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regarded as a thermal theory of steady and unsteady combustion of a solid propellant. No di®usive processes
are accounted for and the pressure is uniform throughout the region considered: changes of the momentum
of the °ow do not enter the problem.

(a) Solid Phase. The energy equation for the temperature in the solid phase assumed to have uniform
and constant properties, is

¸p
@2T

@x2
¡mc@T

@x
¡ ½pc@T

@t
= ¡ _Qd (2.20)

where ( ) means time-averaged value; ( )p denotes propellant; c is the speci¯c heat of the solid; m = ½pr

is the average mass °ux in the reference system de¯ned in Figure 2.12; and _Qd is the rate at which energy
is released per unit volume due to decomposition of the solid ( _Qd > 0 for exothermic decomposition). We

assume _Qd = 0 here, an assumption to be relaxed in Sections 2.2.5 and 2.2.6. It is convenient to use the
dimensionless variables

»p =
r

·p
x ; ¿ =

T

T s
(2.21)

where values at the interface are identi¯ed by subscript s and ·p = ¸p=½pc is the thermal di®usivity of the
propellant. Equation (2.20) becomes

@2¿

@»2
¡ @¿

@»p
¡ ¸p½p
m2c

@¿

@t
= 0 (2.22)

Solution to (2.22) with the time derivative dropped gives the formula for the normalized mean temper-
ature

¿ = ¿ c + (1¡ ¿ c)e»p (2.23)

satisfying the conditions ¿ = ¿ s = 1 at the surface and ¿ c = T c=T s far upstream (T = T c) in the cold
propellant.

For harmonic motions, set ¿ = ¿ + ¿ 0 and14 ¿ 0 = ¿̂ e¡i!t, ¿̂ being the amplitude, a complex function of
position in the solid material. Substitution in (2.22) leads to the equation for ¿̂(»p), easily solved to give

¿ 0 = ¿̂0e
¸»pe¡i!t (2.24)

where ¸ satis¯es the relation

¸(¸¡ 1) = ¡i− (2.25)

and − is the important dimensionless frequency,

− =
¸p½p
m2c

! =
·p
r2
! (2.26)

For the numbers given in Table 2.1, − ¼ 20f . In order that ¿ 0 ! 0 for x! ¡1, the solution of (2.25) with
positive real part must be used; ¸ = ¸r ¡ i¸r and

¸r =
1

2

½
1 +

1p
2

h
(1 + 16−2)1=2 + 1

i1=2¾
¸i =

1

2
p
2

h
(1 + 16−2)1=2 ¡ 1

i (2.27)a,b

Due to the choice of reference system, ¿̂0 in (2.24) is the °uctuation of temperature at the average position
of the interface (»p = 0). However, matching conditions at the interface requires values and derivatives of the
temperature at the interface itself, having position xs and velocity _xs. Values at the interface are calculated

14Note that consistently throughout this book we use the negative exponential, exp(¡i!t). In some of the literature the
positive exponential is used, so care must be taken when making comparisons of results.
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with Taylor series expansions about x = 0; only the ¯rst order terms are retained for the linear problem,
and on the solid side of the interface15:

T s(xs) = T (0) + xs

μ
dT

dx

¶
0¡

;

μ
dT

dx

¶
s¡
=

μ
dT

dx

¶
0¡
+ xs

μ
d2T

dx2

¶
0¡

T 0s(xs) = T
0
0¡(0) + xs

μ
@T

dx

¶
0¡

;

μ
@T 0

@x

¶
s¡
=

μ
@T 0

@x

¶
0¡
+ xs

μ
@2T 0

@x2

¶
0¡

(2.28)

Hence the required results for the upstream side of the interface cannot be completed until the interfacial
region is analyzed.

(b) Interfacial Region. Three relations govern the behavior at the interface: conservation of mass and
energy, and the law for conversion of solid to gas. The ¯rst two are established by considering a small control
volume placed about the true burning surface, as sketched in Figure 2.12. The volume is then collapsed to
give \jump" conditions associated with the total unsteady mass and energy transfer in the upstream (s¡)
and downstream (s+) sides of the interface:

½p _xs
m

= ¡
·
1¡ ½gs

½ps

¸
m0
s

m
¼ ¡m

0
s

m·
¸g
@T

@x

¸
s+

=

·
¸p
@T

@x

¸
s¡
+m

·
1¡ ½p _xs

m

¸
(Ls)

(2.29)a,b

The mean gas density ½ near the surface is much smaller than the density of the condensed phase, for cases
of current interest, so the term ½=½p ¿ 1 will hereafter be dropped. For an exothermic surface reaction, the
change Ls = hs+ ¡ hs¡ of the thermal enthalpy is positive and may be viewed as a `latent heat'. The heat
°uxes [¸p@T=@x]s¡ and [¸g@T=@x]s+ are respectively °ows of heat from the interface to the condensed phase
and to the interface from the gas phase; note that (2.29)b has not yet been split into mean and °uctuating
parts.

An Arrhenius law has commonly been assumed for the conversion of solid to gas, giving the total surface
mass °ux

ms = Bp
nse¡Es=R0Ts (2.30)

To ¯rst order in small quantities, the perturbed form of (2.30) is

m0
s

m
= Eei!¿1¿ 0s + nse

i!¿2
p0

p
(2.31)

where E = Es=R0Ts is the dimensionless activation energy for the surface reaction. Time delays or lags ¿1
and ¿2 are included in (2.31), but presently there is no way to compute them; hence they will largely be
ignored here except for some results given in Section 2.2.6.

For steady combustion, the energy balance (2.29)b, with (2.23) substituted for dT=dx, becomesμ
¸g
dT

dx

¶
s+

= m
£
c
¡
T s ¡ Tc

¢
+ Ls

¤
(2.32)

The linear unsteady part of (2.29)b isμ
¸g
@T

@x

¶0
s+

=

μ
¸p
@T

@x

¶0
s¡
+m0

sLs +m(cp ¡ c)T 0s (2.33)

15The temperature is continuous at the interface, but on x = 0, the °uctuations T 00¡ and T 00+ computed from the solutions

for the solid and gas phase need not be continuous.
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Combination of (2.23) and (2.24) and the appropriate parts of (2.28) gives the formula for the heat transfer
into the condensed phase from the interface:μ

¸p
@T

@x

¶0
s¡
= mc

·
¸T 0s +

1

¸

¡
T s ¡ Tc

¢ m0
s

m

¸
(2.34)

In this result, the approximation in (2.29)a has been used. Substitution of (2.34) in (2.33) leads to the
boundary condition to be set on the unsteady heat transfer at the downstream side of the interface:μ

¸g
@T

@x

¶0
s+

= mc

·
¸T 0s +

³cp
c
¡ 1
´
T 0s +

½
1

¸

¡
T s ¡ Tc

¢
+
Ls
c

¾
m0
s

m

¸
(2.35)

This result contains two assumptions:

(i) ½g=½p ¿ 1 (x = xs)
(ii) nonreacting condensed phase having constant and uniform properties

Normally, the ¯rst assumption is reasonable. However, the second is restrictive, possibly seriously so accord-
ing to some analyses; see Section 2.2.5. The important point is that (2.35) explicitly contains the transient
behavior (the dynamics) associated with unsteady heat transfer in a benign solid material. If no further
dynamics is attributed to the processes at the interface or in the gas phase, then the response function
found with this analysis re°ects only the dynamics of unsteady heat transfer in the single homogeneous
condensed phase. That is the basic QSHOD result. Hence it is apparent that the form of the dependence
of the response function in frequency will necessarily in this case be independent of the model chosen for the
quasi-static behavior of the gas phase. The details of the model selected will a®ect only the particular values
of parameters appearing in the formula for the response function. The conclusion is true for the basic Z-N
model as well as for all °ame models assumed to behave quasi-statically.

(c) Gas Phase. To complete the analysis, it is best at this stage to choose the simplest possible model for
the gas phase. We assume that the thermal conductivity is uniform in the gas phase and that the combustion
processes (i.e. the rate of energy release per unit volume) are also uniform in a region beginning some distance
from the interface and extending downstream, ending at a location that is, by de¯nition, the edge of the °ame
zone. This is a useful model containing two simple limits: uniform combustion beginning at the interface;
and a °ame sheet, obtained by letting the thickness of the combustion zone become in¯nitesimally thin.
Figure 2.13 is a sketch of the model. Analysis of the model for steady burning was given by Culick (1969)
with the following results.

x = 0 ix = x fx = x

T
f

UniformUniform
CombustionCombustion

Tc

Ti

Ts

Figure 2.13. Sketch of the model of a solid propellant burning with uniform combustion
in the gas phase.
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The governing equation for this thermal theory is

mcp
dT

dx
¡ d

dx

μ
¸g
dT

dx

¶
= ½gQf _² (2.36)

where Qf is the energy released per unit mass of reactant mixture (assumed to be constant), ½g is the local
gas density and _² is the local rate of reaction. At the downstream edge of the combustion zone, the boundary
conditions are

T = T f ;
dT

dx
= 0 (x = xf ) (2.37)a,b

where T f is the adiabatic °ame temperature. On the interface,

T = T s (2.38)

and the energy balance at the interface givesμ
¸g
dT

dx

¶
s+

= m
£
c
¡
T s ¡ Tc

¢
+ Ls

¤
(2.39)

For steady combustion, consideration of the energy °ow across the gas phase givesμ
¸g
dT

dx

¶
s+

= m
£
Qf ¡ cp

¡
T f ¡ T s

¢¤
(2.40)

On the other hand, integration of (2.36) across the combustion zone, and application of the boundary
conditions (2.37)a,b and (2.38) leads toμ

¸g
dT

dx

¶
s+

=

1Z
0

½gQf _²dx¡mcp
¡
T f ¡ T s

¢
(2.41)

Because Qf is constant, comparison of (2.40) and (2.41) leads to the requirement on the overall reaction rate

1Z
0

½g _²dx = m (2.42)

We assume ¸g constant (an assumption that is easily relaxed) and transform from x to the dimensionless
variable ³:

³ =
mcp
¸g

x (2.43)

The energy equation (2.36) becomes

¡³2 d
2T

d³2
= ¤2 (2.44)

where the eigenvalue ¤2 is

¤2 =
¸gQfw

m2c2pT s
(2.45)

and

w = ½g _² (2.46)

Generally, of course, _² and hence w and therefore ¤2 are dependent at least on temperature, so ¤2 is implicitly
a function of ³. However, we assume ¤2 independent of ³, de¯ning the condition of uniform combustion.
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Then with ³i the value of ³ at the beginning of the combustion zone (where ignition is assumed to occur)
and ³f the value at the downstream edge of the °ame, the ¯rst integral of (2.44) givesμ

dT

d³

¶
s+

=

μ
³f ¡ ³i
³f³i

¶
¤2 (2.47)

Thus μ
¸g
dT

dx

¶
s+

=
¸gQf
cp

μ
1

³i
¡ 1

³f

¶
w

m
(2.48)

For ³f À ³i, and in the limit of combustion beginning at the solid/gas interface so ³i = 1,μ
¸g
dT

dx

¶
s+

=
¸gQf
cp

w

m
(2.49)

The assumption of quasi-steady behavior implies that the °uctuation of heat transfer at the surface is
given simply by the linearized form of (2.49):μ

¸g
dT

dx

¶0
s+

= mcpT s¤
2

μ
w0

w
¡ m

0

m

¶
(2.50)

We also ¯nd as the linearized form of (2.40):μ
¸g
dT

dx

¶0
s+

= m0 £Qf ¡ cp ¡T f ¡ T s¢¤¡mcp ¡T 0f ¡ T 0s¢ (2.51)

This equation gives a formula for the °uctuation of °ame temperature,

T 0f = T
0
s +

m0

m

·
Qf
cp
¡ ¡T f ¡ T s¢¸¡ 1

mcp

μ
¸g
dT

dx

¶0
s+

(2.52)

Substitution of (2.50) for the last term gives the formula for computing T 0f when the combustion is uniform.
In general, T 0f is not equal to the local °uctuation of temperature due to acoustical motions in the gas phase,
the di®erence appearing the temperature °uctuation associated with an entropy wave carried by the mean
°ow departing the combustion zone.

By letting ³i ! ³f , the corresponding results can be obtained for a °ame sheet; see Culick (1969; 2002).
We will consider here only the case of a combustion zone having ¯nite thickness; the response functions
found for the two cases di®er only in small details.

To progress further, we must specify the form of w = ½g _²; the reaction rate per unit volume. For the
quasi-steady part of the processes, we assume that the mass °ow provided by the surface is well-approximated
by the Arrhenius law (2.30) and its °uctuation is (2.31) with zero time delays,

m0

m
= E

T 0s
T s
+ ns

p0

p
(2.53)

Due to the assumption of quasi-steady behavior, this formula represents the °uctuation of mass °ow through-
out the gas phase.

Finally, we need an explicit form for w as a function of the °ow variables. To construct a consistent
formula for the reaction rate in the gas phase, we equate the two results for heat transfer to the interface
during steady burning: (2.39), the energy balance for steady combustion, generally valid at the interface;
and (2.49) found for the special case of steady uniform combustion. For quasi-steady behavior in the gas
phase, we replace average by instantaneous values of the temperatures, giving the expression for w:

w =
cp
¸gQf

m2 [c (Ts ¡ Tc) + Ls] (2.54)
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We assume that the right-hand side can be written as a function of pressure only by approximating the
pyrolysis law m = a(Ts)p

n as

m = apn = b(Ts ¡ Tc)spns (2.55)

so

Ts ¡ Tc =
³a
b
pn¡ns

´ 1
s

(2.56)

Then (2.54) becomes

w =
cp
¸gQf

(apn)2
·
c
³a
b
pn¡ns

´ 1
s

+ Ls

¸
(2.57)

The °uctuation w0 of the reaction rate is then

w0

w
=

³
1¡ Tc

T s

´
¤2

c

cp
w
p0

p
(2.58)

where ¤2 is given by (2.45) written for the steady problem,

¤2 =
¸gQfw

m2c2pTs
(2.59)

and

w =

·
2(1 +H) +

cp
c

1¡ ns
n

c

¸
H = ¡ Ls

c(T s ¡ Tc)
(2.60)a,b

Instead of the calculations leading from (2.49) to (2.58) one could as well simply assume w0 » p0. The only
purpose of these remarks is to give an example of relating °uctuations of the reaction rate to the pressure
for a well-de¯ned model of combustion in the gas phase.

(d) Construction of the Response Function. We ¯nd the formula for the response function in the following
way:

(i) Substitute the pyrolysis law (2.53) in (2.35) which combines the interfacial conditions for energy and
mass transfer:

1

mcT s

μ
¸g
@T

@x

¶0
s+

=

μ
¸+

A

¸

¶
T 0s
T s
+

Ã
cp
c
¡ 1 + LA

1¡ Tc
T s

!
T 0s
T s
+ ns

Ã
L+

1¡ Tc
T s

¸

!
p0

p
(2.61)

where

L =
Ls

cT s

A = (1¡ Tc

T s
)(®s +

Es

R0T s
)

(2.62)a,b

(ii) Substitute the reaction rate (2.58) into the expression (2.50) for the heat loss from the gas phase to
the interface:

1

mcT s
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@x
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μ
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p
¡ cp
c
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(2.63)
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(iii) Equate (2.61) and (2.63) and use the pyrolysis law (2.53) to eliminate T 0s=T s; this step leaves an
equation which can be rearranged to give the ratio de¯ned to be the response function for pressure
coupling:

Rp =
m0=m
p0=p

=

¡
AW +

cp
c ns

¢
+ ns(¸¡ 1)

¸+ A
¸ +

£ cp
c E¤

2 ¡HA+ cp
c ¡ 1

¤ (2.64)

(iv) Write (2.64) in the form

Rp =
c1 + ns(¸¡ 1)
¸+ A

¸ + c2
(2.65)

For the assumed steady burning rate law, m = apn, the °uctuation can be written for quasi-steady
(in¯nitely slow) changes of pressure and hence burn rate:

Rp =
m0=m
p0=p

= n (2.66)

Thus in the limit of zero frequency (¸ = 1), the right-hand side of (2.65) must equal n, giving the
condition

c1
1 +A+ c2

= n

De¯ne B and A with

c1 = nB

and

c2 = B ¡ (1 +A)
Hence (2.65) becomes

Rp =
nB + ns(¸¡ 1)

¸+ A
¸ ¡ (1 +A) +B

(2.67)

10
-1

10
0

10
1

10
2

-3

-2

-1

0

1

2

3

4

5

Rp

Real Part

Imaginary part

Figure 2.14. Real and imaginary parts of a QSHOD response function computed with
equation 2.67: ns = 0, A = 6:0, B = 0:60.

Figure 2.14 shows typical results for the real and imaginary parts of this formulas when ns = 0. Experi-
mental results given in the following section have long established that the QSHOD model captures a major
contribution to the dynamical behavior, due to unsteady heat transfer in the condensed phase. Thus it is
important to understand the preceding analysis. However, even with the large experimental errors associated
with all current experimental methods, it seems there is little doubt that other dynamical processes cannot
be ignored for many propellants, especially in the range of frequencies above that where the broad peak of
the real part of Rp appears.
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An important reason for retaining pressure dependence in the pyrolysis law for the transformation
solid! gas (cf. equation 2.30) is that Rp 6= 0 if ns 6= 0 even though n = 0, so the steady burning rate is
independent of pressure. The experimentally observed presence of pressure coupling for `mesa' propellants
has long been an ill-explained feature of unsteady surface combustion still not well understood. More
generally, n should be taken as a function of pressure, a behavior reported in several of the references cited
but not covered here. See especially reports by the group at NWC (later NWAC).

A second de¯ciency of the QSHOD model of surface combustion response is that it contains no depen-
dence of the mean burning rate on oscillatory pressure. This e®ect had been reported already in some of the
earliest works on oscillations in solid rockets (for some measurements see Crump and Price 1961 and Eisel
1964). Figure 2.15 shows two examples. The observed changes of mean burning rate and mean pressure
with oscillatory conditions in a chamber is indeed a complicated and by no means well-understood matter.
In a motor, the oscillatory pressures and velocity (`velocity coupling') may both a®ect the mean burning
rate and pressure in ways which are quite likely to depend on the distributions of those quantities along the
burning surface. Consequently, the internal con¯guration of the propellant grain may be a signi¯cant factor.
Thus it is evident that a single response function de¯ned for oscillatory pressures is only part of the story.

2.2.3. Measurements of the Response Function; Comparison of Experimental Results and
the QSHOD Model. For more than forty years, measurement of the response function has been the most
important basic task in research on combustion instabilities in solid rockets. That problem still exists.
Without accurate data, the truth of theoretical results cannot be assessed; predictions and interpretations of
instabilities in motors are uncertain; and the ability to screen propellants for optional behavior is seriously
compromised. Unfortunately, no entirely satisfactory method exists for accurate measurements of the com-
bustion response over practical range of operating conditions, irrespective of cost. Two recent ¯nal reports
of extended programs (Culick (editor), 2002, Caltech MURI; and Krier and Hafenrichter (editors), 2002,
UIUC MURI) have led to this conclusion after ¯ve years' investigation of the ¯ve main existing methods:

(i) T-burner
(ii) ultrasonic apparatus
(iii) laser recoil method
(iv) magnetohydrodynamic method
(v) microwave technique

A sixth method based on using a burner (e.g., an L* burner) in which bulk oscillations are excited, was not
investigated, partly because it is intrinsically limited to relatively low frequencies.

It is not our purpose here to review these methods; see the two MURI reports, Cauty (1999), and
references contained in those works for discussions of all but the last method. The microwave technique was
introduced in the 1970s (Strand et al. 1974, 1980) and has been continually improved, but the accuracy of
the data remains inadequate, particularly for metallized propellants for which the method is useless under
some conditions. The last work with the device was done in the late 1990s by a group in Russia and reported
by Zarko (1998).

(a) Examples of Early Data. The ultimate question for modeling and theory is: how good is the
agreement between predicted and measured values? It appears that the ¯rst extensive comparison for this
purpose were carried out many years ago (Beckstead and Culick, 1971) soon after the recognition that all
the available models/analyses were equivalent to the QSHOD (A,B) model. With only two parameters
available to adjust the theoretical results to ¯t data, the task of comparing theory and experiment became
manageable. At that time, only T-burner and limited L¤-burner data were available. Figures 2.16 and 2.17
show two results.
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Figure 2.15. Experimental results for the change of burning rate of two double-base pro-
pellants (Crump and Price 1961).
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Figure 2.16. The real part of the response function vs. the non-dimensional frequency,
®t!=r

2 for A-13 propellant: the solid curve is calculated from the QSHOD formula for the
values of A and B shown; the dashed curves represent the T-burner data at the indicated
pressures (Beckstead and Culick 1971).

One purpose of the report by Beckstead and Culick was to combine the formula for the QSHOD response
function with results obtained from analyses of the T-burner and the L*-burner to obtain formulas for the
parameters A and B in terms of measurable quantities. The main conclusion was that unique values of A and
B could not be obtained for a given propellant tested at a chosen value of operating pressure. Consequently,
large di®erences existed between the data and curves of the sort shown in Figure 2.16 and 2.17.
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Figure 2.17. The real part of the response function vs. the non-dimensional frequency for
A-35 propellant; the curves were calculated from the QSHOD formula (Beckstead and Culick
1971).

Since that time, many examples of using the A, B model to ¯t data have been given. Most, if not all,
approach the matter as a two-parameter (A and B) curve ¯tted to data for the real part of the response
function only. Strictly, that tactic is incorrect and could produce misleading results. The proper approach
requires that the two-parameter representation be used to ¯t simultaneously the real and imaginary parts
of the response function. There are also cases in which investigators have failed to respect the distinction
between the response function Rp » m0=p0 and the admittance function Ap » u0=p0 de¯ned for velocity
°uctuations. That error arises due to failure to recognize which quantity a particular method actually
measures. For example, T-burners give Rp directly, but the magnetohydrodynamic method provides data
for Ap because it measures the unsteady velocity of the combustion products near the burning surface.
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Figure 2.18. Real part of the response function measured with T-burners (Price 1984).

The apparent reduction of the real part of the response function when the mean pressure is reduced, more
clearly shown by the latter data plotted in Figure 2.16, seems to be a common trend. Fifteen years later,
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Price (1984) reported similar results plotted in Figure 2.18. Although the pressure dependence of the surface
reaction (ns 6= 0) does seem to explain some of the trend, there still is no incontrovertible explanation. It's
just one of many incomplete topics on the subject.

Without attention paid to those points, any comparisons between data and a model are suspect. Even
accounting for those common de¯ciencies, there is no doubt that the QSHOD model cannot and does not
accurately represent the dynamics of actual propellants. One would anticipate without experimental results
that the assumption of quasi-steady behavior in the gas phase must fail at high frequencies, commonly
believed to be around 1000 Hertz and higher. Moreover, observations of steady combustion have shown that
important decomposition processes take place in the sub-surface zone near the interface of most propellants.
Hence at least two improvements of the QSHOD model should be made.

(b) Some Results from the MURI Program. During the past 40{45 years an immense amount of data
has been collected for the combustion dynamics of solid propellants. Some are accessible; much is not. It
is inappropriate here to try to give a thorough survey; it seems best in this limited space to quote a few
results from the most recent publications, covering work carried out in the period 1996{2001 in the Caltech
and UIUC MURI programs cited above. The research spanned the broadest possible range of activities
from basic propellant chemistry and synthesis to motor dynamics. Work in the research groups included a
complete range of experimental methods; modeling; theory and analysis; and numerical simulations, all for
both steady and unsteady combustion of propellants.

Three classes of propellants were tested, to determine their burning rate laws and their dynamical
behavior. Table 2.2 summarizes the main characteristics distinguishing the propellants in the three groups
referred to as Phase I, Phase II and Phase III. Further details and the chief motivations for selecting those
propellants are included in Attachment A of the Caltech MURI Final Report. All propellants were provided
to all research groups measuring response functions.

Table 2.2. Principal Characteristics of the MURI Propellants.

Manufacturer Oxidizers Binders Remarks

PHASE I Thiokol, Inc. AP HTPB ² plateau and
biplateau propellants

² 11 formulations
including reduced
smoke and smokeless

PHASE IIA Thiokol, Inc. AP BAMMO/AMMO ² two formulations
with GAP reduced smoke

and smokeless

PHASE IIB CSD, Inc. AP/HMX HTPB/GAP ² ¯ve aluminized
formulations, one
with some AP
replaced by HMX
and one with GAP
replacing HTPB

² AP size distributions
varied

PHASE III Alliant Techsystems, Inc. AP Nitrato-type ² seven formulations
energetic including four
binders aluminized and

three smokeless

COMBUSTION DYNAMICS AND MECHANISMS OF COMBUSTION INSTABILITIES 

RTO-AG-AVT-039 2 - 33 

 

 



2.2.4. The Zel'dovich-Novozhilov (Z-N) Model. Zel'dovich (1942) was ¯rst to consider true com-
bustion dynamics for solid propellants. He was concerned with problems of transient burning|i.e. what
happens to combustion of a propellant when the impressed pressure is changed rapidly|but not explicitly
with the response function. Novozhilov (1965) later used Zel'dovich's basic ideas to ¯nd a formula for the
response of a burning propellant to sinusoidal oscillations of pressure. The result has exactly the same de-
pendence on frequency as the QSHOD model, i.e. it is identical with the formula obtained by Denison and
Baum (1961) four years earlier.

The basic Z-N model incorporates quasi-steady behavior of the burning in a clever and instructive
fashion. Moreover, the parameters|there are, of course, two corresponding to A and B in the QSHOD
model|are so de¯ned as to be assigned values from measurements of steady combustion of the propellant in
question. Hence there is no need to become enmeshed in the details of modeling the combustion processes in
the gas phase. If the measurements could be done accurately, it would be possible to obtain good predictions
of the combustion response for propellants, subject of course to all the assumptions built into the QSHOD
model. Unfortunately, the required quantities are di±cult to measure accurately. Con¯rmation of the results
still requires measurements of both the real and imaginary parts of the response function and comparison
with the predictions of the model.

The condensed phase and interfacial region are treated as described in Section 2.2 for the QSHOD model.
Instead of detailed analysis of the gas phase, that is, construction of a \°ame model", the assumption of
quasi-steady behavior is applied by using relations among the properties of steady combustion, the burning
rate and the surface temperature as functions of the initial temperature of the cold propellant and the
operating pressure:

m = m(Tc; p)

Ts = Ts(Tc; p)
(2.68)a,b

The assumption is also made that these functions are known su±ciently accurately that their derivatives
can also be formed, introducing the four parameters

º =

μ
@ lnm

@ ln p

¶
Tc

¹ =
1

T s ¡ Tc

μ
@T s
@ ln p

¶
Tc

k =
¡
T s ¡ Tc

¢μ@ lnm
@Tc

¶
p

rZN =

μ
@T s
@Tc

¶
p

(2.69)a,b,c,d

Subscript ZN is attached to r to distinguish it from the linear burning rate. It is not apparent from the
remarks here why the four parameters (2.69)a{d are signi¯cant in this theory; see the works of Novozhilov
(1965 and later).

Recall that in Section 2.2 the sole reason for analyzing a model of combustion in the gas phase was
to produce a formula for the heat feedback, ¸g(@T=@x)s+, to the interface. That is the central problem
here as well: to ¯nd the heat feedback from considerations of steady combustion and assume (the quasi-
steady approximation) that the form of the result holds under unsteady conditions. The trick is to work out
the relation between the feedback and the properties of steady combustion. It is in that process that the
parameters (2.69)a{d appear.
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The formula for the response function corresponding to (2.67) is usually written (e.g., Cozzi, DeLuca
and Novozhilov 1999)

Rp =
º + ±(¸¡ 1)

rZN (¸¡ 1) + k
¡
1
¸ ¡ 1

¢
+ 1

(2.70)

where

± = ºrZN ¡ ¹k (2.71)

Comparison of (2.67) and (2.70) gives the formulas connecting the parameters in the two formulations:

A =
k

rZN
; B =

1

k
; n = º ; ns =

±

rZN
(2.72)

Much emphasis has been placed in the Russian literature on the \boundary of intrinsic stability," the
locus of values of (A,B), or (k; rZN ) for which the denominator of (2.70) vanishes

16. Under those conditions,
the propellant burn rate su®ers a ¯nite perturbation in the limit of a vanishingly small change of pressure.
Hence, from measured values of º and rZN , one can infer how close an actual propellant is to that stability
boundary.

With these models, the opportunity exists to use experimental results to determine how accurately the
QSHOD approximations capture the combustion dynamics of solid propellants:

(i) infer º; ¹; k; rZN from tests of steady combustion;

(ii) measure the real and imaginary parts of Rp;

(iii) compute Rp from (2.67) or (2.70) and compare with (ii)

There seem to be no published reports of results for this procedure, although some results exist for predictions
related to the boundary of intrinsic stability.

Novozhilov and his co-workers have investigated many other detailed aspects of the combustion dynamics.
However, experimental data to con¯rm the theoretical results either don't exist or are too sparse to allow
de¯nite conclusions. Hence despite the value of those results, we will not discuss them here.

2.2.5. Revisions and Extensions of the QSHOD Model. As we have already noted in Section
2.2.3, even with the large uncertainties accompanying the experimental results obtained with current meth-
ods, it is clear that the QSHOD model does not capture some important dynamical processes. Considerable
e®ort has been devoted to improving the model, with a certain amount of success, but unfortunately the
de¯ciencies in the experimental procedures still prevent de¯nitive identi¯cation of the most signi¯cant con-
tributions. Thus there is only weak justi¯cation for developing three-dimensional models of the processes
for practical purposes. It seems that much is still to be gained by investigating extensions of the QSHOD
model.

Attention has been given to all three of the regions sketched in Figure 2.12. It is important to recognize
that simply changing the model for steady combustion|for example including a ¯nite zone of decomposition
in the solid phase|will not change the form of the QSHOD result. To a®ect the frequency dependence of
the response function, any additional spatial zones or processes must also contain new dynamics (see, for
example, Culick 1969). One cause of `new dynamics' is spatial non-uniformity of material properties when
conductive heat transfer is the dominant unsteady process. Here we attend mainly to contributions from
di®erent processes which conceivably change the dynamics.

16This condition is analogous to the way in which instabilities are de¯ned for a classical control system by ¯nding the poles
of the appropriate transfer function
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(a) Additional Dynamics in the Condensed Phase. It seems that three types of processes have been
considered as modi¯cations of the basic model of the condensed phase discussed in Section 2.2.2:

(i) temperature-dependent thermal properties;
(ii) phase transitions; and
(iii) decomposition zones.

Louwers and Gadiot (1999) have reported results for numerical calculations based on a model of HNF.
Melting at some interface within the condensed phase is accounted for, as well as energy released by sub-
surface reactions. Combustion in the gas phase is also treated numerically. The computed response functions

show that the new processes may increase the values of R
(r)
p by as much as 10{30% and more in the frequency

range above the peak. The peak value is unchanged.

Brewster and his students at the University of Illinois have produced a number of interesting works
treating additional dynamics related to chemical processes in the condensed phase and at the interface
(Zebrowski and Brewster, 1996; Brewster and Son, 1995). Much attention was given to this matter in the
MURI Programs (Culick 2002, Krier and Hafenrichter 2002). Gusachenko, Zarko and Rychkov (1999) have
investigated the e®ects of melting in the response function, ¯nding quite signi¯cant consequences. Lower
melting temperatures and larger energy absorption in the melt layer increase the magnitude of the response
function.

Cozzi, DeLuca and Novozhilov (1999) worked out an extension of the Z-N method to account for phase
transition at an in¯nitesimally thin interface in the condensed phase. The analysis includes new dynamics by
allowing di®erent properties of the thermal waves on the two sides of the interface. Additional heat release is
allowed only at the interface of the transition and with conversion of condensed material to gaseous products.
They found that the response function is increased by exothermic reaction at the internal interface and by
reduced temperature of the phase transition.

(b) Additional Dynamics in the Gas Phase. DeLuca (1990; 1992) has given thorough reviews of the
various models proposed for the gas phase. Most, however, involve no dynamics, so there are no e®ects on
the dependence of the response function on frequency. An example of truly dynamical e®ects is covered in
the next section, with references to previous works.

2.2.6. Some Results for a Special Extension of the QSHOD Model. The results summarized
in this and the following section have been reported in a Ph.D. Thesis (Isella, 2001) and in four publications
(Culick, Isella and Seywert, 1998; Isella and Culick, 2000a; 2000b; 2002). A purpose of the works was to
address in a small way some of the questions raised in our discussion of prior results. Chie°y two general
problems have been addressed in those works:

(1) develop a simple general analysis of the combustion dynamics of a solid propellant that will conve-
niently accommodate models of the relevant chemical and physical processes, especially those in the
interfacial region; and

(2) investigate the in°uences of small changes in the combustion response function on observable features
of the combustor dynamics, particularly properties of limit cycles.

Both of those problems were chosen to determine answers to the question: what properties of a solid
propellant are responsible for the often observed sensitivity of the dynamics of a solid rocket to apparently
small (sometimes not well-known) changes in the composition of the propellant. The main conclusions are:
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(i) small changes in the composition and thermodynamic properties of a propellant have signi¯cant
consequences for dynamical behavior due to pressure coupling only if the propellant is burning near
its intrinsic instability boundary; and

(ii) on the contrary, the dynamics due to velocity coupling may be much more sensitive to small compo-
sitional changes.

We do not compare with experimental results, and some of the behavior found may be unrealistic. Our
purpose is partly to demonstrate by some examples the sort of behavior one can obtain by altering the basic
QSHOD model. It seems that this strategy is an e®ective means of exploring possibilities in a quantitative
fashion. The very important task of establishing which processes are important (and under what condition)
has for the most part not been accomplished.

If the conclusions are true, then future work in the area of combustion instabilities must include intensive
attention to modeling and measuring the combustion dynamics|i.e. the response function|associated with
velocity coupling. In any case, there are several reasons arising with observed behavior of combustion
instabilities in solid rockets that velocity coupling should receive more attention than planned.

(a) The Model Framework. One important purpose of the work cited above was to construct a framework
within which it would be possible easily to investigate the consequences of various processes participating
in the combustion of a solid. Representation of the combustion dynamics must be in a form required for
analyzing the global dynamics (Section 3.3). The simplest approach is an extension of the well-known one-
dimensional analysis producing the QSHOD response function for pressure coupling (Culick 1968; Beckstead
et al. 1969; T'ien 1972; among many works). Others have followed a similar tack (e.g., Louwers and Gadiot
1999). The main novel aspects of the work described here are inclusion simultaneously of surface physical
dynamics (e.g., due to mobility of liquid or solid particles); dynamics, rather than quasi-steady behavior, of
the gas phase; and an elementary representation of velocity coupling. The behavior we ¯nd (calculate) may
not be realistic in all cases. Our main purpose is to show one way in which the QSHOD model can be used
is the initial approximation in a procedure to examine possible consequences of departures from the simplest
model.

On the submillimeter scale, a burning solid is heterogeneous both in the region adjacent to the interface
and in the gas phase where much of the conversion to products takes place. The °ow ¯eld in the chamber,
in particular the unsteady acoustic ¯eld, has spatial variations normally of the order of centimeters and
larger. The dynamics of the combustion processes at the surface are formally accommodated as a boundary
condition, a response function of some sort, in the analytical framework for the global dynamics. Hence the
vast di®erence in characteristic scales is accommodated, in principle, by spatially averaging the combustion
dynamics. The averaging is done over a surface in some sense far from the interface so far as the propellant
combustion is concerned, but practically at the interface so far as the ¯eld within the chamber is concerned.
In that way, the results of solution to the \inner" problem of combustion dynamics in the surface region
are used as the boundary conditions for solution to the \outer" problem of the unsteady °ow ¯eld in the
chamber.

We are not concerned here with the matter of spatial averaging: We assume it can be done, although it
may not necessarily be an easy or obvious process. It's an important part of the general problem. Therefore
we proceed from the beginning with a one-dimensional analysis. The spatial framework for the model is
shown in Figure 2.19.

The strategy of the analysis is not novel and has been used in many previous works: Solve the relevant
equations, or postulate a model, governing the behavior in each of the three regions: solid phase; surface
layer; and gas phase, including the region called `combustion zone' in Figure 2.19. A major purpose of the
analysis has been to determine the quantitative e®ects of the dynamics in the surface layer and gas phase
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Figure 2.19. Spatial de¯nition of the model.

on the response function found from the QSHOD model. Hence throughout the work we assume the same
model for the solid phase: The basic dynamics is due to unsteady heat transfer in a homogeneous material
having uniform and constant properties.

Separate solutions or representations are obtained for each of the three regions. Unspeci¯ed constants
or functions are then eliminated by satisfying boundary conditions and applying matching conditions at the
two interfaces. Initially the authors intended to ¯nd such a form for the general behavior that di®erent
models for the surface layer and gas phase could easily be substituted and their consequences assessed. That
goal has not been realized and probably is unattainable in a simple form. Results require detailed numerical
calculations before interesting information is obtained.

(b) Models of the Surface Layer. An important motivation this work was the idea that because the
dynamics of the gas phase are fast (owing to the relatively low material density), then the dynamics of
the surface region should have greater e®ect on the combustion response function in the range of lower
frequencies covering the resonances of many practical rockets. Two models of the region have been examined
in the analysis:

(i) ¯rst order dynamics represented by a constant time lag; and

(ii) unsteady heat transfer, with material properties di®erent from those in the solid phase.

The idea of using a time lag is of course an old one, having been used by Grad (1949) in the ¯rst
analysis of combustion instabilities in solid propellant rockets, and later by Cheng (1954)a,b as part of
the Princeton group's extensive investigations (a sort of technical love a®air) of time lag representations of
unsteady combustion. The result (Isella 2001) for the °uctuation of mass °ux is

m0=m
p0=p

= Rp
e¡i−tq
1 + (−t)2

(2.73)

where Rp is the response function found in the QSHOD theory. Thus Rp has the familiar two-parameter
(A,B) representation. The dimensionless frequency is −, eq. (2.26) ¿ is the dimensionless time lag, equal
to the physical time lag divided by ·p=r

2. Figure 2.20 shows a typical result (A = 14; B = 0.85; ¿ = 1.5).
The graphs illustrate clearly a basic problem with a time lag theory: if the time lag is assumed constant
(i.e. independent of frequency) the response (in this case the real part) possesses an oscillatory behavior
with period increasing with frequency. Such behavior has never been observed in experimental results and
is a consequence of an incorrect assumption, namely that the time lag is constant.

It is true that any response function for linear behavior can be written in a form showing a time lag, but
in general the time lag varies with frequency (Culick, 1968). If the physical model is su±ciently detailed,
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Figure 2.20. QSHOD response function with a time lag: thick line: QSHOD theory with
ns = 0; A = 14, B = 0:85; thin line: QSHOD model including a surface layer having ¯rst
order (time lag) dynamics.

the dependence of ¿ on frequency is found as part of the solution. In particular, the QSHOD theory gives
¿(−) such that the amplitude of the response function decays smoothly for frequencies higher than that at
which the single peak occurs.

The second model for the surface is the only one considered for the results discussed here. It is based on a
simple representation of the dynamical behavior making use of the same solution as that for the homogeneous
solid phase, with two di®erences:

(i) the uniform and constant properties are di®erent from those of the condensed solid material;

(ii) the solution is forced to satisfy matching conditions of continuous temperature and heat transfer at
the interfaces with the condensed phase and the gas phase.

(c) Models of the Gas Phase. In the following analysis, all combustion processes are assumed to occur
in the gas phase; upstream, only phase changes are accounted for, assumed to take place at the interfaces.
We assume distributed combustion of a simpli¯ed form, a single one-step reaction as previous treatments
have used (T'ien, 1972; Huang and Micci, 1990; Lazmi and Clavin, 1992). Solutions must then be found
numerically for the steady and linear unsteady temperature distributions, and subsequently matched to the
solution for the surface layer. For details, consult Isella (2001) and other references cited there and at the
beginning of this section.

2.2.7. Some Results for the Combustion Response Function. Many experimental results exist
suggesting that the responses of actual propellants tend often to be higher than that predicted by the
QSHOD model for some ranges of high frequencies; and possibly the existence of peaks in addition to that
associated with unsteady heat transfer in the condensed phase. Initially the strongest motivation for much
work on the response function has been the need to determine in simple and relatively crude fashion what
processes might have greatest e®ect on the values of the pressure-coupled response at frequencies greater
than that at which the peak magnitude occurs. Roughly what that means is ¯nding one or more processes
having `resonant behavior' or characteristic times in the appropriate range. Unfortunately the analysis is
su±ciently complicated that it has not been possible yet to deduce any explicit `rules of thumb.' Therefore,
we present here a few plots of computed results to illustrate the behavior. What we ¯nd may not be realistic.
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A purpose here is to illustrate what one may learn with a simple procedure. The basic or reference
response function computed from the simple QSHOD model is that shown in Figure 2.14. In°uences of
dynamics in the surface layer and gas phase will be shown relative to that reference. Because of the immediate
availability of the results we extract details from the thesis prepared by Isella (2001). We will not compare
the results with observed behavior. The purpose here is only to show possible indications of deviations from
the basic QSHOD model, due to several well-de¯ned processes.

(a) In°uence of Gas Phase Dynamics. Figure 2.21 is the result when only the dynamics in the gas
phase is added to the QSHOD model. The results are similar to those found by T'ien (1972) and Lazmi
and Clavin (1992), not a surprising conclusion. As expected, the dynamics of the gas phase introduce a
single additional peak in the real part of the response function (» m0=p0). Due to the density °uctuation
½0(m0= ¹m = ½0=¹p+v0=¹v), the real part of the admittance function (» v0=¹v) shows a negative depression where
the real part of the response function Rp has a rise.
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Figure 2.21. Combustion response, QSHOD model with gas phase dynamics (Isella 2001;
Isella and Culick 2000).

(b) Combined In°uences of the Dynamics of the Surface Layer and the Gas Phase. The dynamics of
the surface layer itself are the same as those of the condensed phase, but with di®erent values of the de¯ning
parameters. Figure 2.22 illustrates the e®ects of changing the surface activation energy and the material
density on a function characterizing the response of heat transfer in the layer. The shape of this function
di®ers from that (Figure 2.14) of the basic response function because it is a®ected by the dependence of
several °ow variables on frequency.

Finally, Figure 2.23 shows the result for one example of the response function with the dynamics of both
the surface layer and the gas phase accounted for. Evidently for the conditions examined here the dynamics
of the gas phase has a greater e®ect on the response, in the higher frequency range, than does the surface
layer.

2.2.8. The Combustion Response and Possible Sensitivity of Global Dynamics to Velocity
Coupling. A fundamental problem for practical applications concerns connections between the unsteady
motions taking place in a motor and the features of the combustion processes responsible for that behavior.
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Figure 2.23. Combustion response function including the dynamics of the surface layer
and the gas phase (Isella 2001; Isella and Culick 2000).

This is far from a solved problem, but we are able to make some tentative observations in respect to both
linear and nonlinear characteristics that have already been observed or might be expected.

We will often use the term global dynamics to mean the dynamical behavior of the system in question,
a combustion chamber, its source of energy and, in some cases, peripheral equipment. Thus we intend the
term to have a general meaning, but generally we really mean global dynamics as indicated by the evolution
of the unsteady pressure. Recall that the pressure is the one variable we always have available, and it is
often the only variable measured. In this section we are examining only computed results interpreted as far
as possible in respect to physical behavior. Hence we have at our disposal not only the amplitude of the
entire motion, but the amplitude of harmonics as well.17

17The phases of the motion are also available but we will not consider them here.
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In certain respects, the behavior discussed in this section is well beyond the preparation provided so
far. We will be examining, without clarifying the basis, certain consequences of the dependence of nonlinear
behavior on linear behavior. The main indicator is the amplitude of the limit cycle, or the amplitudes of the
modal components of limit cycles. It happens, as we will see in Chapter 7, that the nonlinear gasdynamics do
not introduce physical parameters other than the properties of the gas. Thus when the linear parameters|
the growth rate and phase for each mode|are changed, those changes are re°ected directly in the limit cycle.
In other words, the amplitudes in the limit cycle serve as a diagnostic revealing the consequences of changes
in the linear processes. Put another way, we evidently have a means of investigating the consequences for
the global dynamics of modifying the linear behevior of the system

The idea of somehow connecting linear and nonlinear behavior is of course not new, and is widely applied
in other ¯elds. For example, without having a nonlinear theory as a basis for quantitative reasoning, early
discussions by Price, McClure and others used observations as the basis for discussing the subjects treated
here. We will not review experimental results. Levine and Culick (1972, 1974) appealed to both numerical
calculations and an early form of the analysis developed here in Chapters 3 and 4 to investigate some
properties of limit cycles with modest success. The approach was greatly extended by Levine and Baum
(1984, 1985) who produced substantial results. They obtained the ¯rst quantitative theoretical results for
subcritical bifurcations (pulsed instabilities) in solid propellant rockets. To obtain those results they needed
a nonlinear response function, explained in Section 7.11. Burnley (1996) and Burnley and Culick (1997)
con¯rmed a conclusion reached by Levine and Baum (1983) that a requirement for the subcritical bifurcation
seemed to be that the response should contain both velocity coupling and a threshold velocity (Section 7.11).
The question of what behavior of the response function is necessary remains open. Experimental results
support the results qualitatively, but there seems to be little possibility at the present time of making ¯rm
quantitative connections with theory.

Currently an unsolved problem is the occasionally observed apparent sensitivity of the global behavior
to relatively small changes of propellant composition (see remarks (i) and (ii) in the introductory part of
Section 2.2.6). We assume that small changes of composition likely have relatively small e®ects on the
magnitude and phase of the response function. Therefore, we are really investigating the e®ects of small
changes in the response function on the observable global dynamics. The main (but tentative) conclusion
is that the sensitivity of the dynamics to changes in the response associated with velocity coupling may be
signi¯cantly greater than that for the response due to pressure coupling. The implications for directions in
future research are substantial.

Isella (2001) and Isella and Culick (2000) have reported the main results. Here we will only cite a
couple of examples. The idea is to use the framework described in Section 3.2 below to compute the
growth and limiting amplitudes for limit cycles. Essentially a modest parameter study has been done, the
response function itself (i.e. the combustion dynamics) being the parameter. Following the presentation ¯rst
introduced by Culick, Isella and Seywert (1998), it is helpful to display the response function as a function
of frequency, and the amplitudes of the modes forming a limit cycle, as two parts of the same ¯gure, such
as Figure 2.24 prepared as a typical case for the QSHOD response function. The vertical lines in the upper
parts of the ¯gures identify the non-dimensional frequencies. For these calculations the model chamber is
cylindrical, 0.6 m long, 0.025 m in diameter, operated at a chamber mean pressure equal to 1:06£ 107 Pa.
It is the same motor considered previously by Culick and Yang (1992).

Figures 2.24{2.27 show results obtained for the same motor and basic combustion response but including,
respectively, surface layer dynamics; a time delay; and dynamics of both a surface layer and gas phase, all
according to the analysis described above.
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Figure 2.24. Results of a simula-
tion with a QSHOD combustion re-
sponse (pressure coupling: A= 8.0,
B = 0.6, n = 0.8) (Isella 2001).
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Figure 2.25. Results of a simula-
tion including dynamics of a surface
layer (Isella 2001).
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Figure 2.26. Results of a simula-
tion including a time delay (¿ =
1.5) (Isella 2001).
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Figure 2.27. Results of a simula-
tion including dynamics of a surface
layer and the gas phase (Isella 2001).

Owing to the signi¯cantly di®erent dynamics added to the basic QSHOD model, the three examples
illustrated in Figures 2.26{2.27 show quite di®erent response functions|all, it must be emphasized, rep-
resenting responses due to pressure coupling. The question here concerns indirectly the sensitivity of the
response function to changes of composition (not the qualitative dynamics) and consequently the sensitivity
of the global chamber dynamics.

In general, models based on pressure coupling do not seem to show dramatic sensitivity of the combustor
dynamics to small changes of composition. That result motivates investigation of similar problems with a
simple model of the response due to velocity coupling. The idea is based on the model introduced by Levine
and Baum (1988). This work is discussed at greater length in Section 7.11.1.
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Some recent work done on the dependence of the global dynamics on the functional form of the equations
used in the analysis by Ananthkrishnan et al. (2002, 2004) seems to show that the absolute value of the
velocity itself, as it appears in a simple model of velocity coupling, is su±cient to produce a subcritical
bifurcation (pitchfork) followed by a fold (saddle-node bifurcation). Those ideas are developed further in
Chapter 7; the point is that a subcritical bifurcation, followed by a fold or turning point, provides conditions
under which pulsed or triggered nonlinear instabilities may exist. Although we have not yet ¯rmly established
the point, it seems that with the QSHOD basic model, the dynamics of a chamber seems to be much more
sensitive to velocity changes than pressure changes. The conclusion is apparently related to the way in which
the global dynamics depends on the unsteady velocity and the phases established among the components of
the motion. That is not a startling result in view of the di®erent forms of the combustion terms provided
by velocity coupling, in contrast to pressure coupling, in the modal equations.

2.2.9. Generation of Vorticity and Vortex Shedding. There are two phenomena of rotational
°ow that have signi¯cant in°uences on the stability and behavior of unsteady motions in solid propellant
rockets:

(1) generation of unsteady vorticity at burning surfaces; and

(2) coupling between acoustical motions and large vortices shed at obstacles or growing out of the region
adjacent to the lateral burning surface.

Both of these phenomena have motivated much interesting work that has °ourished particularly in the past
10{12 years. Signi¯cant e®ort has been expended, mainly in the U.S. and France, on theory, analysis, nu-
merical simulations and experiments. The reasons for the strong interests are di®erent for the two processes.
Both a®ect stability, but unlike the generation of distributed vorticity, shedding of large vortices has been
unambiguously identi¯ed as a mechanism in several large rockets, notably the Shuttle SRM, versions of the
Titan motor, and the Ariane 5 booster motors. Accordingly, several large research programs have been de-
voted to understanding the connections between vortex shedding and acoustic ¯eld. Blomshield and Mathes
(1993) have given the most thorough discussion of the problem existing in the Shuttle motors. Much infor-
mation exists in internal reports of continuing observations of Shuttle motors in °ight, but little has been
done to determine how the oscillations might be reduced.

In contrast, the corresponding problem in the Ariane 5 has been the subject of a great deal of work in
France. See Vuillot and Casalis (2002) and several other papers in the course \Internal Aerodynamics in
Solid Rocket Propulsion" given at the von Karman Institute (2002). The reason for the intensive concern
has been the necessity to install vibration dampers between the solid boosters and the main vehicle. As a
result, the payload has been reduced by a signi¯cant amount, apparently as much as two hundred kilograms.

(a) Generation of Vorticity. The generation of vorticity at a burning surface is special to solid rockets.
It occurs whenever there is a variation of pressure °uctuation, and hence a °uctuating velocity, in the
direction tangential to a surface from which there is average mass °ow normal to surface into the chamber.
The vorticity is created because the velocity inward is perpendicular to the surface|the `no-slip' boundary
condition. Imposition of a tangential velocity °uctuation, due to the non-uniform pressure along the surface,
on the average inward °ow constitutes an inviscid mechanism of vorticity generation. Moreover, conservation
of mass in the region close to the surface causes a periodic pumping action normal to the surface. Both
the vorticity generation and the pumping exist at the expense of work done by the impressed acoustic ¯eld
and therefore must involve exchange of energy with the acoustic ¯eld in the chamber. Sketches of the two
processes are shown in Figure 2.28.

An oversimpli¯ed and incomplete interpretation of the phenomenon due to the no-slip boundary condi-
tion is that the incoming average °ow normal to the surface gains some kinetic energy because it must acquire
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Figure 2.28. Sketches illustrating two primary processes involved in the generation of
vorticity. (a) °ow-turning; (b) 'pumping action': oscillatory motion parallel to the boundary,
in the boundary layer, induces oscillatory motion normal to an impermeable wall; (c) similar
to (b) with mean °ow through the wall.

the oscillatory motion parallel to the surface. Thus there is e®ectively a \turning" of the °ow in the direction
of its passage out the nozzle. In a rocket chamber, for example a cylinder, both the average and unsteady
velocities must become parallel to the axis of the chamber as the °ow approaches the axis. The inelastic
acceleration of the mass °ow causes a loss that is the unsteady counterpart of the loss accompanying mass
injection into a duct °ow. This \°ow-turning loss" was, not surprisingly, discovered in analysis of unsteady
one-dimensional °ow with mass injection at the lateral surface (Culick 1973). However, the connection with
vorticity generation was not mentioned. It was Flandro (1995) who clari¯ed the phenomenon in terms of
the unsteady production of vorticity, emphasizing the central importance of the no-slip boundary condition.
Flandro carried out the ¯rst rigorous formal analysis of the problem, work that has since prompted a stream
of calculations on the basic problem at hand, as well as variations (among them are Majdalani, 1999; Kassoy,
1999; Majdalani, Flandro and Roh, 2000; Malhotra, 2004).

At least ¯ve processes must be considered to assess completely the net e®ect of distributed vorticity on
the stability of acoustical motions in a combustion chamber:

(i) the generation process, Figure 2.28(a);
(ii) the `pumping action', Figure 2.28(c);
(iii) interaction of the vorticity with the acoustic ¯eld in the chamber;
(iv) interaction of the vorticity with the exhaust nozzle; and
(v) interactions between the generated vorticity waves and turbulence in the chamber.

In practice, the matter of stability in the context of combustion instabilities always means stability of pressure
oscillations. It is often helpful to interpret stability in terms of growth or decay of acoustic energy, but care
must be exercised: Because the problem in toto is very complicated, even in the limit of linear behavior it
is easy to obtain misleading, or incorrect, results. The presence of the mean °ow and the various paths of
energy transfer make intuitive construction of an equation for the time evolution of acoustic energy a delicate
task. To ensure accurate theoretical results, the formalism developed here in Chapters 3{7 seems to o®er
the best method; see, for example, Flandro (1995) and Section 6.9.

The `°ow-turning' contribution identi¯ed in the simple one-dimensional approximation by Culick (1972,
1973) was later shown by Flandro (1995) to be, surprisingly, exactly correct. Interpretation of the process,
a loss of energy for the acoustic ¯eld, in terms of generation of vorticity cannot be accomplished within the
one-dimensional approximation. It was somewhat misleading that Culick vaguely related the °ow-turning
loss to viscous processes associated, at least partly, with °ow in the acoustic boundary layer, a speculation
that misses the mark. That proposition led to calculations of corrections to the classical theory of the
acoustic boundary layer (Flandro 1974, Vuillot and Kuentzmann 1986) which have been superceded by the
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more recent works by Flandro (1995)a,b; Majdalani and Van Moorhem (1997) and Majdalani (2000) treat
essentially the same problem but contain some errors of understanding.

Unfortunately, the pumping action associated with the generation of vorticity was missed by Culick in
his one-dimensional analysis.18 Pumping in this context refers to a °uctuating velocity induced normal to
the surface if the acoustic velocity tangential to the surface is not uniform, a direct consequence of continuity.
This motion makes the surface appear as an e®ective oscillating piston tending, if the phase of the motion
is suitable, to drive waves in the chamber. Flandro (1995) has shown that for a cylindrical chamber with
uniform °ow entering along the entire boundary, the net e®ect of the generation of vorticity and the pumping
is zero for purely longitudinal acoustic modes. Whether or not this energy gain is accounted for is the origin
of a controversy centered in the `true' value of the °ow turning, i.e. whether it is a loss, a gain, or has no
net e®ect. At this point, the correct answer seems to be that there is no net e®ect for a cylindrical chamber,
but the amount of loss or gain must be calculated separately for each geometry.

There is no question that the processes (i) and (ii) in the list given above are always present. Whatever
may be the net e®ect on stability, due to these two contributions only, nevertheless waves of vorticity are
generated at the surface and are carried by the average °ow into the chamber. Subsequent interactions with
the acoustic ¯eld in the chamber may cause energy transfer to or from the acoustic ¯eld|there seems to be
presently no basis for giving a de¯nite answer.

If the distributed vorticity survives passage to the nozzle, interactions with the non-uniform °ow have
no direct e®ect on the stability of acoustic waves. Any energy transferred between the vorticity waves and
the mean °ow has no consequences for the acoustic ¯eld. Thus, process (iv) will not contribute to stability.
However, it is conceivable that those interactions may be accompanied by generation of pressure waves. The
necessary analysis has not been carried out to determine whether the e®ect is stabilizing or de-stabilizing.
Crocco and Sirignano (1964) have given the most thorough treatment of the in°uences of supercritical nozzles
on stability including vorticity. No work has been done to clarify the case when the vorticity is that produced
in °ow turning. Culick (1961, 1963) had earlier reported a few results for the behavior of three-dimensional
waves incident upon a choked exhaust nozzle, but he did not include vorticity.

On the other hand, the waves of vorticity must interact with the turbulence ¯eld necessarily present,
process (v). It seems most likely that as a result the vorticity is destroyed. If the destruction occurs close to
the burning surface, then the processes (iii) and (iv) become almost irrelevant to stability. We need account
only for the processes of generation and pumping. At the present state of analysis and understanding, this
seems to be the best resolution of the matter. Thus, for stability of longitudinal motions in a cylindrical
chamber, the net e®ect of °ow-turning is zero, as Flandro has reasoned. Contrary conclusions have been
reached by others, partly supported by appeal to experimental results, which usually contain substantial
uncertainties. The preceeding reasoning rests entirely on the equations of motion.

We discuss further the theoretical basis for the preceding remarks in Chapters 6 and 7. Our conclusion
here is that generation of vorticity at a burning surface is a mechanism for combustion instabilities but its
in°uence on attenuation or ampli¯cation is often small, much smaller, for example, than the damping due
to a choked nozzle. Calculations must be done for the particular grain geometry in question|there is no
simple generalization that can be formulated.

(b) Shedding of Large Scale Vortices. So far as practical consequences are concerned, the production
of large vortices in motors has been far more signi¯cant than has the generation of vorticity discussed
above. The latter is present in all solid rockets, and contributes always to linear stability, although the

18In the same paper, Culick treated the phenomenon of `pumping' as an interpretation of the way in which an acoustic
boundary layer on an impermeable surface attenuates waves. However, he overlooked the analogous process for a permeable
surface. The calculations for the acoustic boundary layer are given here in Annex D. See Section 6.9 for the correct one-
dimensional analysis.
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true quantitative value remains controversial. On the other hand, while the prediction and in°uences of
vortex shedding may contain uncertainties, it is fair to say that the general characteristics are well-known
and settled. Moreover, vortex shedding has been identi¯ed unambiguously as the mechanism for oscillation
observed in several large motors including the Space Shuttle SRM, the Titan IV SRMU and the Ariane 5
SRM. Note that the mechanism has apparently not been active in small operational motors.19

The main reason for that conclusion seems to be the required special near-coincidence between the
frequency of shedding and the frequency of an acoustic mode. Laboratory tests demonstrated that basic
feature (Magiawala and Culick 1979; Nomoto and Culick 1982; Aaron and Culick 1984). Satisfaction of the
condition requires suitable combinations of geometry, mean °ow speed, thickness of shear layer at the origin
of the vortex shedding and acoustic frequency which depends mainly on the speed of sound and length of
chamber. Nevertheless, only a simple apparatus, sketched in Figure 2.29, is required to demonstrate the
phenomenon.

v

34.2

(Variable)

5.1

d

 L = 128.0

ω

Blower
(0-100 cfm)

l

v

Figure 2.29. Sketch of an apparatus for demonstrating the excitation of acoustic modes
by vortex shedding at a pair of annuli. All dimensions in centimeters (adapted from Culick
and Magiawala 1979).

Three forms of vortex shedding have been unambiguously identi¯ed as mechanisms for exciting pressure
(acoustic) oscillations in motors, illustrated in Figure 2.30: shedding from obstacles, usually annular rungs
of restrictors or inhibiting material (Flandro, 1986; Vuillot, 1995); shedding from backward-facing steps
and edges existing due to the geometry of the grain (Flandro, 1986 and Vuillot, 1995); and parietal vortex
shedding in which vortices are created as a consequence of instabilities of the mean velocity pro¯le in the
vicinity of a burning surface (Casalis and Vuillot, 2002). The ¯rst two forms of vortices arise from unstable
shear layers so one may state that generally the presence of vortex shedding as a mechanism is due to an
instability of the average °ow pro¯le.

That conclusion suggests the obvious advice for avoiding this cause of pressure oscillations: Design the
grain to exclude all possibilities for unstable velocity pro¯les. Thus there must be no obstacles, backward
facing steps or edges, and the °ow along burning surfaces must nowhere reach critical conditions for local
instability. In practice those constraints may be too severe to be satis¯ed entirely. The design problem will
then come down to producing a con¯guration in which the strength of the vortices, and their coupling to
the acoustic ¯eld, will be minimal even though not necessarily nonexistent.

Suppose, then, that one or more instabilities of the mean °ow exist in a chamber. Is it necessarily so
that the vortices that may develop will excite and support unacceptable pressure oscillations? No, because
we are concerned here once again with a case of coupled oscillatory systems: The system of pressure waves
¯lling the chamber, and the array of vortices periodically shed from some relatively small region. The two

19The cases of vortex shedding from obstacles and from backward-facing steps have been unambiguously identi¯ed in
full-scale combustors. So far as the author is aware, parietal vortex shedding, in contrast to shedding from obstacles, has not
been shown de¯nitely to exist in full-scale devices although it has been unquestionably identi¯ed in laboratory tests (Avalon
et al. 2000; Vuillot and Casalis 2002). The Ariane 5 is the most likely candidate, but the case still remains open to question;
direct observation has not been accomplished.
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(a)                                                                                                  (b)
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Figure 2.30. Vortex shedding from (a) an annular obstacle composed of residual inhibitor
material; and (b) an edge of a backward facing step at a transition zone; (c) due to instability
of the mean °ow near a burning surface (parietal vortex shedding). Parts (a) and (b) from
(Flandro 1986); Part (c) from Vuillot and Casalis (2002).

systems are coupled. The vortices, by some process such as that discussed below, may transfer a portion of
their energy to the pressure waves; and the pressure waves|or their associated velocity oscillations|have
strong in°uence on the initiation of the vortices by triggering, and, by frequency locking, on instabilities of
the mean °ow.

That behavior has long been known (e.g., see Rockwell and Naudascher 1979 and Naudascher and
Rockwell 1980), implying that the oscillations found in rocket motors require near-coincidence between the
shedding frequency and the frequency of an acoustic mode of the chamber. The truth of that conclusion for
con¯gurations appropriate to solid rockets seems ¯rst to have been demonstrated with the simple laboratory
tests cited above. Satisfaction of the condition requires appropriate combinations of geometry; mean °ow
speed; suitable properties in the region of mean °ow where the instability originates; and the acoustic
frequency, which depends mainly on the speed of sound and a characteristic dimension, usually the length
of the chamber. Su±cient data have been taken for the problem to construct useful scaling laws, `rules of
thumb' for design; see the references cited.

The appearance of vortex shedding in the Titan motors caused formation of a very useful program of
extensive tests carried out in a subscale cold-°ow model of the motor (Dunlap and Brown 1981; Brown et
al. 1981, 1985). Those tests produced extensive data for the internal °ow ¯elds, eventually including results
that formed part of the basis for the theoretical work on unsteady vorticity cited in the preceeding section.

In 1986, Flandro reported his elaboration and extension of the analysis he had carried out with Jacobs
twelve years earlier. The work brought together previous ideas of instability of a shear layer as the initiation
of a shear wave; growth and roll-up of the wave into a vortex; propagation of the vortex at a speed something
less than that of the average °ow; and impingement of the vortices on a solid surface, producing a pulse
of pressure that can excite and sustain acoustic waves in the chamber. An acoustic pulse will propagate
upstream to the region of the shear instability, possibly to initiate another disturbance to be ampli¯ed within
the layer, later to develop into another vortex, etc., etc. The process will continue, becoming periodic when
the frequency of the vortex shedding is nearly equal to the acoustic frequency. In that work, Flandro also
¯tted his results in the general analysis of linear instabilities covered here in Chapter 6.
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When that behavior occurs in a rocket, toroidal vortices are shed from the inner edge of an annular
obstruction, as in the Shuttle and Titan motors, or from edges such as those at the transition from longitu-
dinal slots to the main cylindrical chamber (Figure 2.30(b)). The acoustic frequency is determined mainly
by the length of the chamber, while the vortex shedding frequency is in°uenced by the local geometry and
average °ow. The local geometry determines the growth of the shear layer and in particular its momentum
thickness, a fundamental parameter de¯ning the conditions for instability. Flandro's analysis|an adaptation
of earlier work by Michalke (1965)|and experimental results, have con¯rmed that the vortex shedding is
characterized by the value of the Strouhal number, St, at which the growth rate of an unstable disturbance
is maximum. The Strouhal number is de¯ned as the product of shedding frequency fs, times a characteristic
length ±, divided by a characteristic speed U , so the shedding frequency is given by the formula

fs = St
U

±
(2.74)

where St has some value roughly constant and set by the geometry. The frequencies of the acoustic modes
are only weakly dependent on the mean °ow of the Mach number so small but do depend strongly on the
geometry. For a chamber having length L and closed at both ends20, the longitudinal modes have frequencies
given by

fa = `¼
a

L
(2.75)

where a is the speed of sound and ` = 1; 2; : : : identi¯es the mode.

The results reported by Nomoto and Culick (1982) con¯rm the truth of the preceding ideas for a simple
laboratory apparatus consisting of two annuli ¯tted in a tube, separated by some distance ` and having
a mean °ow in the axial direction. Figure 2.31 is a photo of the °ow in the vicinity of the two ba²es.
Figure 2.32 shows some results with lines drawn according to (2.74) and (2.75) and data points indicating
the occurences of oscillations without regard to amplitude. For the conditions of the experiment, signi¯cant
oscillations were excited only in regions in which (2.74) and (2.75) are simultaneously satis¯ed. Note that the
separate diagonal lines for shedding frequency given by (2.74) represent cases in which there are 1; 2; 3; : : :
vortices existing between the annuli at any given time. This interpretation of the shedding frequency was
¯rst given by Rossiter (1966).

Figure 2.31. Typical °ow between the ba²es when a pure tone is generated (Nomoto and
Culick 1982).

20A rocket physically closed at one end and exhausting through a choked nozzle appears to acoustic waves as if it is
approximately closed at both ends.
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L = 50.8 cm

L = 92.7 cm

Figure 2.32. Experimental results for the excitation of acoustic modes by vortex shedding
(Nomoto and Culick 1982). Open circles identify conditions when signi¯cant oscillations
were observed. The length of the chambers from inlet to exhaust.

A potentially important implication of Figure 2.32 is that the dependence of the observed frequency
of oscillation may not have an obvious|or simple|dependence on the length and mean °ow speed during
the ¯ring of a solid rocket. In fact, as several researchers have noted (see, e.g., Vuillot 1995) the following
reasoning shows that the shift of frequency with time is a good basis for distinguishing vortex shedding as
the mechanism for oscillations. However, in practice, unambiguous distinction between this form of vortex
shedding and parietal vortex shedding as the primary cause of observed oscillations may not be easy (Vuillot
and Casalis, 2002).

Instabilities sustained by feedback involving combustion dynamics almost always show dependence on
geometry closely given by the formulas of classical acoustics: fa » 1=L. Thus, if there is little or no propellant
cast at the head end, the longitudinal frequency is nearly constant in time. Or, if, as usually is the case for
large motors, there are slots and ¯ns at the head end, the e®ective length of the chamber tends to increase
during a ¯ring and hence the frequency of oscillation decreases.

However, according to the results given in Figure 2.32, because the mean velocity may increase during
a burn as more propellant is exposed, the frequency of vortex shedding may increase. Coupling between the
process of vortex shedding and the acoustic modes occurs over a broad range of frequency. It is possible (and
has been observed) that the frequency su®ers discrete changes, corresponding to transition between groups
of data points shown in Figure 2.32; that is, the state of the oscillating system shifts because the number of
shed vortices present between the shedding and impingement points changes.

The potentially important and very interesting second cause of vortex shedding was discovered several
years ago by Vuillot and his colleagues at ONERA while investigating the mechanism for unstable oscillations
observed in the Ariane 5 solid rocket boosters. Subscale ¯rings of motors showed that large vortices were
initiated, grew, and were shed from the region near the burning surface. (Vuillot et al. 1993; Traineau et
al. 1997). Hence the phenomenon was called \parietal vortex shedding" by Lupoglazo® and Vuillot (1996).
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In an exemplary systematic research program, the group at ONERA have established most of the char-
acteristics of parietal vortex shedding relevant to practical applications. Some issues of scale apparently
remain, but very good agreement has been found between subscale hot ¯rings; subscale tests with °ow visu-
alization (Avalon et al. 2000); and numerical analyses of stability and vortex shedding. LeBreton et al. (1999)
have given a good review of the subject, including some results for the e®ects of residual combustion which
in this situation may not be negligible. Moreover, there is strong evidence of signi¯cant interaction between
shedding from obstacles and parietal vortex shedding. The strength and signi¯cance of those interactions
must clearly depend on the geometry and (changing) °ow conditions in the chamber.

Possibly the most important aspect of this subject is weak understanding of nonlinear behavior. Ap-
parently only Aaron (1985) has attempted a simple explanation, with only modest success. No simple
explanation exists for the amplitudes of oscillations that can be generated by coupling with the shedding
of large vortices. According to LeBreton et al. (1999) parietal vortex shedding produces, in their examples,
larger amplitudes of oscillation than does shedding from an annulus (inhibitor ring in a segmented rocket).
It would clearly be a signi¯cant aid to design and development if a rule of thumb could be constructed to
place an upper limit to the amplitudes of oscillation caused by vortex shedding. Because the mechanism
involves conversion of mechanical energy of the near °ow to acoustic energy, it is likely that the maximum
possible amplitudes must be much smaller than those that can be generated by coupling between acoustics
and combustion dynamics. However, even when the amplitudes are well below values causing damage to the
motor, the associated levels of oscillatory vibrations may be unacceptable to the payload.

2.2.10. Distributed Combustion. Combustion of the major components of a solid propellant|the
primary oxidizer and the binder in the case of composite solids|normally takes place to completion near
the burning surface. Thus the term `distributed combustion' refers to combustion of particles as they are
carried into the volume of the chamber. In particular, almost all attention has been directed to residual
combustion of aluminum for which there is much photographic evidence. Steady combustion of aluminum
particles has long been and continues to be a subject of research owing to its vital importance to the e±ciency
and performance of motors, and in the formation of slag, a general term referring to condensed material.

Relatively little notice has been taken of the possible in°uences of residual combustion on the stability of
motors. Probably the main reason for this lack of interest is the general view that the existence of combustion
instabilities in motors can be satisfactorily explained by other mechanisms, notably the dynamics of surface
combustion and vortex shedding. It appears that the dynamics of aluminum combustion within the volume
of the chamber must provide at most a small contribution to stability. There are at least two reasons for
this conclusion: the available data contain uncertainties too large to allow identi¯cation of the in°uences of
unsteady aluminum combustion; and any destabilizing tendencies of the particles are roughly compensated
by the attenuation of unsteady motions due to the presence of particles. The second e®ect is known to be
signi¯cant if the particles are inert and have suitable sizes for the frequencies of the instability in question.

Several works (Marble and Wooten 1970; Dupays and Vuillot 1998) have treated the e®ects of condensa-
tion and vaporization of non-burning particles, on attenuation of acoustic waves. Whether the attenuation
is increased or decreased depends on many factors, including the sizes of particles and the rates at which the
particles gain or lose mass. When, for example, a particle is vaporizing, it seems that in the presence of an
acoustic wave, the phenomenon of `°ow turning' discussed in the preceding section should cause increased
attenuation for a given particle size and frequency. However, while the analysis by Wooten (1966) sup-
ports that conclusion, recent work by Dupays (2000) suggests that the result is not always true. Moreover,
suggestions have been made by investigators of combustion instabilities in ramjets (Sirignano et al. 1986)
and in liquid rockets (Grenda, Vanketaswaram and Merkl 1995) that the process of vaporization of liquid
drops is destabilizing. Those conclusions may be misleading, due to implied direct connections between the
vaporization and burning rates. It may in fact be the case that the destabilization found in practice is due
to combustion rather than vaporization per se.
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Owing to the necessary connection between vaporization and combustion of particles, the problem of
residual combustion presents certain di±culties of distinguishing what process is really responsible for at-
tenuation or driving of waves. The most extensive experimental work on the problem in the U.S. has been
done by Beckstead and his students (Beckstead, Richards and Brewster 1987; Raun and Beckstead 1993;
Raun et al. 1993; Brooks and Beckstead 1995).

One of the most compelling reasons for investigating the matter was the discovery of anomalous (and
still not completely understood) results obtained with a device called the `velocity-coupled T-burner'. In this
con¯guration, large areas of propellant are mounted in the lateral boundary to emphasize the interactions
between surface combustion and velocity °uctuations parallel to the surface. For reasons not discussed
here, Beckstead concluded that residual combustion was possibly a reason that unusually large values of
the response function were found. The idea was based partly on the suspicion that the tangential velocity
disturbances can strip incompletely burned aluminum from the surface. Subsequently, with both calculations
and further experiments (Raun and Beckstead 1993), Beckstead has strengthened his case that the e®ects
of unsteady residual combustion should not be dismissed out-of-hand. It is worth noting the conclusion by
Brooks and Beckstead (1995) that the greatest e®ect of residual combustion (of aluminum) on stability is
indirect, due to its e®ect on the mean temperature pro¯le.

More recent work on distributed combustion has been carried out in France, motivated by the problem of
oscillations in the Ariane 5 motor discussed in Section 2.2.6. The program devoted ¯rst to non-reacting two-
phase °ow and later to reacting °ow began, apparently, with the dissertation by Dupays (1996). The most
recent discussion of the work seems to be the review articles prepared by Dupays et al. (2002), but a broader
view of the matter is presented in the excellent article by Fabignon et al. (2003). Aluminum combustion
is discussed, not at great length, in the context of acoustic oscillations driven by vortex shedding with the
Ariane 5. A main conclusion must be given close attention: Relatively small drops amplify oscillations,
but large drops (diameters 125¹, burning to 60¹) attenuate the motions. It appears that little further
work has been accomplished to investigate the reasons for this result which clearly has important practical
implications. Simulations of unsteady two-phase °ow in the Ariane 5 P230 booster motor have also been
described by Lupoglazo® et al. (2000). See Section 6.11. It's an important topic. The subject of the e®ects of
interactions between particles and gas seemed at one time to be quite well in hand. That view changed with
recognition that at the temperature of °ows in solid rockets residual combustion distributed in a chamber
is likely signi¯cant under some realistic conditions. How signi¯cant, and how widespread the conditions are,
has not been de¯ned. It's an interesting subject that should be better understood.

2.3. Mechanisms of Combustion Instabilities in Liquid-Fueled Systems

Apart from di®erences in geometry, the primary distinctions between di®erent propulsion systems are due
to the internal physical processes. Some are independent of geometry, but others|such as °ow separation|
are not. In this and the following sections, we discuss the four oldest and main ideas that have been proposed
for explaining combustion instabilities in liquid-fueled systems: processes associated with droplet formation
and burning; interpretation with a time lag; convective waves; and vortex shedding and combustion. The
ideas are not new and much of the material covered was developed during the period 1950{1990. Relatively
little has been accomplished in general since that time, although in the past decade much has been done to
improve the level of detail. While all have been prompted by experimental results, they di®er greatly in the
extent to which they have been developed.

2.3.1. Atomization, Droplet Vaporization and Burning. Some years after the time lag model
had been developed, work at the NASA Research Center (Priem and Guentert 1962 and Priem 1965) showed
that the stability of a liquid rocket motor could be controlled by varying the characteristics of the vaporiza-
tion process. The conclusion followed from the results of numerical solutions to the equations for nonlinear
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unsteady motions in a chamber. Source terms were approximated with models of the atomization, vapor-
ization and burning. Variations of characteristic parameters showed that atomization and vaporization were
the dominant rate processes determining the stability limits. That conclusion led to a series of studies
particularly emphasizing vaporization.

Because of the di±culty of extracting precise conclusions from numerical analyses, Heidmann and Wieber
(1966a, 1966b) devised a method for assessing the vaporization process alone. A droplet is injected axially
in a steady °ow. An acoustic ¯eld is superposed having the spatial distribution of the lowest ¯rst tangential
mode for a cylindrical chamber, sin μJ1(·11r). The motion and vaporization rate of the droplet is calculated
throughout its history. By superposing the results for an array of injected drops, assumed not to interact
with one another, one may ¯nd the local °uctuation of vaporization rate throughout the chamber. That is
the mass source term w0l in the continuity equation for the gas phase (see Annex A).

Heidmann and Wieber (1966a) de¯ned a \response factor", N , to interpret their results:

N =
X w0l=wl

p0=p
(2.76)

where
P
here denotes the sum over all droplets in the volume considered. They gave results for N as a

function of various parameters. Typically, N shows a peak of about 0.6{0.9 in a frequency range 0.04{0.1
Hertz. Results obtained for n-heptane over fairly wide °ow conditions were correlated with a dimensionless
parameter containing droplet size, chamber pressure, gas velocity and a dimensionless amplitude of the
oscillation.

In a later work, Heidmann and Wieber (1966b) used a restricted form of Rayleigh's Criterion and a
simpler linear analysis to produce essentially the same conclusions. The new de¯nition of the response factor
was

N =
X 2¼=wR

0

ŵ
(r)
l

wl

p̂
pdt

2¼=wR
0

³
p̂
p

´2
dt

(2.77)

These analyses amount to detailed examination of a particular process contributing to the time lag discussed
Section 2.3.2. Substitution of the real part of (2.94) in (2.77) gives

N = n(1¡ cos!¿) (2.78)

Heidmann and Wieber found that their numerical results could be approximated quite well in the range
¿v! < 1 by the values

n = 0:21

¿ = 4:5¿v
(2.79)

where ¿v is the mean droplet lifetime. This comparison is shown in Figure 2.33 taken from Heidmann and
Wieber (1966).

Note that the function (2.79) oscillates and therefore becomes a poor approximation for !¿v > 1, as
show by the solid line in Figure 2.33. The vaporization rates seem physically reasonable for the conditions
shown, so one must conclude that the time lag model fails at higher frequencies. Subsequently, Tong and
Sirignano (1986a, 1986b, 1987) re-examined the problem of unsteady vaporization. With their more detailed
model including the e®ects of unsteady heat transfer in the gas phase, they concluded that their vaporization
rates are much higher than those found by Heidmann and Wieber.

More strongly, Tong and Sirignano proposed that unsteady droplet vaporization is a potential mechanism
for driving combustion instabilities. Heidmann and Wieber had earlier noted that the response factor they
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Figure 2.33. Vaporization response according to Heidmann and Wieber (1966).

calculated for the vaporization process was less than that calculated for the nozzle losses. Thus, although
vaporization itself did add energy to the acoustic ¯eld according to their analysis, the e®ect was too small
to be a mechanism for instabilities. Tong and Sirignano concluded that their results show su±cient energy
transfer from the vaporizing droplets to the acoustic ¯eld to qualify as a mechanism in actual systems21.
Their conclusion is based solely on the p¡ v work done by the process of vaporization and does not include
any energy release due to combustion. The proposal is evidently wrong, for the following reasons reached by
reasoning from at least two points of view.

First, we must emphasize that none of the preceding conclusions involved combustion: The assertion is
that coupling between pure vaporization and the acoustic ¯eld produces net °ow of energy to the oscillations
in the gas. The contrary conclusion was reached by Marble and Wooten(1970) and Marble (1969), that both
condensing and vaporizing droplets attenuate acoustical motions. In Section 2.2.10 we noted that recent
work at ONERA showed that a more complete analysis accounting for condensation and vaporization in
greater detail leads to slightly di®erent conclusions.

The reason for the opposite conclusion seems to be that not all interactions between the droplets and
the acoustic ¯eld are accounted for in the calculations by Heidmann and Wieber, and by Tong and Sirig-
nano. Their conclusions were based on using Rayleigh's Criterion, but only one term was considered. They
argued that by analogy with Rayleigh's original statement concerning °uctuations of heat addition, the same
criterion should apply to mass addition. Therefore, as in equation (2.77), only the integral involving w0l was
computed; a positive value indicates the possibility for driving the acoustic ¯eld. However, the derivation
given later will show that the correct form of the criterion involves several contributions. Considering only
those associated with the conversion of liquid to gas, the result can be found (Culick, 1988, Section 2.5)

¢²n =
!2n
pE2n

Z
dV

t+¿nZ
t

·
(° ¡ 1)

½
±Q0l + (hl ¡ e)w0l +

μ
h0l ¡ e0 ¡

p0

½g

¶
wl

¾
+°

³
± ~F 0l + wl±~u

0
l

´
¢ ~u0n

i
dt

(2.80)

21Later application of this work to ramjet combustors is discussed brie°y in Section 2.4.5
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There is indeed a term proportional to the integral of w0lp
0, but it is multiplied by (hl ¡ e) which

contains the heat of vaporization. There are also signi¯cant amounts of energy transfer associated with the
terms involving ±Q0l + ±F

0
l which for non-vaporizing drops represent the attenuation of sound waves. Those

e®ects are included in the work by Marble and Wooten: Their results show that the accompanying energy
losses dominate, so that in fact if combustion is ignored, vaporizing droplets cause damping, not driving, of
unsteady gas motions.

We must emphasize that the con°icting results, and the conclusion that vaporization is not a mechanism
for driving combustion instabilities, rests on proper computation of the energy transfer. In the earlier work,
an incorrect or, rather, incomplete form of Rayleigh's Criterion was used. It is certainly true that the process
represented by w0lp

0 alone does cause driving if the °uctuation of mass release has a component in phase
with the pressure °uctuation, but that is only part of the story.

Priem (1988) has used Heidmann and Wieber's model of vaporization, combined with the model worked
out by Feiler and Heidmann (1967) for a gaseous fuel, to study combustion instabilities in the LOX/methane
system. He bases his conclusions concerning stability boundaries on numerical results for the combustion
responses, of which that for liquid oxygen is computed with equation (2.77) and the method described above;
and on corresponding results found for the losses associated with the exhaust nozzle and ba²es. His results
seem to compare fairly well with some experimental work. The reason that this could be so|even though
vaporization causes net energy losses if all contributions are accounted for|is that the energy released by
combustion, immediately following vaporization, is the dominant factor. That is, in equation (2.79) the
terms involving energy transfer are larger than those representing losses. Comparison with experimental
results seems always to involve multiplicative factors which are determined to provide best ¯t to data, or are
absent in normalized forms. Then when good agreement was found, it seems that it is largely the qualitative
behavior that is being checked. The method is dated and no longer useful.

Despite the heavy emphasis, in many works, on vaporization as the rate controlling process, it is generally
recognized that other processes contribute and in some situations may be dominant. The injection process
itself may be a®ected under unsteady conditions due to the varying streams, impact of jets, and atomization
all are sensitive to unsteady °ow ¯elds. Those problems are extremely complicated, di±cult to describe in a
fashion suitable for use in a general analysis, and are very much dependent on details of the hardware. Thus
the work has largely been experimental with some e®ort to correlate results in a form useful for design (e.g.,
Levine 1965; Sotter, Woodward and Clayton 1969; Webber 1972; Webber and Ho®man 1972). The time-lag
model has been used essentially as a means of correlating all of those processes without concern for details
(Reardon, Crocco and Harrje 1964; Reardon, McBride and Smith 1966). Summaries of experimental results
obtained prior to 1971 may be found in the reference volume edited by Harrje and Reardon (1972).

Of work in the 1980s, the most fundamental and detailed was that carried out at ONERA as a result
of problems due to combustion instabilities in the Viking motor. Special e®ort was made to understand the
unsteady behavior of the injectors used in that engine. The intentions of the research program were described
by Souchier, Lemoine and Dorville (1982); and by Lourme and Schmitt (1983). Considerable e®ort has since
been expended to characterize the steady and unsteady behavior as the basis for analyzing instabilities in the
engine (Lourme, Schmitt and Brault 1984; Lecourt, Foucaud and Kuentzmann 1986; Lourme 1986; Lecourt
and Foucaud 1987). The results range from detailed measurements of the spray (droplet size and velocity
distributions) to the more global unsteady response of the injector, using a device adapted from a method
developed for solid propellant rockets.

2.3.2. Interpretation With a Time Lag. Owing to the enormous complications associated with
analysis of the time-dependent behavior of liquid-fueled systems, representation of the dynamics with a time
lag was introduced early in theoretical work. The basic idea is simple, and quite general, related to the
familiar experience that a forced oscillating system will gain energy if the force has a component in phase
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with the velocity of the point of application. Stability of dynamical systems characterized in some sense
by a phase or time lag had been studied prior to the concern with combustion instabilities (for example,
see Callender et al. 1936 and Minorsky 1942). In 1941, Summer¯eld (1951) had observed low frequency
\chugging" during ¯rings of a liquid rocket. Discussion with von Karman led to the idea of a time lag as
a possible explanation. Gunder and Friant (1950) independently introduced a time lag in their analysis of
chugging, but it was Summer¯eld's paper and subsequent work at Princeton by Crocco that established the
time lag theory in the ¯rm widely used.

The essential idea in all applications of the time lag is that a ¯nite interval|the lag|exists between the
time when an element of propellent enters the chamber and the time when it burns and releases its chemical
energy. Such a time lag must exist in steady operation, and, since combustion is distributed throughout
the chamber, there is no unique value. Evidently a complete analysis of injection and subsequent processes
could then be interpreted in terms of multiple time lags; results exist only for approximate analyses.

Now suppose that at time t the pressure in the chamber suddenly decreases, causing an increase in the
°ow of propellant through the injector. The increased mass burns at some later time t + ¿ , where ¿ is the
time lag. If the pressure is increasing when the added mass burns, the energy released will tend to encourage
the pressure increase, a destabilizing tendency. This elementary process is easily interpreted with Rayleigh's
Criterion. Assume that the pressure varies sinusoidally,

p0 = p̂ sin!t (2.81)

and that the energy occurs later with constant time lag ¿ ,

Q0 = Q̂ sin!(t¡ ¿) (2.82)

Integration of the product p0Q0 over one period 2¼=! gives
t+2¼=!Z
t

p0Q0dt0 = p̂Q̂

t+2¼=!Z
t

sin!t0 sin(!t0 ¡ !¿)dt0 = p̂Q̂ ¼
!
cos!¿ (2.83)

Thus, according to Rayleigh's Criterion (Section 6.6), we expect that net energy is added to the oscillation
if cos!¿ is positive, so the time lag must lie in the ranges

0 < ¿
¼

2!
;

3¼

2!
< ¿ <

5¼

2!
; : : : etc. (2.84)

Suppose that the system is unstable and the ¿ lies in the range 3¼=2! < ¿ < 5¼=!. Then the strategy for
¯xing the problem is based on modifying the system so that ¿ is either increased or decreased, placing its
value outside the range for instability.

Because the processes subsequent to injection are surely dependent on the °ow variables, pressure,
temperature, velocity, : : : , it is unrealistic to assume that the time-lag is constant. The most widely used
form of the representation with a time lag are dominated by its dependence on pressure. Figure 2.34, taken
from Dipprey (1972), is a sketch illustrating the behavior for a sinusoidal pressure oscillation imposed on the
system. The total time delay to burning is supposed, in this case, to be composed of two parts due to the
propellant feed system and the combustion delay (injection, atomization, vaporization, mixing, and chemical
kinetics). It is the second part that is sensitive to the °ow conditions in the chamber.

Let _m denote the mass °ow (mass/sec.) of propellant. At this point we are not concerned with details
and we need not distinguish between fuel and oxidizer. The arguments based on the idea of a time lag are
directed mainly to constructing a representation of the mass source term w` (mass/vol.-sec.) in the equation
for conservation of mass. Thus the result is intended to express the rate of conversion of liquid to gas in
a volume element of the chamber. There is no consideration of combustion processes in detail; the usual
assumption is that combustion occurs instantaneously, a view that determines how the time lag model ought
to be incorporated in the equations.
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Figure 2.34. Graphical de¯nition of a simple time lag (Dipprey 1972).

Let (~r; dV ) denote the volume element at position ~r in the chamber and let (t; dt) denote the small
time interval dt at time dt. The idea is that the amount of liquid !ldV dt converted to gas in the element
(~r; dV ) in the interval (t; dt) was injected as ± _m(t ¡ ¿)d(t ¡ ¿) at the time t ¡ ¿ in the interval d(t ¡ ¿).
Hence by conservation of mass,

wldV dt = ± _mi(t¡ ¿)d(t¡ ¿) (2.85)

According to earlier remarks, the time lag is supposed to be variable, and can be written as the sum of
average and °uctuating values, ¿ = ¿ + ¿ 0. In steady-state operation, (2.85) is

wldV dt = ± _mi(t¡ ¿) = ± _mi(t¡ ¿)dt (2.86)

Expanding ± _m(t¡ ¿) in Taylor series for use in (2.85) we have

± _mi(t¡ ¿) = ± _mi(t¡ ¿) + ¿ 0
·
d

dt
± _mi

¸
t¡¿

+ ¢ ¢ ¢ (2.87)

The second term is non-zero if the injected mass °ow is not constant. There are many situations (notably
for low frequency instabilities) for which variations are important. But for instabilities at high frequencies,
variations of the propellant °ow are generally not important. Hence we ignore the second term in (2.87) and
substitute (2.86) in (2.85) to ¯nd

wl(~r; t) = wl

μ
1¡ d¿

dt

¶
(2.88)

The variations of the local conversion of liquid to gas depend in this simple fashion on the time-dependence of
the time lag. Note that ¿ may in general depend on position: The reasoning here is quite widely applicable.

The di±cult problem is of course to predict ¿ | in fact it has never been done. Crocco introduced the
idea that the time lag is the period required for the processes leading to vaporization to be completed. He
assumed that this integrated e®ect can be represented by an integral over the time lag of some function f of
the variables a®ecting the processes

tZ
t¡¿

f fp; T; ~u; ~ul; : : : g dt0 = E (2.89)

The constant E is supposed to be a measure of the level to which the integrated e®ects must reach in order
for vaporization to occur. Almost all applications of the time lag model rest on the assumption that the time
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lag is sensitive only to the pressure. The function f may then be expanded to ¯rst order about its value at
the mean pressure,

f(p) = f(p) + p0
df

dp
= f(p)

·
1 + p0

1

f(p)

df

dp

¸
If f = cpn then df=dp = ncpn¡1 and (df=dp)=f(p) = n=p. The interaction index n is de¯ned as

n =
p

f(p)

df

dp
(2.90)

and f(p) is approximated as

f(p) = f(p)

·
1 + n

p0

p

¸
(2.91)

This form is now used in approximate evaluation of (2.89).

First di®erentiate (2.89) with f(p) = ffp(t)g to ¯nd

ffp(t)g ¡
μ
1¡ d¿

dt

¶
ffp(t¡ ¿)g = 0

Substitution of (2.91) gives

1¡ d¿
dt
=

1 + np
0(t)
p

1 + np
0(t¡¿)
p

¼ 1 + n
·
p0(t)
p

¡ p
0(t¡ ¿)
p

¸
(2.92)

Set wl = wl + w
0
l in (2.88) and substitute (2.92) to ¯nd the basic result of the time lag theory:

w0l = wln
·
p0(t)
p

¡ p
0(t¡ ¿)
p

¸
(2.93)

For analyzing linear stability, p0 = pe¡iaktÃ(~r) and w0l = ŵle
¡iakt, so

ŵl = wln(1¡ e¡i!¿ ) (2.94)

where the usual approximation has been made, ®¿ ¿ !¿ in the exponent.

Equation (2.94) is a two-parameter representation of the conversion of liquid to gas. The two parameters,
the time lag ¿ and the interaction or pressure index n, are unknown a priori. All work with the time lag
theory requires experimental measurements to determine their values. The general idea is simple. After
substituting (2.94) in the linearized conservation equations, solution is found for the stability boundary
(® = 0) with n and ¿ as parameters. Experimental data for the stability boundary are used to determine n
and ¿ . The approximate range of values for ¿ had been reasoned, e.g., by Crocco and Cheng (1956). Crocco,
Grey and Harrje (1960) were ¯rst to obtain su±cient data to con¯rm the value of this approach. Figure 2.35
reproduces some of their results for the time lag and interaction index inferred from tests with two injectors.
The data were taken for the stability boundary of the fundamental longitudinal mode and show the strong
dependence on fuel/oxidizer ratio.

Obviously, there are many limitations within the analysis itself. The analysis leading to (2.94) is entirely
phenomenological; the ¯nal result containing two parameters only is an enormous simpli¯cation of the real
situation, but there is no way to assess the imperfections. The formula (2.93) can be extended to include,
for example, dependence on velocity °uctuations (Reardon, Crocco, and Harrje 1964). Because the values
of all parameters must be found from experimental data, the di±culties become prohibitive.

The time lag model (it is, after all, not really a theory) is based on an appealing physical argument but
no processes are treated explicity. Probably the most serious de¯ciency is that no detailed treatment is given
of combustion, which is ultimately the source of the energy driving all combustion instabilities. Nevertheless,
the model has been the basis for some success in treating instabilities in liquid rockets, primarily as the basis
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Figure 2.35. Early measurements of the time lag and pressure index in a gas rocket
(Crocco, Grey and Harrje, 1960).

for correlating data. The two-parameter representation provides a convenient framework for detecting trends
with design changes. Its illumination of basic physical processes and its predictive value are very limited
indeed.

2.3.3. Convective Waves. Following work by Kovasznay (1953), Chu and Kovasznay (1957) showed
one way of decomposing general small disturbances of a viscous compressible °uid into three classes: acous-
tic, viscous, and entropy waves. Acoustic waves carry no entropy changes, while viscous and entropy waves
have no accompanying pressure °uctuations. The direct e®ects of viscous stresses and heat conduction on
combustion instabilities are generally negligible except in the vicinity of surfaces. That entropy °uctua-
tions evidently have second order e®ects on the acoustic waves is implied by the formal analysis covered in
Chapter 3.

However, both viscous e®ects and non-uniform entropy may a®ect the acoustic ¯eld indirectly through
processes at the boundaries. First we examine here the possible in°uences of entropy °uctuations. These
fall within the general class of convective waves, that is, disturbances that are carried with the mean °ow:
their propagation speed is the average °ow speed. Entropy °uctuations are associated with the portion of
temperature °uctuations not related isentropically to the pressure °uctuation, such as non-uniformities of
temperature due, for example, to combustion of a mixture having non-uniformities in the fuel/oxidizer ratio.
In general, an entropy wave may be regarded as a non-uniformity of temperature carried with the mean °ow.

As shown by Chu (1953) pressure waves incident upon a plane °ame will cause generation of entropy
waves carried downstream in the °ow of combustion products. Thus one should expect that when combustion
instabilities occur, there must be ample opportunity for the production of entropy °uctuations. That process
has negligible e®ect directly on stability (the coupling between acoustic and entropy waves is second order
within the volume) but there has long been interest in the possible consequences of entropy waves for the
following reason.

COMBUSTION DYNAMICS AND MECHANISMS OF COMBUSTION INSTABILITIES 

RTO-AG-AVT-039 2 - 59 

 

 



When an entropy wave is incident upon the exhaust nozzle, it must pass through a region containing
large gradients of mean °ow properties. A °uid element must retain its value of entropy and for this condition
to be satis¯ed, the pressure and density °uctuations cannot be related by the familiar isentropic relation,
±p » °±½. As a result, within the nozzle, pressure changes are produced that will generate an acoustic
wave that will propagate upstream. Thus, an entropy wave incident upon an exhaust nozzle can produce an
acoustic wave in the chamber, augmenting the acoustic ¯eld due to other sources.

An arti¯cial elementary example will illustrate the proposition. Consider a chamber admitting uniform
constant mean °ow at the head end, say through a choked porous plate; the °ow exhausts through a choked
nozzle (Figure 2.36). Suppose that at the head end a heater is placed, arranged so that its temperature
can be varied periodically, with frequency !. This action produces a continuous temperature or entropy

u S

P

P

+

_

Figure 2.36. Sketch of a simple case with a single entropy wave (S) and acoustic pressure
waves (P+, P¡).

wave convected with the °ow. An experimental realization of this situation has been described by Zukoski
and Auerbach (1976). We assume no losses within the °ow, so a °uid element retains its entropy; small
perturbations s0 of the entropy satisfy the equation

±s0

±t
+ u

±s0

±z
= 0 (2.95)

If S is the amplitude of the °uctuation at the heater (z = 0), the solution for s0 is

s0 = Se¡i!(t¡
z
a ) (2.96)

To simplify the calculations, assume that the °ow speed is vanishingly small so that we may ignore its e®ect
on acoustic waves. Then the acoustic pressure and velocity ¯elds can be expressed as sums of rightward and
leftward traveling plane waves:

p0 = [P+eikz + P¡e¡ikz]e¡i!t

u0 = [U+eikz + U¡e¡ikz]e¡i!t
(2.97)a,b

As usual, the complex wavenumber is k = (! ¡ i®)=a. The acoustic pressure and velocity must in this
problem satisfy the classical acoustic momentum equation with no sources:

½
@u0

@t
+
@p0

@z
= 0 (2.98)

Separate substitution of the forms for the rightward and leftward traveling waves shows that U§, P§ are
related by

½aU+ = P+ ; ½aU¡ = ¡P¡ (2.99)

Assume that the head end acts as a perfect re°ector for the acoustic waves, so

u0 = 0;
@p0

@z
= 0 (z = 0) (2.100)a,b

In a real case (e.g., if the heater were actually a °ame) the pressure °uctuations would cause °uctuations of
entropy at the head end. To represent this e®ect, set s0 proportional to p0 at z = 0:

s0 = A0p0 (z = 0) (2.101)
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Tsien (1952), Crocco (1953) and Crocco and Cheng (1956) have shown that the boundary condition at the
nozzle entrance may be written in the form

p0 + ½aA1u0 +A2s0 = 0 (z = L) (2.102)

We may now show that the problem formulated here admits solutions representing steady acoustic
oscillations in the chamber, whose stability depends on the values of the coe±cients A0, A1, A2. We eliminate
the unknown amplitudes S, P+, P¡ and obtain a characteristic equation for the complex wavenumber k, by
satisfying the boundary conditions (2.99)-(2.102). Substitute equations (2.97)a,b and (2.99) into (2.100)a,b
to ¯nd

P+ ¡ P¡ = 0 (2.103)

With (2.96) and (2.97)a, the condition (2.98) is satis¯ed if

S = A0(P+ + P¡) (2.104)

Finally, substitution of (2.96), (2.97)a,b and (2.104) in (2.102) gives

[(1 +A1)e
ikL +A0A2e

i!uL]P+ + [(1 +A1)e
¡ikL +A0A2ei(

!
u )L]P¡ = 0 (2.105)

With P¡ = P+ from (2.103) we have the characteristic equation

ei2kL =
¡1

(1 +A1)
[1¡A1 + 2A0A2ei(k+!

u )L] (2.106)

Generally A0, A1, A2 are complex numbers. The real and imaginary parts of (2.106) provide transcendental
equations for the real and imaginary parts (!=a; ®=a) of k. The solutions are unstable if ® > 0, corresponding
to self-excited waves. Note that in the limiting case of no entropy °uctuations (A0 = 0) and a rigid wall
(A1 !1) at z = L, (2.106) reduces to ei2kL = +1 or cos 2kL = 1 and sin 2kL = 0. Then k = n¼=L and the
allowable wavelengths are ¸ = 2¼=k = 2L=n, the correct values for a tube closed at both ends.

This example suggests the possibility for producing instabilities if entropy waves are generated and if
those waves interact with the boundary in such a way as to produce acoustic disturbances. It is in fact a
genuine possibility that has been considered both in laboratory tests and as an explanation of instabilities
observed in actual engines. The di±culties in applying this idea are largely associated with treating the
processes responsible for causing the entropy waves.

In a combustion chamber, possible sources of entropy °uctuations may be distributed throughout the
chamber. Burning of non-uniform regions of fuel/oxidizer ratio and interactions of pressure distributions
with combustion zones are important causes, both producing non-isentropic temperature °uctuations. Thus
in general the property that in inviscid °ow free of sources an element of °uid has constant entropy, is
inadequate. A proper description of entropy waves should be placed in the broader context accounting also
for convective waves of vorticity was worked out ¯rst by Chu and Kovasznay (1957). We cannot provide
a complete discussion here, but for later purposes it is helpful to have at hand the more general equation
governing entropy °uctuations.

Combination of the ¯rst law of thermodynamics for a perfect gas and the de¯nition ds = dq=T , valid if
the heat transfer dq is not too abrupt, gives

ds = Cv
dT

T
¡ p

½g

d½g
½g

Now introduce the perfect gas law to eliminate the temperature change. Writing the result for motion
following a °uid element we have

1

Cv

Ds

Dt
=
1

½

Dp

Dt
¡ °

½g

D½g
Dt

(2.107)
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where D=Dt = @=@t + ~ug ¢ r is the convective derivative. From the calculations in Annex A, we ¯nd the
equation for entropy,

1

Cv

Ds

Dt
=
1

½

R

Cv

·
Q+ ±Ql +rq+©+ ±ul ¢FFFl + p

½g
r ¢ (½l±ul)

+

½
(hl ¡ e) + 1

2
(±ul)

2

¾
wl

¸ (2.108)

The right-hand side contains all sources of entropy changes including viscous e®ects, combustion and con-
version of liquid to gas.

Equation (2.108) completes the set of equations required for complete analysis of combustion instabilities
including entropy waves. See also Annex A and Chapter 3. The equations governing vorticity waves are
obtained by splitting the velocity ¯eld into two parts: the acoustic ¯eld which is irrotational, and the rota-
tional vorticity ¯eld which, if treated in all generality, includes turbulence as well as large vortex structures
and shear waves.

2.3.4. Vortex Shedding from Rearward-Facing Steps. The presence of unplanned swirling, spin-
ning or vortex motions in propulsion systems has long been recognized as a serious problem. They fall
broadly into two classes: those with angular momentum directed along the axis, usually (if the rocket itself
isn't spinning) related to standing or spinning transverse acoustic modes of the chamber; and those having
angular momentum mainly perpendicular to the axis, associated with vortex shedding from blu® bodies or
rearward-facing steps.

Motions identi¯ed as forms of transverse or tangential modes do not normally qualify as mechanisms:
they are themselves the combustion instability. Male, Kerslake and Tischler (1954) gave an early summary of
severe transverse oscillations (\screaming" at 10 kHz) and noted what has always been a serious consequence:
greatly increased surface heat transfer.

Here we are concerned with vortex motions growing out of unstable shear layers. Those vortices, now
commonly called \large coherent structures" (Brown and Roshko 1974) are convected downstream at ap-
proximately the average speed of the two streams forming the shear layer. Figure 2.37 shows an example of
the observations made by Brown and Roshko for cold °ow at relatively low Reynolds number. In propulsion
systems, the shear layers in question are generally formed in °ow past blu® body °ameholders (in thrust
augmentors) or past rearward-facing steps (in ramjet engines).

Figure 2.37. Large-scale coherent structures in a mixing layer at 8 atmospheres in °ow past
a splitter plate: upper stream (v1 = 10 m/s) is He; lower stream is N2, with ½2v

2
2 = ½1v

2
1.

(Brown and Roshko 1974).

Observations of vortex shedding from °ameholders, and recognition of the importance of this process as
a possible mechanism for combustion instabilities were ¯rst independently reported by Kaskan and Noreen
(1955), Rogers (1954) and Rogers and Marble (1956). Both experiments used premixed gaseous fuel and air
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°owing past a °ameholder in a rectangular channel. However, the particular mechanisms proposed were very
di®erent. Figures 2.38 and 2.39 taken respectively from Kaskan and Noreen (1955) and Rogers and Marble
(1956) clearly show the vortex shedding. Particularly Figure 2.39 shows a good example of the in°uence
of °ow conditions on vortex shedding from a two-dimensional blu® body with combustion; in this case the
blu® body was a two-dimensional wedge. At approximately constant speed, when the equivalence ratio in
the premixed °ow past the lip of the wedge was increased from about 0.75 to around 0.90 continuous vortex
shedding began, and high-frequency acoustic oscillations were sustained in the channel. The oscillations were
transverse to the axis of the channel.

Particularly noteworthy|and important|is the reasoning by Rogers and Marble for the presence of
the oscillations. They give an appealing argument based on the idea that delayed pulses of combustion,
producing pulses of pressure, occur periodically with the shed vortices. A vortex formed and shed from the
lip of the °ameholder entrains fuel mixture from the free stream. A short period of time passes during which
the fresh (cold) gas mixes with hot combustion products entrained from the recirculation zone behind the
°ameholder. At the end of the ignition delay, the mixture in the vortex burns vigorously, generating a pulse
of pressure which is supposed to reinforce the pressure oscillation in the chamber. For steady oscillations to
be sustained, this process must evidently occur at the same frequency as that of the wave motion. For the
tests typi¯ed by those shown in Figure 2.39, the ignition delay, according to results given by Zukoski and
Marble (1954), was about 0.00028 seconds, suggesting a frequency around 3600 Hz. The observed oscillations
(Figure 2.39) had frequencies in the range 3600{3900 Hz.

Figure 2.38. Photograph of vortices shed in a reacting °ow (Kaskan and Noreen 1955).

Motivated partly by earlier observations of Blackshear (1953) and Putnam and Dennis (1953), Kaskan
and Noreen proposed a di®erent mechanism, speculating that stretching of the °ame front accompanying
roll-up in the vortex causes a pressure disturbance. Periodic disturbances generated by vortex shedding
may then sustain either transverse or longitudinal acoustic ¯elds. (They observed both in their tests, but
transverse waves were most common.) As a quantitative basis for interpreting their results they modi¯ed a
theoretical relation derived by Chu (1953) for plane °ames. Although they had modest success comparing
their reasoning with their data, Kaskan and Noreen did not provide a complete explanation of the closed-loop
process required to generate self-excited oscillations. This mechanism has subsequently received much notice
as a possible cause for combustion instabilities after the idea was revived in the 1980s in connection with
work on ramjet combustion. More recently, several groups have used the idea of changing °ame to represent
a possible mechanism in problems of active control; for example see Section 2.5.

During the past twenty years, the idea that vortex shedding is a dominant factor in mechanisms for many
combustion instabilities in liquid-fueled systems has gained growing support. Practically all of the work has
been motivated by problems of longitudinal oscillations in ramjet engines. Even though the frequencies are
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(a) (b)

Figure 2.39. Flow past a blu® body °ameholder under two conditions of °ow at ap-
proximately the same speed. (a) low equivalence ratio, Á~<0:75, no oscillations; (b) high
equivalence ratio Á~>0:90, acoustic oscillations in the channel (Rogers and Marble 1956).

substantially lower than those of the oscillations treated by Rogers and Marble, the essentials of the idea
seem to hold true.

The problem of longitudinal oscillations in ramjet engines was found quite early in their development
although the direct connection with instabilities in combustors was not immediately clear (Conners 1950).
Longitudinal oscillations in small ramjet engines was apparently ¯rst recognized by Hall (1978). Rogers
(1980a, 1980b) gave thorough summaries of the available experimental work. Those reports marked the
beginning of widespread attention and work which continued until the early 1990s. In particular, Rogers'
investigation served as the basis for an early analysis of the problem by Culick and Rogers (1983); that
work did not include a satisfactory mechanism. Vortex shedding as a possible mechanism for causing the
longitudinal modes in a ramjet engine seems to have been discussed ¯rst at a JANNAF workshop in 1979
(Culick 1980). Byrne (1981, 1983) gave the ¯rst detailed discussion of the mechanism. His 1983 paper is a
very nice description of the problem and touches on several problems understood only later, in particular
with work at the Naval Weapons Center. Apparently unaware of the earlier work by Rogers and Marble on
transverse oscillations, Byrne based his argument on established results for cold jet °ows. He used known
results for the stability of shear layers and jets, vortex shedding and vortex merging to argue that the
frequencies of those processes taking place under the conditions occurring in ramjet engines are in the range
of frequencies of the oscillation actually observed. He supported his conclusions by good comparisons of
his estimated frequencies with data taken by others for both coaxial and side-dump con¯gurations. Waugh
et al. 1983 showed modest success in their Appendix B correlating amplitudes of instabilities with Strouhal
number.

Since the early 1980s a great deal of attention has been given to the role of vortex shedding in dump
combustors, both in cold °ow and in laboratory combustion tests (e.g., Keller et al. 1982; Smith and Zukoski
1985; Biron et al. 1986; Schadow 2001; Sterling and Zukoski 1987; Poinsot et al. 1987a,b; Yu et al. 1987a,b).
There is little doubt now that indeed the coupling between shed vortices and the acoustic ¯eld is the dominant
mechanism in dump combustors. That coupling may or may not be accompanied by energy release due to
combustion. The extent to which the same mechanism is active in contemporary thrust augmentors is less
well-established but there is good reason to believe that it is often the main cause.

Extensive experimental work on vortex shedding in shear layers and jets at room temperature has
provided a fairly complete picture of the formation of vortices; vortex pairing; and the general features of the
°ow without heat addition (see Schadow et al. 1987b for a brief review of the literature relevant to problems
in ramjet engines). Tests in various con¯gurations, including those appropriate to ramjets (e.g., Flandro et
al. 1972; Culick and Magiawala 1979; Dunlap and Brown 1981; Brown et al. 1981, 1983; Schadow et al. 1987,
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1989; Schadow and Gutmark 1992; Schadow 2001) established the ability of shed vortices to drive acoustic
resonances over a broad range of °ow conditions. See Section 8.6 for further discussion of experimental work
on vortex shedding with no combustion. The works cited above have extended that conclusion to °ows with
large heat addition accompanying combustion under circumstances simulating those found in actual ramjet
engines. We will discuss those results further in Section 8.6.

The obvious qualitative importance of combustion in large vortices has prompted several analytical
investigations of the process. Broadly the idea is that the shear layer is formed at the edge of a blu® body,
the high speed stream consisting of an unburnt mixture of reactants; the low speed stream is composed largely
of hot combustion products forming the recirculation zone behind the body. As Smith and Zukoski (1985)
and Sterling and Zukoski (1987) have shown, the shear layer exhibits widely varying degrees of stability
depending on the operating conditions. We are concerned here with cases when the layer is highly unstable,
a situation encouraged by the action of the acoustic velocity forcing oscillations of the layer at the lip. Large
vortices may then rapidly form, entraining unburnt mixture on one side of an interface, with the combustion
products on the other side. A °ame is initiated at the interface and the question to be answered is: how does
the rate of combustion, and therefore heat release, vary as the vortex rolls up and propagates downstream?

Marble (1984) treated an idealized case of a di®usion °ame initiated along a horizontal plane when
simultaneously the velocity ¯eld of a line vortex is imposed along an axis in the interface. Elements of °ame
initially in the interface are caused to execute circular motions and are stretched by the vortex ¯eld, causing
an increase in the rate at which reactants are consumed. The expanding core contains combustion products
but as the vortex roll-up continues, the rate of consumption always remains greater than that for °ame in
the °at interface having the same length as that in the rolled-up vortex. Karagozian and Marble (1986)
carried out a similar analysis accounting for the in°uence of stretching along the axis of the vortex. They
found that, following a transient period during which the core grows to its asymptotic form, the augmented
consumption rate is una®ected by axial stretching. In those cases the rate of heat release reached a constant
value monotonically: there is no distinguished period of pulsed combustion as required for the mechanism
for instability described above.

Subsequently, Laverdant and Candel (1987a,b; 1988) analyzed both di®usion and premixed °ames in
the presence of vortex motion with ¯nite chemical kinetics. Their analysis is entirely numerical giving good
agreement with the results obtained by Karagozian and Marble (1986) and Karagozian and Manda (1990)
for a vortex pair.

Norton (1983) also analyzed the in°uence of ¯nite chemical kinetics in the problem posed and solved by
Marble (1984) who had assumed in¯nite reaction rates. Under some conditions, the heat release rate shows
a modest peak in time. However, neither his results, nor those of Laverdant and Candel, suggest the sort of
time delay to pulsed combustion one might like to see to complete the picture.

No work has been accomplished to determine whether or not the augmented reaction rates found in the
analyses are su±cient to explain the mechanism of instabilities driven by vortex combustion. On the other
hand, the experimental results reported by Smith and Zukoski (1985), Sterling and Zukoski (1987), and Yu
et al. (1987)a,b show vividly and beyond doubt that unsteady combustion associated with vortex motions
is a vigorous source indeed. Figure 2.40 is a sequence of photographs taken by Smith and Zukoski during
one cycle of a high amplitude oscillation. They propose the following mechanism. A vortex is initiated
at the edge of the step at a time determined partly by the local acoustic velocity. The vortex propagates
downstream, releasing energy of a rate that seems to reach maximum when the vortex impinges on the wall.
In order for impingement to occur at a favorable time during the acoustic oscillation, the propagation rate
and hence strength of the vortex must increase with frequency. Because the vortex strength depends on the
magnitude of velocity °uctuation initiating the motion at the lip, it is necessary that the steady amplitude
of the acoustic ¯eld increase with frequency. That behavior is observed. Moreover, numerical calculations
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by Hendricks (1986) have shown quite similar behavior for the unsteady °ow induced by an abrupt change
of velocity past a rearward-facing step. Figure 2.41 is a sketch taken from Hendricks' work showing the
development of a vortex calculated for those conditions.

t = 0

p´

t = 5.3 ms

Figure 2.40. Development of a vortex during one cycle of a pressure oscillation (Smith
and Zukoski 1985).

The essential ideas of vortex combustion as a mechanism for driving instabilities can be incorporated
in the approximate analysis developed here. There is ample experimental evidence that large vortices in
cold °ow can sustain resonances in a duct; Flandro (1986) has shown one means of handling the process
analytically, based on direct °uid mechanical coupling between vortical and acoustic motions. See also Aaron
(1984) and Aaron and Culick (1985) for an elementary model of coupling associated with impingement of a
vortex on an obstacle. Tests with combustors have shown, however, that the amplitudes of oscillation are
substantially greater when burning occurs. That result is most likely due to the unsteady energy release.
We therefore assume that this is the main source of the driving.

Hence in the forcing function FLn , equation (1.21), we retain only the term containing Q
0, giving equation

(1.23) written now for the time-dependent amplitude of the nth mode:

d2´n
dt2

+ !2n´n =
° ¡ 1
pE2n

Z
Ãn
@Q0

@t
dV (2.109)

A formula for Q0 must be constructed to account for the trajectory of the vortex and its associated rate of
energy release along the trajectory. To illustrate with a simple example, we consider excitation of longitudinal

COMBUSTION DYNAMICS AND MECHANISMS OF COMBUSTION INSTABILITIES 

2 - 66 RTO-AG-AVT-039 

 

 



t = 0.000

t = 12.564

t = 21.534

t = 38.259

t = 51.813

Figure 2.41. Development of a vortex at the interface of two unlike °uids (Hendricks 1986).

modes and assume that the vortex travels parallel to the axis. Within the one-dimensional approximation,
that implies averaging the presence of the vortex over planes transverse to the axis. The situation is sketched
in Figure 2.42. The origin z = 0 is at the step, which is not the location of a pressure anti-node. In fact, we
must allow the acoustic velocity to be non-zero at the beginning of the shear layer at z = 0, so the mode
shape is

Ãn(z) = cos(knz + Á) (2.110)

V   τv v

Figure 2.42. An elementary model of combustion in vortices as a mechanism for driving
acoustic waves.

The values of kn and Á can be set by imposing a boundary condition at z = l and choosing some location
z < 0 for a pressure anti-node. For example, if pressure anti-nodes occur at z = ¡±L0 and z = L+ ±L1, the
two conditions must be satis¯ed

sin(¡kn±L0 + Á) = 0
sin[kn(L+ ±L1) + Á] = 0

(2.111)

from which kn and Á can be determined. For the purposes here, the particular values of kn and Á are
immaterial. With (2.110), the acoustic pressure and velocity are

p0 = p´n(t) cos(knz + Á)

u0 =
_́n
°kn

sin(knz + Á)
(2.112)a,b

For simplicity, assume that the vortices propagate with constant speed vv and are launched periodically
with period ¿v at the times t = 0, ¿v, 2¿v, ¢ ¢ ¢ . Assume further that these are point vortices releasing energy
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at the rate q(t) each. Hence the energy release associated with a train of shed vortices can be represented
by ±-functions moving with speed vv, multiplying the energy release:

Q0(z1t) = q1(t)±[z ¡ vvt] + q2(t)q[z ¡ vv(t¡ ¿v)] + q3(t)±[z ¡ vv(t¡ 2¿v)] + ¢ ¢ ¢

=
1X
j=0

qj(t)±[z ¡ vv(t¡ j¿v)] (2.113)

In accordance with the behavior reported by Smith and Zukoski we should relate the strength of each vortex
and, therefore by assumption its energy release, to the velocity °uctuation causing its birth. For simplicity
we ignore the in°uence of the mean °ow speed and set qj proportional to the acoustic velocity at the step
and at the time when the vortex is launched. Hence, we assume

qj(t) = qj(t)u
0(0; j¿v) = ¡qj(t)

_́n(j¿v)

°kn
sinÁ (2.114)

where q(t) is supposed to be common to all vortices. With (2.114) for qj(t), di®erentiate (2.113):

@Q0

@t
= ¡

1X
j=0

_́n(j¿v)

°kn
sinÁ

©
_qj±[z ¡ vv(t¡ j¿v)]¡ qjvv±[z ¡ vv(t¡ j¿v)]

ª
(2.115)

Now substitute (2.110) and (2.115) in the integral on the right-hand side of (2.107), with dV = Scdz
where Sc is the cross-section area of the chamber:Z

Ãn
@Q0

@t
dV = Sc

LZ
0

cos(knz + Á)
1X
j=0

_́n(j¿v)

°kn
sinÁ

©
_qj±[z ¡ vv(t¡ j¿v)]¡ qjvv±[z ¡ vv(t¡ j¿v)]

ª
dz

Use the properties Z
±(x¡ a)f(x)dx = f(a);

Z
±0(x¡ a)f(x)dx = ¡f 0(a)

to ¯nd: Z
Ãn
@Q0

@t
dV =¡ Sc

1X
j=0

»nj
©
_qj(t) cos[knvv(t¡ j¿v)]

+ qj(t)knvv sin[knvv(t¡ j¿v)]
ª (2.116)

with

»nj =
_́n(j¿v)

°kn
sinÁ (2.117)

Thus we have an expression for the right-hand side of (2.107) representing the forcing due to a train of
burning vortices, launched at t = 0, ¿v, 2¿v, : : : from the lip of the step at z = 0. This model has been the
starting point for two analyses by Matveev and Culick, 2002b and 2003a; the following section is a summary
of the work.

By far most attention has been directed to vortex shedding as the most likely mechanism for combustion
instabilities in ramjet engines, although recently more attention has been paid to the phenomenon in gas
turbines. In addition to extensive experimental work related to those ideas, much has been done, both with
laboratory tests and analysis, to clarify the acoustical characteristics of the modes of oscillation. Much more
is known, and understood, about vortex shedding and its role as a mechanism for causing combustion insta-
bilities chie°y because that phenomenon is easily identi¯ed in experiments and is commonly encountered.
Although vortex shedding is arguably the dominant feature causing instabilities in dump combustors|and
might therefore be termed the most important mechanism|it cannot be separated completely from convec-
tive waves. Furthermore, neither mechanism can be understood apart from the acoustics of the chamber
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in which they occur; the type of mode that is unstable always provides some clues about the mechanism.
For convenience here we nevertheless treat the phenomena separately. One distinction between the two
mechanisms that seems to be true, is that if direct coupling between large vortices and the acoustics ¯eld
dominates, the frequencies of oscillations tend to be close to those of classical resonances. If convective waves
are involved, the frequencies may be quite di®erent, as shown with the elementary example in Section 2.3.3.

As we discussed above, the earliest ideas based on vortex shedding were developed in the 1950s to
explain the occurrence of high frequency transverse or tangential waves in afterburners. Periodic combustion
of reactants entrained in large vortex structures served as sources of acoustic energy. If properly phased, the
sources may supply energy to an acoustic mode of the chamber. The °uctuations of velocity associated with
the mode initiate vortex shedding, completing the cycle.

Roughly two decades later vortex shedding was again proposed as a possible mechanism for instabilities
in solid rockets, but periodic combustion was not part of the argument (Flandro and Jacobs 1975; Culick
and Magiawala 1979). Laboratory tests in cold °ow established the result that if vortices shed from a step or
corner impinge on an obstacle downstream, there is su±cient coupling with unsteady motions to excite the
sustain standing acoustic modes in a duct (Culick and Magiawala 1979; Dunlap and Brown 1981; Dunlap
et al. 1981; Nomoto and Culick 1982; Aaron and Culick 1985). In all those cases, longitudinal modes were
driven. Large \vortex-like" structures were observed in some °ow visualization work on dump combustors
at AFWAL sometime in the late 1970s [Private communication, F.D. Stull].

Since 1980, a large number of experimental works have established both by visualization and quantitative
measurements that vortex shedding is a distinctive feature of dump combustors. (Schadow et al. 1985, 1987b;
Smith and Zukoski 1985; Brown et al. 1985; Biron et al. 1986; Sterling and Zukoski 1987; Poinsot et al. 1987;
Yu et al. 1987; Davis and Strahle 1987). All of those tests were performed either in cold °ow or with premixed
gaseous reactants. The most extensive summary of the subject has been given by Schadow et al. (1987b)
who included also references to related work not discussed here.

The work by Schadow and co-workers at the Naval Weapons Center (e.g., see the summary by Schadow
and Gutmark 1992) is particularly noteworthy for its systematic progression from tests in cold °ow to
experiments in dump combustors with burning, as well as for studies of vortex combustion in di®usion
°ames. Their program used at least four di®erent experimental facilities and involved both forced and self-
excited oscillations. They also performed limited tests in a water tunnel to show the formation of large
vortices in their con¯guration. Overall, the work at NWC established the existence of vortex shedding at
the frequencies of instabilities in realistic coaxial con¯gurations. Moreover, they showed that combustion
processes drive oscillations to much higher amplitudes than found in the cold °ow tests. We should emphasize
that for the cases cited earlier, of oscillations driven by vortex shedding in solid rocket motors, the vortices
were formed in essentially non-reacting combustion products. The amplitudes of such instabilities have
always been relatively small (<5% of mean pressure). Thus it seems true, as found also in the work by
others cited above, that truly large amplitude oscillations require the presence of combustion processes and
the conversion of heat released to mechanical energy.

Hegde et al. (1986, 1987) and Reuter et al. (1988) studied oscillations in a duct driven by a °ame sheet,
in a situation similar to that devised by Kaskan and Noreen (1955) and by Dowling and co-workers at
Cambridge for afterburners (Figure 2.57). In the Georgia Tech tests by Hegde et al. , the °ame (or °ames) is
stabilized on one or two wires spanning a duct. Under broad conditions, the °ame is unstable and vortices
grow in the sheet. Interactions with the °ow ¯eld are su±ciently strong to excite acoustic waves in the
duct. The authors proposed that °uctuations of the °ame surface area|and hence of the reaction rate are
responsible. They gave data based on emitted radiation, showing that the oscillations of surface area are in
phase with the pressure variations. By Rayleigh's Criterion (Section 6.6) for heat addition, it follows that
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the heat addition encourages growth of acoustic waves, a result established also by Sterling and Zukoski
(1987) for a dump combustor.

Although most experimental work related to vortex shedding in ramjets has been done with coaxial
con¯gurations, the phenomenon has also been found in side-dump combustors. Stull et al. (1983) reported
early work with that geometry and Nosseir and Behar (1986) have examined similar cases in a small scale.
More extensive results with full-scale hardware were discussed by ZetterstrÄom and SjÄoblom (1986) who
investigated a con¯guration having two or four inlets. Visualization in a water tunnel revealed the presence
of vortex shedding. Instabilities in the operating engines were avoided by modifying the fuel injection systems
in such a fashion as to minimize combustion within the vortices. That's an important practical result clearly
supporting the general picture of vortex shedding as a dominant mechanism.

2.3.5. A Model for Vortex Shedding and Excitation of Acoustic Waves. Despite the wide-
spread recognition of vortex shedding as an important mechanism for the excitation of oscillations in dump
combustors, there is no analysis that captures the main features of the process. Since the early observation
and interpretations by Kaskan and Noreen (1955) and by Rogers and Marble (1956) there have been a num-
ber of experimental works, especially motivated by problems with ramjets in the 1980s and 1990s. There are
few theoretical works and they have produced only modest success. The basic ideas are probably understood
correctly, but until they have been successfully developed into a predictive theory, one cannot be sure. In
this section we summarize one recent attempt to construct a quantitative description of the basic process,
based on the model sketched in Figure 2.42.

Expressed in simplest terms, the central idea in most, if not all, treatments of the excitation of acous-
tic waves by vortex shedding and combustion is simply stated. Vortices are periodically generated, at a
backward-facing step in the present case, propagate downstream with little or no burning, and at some
later time undergo vigorous combustion, releasing \pulses" of energy. The energy added in a small volume
is accompanied by a rapid rise of pressure locally, which is available to augment the pressure in the °ow.
Whether a sequence of such pulses will in fact cause a wave, or a mode of oscillation, to be sustained is
a matter to be worked out by available methods for solving problems of acoustics with sources in a ¯nite
volume, a combustor. The simplest governing equation for the process is (2.109), with a damping term
included to agree with Matveev and Culick (2003):

d2´n
dt2

+ 2³n!n
d´n
dt

+ !2n´n =
° ¡ 1
pE2n

Z
Ãn
@ _Q

@t
dt (2.118)

The unsteady motions are treated as one-dimensional, but small deviations can be accommodated in Ãn(x).
That is a relatively minor deviation here. We are primarily concerned with the action of periodic burning
in vortices which are small compared with characteristic dimensions of the enclosing volume or chamber.
A basic assumption is that the burning occurs instantaneously and releases an amount of energy that is
proportional to the circulation ¡j of the j

th vortex. Passing to the limit of point vortices, we use the

expression for _Q,

_Q = ¯
X

¡j±(x¡ xj)±(t¡ tj) (2.119)

where ¯ is a constant to be given a value later. To be de¯nite, we suppose that instantaneous burning occurs
when a vortex strikes a wall or obstacle, Figure 2.43, or after an induction time as described by Rogers and
Marble (1956).

A shed vortex moves with the total °ow velocity at the instantaneous position of the vortex. For the
case shown in Figure 2.42 a vortex located close to the boundary between the recirculation zone and the
primary °ow moves with a speed _xj which may be approximated as

_xj(t) = ®u(xj) + u
0(xj; t) (2.120)
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Figure 2.43. Vortex shedding from a backward-facing step, followed by impingement on an obstacle.

where ® usually lies in the range 0.5 { 0.6 (Dotson et al. 1997) for segmented rocket motors. With (2.120)
substituted in (2.119), the equation governing ´n in the time interval (tj¡1; tj+1) is

Ä́n + 2³n!n _́n + !
2
n´n = cÃn(xj)¡j

_±(t¡ tj) (2.121)

Following Andronov et al. (1987), (2.121) gives the usual result for the motion of an oscillator in the interval
(tj¡1; tj+1) except at the instant tj when the jump conditions are satis¯ed:22

´n(tj+)¡ ´n(tj¡) = cÃn(xj)¤j
_́n(tj+)¡ _́n(tj¡) = 0 (2.122)a,b

The relation (2.122)b means that the velocity is instantaneously unchanged while the amplitude ´n changes
discontinuously by the amount cÃn(xj)¡j at the instant tj . Such behavior is characterized as that of a
\kicked" oscillator.

The time at which a vortex separates from the step, and its strength are modeled following the idea
introduced by Clements (1973). A vortex is formed from the vorticity contained within the thickness of the
boundary layer shed from the step. With a relatively simple argument the result for the circulation of a shed
vortex is

¡ =
uD

2St
(2.123)

where D is a characteristic dimension roughly equal to the momentum thickness of the boundary layer and
St is the Strouhal number for vortex shedding at frequency fs : St =

u
fsD

. The formula (2.123) has the

interpretation that a vortex detaches from a step when its circulation reaches the \critical" value given by
the right-hand side of (2.123). Matveev and Culick propose that a vortex is shed in unsteady °ow when its
circulation reaches the value given by (2.123) with u replaced by the instantaneous velocity u+ u:

¡(t) =
u(t)D

2St
(2.124)

The Strouhal number is assumed to have the same value in steady and unsteady °ow. This formula shows
fairly good argument with experimental results for vortex shedding from a rising in oscillatory °ow (Castro
1997). However, the result has been only weakly tested; perhaps most seriously, data is available only for
isothermal °ows.23

The model was used by Matveev to calculate a two-dimensional case, Figure 2.43, representative of the
experimental results reported by Smith (1985), Sterling (1987), Smith and Zukoski (1985), and Sterling and
Zukoski (1991). The damping coe±cient was set according to information provided by Sterling and Zukoski,

³n =
1

2¼

μ
0:135

!n
!1
+ 0:015

r
!1
!n

¶
(2.125)

22Damping is neglected (³n = 0) for derivation of these conditions.
23Schadow and Gutmark (1992) have discussed vortex shedding for various geometries in isothermal and reacting °ows.
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in which end losses are represented by the ¯rst term and the second term accounts for the attenuation due to
acoustic boundary layers. As identi¯ed by Smith, ¯ve acoustic modes were accounted for, having frequencies
(in Hertz) 180, 229, 385, 470, and 590. Values for the various parameters in the model, and reasons for the
choices, are given by Matveev and Culick (2002)b, (2003)a and by Matveev (2004). With (2.121), (2.122)a,b
and (2.124), the unsteady pressure ¯eld may be estimated. Figure 2.44 shows some results.

Figure 2.44. Normalized spectra of pressure °uctuations at the step of Figure 2.43 for two
mean °ow velocities at the dump plane. (a), (c) experimental results (Smith 1985); (b), (d)
results from the kicked oscillator model.

In its present state, the `kicked oscillator' model has no practical value except as a view or interpretation
of a mechanism for oscillations in a combustor. The analysis we have brie°y and incompletely described is
suggestive and has wider possibilities than discussed here. This example illustrates the relative ease with
which results can be obtained without tedious integration of the partial di®erential equations governing
`exact' solutions.

2.4. Further Remarks on Particular Forms of Liquid-Fueled Systems

Most of the discussion in Section 2.3 was concerned with matters common to all types of liquid-fueled
systems. Much of the work was in fact carried out in the U.S. originally for liquid fueled rockets, the
strongest motivation being applications to engines intended for the Apollo vehicle. Some of the ideas and
methods developed for liquid rockets have subsequently been modi¯ed or extended for analysis of combustion
instabilities in augmentors and ramjets. Moreover, there are special problems peculiar to the di®erent systems
themselves. We therefore examine now those particular matters.
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2.4.1. Combustion Instabilities in Liquid Rockets. Little work was done outside the USSR on
the problem of instabilities in liquid rockets during the 1970s. With the °ight failure of an Ariane vehicle
due to combustion instability in a ¯rst stage Viking motor, a comprehensive research program was initiated
in France in 1981. Most of the available reports of that work have already been referred to and little more
needs to be added here.

Within the present context, the most important parts of the French work are the experimental and
analytical e®orts to characterize the liquid spray; and the extensive numerical simulations of unsteady
motions, incorporating the results obtained for the propellant sprays. The problem causing the failure
involved coupling between the pressure oscillations in the chamber and structural vibrations of the injector
which is placed in the lateral boundary as sketched in Figure 2.45 taken from Souchier, Lemoine and Dorville
(1982). Figure 2.45(b) shows the computed distortion of the injector plane. As a result, the fuel and oxidizer
jets were shaken, causing (apparently) perturbations of the distribution and phase of the energy release,
thereby closing the loop and making possible self-excited motions.

FOYER

CONVERGENT

INJECTEUR

INJ. INJ.

DOME

COUVERCLE

ˆ

INJECTEUR

DOMEˆ

Figure 2.45. Coupling between pressure oscillations, structural vibrations and the injec-
tion system (based on drawings appearing in Souchier, Lemoine and Dorville 1982).

Such e®ects on the injection processes have long been known to be a possible cause of instabilities
(Levine 1965; Harrje and Reardon 1972) but they have yet to be well-characterized.24 They are likely to be
particularly important in cases when the amplitudes of motion are large. It is quite possible that the forms
of the representation of the unsteady sources of mass and energy are strongly dependent on the amplitudes
of motion as well as on the hardware design. Such behavior is far outside any successes of the time lag model
and is likely to remain so. Careful experimental work is essential to clarify the situation.

During the mid-1980s, serious interest in developing new liquid-fueled rockets grew in the U.S., primarily
for use in proposed heavy lift launch vehicles. Because of their high densities and good performance, liquid
oxygen and hydrocarbon fuels were considered as propellants. In particular, methane was selected by the
NASA Lewis Research Center is the favored fuel. As a result, studies of combustion instabilities were carried
out at the Aerojet TechSystems Company and at the Rocketdyne Division of Rockwell International.

24The more recent work by Bazarov, cited brie°y in Section 8.5, has done much to correct this situation.
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Rocketdyne designed and fabricated two engines, for the Lewis Research Center (LeRC) and for the
Marshall Space Flight Center(MSFC). Both used LOX/methane and had identical thrust chambers but
di®erent injectors. The MSFC engine had an acoustic resonator; the LeRC engine had no damping device.
A small number of ¯rings directed to determining stability characteristics were completed (Jensen, Dodson
and Trueblood 1988; Philippart and Moser 1988).

A computer program for analysis of instabilities was developed from an earlier program, IFAR. (Fang
1984, 1987; Fang and Jones 1987; Mitchell, Howell and Fang 1987; Nguyen 1988). The program IFAR
(Injector Face Acoustic Resonator) had been in existence for some years; the time lag model was used to
represent the combustion process. That program was revised and modi¯ed for application to both rectangular
and axisymmetric chambers to become HIFI (High Frequency Intrinsic Stability) (Nguyen 1988).

With all other variables and parameters speci¯ed, the values of n and ¿ are calculated on the stability
boundary. Then to predict whether the engine is stable or not, the values of n and ¿ must be determined.
Traditionally this has been done with correlations for injectors using hydrocarbon fuels, so as part of their
work the group at Aerojet performed sub-scale tests and carried out analysis of the injector response (Muss
and Pieper 1987; Nguyen and Muss 1987). The analysis and tests were intended to provide correlations of
n and ¿ for the injector with those on the stability boundary calculated with the analyses cited above.

Aerojet carried out a program combining analysis, sub-scale tests using both rectangular and axisym-
metric chambers prior to full-scale ¯rings. The chief purpose was to provide as certain as possible basis for
con¯dently predicting the stability of the large engines, thereby reducing development costs. This program
was described by Muss and Pieper (1988).

Philippart (1987) and Philippart and Moser (1988) reported comparisons of predictions of the sort
mentioned above, with ¯rings of the two Rocketdyne engines. One operating condition was examined for
which the LeRC engine was stable and the MSFC engine was unstable. Three calculations of the stability
boundary in the n ¡ ¿ plane were done, using the program IFAR, HIFI and a modi¯ed from (NDORC) of
Mitchell and Eckert's (1979) MODULE. Figure 2.46, taken from Philippart and Moser, shows the results
obtained with HIFI for the two engines. Results obtained with the other two programs di®er in details
that are unimportant here. Also shown as ¯lled regions are estimates of the `combustor response' (i.e. the
values of n and ¿) based on correlations for LOX/hydrogen injectors. Apparently the predictions of the
three codes agreed fairly well. However, there are uncertainties owing to di®erences between the codes; a
signi¯cant distinction is that IFAR and HIFI assume that combustion is concentrated in a transverse plane,
while MODULE is written for distributed combustion. Comparison with the test data is ambiguous and
must be viewed as estimates because the true characteristics of the injectors are unknown.

Jensen, Dodson and Trueblood (1988) gave an early progress report in their tests with the LeRC engine.
They measured growth rates and, using the MODULE program, inferred the necessary values of n and ¿ . Two
examples are shown in Figure 2.47. The striking result is that the values of the interaction index are found
to be considerably greater than those computed by Philippart and Moser and those provided by previous
correlations of data. It is impossible at this point to determine the cause for these di®erences. The existence
of such signi¯cant di®erences probably betrays the absence of a fundamental basis and understanding of any
ad hoc approach based on a time lag `model'.

Also at Rocketdyne some interesting work to analyze the characteristics of sprays vaporizing and burning
under steady conditions was reported by Liang et al. (1986, 1987a,b,c). The calculations were done for various
injector types placed in chambers, with provision for computing the internal °ow ¯eld. When extended
to cover transient motions, this work seemed to be potentially an important contribution to analysis of
combustion instabilities but it seems that the potential was not realized. Indeed, it appears that among the
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Figure 2.46. Some results of calculations based on the n-¿ model (Philippart and Moser 1988).
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Figure 2.47. Comparison of calculations and some experimental results interpreted with
the n-¿ model (Jensen, Dodson and Trueblood 1988).

most important outstanding problems in the subject are the production of the liquid drops; unsteady spray
combustion; and incorporation of the results in a complete formation allowing realistic numerical simulations.

2.4.2. Application of the Time Lag Model to Gas and Liquid Rockets. By `time lag model'
we mean here the most common form, expressed by equation (2.94) for the unsteady conversion of liquid to
gas. Crocco and Cheng (1956) examined various elaborations, including spatial variations of the sensitive
time lag, but here we shall assume ¿ to be uniform everywhere and the same for all elements of injected
propellant. Also we will not distinguish between oxidizer and fuel. Both assumptions have been adopted
in almost all applications, a notable exception being an analysis of chugging in which two time lags were
introduced (Szuch and Wenzel 1968).
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Although some analysis has been done of nonlinear behavior with the time lag model (see Chapter 7 for
work by Sirignano and Crocco 1964; Mitchell, Crocco and Sirignano 1969; and Mitchell and Crocco 1969)
by far most results, and all applications, have been worked out for linear behavior. To illustrate here, we
appeal to the approximate analysis described later. Although di®erences in detail will arise, the results will
contain all the essential ideas discussed in previous works.

Broadly, the central idea is to use the formula for the growth constant, ®, evaluated on the stability
boundary, so ® = 0. Those terms containing ! will of course depend on the interaction index, n, and
the time lag, ¿ . If we assume that all other contributions to the formula are known, then the condition
® = 0 provides a relation between n and ¿ that must, within the approximations used, hold on the stability
boundary.

There is no need to work out details here; see Chapter 6. The equation de¯ning ® will take the form

® = C1

Z
Ãnŵ

(r)
l dV ¡ C2

where C1, C2 are constants. The constant C2 contains the various e®ects of liquid/gas interactions, the
nozzle, mean °ow/acoustics interactions and damping devices. Now with ŵl given by (2.94), its real part is
n(1¡ cos!¿), and for ® = 0, the last equation gives

n(1¡ cos!¿) = C1
C2
R
wlÃ2ndV

= GR (2.126)

The function GR is supposed to be known, with value depending on the various parameters (geometrical,
etc.: : : ) de¯ning the system. Then equation (2.126) is the relation between n and ¿ referred to above.

Figure 2.48 shows the unstable regions de¯ned by equation (2.126). This is a reproduction of Figure
4.2.2a, p. 180, in an article prepared by Crocco (Harrje and Reardon 1972). The calculations carried out
by Crocco were quite di®erent from those summarized here, but the result has the same form, another
illustration of the fact that there is, in a deep sense, only one `linear stability problem'. Di®erences in detail
among analyses arise only because representations of processes, and therefore characteristic parameters, may
di®er.
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Figure 2.48. A general representation of stability based on the n¡¿ model (Crocco, Figure
4.2.2a in Harrje and Reardon 1972).

In this normalized form, Figure 2.48 is a kind of universal chart for the n¡¿ model. The multiple regions
appear because of the factor 1¡cos!¿ in (2.126) and correspond to the multiple peaks in the response, noted
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in respect to Figure 2.33. They are usually not physically realistic and are another re°ection of limitations
of the elementary time lag model. A formulation of the n¡ ¿ model showing only a single peak was reported
by Crocco (1966) but will not be discussed here.

For applications, equation (2.126) and Figure 2.48 have always been unfolded to give plots of n and ¿
versus some characteristic parameter, such as the fuel/oxidizer ratio as in Figure 2.48 above; or in some
cases the stability boundaries have been presented in terms of system variables, with n and ¿ parameters
along the curves.

An example of the latter is reproduced in Figure 2.49 taken from Crocco, Grey and Harrje (1960).
The preparation of this ¯gure, and other quantitative results for n and ¿ , rests on extensive experimental
work. In all cases the strategy is the same: the stability boundary, marking the transition between stable
and unstable small amplitude waves, is located experimentally, as a function of the variables de¯ning the
instabilities. Then the theoretical relation (2.126) is used to compute the required values of n and ¿ along
the boundary.
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Figure 2.49. Stability boundaries inferred with the n ¡ ¿ model applied to a gas-fueled
rocket (Crocco, Grey and Harrje 1960).

That procedure has been used successfully to interpret longitudinal modes (Crocco, Grey and Harrje
1960) and transverse modes (Crocco, Harrje and Reardon 1962 and Reardon, Crocco and Harrje 1964).
By applying the method to large numbers of tests, extensive correlations have been worked out for the
interaction index and time lag as functions of geometric variables, injector design, propellant types and
operating conditions. A brief summary has been given by Reardon in Harrje and Reardon (1972), pp.
277{286. Figure 2.50 is an example of results for n and ¿ determined from tests for storable hypergolic
propellants, with various types of injectors.

Having values of n and ¿ , one is now presumably in a position to return to the theoretical result for
the growth constant and apply the results to designing new systems. An obvious shortcoming is that the
data correlations can be assumed valid only for the systems actually tested. How far the results can be
extrapolated cannot be known with any con¯dence. Nevertheless, this semi-empirical approach has been
apparently used successfully both as a framework for correlating data and as an aid to design. It is essential
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Figure 2.50. Experimental results for n and ¿ , using stable hypergolic propellants and
various injectors (Reardon, Figures 6.33 e and f in Harrje and Reardon 1972).

in this procedure that the same theoretical result for the growth constant be used for correlating the data
and for subsequent predictions. Otherwise, inconsistent and meaningless results will be obtained.

Although the ideas leading to the de¯nitions of n and ¿ are appealing, the time lag model should be
regarded truly as a framework for correlating data and not as a theory explaining fundamental mechanisms
of combustion instabilities. With a di®erent two-parameter representation of the unsteady process, the left-
hand side of (2.126) might have a di®erent functional form, but the formula could be used in the same fashion
to interpret stability boundaries. Only the forms of the correlations would be changed.

We must also note that because only the single formula for the growth constant (2.126) has been used,
the method described above uses one equation to determine two unknowns (n, ¿). Thus in practice, some
di±culties may arise in obtaining consistent results. That trouble is avoided if, more correctly, both the real
and imaginary parts of the complex wavenumber are used. In that event, measured values of the frequency
are used and since (2.90) contains the imaginary part of the unsteady mass source (2.94), the two equations
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for the frequency and growth constant have the form

! = !n + C3

Z
Ãnŵ

(i)
l dV ¡ C4

® = C1

Z
Ãnŵ

(r)
l dV ¡ C2

Hence with (2.94)

n sin!¿ =
! ¡ !n + C4
C3
R
Ã2nwldV

n(1¡ cos!¿) = C2
C3
R
Ã2nwldV

(2.127)a,b

The left-hand sides could equally be regarded, within a multiplier, as the real and imaginary parts of the
mass source,

ŵ
(r)
l = wln(1¡ cos!¿)
ŵ
(i)
l = wln sin!¿

(2.128)a,b

and correlations could be done with
ŵ
(r)
l

ŵl
= ŵr = n(1 ¡ cos!¿) and ŵ

(i)
l

ŵl
= ŵr = n sin!¿ instead of (n,

¿). Thus, even though the heuristic argument leading to ŵl in the form (2.128)a,b is based on a time
lag associated with motions of the propellant (a Lagrangian view), the end result is equivalent to a purely
Eulerian representation of local combustion process. The time lag associated with motions in space can be
reinterpreted as a phase lag in time at a ¯xed location in space.

The formulas (2.128)a,b have been deduced from the approximate analysis discussed in Section 2.3.2
and therefore have a particularly simple form. Although it is true that a linear analysis will always produce
two formulas, for the real and imaginary parts of complex wavenumber, the forms may be wildly di®erent
in detail, depending in the method of solution. Crocco, Grey and Harrje (1960) solved their di®erential
equations directly, a method used later by Crocco, Harrje and Reardon (1962) and Reardon, Crocco and
Harrje (1964) to study transverse modes.

The time lag models of the combustion process have been used also in analysis of nonlinear behavior,
both for longitudinal oscillations (Sirignano and Crocco 1964; Mitchell, Crocco and Sirignano 1969; Crocco
and Mitchell 1969) and for transverse oscillations (Zinn 1966; Zinn and Savell 1968). In those and other works
discussed in Chapter 7, either n and ¿ are assigned values; or the unsteady behavior is studied as a function
of n and ¿ quite analogous to the handling of linear problems. Thus, su±cient experimental data had been
gained to support the time lag model that it could be used in a general fashion for theoretical work. However,
remarks above emphasize that this practice really amounts to using any combustion response having real and
imaginary parts related to n and ¿ by equations (2.128)a,b. Expressing results and interpreting behavior in
terms of n and ¿ carries no uniqueness.

2.4.3. Pogo Instabilities. The problem of low frequency POGO instabilities is well-documented and
understood. Due to the POGO instability in the Apollo vehicle, it is also probably the best known among
people otherwise not familiar with combustion instabilities.

Low frequency instabilities (`chugging') arise due to coupling between the °uid dynamics in the combus-
tion chamber, and the propellant supply system. They are perhaps the ¯rst sort of combustion instability
de¯nitely identi¯ed and analyzed for liquid rockets (see the remarks at the beginning of Section 2.3.2). POGO
instabilities involve the further complication of coupling between the propulsion system and the structure of
the vehicle. The low frequency structural vibrations are the origin of the name, by analogy with the motions
of a POGO stick.
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During the 1960s, the POGO instability received much attention as a serious problem in several vehicles
including the Thor, Atlas, and Titan vehicles. Rubin (1966) has given a clear brief summary, including
particular emphasis on pump cavitation and wave propagation in the propellant feed lines. Those are
matters often overlooked by those concerned with motions in the combustion chamber. Yet they provide
signi¯cant contributions to time lags in the system and are crucial items in treating POGO instabilities.

More recent work in France was reported by Dordain, Lourme and Estoueig (1974) for the Europa II
and Diamant B vehicles; and by Ordonneau (1986) for the Ariane.

2.4.4. Combustion Instabilities in Thrust Augmentors. Augmentors or, as earlier forms are
called, `afterburners,'25 have a long history and o®er the most varied examples of passive control applied to
propulsion systems. The main reasons for this special ranking are basic and simply expressed. First, the
geometry is typically ideal for the excitation and sustenance of acoustic oscillations. Figure 2.51 shows two
examples of widely used engines; both are turbofans with augmentors. In all designs the injection of fuel
takes place at the upstream end of the device. Although the boundary condition does not cause a velocity
°uctuation to vanish there, the value is relatively low and the pressure °uctuation can be relatively large.
Thus, the product u0p0 is likely to have a signi¯cantly non-zero positive real part, representing acoustic
energy °owing into the region.

(a)

(b)

Figure 2.51. Two examples of aircraft gas turbine engines with thrust augmentation (a)
General Electric F110 engine (taken from Jane's All The World's Aircraft, 1988{1989); (b)
Pratt and Whitney F100 engine (taken from Pratt and Whitney advertising material).

25The main di®erence between augmentors and afterburners is that the entire °ow in the latter passes through the turbine
and therefore the afterburners. To simplify writing, we will use the term `augmentor' to mean afterburner as well.
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Second, fuel is usually introduced through radial vanes, perhaps with circumferential supply tubes as well.
Those parts, whatever the con¯guration, are obstructions to the °ow, and are sources of vortex shedding, a
potential cause of acoustic oscillations. Third, the conditions for instabilities in °ow may be enhanced by a
bypass design in which the cold outer °ow and the hot core from an unstable cylindrical shear layer between
them.

Finally, it is apparent from Figure 2.51 that the system has low losses. Thus it has long been standard
practice to incorporate acoustic liners as integral parts of thrust augmentors. That is, they are part of a
design and not added later when a problem arises. It is virtually guaranteed that as the operational envelope
of any augmentor is expanded, problems with oscillations will be found.

Since high frequency or `screech' instabilities were ¯rst encountered as a serious problem in the late
1940s and early 1950s, liners have been developed largely by trial and error to act as passive control devices
designed to suppress the oscillations. The sta® of the Lewis Laboratory26 (1954) compiled most of the
existing data and performed some tests to provide a basis for general guidelines for design; Harp et al. (1954)
reported the results of extensive tests, also at Lewis Laboratory. Of the methods investigated to solve the
problem, including ba²es and vanes as well as adjusting the distribution of injectors, perforated liners worked
best. Groups at Pratt and Whitney Aircraft and the United Aircraft Research Laboratory had already tried
Helmholtz resonators and in 1953 demonstrated the ¯rst successful use of perforated liners is a full-scale
afterburner on a J57. The physical basis for the success of liners is explained in Chapter 8.

Despite several attempts to develop analytical methods and a more quantitative basis for design, treat-
ment of combustion instabilities in thrust augmentors has remained almost entirely an empirical matter.
Kenworthy, Woltmann and Corley (1974) reported the results of an experimental program devoted to study-
ing screech instabilities in three di®erent designs of augmentors. The report also contains analysis used to
correlate data and to provide some guidance for design of acoustic liners. This seems to be the last reported
work on high frequency instabilities in full-scale augmentors; the mechanisms remain obscure. Chamberlain
(1983) gave the most recent status report: it seems that little has changed over several decades in respect
to augmentors shown in Figure 2.51.

Perforated liners e®ectively attenuate the high frequency oscillations related to radial and tangential
acoustic nodes. Low frequency instabilities, often called `rumble', tend to be more troublesome. Liners are
ine®ective at low frequencies and the problem of rumble is solved or reduced in practice by careful control
and coordination of the distribution of injected fuel and the nozzle opening. It's a costly process to develop
the system, inevitably requiring several designs of the injection system and °ameholders, and expensive
full-scale tests in altitude simulation test facilities.

The problem of combustion instabilities in thrust augmentors is arguably more di±cult then that in
liquid rockets for at least two reasons: the processes involved in °ame stabilizations are sensitive to pressure
and velocity °uctuations; and the device is usually required to perform over a wider range of operating
conditions. The ¯rst explains the importance of injector and °ameholder design. As a result of the second,
the high and low frequency instabilities are typically found in di®erent regions of the °ight envelope. Figure
2.52, reproduced from the excellent summary of early work by Bonnell, Marshall and Rieche (1971) illustrates
the point.

Instabilities in the lower frequency range became increasingly troublesome with the development of
turbofan engines, a consequence of the geometry (see Figure 2.53 taken from Bonnell, Marshall and Rieche
(1971) and Figure 2.54 taken from Zukoski (1985)). In the pure turbojet, the °uctuations may propagate
upstream past the turbine disk but the turbine generally seems to act as a good re°ector. In fan engines,
it is common that the entire length of the fan duct participates in the oscillations, reducing the frequencies

26Now the NASA Glenn Research Center.
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sometimes as low as 50 Hz. See Nicholson and Radcli®e (1953) for an early report of very low frequency
oscillations; observations in turbofans have been discussed by Bonnell, Marshall and Rieche (1971); Mach
(1971); Ernst (1976); Underwood et al. (1977); and Cullom and Johnsen (1979). Figure 2.55 reproduces
power spectral densities taken from turbofan augmentors [Bonnell, Marshall and Rieche (1971)]. Because
of the rotating parts, spectra of the acoustic ¯eld in gas turbine engines tend to exhibit a greater variety of
discrete oscillations than do those for liquid rockets. The peaks at the higher frequencies in Figure 2.55(b)
are `screech' modes.

HIGH- 
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INSTABILITY

ALTITUDE

FLIGHT  MACH  NUMBER

STABLE  COMBUSTION

LOW-FREQUENCY

INSTABILITY

Figure 2.52. Schematic °ight envelope showing typical regions of high- and low-frequency
instabilities in thrust augmentors (Bonnell, Marshall and Rieche 1971).
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Figure 2.53. Sketches of the evolution of the geometry of gas turbine engines (Bonnell,
Marshall and Rieche 1971).
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Figure 2.54. Pratt and Whitney F100-PW-100 Augmented Turbofan Engine. (1) three
stage fan; (2) bypass air duct; core engine compressor(3), burner(4), and turbine(5); (6)
fuel injectors for core engine gas stream; (7) fuel injectors for bypass air stream; (8) °ame
stabilizer for afterburner; (9) perforated afterburner liner; (10) afterburner case; nozzle
closed to minimum area (11) and opened to maximum area(12). (Zukoski 1985, Figure
21.0.2).
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Figure 2.55. Spectra of pressure oscillations observed in thrust augmentors. (a) low-
frequency range (`rumble'); (b) high-frequency range (`screech'). (Bonnell, Marshall and
Rieche 1971).

The combustion processes in an augmentor di®er in several fundamental respects from those in a liquid
rocket. Only fuel is injected as liquid; the oxidizer is unburnt oxygen in the fuel-lean °ows from the bypass
and the core engine. There are no impinging fuel and oxidizer liquid stream, but the formation of drops and
vaporization of the fuel must obviously occur. Normally, it is intended that the fuel drops should be entirely
vaporized prior to ignition in the core °ow so burning occurs in the fuel/air gaseous mixture. Because the
°ame propagation speed is less than the °ow speed, a continuous source of ignition is required, normally
supplied by the wake of a blu® body, the °ameholder. Clearly, the performance of such a system depends
not only on the °ow conditions and physical properties of the fuel but also very strongly on the geometry
of the injectors and °ameholders. In the cooler bypass °ow, vaporization is not completed upstream and
liquid impinges on the °ameholders; then liquid may be torn o® the °ameholder by the high speed of gas
stream, or the liquid layer vaporizes. Zukoski (1985) has provided a thorough and readable discussion of the
combustion processes in afterburners. Figure 2.56 taken from his article, illustrates the general features of
the °ow in the vicinity of various °ameholders.
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Figure 2.56. Flow in the vicinity of typical °ameholders emphasizing the recirculation
zones (Zukoski 1985).

According to the preceding remarks, it appears unlikely that vaporization of the fuel droplets is a
dominant mechanism for combustion instabilities in augmentors. Nevertheless it is certainly quite possible
that interaction of the acoustic ¯eld with the injection system could produce °uctuations of the fuel °ow and
hence subsequent °uctuations of fuel/oxidizer ratio and heat release in combustion. The process might be
modeled most simply in terms of a time lag but there seems to be no treatment of this sort in the published
literature.

One would suspect that processes associated with the °ameholder may dominate. That view is generally
supported by practical experience with the strong e®ects of °ameholder design on instabilities. We have
discussed in Section 2.3.4 the mechanism based on vortex shedding and combustion suggested by Rogers
and Marble (1956). Their argument is persuasive and there has never been evidence disproving that process
as a possible mechanism of screech. Similar ideas also can be applied to describe a possible `rumble,' a low
frequency instability (see Section 8.6). Theoretical developments and the necessary laboratory tests have
not been carried far enough to incorporate the proposal in an analysis suitable for general design work with
arbitrary geometries.

Russell, Brant, Ernst, and Underwood (1978), worked out a one-dimensional analysis of instabilities
in augmentors; the work is also discussed by Underwood et al. (1977). Broadly the analysis represents
the acoustic ¯eld as a synthesis of up and downstream traveling acoustic waves, and entropy waves, as in
the example discussed earlier here in Section 2.2.3. The unsteady heat sources are derived as models of
mixing and combustion in the wakes of the °ameholders. Bypass and core °ows are treated separately and
superposed in parallel. It's a linear analysis; the equations for the time-dependent variables are solved by
applying the Laplace transform. Conditions for stability are determined by applying the Nyquist criterion.
It is di±cult to understand all details of the analysis from the available (abbreviated) description. Although
some success was evidently achieved with this work, it seems not to have been widely applied. Moreover,
the results are mainly in a computer program which has not furthered general understanding of the problem
although it may have been useful in treating particular cases.
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Over a period of several years Dix and Smith and co-workers developed an analysis based on the for-
mulation published by Culick (1963) for liquid rockets. See Dix and Smith (1971) and references cited there
for a description of the work. Although that sort of approach should be useful in treating augmentors, that
analysis has also not be widely applied. It is important to note that while their linear analysis is correct, Dix
and Smith committed some basic errors in trying to extend their calculations to nonlinear behavior. The
results they have reported for the in°uences of the amplitudes of oscillations are wrong.

A di®erent course of recent work in instabilities in augmentors was reported by Dowling and Bloxsidge
(1984); Langhorne (1988) and Bloxsidge, Dowling, Hooper and Langhorne (1988) at Cambridge University.
Laboratory experiments were done in a con¯guration intended, roughly, to represent a longitudinal segment
of an augmentor (Figure 2.57). A °ame stabilized on a single vee gutter in a duct supplied with premixed
gaseous reactants entering through a choked nozzle. With modi¯cations that may have signi¯cant in°uences
on the unsteady behavior, this has long been a common con¯guration (Kaskan and Noreen 1954; Hegde
et al. 1986, 1987, 1988; Reuter et al. 1988). The work by Kaskan and Noreen has already been described
brie°y (see Figure 2.38). They worked with a °ame stabilized on a vee gutter whereas Hegde and co-workers
at Georgia Tech used one or two wires to stabilize the burning, although their work has presumably been
directed to applications in ramjet engines.

Δ lf

x = 0
(M = 1)

x h

(M < 1)

Burning

zone

 = 

Figure 2.57. A °ame stabilized on a gutter in a tube (Langhorne 1988).

All of these works are concerned in some broad sense with °ames and °ame instabilities. The instabilities
are often ultimately manifested as vortices, so the mechanism for the instabilities discussed here could be
classi¯ed as vortex shedding and combustion, as discussed in Section 2.3.5. Another similarity among these
works is the use of electromagnetic radiation to identify the heat released by combustion products.

Langhorne (1988) concludes that for the device shown in Figure 2.57, two types of coupling exist between
the burning processes and pressure oscillations. The transition between the two occurred in a narrow range
of stoichiometric ratio around 0.65. For Á < 0:65 a convective wave of entropy or spots of high temperature
appeared to propagate well downstream of the °ameholder. With increasing Á, that convective aspect seemed
to have been con¯ned to a short length and in the remainder of the duct the heat release (as measured by
radiation from C2 and C) seemed to be in phase with the pressure oscillation. No results of °ow visualization
are available to con¯rm the behavior directly, but vortex shedding apparently may be involved.

At least partly as a result of the two kinds of coupling, two frequencies of instability were observed
with larger amplitudes produced at higher stoichiometric ratios. Bloxsidge, Dowling, Hooper and Langhorne
(1988) have worked out an interesting and useful one-dimensional analysis to interpret their observations.

Certain aspects of the Cambridge results are similar to those reported by Heitor, Taylor, and Whitelaw
(1984), Sivasegaram and Whitelaw (1987) and by the Georgia Tech group (Hegde et al. 1990). The reasons
for the similarities and yet only partial reconciliation of di®erences are not known; a su±ciently general
analysis has not been constructed to accommodate all the results on a common basis. There is little doubt
that more than one mechanism may act, one or another dominant under di®erent conditions. Because this
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is a relatively well-de¯ned situation, (a premixed °ame in a duct) the problem merits further attention both
experimentally and theoretically to bring clearer understanding of the behavior.

The work at Cambridge seems to have been partly motivated by the idea of using feedback control of
combustion instabilities. In fact the results just described were soon followed by laboratory work at Ecole
Centrale (Poinsot et al. 1988) concerned also with active control. Those are the beginnings of modern work
on active control of combustion instabilities, the subject of Chapter 9.

2.4.5. Combustion Instabilities in Ramjet Engines. Particularly from the late 1970s to the early
1990s, substantially more attention has been paid to combustion instabilities in ramjet engines then can
be discussed here. Much progress has been made but several essential problems remain unsolved, mainly
associated with the conversion of liquid fuel to gaseous reactants; coupling between combustion processes
and the unsteady motions; and the inlet/di®user.

Sketches of two typical con¯gurations are shown in Figure 2.58. Most contemporary liquid-fueled ramjets
are \integral ramjet engines." The combustion chamber is initially ¯lled with solid propellant that is burnt
to boost the vehicle to supersonic speed. Liquid propellant is injected upstream of the region where the °ow
area abruptly increases at the \dump plane." Flame stabilization is achieved through continuous ignition by
the hot combustion products in the recirculation zone. In some designs additional blu® body °ameholders
may also be used; and occasionally continuous burning of a pilot light may be required.

FUEL

FUEL

COAXIAL DUMP COMBUSTOR

SIDE DUMP COMBUSTOR

Figure 2.58. Two simple ramjet con¯gurations using stabilization at abrupt changes of area.

Zukoski (1985) has given a thorough discussion of steady °ame stabilization in thrust augmentors.
Much of that material applies with virtually no change to the corresponding problems in ramjet engines. The
presence of the rearward-facing step and the sensitivity of shear layers and recirculation zones to °uctuations
in the °ow are major factors in the problem of combustion instabilities in ramjet engines.

Much of the material we have covered for liquid-fueled rockets and thrust augmentors is relevant as
well to ramjet engines. There are, however, several distinguishing features. First, unlike the case for liquid
rockets but similar to that for afterburners, spray combustion seems a lesser issue. Although the published
evidence is perhaps not wholly conclusive, (see, e.g, Edelman 1981, Edelman et al. 1981 and Harsha and
Edelman 1982), it appears that in operating engines, the liquid droplets are largely vaporized before the
°ow reaches the zones of °ame stabilization and combustion. Hence the processes in those regions involve
mostly gaseous reactants, a great simpli¯cation for carrying out research on combustion instabilities; very
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little experimental work has been done recently in the coupling between spray combustion and unsteady
motions. Laboratory tests have for the most part used gaseous fuels.

That is not to say that transient processes of droplet heating and vaporization are unimportant, for they
are surely in°uential in arranging the distribution of fuel over the plane at the entrance to the combustor.
But there is no operational or experimental evidence to support the proposal by Tong and Sirignano (1986a,
1986b, 1987) that the unsteady conversion of liquid to vapor is a potential mechanism for instabilities. This
matter has already been discussed in Section 2.3.1 with the conclusion that if all processes except combustion
are accounted for, the presence of evaporating liquid drops is a stabilizing in°uence on unsteady motions.27

We will not consider further problems associated with injection, atomization and vaporization. However, it
is true that insu±cient attention has been paid to the distribution of fuel/oxidizer ratio in the °ow. Little is
known of the details, either theoretically or experimentally; yet laboratory tests (e.g., Schadow et al. 1987b)
have shown that the distribution of fuel can have a substantial e®ect on instabilities, a fact that has long
been known qualitatively from experience gained in engine development (Rogers 1980a, 1980b; Grenleski et
al. 1977). There seems to be no evidence of coupling between oscillations in the °ow and the fuel supply
system. Thus no oscillations have been observed in ramjets corresponding to `chugging' or POGO instabilities
in liquid rockets.

2.4.6. Unsteady Behavior of the Inlet/Di®user. So far as combustion instabilities are concerned,
the principal feature distinguishing ramjet engines from liquid-fuel rockets and afterburners is the in-
let/di®user. Within the inlet a system of shock waves exists to provide the mass °ow and stagnation
conditions demanded by the conditions set in the combustion chamber and exhaust nozzle. Under normal
operating conditions the shocks are located downstream of the geometric throat in the expanding supersonic
°ow. The position of the shocks depends chie°y in the stagnation pressure in the combustion chamber;
increasing the stagnation pressure causes the shocks to move upstream where the Mach number and there-
fore loss of stagnation pressure are less. It is this sensitivity of the °ow in the inlet to pressure changes
downstream that has caused longitudinal oscillations to be such a serious concern in ramjet engines. In the
late 1970s (Hall 1978, 1980; Rogers 1980a, 1980b) ¯rst qualitative and later limited quantitative relations
were established between the amplitudes of pressure oscillations and the loss of dynamic pressure margin.

Since those early works, extensive tests by Sajben and co-workers (Chen, Sajben and Krontil 1979;
Sajben, Bogar and Krontil 1984; Bogar, Sajben and Krontil 1983a, 1983b) have shown that the unsteady
behavior is greatly more complicated due to °ow separation and instability of shear layers. High speed
schlieren pictures (see also Schadow et al. 1981) have shown large shock oscillations as well as the formation
of vortex structures. Although computations based in the one-dimensional approximation to °ow in the
di®user (Culick and Rogers 1983; Yang 1984; Yang and Culick 1984, 1985, 1986) are useful and seem to
capture some of the dominant features of the behavior, it is quite clear that the true motions can be simulated
well only by numerical analysis based on the Navier Stokes equations for two- or three-dimensional °ows
(Hsieh, Wardlaw and Coakley 1984; Hsieh and Coakley 1987; and references cited there).

There is evidence that under some conditions inlets exhibit self- excited or `natural' oscillations. Energy
is transferred from the mean °ow to the °uctuations associated at least partly with separated °ow. Although
a one-dimensional calculation (Culick and Rogers 1983 and an approximation to some of Sajben's data by
Waugh et al. 1983, Appendix D) suggests the possibility that the inlet may drive combustion instabilities,
there is no ¯rm evidence from tests with combustors that those conclusions hold. Most experimental results
strongly suggest that the major source of driving unstable motions is likely associated with processes in
the combustion chamber. Nevertheless, because the °ow from the inlet is the initial state for °ow in the
chamber, it is fundamentally important that processes in the inlet be well-understood. In that respect, as
we remarked above, perhaps the greatest de¯ciency is knowledge of the history of the injected fuel and the
distribution of liquid droplets and gaseous fuel at the inlet phase.

27This conclusion is not generally true. See the discussion in Section 6.13.
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In practice, the ¯rst indications of combustion instabilities are almost always °uctuations in recordings of
the pressure. If there is only one pressure transducer, one can infer only the amplitude and frequency|best
displayed as a power spectral density. While the frequency alone may suggest what modes are involved, the
con¯gurations used for ramjet combustors are su±ciently complicated that the modes are not always easily
identi¯ed. Moreover, in laboratory tests there may be an upstream plenum chamber and other parts of the
apparatus that participate in the oscillations. As a general rule, it is essential that measurements of the
pressure be taken at several locations in order to provide unambiguous identi¯cation of the modes. Su±cient
care should be taken that distributions of both the amplitude and relative phase can be determined. This
information has also proven extremely useful for con¯rming the results of analyses.

Figure 2.59. Model used for measurements in the inlet to a dump combustor (Crump et al. 1986).

The most extensive measurements of mode shapes in dump combustors were made at the Naval Weapons
Center by Schadow and co-workers. A summary of the results, with references to the previous work, was
published by Crump et al. (1986). Figure 2.59 shows the geometry of the sub-scale laboratory device; some
results of measurements and analysis are reproduced in Figure 2.60. A case in which a bulk mode is excited
in the combustion chamber (175 Hz) is shown in Figure 2.60(a); the fundamental wave mode was excited in
the chamber excited for the case shown in Figure 2.60(b) (540 Hz). The calculated results were based on a
one-dimensional analysis (Yang 1984) in which combustion was ignored and the mean °ow was accounted
for only in the inlet. The good agreement is further evidence of the point emphasized already that the mode
shapes and frequencies for combustion instabilities are often well-approximated by results based on classical
acoustics. Here we also ¯nd that the one-dimensional approximation works well. For those calculations,
the inlet shock was represented with the admittance function computed by Culick and Rogers (1983). It is
apparently a good approximation that for these cases, the shock system is highly absorbing: the re°ected
wave has much smaller amplitude than the upstream-traveling incident wave. That fact, and the presence
of the high speed average °ow, explains why the relative phase varies linearly in the inlet.

Clark and Humphrey (1986) have also reported fairly good results obtained with a one-dimensional
analysis applied to a side-dump con¯guration. The engine was supplied from a large plenum through inlets
that were not always choked. Although the frequencies of oscillation, phase distributions throughout the
device, and amplitude distributions within the combustor were predicted well, the amplitude distributions
within the inlets di®user considerably from the measured results. The reasons for the di®erences are not
known. Yang and Culick (1985) later carried out a numerical analysis including vaporization of the liquid
fuel and were able to predict quite well both the distribution and level of the pressure ¯eld.

A series of tests in a coaxial combustor have been reported by Sivasegaram and Whitelaw (1987),
intended to examine the consequences of changing geometric parameters and fuel/air ratio. Data are given
for frequencies and sound intensity at one location. Mode shapes were evidently not measured and no results
of analysis are cited. It would appear that these data o®er an opportunity for a straightforward application
of a simple one-dimensional analysis.
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Figure 2.60. Comparison of measured and calculated mode shapes in the inlet of a labo-
ratory dump combustor (Crump et al. 1986).

The one-dimensional approximation with the average °ow accounted for works surprisingly well for rapid
estimates of mode shapes and frequencies. It is worthwhile remarking on its application. Few exact solutions
exist for arbitrary variations of cross-section area Sc(z), but in the case of ramjet con¯gurations it is generally
required to obtain results for piecewise variations. The problem comes down to solving the wave equation

d2p̂

dz2
+ k2` p̂ = ¡

dp̂

dz

1

Sc

dSc
dz

where dSc=dz vanishes everywhere except at discontinuities of area where it is in¯nite.

Hence the general procedure is straightforward to ¯nd normal modes of the chamber. In uniform sections,
the pressure ¯eld is represented by the usual forms, Ai cos(k`z + Ái) or its equivalents, where Ai, Ái are
associated with segment i, and k` is the wavenumber for mode `. These solutions are matched at the
discontinuities by requiring continuity of the acoustic pressure and mass °ow. Eventually the amplitudes
Ai can be found to within a multiplicative constant, and the values of h` are determined as roots of the
characteristic equation.

This sort of analysis has long been known to give satisfactory results if the changes of area are not too
large (see Section 5.7.2 and more complete analyses by Culick, Derr, Price 1972; Derr and Mathes 1974).
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Simple resonance tests at room temperature have con¯rmed the calculations, a method that is still useful
for investigating the acoustic modes of combustion chambers. For application to actual systems, signi¯cant
di®erences between these approximate results and observed values may arise due to uncertainties in the
boundary conditions at the inlet and exit planes.

2.4.7. The Time Lag Model Applied to Combustion Instabilities in Ramjet Engines. During
the past seven years, Reardon (1981, 1983, 1984, 1985, 1988) has used the time lag model to-correlate and
interpret the extensive data taken by Davis (1981). The time lag model is unwieldy (at best) to use if
combustion is allowed to be distributed and the time lag is variable. Hence as in many previous applications
to liquid rockets, Reardon assumes that the energy release is concentrated in a transverse plane; that the
parameters (n, ¿) are constant; and that the °ow ¯eld is one-dimensional. Then the combustion response
is given by the part of equation (2.94) depending on frequency; to represent concentrated combustion, the
average distribution wl is replaced by ±-function. A modest change in the argument allows one to use this
form for the unsteady conversion of liquid to vapor, or for unsteady energy release.

Reardon assumes that the oscillations observed by Davis are bulk modes in the combustor: the pressure
is essentially uniform in space and pulsates in time. Hence the mode shape Ã(~r) is approximately constant
and one may assume that the total unsteady energy release due to combustion processes in the chamber,
Ec, is given by

_Ec = _E0n(1¡ e¡i!¿ )p
0

p

The rate of change of energy in the chamber is the net result of energy released by combustion and the rates
at which energy is convected in and out of combustor:

dE

dt
= _Ec + _Ein ¡ _Eout

This relation is the basis for Reardon's treatment of the experimental results.

As we discussed earlier, in applications of the time lag model to instabilities in liquid rockets, both
parameters (n, ¿) were determined by matching a theoretical result to experimental results for the stability
boundary. The idea then is that those values of (n, ¿) can be used to predict the stability characteristics
for new (but in some sense similar) designs. In this case, Reardon has chosen to use values of n calculated
by Crocco and Cheng (1956) and to compute the time lag independently, using previous results obtained
by others. In short, Reardon essentially assumes that the combustion model is known (de¯ned by the two
parameters (n, ¿) with concentrated combustion) and then uses the relation for the balance of energy in the
chamber to correlate data.

Stability of oscillations may be determined by application of the Nyquist criterion after the unsteady
energy balance is rewritten by using the Laplace transform. This possibility arises because, as we have brie°y
described earlier, the problem of self-excited combustion instabilities can be interpreted as a linear system
with a negative feedback loop. The stability criterion, expressed with the growth constant ®, depends
on other processes included in the energy balance. The formal result may therefore be used to test the
importance of those processes by comparison with data.

Reardon has used this procedure to study the e®ects of several processes and geometrical parameters,
with mixed results. It seems that this sort of approach su®ers from the intrinsic limitation noted earlier: It is
really only a method for correlating data and therefore in the ¯rst instance has little predictive value without
assurance that the models used are accurate. Con¯dence in the results comes only from good correlations
with data over broad ranges of parameters. The results to date do not seem to provide that con¯dence.
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2.5. Dynamics of Flames and Flame Sheets as a Mechanism

Interpreted in the broadest sense, the dynamics of °ames includes mechanisms which may be active in
any system based on the conversion of energy by combustion processes. Conventionally the term has come
to refer only to situations in which the °ame or °ames are rather well-de¯ned and not spread out in space.
What is probably the ¯rst example of a \combustion instability" remains virtually a canonical example.
In 1777, (that's only 50 years after Newton's death!) Byron Higgens (1777) recorded his observations of a
\singing °ame", published twenty-¯ve years later in Nicholson's Journal. The phenomenon has attracted
much attention as a curiosity, as a simple informative example of fundamental behavior, and as an elementary
guide to understanding the complexities presented by actual combustion systems.

Figure 2.61 is a sketch of Putnam's apparatus which is easily assembled for observation of a basic singing
°ame. Two variations are shown, to demonstrate the in°uence of changing the upstream boundary condition.
Figure 2.62 shows some results (Putnam 1945) obtained for the two cases sketched in Figure 2.61. Putnam
(1971, pp. 9{16) has given a good brief discussion of Jones' observations.

L1
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L1

S

Combustion tube

Diffusion flame

Gaseous fuel

supply tube

Inlet to fuel

supply tube

Plenum chamber

Critical flow

orifice

(a)   Acoustically Open Inlet                                                                     (b)   Acoustically Closed Inlet

Figure 2.61. Simple apparatus for demonstrating a singing °ame (Putnam 1971).

The connections between the behavior of the singing °ame and results obtained for the Rijke tube
(Section 2.7) are fairly evident; they will not be pursued here. These elementary situations are instructive
examples of phenomena causing the excitation of acoustic waves by energy released in combustion processes.

Prior to the late 1940s and early 1950s, there was virtually no e®ort to work out true theories of °ames.
There were no detailed quantitative representations having predictive value. The idea that at atmospheric
pressure most of the chemical reactions in a combustion process take place quickly and in thin regions had
long been known, but there were few quantitative consequences. That view, that °ames are thin, is at least
implicit in practically all of the literature alluded to in the paragraph above. Then, a few years after World
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Figure 2.62. Location of the °ame shown in Figure 2.61 to maintain a continuous tone,
i.e. `singing' (Putnam 1971).

War II, the ¯eld of combustion began to develop in the form now understood, most clearly the subject broadly
covered by the proceedings of the Combustion Institute. Within that extensive ¯eld, the representation of
reacting °ows with thin °ames, or `°ame sheets' became and has remained a useful model developed for
many research and practical applications.

Consequently, it was a natural development that unsteady problems of combustion in gaseous systems
should be modeled and analyzed with reaction zones treated as °ame sheets. A signi¯cant increase of
activity occured in the late 1980s with accomplishments at Ecole Centrale, Paris (Poinsot et al. 1987) and
at Cambridge University (Bloxsidge et al. 1988). Those were the ¯rst of many works based on variations of
similar apparatus at approximately atmospheric pressure. In both programs, the primary goal was successful
application of active control to problems of combustion instability. A similar strategy was followed in work
at M.I.T. (Annaswamy et al. 2000 and Fleifel et al. 2000).

All of those works involve models of combustion zones as °ame sheets. The analyses are closely tied to
investigations of active control and are therefore more appropriately discussed in Chapter 9.

2.6. Fluctuations of Mixture Ratio as a Mechanism

The in°uence of mixture ratio, or more precisely its °uctuations, in combustion instabilities received
little attention until oscillations caused serious problems in the development of combustors for gas turbines.
Reduced emissions, perhaps most importantly NOx, oxides of nitrogen, has been a practical goal for more
than ¯fteen years. Pressure to adopt stronger regulations has increased with time, one consequence being
signi¯cantly greater investments of people, money and time devoted to research. Many related special topics
of research have been, and are investigated; °uctuations of fuel/oxidizer ratio (F/O) hold a special position
due to their direct connection with local reaction rates, energy release and therefore potential e®ects on the
presence of combustion instabilities.
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An interesting question is: Why do changes in the design, or operation of gas turbines to achieve lower
emission of NOx lead to combustion instabilities? The reason can be explained quite simply. First we
should note that there are three main mechanisms for the formation of NO (nitrogen oxide) in combustion
of conventional fuels: (1) oxidation of nitrogen contained in the fuel, the principal source of NO in the
combustion of coal; (2) production of NO early in °ame zones, at a rate faster than that predicted by quasi-
equilibrium calculations (called `prompt' NO); and (3) oxidation of atmospheric nitrogen. It is the last that
is the main cause of NO production by gas turbines.

Production of NO is commonly estimated by the `Zel'dovich mechanism', an approximation to the more
accurate mechanism. The approximation by an overall reaction (Zel'dovich et al. 1985) is

d[NO]

dt
= 1:45£ 1017 1p

T
[O2]eq[N2]eqe

¡ 69;460
T (±K)

The rate of production of nitric oxide is strongly dependent on temperature, the origin of the descriptive label
`thermal NO'. For example, if the temperature is increased by 90±K at 2200±K, the rate doubles. Conversely,
the practical implication is that less NO is produced at lower temperatures.

In the interest of reducing pollution by NO (more generally NOx), combustion should be encouraged
at low temperatures. However, at lower temperatures, the rate of production of another pollutant, carbon
monoxide, is increased. At high temperatures, the equilibrium of CO2 and CO is shifted as CO2 dissociates
to form more CO. Thus in practice, the production, or rather the equilibrium concentration of carbon
monoxide, is minimum in a range of temperature not too high, not too low. Figure 2.63 shows some results
of calculations carried out at the United Technologies Research Center (UTRC). It follows from these results
that combustion is most favorably accomplished in a range of moderate temperature.
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Figure 2.63. Concentrations at equilibrium of carbon monoxide and oxides of nitrogen
(T. Rosfjord, UTRC; published in AGARD Report 820, Schadow et al. 1997).

The combustion temperature is reduced from its normal|i.e., traditionally accepted|value by operating
the combustor at lower values of the equivalence or fuel/oxidizer ratio. But as F/O is reduced to give
desirably lower levels of NOx, the combustor operates near the lean blowout limit. Then the combustion
zone becomes sensitive to °uctuations and approaches a condition under which it is both statically and
dynamically unstable. Flame `anchoring' and stabilization become insecure and can be lost due to small
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disturbances. Local motions of the combustion zone may then couple to the chamber dynamics (acoustic)
and grow into a combustion instability. The global consequences of that sequence of events is displayed in
Figure 2.64. It is this general behavior that has motivated substantial and widespread research on combustion
instabilities during the past decade and more.
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Figure 2.64. General behavior as the equivalence ratio is reduced near the lean blowout
limit (T. Rosfjord, UTRC; published in AGARD Report 820, Schadow et al. 1997).

Eventually the mixture ratio holds a special position as a state variable identifying the change of the
operating point of a combustor, as in Figure 2.63. It does not directly follow that F/O is in any sense
a `mechanism'. On the other hand, because the fuel/oxidizer ratio a®ects directly such basic properties as
energy release (or heat of reaction) and °ame speed, it is quite easy to make a convincing case that variations
of F/O can certainly produce oscillations. For example, imposing changes in F/O is a convenient means of
initiating combustion instabilities in numerical simulations.

Probably the experiments reported by Langhorne (1988) and Langhorne, Dowling and Hooper (1990)
were the ¯rst works to make explicit use of fuel/oxidizer °uctuations in studies of combustion instabilities.
Since then, research on the role and consequences of unsteady variations of mixture ratio has been carried
out by several groups; see, for example, reports by Lieuwen and Zinn (1998); Richards, James and Robey
(1999); and by Cho and Lieuwen (2003). Those and other works have been motivated mainly by intentions
to develop practical methods of active control, for application to problems of combustion instabilities in lean
premixed systems as explained above. That is a principal subject of Chapter 9.

2.7. The Rijke Tube: Simplest Example of Thermoacoustic Instabilities

One of the fundamental guiding principles in the ¯eld of feedback control is that time delays can cause
serious problems with stability and control. We have already mentioned on several occasions the presence
of a time delay as a factor in instabilities. It is preferable to view a time delay as a characteristic of the
mechanism of an instability rather than a mechanism per se. In this section we will treat two physical
mechanisms|energy addition from an electrical heater and from a °ame sheet|each of which present time
delays. In both cases, delays exist between the action of a °ow variable (pressure or velocity) and the energy
added to the °ow. That is, the delays arise in the internal feedback path shown in Figure 1.1.
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The role of a time delay is clearly displayed in these special situations. Because heat addition is the
root mechanism, the oscillations observed experimentally are often called `thermoacoustic instabilities.' Un-
derstanding their behavior is a signi¯cant aid to comprehending more complicated instabilities generated by
mechanisms quite di®erent in their details.

A second purpose of this section is to introduce the analytical framework developed in the following
chapters. The general formalism is quite generally applicable to combustors of any shape operating with any
form of reactants, solid, liquid or gaseous. Simple examples share many of the features of the behavior found
even in the most complicated applications to operational systems. Consequently, much of general value can
be learned from investigating the details of an elementary example.

2.7.1. The Electrically Driven Rijke Tube. Rijke (1859) invented and ¯rst studied his device nearly
150 years ago. The experimental results were described and explained by Rayleigh (1878, 1945) as the chief
basis for his formulation of the principle that came to be known as Rayleigh's Criterion (Chu 1956; Zinn 1986;
Culick, 1987a, 1992). In recent years the Rijke tube has received much attention because of its potential
relations to combustion instabilities generally and for other reasons as well. Raun et al. (1993) have published
the most complete summary of work with the Rijke tube to 1993. The article contains a virtually complete
set of references and useful comments on much of the observed physical behavior, including experimental
con¯rmation of Rayleigh's Criterion. Still a basic `rule of thumb' in the ¯eld of combustion instabilities,
Rayleigh's Criterion is derived here in Chapter 6.

Figure 2.65 is a sketch of the device to be analyzed here, the form of the device originally used. A tube
open at both ends is supported vertically and contains an electrically heated grid mounted some distance `g
above the lower end. In the original form of the tube used by Rijke, in place of the grid, a screen is heated
by a °ame which is subsequently removed. Soon after the °ame is removed, a tone of growing intensity is
produced. After maintaining a seemingly constant level for some time, the tone decays and ceases as the
screen cools. Rijke attributed the sound to periodic heating and expansion of the air rising through the
tube, alternating with compression due to cooling by the walls. Twenty years later, partially motivated by
his belief that cooling by the walls was too slow to be a controlling process, Rayleigh gave his explanation
for the excitation of the tone. He related the cause to the location of the heated screen relative to the form
of the acoustic ¯eld. It is in that work that we ¯nd the succinct statement of conditions under which heat
addition will cause oscillations, the famous `Rayleigh's Criterion' explained in Section 6.6.

L

u

u

l

l

g

z = L

z = 0

Figure 2.65. Sketch of an electrically heated Rijke tube.

Rayleigh's reasoning was not intended to include explicitly quantitative details of the phenomenon.
Another twenty years passed before P°aum (1909) incorrectly attributed the origin of the sound to friction
between the rising current of air and the heater. The idea was essentially an analogy between the tones
produced in a Rijke tube and the oscillations excited by wind blowing past electric wires or telephone lines
(or a °exible bridge!). Thus the heater served only as the prime mover of the rising air.
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In 1937, more than a quarter century after P°aum's work, Lehmann (1937) carried out experiments
with the notable addition of a ¯ne screen above or below the heater. Some of his observations misled him to
formulate a `theory' predicting that the amplitude of oscillation should continually increase with the draft
velocity, not having the maximum value shown by experiments. Lehmann's conclusions had no in°uence, for
not until ¯fteen years later did Neuringer and Hudson (1952) carry out what might be regarded as the ¯rst
`modern' discussion of the problem. They assumed that the time-dependent heat transfer depended mainly
on the gradient of the local instantaneous velocity. Lehmann's experimental conditions served to de¯ne
variables of the °ow required in the calculations. The results found by Neuringer and Hudson were not
extensive, but satis¯ed the authors that the local velocity gradient contributes crucially, suggesting further
that turbulence is likely an important factor. There is little concrete connection between the analysis and
observations cited in their discussion.

Carrier (1954) carried out the most detailed analysis of the Rijke tube driven by heat transferred from a
heater made of wires or strips of metal. The work was apparently prompted by some experiments carried out
by Bailey, who later gave an extended account of tests he performed with a Rijke tube operated with a gas
burner (Bailey 1957). The greater part of Carrier's paper is devoted to a careful analysis of the mechanism,
unsteady heat transfer from the heater to the gas stream; and to construction of the wave ¯eld in the tube.
Carrier gave only brief comments regarding comparison with experimental results. The analysis has much
instructional value.

Three papers by Merk (1956b, 1957a,b) began with a calculation of one-dimensional motions in °ow of
premixed combusting gases, and ended with a detailed examination of some possible unstable motions in a
Rijke tube. Merk's calculations are linear, for one-dimensional °ow and involve use of admittance functions.
He eventually uses Carrier's result for the complex transfer function for a metal heater made of thin ribbons.
The unsteady heat transfer to the air °ow is then proportional to the velocity parallel to the ribbon, with
a small phase di®erence. The physical content of Merk's model of the Rijke tube is essentially the same as
Carrier's but his discussion of the observable behavior is much more extensive. He obtained a result for the
neutral stability curve given below.

In a short note, Maling (1963) gave what is probably the simplest quantitative analysis of the linear
behavior of the Rijke tube. The unsteady pressure is taken to obey the wave equation with a heat source
(energy/mass-time) and no explicit e®ects of mean °ow:

@2p0

@x2
¡ 1

¹a2
@2p0

@t2
= ¡(° ¡ 1)

¹a2
¹½
@ _q

@t
(2.129)

The heater is supposed to be an in¯nitesimally thin screen providing energy at a rate proportional to the
velocity. In the notation used here, p0(x; t) = p̂(x)e¡i¹akt and _q = F (¹u)u0, so

d2p̂

dx2
+ k2p̂ =

(° ¡ 1)
¹a

¹½kF (¹u)û(xh ¡ ²)±(x¡ xh) (2.130)

where the heater is located at xh and ² is a small quantity required when the momentum equation is satis¯ed
just upstream of the heater. As in Merk's analysis, Maling used Carrier's results to set F (¹u). Limited test
results with a three-foot tube and a blower in plenum chamber upstream of the tube established the lower
limit speeds for oscillations, 0.84, 0.87, 0.91 m/s with total heater powers equal to 930, 1100, and 1290 Watts.
Those can be viewed only as qualitative results because precise behavior is very sensitive to construction
imperfections.

The ¯rst experiments with a horizontal Rijke tube were done by Friedlander in his thesis work reported
by Friedlander, Smith and Powell (1964). Limited tests served only to establish correlations among some
variables, mainly the sound pressure level, heater location, tube length and °ow velocity which was provided
by external means not described. The length of the tube could be adjusted by moving pistons which, while
admitting °ow, closed the ends. Apparently the observed behavior was consistent with the calculations by
Maling. Insu±cient details are given in the note to make further use of the report.
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Saito (1965) seems to have misunderstood some of the previous work (e.g., he did not fully appreciate
the basic nature and generality of Rayleigh's Criterion), and he incorrectly criticized application of Merk's
calculations to an electrical heater. The apparatus he used is not described well, and several of his pho-
tographs are not clear. His Figures 7 and 8 clearly show that oscillations in his Rijke tube grow out of a
linear instability. Unfortunately the work seems not to have ful¯lled the author's hope for a new theory, or
even for providing the experimental basis for a new theory.

The most extensive experimental results to that time were provided by Marone and Tarakanovskii
(1967) using conventional square tubes having various lengths, an electrical heater and a controlled °ow of
air provided by a fan. Their basic results are reproduced in Figure 2.66. Unfortunately, the velocity V ,
which appears in the Strouhal number, St = !d=V , where d is the diameter of the heater, was not given
in the paper. The results are therefore qualitative and have limited value. From Figure 2.66(a) it is clear,
however, that a longer tube (lower frequency and lower losses/length) has a larger region of oscillation for
a given heater power. Figure 2.66(b) shows that for a given tube, the region of oscillations increases with
heater power. Marone and Tarakanovskii also give some results obtained when an unheated auxiliary grid
was installed. Oscillations at the fundamental frequency could then, under some conditions, be excited by a
heater placed in the upper half of the tube. That apparent violation of Rayleigh's Criterion has never been
explained. Owing to the incompleteness of the information, a satisfactory explanation probably cannot be
worked out with the given data alone.
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Figure 2.66. The e®ect of tube length and heater location on the generation of oscillations
in a Rijke tube, St = !d=V ; (a) heater power input 500W, (b) L = 1:3m (Marone and
Tarakanovskii 1967).

In a short note, Marchenko and Timoshenko (1970) later gave incomplete results for some aspects of
nonlinear behavior. For example, they found that the ratio of the amplitudes of the second harmonic to that
of the fundamental decreased linearly as the heater was moved from 20% to 30% of the tube length. Their
data is suggestive but too little to advance understanding.

Collyer and Ayres (1972) brie°y explored the generation of harmonics in a Rijke tube by one or two
screen heaters appropriately placed in the tube. They reported exciting as many as nine harmonics in a

COMBUSTION DYNAMICS AND MECHANISMS OF COMBUSTION INSTABILITIES 

RTO-AG-AVT-039 2 - 97 

 

 



cold 79 cm tube and eight harmonics when it was `hot'; the average temperatures were 28±C and 68±C
respectively. Apart from a brief comment regarding an explanation for the presence of the second harmonic
noted by Marchenko and Timoshenko, the authors merely report their observations without interpretation
or explanation. Thus the work adds little to explaining the behavior of the Rijke tube.

Apparently inspired partly by Saito's work a dozen years earlier, and motivated by some fundamental
weakness of both the available experimental results and analyses, Kalto and Sajiki (1977) reported quite
extensive results for the onset of oscillations, but gave no analysis. Their apparatus was a vertical tube with
supporting equipment essentially the same as Saito's. Figure 2.67 shows an example of their results which
were always plotted as heater power versus °ow rate measured in liters per minute. They show the usual
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Figure 2.67. The e®ect of a second heater on the stability of oscillations; adapted from
Figure 7 of Kalto and Sajiki (1977).

broad region of oscillations with a single heater placed at one-quarter of the tube length from the lower end.
A series of tests were carried out with a second heater at one-quarter of the length from the top. The power
to the second heater was constant, equal to 100W. When placed at the middle of the tube, the second heater
had no e®ect, a result to be expected on the basis of Rayleigh's Criterion. Kalto and Sajiki examined the
consequences of changing other variables, including tube length and form of the heater, which we will not
discuss here.

The last of the papers from the University of Tokyo covers results obtained by Madarame (1981) who
paid particular attention to the rates at which energy °ows to the oscillations. It is unfortunate that the
author ignores two hundred years of previous work on the problem: the only citations are the papers by
Saito, and Kalto and Sajiki; and the book on boundary layer theory by Schlicting (1968). Madarame reports
data for the growth of oscillations and for the limiting amplitude. Some e®ects, for example, of °ow rate and
heater power input are given for several lengths of tube. The author found fairly good agreement between
observations and a simple analysis for small oscillations and for °ow rates which are not high. Madarame
speculates that transition to turbulent °ow may be responsible for some of the anomalies found.

Probably the ¯rst thorough analysis of the stability of small motions in a Rijke tube was worked out
by Kwon and Lee (1985). Their best result was the curve of stability limits reproduced here as Figure
2.68. Despite the obviously good agreement, which shows that the calculations contain some truth, the
analysis does not constitute a theory of the Rijke tube, nor do Kwon and Lee make such a claim. Only the
example shown in Figure 2.68 was given in the paper; the authors note that in other cases they examined,
the experimental values of heat input were larger than predicted for large °ow rates and smaller for low °ow
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Figure 2.68. A prediction of a stability limit (Kwon and Lee 1983) with data reported by
Kalto and Sajiki (1977).

rates. Kwon and Lee attribute those di®erences to a faulty representation of the heat provided by the heater
for low °ow rates, and to an unaccounted for increase of mean temperature Tm in the tube. In fact, even
crude measurements demonstrated that their assumption that Tm is equal to the temperature of the air at
the inlet to the tube is simply not valid.

Kwon and Lee de¯ne their \stability limit" for oscillations as the condition when the generation of power
by the heater and absorbed by the gases exactly equals the acoustic energy dissipated in the tube. Convection
of energy at the ends, and radiative losses were estimated to be negligible so the condition for oscillations
is equality of the absorption of power and the rate at which acoustic energy is lost due to viscous e®ects,
including heat conduction at the lateral boundary (Appendix C). The rates of generation and dissipation
are

Wg =
(° ¡ 1)¹½m¹am
4°¹p(!·)1=2

EQ0jûpj2 sin
μ
¼
`g
L

¶
(2.131)

Wa =
¼2R¹½m¹am

2
p
2

³ ¹ºm
!

´1=2μ
1 +

° ¡ 1p
Pr

¶
jûpj2 (2.132)

where ( )m denotes values at the `mean temperature' of the gas °ow; jûpj is the magnitude of the peak
velocity oscillation; ¹ºm is the mean kinematic viscosity; Q0 is the \overall steady heat input to the air from
the heater"; and E is an e±ciency factor measuring the part of heat release in phase with the pressure.
Equating (2.131) and (2.132) leads to the formula for Q0:

Q0 =

p
2¼R(·¹ºm)

1=2°¹p

E sin
³
2¼

`g
L

´ μ
1 +

° ¡ 1p
Pr

¶
(2.133)
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The heat input is least when sin
³
2¼

`g
L

´
= 1, or `g =

L
4 , a well-known result. Some additional ancillary

calculations are required (see the paper by Kwon and Lee) but the preceding conveys the gist of the matter.

In the greater part of practical cases, the presence of oscillations in combustors is simply not wanted.
Hence the main problem is avoiding them in the ¯rst place, or supressing them when they do appear. It seems
to be generally true that if an existing combustion system is developed further in the interest of improving its
performance in some sense, then unwanted oscillations of pressure will inevitably appear. That is one reason
why the Rijke tube has continued to attract attention; it is the simplest system displaying many aspects of
general behavior. Given the problem, the practical question arises{how can the oscillations be avoided or
suppressed? With an interesting paper, Sreenivasan, Raghu and Chu (1985) used an electrically-driven Rijke
tube to introduce the idea and ¯rst example of actively controlling acoustic oscillations. Their basic idea
was to convert \acoustic to thermal energy so that the acoustic oscillations are quenched and the system is
stabilized."

The apparatus Sreenivasan et al.used was a vertical tube with a primary heater mounted in the bottom
half and a control heater in the upper half. As part of their study the authors measured the temperature of
the air system to be 26±C before the primary heater, 92±C before the control heater and 97± in the exhaust.
Thus the temperature rise was about 30% of the initial ambient value, not the small change assumed by
Kwon and Lee. As a point we will return to in Chapter Nine, the oscillations in the tube were suppressed
by using control heater power roughly 3% of the primary heater power, whereas the acoustic power was
approximately 1/100 as much. Active control may be very costly.

Subsequent to the work just described, the Rijke tube has been used either in slightly di®erent forms
using various fuels to provide the driving power from combustion (e.g. Putnam and Dennis, 1954, who
apparently made the ¯rst °ame-driven Rijke tube; and Raun and Beckstead, 1993, among many); or as the
object to investigate the application of active control. The recent investigation by Matveev (2003) seems
to be the latest based on the historically `conventional' form of the electrically powered tube. Matveev and
Culick 2002a{d; 2003b,c have discussed the work. Matveev took special care to obtain data having precision
as high as possible, a demand that required lengthy tests to reach thermal equilibrium or, better, steady-
state. The apparatus was a perfected form of that described by Pun (2001) and sketched in Figure 2.69.
Figure 2.70 shows two examples of experimental results and calculations for the stability boundary with two

Damping chamber

Thermocouple array

Rijke tube

Heater power
rods

Pressure
transducer

Blower

Air flow

Figure 2.69. A sketch of the horizontal Rijke tube used by Matveev (2003).

positions of the heater. The crossed short lines represent experimental error bars; the heavier short vertical
lines illustrate the shifts of the computed stability boundary when the impedance of the chamber is assigned
an uncertainty of § 20%.

COMBUSTION DYNAMICS AND MECHANISMS OF COMBUSTION INSTABILITIES 

2 - 100 RTO-AG-AVT-039 

 

 



Stable

0                      1.0                  2.0                  3.0                  4.0

1500

Mass  Flow Rate   (gm/sec)

Unstable

1000

500

0                         1.0                     2.0                     3.0         

1200

1000

600

400

200

800

P
O

W
E

R
  

(W
)

Mass  Flow Rate   (gm/sec)

Stable

Unstable

P
O

W
E

R
  

(W
)

(a)                                                                                                     (b)

Figure 2.70. Comparison of experimental data and calculations for stability boundaries
of the Rijke tube in Figure 2.69. Heater position: (a) 1/4 tube length; (b) 1/8 tube length.

These results support the conclusion that we can compute the stability of the electrically driven Rijke
tube quite well, but considerable care is required. See Matveev and Culick (2003) for a more detailed
discussion. Even in the crudest execution of the experiment, three elementary results are found, implicit in
the references cited, if not discussed explicitly:

(a) If the heater is in the lower half of the tube steady acoustic oscillations can be sustained;
(b) The frequency of the sound is close to the fundamental frequency a=2L of the tube;
(c) If the tube is tilted, the intensity of sound decreases and is zero when the tube is horizontal.

Correspondingly, three basic questions are raised:

(i) What determines the frequencies of the observed oscillations?
(ii) Why does the location of the grid matter?
(iii) Why does the vertical orientation of the tube a®ect the oscillations?

All three questions can be answered with linear analysis of the ¯eld in the tube and consideration of
modest nonlinear behavior of the heat transfer from the heater. The steps in the procedure followed in
Section 2.7.2 are in direct correspondence with those followed in the general method.

2.7.2. Mean Field in the Rijke Tube. The hotter gas above the heater rises, inducing a draft in the
tube. In steady °ow there is an abrupt rise, in the limit a discontinuity, of temperature across the heater.
Continuity of mass °ow requires28

½LuLSc = ½UuUSc (2.134)

where Sc is the cross-section area. Subscripts ( )L and ( )U denote values in the lower and upper regions

of the tube; and ( ) stands for average value.

We assume that the average °ow is uniform above and below the heater, and that the perfect gas law
holds with the gas constant having the same value throughout, p = ½RT . In this low speed °ow the pressure
is approximately uniform except for a negligible change across the heater due to viscous e®ects (drag and

28Strictly, careful derivation of this relation gives ½uSc = constant. We assume ½u = ½ u; see discussion of the equations
for the average °ow in Chapter 3.
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heat transfer). Hence certainly as a good ¯rst approximation, we have the simple relation connecting the
density and temperature ratios across the heating grid

½L
½U

=
TL

TU
> 1 (2.135)

2.7.3. Acoustic Field in the Rijke Tube. The simplest representation of the acoustic ¯eld is based
on the assumptions that the mean °ow has negligible e®ects on the unsteady ¯eld; and that viscous losses
at the lateral walls may be ignored. Then the classical acoustic conservation equations for one-dimensional
motions apply:

Mass
@½0

@t
+
@½0

@x
(½u0) = 0 (2.136)

Momentum ½
@u0

@t
+
@p0

@x
= 0 (2.137)

Pressure (Energy)
@p0

@t
+ °p

@u0

@x
= (° ¡ 1) _Q0±(x¡ `g) (2.138)

The e®ect of the heater is represented by the °uctuation _Q0 of heat exchanged between the grid and the
°ow, assumed to occur in the in¯nitesimally thin plane at x = `g. These familiar equations are derived in a
more general context in Chapters 3{5; see Sections 3.3 and 5.1.

The idea now is to solve (2.136){(2.138) separately in the regions upstream and downstream of the

heater. Because _Q0 = 0 outside the heater, the solutions represent freely traveling waves. Then the ¯eld in
the tube will be found by applying suitable boundary conditions at the ends, and matching conditions at
the heater.

The required matching conditions are obtained by integrating the conservation equations over a small
region containing the heating grid, Figure 2.71, (`g ¡ ±) < x < (`g + ±) and then letting ± ! 0.

u´ (l - δ)

x = l

u´ (l +δ)

δ

l - δ l + δ

l

Figure 2.71. Region of integration for obtaining matching conditions.

Applying the procedure to the di®erential equation (2.136) for conservation of mass gives

`g+±Z
`g¡±

@½0

@t
dx+

`g+±Z
`g¡±

@

@x
(½u0)dx = 0

so for small ±,

(½u0)`g+± ¡ (½u0)`g¡± = 0
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For ± ! 0 we have

½Uu
0
`g+ = ½Lu

0
`g¡ (2.139)

This result is the formal statement that the acoustic mass °ux is constant through the heater.

Similarly, the momentum equation (2.137) leads to continuity of the acoustic pressure,

p0`+ = p
0
`¡ (2.140)

Integration of the energy equation (2.138) across the heater introduces the in°uence of the unsteady heat
addition:

`g+±Z
`g¡±

@p0

@t
dx+

`g+±Z
`g¡±

°p
@u0

@x
dx = (° ¡ 1)

`g+±Z
`g¡±

_Q0g±(x¡ `)dx

For ± ! 0:

°p
³
u0`g+ ¡ u0`g¡

´
= (° ¡ 1) _Q0g

so the discontinuity of the velocity °uctuation is

u0`g+ = u
0
`g¡ + (° ¡ 1)

_Q0g
°p

(2.141)

Combination of (2.139) and (2.141) gives

u0`g¡ =
1

½L
½U
¡ 1(° ¡ 1)

_Q0g
°p

; u0`g+ =
½L=½U
½L
½U
¡ 1(° ¡ 1)

_Q0g
°p

(2.142)a,b

There is only one source of energy for the acoustic ¯eld in this form of the problem, the heating grid. We
will ignore all losses at the ends and lateral boundary of the tube. Depending on the heat transfer between
the grid and unsteady motions of the gas, a small amplitude disturbance may grow or decay. That is, we are
really concerned at this point with stability of waves in the tube. We examine the matter in two ways: by
¯nding the wave ¯eld in the tube subject to appropriate boundary conditions and the matching conditions
just derived; and with a method based on spatial averaging. In practice, the chief di®erence between the two
approaches is that the second approach gives the desired result for stability without requiring knowledge of
the actual acoustic ¯eld.

2.7.4. Acoustic Field and Stability by Matching Waves. The method used in this section has
often been applied to problems involving planar waves. Several examples have appeared in the literature
of combustion-driven oscillations, e.g., Dowling 1995; Candel 1992, 2001. Here we have only to use the
matching conditions derived above to join representations of standing waves on the two sides of the heater.
In the regions between the heater and the ends, the linearized momentum and energy equations are

½
@u0

@t
+
@p0

@x
= 0

@p0

@t
+ °p

@u0

@x
= 0

(2.143)a,b

The wave equation for the pressure is formed by di®erentiating (2.123)b with respect to time and replacing
@u0=@t by (2.123)a.

For p, ½ constant and a2 = °p=½, the result is

@2p0

@t2
¡ a2 @

2p0

@x2
= 0 (2.144)
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Solutions of the form p0 » e¸teÂx are easily found, appropriate combinations then form representations
of standing waves. We ignore radiation of acoustic energy from the ends of the tube, a condition that is
enforced by requiring that the pressure °uctuations vanish:

p0(0; t) = 0

p0(L; t) = 0
(2.145)a,b

It is convenient to use the complex form for the time dependence; a solution to (2.144) for the lower part of
the tube, satisfying (2.125)a is

p0L(x; t) = PLe
¡i−t sin(kLx) (0 · x < L) (2.146)

where − is the complex frequency and kL is the complex wavenumber:

− = ! + i®

kL = −=aL =
!

aL
+ i

®

aL

(2.147)

As de¯ned here, ® is positive for an unstable wave.

The acoustic momentum equation (2.123)a is satis¯ed, with (2.146) for the pressure, if the corresponding
velocity °uctuation is

u0L(x; t) = ¡i
PL
½LaL

e¡i−t cos(kLx) (0 · x < `g) (2.148)

Similarly, the solutions in the upper part29 of the tube are

p0U (x; t) = PUe
¡i−t sin kU (L¡ x)

u0U (x; t) = i
PU
½UaU

e¡i−t cos kU (L¡ x)
(`g < x · L) (2.149)a,b

With these solutions, application of the conditions (2.140) for continuity of acoustic pressure and (2.141)
for the discontinuity of velocity °uctuation gives the two equations relating the unknown amplitudes PL and
PU :

PL sin(kL`g) = PU sin kU (L¡ `g)

PU cos kU (L¡ `g) = ¡PL
μ
½UaU
½LaL

¶
cos(kL`g)¡ i

μ
½UaU
°p

¶
(° ¡ 1) _Q0gei−t

(2.150)a,b

The heat exchanged between the grid and the °ow likely depends on both the pressure and velocity, but in
the absence of experimental and theoretical results, it is reasonable simply to assume that _Q0g is proportional
to the velocity °uctuation with a time lag. But what velocity °uctuation? As an approximation, we assume
that the average value across the heater is a reasonable choice, so

_Q0g =
Qu
2
[u0L (`g; t¡ ¿u) + u0U (`g; t¡ ¿u)] (2.151)

Substitution in (2.145)b and rearrangement leads to

¡»PL cos(kL`g) = PU cos kU (L¡ `g) (2.152)

29Note that there is a sign change in u0L because x is replaced by L ¡ x. Also, the complex frequency − has the same
value throughout the tube because we assume `steady' waves|`steady' except for slow growth or decay.
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where

» =
½UaU
½LaL

1 + (°¡1)Qu

2°p ei−¿u

1¡ (°¡1)Qu

2°p ei−¿u
(2.153)

Division of (2.145)a by (2.152) gives the transcendental equation for the complex eigenvalue − (recall kL =
−=aL and kU = −=aU ):

» tan(kL`g) = ¡ tan kU (L¡ `g) (2.154)

The last equation can only be solved numerically in general, but for the case of weak heating, an
instructive result is readily obtained by expansion about the limit of no heating. When Q0 = 0 so the gas
properties are uniform, » = 1; after expansion of (2.154) the dependence of `g drops out and we recover the
classical condition setting the wavenumbers in an open-open straight tube:

sin kL = 0

and

kL = 0; ¼; 2¼; ¢ ¢ ¢ `¼ (2.155)

When weak heating is assumed, the wavenumbers di®er slightly from (2.155); for the ¯rst mode (` = 1)
set30

kL = kU ¼ 1

L
(¼ + ±) (2.156)

and the problem comes down to determining ±. Then to ¯rst order in ±,

tan(kL`g) = tan(¼ + ±)
`g
L

tan kL(L¡ `g) = tan(¼ + ±)
μ
1¡ `g

L

¶ (2.157)a,b

It is su±cient for the purposes here to consider the special case `g=L = 1=4, when the heating grid is one-
quarter of the tube length from the inlet. Experimentally it is well-known that the ¯rst mode is excited
when the heater is in the lower half of the tube. With `g=L = 1=4, substitution of (2.157)a,b in (2.154) gives

» tan
1

4
(¼ + ±) = ¡ tan 3

4
(¼ + ±) (2.158)

where » di®ers from unity by an amount of the order of ±. If we assume ½UaU
½LaL

= 1 + ² and set

¢ =
° ¡ 1
2p

Que
i−¿u (2.159)

Then » (2.153) becomes

» = (1 + ²)
1 + ¢

1¡¢
»= 1 + (²+ 2¢)

to ¯rst order in small quantities. Also to ¯rst order in ±,

tan
1

4
(¼ + ±) »= 1 + ±

4

1¡ ±
4

»= 1 + ±
2

tan
3

4
(¼ + ±) »= 1¡ 3

4

¡1¡ 3
4

»= ¡
μ
1¡ 3

2
±

¶
30We ignore the small increase in the speed of sound in the °ow through the grid. This a®ects the frequency slightly and

even less the growth or decay constant (time averaging part of the wavenumber).
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Substitution of these approximations in (2.158) leads to

1 + (²+ 2¢) =
1¡ 3

2±

¡1¡ ±
2

¼ 1¡ 2±

and

± = ¡ ²
2
¡¢ = ¡

μ
²

2
+
° ¡ 1
2p

Qu cos−¿u

¶
¡ i° ¡ 1

2p
Qu sin−¿u (2.160)

Now by de¯nition, the complex wavenumber and frequency are related by

k =
−

a
=
!

a
¡ i®

a
=
1

L
(¼ + ±) ;

the second equality following from (2.156). Hence, with (2.160) we ¯nd

! = ¼
a

L
¡ 1
2

μ
²+

° ¡ 1
p

Qu cos−¿u

¶
; ® =

a

L

° ¡ 1
2p

Qu sin−¿u

But since ® is ¯rst order in small quantities we must replace −, by the unperturbed classical frequency,
! ¼ ¼ aL , so the ¯rst order approximations to the frequency and growth constant are

! = ¼
a

L
¡ 1
2

·μ
½U
½L

aU
aL
¡ 1
¶
+
° ¡ 1
p

Qu cos

μ
¼
a

L
¿u

¶¸
® =

a

L

° ¡ 1
2p

Qu sin

μ
¼
a

L
¿u

¶ (2.161)a,b

Because the growth constant ® must be positive for the mode to be unstable, we have the simple criterion
for instability that the time lag ¿u must be in the range

0 < ¿u <
L

a
(2.162)

The period of the fundamental mode is 2¼=!1 = 2¼=ak = 2L=a. Hence the condition (2.162) requires that for
unstable oscillations the heat addition should not lag the velocity oscillation by more than one-half period.
Similar results can be obtained for higher modes. For excitation of oscillations, there is also a restriction on
the location of the heater, not easily found with the analysis given here. Both restrictions on the temporal
and spatial properties of the heater are readily obtained with the method based on spatial averaging.

2.7.5. Stability Analyzed by a Method of Spatial Averaging. The generic character of the
mechanism examined in the preceding section is better shown with a special case of the analytical framework
developed in Chapters 3 and 4. We use the same example, but initially without the restriction to energy
addition at an in¯nitesimally thin grid. Hence the speed of sound must be treated as a function of position
in the tube. However, the mean pressure is constant and uniform, and formation of the wave equation as in
the steps leading to (2.144) now gives

@2p0

@t2
¡ @

@x

μ
a2
@p0

@x

¶
=
R

Cv

@ _Q0

@t

which we write in the form appropriate for small changes in the speed of sound,

@2p0

@t2
¡ a20

@2p0

@x2
=
R

Cv

@ _Q0

@t
¡ @p

0

@x

d±a2

dx
(2.163)

where a2 = a20 + ±a
2, a20 being constant,

h =
R

Cv

@ _Q0

@t
¡ @p

0

@x

d±a2

dx
(2.164)
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The boundary conditions set at the ends of the tube are

p0(0; t) = 0

p0(L; t) = 0
(2.165)a,b

We assume always the classical acoustic problem for motions with no perturbations. Here the de¯nition
of the unperturbed problem is clear: _Q0 and da2=dx vanish. Since we are normally interested in determining
what e®ects the perturbations have on the known classical behavior, we concentrate on analyzing the dif-
ference between the actual and classical problems. The idea is to construct the spatially averaged weighted
di®erence in the following way.

Let p01 denote the pressure in the fundamental mode of classical motion satisfying the homogeneous wave
equation and the same boundary conditions as for the actual problem:

@2p1
@t2

¡ a20
@2p1
@x2

= 0 (2.166)

p1(0; t) = 0

p1(L; t) = 0
(2.167)a,b

Multiply (2.163) by p1, (2.158) by p
0, subtract the results and integrate over the volume of the tube to give

LZ
0

·
p1
@2p0

@t2
¡ p0 @

2p1
@t2

¸
Scdx¡ a20

LZ
0

·
p1
@2p0

@x2
¡ p0 @

2p1
@x2

¸
Scdx =

LZ
0

hScdx (2.168)

Integrate the second integral by parts and substitute the boundary conditions (2.165)a,b and (2.167)a,b to
¯nd

LZ
0

·
p1
@2p0

@x2
¡ p0 @

2p1
@x2

¸
Scdx =

LZ
0

·
p1
@p0

@x
¡ p0 @p1

@x

¸
Scdx

¡
LZ
0

·
@p1
@x

@p0

@x
¡ @p

0

@x

@p1
@x

¸
Scdx

·
p1
@p0

@x
¡ p0 @p1

@x

¸
Scdx¡ 0

= 0

From earlier results we take p01 = P1 sin!1t sin k1x, so in the ¯rst integral of (2.168),

@2p1
@t2

= ¡!21p1
where !1 = a0k1. We assume that the spatial dependence of the motion is not much a®ected by the
heat addition,31 but the amplitude ´1(t) varies in time, in a manner to be determined; thus for the actual
oscillation we assume the form

p0 = p´1(t) sin k1x (2.169)

31This is a key step clari¯ed in Chapter 4.
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Substituting p1 and p
0 in the ¯rst integral of (2.168) we have

LZ
0

·
p1
@2p0

@t2
¡ p0 @

2p1
@t2

¸
Scdx =

LZ
0

£
P1 sin!1t sink1x

¡
pÄ́1 sin k1x¡ !21p´1 sin k1x

¢¤
Scdx

= P1p sin!1t
¡
Ä́1 + !

2
1´1
¢
Sc

LZ
0

sin2 k1xdx

Inserting these results in (2.163) leads to

d2´1
dt2

+ !21´1 =
1

pE21

LZ
0

h sin k1xdx (2.170)

and

E21 =

LZ
0

sin2 k1xdx =
L

2
(2.171)

With h given by (2.164), equation (2.170) becomes

d2´1
dt2

+ !21´1 =
2(R=Cv)

pL

LZ
0

sin k1x
@ _Q0

dt
dx¡ 2

pL

LZ
0

@p0

@x

d±a2

dx
dx (2.172)

To simplify the calculations we will ignore the change ±a2 in the speed of sound, and for comparison with
the results found in the preceding section, we specialize (2.172) to the case of a thin heating region. For
some further generality we assume that the °uctuations of heat addition depend on both the local velocity
and pressure °uctuations. Hence we add a term to the representation (2.151) to give

_Q =

½
Qu
2
[u0L(`g; t¡ ¿u) + u0U (`g; t¡ ¿u)] +Qpp0(`g; t¡ ¿u)

¾
±(x¡ `g) (2.173)

It is a great advantage of the method based on spatial averaging that in the right-hand side of (2.172)
we can use, as a ¯rst approximation,32 the unperturbed classical forms for the pressure and velocity ¯elds.
Thus the discontinuity in the velocity °uctuation at the grid is ignored and (2.173) becomes

_Q0 = fQuu0(`g; t¡ ¿u) +Qpp0(`g; t¡ ¿p)g ±(x¡ `g) (2.174)

The unperturbed form for p0 is (2.169); the corresponding form for u0 is

u0 ¼ _́1
°k1

cos k1x (2.175)

This formula is justi¯ed as the zeroth order approximation for the velocity °uctuation because together
(2.169) and (2.175) satisfy the unperturbed acoustic momentum equation (2.137) providing k21 = !

2
1=a

2 and
(as zeroth approximation) ´1 satis¯es the wave equation without perturbations; substitution in (2.137) gives

½
@

@t

μ
_́1
°k1

cos k1x

¶
+
@

@t
(p´1 sin k1x) = 0

This equation leads to

d2´1
dt2

+ !21´1 = 0 (2.176)

where !21 = a
2k21.

32The matter of correct systematic approximations, an iterative procedure, is discussed in Chapter 4.
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Substitution of (2.162) and (2.175) in (2.174) gives the formula for _Q0 to be used in (2.172):

_Q0 =
½
Qu
°k1

cos k1`g
d

dt
´1(t¡ ¿u) +Qpp sin k1x´1(t¡ ¿p)

¾
±(x¡ `g) (2.177)

Then

@ _Q0

@t
=

½
¡Qu!

2
1

°k1
cos(k1`g)´1(t¡ ¿u) +Qpp sin k1x d

dt
´1(t¡ ¿p)

¾
±(x¡ `g) (2.178)

where we have used (2.176) as an approximation in the ¯rst term.

Finally, use (2.177) in (2.172) and rearrange the result to give

d2´1
dt2

¡ 2
·
Qp
R=Cv
L

sin2 k1`g

¸
d

dt
´1(t¡ ¿p) + !21

·
´1(t) +Qu

R=Cv
°pLk1

sin 2k1`g´1(t¡ ¿u)
¸
= 0 (2.179)

This equation represents the behavior of a linear oscillator with time delays associated with internal feedback.
To determine stability, we assume that the amplitude ´1 is a sinusoid with slowly growing or decaying
amplitude:

´1(t) = Ce
¡i−t (2.180)

where C is constant and the complex frequency is

− = ! + i® (2.181)

For instability, ® must be positive with the sign convention chosen here. Both ® and the di®erence between
the actual (!) and unperturbed (!1) frequencies are small: j®j ¿ !1 and j! ¡ !1j ¿ !1. Substitute (2.180)
in (2.179) to ¯nd

¡−2 ¡ 2A(¡i−)ei−¿p + !21(1 +Bei−¿u) = 0 (2.182)

where

A = Qp
R=Cv
L

sin2 k1`g

B = Qu
R=Cv
°pLk1

sin 2k1`g

(2.183)a,b

Expanded to show the real and imaginary parts, (2.182) is

[¡!2 + !21(1 +B cos!1¿u)¡ 2A!1 sin!1¿p] + i[¡2®!1 = 2A!1 cos!1¿p + !21B sin!1¿u] = 0
where second order quantities have been ignored.33 The brackets must vanish separately and we have the
approximations for the frequency and growth (or decay) constant.

!

!1
= 1¡ A

!1
sin!1¿p +

1

2
B cos!1¿u

®

!1
=
A

!1
cos!1¿p +

1

2
B sin!1¿u

With (2.183)a,b, these formulas are

!

!1
= 1¡Qp

·
R=Cv
!1L

sin2 k1`g

¸
sin!1¿p +Qu

·
R=Cv
2°pLk1

sin 2k1`g

¸
cos!1¿u

®

!1
= Qp

·
R=Cv
!1L

sin2 k1`g

¸
cos!1¿p +Qu

·
R=Cv
2°pLk1

sin 2k1`g

¸
sin!1¿u

(2.184)a,b

The conditions for instabilities immediately follow from (2.184)b as the conditions under which ®=! > 0.
For `velocity coupling', heat addition dependent on velocity °uctuations, the conditions are: 0 < !1¿u < ¼

33The perturbations represented by A and B are small, of ¯rst order, as are j®j and j! ¡ !1j.
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and 0 < 2k1`g < ¼; and for `pressure coupling', the single condition must be satis¯ed: ¡¼=2 < !1¿p < ¼=2.
Hence with !1 = ¼

a
L , we have the conditions for the ¯rst mode to be unstable:

Pressure Coupling : ¡¿1
4
< ¿p <

¿1
4

(2.185)

Velocity Coupling :

0 < ¿p <
¿1
2

0 < `g <
L

2

(2.186)

where ¿1 = 1=f1 = 2L=a is the period of the fundamental mode. There is no restriction on the location of
the heater because the pressure °uctuations is in-phase at all points along the tube. The velocity °uctuation
su®ers a ¼ phase change at the center, so the velocity °uctuations in the upper and lower halves are ¼
out-of-phase.

We are now able to answer two of the three questions posed at the end of Section 2.7.1. To question (i),
the answer is that the frequencies are closely those of the classical acoustic modes and hence are determined
mainly by the length of the tube and the temperatures distribution axially. According to the calculations
just completed, the position of the grid matters because it selects the phase between the acoustic pressure
and velocity °uctuations. That conclusion, which answers question (ii), is certainly contained in the results
of the method based on matching waves, but is di±cult to extract. With the method based on spatial
averaging, the conclusion is immediate.

It is particularly to be noted that observations have established that for a Rijke tube excited either by
an electrical grid or by a sample of heated gauge, the ¯rst mode is excited only if the source of heating is in
the lower half of the tube. Hence the results (2.186) demonstrates what is intuitively evident, that convective
heat transfer dependent on velocity °uctuations is most probably the basic mechanism. That is likely also
true for a tube driven unstable by a °ame, but the observational results are too limited to make a de¯nite
statement.

2.7.6. Nonlinear Behavior due to Recti¯cation. It seems that the observed dependence of the
oscillations on vertical orientation of the Rijke tube is probably due to the need for a draft, an average °ow
through the tube (question (iii), Section 2.7.1). In this section we use the method of spatial averaging to
demonstrate that assertion, but without quantitative results for the amplitudes of oscillation. The starting
point is the simpli¯ed oscillator equation (2.172) for the ¯rst mode and include only the heat source on the
right-hand side

d2´1
dt2

+ !21´1 = 2
R=Cv
pL

LZ
0

sin k1x
@ _Q0

@t
dx (2.187)

Other than the somewhat vague requirement of `smallness', no restrictions have been placed on _Q0. In
particular, it need not be linear. Two sorts of elementary nonlinear behavior are likely found in practice:
recti¯cation, and saturation. The latter refers to an upper limit to the amount or rate of energy supplied
to the wave system by whatever processes dominate the mechanism. We will return to some aspects of
saturation later in the context of the control and limit cycles. Here we consider recti¯cation associated with
convective heat transfer as the only nonlinear process present.34

Convective heat transfer depends mainly on the relative speed of the °ow past the surface and less so in
the direction. For example, for °ow normal to a wire, Figure 2.72(a), the rate of heat transfer should be the
same in the two cases. On the other hand, a preferred °ow direction for maximum heat transfer rate may be

34In particular we ignore the signi¯cant e®ects of nonlinear gasdynamics, covered in Chapter 7.
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Figure 2.72. (a) Illustrating the independence of heat transfer on °ow direction; (b) illus-
trating possible dependence of heat transfer on °ow direction due to microscopic properties
of the surface.

caused by microscopic characteristics of the surface, one case being shown in Figure 2.72(b). We ignore that
type of behavior and assume that the heat transfer depends only on the magnitude of the relative velocity,

_Q = f(juj) (2.188)

We also assume for application to the Rijke tube that the °ow is always parallel to the axis, having both
mean and °uctuating components; the total and average rates are then

_Q = f(ju+ u0j); _Q = f(juj) (2.189)

Hence the °uctuation is

_Q0 = f(ju+ u0j)¡ f(juuj) (2.190)

The simplest possibility, su±cient for the reasoning here, is that _Q is proportional to juj, i.e. f(juj) = Kjuj,
and (2.190) becomes

_Q0 = K fju+ u0j ¡ jujg = Kjuj
½¯̄̄̄
1 +

u0

u

¯̄̄̄
¡ 1
¾

(2.191)

This formula contains three sorts of behavior illustrated in Figure 2.73. To interpret the meanings of
Figure 2.73, we assume that the °uctuations of heat transfer is given by (2.191). Hence _Q0 is proportional to
the values lying in the heavy lines with lower sketches of the three parts. For small values of the °uctuation,
ju0j=juj < 1, the heat transfer °uctuates entirely at the frequency of the imposed velocity °uctuation, Part
(a). As ju0j=juj increases and is greater than unity, recti¯cation occurs and there are components of heat
transfer at other frequencies, including a steady (DC) value, as Part (b) shows. Finally, if there is no average
velocity, recti¯cation is complete, as Part (c) indicates, and there is no oscillation of heat transfer at the
frequency of the imposed oscillatory °ow. The behavior just described seems to o®er a likely explanation
for the third observation and question (iii) listed at the end of Section 2.7.1. If an operating Rijke tube is
tilted from the vertical, the amplitude of the oscillation is reduced, ¯nally disappearing before the tube is
horizontal. That is also why an electrically drive tube, conveniently mounted horizontally, must be equipped
with a system for forcing air through the tube. It is an important advantage of such an arrangement that
one has control over the °ow rate (Matveev and Culick, 2002).

2.7.7. A Simple Analysis of the Flame-Driven Rijke Tube. Many laboratory devices for studying
thermoacoustic instabilities and their control are essentially straight ducts or tubes with one end closed to
permit injection of liquid or gaseous reactions. Combustion takes place downstream, usually anchored by
some sort of °ameholder. The simplest approximation to the energy addition by combustion is a °at °ame (a
`°ame sheet') perpendicular to the axis, as sketched in Figure 2.74. A con¯guration of this type is e®ectively
a Rijke tube closed at one end. Hence stability of the system can be investigated with analysis that is chie°y
a paraphrase of that covered in Sections 2.7.4 to 2.7.5. First we use the method based on spatial averaging,
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Figure 2.73. Three sorts of nonlinear behavior due to recti¯cation distinguished by the
relative values of the mean and °uctuating components of velocity: graphs of _Q0=K, eq.
(2.191), with Â = û=¹u.

x = 0 L

F

O

l 
u´ = 01

p´ = 0

Figure 2.74. A basic °ame-driven Rijke tube.
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beginning again with the oscillator equation (2.170) with only the heat addition accounted for:

d2´1
dt2

+ !21´1 =
R=Cv
pE21

LZ
0

p1
@ _Q0

@t
dx (2.192)

The modal function p1 must now be chosen to satisfy the boundary condition of zero velocity normal to
the entrance plane at x = 0; for the fundamental mode:

p01 = P1 sin!1t cos k1x = p1 sin!1t

and

k1 =
¼

2L
(2.193)a,b

Note that the wavelength, ¸1 = 2¼=k1 = 4L and the tube is a `quarter-wave tube'. The corresponding
value of the mode shape for the acoustic velocity is

u01 = ¡
P1
½a
cos!1t sin k1x (2.194)

With p1 given by (2.149), E
2
1 = L=2 and the oscillator equation is

d2´1
dt2

+ !21´1 = 2
R=Cv
pL

LZ
0

cos k1x
@ _Q0

@t
dx (2.195)

It is commonly assumed that the °uctuation of energy addition from an in¯nitesimally thin °at °ame is
proportional to the velocity °uctuation, with time lag ¿u:

_Q0 = Q0u0(`; t¡ ¿u)±(x¡ `) (2.196)

The question again arises: what velocity should be used? Following reasoning in Section 2.7.5, we ignore the
spatial discontinuity due to the heat addition and assume the relation (2.175) for u0, but with the current
mode shape sin k1x:

u0(x; t¡ ¿u) = P1
°k21

d

dt
´(t¡ ¿u) d

dx
(cos k1x)

=
P1
°k1

_́1(t¡ ¿u) sin k1x
(2.197)

The °uctuation of heat addition is

_Q0 = ¡ P1
°k1

_́1(t¡ ¿u) sin k1x±(x¡ `) (2.198)

which gives to ¯rst order in small quantities:

@ _Q0

@t
=
P1
°k1

Ä́(t¡ ¿u) sin k1x

=
P1Q0
°k1

!21´1(t¡ ¿u) sin k1x
(2.199)

Substitution in the oscillator equation (2.194) gives

d2´1
dt2

+ !21´1 = ·´1(t¡ ¿u) (2.200)

with

· =
R

Cv

P1Q0
°pLk1

!21 sin 2k1` (2.201)
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Now assume solution of the form

´1 = Ne
®te¡i!t = Ne¡i!t ; − = ! + i® (2.202)

Substitution in (2.200) leads to the complex algebraic equation for ® and !:£¡!2 + !21 ¡ · cos!1¿u¤+ i [¡2®! + · sin!1¿u] (2.203)

where again we ignore quantities of higher than ¯rst order. The real and imaginary parts of (2.203) must
vanish, giving to ¯rst order:

!

!1
= 1¡ 1

2
· cos!1¿u

®

!1
= ¡ ·

2!21
sin!1¿u

(2.204)a,b

Since ® > 0 for an instability, and with · given by (2.201), the fundamental mode is unstable if

sin 2k1` sin!1¿u < 0 (2.205)

which is satis¯ed if

(a) sin!1¿u < 0 and sin 2k1` > 0

or (b) sin!1¿u > 0 and sin 2k1` < 0

In the ¯rst case,

¼

2
< !1¿u <

3¼

2

and ¡ ¼
2
< 2k1` <

¼

2

With k1 = ¼=2L and !1 = 2¼f1 = 2¼=¿ these two inequalities become (
`
L < 0 is excluded):

¿1
4
< ¿u <

3

4
¿1

0 <
`

L
<
1

2

(2.206)

In the second case (b) above,

¡¼
2
< !1¿u <

¼

2
¼

2
< 2k1` <

3¼

2
which become

¡¿1
4
< ¿u <

¿1
4

1

2
<
`

L
< 1

(2.207)

Together, the two cases o®er the ranges for the time delay and °ame location

¡¿1
4
< ¿u <

3¿1
4

0 <
`

L
< 1

(2.208)a,b

The di®erences between these results for the °ame-driven Rijke tube and (2.185) and (2.186) for the
electrically-heated case arise entirely because the mode shapes of the fundamental modes di®er (a quarter-
wave in the present case and a half-wave for the electrically-driven tube).

Solution by matching waves in the manner of Section 2.7.4 produces similar results, but as in that
calculation, the restriction on the location of the heating zone, (2.208)b, cannot be obtained (Poinsot and
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Veynante 2001; Candel et al. 2001). The analyses covered here have shown, even for these simple cases,
the ease with which the method based on spatial averaging can be applied. Moreover, matching waves is
successful only for problems of longitudinal motions. The analytical framework based on spatial averaging
is not only applicable to combustors of any shape, but accommodates any form of reactants|solid, liquid,
or gaseous.
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CHAPTER 3

Equations for Unsteady Motions i n Combustion C hamb ers

The examples described in Chapter 1, and many others, establish a ¯rm basis for interpreting unsteady
motions in a combustor in terms of acoustic modes of the chamber. That view has been formalized during
the past ¯fty years and has led to the most widely used methods for interpreting combustor dynamics. In
this and the following chapter, we present the foundations of a particularly successful version of methods
based on expansion in normal acoustic modes and spatial averaging. We assume familiarity with the basic
ideas of classical °uid dynamics and acoustics. Chapter 5 covers the principles and chief results of classical
acoustics required as part of the foundation for understanding combustion instabilities. The discussions in
Chapters 3 and 4 are quite formal, intended to serve as the basis for a framework within which unsteady
motions, especially combustion instabilities, may be treated for all types of combustors. Hence the physical
model for which the formalism is developed is quite general.

3.1. Modes of Wave Motion in a Compressible Medium

In this section, the term `modes' refers not to natural motions or resonances of a chamber but means
rather a type or class of motions in compressible °ows generally. The brief discussion here is intended to
address the question: How is it possible that apparently coherent, nearly classical acoustic waves exist in
chambers containing highly turbulent non-uniform °ow? It's a fundamentally important observation that
such is the case. The explanation has been most thoroughly clari¯ed by Chu and Kovasznay (1957), who
combined and elaborated some results known for nearly a century. Their conclusions most signi¯cant for
present purposes may be summarized as follows:

(i) Any small amplitude (linear) disturbance may be synthesized of three modes of propagation: entropy
waves or `spots', small regions having temperatures slightly di®erent from the ambient temperature
of the °ow; vortical or shear waves characterized by nonuniform vorticity; and acoustic waves.

(ii) In the linear approximation, if the °ow is uniform, the three types of waves propagate independently,
but may be coupled at boundaries (e.g. nozzles) or in combustion zones.

Entropy and vortical waves having small amplitude propagate (are `convected') in a uniform ¯eld with the
mean °ow speed, but acoustic waves propagate with their own speeds of sound. Moreover, in the linear limit,
only acoustic waves carry disturbances of pressure. All three types of waves possess velocity °uctuations. If
the medium is non-uniform or the unsteady motions have ¯nite amplitudes, the three modes become coupled.
As a result, each of the waves may then carry pressure, temperature and velocity °uctuations. Little extension
of the fundamental theory has been accomplished (see Chu and Kovasznay) and what understanding exists
has been gained from considerations of particular problems. Some of the consequences of these types of
modal coupling arise in the theory developed here, but much remains to be investigated.

Long experience has established the wide applicability of the basic physical model of combustion in-
stabilities as acoustic waves propagating in a non-uniform °ow. Vorticity and entropy waves accompany
turbulence in a combustor but may also have other origins, such as °ow separation, the unsteady behavior
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of injection devices, and interactions of the acoustic ¯eld with other processes, notably °ow injected at the
lateral boundaries. Consequently, both the average and time-varying velocity ¯elds in a combustor comprise
irrotational and rotational motions. Observational evidence for combustion instabilities suggests that the
rotational motions are in some sense often secondary, initially one of the chief guiding principles for the for-
malism developed in this chapter, but they cannot be ignored. In fact, both steady and unsteady rotational
motions participate signi¯cantly in combustion instabilities in solid propellant rockets. Several examples of
the generation and behavior of vorticity have been intensively studied in the past ten years. We will discuss
some of the results in Chapter 6.

The main idea at this point is that in lowest approximation the unsteady ¯eld can be expressed as a
synthesis of classical acoustic modes having time-varying amplitudes. Then the purpose of the analysis is to
work out a means for computing the changes of those amplitudes due to various perturbations. Departures
from the simplest classical acoustic behavior arise from the actions of the other physical and chemical
processes taking place in a combustion chamber. All of those processes, except basic gasdynamics, are
assumed to have relatively weak e®ects, producing small shifts of the classical acoustic frequencies and, more
signi¯cantly, small fractional changes of the modal amplitudes during a period of oscillation. Hence there
are two small quantities naturally characterizing the procedure: A reference Mach number for the unsteady
velocity is a measure of the acoustic amplitudes; and a typical Mach number of the average °ow measures
perturbations of the classical acoustic behavior. Much of this chapter is concerned with reduction of the
general equations of motion by expansion in those two small parameters. In applications of the formalism
and interpretation of the results, it is essential to understand and maintain the distinction between the roles
of the two parameters. Failure to do so leads to confusion and false conclusions.

Despite the emphasis on the acoustic ¯eld, this procedure does not exclude the existence of rotational
motions. In the expansion procedure they arise from inhomogeneous terms in the equations for the higher
order terms. This fundamental point has been missed by several workers in this ¯eld and has led at least to
misunderstandings and occasionally to misleading or incorrect analyses. The origins of the di±culties will be
clari¯ed in later discussions, particularly in Chapter 6, but in view of the considerable confusion about the
matter, it is important to begin addressing the matter here. It is not a new idea. Flandro (1967) in his Ph.D.
thesis ¯rst used the general expansion procedure developed in this chapter to work out a problem involving
interactions between acoustic and vorticity ¯elds leading to roll torques in solid propellant rockets. He and
others have subsequently investigated other examples of the in°uences of vorticity on acoustic waves using
this approach, occasionally with controversial and sometimes incorrect results. (See, for example, Flandro
1995; Culick et al. 1991; Culick 1998; Swenson and Culick 1998; Seywert and Culick, 1998; Flandro and
Malhotra 1995; Malhotra, Flandro and Roh 2000; Malhotra and Flandro 2001, 2002; Majdalani and Van
Moorhem 1998; Majdalani 2004; Flandro and Majdalani 2003.)

3.2. Equations of Motion in a Reacting Flow

Combustion systems commonly contain condensed phases: liquid fuel or oxidizer, and combustion prod-
ucts including soot and condensed metal oxides. Hence the equations of motion must be written for two
or three phases consisting of at least one species each. For investigating the dynamics of combustors, it
seems entirely adequate to consider two phases (gas and a condensed phase comprising both liquid and solid
particles). The properties of each phase are represented as mass averages of the properties of all member
species. For a medium consisting of a multicomponent mixture of reacting gases and, for simplicity, a single
condensed phase, it is a straightforward matter to construct a system of equations representing a single
°uid. The procedure is explained in Annex A. As a result we can treat combustor dynamics under broad
conditions as unsteady motions of a °uid having the mass-averaged properties of the actual medium.1 The
dimensional governing equations are (A.59){(A.64):

1We now use Cv ; °; R; : : : to stand for the mass-averaged properties represented by boldface symbols in Annex A.
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Conservation of Mass:
@½

@t
+ u ¢ r½ = ¡½r ¢ u+ W (3.1)

Conservation of Momentum: ½

·
@u

@t
+ u ¢ ru

¸
= ¡rp+FFF (3.2)

Conservation of Energy: ½Cv

·
@T

@t
+ u ¢ rT

¸
= ¡pr ¢ u+ Q (3.3)

Equation for the Pressure:
@p

@t
+ u ¢ rp = ¡°pr ¢ u+ P (3.4)

Equation for the Entropy: ½
Ds

Dt
=
1

T
S (3.5)

Equation of State: p = R½T (3.6)

De¯nitions of all symbols are given in Annex A.

It is particularly important to realize that the source functions W , FFF, Q, P and S in principle contain
all relevant processes in the systems to be analyzed here. They include, for example, the modeling and
representations of the actions of actuation mechanisms used for active control. Eventually, the most di±cult
problems arising in this ¯eld are associated with modeling the physical processes dominant in the problems
addressed.

For both theoretical and computational purposes it is best to express the equations in dimensionless
variables using the reference values:

L : reference length

½r; pr; Tr; ar : reference density, pressure, temperature and speed of sound

Cvr; Cpr; Rr : reference values of Cv; Cp; R

Then de¯ne the dimensionless variables represented byM, and for simplicity use the same symbols used for
dimensional variables:

M =
u

ar
;

½

½r
! ½ ;

p

½ra2r
! p ;

T

Tr
! T ;

Cv
Cpr

! Cv ;
Cp
Cpr

! Cp ;

R

Cpr
! R ;

ar
L
t! t ;

s

Cpr
! s

The dimensionless source functions are
L

½rar
W ! W ;

L

½ra2r
FFF ! FFF;

L

½ra3r
Q! Q;

L

½rar
P! P;

S

½rarCvr
! S

For consistent de¯nitions, pr = ½rRrTr and Rr = Cpr = Cvr, so in dimensionless form, the relations
R = Cp ¡ Cv and ° = Cp=Cv still hold.

Substitution of these de¯nitions in equations (3.1){(3.6) leads to the set of dimensionless equations for
the single °uid model:

Mass:
D½

Dt
= ¡½r ¢M+ W (3.7)

Momentum: ½
DM

Dt
= ¡rp+FFF (3.8)
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Energy: ½Cv
DT

Dt
= ¡pr ¢M+Q (3.9)

Pressure:
Dp

Dt
= ¡°pr ¢M+ P (3.10)

Entropy: ½
Ds

Dt
=
1

T
S (3.11)

State: p = ½RT (3.12)

and
D

Dt
=
@

@t
+M ¢ r (3.13)

We emphasize again that the source terms accommodate all relevant physical processes and can be interpreted
to include the in°uences of actuation used in active control.

3.3. Two-Parameter Expansion of the Equations of Motion

The general equations (3.7){(3.12) are written in the form suggestive of problems that are dominated
by °uid mechanical processes, a tactic dictated by the observations described earlier. This point of view
is the basis for the approach taken here to construct a general framework within which both practical and
theoretical results can be obtained by following systematic procedures.

We are not concerned at this point with simulations or other methods relying essentially on some sort of
numerical analysis and large scale computations. The nature of the problems we face suggests perturbation
methods of solution. If the source terms W , : : : were absent from (3.7){(3.11), the homogeneous equations
then represent nonlinear inviscid motions in a compressible °uid: Nonlinear acoustics in a medium without
losses. One useful method for investigating such problems is based on expansion of the equations in a small
parameter, ", measuring the amplitude of the motion. Speci¯cally, " can be taken equal to M 0

r, a Mach
number characteristic of the °uctuating °ow, " =M 0

r.

The problems we are concerned with here are de¯ned essentially by the non-zero functions W , : : : .
Because observed behavior seems to be dominated by features recognizable as `acoustical', those sources which
excite and sustain the actual motions must in some sense be small. They should therefore be characterized
by at least one additional small parameter. It has become customary to select only one such parameter,
¹ = ¹Mr, a Mach number ¹Mr characterizing the mean °ow, for the following reasons.

2

Any operating combustion chamber contains an average steady °ow produced by combustion of the fuel
and oxidizer to generate products. The intensity of the °ow, partly measurable by the Mach number, is
therefore related to the intensity of combustion; both processes can in some sense be characterized by the
same quantity, namely the Mach number of the average °ow. Thus many of the processes represented in the
source functions may be characterized by ¹, in the sense that their in°uences become vanishingly small as
¹! 0 and are absent when ¹ = 0.

It is important to understand that the two small parameters " and ¹ have di®erent physical origins.
Consequently, they also participate di®erently in the formal perturbation procedures. Familiar nonlinear gas
dynamical behavior is, in the present context, governed by the parameter "; steepening of compressive waves

2We will use the symbols " and ¹ rather than M 0
r and

¹Mr to simplify writing, and to emphasize the special positions held
by the two independent sorts of perturbations.
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is a notable example. In the expansion procedure worked out here, the term `nonlinear behavior' refers to
the consequences of terms higher order in ".

On the other hand, the parameter ¹ characterizes perturbations of the gasdynamics due in the ¯rst
instance to combustion processes and the mean °ow. Terms of higher order in ¹, but linear in ", represent
linear processes in this scheme. Failure to recognize this basic distinction between " and ¹ can lead to
incorrect applications of formal procedures such as the method of time-averaging. Instances of this point
will arise as the analysis is developed.

3.3.1. Expansion in Mean and Fluctuating Values. There is no unique procedure for carrying
out a two-parameter expansion. We begin here by writing all dependent variables as sums of mean ¹( ) and
°uctuating ( )0 parts without regard to ordering:

p = ¹p+ p0; M = ¹M+M0; : : : ; W = ¹W 0; FFF = ¹F¹F¹F +FFF0; : : : (3.14)

We take the °uctuations of the primary °ow variables (p0, M0, ½0, T 0, s0) to be all of the same order in
the amplitude " of the unsteady motion. Generally, the source terms are complicated functions of the °ow
variables and therefore their °uctuations will contain terms of many orders in ". For example, suppose
W = kp3. Then setting p = ¹p+ p0 and expanding, we have

W = k(¹p+ p0)3 = k
h
¹p3 + 3¹p2p0 + 3¹pp

02 + p
03
i

Hence we de¯ne orders of the °uctuations of the source W and write

W = ¹W + W 0
1 + W

0
2 + W

0
3 + W

0
4 + : : :

where the subscript denotes the order with respect to the amplitude: Here, for the example, W = kp3 and
W 0
2 = (3k¹p)p

02. All source functions are expressed in this general fashion, but modeling is required to give
explicit formulas.

Most combustors contain °ows of relatively low Mach number, say j ¹Mj . 0:3 or so. Thus we can assume
that for a broad range of circumstances, processes depending on the square of ¹M, i.e. of order ¹2, probably
have small in°uences on the unsteady motions. We therefore neglect all terms of order ¹2 and higher in the
equations. As a practical matter, the equations are greatly simpli¯ed with this assumption which we adopt
throughout this work.

After substituting all variables split into sums of mean and °uctuating values, and collection of terms
by orders, we can rewrite (3.7){(3.13) as· ¹D¹½

Dt
+ ¹½r ¢ ¹M+ ¹M ¢ r¹½¡ ¹W

¸
+

·
@½0

@t
+ ¹½r ¢M0

¸
+
£
¹M ¢ r½0 + ½0r ¢ ¹M+M0 ¢ r¹½+r ¢ (½0M0)

¤¡ W 0 = 0
(3.15)

·
¹½
¹DM0

Dt
+r¹p¡ ¹FFF

¸
+

·
¹½
@ ¹M

@t
+rp0

¸
+

·
¹½
¡
¹M ¢ rM0 +M0 ¢ r ¹M¢+ ½0 ¹D ¹M

Dt

¸
+

·
½0
@M0

@t
+ ¹½M0 ¢ rM0 + ½0

¡
¹M ¢ rM0 +M0 ¢ r ¹M¢¸+ [½0M0 ¢ rM0]¡F0F0F0 = 0

(3.16)

·
¹½Cv

¹D ¹T

Dt
+ ¹pr ¢ ¹M¡ ¹Q

¸
+ Cv

·
¹½
@T 0

@t
+ ¹pr ¢M0

¸
+

·
¹½Cv

¡
¹M ¢ rT 0 +M0 ¢ r ¹T¢+ Cv½0 ¹D ¹T

Dt
+ p0r ¢ ¹M

¸
+

·
Cv ¹½

@T 0

@t
+ Cv½

0 ¡ ¹M ¢ rT 0 +M0 ¢ r ¹T¢+ Cv½0M0 ¢ rT 0 + p0r ¢M0
¸
+ [Cv ¹½M

0 ¢ rT 0]¡ Q0 = 0
(3.17)
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· ¹D¹p
Dt

+ °¹pr ¢ ¹M¡ ¹p+ °¹pr ¢ ¹M¡ ¹P
¸
+

·
@p0

@t
+ °¹pr ¢M0

¸
+
£
¹M ¢ rp0 +M0 ¢ r¹p+ °p0r ¢ ¹M¤

+ [M0 ¢ rp0 + °p0r ¢M0]¡ P0 = 0
(3.18)

·
¹½ ¹T
¹D¹s

Dt
¡ ¹Ş +

·
¹½ ¹T
@s0

@t

¸
+

·
¹½ ¹M ¢ rs0 + ½0 ¹T

¹D¹s

Dt
+ ¹½ ¹TM0 ¢ r¹s+ ¹½T 0 ¹M ¢ r¹s

¸
+

·
½0 ¹T

@s0

@t
+ ½0T 0

@D¹s

@t
+ ½0 ¹TM0 ¢ r¹s+ ¹½T 0M0 ¢ r¹s+ ¹½T 0 @s

0

@t
+ ¹½ ¹TM0 ¢ rS0

¸
+

·
½0T 0

@s0

@t
+
¡
¹½T 0 + ½0 ¹T

¢
M0 ¢ rs0 + ½0T 0 ¡M0 ¢ r¹s+ ¹M ¢ rs0¢¸+ [½0T 0M0 ¢ rs0]¡S0 = 0

(3.19)

£
¹p¡R¹½ ¹T ¤+ £p0 ¡R ¡¹½T 0 + ½0 ¹T¢¤+ [¡R½0T 0] = 0 (3.20)

where the convective derivative following the mean °ow is

¹D

Dt
=
@

@t
+ ¹M ¢ r (3.21)

As a convenience in writing, it is useful to introduce some symbols de¯ning groups of ordered terms.
The set of equations (3.15){(3.20) then become:· ¹D¹½

Dt
+ ¹½r ¢ ¹M¡ ¹W

¸
+

μ
@½0

@t
+ ¹½r ¢M0

¶
+ f[½]g1 + f½g2 ¡ W 0 = 0 (3.22)

·
¹½
¹D ¹M

Dt
+r¹p¡ ¹F¹F¹F

¸
+

μ
¹½
@M0

@t
+rp0

¶
+ f[M]g1 + fMg2 + fMg3 + f[M]g2 ¡F0F0F0 = 0 (3.23)

·
¹½Cv

¹D ¹T

Dt
+ ¹pr ¢ ¹M¡ ¹Q

¸
+ Cv

μ
¹½
@T 0

@t
+ ¹pr ¢M 0

¶
+ f[T ]g1 + fTg2 + fTg3 + f[T ]g2 ¡ Q0 = 0 (3.24)

· ¹D¹p
Dt

+ °¹pr ¢ ¹M¡ ¹P
¸
+

μ
¹½Cv

@P 0

@t
+ ¹pr ¢M 0

¶
+ f[p]g1 + fpg2 ¡ P0 = 0 (3.25)

·
¹½ ¹T
¹D¹s

Dt
¡ ¹Ş +

μ
¹½ ¹T
@s0

@t

¶
+ f[s]g1 + fsg2 + fsg3 + f[s]g2 + fsg4 ¡ S0 = 0 (3.26)

£
¹p¡R¹½ ¹T ¤+ fp¡R½Tg1 + fR½Tg2 = 0 (3.27)

The de¯nitions of the bracketed terms f½g1, ¢ ¢ ¢ etc. are given in Annex A, Section A.6; the subscript
f gn on the brackets identi¯es the orders of terms with respect to the °uctuations of °ow variables, and
the square brackets [ ] indicate that the terms are ¯rst order in the average Mach number. We have
shown here in each equation terms of the highest order °uctuations generated by the purely °uid mechanical
contributions plus sources that must be expanded to orders appropriate to particular applications. Only the
entropy equation produces terms of fourth order.
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Time derivatives of quantities identi¯ed with the mean °ow are retained to accommodate variations
on a time scale long relative to the scale of the °uctuations. This generality is not normally required for
treating combustion instabilities and unless otherwise stated, we will assume that all averaged quantities are
independent of time.

3.3.2. Equations for the Mean Flow. At this point we have two choices. Commonly the assumption
is made that the variables of the mean °ow `satisfy their own equations'. That implies that the brackets [ ]
vanish identically. With the time derivatives absent, the equations for the mean °ow are:

¹M ¢ r¹½+ ¹½r ¢ ¹M = ¹W (3.28)

¹½ ¹M ¢ r ¹M+r¹p = FFF (3.29)

¹½Cv ¹M ¢ r ¹T + ¹pr ¢ ¹M = ¹Q (3.30)

¹M ¢ r¹p+ °¹pr ¢ ¹M = ¹P (3.31)

¹½ ¹T ¹M ¢ r¹s = ¹S (3.32)

¹p = R¹½ ¹T (3.33)

This set of equations certainly applies when the average °ow is strictly independent of time and there are
no °uctuations. The time derivatives cannot be ignored when the °ow variables change so slowly that the
motion may be considered as `quasi-steady' and °uctuations are still ignorable.

It is possible that when °uctuations are present, interactions among the °ow variables cause transfer
of mass, momentum and energy between the °uctuating and mean °ows, generating time variations of the
averaged variables. Then the appropriate equations are obtained by time-averaging (3.22){(3.27) to give3

¹D¹½

Dt
+ ¹½r ¢ ¹M = ¹W ¡ f[½]g1 ¡ f½g2 + W

0
(3.34)

¹½
¹D ¹M

Dt
+r¹p = ¹F¹F¹F ¡ f[M]g1 ¡ fMg2 ¡ fMg3 ¡ f[M]g2 +F0F0F0 (3.35)

¹½Cv
¹D ¹T

Dt
+ ¹pr ¢ ¹M = ¹Q¡ f[T ]g1 ¡ fTg2 ¡ fTg3 + ¹Q0 (3.36)

¹D¹p

Dt
+ °¹pr ¢ ¹M = ¹P¡ fpg1 ¡ fpg2 + ¹P0 (3.37)

¹½ ¹T
¹D¹s

Dt
= ¹S¡ fsg1 ¡ fsg2 ¡ fsg3 ¡ f[s]g2 ¡ fsg4 + ¹S0 (3.38)

¹p = R¹½ ¹T ¡ f½Tg1 ¡ f½Tg2 (3.39)

3Note that the °uctuations of the source terms denoted by W 0 ¢ ¢ ¢ etc., actually contain squares and higher order products
of the dependent variables; hence their time averages will generally be non-zero.
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If the mean °ow is strictly independent of time, then time averages of all ¯rst-order brackets, f g1,
must vanish. For generality we allow them to be nonzero. There seem to be no analyses in which their
variations have been taken into account.

The two sets of equations governing the mean °ow in the presence of unsteady motion de¯ne two distinct
formulations of the general problem. In the ¯rst, equations (3.28){(3.33), computation of the mean °ow is
uncoupled from that of the unsteady °ow. Hence formally we are concerned with the stability and time
evolution of disturbances superposed on a given, presumed known, mean °ow una®ected by the unsteady
motions. That is the setting for all investigations of combustion instabilities founded on the splitting of
small °ow variables into sums of mean and °uctuating values. This approach excludes, for example, possible
in°uences of oscillations on the mean pressure in the chamber (often called `DC shift'), not an unusual
occurrence in solid propellant rockets. When they occur, DC shifts of this sort are almost always unacceptable
in operational motors. They may be directly a®ected by the °uctuations, or they may be largely due to
changes in the mean burning rate.

In contrast, the set (3.34){(3.39) is strongly coupled to the °uctuating ¯eld. The situation is formally
that producing the problem of `closure' in the theory of turbulent °ows (see, for example, Tennekes and
Lumley, 1972). We will not explore the matter here, but note only that the process of time averaging
terms on the right hand sides of the equations introduces functions of the °uctuations that are additional
unknowns. Formal analysis then requires that those functions be modeled; perhaps the most familiar example
in the theory of turbulence is the introduction of a `mixing length' as part of the representation of stresses
associated with turbulent motions. The set (3.34){(3.39) also can be used to compute `DC shifts' for speci¯ed
°uctuations of the °ow variables. No results have been reported.

Numerical simulations of combustion instabilities do not exhibit the problem of closure if the complete
equations are used, avoiding the consequences of the assumption (3.14). Thus, for example, the results
obtained by Levine and Baum (1982, 1988) do show time-dependence of the average pressure in examples
of instabilities in solid rockets. Another possible cause of that behavior, probably more important in many
cases, is nonlinear dependence of the burning rate on the pressure or velocity near the surface of a solid
propellant rocket. Within the structure given here, that behavior arises from time-averaged functions of p0,
M0, : : : contained in the boundary conditions.

We use in this book the formulation assuming complete knowledge of the mean °ow, given either by
suitable modeling or by solution to the governing equations (3.28){(3.33). This may in some cases be an
important omission. Probably the most important consequence is that the e®ect of oscillations on burning
rate and mean pressure in solid propellant rockets is not covered. See Section 2.1, for example Figure 2.6.
This is often, especially in tactical rockets, a signi¯cant matter which has been treated by the author only
with preliminary calculations in the present scheme. Flandro (private communication) is currently working
on this problem.

3.3.3. Systems of Equations for the Fluctuations. The general equations of motion (3.22){(3.27)
and those for the mean °ow written in Section 3.3.1 contain a restriction only on the magnitude of the average
Mach number. Such generality blocks progress with the analysis and for many applications is unnecessary.
The set of equations (3.22){(3.27) must be simpli¯ed to forms that can be solved to give useful results. Many
possibilities exist. We follow here a course that previous experience has shown to be particularly fruitful for
investigations of combustor dynamics. The choices of approximations and tactics are usually motivated by
eventual applications and the type of analysis used.
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First we assume that the mean °ow is determined by its own system of equations; that is, we avoid
the problem of closure and use the ¯rst formulation, equations (3.28){(3.33), discussed in Section 3.3.1.
Consequently, the mean °ow is taken to be independent of time and the combinations in square brackets [ ],
equations (3.22){(3.27), vanish identically; we write the equations in the form

@½0

@t
+ ¹½r ¢M0 = ¡f[½]g1 ¡ f½g2 + W 0 (3.40)

¹½
@M0

@t
+rp0 = ¡f[M]g1 ¡ fMg2 ¡ fMg3 ¡ f[M]g2 +F0F0F0 (3.41)

¹½Cv
@T 0

@t
+ ¹pr ¢M0 = ¡f[T ]g1 ¡ fTg2 ¡ fTg3 ¡ [fTg2] + Q0 (3.42)

@p0

@t
+ °¹pr ¢M0 = ¡f[p]g1 ¡ fpg2 + P0 (3.43)

¹½ ¹T
@s0

@t
= ¡f[s]g1 ¡ fsg2 ¡ f[s]g2 ¡ fsg3 ¡ fsg4 +S0 (3.44)

The various brackets are de¯ned in Section A.6 of Annex A. They are formed to contain terms ordered with
respect to both the mean Mach number and the amplitude of the °uctuations:

f[ ]g1 : 1st order in ¹M; 1st order in M0; O(¹")

f g2 : 0th order in ¹M; 2nd order in M0; O("2)

f[ ]g2 : 1st order in ¹M; 2nd order inM0; O(¹"2)

f g3 : 0th order in ¹M; 3rd order in M0; O("3)

f g4 : 0th order in ¹M; 4th order inM0; O("4)

(3.45)

No terms have been dropped in passage from the set (3.15){(3.19) to the set (3.40){(3.44), but °uctuations
of the sources W 0; ¢ ¢ ¢ ;S0 are not now classi¯ed into the various types de¯ned by the brackets (3.45).

We have put the equations in the forms (3.40){(3.44) to emphasize the point of view that we are
considering classes of problems closely related to motions in classical acoustics. If the right hand sides are
ignored, (3.40){(3.44) become the equations for linear acoustics of a uniform non-reacting medium at rest.
The perturbations of that limiting class arise from four types of processes:

(i) interactions of the linear acoustic ¯eld with the mean °ow, represented by the terms contained in the
square brackets within curly brackets, f[ ]g1;

(ii) nonlinear interactions between the °uctuations, represented by the curly brackets conveniently re-
ferred to as: f g2, second order acoustics; f g3, third order acoustics; and f g4, fourth order
acoustics;

(iii) interactions between the mean °ow and nonlinear acoustics to second order, represented by f[ ]g2;
(iv) sources associated with combustion processes, represented by the source terms W 0;FFF0;Q0;P0 and S0.

By selectively retaining one or more of these types of perturbations we de¯ne a hierarchy of problems of
unsteady motions in combustors. We label these classes of problems O, I, II, III, IV according to the orders
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of terms retained in the right hand sides: the left hand sides contain only the terms of order " = M0
r, the

equations for classical linear acoustics.

O. Classical Acoustics, (¹ = 0; "! 0)

Perturbations to ¯rst order in " are retained on the right-hand sides of (3.40){(3.44):

@½0

@t
+ ¹½r ¢M0 = W 0

¹½
@M0

@t
+rp0 = FFF0

¹½Cv
@T 0

@t
+ ¹pr ¢M0 = Q0

@p0

@t
+ °¹pr ¢M0 = P0

¹½ ¹T
@s0

@t
= S0

(3.46) a-e

I. Linear Stability, O("; ¹")

Retain interactions linear in the average Mach number and in the °uctuations on the right-hand
sides:

@½0

@t
+ ¹½r ¢M0 = ¡f[½]g1 + W 0

¹½
@M0

@t
+rp0 = ¡f[M]g1 +F0F0F0

¹½Cv
@T 0

@t
+ ¹pr ¢M0 = ¡f[T ]g1 + Q0

@p0

@t
+ °¹pr ¢M0 = ¡f[p]g1 + P0

¹½ ¹T
@s0

@t
= ¡f[s]g1 +S0

(3.47) a-e

II. Second Order Acoustics, O("; ¹"; "2)

Retain the linear interactions and the nonlinear second order acoustics on the right-hand sides:

@½0

@t
+ ¹½r ¢M0 = ¡(f[½]g1 + f½g2) + W 0

¹½
@M0

@t
+rp0 = ¡(f[M]g1 + fMg2) +FFF0

¹½Cv
@T 0

@t
+ ¹pr ¢M0 = ¡(f[T ]g1 + fTg2) + Q0

@p0

@t
+ °¹pr ¢M0 = ¡(f[p]g1 + fpg2) + P0

¹½ ¹T
@s0

@t
= ¡(f[s]g1 + fsg2) +S0

(3.48) a-e
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III. Third Order Acoustics, O("; ¹"; "2; "3)

Retain the linear interactions and the nonlinear acoustics up to third order on the right-hand
sides:

@½0

@t
+ ¹½r ¢M0 = ¡(f[½]g1 + f½g2) + W 0

¹½
@M0

@t
+rp0 = ¡(f[M]g1 + fMg2 + fMg3) +F0F0F0

¹½Cv
@T 0

@t
+ ¹pr ¢M0 = ¡(f[T ]g1 + fTg2 + fTg3) + Q0

@p0

@t
+ °¹pr ¢M0 = ¡(f[p]g1 + fpg2) + P0

¹½ ¹T
@s0

@t
= ¡(f[s]g1 + fsg2 + fsg3) +S0

(3.49) a-e

IV. Mean Flow/Nonlinear Acoustic Interactions, O("; ¹"; "2; "3; ¹"2)

Retain all terms on the right-hand sides of (3.40){(3.44) except fsg4 in (3.44). No results have
been obtained for this class of problems.

Several other classes of problems possible to de¯ne in this context will not be considered here since no
results have been reported. There is some indication that problems in class IV may have some important
consequences but no theoretical results exist.

In each class of problems, the source terms W 0; ¢ ¢ ¢ must be expanded to orders consistent with the orders
of the °uid-mechanical perturbations retained.

3.4. Nonlinear Wave Equations for the Pressure Field

Practically all of the subsequent material in this book will be either directly concerned with pressure
waves, or with interpretations of behavior related to pressure waves. The presence of unsteady vorticity
causes important revisions of such a restricted point of view, as we have already mentioned, but the basic
ideas remain in any event. Hence the wave equation for pressure °uctuations occupies a meaningful position
in all ¯ve classes of problems de¯ned in the preceding section. Its formation follows the same procedure used
in classical acoustics.

De¯ne MMM and R to contain all possible terms arising in the sets of equations constructed for the problems
O{IV:

¹½
@M0

@t
+rp0 = ¡MMM +F0F0F0 (3.50)

@p0

@t
+ °¹pr ¢M0 = ¡R + P0 (3.51)

where

MMM = f[M]g1 + fMg2 + fMg3 + f[M]g2
R = f[p]g1 + fpg2 (3.52)a,b
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Di®erentiate (3.51) with respect to time and substitute (3.50) for @M0=@t:

@2p0

@t2
+ °¹pr ¢

·
¡1
¹½
rp0 ¡ 1

¹½

¡
MMM ¡F0F0F0¢¸ = ¡@R

@t
+
@P0

@t

Rearrange the equation to ¯nd

r2p0 ¡ 1

¹a2
@2p0

@t2
= h (3.53)

with

h = ¡¹½r ¢
·
1

¹½

¡
MMM ¡F0F0F0¢¸+ 1

¹a2
@

@t
(R ¡ P0) + 1

¹½
r¹½ ¢ rp0 (3.54)

The boundary condition for the pressure ¯eld is found by taking the scalar product of the outward
normal, at the chamber boundary, with (3.50):

n̂ ¢ rp0 = ¡f (3.55)

f = ¹½
@M0

@t
¢ n̂+ (MMM ¡FFF0) ¢ n̂ (3.56)

Replacing MMM and R by their de¯nitions (3.52)a,b, we have the formulation based on the inhomogeneous
nonlinear wave equation and its boundary condition:

r2p0 ¡ 1

¹a2
@2p0

@t2
= h

n̂ ¢ rp0 = ¡f
(3.57)a,b

with

h =

·
¡¹½r ¢ 1

¹½
f[M]g1 + 1

¹a2
@f[p]g1
@t

+
1

¹½
r¹½ ¢ rp0

¸
+

·
¡¹½r ¢ 1

¹½
fMg2 + 1

¹a2
@fpg2
@t

¸
¡
·
¹½r ¢ 1

¹½
fMg3

¸
¡
·
¹½r ¢ 1

¹½
f[M]g2

¸
+

·
+¹½r ¢ 1

¹½
FFF0 ¡ 1

¹a2
@P0

@t

¸ (3.58)

f = ¹½
@M0

@t
¢ n̂+ n̂ ¢

h
f[M]g1 + fMg2 + fMg3 + f[M]g2

i
¡F0F0F0 ¢ n̂ (3.59)

With this formulation, the wave equations and boundary conditions for the classes of problems de¯ned
in Section 3.3 are distinguished by the following functions h and f :

O. Classical Acoustics

hO = ¹½r ¢ 1
¹½
FFF0 ¡ 1

¹a2
@P0

@t

fO = ¹½
@M0

@t
¢ n̂¡FFF0 ¢ n̂

(3.60)a,b
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I. Linear Stability

hI =

·
¡¹½r ¢ 1

¹½
f[M]g1 + 1

¹a2
@f[p]g1
@t

+
1

¹½
r¹½ ¢ rp0

¸
+

·
¹½r ¢ 1

¹½
F0F0F0 ¡ 1

¹a2
@P0

@t

¸

fI = ¹½
@M0

@t
¢ n̂+ n̂ ¢ f[M]g1 ¡F0F0F0 ¢ n̂

(3.61)a,b

Allowing F0F0F0 and P0 to be non-zero gives the opportunity for representing sources of mass, momentum,
and energy both within the volume and at the boundary. The ¯rst term in fI accounts for motion of
the boundary.

II. Second Order Acoustics

hII =

·
¡¹½r ¢ 1

¹½
f[M]g1 + 1

¹a2
@f[p]g1
@t

+
1

¹½
r¹½ ¢ rp0

¸
+

·
¡¹½r ¢ 1

¹½
fMg2 + 1

¹a2
@fpg2
@t

¸
+

·
¹½r ¢ 1

¹½
F0F0F0 ¡ 1

¹a2
@P0

@t

¸

fII = ¹½
@M0

@t
¢ n̂+ n̂ ¢ [f[M]g1 + fMg2]¡F0F0F0 ¢ n̂

(3.62)a,b

III. Third Order Acoustics

hIII =

·
¡¹½r ¢ 1

¹½
f[M]g1 + 1

¹a2
@f[p]g1
@t

+
1

¹½
r¹½ ¢ rp0

¸
+

·
¡¹½r ¢ 1

¹½
fMg2 + 1

¹a2
@fpg2
@t

¸
+

·
¡¹½r ¢ 1

¹½
fMg3

¸
+

·
¹½r ¢ 1

¹½
F0F0F0 ¡ 1

¹a2
@P0

@t

¸

fIII =¹½
@M0

@t
¢ n̂+ n̂ ¢ [f[M]g1 + fMg2 + fMg3]¡F0F0F0 ¢ n̂

(3.63)a,b

IV. Mean Flow/Nonlinear Acoustics Interactions

hIV =hIII ¡ ¹½r ¢ 1
¹½
f[M]g2

fIV =fIII + n̂ ¢ 1
¹½
f[M]g2

(3.64)a,b

With these forms for the functions h and f , the de¯nitions of the classes of problems considered here
are complete, giving the basis for the analysis worked out in the remainder of this book. Only problems
within classical acoustics can be solved easily. All others require approximations, both in modeling physical
processes and in the method of solution. Modeling will be discussed in the contexts of speci¯c applications;
a few remarks help clarify the approximate method of solution described in the following chapter.
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Remarks:

(i) The equations derived here are written with the dimensionless variables de¯ned in Section 3.1. This
is an important point to recall when results are written in terms of dimensionless variables. Annex D
contains the corresponding results in dimensional variables.

(ii) The classes of problems O{IV de¯ned here are described by inhomogeneous equations that even
for linear stability cannot be generally solved in closed form. The chief obstacles to solution arise
because the functions h and f contain not only the unknown pressure but also the velocity and
temperature. For given functions F0F0F0 and P0, numerical solutions could be obtained for a speci¯ed
combustor and mean °ow ¯eld. The results would apply only to the special case considered. To
obtain some understanding of general behavior it would be necessary to consider many special cases,
a tedious and expensive procedure.

(iii) Therefore, we choose to work out an approximate method of solution applicable to all classes of
problems. Numerical solutions, or `simulations' then serve the important purpose of assessing the
validity and accuracy of the approximate results.

(iv) The approximate method of solution described in the following chapter is based ¯rst on spatial aver-
aging, followed by an iteration procedure involving extension of the expansion in two small parameters
de¯ned in this chapter. This method has been most widely used and con¯rmed in applications to
combustion instabilities in solid propellant rockets, but it can be applied to problems arising in any
type of combustor.

(v) Instabilities in solid rockets have been particularly helpful in developing the general theory for at
least three reasons: 1) the mean °ow ¯eld, nonuniform and generated by mass addition at the bound-
ary, requires careful attention to processes associated with interactions between the mean °ow and
unsteady motions; 2) more experimental results for transient behavior have been obtained for solid
rockets than for any other combustion system; and 3) although still far from being satisfactorily un-
derstood, the dynamics of burning solid propellants is better known than for any other combustion
system.

(vi) The °uctuations of the source terms, W 0, FFF0, : : : S0 will be made explicit as required in particular
applications.

(vii) No assumptions have been made restricting either the average or the time-dependent velocity ¯elds
to be irrotational. Moreover, all viscous e®ects can be accommodated with suitable de¯nitions of the
source terms.

(viii) For reasons explained earlier, the wave equations are written for the pressure which, in lowest ap-
proximation, is associated only with acoustic waves. However, on the right-hand sides (i.e., in the
functions h and f) the total unsteady velocity appears. Hence by suitable decomposition (see Sec-
tion 7.9) coupling between, say, vorticity and acoustic waves can be investigated. In particular, this
formulation allows calculation of the e®ects of vorticity on stability (Flandro 1995). However, we
must emphasize that the methods and results worked out in the following chapters are intended to
be relatively easy to apply. The price of this property is their approximate character.

(ix) The most signi¯cant omission at this stage is accounting for turbulence. In principle, modeling of
turbulence could be included in the derivation of the general equations. However, that strategy would
bring unnecessary complications and erect serious obstacles to obtaining useful results with minimal
e®ort. For applications to practical situations, the e®ects of turbulence seem to be de¯nitely secondary.
Theoretical justi¯cation for ignoring the possible e®ects of random or statistical °uctuations in the
°ow is based on the work of Chu and Kovasznay (1957).
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CHAPTER 4

Mo dal Expansion and S patial Averaging; An Iterative Metho d of
Solution

From the point of view expressed by Figure 1.1, we are concerned in this chapter with representing the
combustor dynamics. The procedure, often called `modeling', is based on the equations of motion constructed
in the preceding section and hence in principle will contain all relevant physical processes.1 For the purposes
here, all modeling of combustor dynamics and of combustion dynamics|the mechanisms and feedback in
Figure 1.1|must be done in the context developed in Chapter 1. Thus we always have in mind the idea
of wave motions somehow generated and sustained by interactions between the motions themselves and
combustion processes, the latter also including certain aspects of the mean °ow within the combustor.

The simplest model of the combustor dynamics is a single stationary wave, a classical acoustic resonance
as in an organ pipe, but decaying or growing due to the other processes in the chamber. In practice, the
combustion processes and nonlinear gasdynamical e®ects inevitably lead to the presence of more than one
acoustic mode. We need a relatively simple yet accurate means of treating those phenomena for problems
of the sort arising in the laboratory and in practice. Modeling in this case begins with construction of a
suitable method for solving the nonlinear wave equations derived in Section 3.4. In this context we may
regard the analysis of the Rijke tube covered in Section 2.7 as a basic example of the procedure stripped of
the formalism covered in this chapter.

The chief purpose of the analysis constructed here is to devise methods capable of producing results
useful for prediction and interpretation of unsteady motions in full-scale combustion chambers, as well as
for laboratory devices. That intention places serious demands on the methods used for at least two reasons:

(i) processes that must be modeled are usually complicated and their theoretical representations are
necessarily approximate to extents which themselves are di±cult to assess; and

(ii) almost all input data required for quantitative evaluation of theoretical results are characterized by
large uncertainties.

In this situation it seems that for applications and, as it will turn out, for theoretical purposes as well, the
most useful methods will be based on some sort of spatial averaging. Formal solution of the partial di®erential
equations, even for linear problems, is practically a hopeless task except for very special cases involving simple
geometries. Direct numerical simulations (DNS), or numerical solutions to the partial di®erential equations,
are not real alternatives for practical purposes at this time, and alone are not attractive for obtaining basic
understanding. However, as we will see later, numerical methods o®er the only means for assessing the
validity of approximate solutions, and can always be applied to more complicated (realistic?) problems than
we can reasonably handle with the analytical methods discussed here. In any event, one should view theory
and analysis on the one hand, and numerical simulations on the other, as complementary activities. Recent
experiences have shown that careful coordination of the analytical procedures and numerical simulations
with experimental observations is the most e®ective strategy for treating combustion instabilities in actual

1That seems to be what some people (apparently electrical engineers) mean by the term `physics-based modeling.' What
would otherwise be the basis for acceptable modeling of a physical system has not been explained.
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combustion systems. With the foundation of basic theory, numerical simulations o®er very powerful means
for improving understanding.

The greater part of the material on analysis and theory of combustion instabilities in this book is based
on a method of spatial averaging. It is important to notice that the elementary example worked out in Section
2.7 already shows the superior results possible with the method of averaging in contrast to an approximate
solution not involving averaging. The essential idea is of course not new, the method being nearly identical
with similar methods used in other branches of continuum mechanics. There are a few special characteristics
associated with applications to combustor that will appear in the course of the following discussion.

4.1. Application of a Green's Function for Steady Waves

The method used later to analyze nonlinear behavior has its origins in an early analysis of linear combus-
tion instabilities in liquid rocket engines (Culick, 1961, 1963). That work was based on solution to problems
of steady waves by introducing a Green's function. It is an e®ective strategy for this application because
departures from a known soluble problem are small, due either to perturbations within the volume or at the
boundary, all of order ¹ in the context developed in Chapter 3. Mitchell (1993) has made the most extensive
use of Green's functions in this context.

The problem to be solved is de¯ned by the equation derived in Section 3.4,

r2p0 ¡ 1

¹a2
@2p0

@t2
= h

n̂ ¢ rp0 = ¡f
(4.1)a,b

with ¹a constant, and h and f given by (3.61)a,b for linear stability. Because here h and f are assumed
linear,2 various methods are available to build general solutions by applying the principle of superposition
to elementary solutions representing steady waves. Hence we assume that the °uctuating pressure ¯eld is
a steady wave system within the given chamber, having unknown spatial structure varying harmonically in
time:

p0 = p̂e¡i¹akt (4.2)

where k is the complex wavenumber, also initially unknown,

k =
1

¹a
(! + i®) (4.3)

As de¯ned here, ® positive means that the wave has growing amplitude, p0 » e®t. Of course the wave is not
strictly stationary, a condition existing only if ® = 0, certainly true when h = f = 0, as in classical acoustics.

Even when h; f are non-zero, it is still possible that ® = 0, now de¯ning a state of neutral stability. In
general one must expect ®6= 0; it is a basic assumption in all of the analysis covered in this book that ® is
small compared with !, so the waves are slowly growing or decaying|they are `almost' stationary, and their
spatial structure does not change drastically with time. However, the results obtained are quite robust and
seem often to be usable even when ®=! is not small.

In the ¯rst instance, the problem here is to determine the spatial distribution p̂ and the complex
wavenumber k. For steady waves we can write

h = ·ĥe¡i¹akt ; f = ·f̂e¡i¹akt

2Sections 4.1 and 4.2 cover linear behavior only; Sections 4.3{4.6 include nonlinear behavior.
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where again · is a small parameter3 characterizing the smallness of h and f . Substitution in (4.1)a,b and
dropping the common exponential time factor gives

r2p̂+ k2p̂ = ·ĥ
n̂ ¢ rp̂ = ¡·f̂

(4.4)a,b

This is of course a well-known classical problem thoroughly discussed in many books. Many methods of
solution are available for the linear problem. We use here a procedure based on introducing a Green's
function discussed, for example, by Morse and Feshbach (1952, Chapter 9). This is an attractive method for
several reasons, including:

(i) Conversion of a di®erential equation into an integral equation, and the iterative method of solution
this suggests, is an e®ective means for minimizing the consequences of the uncertainties inherent in
problems of combustor dynamics;

(ii) Explicit results can be obtained for real and imaginary parts of the complex wavenumber in forms
that are easily interpreted and remarkably convenient both for theoretical work and for applications;

(iii) The method has motivated a straightforward extension to nonlinear problems, with considerable
success. (Chapter 7)

De¯ne a Green's function satisfying the homogeneous boundary condition and the wave equation homo-
geneous except at the single point where a source is located, having zero spatial extent and in¯nite strength
such that its integral over space is ¯nite. Thus the source is represented by a delta function ±(r ¡ r0) and
G(rjr0) is determined as a solution to the problem

r2G(rjr0) + k2G(rjr0) = ±(r¡ r0)
n̂ ¢ rG(rjr0) = 0

(4.5)a,b

The notation rjr0 as the argument of G(rjr0) represents the interpretation of the Green's function as the
wave observed at point r due to a steady oscillatory point source at r0.

Multiply (4.4)a by G(rjr0), (4.5)a by p̂(r), subtract the results and integrate over volume (in the present
case the volume of the chamber) to ¯ndZZZ

V

£
G(rjr0)r2p̂(r) ¡ p̂(r)r2G (rjr0)] dV + k2

ZZZ
V

[G(rjr0)p̂(r)¡ p̂(r)G(rjr0)] dV

= ·

ZZZ
V

G(rjr0)ĥ(r)dV ¡
ZZZ
V

p̂(r)±(r¡ r0)dV
(4.6)

Because G(rjr0) and p̂(r) are scalar functions the second integral on the left-hand side vanishes. The ¯rst
integral is rewritten using a form of Green's theorem, and the basic property of the delta function is applied
to the second integral on the right-hand side:ZZZ

V

F (r)±(r¡ r0)dV = F (r0) (r; r0 in V ) (4.7)

Hence (4.6) becomesZZ
S

° [G(rjr0)rp̂(r)¡ p(r)rG(rjr0)] ¢ n̂dS = ·
ZZZ
V

G(rjr0)ĥ(r)dV ¡ p̂(r0)

where n̂ is the outward normal at the surface of the volume V in question.

3Later, · will be identi¯ed with ¹ introduced in Section 3.3 but it is useful in this discussion to maintain a distinction.
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Now apply the boundary conditions (4.4)b and (4.5)b and the last equation can be written in the form

p(r̂0) = ·

8<:
ZZZ
V

G(rjr0)ĥ(r)dV +
ZZ
S

°G(rsjr0)f̂(rs)dS
9=; (4.8)

Subscript ( )s means the point rs lies on the boundary surface (actually on the inside surface of the boundary).
Because the operator for scalar waves is self-adjoint (see Morse and Feshbach 1953, Chapter 10), the Green's
function possesses the property of symmetry

G(rjr0) = G(r0jr) (4.9)

This property has the appealing physical interpretation that the wave observed at r due to a point source
at r0 has the same amplitude and relative phase as for the wave observed at r0 when the point source is
located at r. With (4.9) we can interchange r and r0 in (4.8) to ¯nd for the steady ¯eld at position r:

p̂(r) = ·

8<:
ZZZ
V

G(rjr0)ĥ(r0)dV0 +

ZZ
S

°G(rjr0s)f̂(r0s)dS0

9=; (4.10)

Equation (4.10) is not an explicit solution for the pressure ¯eld, but is rather an integral equation,

because the source functions ĥ and f̂ in general depend on the °uctuating pressure and velocity ¯elds
themselves. However, because the sources are assumed to be small perturbations of the classical ¯eld having
no sources, · is small and p̂ will not di®er greatly from a solution to the homogeneous problem de¯ned by
h = f = 0. The result (4.10) represents the solution to the inhomogeneous problem; the complete solution
is (4.10) plus a homogeneous solution. We will take advantage of the smallness of · to ¯nd an approximate
explicit solution for p̂ by an iterative procedure discussed in Section 4.1.1.

Whatever tactic one may choose to follow, the result (4.10) is of no practical value without having a
representation of G(rjr0). The most convenient form of G(rjr0) for our purpose is expansion in eigenfunc-
tions Ãn(r), here the normal modes of the classical acoustics problem with no sources in the volume and
homogeneous boundary conditions; G(rjr0) is therefore expressed as a modal expansion,

G(rjr0) =
1X
n=0

AnÃn(r) (4.11)

where the Ãn satisfy
4

r2Ãn + k2nÃn = 0
n̂ ¢ rÃn = 0

(4.12)a,b

and are orthogonal functions, ZZZ
V

Ãm(r)Ãn(r)dV = E
2
n±mn (4.13)

Substitute (4.11) in (4.5)a, multiply by Ãm(r) and integrate over the volume to ¯ndZZZ
V

Ãm

1X
n=0

Anr2ÃndV + k2
ZZZ
V

Ãm

1X
n=0

AnÃndV =

ZZZ
V

Ãm(r)±(r¡ r0)dV

With (4.7), (4.12) and (4.13), this equation produces the formula for An:

An =
Ãn(r0)

k2n ¡ k2
(4.14)

4Equations (4.12)a,b really are essential to the following general results. They can be altered, e.g. n̂ ¢ rÃn = ¡g(r), but
subsequent formulas must be carefully checked.
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Thus the expansion (4.11) for G(rjr0) is

G(rjr0) =
1X
n=0

Ãn(r)Ãn(r0)

E2n(k
2 ¡ k2n)

(4.15)

the modal expansion of the Green's function. Substitution of (4.15) in (4.10) leads to the formal modal
expansion of the pressure ¯eld,5

p̂(r) = ·
1X
n=0

Ãn(r)

E2n(k
2 ¡ k2n)

8<:
ZZZ
V

Ãn(r0)ĥ(r0)dV0 +

ZZ
S

°Ãn(r0s)f̂(r0s)dS0

9=; (4.16)

Suppose that for · tending to zero, p̂(r) approaches the unperturbed mode shape ÃN ; let the corresponding
function p̂ be denoted p̂N , so

p̂ ¡!
·!0

p̂N = ÃN (4.17)

Now separate the Nth term from the sum in (4.16) and write

p̂(r) = ÃN (r)
·

E2N (k
2 ¡ k2N )

8<:
ZZZ
V

ÃN (r0)ĥ(r0)dV0 +

ZZ
S

°ÃN (r0s)f̂(r0s)dS0

9=;
+·

1X0

n=0

Ãn(r)

E2n(k
2 ¡ k2n)

8<:
ZZZ
V

Ãn(r0)ĥ(r0)dV0 +

ZZ
S

°Ãn(r0s)f̂(r0s)dS0

9=;
(4.18)

where the prime in the summation sign means that the term n = N is missing. The eigenvalues associated
with the eigenfunction ÃN (r) is kN . This form is consistent with the requirement (4.17) only if the factor
multiplying ÃN (r) is unity, giving the formula for the perturbed wavenumber

k2 = k2N +
·

E2N

8<:
ZZZ
V

ÃN (r0)ĥ(r0)dV0 +

ZZ
S

°ÃN (r0s)f̂(r0s)dS0

9=; (4.19)

and (4.18) becomes

p̂(r) = ÃN (r) + ·

1X0

n=0

Ãn(r)

E2n(k
2 ¡ k2n)

8<:
ZZZ
V

Ãn(r0)ĥ(r0)dV0 +

ZZ
S

°Ãn(r0s)f̂(r0s)dS0

9=; (4.20)

Another more direct derivation of (4.19) very useful in later analysis, may be had by ¯rst multiplying
(4.4) by ÃN and integrating over the volume:

ZZZ
V

ÃNr2p̂dV + k2
ZZZ
V

ÃN p̂dV = ·

ZZZ
V

ÃN ĥdV

Application of Green's theorem to the ¯rst integral givesZZZ
V

p̂r2ÃNdV +
ZZ
S

° [Ãnrp̂¡ p̂rÃn] ¢ n̂dS + k2
ZZZ
V

Ãnp̂dV =

ZZZ
V

ÃN ĥdV

5The form of (4.16) has been seriously misunderstood by many interested in methods for analyzing and interpreting
combustion instabilities. According to (4.12)b, the velocity associated with each of the basis functions must vanish on the
surface enclosing the volume considered. Hence the representation (4.16) seems also to imply that the velocity of the actual

(perturbed) ¯eld must also vanish at the boundary, even with ĥ and f̂ non-zero. That is, the approximate solution for p(r; t)
and u(r; t) cannot satisfy the correct (perturbed) boundary conditions. This conclusion is incorrect, following from the implied
assumption that as r ! r0 on the boundary, the limit as r ! r0 in the sum (4.16) is equal to the sum of the limits of each
of the terms in (4.16). The point is made by example in Annex F; see also Footnote 8 and related remarks at the end of this
chapter.
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after inserting r2ÃN = ¡k2NÃN and rÃN ¢ n̂ = 0, rearrangement gives

k2 = k2N +
·RRR

V

ÃN p̂dV

8<:
ZZZ
V

ÃN (r)ĥ(r)dV +

ZZ
S

°ÃN (rs)f̂(rs)dS

9=; (4.21)

The integral of ÃN p̂ in the denominator of (4.21) can be evaluated by using (4.20) and is exactly E
2
N ,

providing the series in (4.20) converges. Hence (4.21) is identical to (4.19). This simple calculation has
shown that (4.18) and (4.20) are consistent.

The preceding calculation contains several basic ideas lying behind much of the analysis used in this book.
In summary, the original problem described by the di®erential equation (4.4)a and its boundary condition
(4.4) are converted to an integral equation, in this case (4.10), established by introducing a Green's function.

This is not an explicit solution because the functions ĥ and f̂ generally depend on the dependent variable
p̂. However, formulation as an integral equation provides a convenient basis for approximate solution by
iteration.

4.1.1. Approximate Solution by Iteration. To apply an iterative procedure, it is necessary ¯rst to
give the Green's function G(rjr0) explicit form. The natural choice for problems of waves in a chamber is a
series expansion in the natural modes of the chamber, a modal expansion, (4.15). For the small parameter
· tending to zero (i.e. all perturbations of the classical acoustics problem are small), a straightforward
argument produces the formula (4.19) for the wavenumber and the integral equation (4.20) for p̂(r).

Apparently, equation (4.20) must be solved to give p̂ before the wavenumber can be computed with
(4.19). We should emphasize that for many practical purposes, it is really k that is required, because its
imaginary part determines the linear stability of the system (® = 0). The great advantage of this approach

may be seen clearly with a simple example. Suppose f̂ = 0 and ĥ = H(r)p̂ in (4.4)a,b. Then (4.20) and
(4.19) become

p̂(r) = ÃN (r) + ·

1X0

n=0

Ãn(r)

E2n(k
2 ¡ k2n)

ZZZ
V

ÃnH(r0)p̂(r0)dV0 (4.22)

k2 = k2N +
·

E2N

ZZZ
V

ÃNH(r0)p̂(r0)dV0 (4.23)

Because · is assumed to be small, solution by successive approximation, i.e. an iterative procedure, is a
natural way to proceed. The initial (zeroth) approximation to the mode shape p̂ is (4.22) with · = 0,
p̂(0) = ÃN . Substitution in (4.23) gives k

2 correct to ¯rst order in ·:

(k2)(1) = k2N +
·

E2N

ZZZ
V

H(r0)Ã
2
NdV0

= k2N + ·
IN
E2N

(4.24)

where IN stands for the integral,

IN =

ZZZ
V

H(r0)Ã
2
NdV0
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Calculation of p̂ to ¯rst order in · requires setting p̂ and k2 to their zeroth order values on the right-hand
side of (4.22), p̂(0) = ÃN , (k

2)(0) = k2N :

p̂(1)(r) = ÃN (r) + ·

1X0

n=0

Ãn(r)

E2n(k
2
N ¡ k2n)

ZZZ
V

ÃnH(r0)ÃNdV0

= ÃN + ·¾N

and ¾N stands for the series

¾N =

1X0

n=0

ÃN
E2n(k

2
N ¡ k2n)

ZZZ
V

H(r0)Ã
2
N (r0)dV0

Substitution of this formula for p̂ under the integral in (4.23) then gives the second approximation (k2)(2)

to k2:

(k2)(2) = k2N +
·

E2N

ZZZ
V

ÃNH(r0)(ÃN + ·¾N )dV0

= (k2)(1) + ·2
·

E2N

ZZZ
V

ÃNH(r0)¾NdV0

(4.25)

A wonderful property of the procedure is already apparent: Calculation of the wavenumber to
some order lll in the small parameter requires knowing the modal functions only to order l ¡ 1l ¡ 1l ¡ 1.
That is the basis for the current standard practice of computing linear stability for solid propellant rockets
(the \Standard Stability Prediction Program," Nickerson et al. 1984) using the unperturbed acoustic modes
computed for the geometry in question.6;7

The \perturbation-iteration" procedure just described is an old and widely used method to obtain
solutions to nonlinear as well as linear problems. Often much attention is paid to achieving more accurate
solutions by carrying the iterations to higher order in the small parameter. That is a legitimate process
providing the equations themselves are valid to the order sought. In Chapter 3 we emphasized the importance
of the expansion procedure largely for that reason. If the equations are valid, say, only to second order in
the amplitude ("), there is no need|in fact no justi¯cation|to try to ¯nd a solution to order "3 and higher.
Similar remarks apply to the expansion in the average Mach number (¹); see footnote 2 in Chapter 3. The
procedure is fully explained in Section 4.6 for the equations derived in Section 3.4.

4.2. An Alternative Derivation of the First Order Formula

The results (4.19) and (4.20) for the complex wavenumber and mode shape can be instructively obtained
in a di®erent way. Both formulas provide means for computing the di®erences k2 ¡ k2N and p̂¡ÃN between
the actual (perturbed) quantities and the unperturbed quantities. It is reasonable that those results should
somehow follow from comparison of the perturbed (·6= 0) and unperturbed (· = 0) problems. The idea is
to average the di®erence between the two problems weighted respectively by the other's mode shape. That
is, subtract p̂ times equation (4.12)a from Ãn times (4.4)a and integrate the result over the volume of the

6Failure to respect this basic property of the procedure has rendered useless some discussions of the subject. For example,
the lengthy discussion by Van Moorhem (1982) is largely irrelevant to the spacially averaged representation treated here and
in earlier works. For reasons di®erent from those o®ered by Van Moorhem, some of the results in question are incomplete, as
discussed in Chapters 6 and 7.

7Calculation of the solution, the mode shape to order l, also requires modal functions to order l¡ 1; see Section 4.6.2.
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chamber: ZZZ
V

£
ÃNr2p̂¡ p̂r2ÃN

¤
dV +

ZZZ
V

(k2 ¡ k2N )Ãnp̂dV0 = ·
ZZZ
V

ÃN ĥdV

Now apply Green's theorem to the ¯rst integral, substitute the boundary conditions (4.4)b and (4.12)b and
rearrange the result to ¯nd (4.21):

k2 = k2N +
·RRR

V

ÃN p̂dV

8<:
ZZZ
V

ÃN (r)ĥ(r)dV +

ZZ
S

°ÃN (rs)f̂(rs)dS

9=; (4.26)

If k2 is to be calculated to ¯rst order in ·, then p̂ must be replaced by its zero order approximation p̂ = ÃN .
Because the correction to k2N contains the multiplier ·, any contributions of order · multiplying · give terms
of order ·2. Hence to ¯rst order, (4.26) of course becomes (4.19).

This approach does not provide a recipe for computing the modal or basis functions to higher order.
That does not cause di±culty here because we have the procedure given in the preceding section. We will ¯nd
later that the simple derivation just given suggests a useful extension to time-dependent nonlinear problems.
In that situation there is no result corresponding to (4.20) for computing the mode shapes to higher order.
That de¯ciency is a serious obstacle to further progress with a simpli¯ed form of the general procedure, a
subject of current research.

4.3. Approximate Solution for Unsteady Nonlinear Motions

The method covered in the preceding two sections, based essentially on the use of Green's functions,
was the ¯rst application of modal expansions and spatial averaging to combustion instabilities (Culick 1961,
1963). In the early 1970s the procedure was extended to treat nonlinear problems, necessarily involving
time-dependence (Culick 1971, 1975). We summarize that approach here; an alternative formulation based
on a form of Galerkin's method is discussed in the following section.

We begin with the general problem (4.1)a,b and assume an approximation ~p0(r) to the pressure ¯eld as
a truncated expansion in a set of basis functions Ãm,

~p0(r; t) = ¹pr

MX
m=1

´m(t)Ãm(r) (4.27)

where for simplicity|not an essential assumption|we take ¹pr to be the average pressure in the chamber,
uniform in space and constant in time. In this work we will always take the Ãm to be acoustic modes de¯ned
by the geometry, the distribution of average temperature and suitable boundary conditions.8 We would like
the right-hand side of (4.27) to become more nearly equal to the actual pressure ¯eld in the combustor as
more terms are included in the series, so that ~p0 ´ p0 in the limit:

p0(r; t) = lim
M!1

~p0(r; t) = lim
M!1

¹pr

MX
m=1

´m(t)Ãm(r) (4.28)

8The selection of boundary conditions is part of the art of applying this method. Examples covered later will clarify the
point. For the present, it is helpful to think of the Ãm as classical acoustic modes for a volume having rigid walls and the
same shape as the combustion chamber in question. The Ãm therefore do not satisfy exactly the boundary conditions actually
existing in a combustor. Hence the right-hand side of (4.27) is an approximation in three respects: the series is truncated
to a ¯nite number of terms; it does not satisfy the correct boundary conditions; and the basis functions are assumed to be
solutions to the scalar Helmholtz equation with the homogeneous boundary condition n̂ ¢ rÃn = 0. The Ãm alone do not
represent solutions with the perturbations taken into account. However, the solution carried out to the next order does satisfy
the boundary conditions to ¯rst order. This important point is discussed in Chapter 10 of Morse and Feshbach (1952). The
approximate nature of the modal expansion will be clari¯ed as the analysis proceeds. See also Annex F for an example making
the point.
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Because the Ãm do not satisfy the correct boundary conditions, this pointwise property certainly cannot be
satis¯ed at the boundary. It is reasonable, however, to expect convergence in an integral-squared sense; that
is, the integral of the square of the di®erence between the exact solution and (4.27) satis¯es

lim
M!1

ZZZ
V

"
p0(r; t)¡ ¹pr

MX
m=1

´m(t)Ãm(r)

#2
dV = 0 (4.29)

We will not prove this properly, but assume its truth.

Convergence in the sense asserted by (4.29) is a common idea arising, for example, in formal treatments
of Sturm-Liouville problems; see Hildebrand (1952) for a very readable discussion. The matter of convergence
of approximate solutions in the present context is more complicated because one must take into account the
fact that the governing equations and their solutions are expanded in the two small parameters ¹ and "
introduced in Chapter 3. We will also not discuss that problem.

The synthesis of the pressure ¯eld expressed by (4.27) does not restrict in any practical fashion the
generality of the method. For de¯nitions here we assume that the modal functions satisfy the homogeneous
Neumann condition n̂ ¢ rÃn = 0, but for some applications a di®erent boundary condition, perhaps over
only part of the boundary, may serve better. Hence we will assume here that the Ãn are eigensolutions to
the problem (4.12)a,b.

We require that the approximation (4.27) to p0 satisfy equation (4.1)a. Multiply (4.12)b written for ÃN
by ~p0(r; t), subtract from (4.1)a written for ~p0 multiplied by ÃN ; then integrate the di®erence over the volume
of the chamber to giveZZZ

V

£
ÃNr2~p0 ¡ ~p0r2ÃN

¤
dV ¡

ZZZ
V

1

¹a2
@2~p0

@t2
dV ¡ k2N

ZZZ
V

~p0ÃNdV =
ZZZ
V

ÃNhdV

Apply Green's theorem to the ¯rst integral, substitute the boundary conditions and rearrange the result to
give ZZZ

V

1

¹a2
@2~p0

@t2
ÃNdV + k

2
N

ZZZ
V

~p0ÃNdV = ¡
8<:
ZZZ
V

hÃNdV +

ZZ
S

° fÃNdS

9=; (4.30)

Now substitute the modal expansion (4.27) in the left-hand side:

¹pr
¹a2r

MX
m=0

Ä́m(t)

ZZZ
V

³¹ar
¹a

´2
ÃmÃNdV ¡ k2n¹p

MX
m=0

´m

ZZZ
V

ÃmÃNdV = E
2
N

¹p

¹a2r
FN (4.31)

where

FN = ¡ ¹a2

¹pE2N

8<:
ZZZ
V

hÃNdV +

ZZ
S

° fÃNdS

9=; (4.32)

and ¹ar is a constant reference speed of sound. The second sum in (4.31) reduces, due to the orthogonality
of the Ãm, to ´nE

2
n. Under the ¯rst integrals, write

¢a = 1¡
³¹ar
¹a

´2
(4.33)

Then the ¯rst sum in (4.31) is

MX
m=0

Ä́m(t)

ZZZ
V

(1¡¢a)ÃmÃNdV = E2N Ä́N ¡
MX
m=0

Ä́m(t)

ZZZ
V

¢aÃmÃNdV (4.34)

MODAL EXPANSION AND SPATIAL 
AVERAGING; AN ITERATIVE METHOD OF SOLUTION  

RTO-AG-AVT-039 4 - 9 

 

 



With these changes, equation (4.31) becomes

Ä́N + !
2
N´N = FN +

1

E2N

MX
m=0

Ä́m(t)

ZZZ
V

¢aÃmÃNdV (4.35)

The sum on the right-hand side represents part of the e®ect of a non-uniform speed of sound in the chamber
(if ¢a 6= 0). To simplify writing we will ignore this term until we consider special problems. For solid rockets
it is normally a negligible contribution. If the combustor contains °ame sheets, the temperature is piecewise
uniform and this term also doesn't appear, but the presence of the discontinuities generates corresponding
terms arising from FN (see Annex E). Thus there are useful situations in which we deal with the system of
equations:

Ä́N + !
2
N´N = FN (4.36)

This result, a set of coupled nonlinear equations with the forcing function FN given by (4.32), is the basis
for practically all of the analysis and theory discussed in the remainder of this book. A corresponding result
is given in Annex B for a purely one-dimensional formulation. In anticipation of later discussions, several
general remarks are in order.

(i) The formulation expressed by (4.36) accommodates all relevant physical processes. In the derivation
of the conservation equations in Annex A, only inconsequential approximations (for present purposes)
were made, notably the neglect of multi-component di®usion and the representation of the reacting
multi-phase medium by a single-°uid model. However, only the basic gasdynamics are known explic-
itly. All other processes must be modeled in suitable forms.

(ii) Despite the apparent generality of (4.36), attention must be paid to an assumption implied in the
application of Green's theorem in spatial averaging. That is, the functions involved must possess
certain properties of continuity within the volume of averaging. The condition is not satis¯ed, for
example, at a °ame sheet, where the velocity is discontinuous, an important exception. Annex E
introduces the method for handling such cases.

(iii) The selection of functions for the modal expansion (4.27) is not unique; possible alternatives must
always be considered. What works best depends on the nature of the boundary conditions. The closer
the boundary is to a rigid re°ecting surface, the more e®ective is the choice n̂ ¢ rÃn = 0, meaning
that the acoustic velocity vanishes on the boundary. Because a combustor must provide for in°ow of
reactants and exhaust of products, it is simply not possible that the actual enclosure be everywhere
rigid and perfectly re°ecting. For n̂ ¢ rÃn = 0 to be a good approximation, as it should be for the
modal expansion to serve successfully as a zeroth approximation to the pressure ¯eld, the boundary
must be `nearly' re°ecting. Choked inlets and outlets satisfy the condition if the Mach number at
the chamber side is small (that is, the °ow within the volume is consistent with the assumption
¹ ¿ 1). Also, the dynamical response of burning solid propellants is normally such that requiring
n̂ ¢ rÃn = 0 is appropriate. Over a broad useful range of practical conditions, de¯ning the basis
functions with (4.12)a,b is therefore a reasonable choice. Exceptions are not rare, however, and care
must be exercised. For example, a Rijke tube will contain a heater, or a thin combustion region within
the duct. Continuous functions Ãn may not be good zeroth approximations to the actual behavior
discontinuous at the heating zone; moreover, in that case Ãn = 0 at the ends is the proper choice
for boundary conditions on the basis functions. More generally, if the temperature ¯eld is highly
non-uniform, then the zeroth order expansion functions should take that feature into account.

(iv) An enormous advantage of the result (4.36) is its clear interpretation. A general unsteady motion
in a combustor is represented by the time-evolution of a system of coupled nonlinear oscillators in
one-to-one correspondence with the unperturbed modes Ãn. Although the left-hand side of (4.36)
describes the motion of a linear oscillator, the forcing function FN will in general contain terms
in ´n representing linear and nonlinear damping, springiness and inertia. Consequently, it is easy
to ¯nd familiar nonlinear di®erential equations as special cases of (4.36). Such special results aid
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greatly the interpretations of complicated observed behavior in terms of simpler elementary motions.
Thus it is important to understand the connections between parameters de¯ning the oscillators, the
characteristics of the modes, and the de¯nitions provided in the process of spatial averaging.

(v) Di®erent problems are distinguished chie°y in two respects: Geometry of the combustor; and the
form of the forcing function FN . The forcing function contains the in°uences of gasdynamics explic-
itly, but all other processes must be modeled, either with theory or based on experimental results.
The geometry and the boundary conditions determine the modal expansion functions Ãn and the
frequencies !n. For complicated geometries, as for many large solid propellant rockets and for most
gas turbine combustors, computation of the Ãn and !n has been a time-consuming and expensive
process. That situation is gradually changing with the development of more capable software (e.g.,
French 2003; French and Flandro 2003).

(vi) The relatively general context in which the oscillator equations (4.36) have been derived does not
exclude simpler problems which can either be treated as special cases or constructed without reference
to the procedures worked out here. (See, e.g., Section 2.6) However, it is then often more di±cult to
be certain that all important processes are accounted for or properly ignored.

4.4. An Alternative Application of Spatial Averaging: The Method of Least Residuals

With a series of works beginning in the late 1960s, Professor B.T. Zinn and his students developed and
applied a di®erent method based on spatial averaging, an interesting extension of Galerkin's method. See
Powell (1970); Powell and Zinn (1969; 1971a,b; 1974); Zinn and Powell (1968; 1970); Lores and Zinn (1973).
There are necessarily some similarities with the method discussed in the preceding two sections; in particular
the formal results should agree in detail, or at least be reconcilable. There are, however, distinct di®erences
both in the sequence of historical developments and in many important matters of applications.

In respect to the historical developments, the Georgia Tech group was ¯rst to apply spatial averaging to
analyze nonlinear behavior, in liquid propellant rockets. They were also ¯rst to demonstrate several nonlinear
phenomena con¯rmed later in works published by others. Those results are reviewed here in Chapter 7. It
was three years after the ¯rst Georgia Tech report that Culick independently worked out a much simpli¯ed
form of the method described in Section 4.2, to explain nonlinear behavior observed in a laboratory device,
the T-burner, used to measure the combustion dynamics of solid propellants. At that time, there was
practically no communication (or mutual attention) between the liquid and solid rocket communities at the
research level, a condition that blocked certain bene¯ts, but which has since been corrected.

Recently, Seywert and Culick (1998) showed that when applied to the same equation, the two methods
lead to the same formal result (4.28). To establish that conclusion, we follow the formal procedure discussed
by Finlaysen and Scriven (1966) as extended by Powell (1970); Powell and Zinn (1969, 1971a) and Zinn
and Powell (1968, 1970) to account for the inhomogeneous boundary conditions. The method is in fact
quite general, capable of handling much more elaborate problems than that for which the method covered
in Section 4.3 has been worked out. Here we take a direct route to make the main point most clearly. Write
the wave equation (4.1) and its boundary condition as

E(r; t) = 0

B(r; t) = 0
(4.37)a,b

where

E(p0) : = r2p0 ¡ 1

¹a2
@2p0

@t2
¡ h

B(p0) : = n̂ ¢ rp0 + f
(4.38)a,b
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The Galerkin method is based on expansion of the dependent variables in a set of basis functions Án. Here
we suppose that there is only the single variable p0 in the problem9 de¯ned by (4.37). The approximation ~p
expressed as the expansion truncated to M terms is assumed to become equal to the solution p as M !1:

lim
M!1

~p = lim
M!1

MX
m=1

amÁm = p (4.39)

At this stage the functions Án are unde¯ned. The modi¯ed Galerkin method consists in spatially aver-
aging, with a weighting function, the governing equation and its boundary condition, both applied to an
approximation ~p, and requiring that the di®erence vanish:ZZZ

V

E(~p)ÁNdV ¡
ZZ
S

°B(~p)ÁNdS = 0 (4.40)

The spatial weighting function ÁN need not be one of the basis functions, but we made that choice to
establish the equivalence of the methods without unnecessary complications.

Now substitute the de¯nition (4.36) for E and B:ZZZ
V

μ
r2~p0 ¡ 1

¹a2
@2~p0

@t2

¶
ÁNdV ¡

ZZ
S

° (n̂ ¢ r~p0 + f)ÁNdS = 0 (4.41)

Apply Green's theorem to the ¯rst term to giveZZZ
V

r2~p0ÁNdV =
ZZ
S

° (~p0rÁN ¡ ÁNr~p0) ¢ n̂ dS ¡
ZZZ
V

~p0r2ÁNdV

and choose ÁN ´ ÃN de¯ned by (4.12):ZZZ
V

r2~p0ÃNdV = ¡
ZZ
S

°ÃNr~p0 ¢ n̂ dS + k2N
ZZZ
V

~p0ÃNdV

Substitution in (4.41), with ÁN ´ ÃN and some rearrangement leads to the result identical to (4.30):ZZZ
V

1

¹a2
@2~p0

@t2
ÃNdV + k

2
N

ZZZ
V

~p0ÃNdV = ¡
8<:
ZZZ
V

ÃNhdV +

ZZ
S

°ÃNfdS

9=; (4.42)

Owing to the care taken to recognize the approximation to p0 with a truncated expansion, ~p0 appears here
in place of p0 in (4.30).

The preceding remarks establish the equivalence of the methods only for the case when the equations of
motion are written for the °uctuations of the °ow variable and then combined to form the wave equation
for the pressure. It should be apparent from the discussion in Sections 4.1{4.3 that the method developed
there, and used throughout the remainder of this book, is restricted to that formulation. In contrast,
the Galerkin method is not constrained to any particular form of the governing equations; of course the
problem to be analyzed must lend itself to de¯nition of basis functions. In that sense, the modi¯ed Galerkin
method is potentially more general than the method discussed in Sections 4.1{4.3 and used throughout this
book. However, the method has not been extended beyond the applications investigated by the group at
Georgia Tech many years ago and for several reasons seems not to have motivated others to pursue even
similar applications. In almost all their work, the Georgia Tech group introduced a form of a potential for
the unsteady velocity. Combined with sometimes vague usage of expansion parameters and ordering, that
practice renders the method awkward to use and the results di±cult to interpret.

9The other variables of the °ow ¯eld must also be expanded, the procedure being the same as that followed in the method
based on the results of Section 4.3.
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4.5. Application of Time-Averaging

To this point the expansion procedure based on two small parameters has been used only to derive the
systems of equations describing successively more di±cult classes of problems listed in Section 3.3.2. Later
we will see how an iterative method based partly on the expansion reduces those systems of equations to
more readily soluble forms. In this section we apply time-averaging to convert the second-order equations
(4.36) to ¯rst order equations. First, two remarks:

(i) Use of time-averaging is motivated by the experimental observation that combustion instabilities
commonly show slowly varying amplitudes and phases of the modes contributing to the motions.
That behavior is a consequence of the relative weakness of the disturbing processes and is therefore
measured by the small parameter ¹ characteristic of the Mach number of the mean °ow. It is essential
to understand that it is not the amplitudes themselves (i.e. the parameter ") that matters. Thus the
application of time-averaging in the present context is not intended to treat nonlinear behavior in ¹,
but is based on the idea that there is only weak coupling between the mean °ow and the unsteady
motions, proportional to the Mach number of the average °ow. Nonlinear behavior of higher order
in " is a distinct matter, formally una®ected by the time-averaging.

(ii) Two-time scaling (Kevorkian and Cole, 1996; Cole 1968) is an alternative method to time-averaging.
The results obtained are identical up to second order acoustics (Sections 3.3.3(II) and 3.4), a conclu-
sion not proved here but consistent with similar previous works in other ¯elds.

According to the discussion in Section 3.3.3, we can characterize the functions h and f , and hence the
forcing function FN , as sums of terms each of which is of order ¹ and of zeroth or ¯rst order in ". Thus if
we reactivate the ordering parameters ¹ and ", the right-hand side of (3.45)b, for example, has the form

¡¹"
½
f[M]g1 + "

¹
fMg2

¾
+F0F0F0

The divergence of these terms eventually appears in h and Fn. Hence we are justi¯ed in taking Fn of order
¹; to show this explicitly write (4.36) as

Ä́N + !
2
N´N = ¹GN (4.43)

In any event, for ¹ small, the ´N di®er but little from sinusoids so (without approximation) it is reasonable
to express ´N (t) in the equivalent forms

´N (t) = rN (t) sin (!N t+ ÁN (t)) = AN (t) sin!N t+BN (t) cos!N t (4.44)

and

AN (t) = rN cosÁN ; BN = rN sinÁN

rN =
q
A2N +B

2
N ; ÁN = tan

¡1
μ
AN
BN

¶ (4.45)

One way to proceed follows a physical argument based on examining the time evolution of the energy of the
oscillator having amplitude ´N (Culick 1975). The energy EN is the sum of kinetic and potential energies,

EN (t) =
1

2
_́2N +

1

2
!2N´

2
N (4.46)

The time-averaged values of the energy and power input to the oscillator, due to the action of the force
¹GN , are

hEN i = 1

¿

t+¿Z
t

ENdt
0 ; h¹GN _́N i = 1

¿

t+¿Z
t

¹GN _́Ndt
0 (4.47)
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Conservation of energy requires that the time-averaged rate of change of energy equal the time-averaged rate
of work done by ¹GN on the oscillator:

d

dt
hEN i = ¹hGN _́N i (4.48)

From (4.44), the velocity is

_́N = !NrN cos (!N t+ ÁN ) +
h
_rN sin (!N t+ ÁN ) + _ÁNrN cos (!N t+ ÁN )

i
(4.49)

Following Krylov and Bogoliubov (1947) we apply the `strong' condition that the velocity is always given by
the formula for an oscillator is force-free-motion,

_́N = !NrN cos (!N t+ ÁN) (4.50)

Hence (4.49) is consistent with this requirement only if

_rN sin (!N t+ ÁN ) + _ÁNrN cos (!N t+ ÁN ) = 0 (4.51)

Now use the de¯nitions (4.44), (4.46) and (4.50) to ¯nd

EN =
1

2
!2Nr

2
N

¹GN _́N = ¹GN!NrN cos (!N t+ ÁN )

(4.52)a,b

The statement \slowly varying amplitude and phase" means that the fractional changes of amplitude
and phase are small in one cycle of the oscillation and hence during the interval of averaging ¿ , if ¿ is at
least equal to the period of the fundamental mode:

¿

rN

drN
dt

¿ 1 ;
¿

2¼

dÁN
dt

¿ 1 (4.53)

These inequalities imply that rN and ÁN may be treated as constants during the averaging carried out in
(4.47). To see this, imagine that rN for example, is expanded in Taylor series for some time t1 in the interval
¿ , t < t1 < t+ ¿ :

rN (t) = rN (t1) + (t¡ t1)
μ
drN
dt

¶
t1

+ ¢ ¢ ¢

For rN slowly varying, _rN doesn't vary much during a period and may be assigned some average value.
The increment t¡ t1 has maximum value ¿ ; so the second term is negligible according to the ¯rst of (4.47).
Therefore rN (t) ¼ rN (t1) for any t1 in the interval of averaging and the assertion is proved.

Substitution of (4.52)b in (4.48) then gives

!2NrN
drN
dt

= ¹
!NrN
¿

t+¿Z
t

GN cos(!N t
0 + ÁN )dt0

which gives

drN
dt

= ¹
1

!N¿

t+¿Z
t

GN cos(!N t
0 + ÁN )dt0 (4.54)
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Because rN (t) and _rN (t) are nearly constant in the interval (t; t+¿), this relation implies the equation before
averaging,

drN
dt

=
¹

!N
GN (t) cos(!N t+ ÁN ) (4.55)

The corresponding equation for the phase ÁN (t) before averaging is found by ¯rst rearranging (4.51) to
give

rN
dÁN
dt

cos(!N t+ ÁN ) = ¡ _rN sin(!N t+ ÁN )
which becomes, after substitution of (4.55),

rN
dÁN
dt

= ¡ ¹

!N
GN (t) sin(!N t+ ÁN ) (4.56)

Now time average this equation over the interval ¿ ; the left-hand side is approximately constant for theorem
give above, and the equation for ÁN (t) is

rN
dÁN
dt

= ¡¹ 1

!N¿

t+¿Z
t

GN sin(!N t
0 + ÁN )dt0 (4.57)

With the relations (4.45), equations (4.54) and (4.57) can be converted to equations for AN and BN :

dAN
dt

=
¹

!N¿

t+¿Z
t

GN cos!N t
0dt0

dBN
dt

= ¡ ¹

!N t

t+¿Z
t

GN sin!N t
0dt0

(4.58)a,b

Whichever pair one chooses to use, (4.54) and (4.57) or (4.55), the general formal problem of solving a system
of coupled second order equations (4.43) for the oscillators, has been converted to the simpler approximate
formal problem of solving a system of coupled ¯rst order equations. The essential basis for that conversion
is the removal of the fast oscillatory behavior with the de¯nition (4.44), a transformation made reasonable
because the changes of amplitudes and phases take place on a much slower (i.e. longer) time scale than
do the oscillations. The presence and role of two time scales is more evident in the following alternative
derivation.

From the second equality of (4.44), we ¯nd the velocity

_́N = !N [AN cos!N t¡BN sin!N t] +
h
_AN sin!N t+ _BN cos!N t

i
Now enforce the condition corresponding to (4.51),

_AN sin!N t+ _BN cos!N t = 0 (4.59)

and the velocity is

_́N = !N [AN cos!N t¡BN sin!N t] (4.60)

Substitution in (4.43) gives

!N

h
_AN cos!N t¡ _BN sin!N t

i
+ !2N [¡AN sin!N t¡BN cos!N t]
+ !2N [AN sin!N t+BN cos!N t] = ¹GN
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and

_AN cos!N t¡ _BN sin!N t =
¹

!N
GN

Multiply by cos!N t and substitute (4.59) for _BN cos!N t to give

_AN cos
2 !N t¡ sin!N t

h
¡ _AN sin!N t

i
=

¹

!N
GN cos!N t

so

dAN
dt

=
¹

!N
GN cos!N t (4.61)

Similarly,

dBN
dt

= ¡ ¹

!N
GN sin!N t (4.62)

Now introduce two time-scales, ¿f the ¯rst scale, of the order of the period of the fundamental oscillation
(in fact, we might as well set ¿f = 2¼=!1; and ¿s, the slow scale characterizing transient changes of the
amplitudes and phases of the oscillations. Two corresponding dimensionless time variables can be de¯ned,
tf = t=¿f and ts = t=¿s. Thus we consider the amplitudes and phases to be functions of the slow variable ts
while the forcing functions GN depend on both tf and to because they depend on the ´N , (i = 1; 2; : : : )

´N = AN (ts) sin
³
2¼
!N
!
tf

´
+BN (ts) cos

μ
2¼
!N
!1
tf

¶
(4.63)

In terms of the dimensionless time variables, is

1

¿s

dAN
dts

=
¹

!N
GN cos!N t

and averaging over the fast variable we have

1

¿s

tf+¿fZ
tf

1

¿s

dAN
dt0s

dt0f =
¹

!N

1

¿f

t+¿fZ
tf

GN cos

μ
2¼
!N
!1
t0f

¶
dt0f

On the left-hand side, dAN=dt
0
s is assume to be sensibly constant in the interval ¿f and we have

1

¿s

dAN
dt0s

=
¹

!N¿f

t+¿fZ
tf

GN
¡
t0f ; t

0
s

¢
cos

μ
2¼
!N
!1
t0f

¶
dt0f (4.64)

Those parts of GN depending on t0s are taken also to be constant and if we now rewrite this equation in
terms of dimensional variables, we recover (4.58)a with ¿ = ¿f = 2¼=!. Similar calculations will produce
again (4.58)a. Note that due to the nonlinear coupling, the amplitude and phases of all modes normally
change on roughly the same scale as that for the fundamental mode; thus the single interval of averaging
works for all modes.

Krylov and Bogoliubov (1947) discuss procedures for carrying the results of time-averaging to higher
order in the small parameter characterizing the expansion. Here, however, the parameter is ¹, a Mach
number characteristic of the mean °ow. Hence, as emphasized in Chapter 3, extension to higher order
in ¹¹¹ is not justi¯ed without re-deriving the basic equations to account for higher orders in the
mean °ow from the beginning.
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With ¹GN replaced by FN , letting N ! n, and ¿sts = t, we ¯nd the usual forms of the time-averaged
equations,

dAn
dt

=
1

!n¿

t+¿Z
t

Fn cos!nt
0dt0

dBn
dt

= ¡ 1

!n¿

t+¿Z
t

Fn sin!nt
0dt0

(4.65)a,b

Inserting the de¯nitions of ts and tf in (4.63), and replacing N by n, we have the expression for ´n(t):

´n(t) = An(t) sin(!nt) +Bn(t) cos(!nt) (4.66)

In Chapter 7 we will use a continuation method to assess the ranges of parameters and other conditions
for which the ¯rst order equations give accurate results when compared with solutions to the complete
oscillator equations. In the development of the theoretical matters described in this book, the sets of ¯rst
order equations, (4.65)a,b, have been central. They remain extremely useful both for theoretical work and
for applications.

4.6. The Procedure for Iterative Solution to the Oscillator Equations

The oscillator equations (4.35) and (4.36) are not yet in a form that can be readily solved because the
functions FN , de¯ned by (4.32) contain not only p

0 but also the dependent variables ½0, T 0 and u0 in the
functions h and f . With the two-parameter expansion as the basis, the iteration procedure provides a means
for expressing FN in terms of p0 only to ¯rst order in ". Thus eventually the oscillator equations become a
system soluble for the modal amplitudes ´N (t). There are of course approximations required, but the orders
of their e®ects can always be estimated in terms of the parameters " and ¹. To appreciate how the procedure
is constructed, it is helpful always to keep in mind the correspondence between the smallness of " and ¹,
and the distortions they represent of the unperturbed classical acoustic ¯eld.

There are two classes of distortions or perturbations: Those represented by higher orders of ", arising
as nonlinear e®ects of ¯nite amplitudes,10 classi¯ed generally as energy transfer between modes; and those
measured by ¹, consequences of interactions, hence energy transfer, between the steady and unsteady ¯elds.
Each of those types of perturbations may be identi¯ed within the volume in question and at the boundary.
Quite generally, then, we must take into account perturbations of the classical acoustic ¯eld, associated with
three kinds of energy transfer: Linear transfer between the mean and °uctuating motions; nonlinear transfer
between modes, or mode coupling, independent of the average °ow ¯eld; and nonlinear energy transfer
between the mean °ow and °uctuating ¯elds. Those three kinds of energy transfer characterize, respectively,
the Problems I; II; III; and IV de¯ned in Section 3.3. The way in which we view and accommodate those
perturbations determines our choice of basis functions ÃN used in the modal expansion11 (4.27). In this
work we are not accounting for nonlinear energy transfer between the mean °ow and °uctuating ¯elds; i.e.
those contributions represented by terms O(¹"2), are ignored as in Section 3.4.

10Recall that in this work, nonlinear behavior is measured in terms of the amplitude " of the unsteady motions. It is
intrinsic to their derivation (Chapter 3) that the governing equations are linear in ¹, i.e. in the Mach number of the mean

°ow. Hence, with those equations, expansions and solutions cannot legitimately be carried further then ¯rst order in ¹. The
procedures developed here can be carried formally to higher order in ".

11The expansion is not adequate for treating Problem IV de¯ned in Section 3.3. In that case the basis functions must
include distortions of order ¹.
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4.6.1. Iteration on the Mach Number of the Mean Flow. To simplify the discussion here we
assume that the functions h and f contain only four sorts of terms: small, roughly of order ", but not strictly
ordered because they are independent of the °uctuating ¯eld; linear in the °uctuations, and hence of order
"; bilinear in the mean °ow speed and the °uctuations, and hence of order "¹; and nonlinear terms in the
°uctuations of order "2 and "3. The terms are additive, so the two functions can be written formally by
rearranging (3.63)a,b in the form

h = "(h00 + h10) + "¹h11 + "
2h20 + "

3h30

f = "(f00 + f10) + "¹f11 + "
2f20 + "

3f30
(4.67)a,b

where h00 and f00 do not depend on the unsteady ¯eld and hence constitute true forcing functions.

The terms h10 and f10 are linear in the °uctuations and independent of the mean °ow speed. They can
be immediately combined with the wave operator on the left-hand side of the oscillator equations, showing
that they represent attenuation and frequency shifts of classical acoustic modes. A particularly clear and
important example is the viscous acoustic boundary layer on a rigid impermeable wall discussed in Annex C
and Section 5.9.

Almost all of the processes responsible for linear instabilities in a combustion system are contained in
the functions h11 and f11 with possible contributions from h10 and f10. At this stage, it is not clear what
phenomena might be represented by the quadratic and cubic nonlinearities not included here. Detailed
investigations are required to address the question.

The special reason for retaining those terms shown in (4.67)a,b is the following. Within the ordering
procedure followed here, only the unperturbed classical modes Ãn are required to generate explicit equations
for the modal amplitudes with the oscillator equations (4.36). To see the problem, substitute (4.67)a in the
right-hand side of the wave equation (4.1)a for p0:

r2p0 ¡ 1

¹a2
@2p0

@t2
= "(h00 + h10) + "¹h11 + "

2h20 + "
3h30 (4.68)

The functions h0, h10, h11, : : : are found by identi¯cation with (3.58) and the de¯nitions of the brackets
given in Section A.6. While h11, h20 and h30 can be found explicitly with those formulas, h00 and h10 arise
from F0F0F0 and P0 and are determined by the models of processes other than the °uid mechanics covered by
the compressible Euler equations. The acoustic boundary layer, for example, contributes to h10 and f10; see
Section 6.5 for another example.

In the iterative procedure, the parameter ¹ de¯nes the iterations so that nonlinear behavior governed
by " is present at each stage to the order selected. The zeroth approximation is the classical acoustic ¯eld
given by the modal expansions with time dependent amplitudes:

p0O = ¹p
MX
0

´m(t)Ãm(r)

u0O = ¹a
2
MX
0

_́m(t)

°k2m
rÃm(r)

(4.69)a,b

The expansion for the velocity ¯eld has been chosen so that term by term the expansions satisfy the classical
acoustic momentum equation free of perturbations

¹½
@u0O
@t

+rp0O = 0 (4.70)
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Correspondingly, the values of density and temperature °uctuations are set by the adiabatic relations,

½

¹½
=

μ
p

¹p

¶1=°
;

T
¹T
=

μ
p

¹p

¶ °¡1
°

Set p = ¹p+ p0, ½ = ¹½+ ½0, T = ¹T + T 0 and expand to ¯nd to second order

½0O
¹½
=
1

°

p0O
¹p
¡ ° ¡ 1
2°2

μ
p0O
¹p

¶2

T 0O
¹T
=
° ¡ 1
°

p0O
¹p
¡ ° ¡ 1
2°2

μ
p0O
¹p

¶2 (4.71)a,b

Then the equation for the ¯rst approximation, p0(1), to p0 is found by setting the °uctuations of °ow
variables in h equal to their classical values and retaining only terms of appropriate order. To see how this
works, begin with (2.78)a,b. De¯ne the function G

G= ¹½r ¢ 1
¹½
F0F0F0III ¡ 1

¹a2
@P0III
@t

(4.72)

The form of G is unspeci¯ed, but we assume that the processes represented lead to terms of all orders retained
in the problem at hand. Then with the ordering parameters shown and the acoustic approximations (4.69)a,b
substituted for all °uctuations, indicated by the subscript ( )O, (3.63)a,b give

12

h : = hIII = " [G00 + G10]O + "¹

·
¡¹½r ¢ 1

¹½
f[M]g1 + 1

¹a2
@f[p]g1
@t

+
1

¹½
r¹½ ¢ rp0 + G11

¸
O

+ "2
·
¡¹½r ¢ 1

¹½
fMg2 + 1

¹a2
@fpg2
@t

+ G20

¸
O

+ "3
·
¡¹½r ¢ 1

¹½
fMg3 + G30

¸
O

(4.73)

f : = fIII = "

·
¹½

μ
@M0

@t

¶
10

¡ (F0F0F0)10
¸
O

¢ n̂+ "¹
·
¹½

μ
@M0

@t

¶
11

+ f[M]g1 ¡ (FFF0)11
¸
O

¢ n̂

+ "2
·
¹½

μ
@M0

@t

¶
20

+ fMg2 ¡ (FFF0)20
¸
O

+ "3
·
¹½

μ
@M0

@t

¶
30

+ fMg3 ¡ (FFF0)30
¸
O

(4.74)

Substitution of 4.73 and 4.74 into the oscillator equations (4.36),

Ä́N + !
2
N´N = ¡

¹a2r
¹prE2N

8<:
ZZZ
V

hIIIÃNdV +

ZZ
S

° fIIIÃNdS

9=; (4.75)

produces the equations for the amplitudes of the unperturbed modes.

Because the basis functions Ãm satisfy the boundary conditions for the unperturbed problem, p0O(r; t)
given by (4.69)a, also does not satisfy the actual boundary conditions|it is the zeroth approximation. It is
the ¯rst order approximation to the pressure ¯eld that satis¯es the correct boundary conditions, which are
¯rst order in ¹. Similarly, the unsteady velocity to zeroth order is given by the expansion (4.69)b and not
only doesn't satisfy the actual boundary conditions but is clearly an irrotational ¯eld, r£ u0O = 0.

12Second and third order terms are shown for completeness in (4.73) and (4.74); they will not be needed until the discussion
of nonlinear behavior in Chapter 7.
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4.6.2. Zeroth and First Order Solutions for the Eigenvalues and Basis Functions. On several
occasions, researchers in this ¯eld, and users of results, have seriously misunderstood the meaning of the
preceding procedure. Its purpose is to give the ¯rst order (in ¹) results for the time-evolution of modal
amplitudes (which to zeroth order are constant in the scheme outlined here) and the ¯rst order (in ¹)
formulas for the eigenvalues of steady oscillations when the perturbations are accounted for in ¯rst order
(in ") i.e. linear stability. The complex eigenvalues for steady waves are found by setting13

´N = ^́Ne
¡i¹akt

h = ĥe¡i¹akt

f = f̂e¡i¹akt

(4.76)a,b

Substitution in (4.75) gives

^́N
¡¡¹a2k2 + !2N¢ = ¡ ¹a2

¹pE2N

8<:
ZZZ
V

ĥÃNdV +

ZZ
S

° f̂ÃNdS

9=; (4.77)

Equation (4.77) is useful only if h and f are linear in the °uctuations, for then every term has e¡i¹akt as
a factor. Hence from (4.67)a,b only the terms h10, h11, f10 and f11 can be retained. The formula (4.77) for
the eigenvalues of the perturbed (actual) problem to ¯rst order is

(¹ak)2 = !2N +
¹a2

¹pE2N

8<:"
24ZZZ

V

ĥ10ÃNdV +

ZZ
S

° f̂10ÃNdS

35
+"¹

24ZZZ
V

ĥ11ÃNdV +

ZZ
S

° f̂10ÃNdS

359=;
(4.78)

This is essentially the result used widely for examining the linear stability of combustion chambers, the
subject of Chapter 6.

Now the question is|how can the eigenfunctions, the mode shapes, corresponding to (4.78) be com-
puted. In fact the ¯rst order modes have never been computed and are not required if one is satis¯ed with
perturbations to the order carried in (4.78). We return to (4.68) written now for steady waves, with the
exponential time dependence; so p0 = p̂e¡i¹akt; : : : . We also drop the terms h00, h20 and h30, giving the
equation for p̂1:

r2p̂(1) + k2p̂(1) = "ĥ10 + "¹ĥ11 (4.79)

Continuing the iteration procedure, the eigenfunction of zeroth order, Ãn and its gradientrÃn are substituted
in the right-hand side wherever p0 and u0 appear. Hence (4.79) becomes an inhomogeneous equation with
the right-hand side given, say H (r):

r2p̂(1) + k2p̂(1) = H (4.80)

with

H = "ĥ10 + "¹ĥ11 (4.81)

13Here ¹ak is the complex frequency in the actual motion, i.e. containing perturbations to ¯rst order from the basis (modal)
functions.
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This equation is most conveniently solved using the Green's function de¯ned in Section 4.1, leading to
the solution (4.20), here having the form

p̂(1)(r) = ÃN (r) +

1X0

n=0

Ãn(r)

E2n (k
2 ¡ k2n)

8<:
ZZZ
V

ÃnH dV +

ZZ
S

°ÃnFndS

9=; (4.82)

where Fn is the boundary condition extracted from (4.67)b consistent with the manner in which (4.67)a was
handled,

Fn = "f̂10 + "¹f̂11 (4.83)

Although (4.82) seems to satisfy the same boundary conditions as the classical mode shape|because
each term contains Ãn|that is not the case. The reason has to do with the behavior of the in¯nite series
representing the Green's function, equation (4.15). Near the boundary, the function behaves as a delta-
function and (4.82) does satisfy the correct boundary condition. The result is not proved here; a good
discussion of the matter may be found in Morse and Feshbach (1952). See Annex F for a simpler example.

Finally, the velocity ¯eld must be computed to ¯rst order by using the linear form of the momentum
equation (3.47)b:

¹½
@M0

@t
+rp0 = ¡f[M]g1 +FFF0 (4.84)

Again the zeroth order acoustic values are substituted in the right-hand side, and for steady waves, with the
mode shape for the pressure given by (4.82), we have for steady waves

i¹½¹akM0(1) = ¡rp̂(1) ¡ "¹f[M̂]g1 + "F̂̂F̂F10 + "¹F̂̂F̂F11 (4.85)

It is particularly important to notice that this ¯rst order ¯eld is in general not irrotational, possibly
the most commonly misunderstood result of the entire procedure developed here. Even though the basis
functions used in the zeroth order modal expansion expressed an irrotational ¯eld, the ¯eld computed to
¯rst order may be rotational. Put another way, the approximate procedure proposed and advocated here
really does have the potential for handling approximately a wide variety of realistic problems with minimal
di±culty. The unspeci¯ed function FFF0 is key in that respect. One has virtually complete freedom in choosing
that function. Especially, FFF0 can be constructed so thatM0 satis¯es a given boundary condition. For example,
one may require that the velocity should be normal to the boundary when there is incoming °ow, generally
accepted to be the case for a burning solid propellant (Flandro 1995a). This matter will be discussed further
in Section 6.9, where some aspects of the '°ow-turning problem' are examined.
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CHAPTER 5

Some Fundamentals of Acoustics

According to the experiences related in Chapter 1, combustion instabilities may be regarded as unsteady mo-
tions closely approximated as classical acoustical motions with perturbations due ultimately to combustion
processes. That view, initially an empirical conclusion, motivated the general form of the analytical frame-
work constructed in Chapter 4. Relatively little knowledge of classical acoustics is required to understand
and apply that construction formally.

However, interpretation of the details of observed behavior, and e®ective use of the theory to develop
accurate representations of actual motions in combustors require ¯rm understanding of the fundamentals
of acoustics. The purpose of this chapter is to provide a condensed discussion of the basic parts of the
subject most relevant to the main subject of this book. We therefore ignore those processes distinguishing
combustion chambers from other acoustical systems, and restrict attention to the Problem O de¯ned in
Sections 3.3.3 and 3.4.

5.1. The Linearized Equations of Motion; The Velocity Potential

We will be concerned here with unsteady motions in a pure non-reacting gas at rest. The governing
equations are (3.46) for Problem O, Classical Acoustics, leading to the corresponding wave equation and its
boundary condition, equations (3.52) with hO and fO given by (3.60)a,b for constant average density ¹½ and
written with dimensional variables:

r2p0 ¡ 1

¹a2
@2p0

@t2
= r ¢FFF0 ¡ 1

¹a2
@P0

@t

n̂ ¢ rp0 = ¡¹½@u
0

@t
¢ n̂¡FFF0 ¢ n̂

(5.1)a,b

In the absence of condensed material, the de¯nitions (A.34) and (A.58) of the unperturbed functions FFF and
P are:

FFF = r ¢$¿¿¿v +me ¡ uwe (5.2)

P=
R

Cv

h$
¿¿¿v ¢ r ¢ u¡r ¢ q¡Qe

i
+RTwe (5.3)

where
$
¿¿¿v : viscous stress tensor (force/area)

q : rate of conductive heat transfer (energy/area-s)

me : rate of momentum addition by external sources (mass-velocity/volume-s)

we : rate of mass addition by external sources (mass/volume-s)

Qe : rate of energy addition by external sources (energy/volume-s)

Thus the function FFF contains all processes causing changes of momentum of the gas, except for that due
to internal pressure di®erences; and P represents all sources of energy addition except that due to internal
work by the pressure, accounted for by the term pr ¢ u in equation (A.47). The linearized forms of the
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source terms will be constructed as required for speci¯c problems. For most of this chapter we will treat
only problems for which hO and fO vanish, giving the simplest equations for classical acoustics,

r2p0 ¡ 1

¹a2
@2p0

@t2
= 0

n̂ ¢ rp0 = 0
(5.4)a,b

With no sources in the volume or on the boundary, motions exist only for initial value problems in which
the pressure and its time derivative are speci¯ed at some initial time, t0.

In this case, the wave equation is used to describe freely propagating waves following an initial disturbance
or, when the boundary condition (5.4)b is enforced, the normal modes for a volume enclosed by a rigid
boundary. The condition n̂ ¢ rp0 = 0 means that the velocity normal to the boundary is zero, because the
acoustic velocity is computed from the acoustic momentum (3.46)b written in dimensional form with FFF = 0:

¹½
@u0

@t
= ¡rp0 (5.5)

so

n̂ ¢ rp0 = ¹½
@

@t
(n̂ ¢ u0)

from which

@

@t
(n̂ ¢ u0) = ¡1

¹½
n̂ ¢ rp0 = 0 (5.6)

Hence n̂ ¢ u0 = 0 always

We have just derived the equations for classical acoustics by specializing the general equations of unsteady
motion. It is also useful to arrive at the same conclusion in a slightly di®erent way, beginning with the
equations for inviscid motion in a homogeneous medium:

Conservation of Mass:
@½

@t
+r ¢ (½u) = 0 (5.7)

Conservation of Momentum: ½
@u

@t
+ ½u ¢ ru+rp = 0 (5.8)

Conservation of Energy: ½
@

@t

μ
e+

1

2
u2
¶
+ ½u ¢ r

μ
e+

1

2
u2
¶
+r ¢ (pu) = 0 (5.9)

Equation of State: p = ½RT (5.10)

Remove the kinetic energy from the energy equation by subtracting u¢ (momentum equation) to give

½
De

Dt
+ pr ¢ u = 0 (5.11)

where D
Dt =

@( )
@t + u ¢ r( ). Because all irreversible processes have been ignored the entropy of a °uid

element remains constant, Ds
Dt = 0, a result that follows directly by substituting the mass and energy

equations in the thermodynamic de¯nition of the entropy of an element:

½
Ds

Dt
= ½

De

Dt
¡ p

½

D½

Dt
= ¡pr ¢ u+ p

½
(½r ¢ u) = 0 (5.12)
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Taking the density to be a function of pressure and entropy, we can write for an isentropic process

d½ =

μ
@½

@s

¶
p

ds+

μ
@½

@p

¶
s

dp =

μ
@½

@p

¶
s

dp =
1

a2
dp (5.13)

where

a2 =

μ
@½

@p

¶
s

(5.14)

will turn out to be the speed of propagation of small disturbances, the 'speed of sound'. With this de¯nition,
we can rewrite the continuity equation (5.7) for the pressure:

@p

@t
+ ½a2r ¢ u+ u ¢ rp = 0 (5.15)

This result is quite general: in particular, its derivation did not involve using the special characteristics of a
perfect gas.

Alternatively, we may derive this equation for the special case of a perfect gas for which de = Cv(T )dT
and the equation of state is (5.10). Add T times (5.7) to C¡1v times (5.11) with de = CvdT ; then use (5.10)
to ¯nd

@p

@t
+

μ
1 +

R

CV

¶
pr ¢ u+ u ¢ rp = 0 (5.16)

But R = Cp ¡Cv, so R=Cv = ° ¡ 1 for a perfect gas. Comparison of (5.14) and (5.15) gives the formula for
the speed of sound in a perfect gas:

a2 =

r
°p

½
=
p
°RT (5.17)

For an isentropic process of a perfect gas, equation (5.13) can be integrated,

d½ = a2dp =
½

°p
dp

which gives

p = p0

μ
½

½0

¶°
(5.18)

where ½0, p0 are constant reference values.

We may now eliminate the density from the momentum equation (5.8) to ¯nd

@u

@t
+ u ¢ ru+ 1

½0

μ
p0
p

¶1=2
rp = 0 (5.19)

Finally, we obtain the wave equation for the pressure by di®erentiating (5.16) with respect to time and
substituting (5.19) and a2 = °p=½:

@2p

@t2
¡ a20

p

p0
r ¢

· rp
(p=p0)1=°

¸
= °pr ¢ (u ¢ ru)¡ ° @p

@t
r ¢ u¡ @

@t
(u ¢ rp) (5.20)

The boundary condition is de¯ned by taking the component of (5.19) normal to the boundary:

n̂ ¢ rp = ¡
μ
p

p0

¶1=2
½0

·
n̂ ¢ @u

@t
+ n̂ ¢ r (u ¢ ru)

¸
(5.21)
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Equation (5.20) and its boundary condition are easily linearized by assuming that the gas is at rest and
that the °uctuations are all of the same order. To second order in the °uctuations we ¯nd

@2p0

@t2
¡ a20r2p0 =

½
p0r ¢ (u0 ¢ ru0)¡ ° @p

0

@t
r ¢ u0 ¡ @

@t
(u0 ¢ rp0)

¾
+ ½0

(
(° ¡ 1)

μ
p0

p0

¶
r2
μ
p0

p0

¶
¡
μ
r p

0

p0

¶2) (5.22)

n̂ ¢ rp0 = ¡½0 @u
0

@t
¢ n̂¡ ½0

½
1

°

μ
p0

p0

¶
@u0

@t
¢ n̂+ n̂ ¢ (u0 ¢ ru0)

¾
(5.23)

Equations (5.4)a,b are recovered when the second order terms are neglected and u0 ¢ n̂ = 0.

5.1.1. The Velocity Potential. It is often convenient to introduce scalar and vector potentials © and
A from which the velocity is found by di®erentiation (Bachelor, 1967):

u = ¡r©+r£A
With this representation, the dilatation and curl (rotation) of the velocity ¯eld are separated:

r ¢ u0 = ¡r2© ; r£ u0 = r£r£A (5.24)

In general, both potentials are required if the mean velocity is non-zero or sources are present in the °ow.
The boundary conditions may also induce non-zero rotational °ow. Here only the scalar potential is required
for small amplitude motions because in that limit, the classical acoustic momentum is (5.5); taking the curl
with uniform average density gives

¹½
@

@t
(r£ u0) = ¡r£ (rp0) = 0

Hence if r£ u0 = 0 initially, it remains so and we can take A = 0.

The acoustic equations for momentum, (3.46)b and (3.46)d in dimensional variables with FFF0 = P0 = 0
are

@u0

@t
+
1

¹½
rp0 = 0

@p0

@t
+ °¹½r ¢ u0 = 0

(5.25)a,b

Di®erentiate the ¯rst with respect to time and insert the second to give the wave equation for the velocity
°uctuation,

@2u0

@t2
¡ ¹a2r2u = 0 (5.26)

Now substitute u0 = ¡r© to give
r
·
@2©

@t2
¡ ¹a2r2©

¸
= 0

which is satis¯ed if the terms in brackets are a function of time only, so

@2©

@t2
¡ ¹a2r2© = f(t) (5.27)

The right-hand side represents a source ¯eld for the potential, uniform over all space. We may absorb f(t)

by de¯ning a new potential ©1 = © +
R t
dt0
R t0
f(t1)dt1 and relabel ©1 ! © to ¯nd1 the wave equation for

©:

@2©

@t2
¡ ¹a2r2© = 0 (5.28)

1Alternatively, one can reason that when the velocity is found by taking the gradient of ©+
RR
f , the term in f contributes

nothing and hence can be simply dropped. The desired solution is una®ected by setting f = 0.
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When the velocity potential is used, the acoustic velocity is calculated with A = 0

u0 = ¡r© (5.29)

The acoustic pressure is found by setting u0 = ¡r© in the momentum equation (5.25)a, giving

r
μ
¡@©
@t
+
1

¹½
p0
¶
= 0

This solution is satis¯ed if the terms in parentheses are a function of t only, g(t), so

p0 = ¹½

μ
@©

@t
+ g(t)

¶
(5.30)

As above, we may de¯ne a new potential ©(t)+
R t
g(t0)dt0 = ©1(t) and hence absorb g(t) so we may rede¯ne

©1 ! © and

p0 = ¹½
@©

@t
(5.31)

The conditions under which the acoustic ¯eld can be completely described by a velocity potential alone
are precise and, so far as problems involving combustion are concerned, very restrictive. Any analysis or
theory based on the velocity potential alone must also include demonstration that the vector potential can
be ignored, i.e. set equal to a constant or zero. In general, the presence of a non-uniform mean °ow ¯eld and
various kinds of sources in the problems we are concerned with in this work, require that the velocity ¯eld
be derived from both scalar and vector potentials. Use of the unsteady pressure as the primary °ow variable
provides a simpler approach for many purposes, but, as we will ¯nd later, apparently possesses unavoidable
fundamental limitations.

5.2. Elementary Solutions to the Linear Wave Equation

The basic property of linear problems is that the principle of superposition applies. Solutions for com-
plicated problems can often be constructed by superposing elementary solutions. Probably the most serious
practical di±culty in the use of most methods of solution arises with the need to ¯nd solutions for volumes
and boundaries not being simple shapes. Hence the basic solutions discussed brie°y in this section are rarely
usable directly. However, with their simplicity comes the opportunity to understand certain properties of
wave motions generally.

5.2.1. Plane Waves. Choose x to be the direction of propagation. Hence the wave fronts, or planes
of constant phase, are normal to the x-axis. The wave equation is

@2p0

@t2
¡ ¹a2 @

2p0

@x2
= 0 (5.32)

which can be factored in the form when ¹a is constant,μ
@

@t
+ ¹a

@

@x

¶μ
@

@t
¡ ¹a @

@x

¶
p0 = 0 (5.33)

A general solution has the form

p0(x; t) = f(x+ ¹at) + g(x¡ ¹at) (5.34)

where:

f(x+ ¹at) represents a wave traveling to the left

g(x¡ ¹at) represents a wave traveling to the right
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The density follows from the linear relation for small amplitude isentropic motions,

½0 =
¹p

°

p0

¹p
=
1

¹a2
[f(x+ ¹at) + g(x¡ ¹at)] (5.35)

and the velocity follows upon integration of the linear momentum equation:

@u0

@x
= ¡ 1

°¹p

@p0

@x
=

¹a

°¹p2
[f 0(x+ ¹at)¡ g0(x¡ ¹at)] (5.36)

Hence

u0 = ¡ ¹a

°¹p
[f(x+ ¹at) + g(x¡ ¹at)] (5.37)

The important relations follow from comparison of (5.34) and (5.37):

For a wave traveling to the right: u0 =
p0

¹½¹a

For a wave traveling to the left: u0 = ¡ p
0

¹½¹a

(5.38)a,b

Interpretation of these formulas is easily established by considering a compressive wave, an abrupt increase
of pressure. If the front travels to the right into a gas at rest, u0 is positive, i.e. to the right. Due to the
acceleration of gas by the rising pressure, the motion of the gas is in the same direction as the progression
of the front. Thus, a compressive disturbance traveling to the left is followed by leftward motion of the gas.
Similarly, (5.38) show that an expansion or rarefaction disturbance produces motion of the gas opposite to
that of the wave.

The initial value problem illustrates well the use of the general solution (5.34).

Problem: Find the subsequent motion given the initial conditions on the distribution of
pressure and its rate of change:

p0(x; 0) = P (x)

@p0

@t
(x; 0) = Q(x)

(t = 0) (5.39)a,b

Solution to the problem means ¯nding the functions f(x+ ¹at) and g(x¡ ¹at) by applying (5.39) to (5.34) to
give

f(x) + g(x) = P (x)

¹a [f 0(x)¡ g0(x)] = Q(x) (5.40)

Simple manipulation (see, for example, Sneddon 1957) leads to

p0(x; t) =
1

2
[P (x+ ¹at) + P (x¡ ¹at)] + 1

2¹a

x+¹atZ
x¡¹at

Q(»)d» (5.41)

This result is a general solution to the initial value problem. As an illustration, consider an initial stationary
pulse of pressure, so @p=@t = 0, Figure 5.1. Because of the pressure di®erences on both edges, for t > 0, the
pulse splits into two pulses traveling to the left and right, each having amplitude equal to half the initial
amplitude. Both the pressure and velocity disturbances are non-zero within the pulses and zero outside.

For applications to waves in a chamber, the ability to satisfy boundary conditions is essential. The
solution (5.34), for example, can be used to represent incidence and re°ection from a planar surface bounding
a semi-in¯nite space and an initial rectangular pulse, Figure 5.2. Now the initial condition is (5.39) with
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Figure 5.1. Wave motions subsequent to an initial pressure pulse at rest.

Figure 5.2. Re°ection of a pressure pulse from a rigid surface.

Q = 0 and P (x; 0) representing a rectangular pulse located some distance to the right of the surface at x = 0.
The solution (5.41) must satisfy the boundary condition at x = 0 for all times:

p0(0; t) = 0

@p0

@t
(0; t) = 0

(x = 0; t ¸ 0) (5.42)

Note that the `surface' here is not a physically rigid surface but has been chosen as a convenience to require
that the pressure disturbance always vanish there. The solution (see Sneddon 1957) is

p0(x; t) =

8<:
1
2 [P (x+ ¹at) + P (x¡ ¹at)] x ¸ ¹at
1
2 [P (x+ ¹at)¡ P (x¡ ¹at)] x · ¹at

(5.43)
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This result represents the wave system arising, the splitting of the initial pulse and its image system in the
space to the left of x = 0. Thus the formalism has led to a special case of the method of images. The
behavior of pulses in a combustor is a practical application of this method.

5.2.2. Spherical Waves. Although it is often helpful to regard processes generating pressure waves
as distributions of point sources, we will rarely use this point of view explicitly, because we will usually deal
directly with continuous distributions (the functions h introduced Section 3.4). Nevertheless it is important to
understand the fundamental di®erences between elementary planar and spherical waves. The wave equation
for spherical waves is (5.4)a written in spherical coordinates with no dependence on the polar and azimuthal
angles (e.g. see Sneddon 1957, Landau and Lifschitz 1959, and many other standard references):

@2p0

@t2
¡ ¹a2 1

r2

μ
r2
@p0

@r

¶
= 0 (5.44)

This equation is transformed to the equation for planar waves by writing p0 as

p0(r; t) =
1

r
Ã(r; t) (5.45)

Then (5.44) becomes

@2Ã

@t2
¡ ¹a2 @

2Ã

@r2
= 0 (5.46)

Hence a general solution for the pressure has the form

p0(r; t) =
1

r
[F (¹at+ r) +G(¹at¡ r)] (5.47)

where:

F (¹at+ r) represents an inward traveling wave

G(¹at¡ r) represents an outward traveling wave

Corresponding to the initial value problem solved in the preceding section, we seek a solution subject to
the initial conditions:

p0(r; 0) = V (r)

@p0

@t
(r; 0) =W (r)

(t = 0; all r) (5.48)

We required p0 to be ¯nite at the origin, r = 0, so

[p0(r; t)]r!0 = Limr!0

1

r
[F (¹at+ r) +G(¹at¡ r)] <1

= Lim
r!0

1

r
[F (¹at) +G(¹at)] <1

This condition is satis¯ed only if
G(») = ¡F (»)

and the general solution takes the form

p0(r; t) =
1

r
[F (¹at+ r) + F (¹at¡ r)] (5.49)

To satisfy the initial conditions (5.48) the function F (») must satisfy the two equations

F (»)¡ F (¡») = »V (»)
F 0(»)¡ F 0(¡») = 1

¹a
»W (»)

(5.50)a,b

SOME FUNDAMENTALS OF ACOUSTICS 

5 - 8 RTO-AG-AVT-039 

 

 



If the medium is initially at rest everywhere, then W = 0. Corresponding to (5.43), the solution for
spherical waves is

p0(r; t) =
1

2r

(
(¹at+ r)V (¹at+ r)¡ (¹at¡ r)V (¹at¡ r) (r < ¹at)

(¹at+ r)V (¹at+ r) + (r ¡ ¹at)V (r ¡ ¹at) (r > ¹at)
(5.51)

For example, suppose that a small spherical region of radius r0 about the origin has uniform increased
pressure ±p initially, so

V (») =

½
±p 0 < » · r0
0 r0 < »

Then (5.51) gives

p0(r; t) =
1

2r
(¹at¡ r)£

½
±p 0 < (¹at¡ r) · r0
0 (¹at¡ r) < »

p0(r; t) = ¡ 1

2r
(r ¡ ¹at)£

½
±p 0 < (r ¡ ¹at) · r0
0 (r ¡ ¹at) < »

(5.52)

In Figure 5.3 this result is compared with the corresponding result for the rightward traveling wave generated
by an initially pressurized region at the origin. The spherical wave propagating outward consists of a
triangular compressive wave followed immediately by a triangular rarefaction wave. The rarefaction is
generated by re°ection at the origin of the compressive wave propagating inward from the initially pressurized
region. That inward traveling wave is the counterpart of the leftward traveling wave not shown here, for
the planar case. Upon re°ection at the origin, the compressive wave becomes a rarefaction wave, as for the
re°ection of planar waves illustrated in Figure 5.2.

Figure 5.3. Comparison of spherical and planar waves produced by regions of increased pressure.
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5.2.3. Cylindrical Waves. Cylindrical waves possess a special peculiarity: They always have a wake.
The reason can be seen from Figure 5.4 showing the way in which spherical, planar and cylindrical waves
are produced by point sources. The solid concentric circles represent wavefronts generated by sequences of
in¯nitesimally short pulses. A single point source generates purely circular fronts in three-dimensions. An
in¯nite °at sheet of uniformly and continuously distributed point sources emitting in phase produces planar
waves.

Figure 5.4. Generation of spherical, planar and cylindrical waves by point sources.

Cylindrical waves are generated by an in¯nite linear array of point sources. When an observation is
made, the ¯rst disturbance observed is that emitted by the closest point on the line. But no matter where
the observer is located, signals arrive at all times, the later signals arriving from sources further away in the
line. The pressure at an observation point is computed by superposing the signals from the entire linear
array:

p0(½; t) =

1Z
¡1

G(¹at¡ r)
r

dz (5.53)

where ½, r, and z are de¯ned in the sketch. With r2 = ½2+ z2 and setting » = ¹at¡ r, d» = ¡dr, the integral
can be rewritten to give

p0(½; t) = 2

1Z
¡1

G(»)d»p
(» ¡ ¹at)2 + ½2 (5.54)

For large t,

p0(½; t!1)! 1

¹at

»0¡¹atZ
»0

G(»)d» (»0 < » < »0 + ±») (5.55)

Hence the observed signal for a cylindrical wave can never be discrete: there is always a `wake'. Morse and
Feshbach (1952) and Morse and Ingard (1968) give extended discussions, including solutions to the wave
equation for cylindrical waves.

5.3. An Estimate of the In°uence of Internal Heat Conduction on the Propagation of
Acoustic Waves

Acoustic waves impress gradients of velocity and temperature on the medium, therefore inducing viscous
stresses and heat conduction. Those processes necessarily cause dissipation of mechanical energy, the waves
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decay in space and time, and the entropy of the medium increases. However, for many purposes and over
broad ranges of conditions we may neglect those dissipative in°uences. The purpose of this section is to
discuss one simple way to estimate the e®ects of heat conduction on steady sinusoidal waves. The e®ects of
internal viscous stresses may be treated in similar fashion.

With Fick's law for heat conduction, the linearized term r ¢ q0 in (5.3) is
r ¢ q0 = r ¢ (¡¸rT 0)

For one-dimensional motions along the x-axis, and constant coe±cient of heat conduction, ¸c, we have

r ¢ q0 = ¡¸c @
2T 0

@x2
(5.56)

The linearized form of the energy equation 3.41 is therefore

¹½Cv
@T 0

@t
+ ¹p

@u0

@x
= ¸c

@2u0

@t2
(5.57)

With W 0; FFF0 = 0 and in dimensional form, the acoustic continuity and momentum equations (3.40) and
(3.41) for one-dimensional motions in a source-free medium at rest are:

@½0

@t
+ ¹½

@u0

@x
= 0

¹½
@u0

@t
+
@p0

@x
= 0

(5.58)a,b

Substitute (5.58) in (5.57) to give

¹½Cv
@T 0

@t
¡ ¸c @

2T 0

@x2
¡ ¹p

¹½

@½0

@x
= 0 (5.59)

Because energy is dissipated, the motions are not isentropic so we cannot assume p0 » ½0. However we can
eliminate the pressure as a dependent variable by taking it as a function of density and temperature, and
writing

p0 =
μ
@p

@½

¶
T

½0 +
μ
@p

@T

¶
½

T 0 (5.60)

Now combine (5.58)a with (5.60) to form a second equation in the density and temperature °uctuations:

@2½0

@t2
¡
μ
@p

@½

¶
T

@2½0

@x2
¡
μ
@p

@T

¶
½

@2T 0

@x2
= 0 (5.61)

To illustrate the point, it is simplest to consider the case of sinusoidal traveling waves, for which the
°uctuations are2

½0 = ½̂ei(kx¡!t) ; T 0 = T̂ ei(kx¡!t) (5.62)

and k is the wavenumber. In general, k and ! are complex quantities. Substitution in (5.59) and (5.61)
gives the pair of simultaneous algebraic equations·

i! +
¸c
¹½Cv

k2
¸
T̂ ¡ i

·
¹p

¹½2Cv
k2
¸
½̂ = 0"

k2
μ
@p

@T

¶
¹½

#
T̂ ¡

·
!2 ¡ k2

μ
@p

@½

¶
¹T

¸
½̂ = 0

(5.63)

2We will consistently use e¡i!t for harmonic time dependence. Thus sinusoidal wave traveling to the right, in the positive
x-direction, will have the form ei(kx¡!t), a function of kx¡ !t = k(x¡ ¹at), as suggested by (5.34).
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Non-trivial solutions exist for T̂ and ½̂ only if the determinant of coe±cients vanishes, giving the dispersion
relation

i

(
k2

"μ
@p

@½

¶
¹T

+
¹p

¹½2Cv

μ
@p

@T

¶
¹½

#
¡ !2

)
+
¸c
¹½Cv

k2

!

½
k2
μ
@p

@½

¶
¹T

¡ !2
¾
= 0 (5.64)

To interpret this result, imagine that plane waves traveling according to (5.62) are generated by an
oscillating boundary perpendicular to the x-axis, at x = 0. Therefore we take the frequency ! to be real
and given. Solution to (5.64) will give the real and imaginary parts of k2 and hence of k, say k = kr + iki.
Then the spatial part of the exponentials in (5.63) become

eikx = eikrxe¡kix

Consequently, k¡1i is the characteristic length for propagation in space: the amplitude of the traveling wave
is reduced to 1=e of its initial value after traveling a distance x = ki. Planes of constant phase travel with
the speed of sound, the `phase velocity' in this case, and the real part of k is related to the frequency and
wavelength ¸ by:

kr =
¹a

!
=
2¼

¸
(5.65)

If heat conduction is ignored, ¸c = 0 and, because ! is real, so also is the wavenumber,

k = !

"μ
@p

@½

¶
¹T

+
¹p

¹½2Cv

μ
@p

@T

¶
¹½

#¡1=2
(5.66)

Thus the waves travel with unchanging amplitude and wavelength.

Rather than examine the behavior when heat conduction is not ignored, let us determine the conditions
under which its in°uence is negligibly small. We can estimate the conditions by requiring that the term
representing heat conduction on the right-hand side of (5.57) should be much smaller than, say, the ¯rst
term on the left-hand side:

¸c
@2T̂ 0

@x2
¿ ¹½Cv

@T 0

@t
or, with (5.62), ¯̄̄

¸c
¡¡k2¢ T̂ ¯̄̄¿ ¯̄̄

¹½Cv(i!)T̂
¯̄̄

Hence we require μ
¸c
¹½Cv

¶ jkj2
!
¿ 1 (5.67)

If this condition is satis¯ed, then the real part of (5.64) is negligibly small, holds, and the speed of sound is

¹a =
!

k
=

μ
@p

@½

¶
¹T

+
¹p

¹½2Cv

μ
@p

@T

¶
¹½

μ
¸c
¹½Cv

jkj2
!
! 0

¶
(5.68)

Thermodynamics for a two-state system gives the resultμ
@p

@½

¶
¹s

=

μ
@p

@½

¶
¹T

+

μ
@p

@T

¶
¹½

μ
@T

@½

¶
¹s

=

μ
@p

@½

¶
¹T

+
¹p

¹½Cv

μ
@p

@T

¶
¹½

so

¹a =

sμ
@p

@½

¶
¹s

=

q
°R ¹T

μ
¸c
¹½Cv

jkj2
!
! 0

¶
(5.69)

for negligible internal heat conduction and isentropic °ow.
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For the inverse limit when ¸c
¹½Cv

jkj2
! is inde¯nitely large, (5.64) gives

¹a =
!

k
=

sμ
@p

@½

¶
¹T

=

q
°R ¹T

μ
¹½Cv
¸c

!

jkj ! 0

¶
(5.70)

for a perfect gas. This is the limit for in¯nitely fast internal heat conduction, so the process of sound
propagation is isothermal.

To be speci¯c, consider sound waves in air at ambient conditions:

¸c = 0:73£ 104 cal

g¡±K ¹a = 3£ 104 cm

s

¹½ = 1:2£ 10¡2 g

cm3
Cv = 0:17

cal

g¡±K
Hence μ

¸c
¹½Cv

¶ jkj2
!
=

¸c
¹½Cv¹a2

! = 4£ 10¡10!

which less than .01 for ! < 25 £ 106s¡1. This result con¯rms, and explains, the familiar fact that acous-
tic waves in the audio range 10{20,000 s¡1 propagate isentropically under everyday circumstances. The
in°uences of viscous stresses can be estimated in a similar manner.

This conclusion also holds for combustion chambers if the amplitudes of waves are not too large. It
is a great simpli¯cation that we will ignore internal viscous stresses and heat conduction in practically
all problems of combustion instabilities. However, if the waves grow to large amplitudes (`large' must
be characterized in the particular problem at hand) then the losses|referred to as `shock losses'|due to
viscous stresses and heat conduction may not be negligible. For problems of combustion instabilities, those
circumstances are more likely to arise in combustors having higher densities of energy release, notably liquid
and solid rockets.

5.4. Energy and Intensity Associated with Acoustic Waves

In this section we establish de¯nitions of energy density and the intensity|i.e. the °ow of energy|
for classical acoustic waves. The de¯nitions are only approximate under the more complicated conditions
existing in a combustor but the general ideas remain.

Following Landau and Lifschitz (1959) we return to the basic energy equation (5.9) for inviscid °ow.
The idea is to establish a connection between the rate of change of something (the energy) within a volume
and the °ow of something (the intensity) through the closed boundary of that volume. Integrate the energy
equation over a volume ¯xed in space; and apply Gauss' theorem to the terms on the right-hand side:

@

@t

Z
½

μ
e+

u2

2

¶
dV = ¡

Z
r ¢

·
½u

μ
e+

u2

2

¶¸
dV ¡

Z
r ¢ (pu) dV

= ¡
ZZ
°
μ
e+

u2

2

¶
½u ¢ dS¡

ZZ
° pu ¢ dS

This relation must be written to second order in the isentropic °uctuations; for example,

½e = ¹½¹e+ ½0
·
@

@½
(½e)

¸
¹½

+
1

2
½
02
·
@2(½e)

@½2

¸
¹½¹e

+ : : :

= ¹½¹e+ ½0¹k +
1

2

½
02

¹½¹a2
+ : : :
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Eventually the result is

@

@t

Z
"dV = ¡

ZZ
° "u ¢ dS¡

ZZ
° p0u0 ¢ dS (5.71)

where

" =
1

2

p
02

¹½¹a2
+
1

2
¹½u

02 (5.72)

is the acoustic energy per unit volume and p0u0 is the intensity, the °ux of acoustic energy through an area
normal to the direction of propagation (energy/area-s).

The ¯rst term on the right-hand side of (5.71) is third order in the °uctuations and must be dropped.
Hence we have the important result interpreted in Figure 5.5.

@"

@t
+r ¢ (p0u0) = 0 (5.73)

V

S

n

uε

ε
^

Figure 5.5. Acoustic energy and intensity.

Table 5.1 summarizes the basic properties of plane sinusoidal waves. Brackets h i denote time averages
over some interval ¿ ; for any scalar function Ã, its time average is

hÃi = 1

¿

t+¿Z
t

Ãdt0

The dimensions of intensity are energy/sec.-area. Physical devices, such as piezoelectric microphones, can
be built to measure intensity directly: the output, in volts, say, is proportional to the intensity of a wave
incident upon the sensitive element. But the response of the human ear is not linear with intensity; the
output (i.e., what one \hears") is more closely proportional to the logarithm of intensity. That is, what
seems to be a doubling of \loudness" corresponds to a ten-fold increase of intensity. To avoid use of large
numbers, it has therefore become the practice to use a logarithmic scale for expressing acoustic energies and
intensities.

A sound wave is one decibel more intense if its intensity is increased by 10
p
10. The di®erence of level for

two sound waves, in decibels, is de¯ned to be

dB = 10 log10

μ
I2
I1

¶
(di®erence in level) (5.74)

It is conventional to choose as an absolute basis the intensity of a wave which is barely audible at 1000 Hz.
The rms amplitude of such a wave is

dB = 10 log10

μ
I

I0

¶
(level)
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where

I0 =
(2£ 10¡4)2

½0a0
:

Thus,

dB = 20 log
prms

2£ 10¡4 = 74 + 20 logprms (5.75)

With the numbers given above, the relation between dB and pressure is shown in Figure 5.6.

10

175

PRESSURE,   psi

150

125

100

10 10 1-3 -2 -1

dB

Figure 5.6. A graph of decibels versus pressure (lbs./in
2
).

Finally it is interesting to see the frequency response for the human ear, sketched below.

0
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50

100

20

dB

100 1000 10000          20000

THRESHOLD  OF  PAIN 

 THRESHOLD OF HEARING

AUDIBLE   RANGE

FREQUENCY, Hz

Figure 5.7. A graph showing the audible range of hearing for a typical human subject
(adapted from Morse 1948).

Note that 1 dyne=cm2 = 74 dB and one atmosphere is 106 dynes/cm2. From these two ¯gures it is clear
that any steady wave which can be heard without pain has a su±ciently small amplitude that linearization
of the equations of motion is reasonable.
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Table 5.1. Results for Rightward and Leftward Traveling Sinusoidal Waves.

Wave to Right Wave to Left

p0+ = p̂+e¡i(!t¡kx) p0¡ = p̂¡e¡i(!t+kx)

u0+ = p̂+e
¡i(!t¡kx) u0¡ = û¡e

¡i(!t+kx)

û+ =
p̂+
½0a0

û¡ = ¡ p̂¡
½0a0

"+ =
p
02
+

½0a0
"¡ =

p
02
¡

½0a0

l+ = p
0
+u

0
+ =

p
02
+

½0a0
l¡ = p0¡u0¡ = ¡ p

02
¡

½0a20

h( )i = 1
¿

t+¿R
t

( )dt0

hp02+i = 1
2 p̂
2
+ hp02¡i = 1

2 p̂
2
¡

h"+i = p̂2+
2½0a20

h"¡i = p̂2¡
2½0a20

hl+i = p̂2+
2½0a0

hl¡i = p2¡
2½0a0

More generally: p0 = p̂e¡i(!t+') ; ¹u0 = ûe¡i(!t+Ã)

h"i = 1
4

h
jp̂j2
½0a20

+ ½0jûj2
i
= 1

4(p
0p

0¤ + ½0u0 ¢ u0¤)

hli = 1
2 jp̂jjûj cos('+ Ã) = 1

4(p
0¤u0 + p0u

0¤)

where ( )¤ denotes complex conjugate.

5.5. The Growth or Decay Constant

In practice, due to natural dissipative processes, freely propagating waves and oscillations in a chamber
will decay in space and time if there is no external source or energy. If there is an internal source of energy,
waves may be unstable, having amplitudes increasing in time. The basic measure of the growth or decay of
waves is the constant appearing in the exponent describing the sinusoidal spatial and temporal dependence
of small amplitude waves, the de¯nitions (5.62). For `standing' or `stationary' waves in a chamber, the
wavelength, and hence wavenumber, is real and constant, but the frequency is complex:

! ! ! + i® (5.76)

and the variables of the motion have the behavior in time

e¡i(!+i®)t ´ e¡i!te®t (5.77)

For the de¯nition (5.76), ® < 0 means that the waves decay.
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Normally in practice,
¯̄
®
!

¯̄ ¿ 1, implying that the fractional change of amplitude is small in one cycle
of the oscillation. Thus when time averaging is carried out over one or a few cycles, e®t may be taken as
constant, and the average energy density computed with (5.72) and (5.73), is

h"i = e2®t 1
4

· jp̂j2
¹½¹a2

+ ¹½jûj2
¸

(5.78)

Hence we have the important interpretations which serve as the basis for measuring values of ®:

® =
1

jp̂j
djp̂j
dt

® =
1

2h"i
dh"i
dt

(5.79)a,b

The sign of ® is a matter of de¯nition and has no fundamental signi¯cance. Thus, if the time dependence is
taken to be ei(!+i®)t then ® < 0 means that waves are ampli¯ed.

The formulas (5.79)a,b de¯ne local values of the growth constant. It is often more meaningful to know
the value for the entire volume of the system in question, found by using

R h"idV rather than h"i:

® =
1

2
R h"idV d

dt

Z
h"idV (5.80)

5.6. Boundary Conditions: Re°ections from a Surface

In the absence of other sources, the linearized boundary condition on the pressure at a surface is the
¯rst term of (5.1), here in dimensional form:

n̂ ¢ rp0 = ¡¹½@u
0

@t
¢ n̂ (5.81)

The acoustic surface impedance za is de¯ned by

u0 ¢ n̂ = 1

za
p0 (5.82)

and the acoustic surface admittance ya is the reciprocal of the admittance:

ya =
1

za
(5.83)

Then for harmonic motions, p0 = p̂e¡i!t, we can rewrite (5.81) as

n̂ ¢ rp0 = ¡i ¹½!
za
p0 = ¡i¹½!yap0 (5.84)

The units of impedance are (pressure/velocity) ´ (density £ velocity). Hence for the medium, the product ¹½¹a
is called the characteristic impedance, having value 42 g/cm2-s. for air at standard conditions. Dimensionless
forms are de¯ned as:

acoustic impedance ratio: ³a =
za
¹½¹a

acoustic admittance ratio: ´a =
1

³a

(5.85)

In general, impedance functions are complex; the real and imaginary parts are called:

Re(za) : acoustic resistance

Im(za) : acoustic reactance
(5.86)
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From (5.82) and (5.83), the surface admittance is

ya =
u0 ¢ n̂
p0

and the dimensionless surface admittance ratio is

´a = ¹½¹aya =
¹½¹a2

¹p

M0 ¢ n̂
p0=¹p

= °
M 0
n

p0=¹p
(5.87)

where M 0
n is the °uctuation of the Mach number normal to the surface.

If the surface is impermeable, the velocity at the surface is the velocity of the surface itself. However, if
the surface is permeable, or, as for a burning propellant, mass departs the surface, then the impedance and
admittance functions are de¯ned in terms of the local velocity °uctuations presented3 to the acoustic ¯eld,
no matter what their origin.

Quite generally then, the admittance function represents the physical response of processes at the surface.
It is of course an assumption that in response to an impressed pressure °uctuation, the °uctuation of velocity
normal to the surface is proportional to the pressure change. Alternative de¯nitions of quantities representing
the acoustic boundary condition at a surface will arise when we consider special situations.

5.6.1. Re°ections of Plane Waves at a Surface. Con¯nement of waves in a chamber to form modes
necessarily involves re°ections at the boundary surfaces. In solid propellant rockets the processes causing
re°ection are complicated, being responsible not only for con¯ning the waves but also are the dominant
means for transferring energy to the oscillating ¯eld in the chamber. Even at inert surfaces, more than the
simple process of re°ection is involved. Viscous stresses and heat conduction in the region adjacent to a
surface cause dissipation of energy, discussed in Section 5.9.

Here we assume that all activity at the surface can be represented by a complex impedance or admittance
function. The calculation follows that discussed by Morse and Ingard (1968). We consider re°ection of a
planar wave, Figure 5.8, allowing for the possibility of unequal angles of incidence and re°ection; for simplicity
we assume that there is no transmitted wave. The incident wave travels in the direction de¯ned by the unit
vector k̂i and the wavenumber vector is

k =
2¼

¸
k̂ (5.88)

We can represent the acoustic pressure and velocity in this plane wave by

p0(r; t) = gi(ki ¢ r¡ !t)

u0(r; t) =
k̂r
¹½¹a
gi(ki ¢ r¡ !t)

(5.89)a,b

Similar formulas hold for the re°ected wave with ki replaced by kr lying in the direction de¯ned by the
unit vector k̂r. The representations are therefore those shown in Table 5.2

Because the frequency is the same for the incident and re°ected waves, so are the magnitude of the
wavenumber:

jkij = !

¹a
= jkrj = k (5.90)

3For burning propellants, care must be taken with de¯nition of the surface at which the boundary condition is imposed.
Usually the velocity at the `edge' of the combustion zone in the gas phase is the most convenient choice. Thus the admittance
presented to the acoustic ¯eld is not precisely that at the burning surface itself.
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Figure 5.8. Re°ection of a plane wave.

Table 5.2. Some Formulas for Incident and Re°ected Plane Waves.

Incident Wave Re°ected Wave

p0i = gi(»i) p0r = gr(»r)

u0i = k̂i
1
¹½¹agi(»i) u0r = k̂r

1
¹½¹agr(»r)

»i = ki ¢ r¡ !t »r = kr ¢ r¡ !t

= k(x sin μi ¡ y cos μi)¡ !t = k(x sin μr ¡ y cos μr)¡ !t

Re°ection is assumed to occur at y = 0. By de¯nition of za, the surface impedance, with the normal
velocity outward from the surface equal to u0y = u0 ¢ ĵ = ¡u0 ¢ n̂ where n̂ is the unit outward normal vector:

za =

μ
p0

u0y

¶
y=0

= ¹½¹a
gi(kx sin μi ¡ cot) + gr(kx sin μr ¡ cot)

cos μigi(kx sin μi ¡ cot)¡ cos μrgr(kx sin μr ¡ cot) (5.91)

In general za is variable along the surface. Suppose that in fact za is constant, independent of x. That can
be true if

μi = μr = μ

gr(») = ¯gi(»)
(5.92)

Then (5.91) becomes

za cos μ = ¹½¹a
1 + ¯

1¡ ¯ (5.93)

and the complex re°ection coe±cient ¯ is related to the surface impedance by

¯ =
za cos μ ¡ ¹½¹a
za cos μ + ¹½¹a

(5.94)

This result is special because no transmitted wave has been accounted for. For example, if za = ¹½¹a|perfect
impedance matching exists at the interface|(5.93) gives ¯ = 0 when μ = 0, so there is no re°ected wave.
That is true in one sense because in physical terms za = ¹½¹a means that the same gas exists in both sides of
the interface. Thus we are simply describing wave propagation in a continuous medium. On the other hand,

SOME FUNDAMENTALS OF ACOUSTICS 

RTO-AG-AVT-039 5 - 19 

 

 



the physical picture treated here accommodates no transmitted wave, which means that when there is no
re°ection, processes must exist at the interface providing perfect absorption.

Now suppose μ 6= 0 but za = ¹½¹a. Then (5.93) gives ¯ non-zero, i.e. partial absorption, and some of the
incident wave is re°ected.

5.7. Wave Propagation in Tubes; Normal Modes

The simplest form of combustor is a straight tube, having generally non-uniform cross section and
not necessarily axisymmetric. Although the changes of cross section may be abrupt|even discontinuous|
experience has shown that good results may be obtained by assuming that the velocity °uctuations are
uniform at every section and parallel to the axis: the °ow is treated as one-dimensional. The governing
equations are given in Annex B, equations (B.2){(B.4) with no sources:

Conservation of mass:
@½0

@t
+
1

Sc

@

@x
(¹½u0Sc) = 0 (5.95)

Conservation of momentum: ¹½
@u0

@t
+
@p0

@x
= 0 (5.96)

Conservation of energy: ¹½Cv
@T 0

@t
+ ¹p

1

Sc

@

@x
(u0Sc) = 0 (5.97)

The wave equation for the pressure is:

1

Sc

@

@x

μ
Sc
@p0

@x

¶
¡ 1

¹a2
@2p0

@t2
= 0 (5.98)

5.7.1. Waves in Closed Tubes.

(a) Normal Modes for a Tube Closed at Both Ends.

Results for a tube closed at both ends not only contain many ideas basic to general oscillations in
chambers, but also are widely useful for practical applications. For a tube closed by rigid walls, the boundary
conditions at the ends are that the velocity must vanish. The momentum equation (5.96) then states that
acceleration and therefore the pressure gradient must vanish at the ends for all time:

@p0

@x
= 0 (x = 0; L ; all t) (5.99)

General linear motions within the tube can be constructed as superpositions of normal modes de¯ned
in general by two properties:

i) sinusoidal variations in time

ii) the motion at any point bears always a ¯xed phase relative to that at any other point in the volume

Those conditions imply here that the pressure can be expressed as

p0(x; t) = p̂(x)e¡i¹akt (5.100)

where k is the complex wavenumber, related in general to the complex frequency by the formula

¹ak = ! + i® (5.101)
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Because there are no dissipative processes in this problem, ® = 0 so the wavenumber is real. Substitution of
(5.100) in (5.98) with Sc independent of x gives

d2p̂

dx2
+ k2p̂ = 0 (5.102)

A solution to (5.102) satisfying (5.99) at x = 0 is p̂ = A cos kx. To satisfy the condition at x = L, cos kL = 0.
Then k can assume only certain values kl, called characteristic or eigen values:

4

kl = l
¼

L
(l = 0; 1; 2; ¢ ¢ ¢ ) (5.103)

Corresponding to each kl is a characteristic function, or eigenfunction,

p̂l
¹p
= Al cos(klx) (5.104)

For the problems we treat in this book, the motions represented by the kl, p̂l, and ûl are usually called
normal modes, ¹akl = !l being the normal or modal frequency, and p̂l, ûl are the mode shapes of pressure
and velocity. All of these terms are used for two- and three-dimensional motions as well.

A normal mode is characterized by its frequency and the spatial distributions, or `shapes' of all dependent
variables. The mode shape for the velocity is derived from the mode shape (5.104) by integrating the acoustic
momentum equation (5.96) written for ûl:

¡i¹aklûl = ¡1
¹½

dp̂l
dx

=
kl
¹½
¹pAl sin klx

Thus

ûl = i
¹p

¹½¹a
Al sin klx (5.105)

or, written as the Mach number of the mode,

M̂l = i
1

°
Al sin klx (5.106)

(b) Normal Modes for a Tube Open at Both Ends.

In this case, the pressure is assumed ¯xed at the ends, for example because the tube is immersed in a

large reservoir having constant pressure, and p0 = 0. For isentropic motions, ½
0

¹½ =
1
°
p0

¹p so ½
0 = 1

¹a2 p
0 and the

continuity equation (5.95) is

@p0

@t
+
¹a2

¹½

@u0

@x
= 0 (5.107)

Hence if p0 is ¯xed, the velocity gradient must vanish at the ends. Set p0 = Ae¡i¹at sinkx and substitute in
(5.107)

i
¹a

¹p
kAe¡i¹akt sin kx =

¹a2

¹½

@u0

@x

4Only for l ¸ 1 do we ¯nd wave modes. For l = 0, a qualitatively di®erent mode exists for which the pressure is uniform
in the volume but pulsates at a frequency well below that for the fundamental wave mode. The velocity is practically zero and
the oscillator is sustained by some sort of external action. A prosaic example is the low frequency sound one can create by
blowing across the narrow opening at the neck of a bottle. In this case the mode is called the Helmholtz mode and the bottle
is behaving as a Helmholtz resonator. Corresponding very low frequency modes have been observed in both liquid and solid
rockets.
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The left-hand side vanishes (and hence @u0=@x = 0) at x = 0 for any k, but at x = L, we must have
sin klL = 0. Hence kl = (2l + 1)

¼
L and the normal mode shape and frequency are

p̂l
¹p
= Al sin(klx) ; kl = l

¼

L
(l = 1; 2; ¢ ¢ ¢ ) (5.108)

and the mode shape for the velocity is

ûl
¹a
= M̂l = i

1

°
Al cos klx (5.109)

(c) Normal Modes for a Tube Closed at One End and Open at the Other.

Reasoning similar to the above leads in this case to the normal modes when the tube is closed at x = 0:

p̂l
¹p
= Al cos(klx) ;

³
kl = (2l + 1)

¼

2L

´
(l = 1; 2; ¢ ¢ ¢ )

ûl
a
= ¡i 1

°
Al sin(klx)

5.7.2. Normal Modes for Tubes Having Discontinuities of Cross-Sectional Area. Combus-
tors having discontinuous area distributions are commonly used in solid propellant rockets and in various
laboratory devices. Consider the example sketched in Figure 5.9. The boundary conditions at the ends are:

Figure 5.9. A uniform tube having a single discontinuity.

x = 0 :
dp̂

dx
= 0

x = ¯L : p̂ = 0
(5.110)a,b

Possible solutions in the regions to the left and right of the discontinuity are:

p̂

¹p
= A cos kx (0 · x · L)

p̂

¹p
= B sin k(¯L¡ x) (L < x · ¯L)

(5.111)a,b

Note that k = !=¹a is the same throughout the tube because the motion occurs everywhere at the same
frequency.

Completing the problem comes down to determining the conditions for matching the solutions. Two are
required:

i) continuity of pressure:

lim
²!0

[p̂(L¡ ²)¡ p̂(L+ ²)] = 0
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which gives

A cos kL = B sin(¯ ¡ 1)kL (5.112)

ii) continuity of acoustic mass °ow:

Integrate the wave equation (for harmonic motions) across the discontinuity,

L+²Z
L¡²

·
d

dx
(Sc

dp̂

dx
+ k2Scp̂

¸
dx = 0

Because p̂ is continuous, this relation becomes

lim
²!0

"μ
Sc
dp̂

dx

¶
L+²

¡
μ
dp̂

dx

¶
L¡²

#
= 0

Thus, with ¹½ constant and dp̂
dx » û:

(¹½Scû)L+² ¡ (¹½Scû)L¡² (5.113)

After substituting the waveforms (5.111)a,b, and using (5.112) we ¯nd the transcendental equation
for the modal wavenumbers:

S1
S2
tan klL = cot kl(¯ ¡ 1)L (5.114)

This method of solving a problem with discontinuities is only approximate: a practical question is: how
large are the errors? To gain some idea of the errors incurred, tests at ambient temperature (`cold °ow tests')
were carried out by Derr, Mathis and Brown (1974) for the geometry of a T-burner used for measuring the
combustion response of burning solid propellants. Results are shown in Figure 5.10. The measured values
of both the frequencies and the mode shapes are surprisingly well-predicted by this theory. The principal
reason is that the in°uence of a discontinuity is con¯ned to a relatively small region near the change of area,
but the characteristics of the normal modes depend on the motion in the entire volume.

Figure 5.10. Comparison of experimental and theoretical results for normal frequencies in
a T-burner at ambient temperature. (Derr, Mathis and Brown, 1974).
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5.8. Normal Acoustic Modes and Frequencies for a Chamber

We now consider a volume of any shape enclosed by a rigid boundary and containing a uniform gas at
rest. Unsteady small amplitude motions therefore satisfy the linear wave equation (5.4)a and its boundary
condition (5.4)b requiring that the velocity normal to the boundary vanish at all times. By this de¯nition
given in Section 5.7.1, normal modes are solutions to this problem, which oscillate sinusoidally in time and
have ¯xed phase relations throughout the volume. We assume the form5 p0 = Ãe¡i¹akt. The formal problem
is to ¯nd Ã satisfying the scalar wave equation, also called the Helmholtz wave equation, with vanishing
normal gradient at the surface:

r2Ã + k2Ã = 0
n̂ ¢ rÃ = 0 (5.115)a,b

There are many well-written books covering this problem and its solution, for example Hildebrand
(1952); Morse and Feshbach (1952); Morse and Ingard (1968); Matthews and Walker (1964); and Je®ries
and Je®ries (1946). The simplest approach is based on the method of separation of variables, applicable
for closed form solutions in thirteen coordinate systems; see, e.g., Morse and Feshbach (1952). In practical
applications to combustors of these exact solutions, only rectangular and circular cylindrical chambers are
important. Otherwise, apart from special cases such as that treated in Section 5.7.2, the normal modes and
frequencies must be found by numerical methods.

5.8.1. Normal Modes for Rectangular Chambers. The wave equation in Cartesian coordinates is

@2Ã

@x2
+
@2Ã

@y2
+
@2Ã

@z2
+ k2Ã = 0

and n̂ ¢ rÃ must vanish on the six °at surfaces each perpendicular to a coordinated axis, Figure 5.11.
Applying the method of separation of variables leads to a solution having the form

Ã = A cos(kxx) cos(kyy) cos(kzz) (5.116)

and

k2 = k2x + k
2
y + k

2
z (5.117)

The boundary conditions must be satis¯ed:

@Ã

@x
= 0 on x = 0; L

@Ã

@y
= 0 on y = ¡a

2
;
a

2

@Ã

@z
= 0 on z = ¡ b

2
;
b

2

(5.118)a,b,c

Reasoning similar to that given in Section 5.7.1 leads to the values of the wavenumbers

kx = l
¼

L

ky = m
¼

b

kz = n
¼

c

(5.119)a,b,c

5Consistent with the general character of this problem, we replace p̂ by Ã, introducing a common notation for normal
modes. The velocity potential © satis¯es the same pair of equations (5.115)a,b, a result re°ected by equation (5.31) which for
sinusoidal motions means that p0 and © are proportional: p0 = i¹ak¹½©.
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Figure 5.11. Rectangular chamber.

and the mode shapes are

Ãlmn = Almn cos
³
l
¼

L
x
´
cosm

¼

a

³
y +

a

2

´
cosn

¼

b

μ
z +

b

2

¶
(5.120)

The distributions of pressure therefore have the same form in all directions; of course the components
(5.119)a,b,c of the wave number can assume any of the allowed values, and the frequency is given by (5.117),
! = ¹ak.

5.8.2. Normal Modes for a Circular Cylindrical Chamber. Let x be the polar axis (Figure 5.12)
and the wave equation in circular cylindrical coordinates is

1

r

@

@r

μ
r
@Ã

@r

¶
+
1

r2
@2Ã

@μ2
+
@2Ã

@x2
+ k2Ã = 0 (5.121)

The boundary condition requires that n̂ ¢ rÃ vanish at the ends and on the lateral boundary:
@Ã

@x
= 0 x = 0; L

@Ã

@r
= 0 r = R

(5.122)

Application of the method of separation of variables leads to a solution of the form

Ã(r; x; μ; t) = A

½
cosnμ
sinnμ

¾
cos klxJm

³
·mn

r

R

´
(5.123)

To satisfy the boundary conditions, the values of kl are integral multiples of ¼=L as above and the ·mn are
the roots of the derivative of the Bessel function:

dJm(·mn)

dr
= 0 (5.124)
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Figure 5.12. Circular cylindrical coordinates.

Figure 5.13 shows the lowest six modes in the transverse planes, and the identifying values of n and m. More
extended results are given in standard texts and collections of special functions, for example Jahnke and
Emde (1938).

Figure 5.13. The ¯rst six transverse modes in a circular cylinder.

5.9. Viscous Losses at an Inert Surface

Dissipation of energy at inert surfaces is often a signi¯cant contribution to the losses of acoustic energy
in a combustion chamber. The problem of computing the losses o®ers a particularly good opportunity to
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illustrate di®erent points of view. We will compute the losses in three di®erent ways, all directly dependent
on characteristics of the acoustic boundary layer. To simplify the analysis we assume that the average tem-
perature is uniform throughout, having the value ¹Te. Solutions for the velocity and temperature distributions
within the acoustic boundary layer are derived in Annex C, equations (C.14)a,b with the time dependence
included:

u0(x; y; t) = ûe(x)
£
1¡ e¡¸y¤ e¡i!t

T 0(x; y; t) = T̂e(x)
h
1¡ e¡¸

p
Pry
i
e¡i!t

(5.125)a,b

Note that the local values of the velocity and temperature impressed on the layer are shown explicitly to
be functions of position along the surface. The idea is that the solution for the boundary layer °ow applies
locally, but variations are induced along the surface by the distributions of velocity ûe(x) and temperature

T̂e(x) in the external °ow. The simplest example is a cylindrical tube closed at both ends, Figure 5.14.
Shaded regions indicate the acoustic boundary layers.

x = 0 L

u'

p'

Figure 5.14. Acoustic velocity and temperature distributions for the fundamental mode
in a closed tube.

5.9.1. Dissipation of Energy Within the Acoustic Boundary Layer. The theory of the acoustic
boundary layer predicts a result, con¯rmed by experimental observations, that the in°uences of viscous
stresses are con¯ned to a thin layer having thickness ±. That is, ±=Rt ¿ 1 in the range of audio frequencies
and for tubes having radius Rt greater than a centimeter or so. With the formula (C.6), the ambient
properties of air given after equation (5.70), and Pr = Cp¹=¸c = 0:73 for air

±

Rt
=
1

Rt

r
2v

!
=

1

Rt
p
f

r
v

¼
¼ 2

Rt
p
f

(5.126)

If f = 9Hz, ±=Rt » :06=Rt, where Rt is in centimeters, and the assertion is proved.

Consequently, we can treat the acoustic boundary layer on the lateral boundary of a circular cylinder
as if it were locally on a °at surface and the results of Annex C apply directly. We ¯nd the total rate of
energy dissipation in the tube by integrating the energy dissipation over the acoustic boundary layer, i.e.
over y > 0. Because the layer is thin and the non-uniformities of the °ow properties decay exponentially
in y, we integrate over all y from zero to in¯nity. Application of the formula (C.19) for the rate of entropy
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production in this °ow gives6 (per unit volume)

ds

dt
=
1
¹Te

24¹μdû
dy

¶2
+
¸c
¹T 2e

Ã
dT̂

dy

!235
Then the rate of energy dissipation per unit volume is

de

dt
= ¡ ¹Te ds

dt
= ¡¹

μ
dû

dy

¶2
+
¸c
¹T 2e

Ã
dT̂

dy

!2
(5.127)

where either the real or the imaginary parts of û and T̂ must be used. The time-averaged energy dissipation
per unit are of surface is therefore the time average of the integral of (5.127) over the entire acoustic boundary
layer:

1

2¼

2¼Z
0

dt

1Z
0

24¹μdû
dy

¶2
+
¸c
¹T 2e

Ã
dT̂

dy

!235 dy (5.128)

This formula gives

time-averaged energy

loss per unit surface area
h _ei = ¡ 1

2°¹p

p
!º

2

"¯̄̄̄
ûe
¹a

¯̄̄̄2
m

+
° ¡ 1p
Pr

¯̄̄̄
p̂

¹p

¯̄̄̄2
m

#
(5.129)

where j jm means the maximum value in the oscillation and º = ¹=¹½ is the kinematic viscosity.

Suppose that a standing wave is sustained in a tube, like the one sketched in Figure 5.14, by a speaker
or piston. If the source of waves is suddenly cut o®, the amplitude of the standing wave system will decay
exponentially in time according to the discussion in Section 5.5, the decay constant being given by the
formula 5.80:

® =
1

2
R h"idV d

dt

Z
h"idV (5.130)

and
R h"idV is the total time-averaged energy in the tube. Here energy losses at the ends are ignored and

compute d
dt

R h"idV as the integral of h _ei, the formula (5.129) over the lateral area of the tube with
p̂e ´ Al cos(klx)
ûe =

Al
¹½¹a
sin(klz)

h"li = A2l
4¹½¹a2

(¼R2tL)

(5.131)a,b,c

The time-averaged total energy is computed with 5.78 and the total time-average rate of dissipation is

d

dt

Z
h"idV = ¡ 1

2°¹p

r
!º

2

·
1 +

° ¡ 1p
Pr

¸
A2l (¼R

2
tL) (5.132)

Hence we ¯nd

® = ¡ 1

Rt

r
!º

2

·
1 +

° ¡ 1p
Pr

¸
(5.133)

Early measurements by several groups, e.g. Henderson and Donnelly (1962), gave a result roughly 8{10%
higher than that predicted by (5.133). That was a puzzling situation for about ¯fteen years. The analysis
for laminar °ow|i.e. for su±ciently low amplitudes of the motion|should, one has reason to expect, be

6For purposes of estimation, it is su±ciently accurate to take the value of º for combustion products to be the same as air
at standard conditions, º ¼ 0:2 cm2=s, and to assume that the average temperature has everywhere its ambient value, ¹Te.
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more accurate than that. Yet the experiments seem to have been done carefully and with good precision.
Eventually, however, it turned out that the experiments must be carried out with extreme care indeed. With
superb work exemplifying how carefully measurements must be made to obtain accurate results for acoustic
losses, Quinn, Colclough and Chandler (1976) determined ® with an error of 0.069%(!) compared with
(5.133).

This example has wide implications in the ¯eld of combustion instabilities. Experiments designed to
con¯rm theoretical and analytical results must be carefully carried out with the greatest possible precision;
also, uncertainties in the results should be reported, a practice too often ignored. That requirement is a direct
consequence of the fact that acoustical motions, despite their `loudness' to human ears, contain relatively
small amounts of energy and therefore are sensitive to small changes in the system containing them.

5.9.2. Another Way of Computing the Decay Constant. The second method of computing the
decay constant due to losses in the acoustic boundary layer is based on the method of spatial averaging. We
begin with the dimensional forms of the linearized equations including viscous stresses and heat conduction,
(5.1){(5.3) but no external sources and mean °ow and with the velocity zero at the boundary:

r2p0 ¡ 1

¹a2
@2p0

@t2
= r ¢FFF0 ¡ 1

¹a2
@P0

@t
n̂ ¢ rp0 = ¡FFF0 ¢ n̂

(5.134)a,b

and

FFF0 = r ¢$¿¿¿ 0v
P0 = ¡ R

Cv
r ¢ q0

For harmonic motions with complex wave number k = (! + i®)=¹a, (5.134)a,b are

r2p̂+ k2p̂ = ĥ
n̂ ¢ rp̂ = ¡f̂

(5.135)a,b

where

ĥ = r ¢ F̂̂F̂F ¡ ik
¹a

R

Cv
r ¢ q̂

f̂ = ¡n̂ ¢ F̂̂F̂F
(5.136)a,b

The procedure described in Section 4.1 leads to the formula for the complex wavenumber for the nth

mode,

k2 = k2n +
1R
Ã2ndV

½Z
ĥÃndV +

ZZ
° f̂ÃndS

¾
(5.137)

where the volume integrals extend over the entire volume of the tube and the surface integral is computed
only over the lateral boundary because losses at the end are ignored. For the viscous e®ects in the boundary
layer,

F̂̂F̂F = r ¢ ¿̂̂¿̂¿v =
μ
¹
d2ûx
dy2

¶
{̂̂{̂{

r ¢ q̂ = dq̂y
dy

= ¡¸c d
2T̂

dy2

(5.138)a,b
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Substitution in the bracketed terms on the right-hand side of (5.137) with ¹ and ¸c constant gives:Z
ĥÃndV +

ZZ
° f̂ÃndS ´

Z ³
r ¢ F̂̂F̂F

´
ÃndV ¡ ik

¹a

Rt
Cv

Z
(r ¢ q̂)ÃndV

¡
ZZ
°
³
n̂ ¢ F̂̂F̂F

´
ÃndS

= ¡ ik
¹a

Rt
Cv

Z
(r ¢ q̂)ÃndV ¡

Z
F̂̂F̂F ¢ rÃndV

= ¡ ik
¹a

Rt
Cv
¸c

Z
d2T̂

dy2
ÃndV ¡ ¹

Z
d2ux
dy2

dÃn
dx

dV

(5.139)

Because the viscous e®ects are signi¯cant only near the wall we can take the incremental element of volume
to be dV = dydS and write the integrals for Ãn ´ Ãl(x) a purely longitudinal mode shape:Z

d2T̂

dy2
ÃndV ´

ZZ
°ÃldS

1Z
0

d2T̂

dy2
dy =

ZZ
°Ãl

Ã
dT̂

dy

!
0

dS

Z
d2û

dy2
dÃl
dx
dV ´

ZZ
° dÃl
dx
dS

yZ
0

d2û

dy2
dy = ¡

ZZ
° dÃl
dx

μ
dû

dy

¶
0

dS

The derivatives dT̂=dy and dû=dy are signi¯cant only within the thin acoustic boundary layer and become
negligible at the outer edge, y=± large. Now use the results (C.14)a,b to evaluate the derivatives at the
surface: Ã

dT̂

dy

!
0

= ¸
p
PrT̂e

μ
dû

dy

¶
0

= ¸ûe

= ¸
p
Pr ¹T

μ
° ¡ 1
°

¶
p̂e
¹p

= ¸
i

¹½!

d¹pe
dx

Inserting these results in (5.139) givesZ
ĥÃldV +

ZZ
° f̂ÃldS ´

μ
ik

¹a

R

Cv
¸c

¶·
¸
p
Pr ¹T

μ
° ¡ 1
°

¶ZZ
°Ãl

p̂e
¹p
dS

¸
+ ¹

·
i¸¹p

¹½!

ZZ
° d

dx

μ
p̂e
¹p

¶
dÃl
dx
dS

¸ (5.140)

where dS is the increment of the lateral surface, dS = (2¼Rt)dx.

The mode shapes for the acoustic pressure in a closed-closed uniform tube is (5.104). As the wave decays,
its shape is very little di®erent from the normal mode shape at the same (or nearly) the frequency. Hence
we can replace p̂e by Ãl = ¹peAl cos klx, and we have the two integrals

ZZ
° p̂e

¹p
ÃldS = qtAl

LZ
0

cos2(klx)dx = ¼RtLAl

ZZ
° d

dx

μ
p̂e
¹p

¶
dÃl
dx
dS = qtAlk

2
l

LZ
0

sin(klx)dx = ¼RtLAl

(5.141)a,b
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In (5.140), the values of k and ! are nearly7 those for the normal mode; replacing k ! kl, ! ! !l and
substituting (D.14)a-d in (5.140), we eventually ¯ndZ

ĥÃldV +

ZZ
° f̂ÃldS =

kl¹p

¹a2
(1¡ i)

μ
1

2
qtLAl

¶μ
1 +

° ¡ 1p
Pr

¶
(5.142)

With
R
Ã2l dV =

1
2 (¼R

2
tL), (5.137) becomes

k2 = k2l +
1

¹pAl
R
Ã2l dV

½Z
ĥÃldV +

ZZ
° f̂ÃldS

¾
= k2l +

1
¹pAl

2 (¼R2tL)

½
kl¹p

¹a2
(1¡ i) ¡¼R2tLAl¢rº!2

μ
1 +

° ¡ 1p
Pr

¶¾
= k2l + (1¡ i)

kl¹p

¹a2

μ
2

Rt

¶r
º!

2

μ
1 +

° ¡ 1p
Pr

¶ (5.143)

The left-hand side is

k2 =
1

¹a2
(! + i®)

2
=
³!
a

´2
¡ i
μ
2®!

¹a

¶
¡
³®
¹a

´2
Because ®¿ !, (5.143) is approximately³!

a

´2
¡ i
μ
2®!

¹a

¶
= k2l + (1¡ i)

kl¹p

¹a2

μ
2

Rt

¶r
º!

2

μ
1 +

° ¡ 1p
Pr

¶
of which the imaginary part is

® = ¡ 1

Rt

r
º!

2

μ
1 +

° ¡ 1p
Pr

¶
(5.144)

which is exactly (5.133).

5.9.3. Still Another Way of Computing the Decay Constant. A third method for computing
the decay constant is instructive for several reasons. First it is a good illustration of the usefulness and at
least for the problem considered here, accuracy of the one-dimensional approximation. Second, it illustrates
an important consequence of the conservation of mass that has other applications. And third, related to
the second, the analysis answers a fundamental question about the problem at hand: how does it happen
that dissipation of energy taking place in the thin acoustic boundary layer is communicated to the waves
outside the boundary layer? That is, the wave fronts remain very nearly planar in transverse sections, yet
the amplitude decays in time due to processes con¯ned to the thin layer near the wall. If the wave fronts (loci
of constant phase) did not remain planar, the frequency would change with time, behavior not observed.

We base the analysis on the equations for unsteady one-dimensional °ow constructed in Annex B. For the
problem at hand, we imagine striking a control surface at the edge of the acoustic boundary layer, represented
by the dashed line in Figure 5.15. The unsteady °ow ¯eld within the acoustic boundary layer, the shaded
region, is given by the results found in Annex C, repeated above as equations (5.125)a,b. Within the volume
outside the boundary layer, a steady planar acoustic ¯eld exists, sustained by the motion of one end, for
example. The velocity of the piston face need not be large and we may approximate the acoustic ¯eld by a
classical resonant mode. Thus in (5.125)a,b we set the frequency equal to !l and ûe(v) is given by (5.105).
As explained in Annex C, the °ow within the boundary layer is reasonably taken to be incompressible and
the equation for conservation of mass is

@ûe
@x

+
@ve
@y

= 0 (5.145)

7These characterizations `not very di®erent' and `nearly' can be rendered more rigorous in the context of the procedure
explained in Chapters 3 and 4. The point here is that including deviations of order ¹Mr from kl introduces corrections of order
¹M2
r which must be ignored for reasons explained in the places cited.
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Figure 5.15. De¯nition of the lateral control surface.

Consequently, a velocity normal to the wall is induced within the acoustic boundary layer because the
external velocity has non-zero gradient parallel to the wall. Chester (1964) has given the formula for v0e for
the linearized boundary layer theory used here:

v0e(x; t) =
r
º

¼

μ
1 +

° ¡ 1p
Pr

¶ 1Z
0

@

@x
u0e(x; t¡ ¿)

d¿p
¿

(5.146)

For the standing acoustic wave, the lth acoustic mode, from (5.105) we have

@u0e
@x

= e¡i!lt
dûl
dx

= i¹akl
Al
°
cos klxe

¡i!lt (5.147)

Substitution in (5.146) leads to the formula for v0e:

v0e = i
!l
°
Al

r
º

¼

μ
1 +

° ¡ 1p
Pr

¶
cos klx

1Z
0

e¡i!l(t¡¿)p
¿

d¿

= i
!l
°
Al

r
º

¼

μ
1 +

° ¡ 1p
Pr

¶
cos klx

e¡i!ltp
!l
d¿

1Z
0

e¡i»p
»
d»

=
(¡1 + i)

°
Al

r
º!l
2

μ
1 +

° ¡ 1p
Pr

¶
cos klxe

¡i!lt = v̂ee¡i!lt (5.148)

We will need the real part of the spatial dependence:

v̂(r)e = ¡ 1
°
Al

r
º!l
2

μ
1 +

° ¡ 1p
Pr

¶
cos klx (5.149)

Now we focus attention on the acoustic ¯eld within the control surface shown in Figure 5.15. All
in°uences of the boundary layer are contained in the velocity by v0e representing oscillatory pumping of °uid
through the surface. Hence we have a simple one-dimensional °ow with distributed periodic sources of mass
momentum and energy at the boundary. There is, of course, no net °ow through the boundary, the time
average of (5.148) being zero.

We begin with equations (B.3) and (B.5) written for constant cross-section area and no sources within
the volume. The linearized forms are

¹½
@u0

@t
+
@p0

@x
= F01s

@p0

@t
+ °¹p

@u0

@x
= P01s

(5.150)a,b
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where F01s and P
0
1s are given by (B.14) and (B.16). With mean velocity zero and pure gas, those de¯nitions

become

F01s = 0

P01s =
R

Cv

1

Sc

¡
¹h0s ¡ ¹e0 + Cv ¹T

¢ Z
(mg

s)
0dq

(5.151)a,b

The stagnation and ambient average temperatures are uniform and equal everywhere, so

¹h0s ¡ ¹e0 + Cv ¹T = (Cp ¡ Cv + Cv) ¹T = Cp ¹T (5.152)

With no average °ow inward,

(mq
s) = ¹½v0e (5.153)

where v0e is given here by (5.148). Hence (5.151)b is

P01s =
¹a2

Sc

Z
¹½v0edq (5.154)

After combining (5.150)a,b in the usual way to form the wave equation, and substituting (5.152) and
(5.154), we have

@2p0

@x2
¡ 1

¹a2
@2p0

@t2
= ¡ 1

Sc

@

@t

Z
¹½v0edq

For v0e uniform on the perimeter of a transverse plane, the integral on the right-hand side becomes ¹½v
0
e(2¼Rt)

and the last equation is

@2p0

@x2
¡ 1

¹a2
@2p0

@t2
= ¡ 2

Rt
¹½
@ve
@t

(5.155)

Owing to the perturbation caused by the °uctuating mass °ow at the boundary, the national modes of
the chamber have frequencies ! slightly di®erent from !l, the classical values. Set p

0 ¼ p0l = ¹½Al cos klx and
v0e = v̂ee¡i!t in (5.155), giving

¹pAl cos(klx)(¡k2l + k2) = ¡
2

Rt
¹½(¡i!v̂e)

¼ i2!l¹½
Rt

(¡1 + i)
°

Al

r
º!l
2

μ
1 +

° ¡ 1p
Pr

¶
cos klx

Rearrangement leads to the formula for the complex wavenumber

k2 = k2l + (1¡ i)
2!l¹½

¹½Rt°

r
º!l
2

μ
1 +

° ¡ 1p
Pr

¶
(5.156)

The real part again gives the formula (5.133).

5.9.4. First Order Correction to the Mode Shape. In the model analyzed here, the essential idea
is that the in°uence of the acoustic boundary layer is exerted on the bulk °ow by the motions induced
normal to the wall. A force of interaction is generated tangential to the wall, having the proper phase to
attenuate the waves in the tube. That process must alter the mode shape to a form consistent with the
¯rst order correction to the acoustic eigenvalue. One way to determine the distortion is to compute the ¯rst
order correction to the zeroth order basis function by following the procedure described in Chapter 4. An
alternative approach is based directly on the di®erential equation for the pressure subject to the boundary
condition set by the radial `pumping' velocity (5.149). The mass source term is the density times (5.149)
and the boundary condition on the radial gradient of the pressure mode shape is

n̂ ¢ rp̂ = ¡i!½0û ¢ n̂ = i!½0v̂ = i!Rc
2
ŵ (5.157)

SOME FUNDAMENTALS OF ACOUSTICS 

RTO-AG-AVT-039 5 - 33 

 

 



where v̂ is given by (5.149). After substitution for v̂, this relation gives the explicit form

dp̂

dr
= (1¡ i)k3=2¯p̂ (5.158)

where

¯ =
1

2

r
2º

a0

·
1 +

° ¡ 1p
Pr

¸
(5.159)

For axisymmetric motions in a circular cylindrical tube, the scalar wave equation for the pressure is

1

r

@

@r

μ
r
@p̂

@r

¶
+
@2p̂

@x2
+ k2p̂ = 0 (5.160)

with solution

p̂ =
nX mX

Anm cos knxJ0(Àmr) (5.161)

where

À2m = k
2 ¡ k2n (5.162)

The boundary condition (5.160) sets the permissible values of Àm and hence the wavenumber k:·
d

dr
J0(Àmr)

¸
r=Rc

= (1¡ i)k3=2¯J0(ÀmRc) (5.163)

There are an in¯nite number of the Àm, so that, for example, for the ¯rst longitudinal mode, the pressure
¯eld is

p̂ = cos
³¼
L
x
´ 1X
m=1

AmJ0(Àmr) (5.164)

For simplicity here, only the ¯rst term will be treated; Àm = À1 and in (5.163) the function J0(À1Rc) appears.

Now one expects that the corrections will be small, so k should not be very di®erent from kn, and the
expansion can be used

J0(À1r) ¼ 1¡ 1
4
(À1r)

2 (À1 ! 0) (5.165)

Thus, ·
d

dr
J0(À1r)

¸
r=Rc

¼ ¡1
2
À21Rc

and (5.163) is approximately

¡1
2
À21Rc = (1¡ i)k3=2¯

·
1¡ 1

4
(À1Rc)

2

¸
If the second order term on the right-hand side is ignored, substitution of (5.162) gives

¡1
2
Rc(k

2 ¡ k21) = (1¡ i)k3=2¯
so

À21 = (k
2 ¡ k21) ¼ ¡

2

Rc
(1¡ i)k3=2¯ (5.166)

Again write k = (! ¡ i®)=a0 with ® ¿ ! on the left-hand side; because the second term on the right-hand
side represents a small correction, set k = !=a0. Equation (5.166) therefore gives approximatelyμ

!

a0

¶2
¡ 2i®!

a20
=

μ
!1
a0

¶2
¡ 2

Rc
(1¡ i)

μ
!

a0

¶3=2
¯ (5.167)
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from which the imaginary part is easily shown to be exactly 5.144 again.

But now the ¯rst term of (5.164), with (5.165) and (5.166), gives a formula for the distorted one-
dimensional (planar) pressure ¯eld:

p̂ ¼ cos ¼x
L
J0(À1r) ¼ cos ¼x

L

·
1¡ 1

4
(k2 ¡ k21)r2

¸
It is easy to show, using the de¯nition (5.159) of ¯, that (5.166) is

(k2 ¡ k21) =
2!

a20
(1¡ i)®0 (5.168)

where ®0 now stands for the attenuation coe±cient (5.144) computed for purely one-dimensional waves, the
real part of (5.167). Because (1¡ i)2 = ¡2i, the distorted pressure ¯eld can be written

p̂ ¼ cos ¼x
L

"
1 + i

μ
!®0
a20

¶2
r2

#
(5.169)

This pressure ¯eld is now to be used in the expression for ŵ = 2½0v̂Rc
, with r = Rc (because the pressure

in that formula is the pressure impressed on the boundary layer):

ŵ = ¡(1 + i)2®0
a20

cos
¼x

L

"
1 + i

μ
!®0
a20

¶2
R2c

#
(5.170)

Finally, use this new result for the source term in the solution for the wavenumber associated with the
one-dimensional problem:

k2 = k21 ¡
2!®0
a20

(1¡ i)
"
1 + i

μ
!®0
a20

¶2
R2c

#
(5.171)

The real and imaginary parts are μ
!

a0

¶2
=

μ
!1
a0

¶2½
1¡ (1 + ³)2®0

!

¾
(5.172)

® = ¡(1¡ ³)®0 (5.173)

where

³ =

μ
!®0
a20
R2c

¶2
(5.174)

Thus, as anticipated, the distortion of the plane wavefronts produces a reduction in the value of the
attenuation constant, which is in the right direction to give better agreement with experimental results. For
Rc = 5 cm and f = 500 Hz,

³ =

·
(2¼)(500)

9£ 108 (25)
¸2
»= 7:8£ 10¡9a20

and for ®0 = 20sec¡1, ³ ¼ 30 £ 10¡7. The correction is therefore very small and cannot explain the
discrepancy between the predicted and observed values. Although only the ¯rst term in the series (5.164)
has been retained, it is unlikely that the last conclusion would be changed upon including further terms in
the series.

The preceding calculation illustrates two points: it is an example of determining the e®ect of a boundary
layer in its external driving °ow, here a standing plane wave; and the result supports the idea that the
zeroth order basic functions really are close approximations, over most of the chamber, to the actual mode

SOME FUNDAMENTALS OF ACOUSTICS 

RTO-AG-AVT-039 5 - 35 

 

 



shapes. In this case, the small di®erences occur in a thin zone at the lateral boundary. The corrected mode
shape calculated here satis¯es the actual boundary condition to ¯rst order. However, the zeroth order mode
shape not satisfying the correct boundary condition nevertheless yields the exact result for the ¯rst order
eigenvalue (the decay constant) when used in the perturbation-iteration procedure constructed in Chapter 4.

5.10. Propagation of Higher Modes in Tubes; Cut-o® Frequencies

In Section 5.7 we constructed the normal longitudinal modes for tubes of ¯nite length. For the cases
considered, the wavefronts are planar and the °ow properties are always uniform over all transverse sections.
The pressure, for example, at a chosen location undergoes a perfect sinusoidal oscillation in time, having
maximum amplitude in time and bearing a ¯xed phase with respect to the pressure at any other location.
Those properties de¯ne such a normal mode as a stationary or standing wave.

A stationary wave may be regarded as the superposition or synthesis of two traveling waves progressing
in opposite directions. We may interpret that result in two ways: 1) the waves are con¯ned to the tube and
su®er re°ection at the ends, su®ering a 180 degree phase change up each re°ection and reversing its direction
of travel; or 2) two waves each in¯nitely long and traveling in opposite directions interfere destructively
at the locations of the ends of the tube so as to maintain the correct boundary conditions. The second
interpretation corresponds to the case for re°ection of pulses worked out in Section 5.2.1 and illustrated in
Figure 5.2.

Either of those two interpretations suggest a question regarding propagation of plane waves in a tube.
What if, because of some sort of disturbance, the wave fronts are distorted? That is, suppose that the wave
fronts, while still perfectly plane, su®er some distortion so that the distribution of the °ow properties are
not uniform in transverse sections. How then is propagation of that wave a®ected? Any such distortion can
be synthesized of two-dimensional normal modes in transverse planes superposed on a traveling wave. Hence
we assume the form for pressure wave traveling in the positive x-direction:

p0(x; y; z; t) = A cos(kyy) cos(kzz)ei(kxx¡!t) (5.175)

The frequency is unspeci¯ed, ! = ¹ak. This wave must satisfy the wave equation

@2p0

@x2
+
@2p0

@y2
+
@2p0

@z2
¡ 1

¹a2
@2p0

@t2
= 0

Substitution of (5.175) produces the relation among the wavenumbers

¡k2x ¡ k2y ¡ k2z + k2 = 0
and

kx =
q
k2 ¡ (k2y + k2z) (5.176)

must be positive and real for propagation in the positive x-direction. The formulas (5.119)a,b,c give the two
transverse wavenumbers and (5.175) is

kx =

s³!
¹a

´2
¡
·³m¼

b

´2
+
³n¼
b

´2¸
(5.177)

Consequently, if kx is to be real, the frequency of the wave must be larger than a critical value !c:

! > !c (5.178)

with

!c = ¹a

r³m¼
b

´2
+
³n¼
b

´2
(5.179)
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The frequency !c is called a \cuto® frequency" for the following reason. Substitute (5.176) in (5.144):

p0 = p̂(y; z)ei
³
1
¹a

p
!2¡!2cx¡!t

´
(5.180)

If ! < !c, the exponential factor can be written

e¡¯xei!t (5.181)

where the attenuation constant ¯ is

¯ =
1

¹a

p
!2c ¡ !2 (! < !c) (5.182)

Two main conclusions follow from this calculation:

i) If m = n = 0, the waves are purely planar longitudinal (or axial) and !c = 0. That is, waves having
any frequency will propagate freely, with no attenuation, and can form standing waves in a tube of
¯nite length, closed or open.

ii) If m;n 6= 0, the cut o® frequency is ¯nite and only waves having frequency greater than the cut
o® frequency will propagate freely and under suitable conditions will form standing waves. Traveling
waves having the transverse structure speci¯ed by the given values ofm and n will decay exponentially
in space, with attenuation constant ¯ given by (5.150)a,b.

In practice, the existence of the phenomenon of `cuto®' may arise if a chamber has slots or passages
extending outward. Suppose that the chamber possesses a normal mode having relatively low frequency
and a shape such that the amplitude of the pressure varies over the opening of the smaller passage. Then
that mode tends to force generation of waves having spatial structure in the cross section of the passage.
Therefore the cuto® frequency for oscillations in the passage is ¯nite. If the frequency of the chamber mode
is less than that cuto® frequency, the excited waves will have amplitude decaying with distance into the
passage. Consequently, a pressure transducer placed at the far end of the passage will register a pressure
amplitude much less than that existing in the chamber at that location. If data are obtained only with
that transducer, then a misleading impression is obtained for the oscillating pressure in the main chamber.
To interpret the data correctly, it is clearly necessary to understand well both the nature of the possible
structure of the chamber modes and the phenomenon of cuto® frequency.

The decay of waves as they travel down a tube seems a strange result in view of the fact that no
dissipative processes have been accounted for. Resolution of this paradoxical result can be reached by
examining re°ection and interference of waves traveling in directions not parallel to the axis of the tube. O®-
axis propagation is associated with the non-uniform structure of the higher order modes and the re°ections
occur because of the boundary conditions set on the lateral surfaces. Morse and Ingard (1968) supply the
details of this interpretation.

5.11. The Impedance Tube

Perhaps the simplest yet most widely useful acoustical instrument is the impedance tube, known for
over one hundred years. Its true origin seems to have been lost. We follow Morse's analysis (Morse 1948),
but the most e±cient and e®ective method for obtaining data is probably that worked out by Baum (1980);
the references must be consulted for thorough discussions.

Figure 5.16 shows the essential features of the basic impedance tube. At one end is mounted the test
sample of which the impedance or admittance function is to be measured. The other end is ¯tted with a
piston or equivalent apparatus (e.g. a loudspeaker) whose frequency can be controlled. Measurements are
taken when the frequency is constant. The piston then causes (`radiates') waves having amplitude p¡ to the
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left. If there are no distributed losses along the tube or its walls, a wave has constant amplitude and phase
between the piston and a thin region of transition at the face of the sample. In that thin region waves are
generated and propagate both to the left and the right.

Figure 5.16. The basic impedance tube.

When the system has reached a steady state of oscillation, the region outside the transition zone contains
a standing wave. The standing wave is the superposition of a wave p̂¡ propagating to the left from the piston,
and a wave p̂+ propagating to the right, the net result of re°ections from the sample and the transition region.
The phase and amplitude of the wave p̂+ are di®erent from those of wave p̂¡ due to the action of the test
sample. We assume there is no mean °ow, so with no distributed losses (or gains) of energy along the tube,
the steady waves are represented by the two amplitudes of pressure and velocity:

p̂¡ = Ae¡ikx (a) û¡ = ¡ A

½0a0
e¡ikx (b)

p̂+ = Be
ikx (c) û+ = ¡ B

½0a0
eikx (d)

(5.183)a{d

where k is a real wavenumber.

The total pressure and velocity oscillations are

p̂ = Ae¡ikx +Beikx = A
·
e¡ikx +

B

A
eikx

¸
û = ¡ A

½0a0
e¡ikx +

B

½0a0
eikx = ¡ A

½0a0

·
e¡ikx ¡ B

A
eikx

¸ (5.184)a,b

De¯ne

Ã = ¼®0 + i¼¯0 (5.185)

and

B = ¡Ae2Ã (5.186)

so (5.184)a,b become

p̂ = A
£
e¡ikx ¡ eikx+2Ã¤

û = ¡ A

½0a0

£
e¡ikx + eikx+2Ã

¤ (5.187)a,b

On the face of the test sample at x = 0, the impedance is

z =

·
p̂

¡û
¸
x=0

= ½0a0
1¡ e2Ã
1 + e2Ã

(5.188)

Thus the phase Ã is related to the impedance by

e2Ã =
1¡ z=½0a0
1 + z=½0a0

(5.189)
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Values of Ã may be inferred from measurements of the envelope of the modal structure along the axis
of the impedance tube; (5.187)a becomes

p̂(x) = ¡AeÃ £eikx+Ã ¡ e¡ikx¡Ã¤ = ¡2AeÃ sin k(Ã + ikx)
Write

Ã + ikx = ¼(®+ i¯) (5.190)

with

® = ®0 and ¯ = ¯0 +
2x

¸
(5.191)

The magnitude of the pressure oscillation in the standing wave is

jp̂j = 2AjeÃjj sin k¼(®+ i¯)j = 2Ae¼®
q
cosh2 ¼®¡ cos2 ¼¯ (5.192)

Within this idealized picture of the pressure ¯eld, one needs only the maxima and minima of jp̂j:
Maxima: jp̂jmax = 2Ae¼® cosh¼® @ ¯0 + 2

x

¸
= §1

2
;§3
2
; ¢ ¢ ¢

Minima: jp̂jmin = 2Ae¼®
p
cosh¼®¡ 1 @ ¯0 + 2

x

¸
= §1;§2; : : :

(5.193)a,b

A sketch of jp̂j is given in Figure 5.17

The real part of Ã, ® ´ ®0, may be found from the ratio of the maxima and minima,

jp̂jmax
jp̂jmin = coth¼® (5.194)

Figure 5.17. Sketch of jp̂j when distributed losses are ignored.
Values of ¯, and hence the imaginary part of Ã, are related to the locations of the maxima and minima.
From (5.193)b, the ¯rst minimum occurs at ¯0 +

2
¸xmin = 1 which gives

¯0 = 1¡ 2

¸
xmin (5.195)

According to these results for the idealized impedance tube having no losses except at the test sample,
only three measurements (jp̂jmax; jp̂jmin; xmin) are required to give Ã and hence the impedance at one
frequency. In practice, use of the impedance tube is considerably more complicated. Even when the sample
presents a well-de¯ned surface to the acoustic ¯eld, the distributed losses cannot be ignored. Procedures for
taking them into account are well-known in the ¯eld; the experimental methods required to handle them
may become fairly involved. Baum (1980) has given a good discussion of the method he devised, perhaps
the most e®ective available.8

The impedance tube remains the best apparatus for determining the impedance function of an inert
surface. E®orts to adapt the method for measuring the impedance (or admittance) function of active surfaces

8This statement is based solely on the author's experience with his students, many years ago.
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have not led to results useful for routine applications. The best example is probably Baum's e®ort to measure
the admittance of a burning surface. O®ering prospects of overcoming rather serious shortcomings of the
T-burner and other devices prospects, the impedance tube posed its own problems which have not been
overcome (Baum 1980). A short survey of applications of the impedance tube to measure the admittances
of gaseous injectors has been given in the article by Brown, Culick and Zinn included in the collection edited
by Boggs and Zinn (1978).
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CHAPTER 6

Linear Stability of Combustor Dynamics

All problems of unsteady motion in combustion systems can be divided into the two classes: linearized
and nonlinear. From the earliest discoveries of their transient behavior until the late 1950s, `combustion
instabilities' implied small amplitude unsteady (and unwanted) motions growing out of a condition of linear
instability. Even with the expanding awareness that the nonlinear properties must be understood as well,
linear behavior always remained an essential part of understanding all aspects of combustion instabilities,
including the consequences of nonlinear processes.

The literature of linear combustion instabilities contains many papers dealing with special problems.
There seems often to be a tendency to regard the results as somehow disconnected. However, apparent
di®erences arise chie°y from the di®erences in the processes accounted for and in the choices of models for
those processes. So long as the problems are dominated by oscillating behavior in combustors, probably
most, if not practically all, of the results can be obtained in equivalent forms by suitable applications of the
methods explained here. That statement is not as outrageous as it may seem, following as it does from the
generality of the expansion procedures and the method of averaging covered in Chapter 4.

6.1. Historical Background of Linear Stability 1

Among the earliest interpretations of combustion instabilities was the idea of unstable disturbances
having small amplitude. That idea lies behind the characterization of small oscillations and is commonly
assumed to explain the initial stage, and hence the origin, of an oscillation in a combustion chamber. In
fact it is a widely observed motion in solid rockets, but the cases in other systems are often not so clearly
de¯ned. The latter are often regarded as `nonlinear' in some sense. Of the wide range of possible behavior,
linear motions are most easily and rigorously described, and form the context within which the greater part
of understanding combustion instabilities has been developed. We will examine some important aspects of
nonlinear behavior in Chapter 7.

Although there were earlier considerations of oscillations in solid propellant rockets, the ¯rst analysis of a
combustion instability seems to be that worked out by Grad (1949). At the suggestion of E.W. Price (private
communication), Grad considered the problem of unsteady motions in a solid propellant rocket. Although he
did not ignore the average °ow entirely, he managed to avoid treating the details of the velocity ¯eld within
the chamber away from the burning surface. He used an approximation to the mean °ow based on a separate
analysis. Eventually Grad worked out simple formulas for perturbations of the wavenumber. However, the
calculations are di±cult to follow and, so far as this writer knows, the results have never been checked against
observations. A natural result of the analysis is that high frequency oscillations are possible. Grad closed his
paper with the footnote that \high frequency oscillations have actually been observed recently in experiments
performed at Inyokern, California." That place was the Naval Ordnance Test Station (NOTS) which became
the Naval Weapons Center (NWC) and is now the Naval Air Warfare Center (NAWC). Researchers at China

1A more thorough account of early developments of linear stability is given in Chapter 2.
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Lake have had remarkable in°uence on the ¯elds of steady and unsteady combustion of solid propellants
continuously since the beginnings during World War II.

Grad's analysis and interpretation of his results were largely ignored, perhaps because combustion insta-
bilities in such a well-developed form did not constitute a pressing problem and because accurate data were
lacking. Moreover, when troublesome instabilities were encountered in solid rockets, they were eliminated or
reduced by making changes in the system.2 The situation changed markedly in the late 1950s. Apparently
the development of large motors was the main stimulus. The need to develop theoretical, computational,
and experimental methods then became clear. In the U.S. a very substantial e®ort grew, widespread but
well-coordinated. A particularly important outgrowth of the coordination was the organization that in 1963
became JANAF and subsequently the JANNAF (Joint Army/Navy/NASA/Air Force) Sub-Committee. Ap-
parently the initial e®orts in JANAF were largely exerted by the solid rocket community, which we will tend
to ¯rst here.

In the period covering the late 1950s to the middle 1960s, the special ad hoc group, \The Technical Panel
on Solid Propellant Instability of Combustion", accomplished much in urging and coordinating research on
instabilities in solid rockets. A useful collection of papers \Scienti¯c Papers 1960{1963" produced by the
panel gives a quite complete coverage of work by the group which included participants from Canada and
Europe. The titles of the papers correctly suggest that they truly covered the ¯eld and set the agenda for
much of the research carried out in the following decades.

The dominant group in theoretical developments during this period was that at the Johns Hopkins Ap-
plied Physics (JHU) Laboratory, mainly McClure, Hart, Bird and Cantrell. Although they treated unsteady
erosive burning (McClure, Bird and Hart 1960b and McClure, Hart and Bird 1962), their results were not
extensive; the subject has still not advanced very far. That is practically the only nonlinear subject that
they treated deeply enough to obtain results, limited though they were. Thus, almost all the theoretical
work dealt with linear stability. One of their most important accomplishments|which may not seem so
impressive now|was to gain universal recognition of the admittance function of a burning surface as pos-
sibly the most important quantity to know accurately as an essential part of the basis for determining the
stability of a motor. That is a consequence of the thorough fashion in which the JHU group formulated the
general problem. In fact, that approach to the overall problem had considerable impact on the development
of the theoretical aspects as well as on the general understanding of the ¯eld.

A large boost was given activity in the ¯eld of instabilities in solid propellant rockets. when a problem
arose with the ballistic missile Minuteman II, an instability in the third stage (see Section 1.3). From its
¯rst use in the late 1950s (Price and So®eris 1958) the T-burner had become generally accepted as the
test device for giving data on the admittance or response function for a burning surface. The Minuteman
problem led to a great deal of e®ort based on the device in the late 1960s and in the 1970s. Many important
research programs devoted to the T-burner and to other subjects were sponsored by the Air Force Rocket
Propulsion Laboratory (AFRPL).3 Simultaneously, work on all aspects of instabilities in solid rockets was
actively pursued at the Naval Weapons Center, China Lake. It was during this period that work was begun
to develop `standard stability prediction' programs.

2E.W. Price (1992) has given the best historical account of oscillatory combustion in solid propellant rockets in the U.S.
from the beginning (c. 1948) to 1991. Apparently no comparable document exists for experiences in other countries although
there are scattered brief descriptions.

3The author is particularly indebted to AFRPL for supporting programs under which the method of nonlinear analysis
described in this book was largely developed. Much of the work, especially in the early stages, was accomplished at Hercules,
Inc. where the author served as consultant to a group headed by Dr. Merrill Beckstead. The methods were initiated largely
under the sponsorship of the Air Force and the Navy, especially with the encouragement and support of E.W. Price.
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The growth of understanding and theory of instabilities in liquid propellant rockets followed a path
virtually independent of the work on solid propellant rockets in the U.S.4 After the early experimental work
reported by Gunder and Friant (1950), discussed also by Yachter (1950), and by Summer¯eld (1950) who ¯rst
used a time lag following the suggestion of von Karman, Crocco (1951)a, b developed the idea of the time lag
for low-frequency oscillations. `Low' means here that the propagation of disturbances within the chamber
was ignored. Higher frequency instabilities, those which are close to normal acoustic modes of the chamber
being studied, were then investigated by Crocco and Cheng (1956). They treated only one-dimensional
motions in that work.

In his second paper referenced above, Crocco (1951)b essentially formulated the problem subsequently
analyzed at great length by the Princeton group, the last published paper on the subject apparently being
that by Zinn (1968). Figure 6.1 is a sketch of the situation. During the nearly two decades of work, the
method of analyzing the unsteady °ow ¯eld changed considerably but the prescription of the unsteady
injection processes remained virtually unaltered, taking only two or three di®erent forms. Because the
injection of mass is restricted to the planar interface at the head end, the `injector plane', the in°ux of
material imposes a boundary condition on the °ow of gases within the chamber. That condition is quite
simply related to the velocity or mass °ux which, following Crocco, is expressed in terms of the time lag.
The reasoning has been summarized in Section 2.3.2, leading to a formula (2.88) for the source of mass w`
containing two unknown quantities, the time lag ¿ and the `pressure index' n:

w` = ¹w`

μ
1¡ d¿

dt

¶
(6.1)

Injection

Concentrated at

the Head End  (m' , u' )i i

Uniform Flow

in the Chamber

(u', T', p')

Choked Nozzle

(u'  , m' )N N

Figure 6.1. Basic physical model of a liquid rocket used in the Princeton theoretical work
(1950{1968).

As explained in Section 2.3.2, this formula is used for the °uctuation of the mass source in the equation
for conservation of mass. When the equations are linearized and written in terms of complex quantities, the
real and imaginary parts of the equations e®ectively serve as two formal conditions determining n and ¿ as
functions of the other variables in the problem.

The ¯rst extended theoretical account of linearized combustion instabilities was given in the book by
Crocco and Cheng (1956) partly covered in previous papers by the authors. For the most part, the work is
really a lengthy discussion and analysis of the linearized formulation of the situation sketched in Figure 6.1.
Because the governing equations are not spatially averaged, for simplicity only one-dimensional problems are
treated. The text contains an informative extended discussion of the time lag formulation and its linearized
form. Appendix B of the book is a calculation of the admittance for a choked nozzle, an elaboration of the
works by Tsien (1952) and Crocco (1953).

4I have been unable to locate any survey reports from the USSR during this or earlier times. See Natanzon (1999) for brief
mention of early work on instabilities in the Soviet Union, and for a good summary of the principal Russian work available,
including nonlinear analysis and experimental work. The recent book by Dranovsky (2006) covers test methods and results
very thoroughly, but contains no theory dealing with fundamental dynamical processes.
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In 1961 Culick (1961, 1963) worked out the ¯rst analysis of combustion instabilities using a Green's
function and spatial averaging; the analysis was carried out for liquid rockets. That formulation allowed
easy handling of linear three-dimensional problems, requiring calculation of the corresponding admittance
function for the nozzle. More complete results for the admittance were later reported by Crocco and Sirignano
(1967). Three-dimensional oscillations with the approximations shown in Figure 6.1 were analyzed by Scala
(1955); Reardon (1961); Crocco, Reardon, and Harrje (1962); and Reardon, Crocco and Harrje (1963). The
latter two papers contain limited experimental results.

Probably the greatest motivation for working so diligently to develop theory and prediction methods
for solid rockets is the intrinsic limitation of single, short ¯ring times. Thus, much e®ort has traditionally
been devoted to transient behavior, particularly the growth of the amplitude during an unstable ¯ring. The
situation is quite di®erent for liquid rockets, and especially for airbreathing systems that present opportunities
for relatively long controllable test runs. It is perhaps, therefore, understandable that less attention has been
paid to certain details of transient behavior in liquid-fueled systems.5 An exception to that practice was
the early work by Crocco and co-workers, developed especially in the book written with Cheng. The text
was devoted almost entirely to linear unstable motions including transients, and had much useful in°uence
in the subject of instabilities in liquid rockets.6 Subsequently there were many papers published on linear
instabilities in various systems.

In the 1980s there was renewed strong interest, both in the U.S. and in Europe, in small vehicles using
dump combustors as the basic internal con¯guration for ramjets. As a result, active research programs were
conducted to examine theoretical and experimental problems °owing largely from this simple con¯guration.
The kinds of problems considered were, however, somewhat di®erent from most of those traditionally studied
as they were presented for solid and liquid rockets. Probably the most signi¯cant di®erence was that
largely nonlinear motions were important,7 in respects not previously encountered in rocket engines. This
characteristic had the far-reaching consequence that computational °uid dynamics became an essential part
of progress. One of the ¯rst analyses using CFD was the interesting work by Jou and Menon (1986, 1990).
Now CFD is widely used to study internal °ows, although its practical use is only in early development. The
subject is mentioned only brie°y in this book.

Despite the rapid growth, broad applications, and truly fundamental importance of numerical methods
for internal °ows, the approximate literal analysis of internal °ows remains an extremely important basis for
understanding and designing propulsion systems. Together, this and the following chapter cover the most
important practical aspects of the analytical method developed in this book. All results obtained are based
on application of the method of spatial averaging.

6.2. Zero-Dimensional Instability of a Bulk Mode

Oscillations characterized by nearly uniform amplitude and phase in a chamber have arisen in practically
every type of combustion system. Because the pressure oscillation is nearly independent of position, the
velocity °uctuation is approximately zero. These oscillations occur at relatively low frequencies and are
often caused by processes con¯ned to the surface of the chamber, or to openings permitting °ow. The most
familiar related example is the sound produced when one blows past the opening of a bottle. In that case,
the term `Helmholtz mode' is often used to identify the origin of the tone; in discussions of combustion
systems, one often ¯nds the descriptive name `bulk mode', and for solid propellant rockets the special name

5I believe that relatively less attention to the ¯ne points of true transient behavior, while no doubt motivated by practical
concerns, is responsible for a tendency to acquire less understanding of the behavior of disturbances in liquid-fueled systems.

6As a personal note, the author is forever indebted to Professor Crocco, for that work motivated his thesis work (Culick
1960).

7An exception enjoying several useful applications was the elementary linear analysis by Culick and Rogers (1981), which
included a simple analysis of the choked inlet duct to determine its admittance function.
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`L¤ instability' is applied. It is the last we treat here in some detail, although in simpli¯ed form, to introduce
some of the basic ideas of computing linear instability.

Akiba and Tanno (1959) adapted the analysis by Crocco and Cheng (1956, Chapter 2) of a low frequency
instability in liquid rockets8 to the corresponding problem in solid rockets. The main di®erence between
applications to the two classes of systems is in the models used for unsteady combustion. In the limit of
linear behavior there are really no basic distinctions, another example of the practical value to be gained
from studying systems other than that of immediate concern.

Although Akiba and Tanno apparently had no concern with particular problems in motors, Sehgal and
Strand (1964) worked at the Jet Propulsion Laboratory (later o±cially named JPL) and were involved with
development of motors for space vehicles. Because of operations at low pressures requiring lower structure
weights, L¤ instability became an important problem. The ¯rst published concern with the behavior, partic-
ularly its connection to intermittent extinction, was documented by Anderson, Strehlow, and Strand (1963).
While the subsequent analysis by Sehgal and Strand di®ered only in certain details from Akiba and Tanno's,
their lasting contribution was the ¯rst comparison of theory and experiment, shown here in Figure 6.2. The
two theoretical lines arise from details of the analysis which produces two intersections of curves de¯ned in
the speci¯cation of the boundary of the stable and unstable regions of operations. No reason was given that
one of the theoretical curves is favored by the experimental results. The de¯nitions of the dimensionless
critical time constant (¿n)cr and characteristic chamber length L

¤ are

(¿n)cr = ¿cr
¹r2

4·
(6.2)

L¤ =
4·cDRTf (¿n)cr

a2
¹p¡2nc (6.3)

where · is the thermal di®usivity; cD is the discharge coe±cient; Tf is the °ame temperature; and a is the
constant in the linear burning rate law. Equation (6.3) therefore predicts quite well the behavior L¤ » p¡2n
shown in Figure 6.2, prepared using the properties of the propellant tested, JPL-534.

The two analyses just mentioned di®ered mainly in their representations of unsteady burning of a
solid propellant. Akiba and Tanno drew on Green's model (See Section 2.1.2), while Sehgal and Strand
worked out their own analysis of the combustion response, an incomplete9 form of Denison and Baum's
earlier approximate theory (Section 2.2.2). Both treatments followed Tsien's lead in application of a form
of Nyquist's theorem (Annex G and Chapter Nine) to study the stability of the system. Tsien used a
modi¯cation of the theorem suggested by Satche (1949) to handle an exponential necessarily accompanying
introduction of a (constant) time lag in the combustion process.10 Although neither treatment required a
time lag in the same way followed by Tsien, both used Satche's modi¯cation of Nyquist's theorem. That
is an unnecessary complication as Beckstead, Ryan, and Baer (1966) and the next paper by Coates, Cohen
and Harvill (1967) implicitly showed.

Following previous authors, Coates et al.began their analysis with the transfer function Gm for the
motor

±m0

±mi
= Gm =

Gc
1¡GpGc (6.4)

which follows directly from the block diagram drawn in Figure 6.3.

8The discussion by Crocco and Cheng is an extension and elaboration of the original paper by Tsien (1953), based on
essentially the same ideas. Tsien also proposed possible use of feedback control; see Chapter Nine.

9One consequence of the incompleteness is failure to reach the correct limit for zero frequency; see equation (12) and

accompanying comment, in Coates et al. (1967).
10The analyses by Tsien; Crocco and Cheng; Akiba and Tanno; and by Sehgal and Strand were based on Laplace transforms,

applied, naturally, to linear problems. Hence the presence of a constant time lag ¿ in the coupling between, for example, the
heat or mass sources, and the pressure °uctuations, produces exponentals, e¡s¿ , in the characteristic equation.
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Figure 6.2. L¤ versus chamber pressure, showing the stability limit for oscillations (Sehgal
and Strand 1964).
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Figure 6.3. Block diagram of the system, adapted from Figure 1 of Coates, Cohen, and
Harvill (1967).

The transfer function Gp for the combustion dynamics is given by Denison and Baum's result, (2.67)
here; Gc is the transfer function for the chamber dynamics. For the model of the L

¤ burner used in the
works cited, and explained in the next section, the equation for the unsteady chamber pressure is,

¿c
d

dt

³p0
¹p

´
+
p0

¹p
=
m0

¹m
: (6.5)

The Laplace transform is

(1 + s¿c)
P (s)

¹p
=
M(s)

¹m
(6.6)

so

Gc =
1

1 + s¿c
: (6.7)
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Denison and Baum's result, (2.67), gives Gp, completing the basis for the calculation discussed by Coates,
Cohen, and Harvill. Figure 6.4 reproduces two results the authors found in support of their calculations.
The solid lines are computed from this result

1

L¤
=

1

·¡2c¤
¹r2

(¿n)cr
(6.8)

where (¿n)cn = (¿c¹r
2=·)cr. Beckstead (1965) obtained the data for Utah TF propellent.
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Figure 6.4. L¤ instability data for two propellants (a) Utah TF (University of Utah) and
(b) JPL-534 (Jet Propulsion Laboratory) (Coates, Cohen, and Harvill 1967).

Besides having very low frequencies and nearly uniform but sinusoidal (i.e., pulsating) pressure ¯elds
when oscillations are excited, instabilities of the bulk mode often lead to intermittent unsteady behavior
commonly referred to as `chu±ng.' Figure 6.5 shows both types of behavior leading to extinction of com-
bustion. Identifying the stability boundary unambiguously, given that loss of stability does not necessarily
mean growth of an oscillation out of noise, presents problems under these conditions. The di±culties are
both experimental and interpretive, treated at some length in the references. We will not discuss the subject
here except to note that whatever the precursor behavior, the limit of stability seems to de¯ne a su±ciently
narrow band of values, L¤ and pressure or burning rate, that a line is a reasonable approximation, Figures
6.2 and 6.4. Put simply, it makes sense to speak of the `L¤ stability limit.'

Chu±ng was not a new phenomenon, discovered quite early as one aspect of L¤ instability. The earliest
written record seems to have been prepared by Crawford et al. (1945) although earlier informal reports have
been suggested on several occasions. Some early British experiences were discussed by Hu±ngton (1954).
An indication of the problem's practical persistence is conveyed by the session on \Nonacoustic Combustion
Instability" included in the AIAA Solid Propellant Rocket Conference, January 1964. Eisel et al. (1964)
reported results of tests with an L¤ burner and a very long `acoustic' burner having adjustable length as
long as sixty (!) feet. Several records of chu±ng at low frequency instabilities from the paper by Yount and
Angelus (1964) are reproduced in Figure 6.6 showing well the intermittent behavior sometimes observed.

Oberg (1968) addressed the problem displayed by Figure 6.5 which had led to the idea of `nonacoustic'
instabilities in contrast to `acoustic' instabilities of the sort described in Chapter One. It was his correct
contention that `acoustic' and `nonacoustic' instabilities are in fact closely related. Of those working in the
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Figure 6.5. Two examples of natural cessation of L¤ instabilities (a), growth of oscillations
ending in extinction; (b) chu±ng, leaking to extinction (Beckstead, Ryan, and Baer, 1966).

Figure 6.6. Five pressure records of chu±ng (A) and low frequency instabilities (B) (Yount
and Angelus 1964).

¯eld, he was ¯rst to recognize that an L¤ instability is the limit, as the frequency tends to zero, of the wave
or acoustical modes. Oberg showed the result explicitly for longitudinal motions; Culick (1968) subsequently
proved that the conclusion holds generally, with a calculation repeated here in Section 6.6.

A straightforward description of the bulk mode or L¤ instability is based on the assumption that the
frequency is so low that all processes respond essentially instantaneously. This requires that the travel time
of a small disturbance in the chamber, and in the nozzle, be much less than the period of the oscillation.
The pressure then remains sensibly uniform throughout and pulsates in time.

With this assumption, all variations in space are ignored, and in particular the conservation of momentum
need not be considered. Mainly one is concerned with the conservation of mass. Let Sb be the area of burning
surface St the area of the nozzle throat, V the volume, and c¤ the usual characteristic velocity. The total
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mass of gas in the volume is ½V at any instant; its rate of change must equal the di®erence between the rate
at which mass enters, and the rate at which it leaves,

d

dt
(½V ) = mSb ¡ St p

c¤
(6.9)

where m = ½sr is the mass °ux at the burning surface. The relation de¯ning c
¤ as the ratio of Stp to

the total mass °ux out the nozzle c¤ = Stp=m =
p
RT=¡, with ¡2 = °

³
2

°+1

´ °+1
°¡1

is strictly valid only in

steady °ow (Altman et al. 1960). Its use here is justi¯ed by the assumption that the transit time of a °uid
element through the nozzle is much less than the period of oscillation. This is sometimes referred to as the
\zero-length" approximation to the time-dependent behavior of a nozzle. Note that (6.9) applies to any
geometry; it is not restricted to end burners.

We assume that the thermodynamic state of the gases is uniform in the chamber, and that combustion
occurs only in a thin zone near the propellant surface; residual combustion is ignored. Further, it is assumed
that the gases can be described by the equation of state for a perfect gas, p = ½RT . Thus we have two
equations in three variables (p; ½; T ) because the mass °ux from the surface m is assumed to be a function
of pressure only. The principle of conservation of energy provides a third relation, but it will be handled
shortly in a simpli¯ed manner.

Now we form a linearized problem in familiar fashion by writing p = ¹p + p0 : : : etc. and by ignoring
squares and higher order terms. Then the linearized equation of state is

p0

¹p
=
½0

¹½
+
T 0
¹T

(6.10)

Similarly, equation (6.9) can be expanded as follows:

¹½V
d

dt

³½0
¹½
¡ T

0
¹T

´
= ( ¹mSb)

m0

¹m
¡ St¹p
¹c¤
³p0
¹p
¡ c

¤0

¹c¤
´

(6.11)

Because c¤ » pT ; c¤0=¹c¤ = T 0=2 ¹T and the last equation can be written
¹½V

St¹p
¹c¤
d

dt

³p0
¹p

´
=

"
¹mSb
St ¹p
¹c¤

#
m0

¹m
¡ p

0

¹p
+
¹½V ¹c¤

St¹p

d

dt

³T 0
¹T

´
+
1

2

T 0
¹T

(6.12)

In steady °ow, conservation of mass requires

¹mbSb = St¹p=¹c
¤ (6.13)

and with the equation of state, we ¯nd the characteristic time ¿c,

¹½V ¹c¤

St¹p
=
V

St

¹c¤

R ¹T
=
L¤¹c¤

R ¹T
= ¿c (6.14)

where the conventional de¯nition of L¤ is

L¤ = V=St (6.15)

Thus the equation for the pressure °uctuation is

¿c
d

dt

³p0
¹p

´
=
m0

¹m
¡ p

0

¹p
+
h
¿c
d

dt

³T 0
¹T

´
+
1

2

T 0
¹T

i
(6.16)

To simplify the discussion further, consider the extreme case in which the oscillations are so slow, and
mixing is so thorough, that the temperature is not only uniform in the chamber but also constant, so T 0 = 0.
Then the last equation is

¿c
d

dt

³p0
¹p

´
=
m0

¹m
¡ p

0

¹p
(6.17)
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With m = ½sr;m
0= ¹m = r0=¹r, and if the burning always responded instantaneously to a change of

pressure, r » pn, one could write
r0

¹r
= n

p0

¹p
(6.18)

and (6.17) would become

¿c
d

dt

³p0
¹p

´
= (n¡ 1)p

0

¹p
(6.19)

The solution to this equation is immediate:

p

¹p
=
³p0
¹p

´
0
e

³
n¡1
¿c

´
t

(6.20)

where (p0=¹p)0 is the °uctuation at t = 0. Thus, if n > 1, a small disturbance will grow without limit. This
is well-known behavior: motors using propellants with n close to unity are very sensitive to small changes
in pressure and if n is positive, the system is unstable. That is the ¯rst criterion established for stability if
combustion in a solid11 propellant rocket, found by Malina (Karman and Malina, 1940).

The relation (6.18) is valid only in the limit of very low frequencies. In general, the burning rate of
a propellant exposed to a sinusoidal pressure oscillation will vary sinusoidally also, but not in phase with
the pressure, as shown in Section 2.2.2, equation (2.66), for the simplest realistic case. That behavior is
represented by the response function Rb,

m0

¹m
= Rp

p0

¹p
=
£
R(r)p + iR(i)p

¤p0
¹p

(6.21)

The response function is a complex function of frequency, and can be written as

Rp = R
(r)
p + iR(i)p = jRpj(cosÁ+ i sinÁ) (6.22)

For harmonic motions,

p0

¹p
= Pe¡i(!+i®)t

= Pe®te¡i!t (6.23)

If the growth constant ® is positive, then the oscillation is unstable and grows exponentially in time. In all
problems of linear stability, the principal task is to compute the growth constant. Substitution of (6.21) and
(6.23) into (6.17) leads to

¿c(®+ i!)P = [R
(r)
p + iR(i)p ]P ¡ P (6.24)

The amplitude P is a common factor, and the real and imaginary parts of (6.20) give the two equations

Real Part ®¿c = R
(r)
p ¡ 1 (6.25)

Imaginary Part !¿c = R
(i)
p (6.26)

The response function is a fundamental quantity in all problems of combustion instability in solid propel-
lant rockets. It is a dynamical property of the propellant, summarizing all the linear behavior for unsteady-
burning. There is presently no way to calculate the response function for a real propellant. As we have
emphasized in Chapter 2, the most important current experimental problem is its measurement.

11With only minor changes of de¯nitions and interpretation, the same result follows for liquid or gaseous propellant rockets.
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Figure 6.7. Real and Imaginary parts of a simple response function (see the same result,
Figure 2.14).

Equation (6.25) shows that a sinusoidal oscillation is unstable if the real part of the response function

is greater than unity. The frequency of an unstable oscillation is then given by (6.26); obviously R
(i)
p must

be positive for this relation to make sense.

There have been many attempts to compute the response function. Many of these actually produce
the same result,12 discussed in Section 2.2. The main feature is that the response function depends on two
parameters (called A and B) and is a function of the dimensionless frequency

− =
!·

¹r2
(6.27)

where · is the thermal di®usivity of the propellant. The real and imaginary parts of Rb have the form shown
in Figure 6.7, a repeat of Figure 2.14. In this case, according to (6.26), a bulk-mode instability can occur

only for frequencies such that the dimensionless frequency is below the value −0 at which R
(i)
p passes through

zero. Let −¤ be the value of − at which R(r)b = 1, so ® = 0. Then a sinusoidal °uctuation is unstable if −
lies in the range

−¤ < − < −p : (6.28)

Equation (6.26) becomes ³ ¹r2
·

´!·
¹r2
¿c ´ ¹r2

·
−¿c = R

(i)
p (6.29)

On the stability boundary, when − = −¤,

¹r2¿c =
·

−¤
R(i)p (−

¤) (6.30)

With ¹r = a¹pn, and ¿c = L
¤¹c¤=R ¹T , this relation gives

L¤ =
h·R ¹T
¹c¤a2

R
(i)
p (−¤)
−¤

i 1
¹p2n

(6.31)

The group in brackets is almost independent of pressure, so equation (6.31) gives the result that on the
stability boundary, L¤ » ¹p¡2n. This result has been veri¯ed by experimental results such as those given in
Figure 6.2 and 6.4.

12In the past 10{15 years, e®orts have been reported to formulate more realistic forms. The broad characteristics and roles
of the real and imaginary parts of the response function remain. That's a useful mnemonic aid. See, however, Section 6.9.3.
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For ®6= 0, (6.26) again gives (6.31), but with − > −¤; dividing the two results one ¯nds
(L¤)®>0
(L¤)®=0

=

"
R
(i)
b (−)

R
(i)
b (−

¤)

#³−¤
−

´
(6.32)

The right-hand side is less than unity, so the unstable region in the plot L¤ versus ¹p lies below the stability
boundary as shown in Figure 6.2.

Equations (6.25) and (6.26) for steady sinusoidal motions follow from the simple model of the combustion
dynamics used as the basis of equation (6.17) for general (but linear) time-dependent behavior. Experimental
results ¯rst con¯rmed that the picture was correct. For practical applications, and especially as part of the
e®ort to determine the transient behavior of burning propellants at higher frequencies, there was much
interest in obtaining ¯rm results for the response function over broad frequency ranges. A reasonable
beginning is to determine the extent to which L¤ instability may be used to distinguished quantitative
di®erences among propellants.

To do so requires correlating data with the complex equation (6.24) which produces the two real equa-
tions (6.25) and (6.26). The two equations allow determination of two parameters. It is a lucky result that
Denison and Baum's results (2.66) contains only two parameters, A and B. Then the question is|can A
and B be determined from experiments, uniquely for each propellant? Put another way, will the parameters
A and B de¯ne the dynamical behavior of solid propellants? To answer the question, we must determine
how well this theory explains observed behavior.

It is easy to solve (6.25) and (6.26) for A and B to ¯nd

A = −
¯1h2 + ¯2h1
®1¯2 ¡ ®2¯1 (6.33)

B = ¡®1h2 + ®1h1
¯1h2 + ¯2h1

(6.34)

where h1 = 1 + ®¿c, h2 = !¿c and

®1 = h2(1¡ ¸r) + h1¸i
®2 = h1(1¡ ¸r)¡ h2¸i
¯1 = (h2 ¡ n)¸r ¡ h1¸i
¯2 = (h2 ¡ n)¸i + h1¸r

(6.35)a,b,c,d

function ¸ of dimensionless frequency was de¯ned by equation (2.26)a,b;

¸r = 1
2

©
1 + 1p

2

£
(1 + 16−2)1=2 + 1

¤1=2ª
¸i = 1

2
p
2

£
(1 + 16−2)1=2 ¡ 1¤ (6.36)a,b

Equations (6.25) and (6.26) with Denison and Baum's result for Rb, de¯ne the two families of curves
drawn in Figure 6.7 for ® = 0, the only condition for which data are available. Acceptable results must
have A > 0 (by de¯nition of A) and must also lie to the left of the line for intrinsic stability.13 Evidently
Denison and Baum's result may represent the dynamics of A-35 (A=14, B=0.8) but not those of A-13.
Possible reasons for the di®erence have not yet been explained. The two propellants had the same oxidizer
particle size distribution and di®ered by only 1% in the amounts by mass. A-13 had 24% by mass of PBAN
binder; A-35 contained 25% of an estane type of polyurethane binder. One might guess that the di®erence
in dynamical behavior suggested by Figure 6.8 is related to the di®erent binders, but details are lacking.

13The term \intrinsic stability" refers to unlimited growth of a disturbance in the burning rate which is dependent only
on the dynamics of the propellant and which occurs without an external disturbance.
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Figure 6.8. The L¤-chart for determining the parameters A and B. Data for the propel-
lants A-13 and A-35 lie in the indicated regions. (Beckstead and Culick 1971).

6.3. A Formal Solution to the Problem of Linear Stability

By `solution' we mean here formulas for calculating the amplitudes ´n(t) of modes retained in the
expansion for the pressure ¯eld, p0(r; t) = ¹p§´n(t)Ãn(r). The amplitudes satisfy the oscillator wave equations
(4.36) with N replaced by n:

d2´n
dt2

+ !2n´n = Fn + F
c
n (n = 1; 2; : : : ) (6.37)

where F cn stands for the generalized `force' associated with the exercise of control; and Fn is the spatial
average of that part (sometimes called the \projection" on the basis function Ãn) of the internal processes
a®ecting the motion of the nth oscillator, given by (4.30):14

Fn = ¡ ¹a2

¹pE2n

½Z
hÃndV +

ZZ
° fÃndS

¾
(n = 1; 2; : : : ) (6.38)

and

E2n =

Z
Ã2ndV (6.39)

Here we will suppress F cn because we are concerned only with the internal behavior of the system.
15 In

general, the Fn contain contributions associated with the motions of oscillators other than the n
th|i.e., the

modes are coupled. For analysis of linear stability we are justi¯ed in ignoring that coupling, for reasons
given by Culick (1997). Each Fn is a linear function of the amplitude and velocity of the oscillator, having

14In this chapter and subsequently we will often indicate integration over volume by single integral signs, as here, to avoid
unnecessary use of

RRR
.

15The functions FFF and P implicitly contain all e®ects of control; the generality of subsequent calculations is therefore not
reduced by removing F cn.

LINEAR STABILITY OF COMBUSTOR DYNAMICS 

RTO-AG-AVT-039 6 - 13 

 

 



the form

Fn = F
´
n´n + F

_́
n

d´n
dt

(n = 1; 2; : : : ) (6.40)

where the F ´n and F
_́
n are constants, depending only on the mode.

With these assumptions, the oscillator equations (6.37) are the uncoupled set

d2´n
dt2

¡ F _́
n

d´n
dt

+
¡
!2n ¡ F ´n

¢
´n = 0 (n = 1; 2; : : : ) (6.41)

Because the equations are uncoupled, the normal modes Ãn for the corresponding classical acoustic problem
are also the normal modes for the linear problem of combustor dynamics. The general problem of determining
linear stability has therefore come down to the problem of determining the stability of the normal modes.
In the usual fashion we assume sinusoidal time dependence with complex frequency − (− ´ ¹ak below):

´n(t) = ^́ne
¡i−t (n = 1; 2; : : : ) (6.42)

Equation (6.41) gives the quadratic equation for −n:

−2 + iF _́
n−¡

¡
!2n ¡ F ´n

¢
= 0 (6.43)

having solution

− = ¡i1
2
F _́
n + !n

s
1¡ 1

!2n

·
F ´n +

1

4

³
F _́
n

´2¸
(6.44)

where we take the (+) sign on the radical to give a positive real frequency. Hence the amplitudes are

´n(t) = e
1
2F

_́
n te¡i!n

p
1¡³2t (6.45)

with the de¯nition

³n =
1

!n

r
F ´n +

1

4

³
F _́
n

´2
(6.46)

The nth mode is stable of

F _́
n < 0 (6.47)

That is, the coe±cient of _́n in the expression for Fn must be negative for the n
th mode to be stable. That

formal condition means that the nth mode has positive damping.

According to the methods of Fourier analysis, an arbitrary disturbance at some initial time (say t = 0)
in the chamber can be synthesized of the normal modes. The time-evolution of the disturbance is therefore
determined by the ´n(t). In particular, an arbitrary disturbance in a combustor is stable if (and only if) all
of the normal modes are stable and we arrive at the general result for the linear stability of a combustor:

(i) Write the linearized function for the force acting on the nth oscillator (spatially averaged acoustic
mode) in the form

Fn = F
´
n´n + F

_́
n

d´n
dt

(ii) Then any initial disturbance in a combustor is stable if and only if all the F _́
n are negative:

Linear Stability () F _́
n < 0 (all n)
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The preceding calculation, and its conclusion, illustrate further a point ¯rst made in Chapter 3: We have
found a means of computing the linear stability of a combustor without knowing the actual linear motions
themselves. The complex frequency (6.44) is in fact the frequency for the actual linear modes including
the in°uences of all the processes accounted for. But calculation of the F ´n and F _́

n with the formula
(6.38) requires knowledge only of the unperturbed normal modes|their frequencies !n and shapes Ãn(r).
The formal statement of this property is that the eigenvalues (−n) to any order in the relevant expansion
parameter (here ¹Mr := ¹ de¯ned in Chapter 3) can be computed knowing the eigenfunctions (Ãn) only to
one less order. The eigenvalues −n are here given to ¯rst order in the Mach number of the average °ow
but only the unperturbed classical eigenfunctions Ãn are required. This is the basic characteristic of the
expansion procedures with spatial averaging that makes the method devised here so useful in practice, as we
have emphasized in Chapter 4; examples of this important result are widespread in the ¯eld of combustion
instabilities generally, but may be found especially in the literature for solid rockets.

6.4. An Alternative Calculation of Linear Stability

An equivalent calculation of the result for linear stability makes direct use of the formula for the wavenum-
ber. Write

´n = ^́ne
¡i¹akt ; Fn = F̂ne

¡i¹akt

and substitute in (6.37) with F cn ignored to ¯nd (¹ak)
2 = (¹akn)

2 ¡ F̂n=^́n, or
(¹ak)2 = (¹akn)

2 ¡ 1

^́n

³
F̂ (r)n + iF̂ (i)n

´
(6.48)

where ( )(r) and ( )(i) identify real and imaginary parts. With16 ¹ak = ! + i®, this formula is

!2 + i(2®!)¡ ®2 = !2n ¡
1

^́n

³
F̂ (r)n + iF̂ (i)n

´
Because ® and F̂n are ¯rst order in the expansion parameter and terms of higher order must be dropped

17,
we ignore ®2 with respect to !2. Then the real and imaginary parts of the last equation give

!2 = !2n ¡
1

^́n
F̂ (r)n

® = ¡ 1

2!n
F̂ (i)n

(6.49)a,b

where ! has been set equal to !n in the right-hand sides to ensure that higher order terms are not retained.
Now take the square root of the ¯rst equation and again drop higher order terms to ¯nd

! = !n ¡ 1

2!n

F̂
(r)
n

^́n

® = ¡ 1

2!n

F̂
(i)
n

^́n

(6.50)a,b

The system is unstable if F̂
(i)
n is negative, so ® is positive. This condition is essentially a generalized form

of Rayleigh's Criterion discussed further in Section 6.6.

After higher order terms are dropped from (6.44), the real and imaginary parts of − ´ ¹ak = ! + i® are
! = !n ¡ 1

2!n
F ´n

® = ¡1
2
F _́
n

(6.51)a,b

16Thus ® > 0 for instability: e¡i¹akt ´ e¡i(!+i®)t = e¡i!te®t which grows without limit in time when ® > 0.
17Recall remarks in Chapters 3 and 4.
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Comparison of (6.50)a,b and (6.51)a,b gives the connections between the two representations of the forcing
function:

F ´n =
F̂
(r)
n

^́n

F _́
n =

1

!n

F̂
(i)
n

^́n

(6.52)a,b

Generally Fn will contain several processes, each of which will depend linearly on ´n and
d´n
dt , and appears

additively in Fn. Hence, formulas corresponding to (6.52)a,b apply to each of the individual processes. They
are often useful, if only for checking correctness, in detailed calculations.

6.5. Linear Stability with a Heat Source and Motion of the Boundary

As a ¯rst approximation to problems of combustion instabilities it is useful to ignore all processes
involving interactions between the unsteady and steady ¯elds, and focus attention on the two generic causes
of instabilities: time-dependent energy addition and motions of the boundary. With suitable interpretation
the second may represent the in°uence of unsteady combustion of a solid propellant. Then in dimensional
variables the linearized pressure and momentum equations (3.46)d and (3.46)b, and the boundary condition
(3.57)b on the pressure °uctuations are

@p0

@t
+ °¹pr ¢ u0 = R

Cv
_Q0 (6.53)

¹½
@u0

@t
+rp0 = 0 (6.54)

n̂ ¢ rp0 = ¡¹½@u
0

@t
¢ n̂ (6.55)

Now form the wave equation as in Section 3.4, so the problem is governed by the two equations

r2p0 ¡ 1

¹a2
@2p0

@t2
= h

n̂ ¢ rp0 = ¡f
(6.56)a,b

where

h = ¡ 1

¹a2
R

Cv

@ _Q0

@t

f = ¹½
@u0

@t
¢ n̂

(6.57)a,b

The expansion procedure and application of spatial averaging leads to the explicit oscillator equations
(4.36):

d2´n
dt2

+ !2n´n = ¡
¹a2

¹pE2n

(Z "
¡ 1

¹a2
R

Cv

@ _Q0

@t

#
ÃndV +

ZZ
°
·
¹½
@u0

@t
¢ n̂
¸
ÃndS

)
(6.58)

As a simple example, consider the one-dimensional problem of waves excited in a tube ¯tted with a
piston, Figure 6.9, and with distributed heat addition provided, say, by an electrically heated coil. Only
longitudinal modes are considered, and

Ãn = cos(knx) ; kn = n
¼

L
; E2n =

1

2
ScL (6.59)
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Figure 6.9. A tube with distributed heat addition and an oscillating piston to drive waves.

where Sc = ¼R
2
c is the cross-section area of the tube. We ignore any average motion in the tube, and suppose

that the average thermodynamic properties are maintained constant and uniform by suitable steady heat
losses through the walls of the tube. The heat addition and motion of the piston are sinusoidal, having
phases ÁQ and Áu with respect to pressure oscillations:

_Q0 =
¯̄̄
_̂Q(x)

¯̄̄
e¡i(¹akt+ÁQ)

u0p ¢ n̂ = jûpj e¡i(¹akt+Áu)
(6.60)a,b

Hence for use in h and f :

@ _Q0

@t
= ¡i¹ak

¯̄̄
_̂Q(x)

¯̄̄
e¡i(¹akt+ÁQ)

@

@t

¡
u0p ¢ n̂

¢
= ¡i¹ak jûpj e¡i(¹akt+Áu)

(6.61)a,b

With ´n = ^́ne
¡i¹akt, substitution in the oscillator equations (6.58) leads to£¡(¹ak)2 + !2n¤ ^́n = ¡ ¹a2

¹pE2n

½
¡ 1

¹a2
R

Cv
(¡i¹ak)

Z
cos(knx)

¯̄̄
_̂Q(x)

¯̄̄
e¡iÁQdV

¡i¹½¹ak
ZZ
° cos(knx)jûpje¡iÁudS

¾
After some rearrangement, and setting ¹ak = ! + i®, we ¯nd

(! + i®)2 = !2n + i(! + i®)
¹a2

¹p( 12ScL)

8<: 1

¹a2
R

Cv
Sc

LZ
0

cos(knx)

¯̄̄
_̂Q(x)

¯̄̄
^́n

e¡iÁQdx

+ ¹½Sc
jûpj
^́n
e¡iÁu

9=;
Because j _̂Qj and jûpj are small perturbations we can write this equation to ¯rst order in small quantities:

!2 + i(2®!) = !2n + i!n
2

¹pL

8<: R

Cv

LZ
0

cos(knx)

¯̄̄
_̂Q(x)

¯̄̄
^́n

e¡iÁQdx+ ¹½¹a2
jûpj
^́n
e¡iÁudx

9=;
Take the real and imaginary parts to ¯nd

!2 = !2n +
2!n
¹pL

8<: R

Cv

LZ
0

cos(knx)

¯̄̄
_̂Q(x)

¯̄̄
^́n

sinÁQdx+ ¹½¹a
2 jûpj
^́n

sinÁu

9=;
® =

1

¹pL

8<: R

Cv

LZ
0

cos(knx)

¯̄̄
_̂Q(x)

¯̄̄
^́n

cosÁQdx+ ¹½¹a
2 jûpj
^́n

cosÁu

9=;
(6.62)a,b
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Internal feedback, and hence a condition for instability, exists if either or both of j _̂Qj and jûpj depend
on the °uctuating pressure (or velocity). For example, set

j _̂Qj = q0 ^́nÃn = q0 ^́n cos knx
jûpj = u0 ^́n

(6.63)a,b

and (6.62)a becomes
!2 = !2n + 2!n (Aq0 sinÁq +Bu0 sinÁu)

where

A =
1

2¹p

R

Cv
; B =

°

L
(6.64)

To ¯rst order in small quantities we ¯nd the results for the frequency and decay or growth constant:

! = !n +Aq0 sinÁQ +Bu0 sinÁu

® = Aq0 cosÁQ +Bu0 cosÁu
(6.65)a,b

Remarks:

(i) The nth mode is unstable if Aq0 cosÁQ +Bu0 cosÁu > 0.

(ii) If 0 · Áu · ¼
2 then a necessary condition for instability is 0 · ÁQ · ¼

2 .

(iii) Instability of the nth mode is encouraged if j _̂Q(x)j cos knx is larger, i.e., if the heat addition is greater
where the mode shape of the pressure takes its largest values, an example of Rayleigh's Criterion.

It is important also to notice that due to the spatial averaging, one cannot distinguish among the ultimate
e®ects of volumetric and surface processes. There is an equivalence of the in°uences of the various processes,
their importance in respect to position within the chamber being dominated by their location relative to the
mode shapes. That characteristic has far-reaching consequences in applications to combustion chambers.

6.6. Rayleigh's Criterion and Linear Stability

As part of his research on the excitation of acoustic waves by heat addition18 in chambers, Lord Rayleigh
(1878, 1945) formulated the following explanation for the production of tones in a Rijke tube:

\If heat be periodically communicated to, and abstracted from, a mass of air
vibrating (for example) in a cylinder bounded by a piston, the e®ect produced
will depend upon the phase of the vibration at which the transfer of heat takes
place. If heat be given to the air at the moment of greatest condensation, or be
taken from it at the moment of greatest rarefaction, the vibration is encouraged.
On the other hand, if heat be given at the moment of greatest rarefaction, or
abstracted at the moment of greatest condensation, the vibration is discouraged."

That paragraph has become probably the most widely cited `explanation' for the presence of combustion
instabilities generally. For easy reference, the explanation has long been referred to as \Rayleigh's Criterion."

It is important to realize that Rayleigh addressed only the conditions under which unsteady heat addition
`encourages' oscillations, i.e., is a destabilizing in°uence. Other processes, stabilizing or destabilizing, are

18The literature in the 19th century included many works on `singing °ames' which also formed part of the background
for Rayleigh's Criterion. It was only in the late 20th century that the close basic connections between the behavior of `singing
°ames' and the Rijke tube were understood.
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neither excluded nor included, and there is certainly no implication that satisfaction of the criterion is either
a necessary or a su±cient condition for instability to exist. Several published examples exist of quantitative
realizations of the criterion (Putnam and Dennis 1953, Putnam 1971; Chu 1956a; Chu 1956b; Zinn 1986;
Culick 1987, 1992). The purpose of this section is to establish a generalized form of Rayleigh's Criterion by
using the analysis based on spatial averaging, and to show the equivalence of Rayleigh's Criterion and the
principle of linear stability.

The main idea is that a positive change of the time-averaged energy of a modal oscillator in a cycle
of oscillation is exactly equivalent to the principle of linear instability, that the growth constant should be
positive for a motion to be unstable. To establish the connection we use the oscillator equations,

d2´n
dt2

+ !2n´n = Fn (6.66)

The instantaneous energy19 of the nth oscillator is

"n =
1

2

¡
_́2n + !

2
n´

2
n

¢
(6.67)

and the change of energy in one cycle is the integral over one period of the rate at which work is done by
the force Fn:

¢"n =

t+¿nZ
t

Fn(t
0) _́n(t0)dt0 (6.68)

Under the integral, Fn and _́n must be real quantities; here we use the real parts of both functions,

´n = ^́ne
¡i¹akt = j^́nje¡i¹akt

Fn = F̂ne
¡i¹akt = jF̂nje¡i(¹akt+ÁF ) = jF̂nj (cosÁF + i sinÁF ) e¡i¹akt

(6.69)a,b

We measure all phases with respect to the pressure, so ^́n is real and, being the maximum amplitude, is
positive. Substitution in the oscillator equations gives

k2 =
1

¹a2

Ã
!2n ¡

F̂n
^́n

!
of which the real and imaginary parts are to ¯rst order in small quantities:

!2 = !2n ¡Re
Ã
F̂n
^́n

!
= !2n ¡

¯̄̄̄
¯ F̂n^́n

¯̄̄̄
¯ cosÁF

®n =
¡1
2!n

Im

Ã
F̂n
^́n

!
=
¡1
2!n

¯̄̄̄
¯ F̂n^́n

¯̄̄̄
¯ sinÁF

(6.70)a,b

The oscillator's motion is stable if ®n is negative (see Footnote 9), i.e. if the imaginary part of F̂n is positive.

Also for use in (6.68) we have

_́n = ¡i¹akj^́nje¡i¹akt = ¹akj^́nje¡i(¹akt+¼
2 ) ¼ !nj^́nje¡i(!nt+¼

2 )

so

Re( _́n) = !nj^́nj cos
³
!nt+

¼

2

´
= ¡!nj^́nj sin!nt (6.71)

The real part of Fn is

Re(Fn) = jF̂nj cos (!nt+ ÁF ) = jF̂nj fcos!nt cosÁF ¡ sin!nt sinÁF g (6.72)

19"n is not the energy of the nth acoustic mode, which is given by the integral of (5.72) over the volume of the chamber.
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Figure 6.10. The Caltech dump combustor.

Hence the right-hand side of (6.68) is

¢"n =

t+¿nZ
t

Re(Fn)Re(´n)dt
0 = !jF̂nj

t+¿nZ
t

½
sin2 !nt

0 sinÁF ¡ 1
2
sin 2!nt

0 cosÁF

¾
dt0

= !jF̂njj^́nj¿n
2
sinÁF

Substitution of (6.33)b leads to the formula

¢"n = 2¼®n!nj^́nj2 (6.73)

which establishes the desired connection between Rayleigh's Criterion and linear stability.

Remarks:

(i) Positive ®n (the system is linearly unstable) implies that the average energy of the oscillator increases,
and vice-versa.

(ii) Rayleigh's original criterion is equivalent to the principle of linear instability if only heat exchange
is accounted for and is neither a necessary nor a su±cient condition for existence of a combustion
instability.

(iii) The extended form (6.73) of Rayleigh's Criterion is exactly equivalent to the principle of linear
instability, all linear processes being accounted for.

Putnam (1971) has made the most extensive use of Rayleigh's Criterion in practical situations. His book
and papers give many examples of applying the Criterion as an aid to making changes of design to avoid
oscillations generated by heat release, particularly in power generation and heating systems.

In the past ¯fteen years many groups have been making direct observations on laboratory systems to
check the validity of the Criterion's implications. The key step is based on the assumption that radiation by
certain intermediate species in hydrocarbon reactions (CH and OH are the most common identi¯ers) can be
interpreted as a measure of the rate of chemical reactions taking place and hence of the rate at which energy
is released. Simultaneous measurements are made of the spatial distribution of radiation in a system, and of
the pressure oscillations. The results then allow at least a qualitative assessment of the extent to which the
oscillations are being driven by the energy released in the combustion ¯eld, or whether other mechanisms
may be active and important. It is an important method with many useful applications. However, there
are serious matters of interpretation, e.g., due to poorly known rates of collisional de-activation of radiating
species. Measurements of time-dependent energy release is an active research topic.
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Figure 6.11. Experimental con¯rmation of Rayleigh's Criterion. Data obtained from
chemiluminescence of OH (Sterling and Zukoski, 1991).

It seems that the ¯rst report of simultaneous measurements of pressure and radiation allowing con¯rma-
tion of Rayleigh's Criterion appeared in a Ph.D. thesis (Sterling, 1987; Sterling and Zukoski, 1991). Figure
6.10 is a sketch of the dump combustor used as the test device, and Figure 6.11 shows the main result. The
integral of ¢E over the volume of the chamber (here the integral over the length is equivalent) is a measure
of the severity of oscillations. For the case shown in the lower portion of the ¯gure, the integral of ¢E over
the length is clearly positive, consistent with the observed presence of oscillations.

6.7. Some Results for Linear Stability in Three Dimensions

The term `stability of motions' has several meanings for °ows in combustion chambers, including:

(i) the stability of laminar steady °ow when viscous and inertial properties of the medium dominate,
leading to formation of large vortices or to turbulence, a ¯eld of distributed vorticity if the steady
°ow is unstable;

(ii) the stability of shear layers, commonly producing large scale vortex motions when a shear layer is
unstable;

(iii) the stability of laminar °ame fronts, responsible for one source of turbulent combustion when fronts
are unstable;

(iv) the stability of small disturbances which, when the compressibility and inertia of the medium dominate
the motions, can develop into acoustic waves.
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In terms of the modes of motion mentioned in Section 3.1 and discussed further in Section 3.3, the phe-
nomena (i){(iii) are classi¯ed as waves of vorticity and the fourth comprises acoustic waves which, depending
on the physical situation, may possess or generate vorticity as well. The perturbations must in some sense
be small, as we have stressed with examples we examined in Chapter 2 and already in the present chapter.
Even these `small' perturbations produce realistic and useful results. According to remarks we made in
connection with the derivation of the formalism in Chapter 3, the results derived there are general; further
progress depends on modelling and more explicit calculations.

We discuss in the following section results for motions that are `one-dimensional', an approximation
that holds a special position in °uid mechanics generally for two reasons: It is often a surprisingly accurate
approximation; and solution to a one-dimensional problem is enormously simpler than its three{dimensional
counterpart. This has been a particularly productive approach to analyzing combustion instabilities. While
it might seem logical to cover the simpler analysis ¯rst, we believe that some of the special aspects of the
subject are more readily understood by working out the three-dimensional results ¯rst. As `special aspects'
we have in mind especially the contributions of `°ow-turning' and `pumping' associated with °ow at or
through lateral surfaces of a combustion chamber. Those phenomena will be treated in a more rigorous
fashion using the proper three-dimensional formalism in Sections 6.9 and 6.12 which accommodate vorticity,
the true physical origin of both °ow-turning and pumping. In his work, Flandro (1995 and later works) has
been careful to emphasize this connection.

6.7.1. Linear Stability of Three-Dimensional Motions. The formulas (6.14)a,b are general, re-
stricted only by the approximations used in formulating the analytical framework. Hence the problem of
obtaining results speci¯c to any given problem apparently comes down to ¯nding explicit forms for F ´n and
F _́
n , by evaluating the integrals de¯ning Fn, equation (6.38). Section 3.3 and Annex A contain details forming
the functions h and f given to second order, de¯ned by (3.62)a,b. Here we need only the linear parts, i.e.
terms of order " and of order ¹" in the expansions.

While the use of dimensionless variables is virtually a practical necessary for systematic development
of the formal expansions in Chapters 3 and 4, there are certain advantages here in working with primitive
dimensional variables. According to the results of Section 6.3, we know everything about linear stability
once we know the driving force Fn in the system of oscillator equations. To make the procedure as clear as
possible, we repeat some of the results and display some details where it seems helpful. The nonlinear wave
equation and its boundary condition are (D.3)a,b:

r2p0 ¡ 1

¹a2
@2p0

@t2
= h

n̂ ¢ rp0 = ¡f
(6.74)a,b

The linear parts of (D.4)a,b are

h = ¡¹½r ¢ f[u]g1 + 1

¹a2
@

@t
f[p]g1 +r ¢ ¹F0¹F0¹F0 ¡ 1

¹a2
@P0

@t

f = ¹½
@u0

@t
¢ n̂+ ¹½n̂ ¢ f[u]g1 ¡F0F0F0 ¢ n̂

(6.75)a,b

where

f[u]g1 = ¹½ (¹u ¢ ru0 + u0 ¢ r¹u)
f[p]g1 = ¹u ¢ rp0 + °p0r ¢ ¹u

(6.76)a,b

Expansion of the pressure °uctuation in normal modes is the representation we use for the zeroth order
approximation to the pressure ¯eld,

p0(r; t) = ¹p
MX
m=0

´m(t)Ãm(r) (6.77)
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u0(r; t) =
MX
m=1

_́m(t)

°k2m
rÃm(r) (6.78)

After spatial averaging has been carried out, the system of oscillator equations is (4.36),

d2´n
dt2

+ !2n´n = Fn (6.79)

with the de¯nition (4.32)

Fn = ¡ ¹a2

¹pE2n

½Z
hÃndV +

ZZ
° fÃndS

¾
(6.80)

We write the linear contributions to Fn

Fn = ¡ ¹a2

¹pE2n

½
¹½I1 +

1

¹a2
I2 +

ZZ
° ¹½

@u0

@t
¢ n̂ÃndS ¡

Z
F0F0F0 ¢ rÃndV ¡ 1

¹a2

Z
@P0

@t
ÃndV

¾
(6.81)

and from Annex D, equations (D.10)a,b:

I1 =

Z
(¹u ¢ ru0 + u0 ¢ r¹u) ¢ rÃndV

I2 =
@

@t

Z
(°p0r ¢ ¹u+ ¹u ¢ rp0)ÃndV

(6.82)a,b

With use of two vector identities, I1 can be re-written

I1 =

Z
r(¹u ¢ u0) ¢ rÃndV ¡

Z
(u0 £r£ ¹u) ¢ rÃndV ¡

Z
(¹u£r£ u0) ¢ rÃndV

The ¯rst integral can be put in the more convenient formZ
r(¹u ¢ u0) ¢ rÃndV =

ZZ
° (¹u ¢ u0)rÃn ¢ n̂dS ¡

Z
(¹u ¢ u0)r2ÃndV = k2n

Z
(¹u ¢ u0)ÃndV

because on the boundary surface rÃn is everywhere parallel to the surface, so rÃn ¢ n̂ = 0. Hence I1 is
more simply

I1 = k
2
n

Z
(¹u ¢ u0)ÃndV ¡

Z
(u0 £r£ ¹u) ¢ rÃndV ¡

Z
(¹u£r£ u0) ¢ rÃndV (6.83)

and the `force' acting on the nth oscillator is

Fn = ¡ ¹a2

¹pE2n

½
¹½k2n

Z
(¹u ¢ u0)ÃndV ¡ ¹½

Z
(u0 £r£ ¹u+ ¹u£r£ u0) ¢ rÃndV

+
1

¹a2
@

@t

Z
(°p0r ¢ ¹u+ ¹u ¢ rp0)ÃndV + ¹½

ZZ
° @u0

@t
¢ n̂ÃndS

¡
Z
F0F0F0 ¢ rÃndV ¡ 1

¹a2

Z
@P0

@t
ÃndV

¾ (6.84)

This form can be simpli¯ed further since within the linear approximation, we take u0 and p0 equal to
their unperturbed acoustic values in the volume integrals in Fn

20; for harmonic motions the uth terms of
(6.77) and (6.78) are

p0 = p̂e¡i¹aknt = ¹p^́nÃne
¡i¹aknt

u0 = ûe¡i¹aknt = ¡i ¹a
°kn

^́nrÃne¡i¹aknt
(6.85)a,b

20In the surface integral, @u0=@t ¢ n̂ is a non-zero perturbation because u0 is not given by the classical acoustic value at
the surface. For example, this term could represent the in°uence of motions of a loudspeaker set in a wall. Thus we correctly
set u0 = ûe¡i¹aknt and û is left to be speci¯ed according to the desired boundary condition.
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Then F0F0F0 = F̂̂F̂Fe¡i¹akt, P0 = P̂e¡i¹akt, Fn = F̂ne¡i¹akt and 6.84 becomes

F̂n = ^́n
¹a2

¹pE2n
(¡i¹½¹akn)

½
1

°

Z
(¹u ¢ rÃn)ÃndV ¡ 1

°k2n

Z
(rÃn £r£ ¹u+ ¹u£r£rÃn) ¢ rÃndV

+
°¹p

¹½¹a2

Z
(Ãnr ¢ ¹u+ 1

°
¹u ¢ rÃn)ÃndV +

ZZ
° û

^́n
¢ n̂ÃndS

¾
+
¹a2

¹pE2n

½Z
F̂̂F̂F ¢ rÃndV ¡ ikn

¹a

Z
P̂ÃndV

¾
The integrand of the second integral vanishes because the ¯rst term in the parentheses is perpendicular to
rÃn and in the second, r £ rÃn = 0. From the de¯nition of the speed of sound, °¹p=¹½¹a2 = 1 and the
amplitude of the force is

F̂n = ^́n
¹a2

¹pE2n
(i¹½¹akn)

½
2

°

Z
(¹u ¢ rÃn)ÃndV +

Z
Ã2nr ¢ ¹udV +

ZZ
° û

^́n
¢ n̂ÃndS

¾
+^́n

¹a2

¹pE2n

Z "
F̂̂F̂F

^́n
¢ rÃn ¡ ikn

¹a

P̂

^́n
Ãn

#
dV

(6.86)

Use the identity

(¹u ¢ rÃn)Ãn = 1

2

£r ¢ (¹uÃ2n)¡ Ã2nr ¢ ¹u¤
and combine terms to write F̂n in the form

F̂n = ^́n
¹a2

¹pE2n
(i¹½¹akn)

½ZZ
°
·
û

^́n
¢ n̂+ 1

°
¹u ¢ n̂Ãn

¸
ÃndS +

° ¡ 1
°

Z
Ã2nr ¢ ¹udV

¾
+^́n

¹a2

¹pE2n

Z "
F̂̂F̂F

^́n
¢ rÃn ¡ ikn

¹a

P̂

^́n
Ãn

#
dV

(6.87)

Four remarks are important:

(i) The mean °ow ¯eld may be rotational (r£ ¹u6= 0) and time-averaged sources of mass are accommo-
dated (r ¢ ¹u6= 0).

(ii) With the iterative procedure discussed in Chapters 3 and 4, the substitutions of classical acoustic
mode shapes are required in the right-hand side, except in the surface integral where the correct
boundary condition on the velocity must be used:

p0 = p0a = ¹p´n(t)Ãn(r) ; u0 = u0a =
1

°k2n

d´n
dt
rÃn (6.88)

(iii) The calculations in Section 4.6 have shown that to ¯rst order in the average Mach number, the
unsteady ¯eld may also be rotational. However, the greatest in°uences of rotationality have not been
included here. Those are represented by two terms associated with behavior at a burning surface,
discussed in Sections 6.9 and 6.12. There are also some important e®ects associated with vorticity,
contained in the terms I−− and Ia−. They have been dropped from (6.87), but they will be discussed
later in Sections 6.12 and 7.4.

(iv) The processes of `pumping' and `°ow-turning' are implied by these results, but are obtained only

after considerable further calculations discussed in Sections 6.9 and 6.12. The integrals containing F̂

and P̂ are central in this respect, containing pieces related to production of vorticity. See the last
remark in the introduction to this section. It's true that there is a bit of `after-the-fact' °avor here,
but that is within the spirit of the construction of 6.79 and 6.87. These do not, and are not intended
to, constitute a `theory' based on ¯rst principles. To give F0F0F0 and P0 speci¯c forms for particular
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processes, requires using special results calculated independently of the apparatus constructed here,
namely those found by Flandro (1995)a. The required computations have not been done.

Now we follow the procedure explained in Section 4.1 to ¯nd the formula for the complex wavenumber.
For linear harmonic motions (6.37) and (6.48) give

k2 ¡ k2n = ¡
1

¹a2
F̂n
^́n

(6.89)

Substitution of (6.87) in (6.89) gives

k2 ¡ k2n = ¡i
kn
¹aE2n

½ZZ
°
·
°û

^́n
¢ n̂+ ¹u ¢ n̂Ãn

¸
ÃndS + (° ¡ 1)

Z
Ã2nr ¢ ¹udV

¾
¡ 1

¹pE2n

Z "
F̂̂F̂F

^́n
¢ rÃn ¡ ikn

¹a

P̂

^́n
Ãn

#
dV

(6.90)

This formula is actually quite general due to the functions F̂̂F̂F and P̂, which have not been assigned speci¯c
forms, for reasons examined in Section 6.7; at least two important processes, `°ow-turning' and `pumping'
are not shown explicitly.

Let the right-hand side be denoted by iK so (6.90) is

k2 ¡ k2n = iK = iK(r) +K(i)

Because k = (! + i®)=¹a and kn is real, this equation can be expanded to give³!
¹a

´2
¡
³®
¹a

´2
+ i

³
2
!®

¹a2

´
¡
³!n
¹a

´2
= iK(r) ¡K(i) (6.91)

All parts of the right-hand side of (6.90) written in dimensionless form are of ¯rst order in the Mach number
of the mean °ow. Hence the last equation shows that ®2 is of second order and can be ignored. Similarly,
the real part is of the same order, so ! di®ers from !n by terms of ¯rst order and³!

¹a

´2
¡
³!n
¹a

´2
=
³!
¹a
¡ !n
¹a

´³!
¹a
+
!n
¹a

´
¼
³!
¹a
¡ !n
¹a

´³
2
!n
¹a

´
+ 0( ¹M2

r ) (6.92)

Thus, for use in (6.90), k2 ¡ k2n ¼ (! ¡ !n)(2!n=¹a2) + i(2!n®=¹a2) so ! ¡ !n = ¹a2

2!n
K(r) and ® = ¹a2

2!n
K(i).

With these approximations, and K(r), K(i) replaced by their explicit forms, (6.91) leads to the formulas for
! ¡ !n and ®:

! ¡ !n = 1

2

°

E2n

ZZ
° û(i)

^́n
¢ n̂ÃndS ¡ ¹a2

2!n¹pE2n

Z "
F̂̂F̂F(r)

^́n
¢ rÃn + kn

¹a

P̂(i)

^́n
Ãn

#
dV (6.93)

® = ¡ 1

2E2n

½ZZ
°
·
°
û(r)

^́n
¢ n̂Ãn + (¹u ¢ n̂)Ã2n

¸
dS + (° ¡ 1)

Z
Ã2nr ¢ ¹udV

¾
+

¡ ¹a2

2!n¹pE2n

Z "
F̂̂F̂F(i)

^́n
¢ rÃn + kn

¹a

P̂(r)

^́n
Ãn

#
dV

(6.94)

With slight rearrangement, the formulas (6.90), (6.93) and (6.94) have been given as (86){(88) by Culick
and Yang (1992)21

21Here, with p0 = p̂e¡i¹akt and ¹ak = ! + i®, e¡i¹akt = e®te¡i!t, stability requires ® < 0, i.e. ® must be negative.
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Both !¡!n and ® are sums of contributions from the various processes accounted for. Most importantly,
the formula for the growth constant has the form

® = (®)combustion + (®)mean°ow=acoustics + (®)nozzle

+ (®)particles + (®)injectionsystem

+ (®)inertsurfaces + ¢ ¢ ¢
(6.95)

By suitable interpretation of the ¯rst two integrals in (6.93), the ¯rst three pieces of ® are given explicitly;

the last three are generated by the terms involving F̂
(i)
and P̂(r) and hence cannot be written explicitly at

this point.

For most combustion systems, the six contributions shown explictly seem to cover practically all dy-
namical behavior, with the exception of two surface contributions mentioned in note (iv) above. Those are
fundamentally important in solid rockets; see Section 6.9. Interactions of the oscillations with turbulence
may also be signi¯cant but that subject remains essentially undeveloped; no results have been reported for
the e®ects of turbulence on instabilities in full-scale systems. Descriptions of some major contributions to
(6.95) are given in Section 6.6.

That the growth constant representing the di®erence between gains and losses of acoustic energy has
the form (6.95) for a linear system has long been known (McClure et al. 1960). At least implicitly, (6.95)
has been a part of all considerations of combustion instabilities. However, extensive data giving good
quantitative results for the transient growth of oscillations have been obtained only for solid propellant
rockets and related laboratory devices. Despite the widespread attention to the problem in liquid rockets
(see, for example, Crocco and Cheng 1956, Crocco 1965 and Harrje and Reardon 1972), including theoretical
predictions, and observations of stability boundaries, little experimental data exists for the values of ® itself
under conditions of true linear instability. The same can be said of other liquid and gas-fueled systems:
Emphasis in most treatments has been on the stability boundary where ® = 0.

When ® is negative (i.e.,small disturbances decay) its value may be regarded as a measure of the stability
margin of the system. During development of the liquid rockets for the Apollo vehicle, an experimental
method for assessing the stability margin was worked out, based on measurement of the decay of disturbances
following injection of a small explosive charge (Harrje and Reardon 1972, Chapters 9 and 10). There seem to
be no reports of e®orts to determine the values of the various contributions to the decay constants determined
in those tests. The same may be said of the very extensive experimental work carried out in Russia over
many years (Dranovsky 2006).

There may be other reasons for those conclusions but the main one seems to be due to an intrinsic
di®erence in the nature of the systems. A liquid or gas-fueled system can be tested repeatedly, so as a practical
matter, improvement of the dynamical behavior can be pursued on a trial-and-error basis. Development of
the F-1 engine (Oefelein and Yang 1993) is perhaps the outstanding example. The processes responsible for
the instabilities are so complicated that theory and experiments directed to understanding the mechanisms
in detail would have been expensive, time-consuming and perhaps even impossible to complete successfully
with the tools available forty years ago.

In contrast, no solid rocket can be retested without repeating the expensive process of cleaning and
preparing the motor case and nozzle; manufacturing propellant; loading the motor; and allowing the material
to cure. Moreover, there is likely no control of the ¯ring. Hence, practically from the beginnings of solid
rocketry, attention has been paid to time-dependent behavior during tests. When linear stability theory
became available, it was natural to develop su±ciently good instrumentation and methods of data processing
to obtain accurate values for ® and its constituent parts. In recent years, great e®orts have been expended on
measurement and interpretation of the growth constant for many solid rockets and under many experimental
conditions.
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The growth constant has a useful quantitative interpretation. With the de¯nition

p0(r; t) = p̂(r)e¡i¹akt = p̂e¡i(!+i®)t = p̂e¡i!te®t ;

we ¯nd the ratio of values of two peaks of the oscillation at a ¯xed location, occurring at times t1 and
t2 = t1 +mT = t1 +m2¼=!.

jp02jpeak
jp01jpeak

=

¯̄̄̄
¯e¡i!(t1+m

2¼
! )e®t2

e¡i!t1e®t1

¯̄̄̄
¯ = em2¼®=! (6.96)

because e¡im2¼ = cosm2¼ + i sinm2¼ = §1. Hence the peak value is e times larger when m2¼®=! = 1, or
!

®
= 2¼m or

f

®
= m (6.97)

Hence, f=® is the number of cycles required for the peak value of the pressure oscillation to increase by e (or
decrease by 1=e if ® < 0). This interpretation suggests the potential practical value of measuring transient
growths and decay. Normally, many tens or perhaps hundreds of cycles are required for e-folding of the peak
values. That is the best and most convincing evidence for the essential assumption on which the analysis
is based, that perturbations of the acoustic ¯eld are `small', implying ® and ! ¡ !n, equations (6.93) and
(6.94) are both small compared with !.

6.7.2. The Admittance and Response Functions for a Burning Surface. The term û ¢ n̂ in the
surface integral, equation (6.90), arises from the part ¹½@u=@t ¢ n̂ of f , equation (6.38). Although û ¢ n̂ = 0
is required for the basis functions used here, it is allowed to be non-zero in f to account for motion of the
surface in the actual problem; in other words, it is a perturbation. In general, the boundary surface is
not rigid. At burning surfaces, the unsteady combustion process produces °uctuations of burning rate, and
hence velocity, of the order of the average Mach number. A model of the processes involved and calculation
of the °uctuations have been discussed in Section 2.2. The response function Rp de¯ned for the °uctuation
of mass °ux, by the relation (2.4), is given in its simplest form as equation (2.52).

It is a convention in classical acoustics, that has become standard practice in the subject of this book,
to replace °uctuations of the velocity at the boundary by admittance functions. The idea is that if a small
pressure °uctuation is imposed on a boundary, the surface will move, at a velocity proportional, in ¯rst
approximation, to the pressure °uctuation. In solid rockets, there are chie°y three classes of boundaries:
inert impermeable surfaces; burning surfaces; and areas through which °ow may pass, mainly the exhaust
nozzle. Most other systems contain only the ¯rst and third types.

No exposed surface in a solid rocket chamber is truly inert, but erosion of insulation material is slow
compared with combustion rates. Thus, we may consider the material to be inert as a good ¯rst approxima-
tion. In that case, there is negligible motion of the surface, and the acoustic ¯eld is in°uenced primarily by
viscous e®ects con¯ned to an acoustic boundary layer, treated in the following section.

Burning surfaces and regions of °ow through the boundary may be treated together. From the de¯nition
of mass °ux, mb = ¡½su ¢ n̂, and with the perfect-gas law, we have

¡û ¢ n̂ = m̂b

¹½s
¡ ¹u ¢ n̂¢T̂s¹Ts +

p̂

°¹p
¹u ¢ n̂ (6.98)

where subscript s denotes the value at the surface. The minus sign appears on û ¢ n̂ because n̂ is positive
outward but û andmb are positive inward (i.e., into the chamber). The quantity ¢T̂s represents the di®erence

between the actual temperature change T̂s and the isentropic temperature °uctuation associated with the
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pressure disturbance:

¢T̂s = T̂s ¡ ° ¡ 1
°

p̂

¹p
¹Ts (6.99)

With °¹p = ¹½ ¹a2, and p̂=¹p = ^́nÃn, (6.98) can be solved for the combination appearing in the ¯rst integral of
(6.90):

°

^́n
(û ¢ n̂)Ãn + (¹u ¢ n̂)Ã2n ´ ¡°

Ã
m̂b

¹½s
¡ ¹u ¢ n̂¢T̂s¹Ts

!
Ãn
^́n

(6.100)

Analysis of the unsteady response of a burning surface produces most directly results for °uctuations of
the mass °ux m̂b, whereas measurements provide directly the combination on the left-hand side of (6.100).
Hence, two functions have been introduced in the literature for solid rockets, the response function Rb and
the admittance function Ab, de¯ned by the relations

m̂b

¹mb
= Rb

p̂

°¹p

¡ û ¢ n̂
¹a

= Ab
p̂

°¹p

(6.101)a,b

With these de¯nitions, the combination (6.100) gives

1

¹a

μ
°
û ¢ n̂
^́nÃn

+ ¹u ¢ n̂
¶
´ ¡(Ab + ¹Mb) ´ ¡ ¹Mb

Ã
Rb + °

¢T̂s= ¹Ts
^́nÃn

!
(6.102)

where the subscript b has been introduced to indicate conditions at the burning surface.

Because the processes at burning surfaces are ultimately the source of the energy for instabilities in solid
rockets, the problem of coupling to acoustical motions has received much attention for many years. It is not
possible to compute accurate values of the response function for a given propellant. Experimental methods
carry considerable uncertainties but have advanced to the point of being e®ective for comparing propellants,
and for assessing trends of behavior accompanying compositional changes. (Section 2.2)

Denison and Baum (1961) ¯rst discovered an approximation to the response function now commonly
used for correlating data and in computations of stability of solid rockets, Culick (1968)b reviewed the
analyses of the response function available in the late 60s. As we have shown in Section 2.2, because of
common assumptions of the physical behavior, almost all results have the same form as Denison and Baum's
formula,

Rb =
nAB

¸+ A
¸ ¡ (1 +A) +AB

(6.103)

if combustion processes at the surface are insensitive to pressure.

More recently, there have been continuing attempts to improve the representation (6.103), based on
test results and incorporating ideas relating to the basic behavior of modern propellants. See, for example,
Section 2.2; the ¯nal reports of the MURI programs (Culick 2002; Krier and Hofenrichter 2002); and papers by
the investigators involved. The representation (6.103) remains the basic result used as a ¯rst approximation
in studies of the internal dynamics of solid propellant rockets. Deviations from this form (see Chapter 2)
are extremely important and continue to be a subject of research in this area.

6.7.3. The First Measurements of the Stability Boundary for a Solid Rocket. Probably the
¯rst systematic experimental investigation of the stability boundary for a solid rocket was carried out by
Brownlee as his dissertation (Brownlee 1959). A useful summary of some of the results was published by
Brownlee and Marble (1960). Brownlee's work ¯tted into a larger program on unstable burning in solid
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rockets carried out at the Jet Propulsion Laboratory (JPL) during the 1950s and 1960s. A companion paper
by Landsbaum, Kuby and Spaid (1960) appeared in the same volume with Brownlee and Marble's report.
Further aspects of the tests are discussed there, but the topics are not germane to the present discussion.

The portion of the results relevant here were interpreted by Culick (1966) using a form of the theory
worked out in this book. Figure 6.12 is a sketch of the cylindrical motors used and a typical pressure trace
suggesting how the onset of a linear instability was de¯ned with the data. The boundary was de¯ned to be
reached when the mean pressure rose above its predicted value in steady combustion. Stability boundaries
for the motors tested are shown in Figure 6.13. Data from 250 ¯rings were used.
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Figure 6.12. Geometrical parameters de¯ned by Brownlee and a typical time history of
the mean chamber pressure (Brownlee and Marble 1960).

In all tests the instability was dominated by the ¯rst tangential (lmn) := (010) mode. More recently,
roughly in the last 20{30 years, longitudinal modes have been more commonly unstable. The important
di®erence is that the velocity °uctuation parallel to the axis of the motor is very small when a tangential
mode is excited (zero in the classical limit). However, in both cases the °uctuating motion is largely parallel
to the surface. The scouring e®ect|a kind of unsteady erosive burning|is likely the cause of the large
increase of the mean pressure appearing in Figure 6.12. This is the mechanism commonly referred to as
\velocity coupling." Stability boundaries are shown in Figure 6.13. Two features are especially striking: The
boundaries are nearly straight with positive slope; and the boundaries have slope increasing with the length
of the motor.

The reasoning by Culick (1966) led to the conclusion that the stability boundary was determined by the
balance of energy loss through the nozzle and energy gain from combustion. After the Mach number at the
burning surface has been eliminated in favor of Kn := area of burning surface/area of the nozzle throat, the
power balance leads to

Kn = 0:0935
¡¹ap
°

L

Dp

³
A
(r)
b +m2

1

´
(6.104)

where m1 = 1:84. At the time (1966) this analysis was carried out, the admittance for the propellant was

not known. Therefore the tack was taken to ¯t the data reasonably well by choosing A
(r)
b , especially its

dependence on the chamber diameter Dp, that is, frequency. Figure 6.14 is a plot of the values of A
(r)
b

inferred to provide an exact ¯t for L = 3100, requiring Kn = 2:13LDp. The data are for an early composite
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propellant tested in a T-burner (Angelus 1960). Then the stability boundaries for other values of L are
calculated, with the results shown in Figure 6.13.
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Figure 6.13. Stability boundaries for
the 010 mode: experimental (measured)
(Brownlee and Marble 1960); theoretical
(calculated) (Culick 1966).
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Figure 6.14. Dependence of the ad-
mittance function on frequency in-
ferred from Brownlee's measurements
(Culick 1966).

While these results are useful and seem clearly to contain much truth, they are certainly not free of
questions. An important one in particular is raised by the use of the admittance function as the boundary
condition for the 010 mode. Because this mode has no velocity component in the direction normal to the
burning surface, it is by no means clear that one can even use Ab as it is de¯ned in terms of the normal velocity
component. The same di±culty arises for longitudinal modes with burning surfaces not perpendicular to
the direction of propagation. This matter has been addressed in development of the theory of longitudinal
modes treated within the one-dimensional approximation, discussed in the following section.

A second question concerns the possible in°uences of `°ow-turning' and other rotational contributions, a
matter raised and presently being studied by Flandro and Perry (2006). On the other hand, it is not obvious
that the situation here is analogous to that of a longitudinal wave. The di®erence is that for a longitudinal
wave, the unsteady velocity is coplanar (locally) with the mean velocity, whereas for a transverse mode the
unsteady and steady velocities are perpendicular. The analysis necessary to settle this question has not been
worked out. Flow-turning is discussed in Section 6.12.

6.8. Stability of Oscillations in a Bulk Mode

Most oscillations occurring in combustion chambers are related to wave modes of motion. They can
often be interpreted and analyzed as perturbed forms of individual or mixed classical acoustic modes. For
many years, oscillations having very low frequencies were regarded as somehow di®erent, but in the context
of acoustics generally, that view misses the mark. In fact the oscillations at frequencies below that of the
lowest acoustic mode are perturbed forms of the classical acoustic mode having frequency equal to zero, as
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explained in Section 6.3. The purpose of this discussion is to show how the result for the bulk mode of
a chamber|the L¤-mode in a solid propellant rocket|is extracted quite easily from the results discussed
already for wave modes. That this result should be true is fairly clear from the calculations in Section 6.3
because the distribution of burning surface was not required. This point was ¯rst made by Culick (1968) in
a note generalizing Oberg's 1968 computation.

For the mode in a rocket chamber corresponding to the N th classical acoustic mode, the wavenumber
and mode shape for sinusoidal oscillations are given by equations (4.19) and (4.20), with · = 1,

k2 = k2N +
1

E2N

8<:
ZZZ
V

ÃN (r0)ĥ(r0)dV0 +

ZZ
S

°ÃN (r0s)f̂(r0s)dS0

9=; (6.105)

p̂(r) = ÃN (r) +

1X0

n=0

Ãn(r)

E2n(k
2 ¡ k2n)

8<:
ZZZ
V

Ãn(r0)ĥ(r0)dV0 +

ZZ
S

°Ãn(r0s)f̂(r0s)dS0

9=; (6.106)

The mode ÃN has the classical shape for the bulk mode, namely ÃN = 1, to which the corresponding value
of kN is kN = 0. Thus E

2
N =

RRR
Ã2NdV = V and the two equations are

k2 =

ZZZ
ĥ(r0)dV0 +

ZZ
° f̂(r0s)dS0 (6.107)

p̂(r) = 1 +

1X0

n=0

Ãn(r)

E2n(k
2 ¡ k2n)

ZZZ
Ãn(r0)ĥ(r0)dV0 +

ZZ
°Ãn(r0s)f̂(r0s)dS0 (6.108)

Equation (6.108) shows that the pressure ¯eld di®ers from a constant value by an amount of order mean

°ow Mach number. With the formulas (6.75)a,b written for ĥ and f̂ , there is a common factor k in all terms
of (6.107), which can be written

k =
i

V

ZZ
° ¹m0 ¢ n̂ dS0 +

ZZ
°A dS0 (6.109)

The ¯rst term represents the sum of acoustic energy convection through the boundary, and a contribution of
work done on the oscillations due to interaction with the mean °ow. Fluctuations at a non-rigid boundary,
for which A6= 0, cause work done on or by the surface.

With the de¯nitions of Ab for a burning surface and An for a nozzle, the real and imaginary parts of
(6.109) are

!

¹a
=
1

V

h
SbA

(i)
b ¡ SnA(i)n

i
®

¹a
=
1

V

h
Sb(A

(r)
b + ¹Mb)¡ Sn(Mn +A

(r)
n )
i (6.110)a,b

These equations assume the forms given in Section 6.3 after introducing the de¯nitions of the response
function, Rb = (m

0= ¹m)=(p0=¹p), and setting the density °uctuation equal to its isentropic value in the relation

Ab =
°¹p

¹a

u0

p0
= ° ¹Mb

·
m0= ¹m
p0=¹p

¡ ½
0=¹½
p0=¹p

¸
= ° ¹Mb

·
Rb ¡ 1

°

¸
(6.111)

Then with the characteristic time ¿c = V=° ¹MbSb¹a = c
¤ ¹V =¹a2St = c¤L¤=¹a2,

!¿c = R
(i)
b ¡ 1

° ¹Mb

μ
Sn
Sb

¶
A(i)n

®¿c = R
(r)
b ¡ 1

° ¹Mb

μ
Sn
Sb

¶³
¹Mn +A

(r)
n

´ (6.112)a,b

which are equivalent to (6.25) and (6.26).
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6.9. Linear Stability in the One-Dimensional Approximation

Results corresponding to (6.90), (6.93) and (6.94) can be derived for the case when the one-dimensional
approximation is used. The formulas found for the one-dimensional (1-D) case are in the ¯rst instance
apparently much simpler to use than those found for three-dimensional (3-D) problems. Details of the grain
con¯guration, for example, do not appear. Only the cross section of the port and its variation along the
length of the motor must be known. Applications have apparently con¯rmed that the formula for the growth
or decay constant seems to be su±ciently accurate for many purposes, but we will see that positive result is
partly illusory.

The foundations of the calculations have been discussed by Culick (1970, 1973, 2001) and Culick and
Yang (1992). This formulation is the basis of the Standard Stability Program (SSP) ¯rst written by Lovine
et al. (1976) and in improved form by Nickerson et al. (1983). The corrected and improved version including
extension to three-dimensional problems is currently under development (French 2004).

When longitudinal or axial acoustic modes are excited in a slender (i.e., L=D not small) solid rocket
contain a uniform grain burning only at the lateral boundary, an important basic question arises: How are
the waves driven? The di±culty in understanding the mechanism due to combustion processes con¯ned to
the boundary arises because the °ow from the boundary enters normally to the surface but the mean and
unsteady motions in the bulk of the volume are parallel to the surface. Evidently there must be a transition
zone, an unsteady layer normally thin, because experimentally, the frequencies of the longitudinal modes
are estimated quite closely by the classical formulas for organ pipe oscillations. As an attempt to address
part of the question with a relatively simple analysis, Culick (1970, 1973) worked out the consequences of a
strictly one-dimensional approximation to the problem; some omissions in that work are corrected here.

In the one-dimensional approximation, the equations to be solved are written for properties averaged
over a cross section, with only the axial component of °ow accounted for. The in°ow of mass, momentum
and energy from the combustion zone then appear as sources in the equations of motion. In particular,
the inward momentum is assumed to have no axial component at the surface, but must acquire the axial
component of the bulk °ow at each section of the combustor. It is implied in the analysis that the adjustment
occurs instantaneously so no account needs to be taken of any process of memory in the axial direction.

Much discussion, and correction of the original results, has been precipitated exactly because the for-
mulation to treat `one-dimensional' problems is, after all, an approximation. One must be aware that the
question always is present: Does the one-dimensional approximation contain imperfect forms of all processes
present in the complete three-dimensional formulation? The query is di±cult to answer, partly because in the
process of applying the one-dimensional approximation, some viscous e®ects may also be implied although
the coe±cient of viscosity does not appear (see, for example, Shapiro 1952). Only comparison of exact and
approximate results may give an answer, and even then questions may remain. In this section we cover the
procedure and results cited above; in Sections 6.9.1 and 6.9.2 we summarize the current results containing
recent corrections.

The procedure for deducing the formula for the wavenumber is the same as that followed in Section 6.7
for three-dimensional problems. Annex B is a summary of the equations derived for the one-dimensional
approximation, including source terms denoted by ( )s which are associated with °ow through the lateral
boundary. With only linear terms retained, the wave equation, its boundary condition, and the functions h1
and f1 are

1

Sc

@

@x

μ
Sc
@p0

@x

¶
¡ 1

a2
@2p0

@t2
= h1 (6.113)

@p0

@x
= ¡f1 (x = 0; L) (6.114)
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where

h1 = ¡¹½ 1
Sc

@

@x

μ
Sc
@

@x
¹uu0
¶
+
¹u

¹a2
@2p0

@t@x
+
°

¹a2
@p0

@t

1

Sc

d

dx
(Sc¹u) +

1

Sc

@

@x
Sc(F

0
1 + F

0
1s)¡

1

¹a2
@(P01 + P

0
1s)

@t
(6.115)

f1 = ¹½
@u0

@t
+ ¹½

@

@x
(¹uu0)¡ (F01 + F01s) (6.116)

Equations (6.113){(6.116) correspond to (6.74)a,b and (6.75)a,b. To simplify the formulae, and to
emphasize several important points that do not depend on gas/particle interactions, we will
assume that the °ow contains no particulate matter. Then W 0

1, F
0
1 and P

0
1 are found as the °uctua-

tions of (B.8), (B.9) and (B.11) without the contributions from particles:

F01 =
@¿ 0v
@x

+m0
e +m

0
D ¡ ¾0e ¼ 0 (6.117)

P01 =
R

Cv
Q01 +RTW

0
1 ¼

R

Cv
Q01 (6.118)

W 0
1 = W

0
e ¼ 0 (6.119)

Recall that ( )e identi¯es external sources and m
0
D is the °uctuation of mass associated with di®usional

processes; see Annex A for the de¯nition of mD. With viscous terms ignored, only P
0
1 is non-zero. Finally,

the surface terms F01s and P
0
1s in h1 and f1 are found from the de¯nitions (B.20) and B.22) to be

F01s =
1

Sc

½
(¹us ¡ ¹u)

Z
m0
sgdq + (u

0
s ¡ u0)

Z
¹msgdq

¾
(6.120)

P01s =
R

Cv

1

Sc

½
(¹h0s ¡ ¹e0 + Cv ¹T )

Z
m0
sgdq + (h

0
0s ¡ e00 + CvT 0)

Z
¹msgdq

¾
(6.121)

Expansion of the zero-order representations of the pressure and velocity ¯elds have the forms corre-
sponding to (6.77),

p0(x; t) = ¹p

M1X
`=1

´`(t)Ã`(x) (6.122)

u0(x; t) =
M1X
`=1

_́`
°k2`

dÃ`
dx

(6.123)

where the Ã` are normal modes satisfying the homogeneous equations

1

Sc

d

dx

μ
Sc
dÃ`
dx

¶
+ k2`Ã` = 0 (6.124)

dÃ`
dx

= 0 (x = 0; L) (6.125)

After substitution of (6.122) in (6.113) and spatially averaging the result, we ¯nd the system of oscillator
equations and the `forcing functions' F`:

d2´`
dt2

+ !2` ´` = F` (6.126)

F` = ¡ ¹a2

¹pE2`

8<:
LZ
0

h1Ã`Scdx+ [f1Ã`Sc]
L
0

9=; (6.127)
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and E2` =
LR
0

Ã2`Scdx. Equations (6.126) and (6.127) correspond to (6.79) and (6.80).

For harmonic motions, h1 = ĥ1e
¡i¹akt, etc., substitution of (6.127) in (6.126) leads to the formula for the

square of the wavenumber,

k2 = k2` +
1

¹pE2`

8<:
LZ
0

ĥ1
^́̀
Ã`Scdx+

"
f̂1
^́`
Ã`Sc

#L
0

9=; (6.128)

where (6.115) and (6.116) are now

ĥ1 = ¡¹½ 1
Sc

d

dx

μ
Sc
d

dx
¹uû

¶
¡ ik ¹u

¹a

dp̂

dx
¡ i° k

¹a
p̂
1

Sc

d

dx
(Sc¹u) +

1

Sc

d

dx
Sc(F̂1 + F̂1s) + i

k

¹a
(P̂1 + P̂1s) (6.129)

f̂1 = ¡i¹½¹akû+ ¹½ d
dx
(¹uû)¡ (F̂1 + F̂1s) (6.130)

are the one-dimensional forms of equations (6.75)a,b.

The ¯rst three terms of ĥ1 and the ¯rst two terms of f̂1, correspond exactly to their three-dimensional
counterparts in (6.75)a,b; F01 + F01s and P01 + P01s correspond to FFF0 and P0. Thus the special topics which
we discuss shortly have to do mainly with F01s and P

0
1s and parts of FFF

0 and P0. First we carry through the
manipulations equivalent to those beginning with (6.77), but now for one-dimensional problems. Substitution
of (6.129) and (6.130) into (6.128) gives

k2 ¡ k2` =
1

^́`¹pE2`

8<:¡¹½
LZ
0

1

Sc

d

dx

μ
Sc
d

dx
¹uû

¶
Ã`Scdx¡ ik

LZ
0

¹u

¹a

dp̂

dx
Ã`Scdx¡ i° k

¹a

LZ
0

p̂
1

Sc

d

dx
(Sc¹u)Ã`Scdx

9=;
+

1

^́̀ ¹pE2`

8<:
LZ
0

1

Sc

d

dx
Sc(F̂1 + F̂1s)Ã`Scdx+ i

k

¹a

LZ
0

(P̂1 + P̂1s)Ã`Scdx

9=;
+

1

^́̀ ¹pE2`

(
¡i¹½¹ak [ûÃ`Sc]L0 + ¹½

·
d

dx
(¹uû)Ã`Sc

¸L
0

¡
h
(F̂1 + F̂1s)Ã`Sc

iL
0

)
(6.131)

The zeroth order forms of p̂ and û are given by the one-dimensional acoustic formulas,

(p0)
zeroth
order

= p0`(x; t) = p̂`(x)e
¡i¹ak`t = ¹p^́`Ã`(x)e

¡i¹ak`t

(u0)
zeroth
order

= u0`(x; t) = û`(x)e
¡i¹ak`t = ¡i ¹a

°k`
^́`
dÃ`
dx
e¡i¹ak`t

(6.132)a,b

Consistent with the general ordering procedure, these formulas are to be used anywhere p̂ and û are multiplied
by ¹u(x) or its derivative(s). Thus, only the ¯rst term in the last set of brackets in (6.131) contains the
perturbed form of û (not û`).

Integration by parts and use of equation (6.124) leads to the result

¡¹½
LZ
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1
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d

dx
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dx
¹uû

¶
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·
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·
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·
¹uûSc
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¡ i ^́`
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LZ
0

¹uÃ`
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(6.133)
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The second and third terms in the ¯rst curly brackets of (6.131) are

¡ik
LZ
0

¹u

¹a

dp̂

dx
Ã`Scdx = ¡i¹p ^́̀ k`

¹a

LZ
`

¹uÃ`
dÃ`
dx
Scdx (6.134)

¡i° k
¹a

LZ
0
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1

Sc

d

dx
(Sc¹u)Ã`dx = ¡i°¹p^́` k`

¹a

LZ
0

Ã2`

·
1

Sc

d(Sc¹u)

dx

¸
Scdx (6.135)

and the terms in (6.131) containing (F̂1 + F̂1s) combine in an obvious fashion. With (6.133){(6.135), the
formula (6.131) can be written

k2 ¡ k2` = ¡i
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¹aE2`

8<:2
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(6.136)

Now we rewrite the terms in the ¯rst bracket set to show that (6.136) is exactly the one-dimensional form of
(6.90). Integration of the ¯rst term by parts gives two terms, one of which is proportional to the last term
in brackets and the other is a boundary term:

2
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(6.137)

Substitution of (6.137) in (6.136) and some rearrangement gives

k2 = k2` ¡ i
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¹aE2`
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Ã`Sc
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!
Ã`

#
Scdx

(6.138)

which is (6.90) written from one-dimensional problems. However, the terms containing F̂1s and P̂1s are
additional here because of the explicit accounting for °ow through the lateral boundary.

6.9.1. The One-Dimensional Approximation to `Flow-Turning'. The correspondence between
the terms in (6.138) and (6.90) is clear. What is especially important are the e®ects represented by the

sources at the lateral boundaries, F̂1s and P̂1s, found from the formulas (6.120) and (6.121). It is important
for interpretation of this result to remember (Annex B) that F1s represents the source of momentum, and
P1s the pressure source, both associated with the mass source at the boundary. Moreover, the average values
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of the sources may be zero (Annex C) or non-zero, as for a burning surface. We treat ¯rst the contribution
to stability by unsteady momentum addition of °ow at the boundary,

LZ
0

F̂1s

^́`

dÃ`
dx
Scdx =

LZ
0

1

Sc

·
(¹us ¡ ¹u)

Z
m̂sg

^́̀
dq +

μ
ûs ¡ û
^́`

¶Z
¹msgdq

¸
dÃ`
dx
Scdx (6.139)

Figure 6.15 shows interpretations of the various quantities appearing in (6.139).
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Figure 6.15. Velocity vectors for °ow through a permeable boundary. (a) non-zero mean
°ow parallel to the boundary; (b) only normal °ow at the boundary.

Observation, for example by use of ¯lms, and physical arguments, suggest that the average °ow from
the surface of a burning solid propellant is always normal to the surface. The situation sketched in Figure
6.15(a) apparantly does not exist. Hence we assume ¹us = ûs = 0 as shown in Figure 6.15(b); (6.139) is
therefore
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·
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Z
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Scdx (6.140)

Substitute (6.89)b for û and the second term is
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¶2 Z
¹msgdqdx (6.141)

We estimate the ¯rst term in (6.140) by assuming m̂sg to be independent of position on the surface;
with q(x) the total perimeter of the chamber at position x,

¡
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¹u

Z
m̂sg

^́̀
dq
dÃ`
dx
Scdx = ¡m̂sg

^́̀

LZ
0

¹uq
dÃ`
dx
dx = ¡

μ
1

^́`

m̂sg

¹m

¶
¹m

LZ
0

¹uq
dÃ`
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dx

The ratio in parentheses is the response function, of order unity (Chapter 2 equations (2.66) and (2.67), for
example). Thus the term depends on the square of the mean velocity and must be ignored. Hence for use
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in (6.138), combination of (6.140) and (6.141) gives

1
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¹½¹aE2`

LZ
0

1

k2`

μ
dÃ`
dx

¶2 Z
¹msgdqdx (6.142)

This result is the one-dimensional approximation to `°ow-turning'. It appeared ¯rst in equation (3.9) in
Culick (1973), and has since been the motivation for considerable discussion in the literature and in various
technical meetings. Always to be kept in mind is perhaps the most interesting aspect of the matter, the
contrast with the results of three-dimensional analyses. An especially important property is the accuracy
with which behavior that is necessarily three- (or two-) dimensional is approximated by the results of one-
dimensional predictions.22

What has come to be accepted as the `°ow-turning' process has the following elementary interpretation
for a burning solid propellant exposed to oscillations. We imagine that the solid/gas interface is ¯xed and
that solid material advances to the interface with constant speed. As soon as the solid is transformed to
gas, it begins to acquire both steady and oscillatory motion, partly due to viscous forces exerted by gas
released earlier, but principally due to the oscillatory pressure. Thus the incoming °uid acquires su±cient
unsteady motion to join the °ow ¯eld existing at some distance from the interface. Figure 6.16 is a simpli¯ed
interpretation of this process in two dimensions. From the interpretation just given, it is evident that, because
work is done on the incoming °uid both to impart the oscillatory motions and to turn the °ow as sketched
in Figure 6.16, the process of `°ow-turning' constitutes a loss. For harmonic motions, oscillations parallel to
the surface, the loss is given by (6.142) within the one-dimensional approximation. Twenty years after the
approximation was deduced, Flandro (1995) showed rigorously with analysis of a two-dimensional °ow that
the result (6.142) is exact.

(a)

(b)

Figure 6.16. The origin of `°ow-turning': An element of °uid shown (a) at entry normal
to a burning or porous surface, and (b) in an intermediate state of the process of acquiring
the local axial velocity having mean and acoustic components.

If `°ow-turning' is the only contribution to momentum transfer at the lateral surface and there is no
momentum addition within the volume (F1 = 0), the formula (6.138) becomes
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(6.143)

22We refer to behavior which, in principle at least, is covered by terms involving F̂ and P̂ in (6.90), and correspondingly

may arise from F̂1, P̂1, F̂1s and P̂1s in (6.138).
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6.9.2. The One-Dimensional Approximation to `Pumping'. There is a second equally important
contribution to the unsteady energy transfer accompanying °ow through a lateral boundary. This process
was mistakenly not included, with `°ow-turning', in the general analysis discussed by Culick (1973), although
a restricted form was discussed at the end of the same paper (see Annex C). The basic process has acquired
the name `pumping', referring to the in°uence of the °ow immediately adjacent to the boundary on the
°ow past the boundary. It arises because the °ow parallel to the surface has a time-varying component
which varies with position along the boundary. The discussion here concerns largely the one-dimensional
counterpart of the two- or three-dimensional process ¯rst found and explained by Flandro (1995)a.

Due to conservation of mass, as demonstrated in Section 5.9.3, motion is then induced in the direction
normal to the boundary. It is that portion of the °uid motion that is called `pumping'. For the case of
harmonic motions past an impermeable boundary, the °uid velocity accompanying the pumping action is
given by equation (5.146). We investigate now the pumping action for the case when °ow with average
velocity ¹vb passes through the boundary. We assume that there is no °uctuating component of v at the
surface: v0b = 0.

Unlike the case for fully three-dimensional calculations, the ¯rst integral in (6.143), which has as part of
its integrand the one-dimensional form of r¢ ¹u, is generally non-zero. The conservation of mass is expressed
for one-dimensional °ow by equation (B.2) written for steady purely gaseous °ow,

¹u
d¹½

dx
= ¡¹½ 1

Sc

d

dx
(Sc¹u) +

1

Sc

Z
¹mbdq

We take ¹½ to be strictly constant and the continuity equation for steady °ow is

1
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d
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(Sc¹u) =

1

¹½Sc

Z
¹mbdq (6.144)

Let ¹mb = ¹msg for the case here and substitute in (6.143) to give
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(6.145)

The de¯nition (6.121) for P01 gives the contribution from °uctuations of heat release within the °ow,

P̂1 =
R

Cv
Q̂1 = (° ¡ 1)Q̂1 (6.146)

From (6.121) we ¯nd the term representing the e®ect of °ow through the lateral boundary,

P̂1s =
R
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¾
(6.147)

After substitution of the appropriate de¯nitions,

h0s ¡ e0 + CvT := (CpTs + u
2
s

2
)¡ (CvT + u

2

2
) + CvT = Cp¢Ts + CpT +

1

2
(u2s ¡ u2)

where ¢Ts = Ts ¡ T . Because the kinetic energy is normally negligible in combustion chambers,
R

Cv
(h0s ¡ e0 + CvT ) ¼ Cp

Cv
RT +

Cp
Cv
R¢T = a2 + °R¢T (6.148)

Hence (6.147) becomes
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Substitution of (6.146) and (6.149) into (6.145) gives
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Temporarily denote the last integral by P and rewrite the various terms in the following way:
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The penultimate term can be written using the relation (6.144) for conservation of mass,
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Upon substitution of ^́̀ P in (6.150), this term is cancelled by the second term in curly brackets; k2 is now
given by the sum of terms23
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(6.151)

When interpreting this result, it is helpful to recall that with ¹ak = ! + i®, e¡i¹akt = e¡i(!+i®)t = e®t¡i!t,
so ® < 0 for decay of waves, i.e., the imaginary part of the right-hand side of (6.151) must be negative for
stability.

23Taking into account di®erences of de¯nitions (mainly ei¹akt in earlier work is replaced by e¡i¹akt here, and p0` = p̂`e
i¹ak`t

is written p0` = ¹p^́`Ã`e
¡i¹ak`t) equation (6.151) agrees with equation (3.13) in Culick (1973) written for a °ow without particles.

The last term in (6.151) was mistakenly dropped from (3.13) in the earlier work.
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For practical purposes it is necessary to have the real and imaginary parts of k, corresponding to the
formulas (6.93) and (6.94) found for three-dimensional waves. Write (6.151) as

k2 = k2` + (A+ iB)

Then with ! ¡ !` and ® small,
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Then with ¹ak`=!` = 1, we ¯nd for the real and imaginary parts of (6.151),
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The terms containing ¢T̂s represent the e®ects of a frequency shift depending on ¢T̂
(i)
s , the part of ¢T̂s

out-of-phase with the pressure oscillation; and attenuation depending on the in-phase part ¢T̂
(r)
s associated

with convection inward at the lateral boundary. Fluctuations of the mass °ux inward a®ect the frequency
shift and attenuation by carrying °ow having an average temperature di®erence ¢T̂s, represented by the
last term of 6.152 and 6.153.

More signi¯cant are the terms identi¯ed by ¤ and ¤¤ which we will temporarily denote as the contributions
~®sp and ®FT to ®:
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The contribution ®FT , generally referred to as the `°ow-turning' damping, was discovered by Culick (1973)
in his analysis of unsteady one-dimensional oscillations.
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In his 1995a paper, Flandro found a second contribution which Culick had not identi¯ed24 in his 1973
paper. This di®erence has directly|or indirectly|been part of the cause for much discussion, occasionally
controversy. The di®erence (with hindsight!) is illusory: The 1973 result, equation (6.153) here, contains
the important process called \pumping"25 by Flandro.

In the 1973 work, the mass in°ux was implicitly taken to represent °ow of combustion products from
burning solid propellant. That was certainly what the author had in mind. But the quantity msg may
of course represent °ow normal to the lateral boundary due to any cause. For example, in Section 6 of
Culick (1973) and here in Annex C, the °uctuation m0 = ¹½v0 represents changes associated with the acoustic
boundary layer. The time-averaged value m0 is then zero. For the linear behavior we are dealing with, we
may write msg as a superposition of various possible contributions. It is su±cient for our purpose to take
m0
sg as the sum of the °uctuation m0

sc due to unsteady combustion; and the unsteadiness m
0
PU produced by

the °ow:

m0
sg = m

0
sc +m

0
PU (6.156)

Thus for harmonic variations in time, (6.154) becomes a sum,
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In the ¯rst form, m̂
(r)
sc may be replaced, for example, by its formula obtained after introducing the admittance

or response function de¯ned in Section 6.7.2. Together, the °ow-turning contribution, (6.155), and the second
term of (6.157), which is the one-dimensional form of the `pumping' process, form the acoustic interaction
at a surface,
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This result is the one-dimensional counterpart of (49) in Flandro (1995)b, an identi¯cation we indicate here
without decoding the various de¯nitions of dimensionless quantities26:
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As an aid to recognizing that the correspondence noted is indeed true, four remarks are helpful:

(i) By Flandro's de¯nition, p0m does not contain any time dependence.
(ii) In the right-hand side of (6.159) specialized to one dimension, ~u(i) andrp0m both become proportional

to dÃ`
dx .

(iii) The mass °ux ¹msg = ¹½¹usg = ¹½¹a
¹usg
¹a = ¹½¹a ¹Msg, and ¹Msg is the same as Mb, the Mach number of the

average °ow departing the surface.
(iv) For the correspondence (6.160), we note that p0m » Ã` and n̂ ¢ ~u(r) » m̂PU

¹½ . To make equality hold in

(6.160), closer attention must be paid to the details.

24An example was treated in Section 6 of Culick's 1973 paper, but the generality of the process was not recognized; see
Annex C.

25It is referred to as \surface pumping" here, denoted ( )sp to distinguish it from subscript ( )p often used to identify

contributions from particulate material.
26Note that ~( ) denotes the rotational part of velocity, which cannot be distinguished for one-dimensional °ow.

LINEAR STABILITY OF COMBUSTOR DYNAMICS 

RTO-AG-AVT-039 6 - 41 

 

 



Verifying the exact correspondence, which is only implied in (6.159) and (6.160), is not germane here. (See
the following section.) The important point is that the one-dimensional approximation does in fact contain
both `°ow-turning' and `pumping'. The physical interpretation of °ow-turning, always a mechanism of
energy loss for °ow inward, has already been described with reference to Figure 6.16. Annex C explains the
pumping process which, the preceeding remarks show, must occur whether °ow issues from the surface, or
the surface is impermeable.

Much attention has been given these two processes because they can bring signi¯cant contributions to
the rate of change of acoustic energy in a combustion chamber. Incorporating the form of the ¤ term in
(6.153), written according to this discussion, we have
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(6.161)

The terms in the ¯rst line contain the principal sources of driving due to combustion at the end of the chamber
and on the lateral boundary; and attenuation due to the exhaust nozzle. Flow-turning and pumping are
represented by the next two terms. The last line contains the e®ects of volumetric heat addition and the
term representing the e®ect of unsteady mass addition when the temperature di®erence ¢ ¹Ts = ¹Ts ¡ ¹T is
non-zero.

Flandro (1995)a has given an example showing clearly the e®ects of °ow-turning and pumping in data
taken by Harris (1994) for unstable oscillations in the laboratory motors sketched in Figure 6.17. Figure 6.18
shows the result reported by Flandro. The dashed line is the locus representing exact agreement between
predicted and measured values of the growth rate. Flandro carried out calculations according to the Standard
Stability Program, SSP (Nickerson et al. 1983) which did not contain the pumping term; and SSP with the
pumping term added, giving points labeled \SSP with Vorticity." These results seem clearly to show that
the pumping term is a positive (`driving') contribution improving the agreement between the experimental

results and theoretical values. The latter were computed with Q̂
(r)
1 = ¢¹Ts = 0 and assumed values for the

propellant response.

The test program conducted by Harris (1994) produced very useful data carefully reduced. Results for
the decay rates shown in Figure 6.18 were obtained by measurements of the waves generated by pulses having
amplitudes approximately 1% of the chamber pressure. In the reference cited, results are given for two grain
diameters; three grain lengths; four grain con¯gurations; three HTPB/AP propellants; and three chamber
pressures. Figure 6.19 shows the decay of the fundamental mode in one test, the raw signal having been
processed by a bandpass ¯lter. In this case, the motor had a cylindrical grain, 2.55 inch diameter and 30.6
inches long. The data reported by Harris cover fairly broad conditions and can probably be used for wider
checks of theoretical results than carried out to date.
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Figure 6.17. Grains used in laboratory motors for which data were taken for unstable
oscillations (Harris 1994).
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with Q1 = ¢¹Ts = ¢T̂
(r)
s = 0. Ac-

counting for the `pumping' process gives
closer agreement between theory and ex-
periment (Flandro 1995b).
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6.9.3. Stability of a Simple T -Burner. Since its invention, the T -burner has been widely used a
device for measuring the dynamics of a burning solid propellant. For a number of reasons, largely associated
with experimental di±culties, it has never ful¯lled its great promise. Yet despite the appearance of several
other promising methods (see Section 2.2.3), the T -burner remains generally the primary means considered
for determining|at least qualitatively|the unsteady behavior of a new propellant. Another method may
ultimately prove to be superior for a particular application, but ¯rst understanding the T -burner, how it
works, and its practical de¯ciencies is usually the proper strategy to follow.

Two documents, \the T -Burner Manual," CPIA Publication 191 (1969) and \T -Burner Testing of Metal-
lized Solid Propellants," Air Force Rocket Propulsion Laboratory Report AFRPL-TR-74-28, cover virtually
all practices existing in the 1970s. Both volumes incorporated the experiences and contributions of all practi-
tioners in the U.S. Two decades later, extended test programs involving groups in the U.S., France, Canada,
and Australia collaborated in test programs based primarily on the \Pulsed T -burner," to re¯ne the methods
mainly for treating metallized propellants (Blomshield et al. 1991, 1992 and 1997).

In this section, we reproduce the simplest analysis of the T -burner, including comparison with early
test data, to show some of the di±culties the method presents (Beckstead and Culick, 1971). Unresolved
problems still remain. If we ignore the possibility that combustion produces particles in the °ow, and we
assume that combustion occurs only on the surfaces of discs having the diameter of the tube,27 the square
of the wavenumber of longitudinal oscillations is

k2 = k2` ¡ 4i
k`
L
(Ab +Mb) + ®®

³k`
¹a

´
(6.162)

where ®® is the decay constant representing all losses in the system during a period of steady oscillations.

With k2 = (! ¡ i®)2=¹a2 ¼ (!=¹a)2 ¡ i(2®!)=¹a2 ¼ (!=¹a)2 ¡ i(2®!`=¹a2) ¼ (!=¹a)2 ¡ i(2®`¼¹a=L) and
k` = `¼=L,

³!
¹a

´
¡ i(2®`¼) 1

L¹a
=
³`¼
L

´2
¡ i4`¼

L2
(Ab +M¹b) + ®®

³k`
¹a

´
The real and imaginary parts are³!L

¹a

´2
= (`¼)2 + 4(`¼)A

(i)
b = (`¼)2 + 4`¼°MR

(i)
b (6.163)

®L

¹a
= 2(A

(r)
b +Mb)¡ ®dL

¹a
= 2(°MbR

(r)
b )¡ ®dL

¹a
(6.164)

The admittance function can be replaced by the response function with the de¯nitions given in Section 6.7.2,

Ab = °
¹p

¹a

¹u

p0
³m0

m
¡ p

0

¹p

´
= °Mb

³m0=m
p0=¹p

¡ ½
0=p
p0=p

´
= °MbRb ¡M b

in which the last equality rests on the approximation that the wave propagation is isentropic. Then (6.163)
and (6.164) can be written

R
(i)
b =

1

4°`¼Mb

h³!L
¹a

´2
¡ (`¼)2

i
(6.165)

R
(r)
b =

1

2°Mb

(®+ ®d)L

¹a
(6.166)

27Extension of the analysis to other grain con¯gurations can be accomplished, but attention must be paid to the form of
the average °ow¯eld and to the e®ects of edges of the grains.
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According to (6.165) and as observed experimentally, the frequency of oscillation is close to the classical
longitudinal value, almost always the fundamental mode (` = 1), so

³!L
¹a

´2
¡ (`¼)2 =

³!L
¹a
+ `¼

´³!L
¹a
¡ `¼

´
¼ 2`¼

³!L
¹a
¡ `¼

´
and (6.165) becomes

R
(i)
b =

1

2°M b

³!L
¹a
¡ `¼

´
(6.167)

Equations (6.166) and (6.167) correspond to (6.25) and (6.26) for an L¤ burner. Hence if we assume the
result found by Denison and Baum for the response function, we ¯nd the solutions (6.126) and (6.127) for
the parameters A and B, but with

k1 =
1

2°Mb

³!L
¹a
¡ `¼

´
; k2

1

2°Mb

(®+ ®®)L

¹a
(6.168)a,b

It has been common practice to interpret T -burner data using only equation (6.126), justi¯ed with
the observation that the frequency of the oscillations has very closely the classical value, ! ¼ `¼ ¹aL so
equation (6.127) can be ignored. Then, for example, if Denison and Baum's formula is used, correlations of
experimental results are carried out with the two parameters A and B. In fact, one should use only one. Just
as for data taken with an L¤ burner, there are two parameters and two equations. If one equation is dropped
then, in some sense, so should one parameter! Otherwise, the ¯t or no-¯t to data cannot be interpreted as
truth or falsity of Denison and Baum's result.

On the other hand, strictly one has the basis, equations (6.126) and (6.127), for a two-parameter family
corresponding to equations (6.25) and (6.26), and Figure 6.8 for the L¤-burner. Assume that the T -burner os-
cillates in the lowest mode, the fundamental or ¯rst harmonic, and let ³ = (2°Mb)

¡1. Then equations (6.126)
and (6.127) are

R
(r)
b = ³(®d¿c + ®¿c) = ³®t¿c

R
(i)
b = ³

³!L
¹a
¡ ¼

´
= ³(!¿c ¡ ¼) (6.169)a,b

Beckstead and Culick chose to construct the two-parameter A;B family of curves in the ®t¿c;− plane rather
than the !¿¤c ;− plane used for the L¤ burner (¿¤c = L¤c¤=RT , ¿c = L=¹a). Figure 6.20 shows the result
they found, with data taken for A-13 propellant. This interpretation of the dynamical behavior is clearly
unsuccessful. The data for a given value of chamber pressure should lie on a vertical line; that is they should
be independent of frequency.

The authors tried|unsuccessfully|to rationalize the result. It seems unlikely that the data is so wildly
poor as the chart may suggest. The analysis is straightforward and transparent; the viewpoint taken seems
to be correct, and unlikely to be deeply °awed in any event. Probably the source of the evident inaccuracy is
the special form of the response function. While the Denison and Baum formula captures an important part
of the behavior, the two-parameter formula is apparently an over-simpli¯cation. Several modi¯cations are
discussed brie°y in Section 2.2. There seem to be no subsequent e®orts to use data in the manner suggested
by Beckstead and Culick. However, the approach taken in the present section, and in Section 6.2 with results
produced by low frequency burners still appears to be worthwhile.
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Figure 6.20. A T -burner chart for determining the parameters A and B; data are shown
for the propellant A-13 (Beckstead and Culick 1971).

6.10. Combined Three-Dimensional and One-Dimensional Results

There remains a signi¯cant gap in the formal treatment of stability. In Section 6.7 we have deduced
the formula (6.90) for the wavenumber and (6.94) for the growth or decay rate, of three-dimensional distur-
bances. Separately in Section 6.9 we have found the approximations (6.151) and (6.161) to the corresponding
quantities for one-dimensional motions. For easy comparison, we repeat the results here, preceded by their
origins. The reasoning begins with the precise correspondence between (6.90) and (6.138):

3-D Equation (6.90)

k2 ¡ k2n = ¡i
kn
¹aE2n

½ZZ
°
·
°
û

´n
¢ n̂+ ¹u ¢ n̂Ãn

¸
ÃndS + (° ¡ 1)

Z
Ã2nr ¢ ¹udV

¾
¡ 1

¹pE2n

Z "
F̂̂F̂F

^́n
¢ rÃn + ikn

¹a

P̂

^́n
Ãn

#
dV

(6.170)

1-D Equation (6.138)

k2 ¡ k2` = ¡i
k`
¹aE2`

8<:
·μ
°
û

´`
+ ¹uÃ`

¶
Ã`Sc

¸L
0

+ (° ¡ 1)
LZ
0

Ã2`

·
1

Sc

d

dx
(Sc¹u)

¸
Scdx

9=;
¡ 1

¹pE2`

LZ
0

"Ã
F̂1 + F̂1s
´`

!
+ i
k`
¹a

Ã
P̂1 + P̂1s

^́̀

!
Ã`

#
Scdx

(6.171)

As the development in Section 6.9 showed, the term containing F̂1s leads to the formula for `°ow-turning',
which is therefore a consequence of momentum transfer between the °ow entering at the boundary and the
°ow in the chamber. Then (6.138) becomes (6.143); if we retain the possibility for momentum addition
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within the volume, F̂1 is non-zero, and (6.138) is

k2 ¡ k2` = ¡i
k`
¹aE2`
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+ ¹uÃ`

¶
Ã`Sc
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(6.172)

This is (6.145) with the addition of the integral containing F̂1 and (6.144) used in the ¯rst integral.

The `pumping' term in k2 arises from P̂1s while P̂1 produced the term containing heat release, equation

(6.146). If we do not write P̂1 as the heat release, and ignore the cancellation noted just before (6.151),
equation (6.172) is

k2 = k2` ¡ i
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(6.173)

The symbols above the terms in this equation are only for identi¯cation according to the following discussion.

With the de¯nition (6.144) for the mass addition in steady °ow, the ¯rst integral corresponds to the
integral

R
Ã2nr ¢ ûdV and there is precise correspondence between all of (6.170) and (6.173) without the

last two integrals. Those two integrals represent, within the approximations used here, the entire di®erence
between the three-dimensional formulation and the one-dimensional `approximation.'

`Approximation' is set o® by quotes because it is a little surprising that the one-dimensional `approxi-
mation' possesses more information than the three-dimensional formulation. The term in (6.173) containing

1
k2`

³
dÃ`
dx

´2
is pure imaginary and gives the °ow-turning contribution to ®; hence de¯ne

k2FT = ¡i
k`
¹½¹aE2`

LZ
0

"
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k2`

μ
dÃ`
dx

¶2#Z
¹mgsdqdx (6.174)

Write
1

Sc

d

dx
(Sc¹u) = (r ¢ ¹u)1

as the one-dimensional divergence of ¹u; the ¯rst integral in (6.173) and the integral containing °RT̂ in the
last line are28

k2is = ¡i
k`
¹aE2`

(° ¡ 1)
LZ
0

Ã2` (r ¢ ¹u)1Scdx+ i
k`
¹a

1

¹pE2`

LZ
0

Ã`(°RT̂ ) ¹msgdqdx (6.175)

28The °ow through the surface corresponding to the second term in (6.175) is accounted for in the boundary conditions
in three-dimensions.
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The calculation immediately preceding (6.151) showed that these two terms together vanish if we assume

that T̂ is a consequence of an isentropic motion. This is the one-dimensional counterpart of the statement
that r ¢ u = 0 in three dimensions, eliminating the ¯rst volume integral in (6.170). There is no surface
contribution corresponding to the second term of (6.175) in three dimensions. We therefore ignore these
terms in the following discussion, k2is = 0.

The terms dependent upon ¢ ¹Ts and ¢T̂s will have values dependent on the thermodynamics of the °ow
through the surface. Flandro and Majdalani have not considered such processes. Write

k2¢T = i
k`
¹a

1

¹pE2`

LZ
0

Ã`

Z h
(°R¢¹Ts) ¹msg + (°R¢T̂s) ¹msg

i
qdx (6.176)

As we de¯ned with (6.156) the sum of °uctuations m0
sc due unsteady combustion and m

0
PU produced by

unsteady °ow, so m0
sg = m

0
sc +m

0
PU , we can write the remaining term in (6.173) as
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2
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(6.177)

Finally, let k23D denote those terms in (6.173) which have precise correspondences in the perturbed
three-dimensional problem,

k23D = ¡i
k`
¹aE2`
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Substituting (6.174), (6.176), (6.177) and (6.178) into (6.173) with the combination (6.175) dropped, gives

k2 = k2` + k
2
3D + k

2
FT + k

2
PU + k

2
sc + k

2
¢T (6.179)

Equation (6.179) is the most general form obtained to date for the wave number of motions represented
by the one-dimensional approximation. By suitable interpretation, according to comparison of (6.170) and
(6.172), of the ¯rst two terms on the right-hand side, (6.179) also contains the purely three-dimensional
formula for which the last four terms on the right-hand side are absent.

Then (6.179) evidently serves as the basis for constructing a formula for three-dimensional wavenumber
including °ow-turning, pumping, and the unsteady processes generating the wavenumbers k2sc and k

2
¢T . The

recipe implies replacing k2` by k
2
n; calculating k

2
3D with the right-hand side of (6.170); and retaining k

2
FT ,

k2PU , k
2
sc and k

2
¢T given by their de¯nitions quoted above as surface integrals:

k2 = k2n + k
2
3D + k

2
FT + k

2
PU + k

2
sc + k

2
¢T (6.180)

No results are available to con¯rm or deny the truth of this conjecture.

6.11. An Example of Linear Stability for a Solid Rocket

Results for a simple example, a longitudinal mode for a solid propellant rocket, are shown in Figures
6.21{6.23 (Culick and Yang 1992). It is a common problem encountered particularly in the development of
tactical motors. The calculations were carried out with linear and nonlinear gasdynamics. The example was
¯rst covered by Culick and Yang (1992, pp. 769{774).

Linear contributions from the exhaust nozzle, small particles (inert Al2O3) coupling with the mean °ow,
and unsteady burning were included. The e®ects of `°ow-turning' and `pumping' were not considered. At
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(a) approximate analysis (b) numerical simulation

Figure 6.21. Growth of unstable motions according to (a) the approximate analysis; and
(b) a numerical simulation of the same problem (Culick and Yang 1992).

the time, the authors did not realize that those contributions in fact sum to zero for this special case, a
result that explains the quite good agreement between the approximate and numerical results. That the
di®erence between the two calculations was not much greater was a puzzling conclusion at the time, but now
constitutes a marvelous vindication of the one-dimensional approximation. Remarks concerning the e®ects
of `°ow-turning' in calculations for a `complete' problem, Culick and Yang (1992), must be ignored. See
Section 6.12.

The e®ects of the exhaust nozzle are represented by the ¯rst bracketed terms in (6.161),

®nozzle ´ ®N = ¡
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¹½¹a2

°¹p

¶
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û(r)
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(6.181)

in which E2` =
LR
0

Ã2`Scdz = ScL=2. At z = L, Ã
2
` = cos

2(k`L) = 1 for k` = `¼=L and with (6.181) written

for z = L, so ¡(Ab + ¹Mb)! (AN + ¹MN ),

®N = ¡ ¹a
L

³
A
(r)
N + ¹MN

´
(6.182)

For the approximation (6.204) quoted later, valid if the nozzle is `short',

A
(r)
N + ¹MN = ¹MN

μ
° ¡ 1
2

+ 1

¶
= ¹MN

° + 1

2
(6.183)

and

®N = ¡° + 1
2

¹a

L
¹MN (6.184)

Note that, according to the derivations of (6.94) and (6.181), the term ¹MN in (6.182) represents part of the
net e®ects of the acoustics/mean °ow interactions.

We will ¯nd in Section 6.14.3 that under quite broad realistic conditions in solid rockets, the presence
of Al2O3 as liquid drops in motors, can be the source of substantial attenuation of oscillations. If all the
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particles are spherical and have the same diameter, the attenuation constant is given by (6.152)a below, with
X1 and X2 represented by the formulas (6.211)a,b:

®` = ¡1
2

Cm
1 + Cm

·
X1 + (° ¡ 1) C

Cp
X2

¸
(6.185)

where subscript ( )` stands for `liquid.'

Least well-known are the contributions from unsteady combustion. For this example, the simplest result
was used, the formula (6.103) for Denison and Baum's response function. We use the relation (6.102) and

assume ¢T̂s = 0. The corresponding formula for the contribution of surface combustion to the growth
constant is

®e =
¹vb
rc
R(r)p (6.186)

Table 6.1 is a list of the property values required is the calculations of the instability. Calculations were
done both with numerical solution to the one-dimensional equations (the method of Baum and Levine 1982)
and using the results of the approximate analysis. Figures 6.21{6.23. Table 6.2 contains the linear growth
constants and frequency shifts, ! ¡ !n = ¡μ, calculated with the results of the approximate analysis.
Table 6.3 contains the total values of the growth constants and frequency shifts.

Table 6.1. Values of the Geometrical, Combustion and Physical Properties (used in the
example discussed in Section 6.7.1).

Geometrical properties:

length L = 0:5969m
radius of cylindrical port rc = 0:0253m
throat radius rt = 0:00936m
Combustion properties:

mean pressure ¹p = 1:06£ 107 Pa
linear burning rate ¹rb = 0:0078[¹p=(3:0£ 106)]0:3 = 0:01145m/s
parameters in the A = 6:0
combustion response B = 0:55

chamber temperature ¹T = 3539K
mass particles/mass gas Cm = 0:36
particle diameter ¾ = 2£ 10¡6m
Physical properties:

Prandtl number Pr = 0:8
thermal di®usivity of
propellant ·p = 1:0£ 10¡7m2/s

speci¯c heat of gas Cp = 2020 J/kg K
speci¯c heat of condensed
material C = 0:68Cp

viscosity ¹ = 0:8834£ 10¡4(Tc=3485)0:66 =
8:925£ 10¡5 kg/m-s

particle density ½s = 4:0 g/cm3 = 4£ 103 kg/m3

propellant density ½p = 1; 766 kg/m3

gas density ¹½g = 7:97 kg/m3

° (gas only) ° = 1:23
¹° (mixture) ¹° = [°(1 + CmC=Cp)]=(1 + Cm°C=Cp)

= 1:18
gas constant R = (° ¡ 1)Cp=° = 377:72 J/kg K
speed of sound in gas/

particle mixture ¹a =
p
(¹°RTc)=(1 + Cm) = 1075m/s

speed of combustion
products at the burning
surface ¹vb = (½p=½)¹rb = 1:86m/s

Mach number at the
burning surface ¹Mb = 0:00173
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Table 6.2. Linear Growth Constants and Frequency Shifts.

Mode ®c μc ®N μN ®P μP
1 288.1 32.2 ¡160:1 0 ¡46:6 2.6
2 28.5 80.5 ¡160:1 0 ¡184:8 20.5
3 16.7 48.5 ¡160:1 0 ¡417:7 69.1
4 13.6 36.0 ¡160:1 0 ¡727:4 160.5
5 12.0 29.3 ¡160:1 0 ¡1107:5 305.5

Table 6.3. Total Values of the Linear Growth Constants and Frequency Shifts.

Mode ®n μn
1 81:4 34.8
2 ¡316:4 100.9
3 ¡561:1 117.6
4 ¡873:9 196.6
5 ¡1255:6 334.8

Table 6.4. Frequencies and Amplitudes of Acoustic Pressures.

Frequency, Hz Amplitude, jp0=¹pj
Mode 1 2 3 4 5 1 2 3 4 5

Numerical 926 1824 2698 3595 4491 0.151 0.042 0.0234 0.0203 |
Approximate 895 1785 2683 3571 4449 0.151 0.0478 0.0280 0.0153 0.0188

For direct comparison of the numerical and approximate results, Table 6.4 contains the values of the
frequencies and amplitudes computed for the ¯rst two modes. A few cycles of the limiting waveforms are
plotted in Figure 6.21 showing results for both the approximate and numerical computations: Figure 6.22 is
the spectrum for the numerical results.

Figure 6.22. Spectrum for the calculated waveform shown in Figure 6.21(b) (Culick and
Yang 1992).

The approximate analysis produces quite accurate values of the frequencies (within 3%) and the approx-
imate total waveform is reasonably close to the \exact" result except for some rippling due to the absence
of higher frequencies. Even so, the amplitudes of the individual modes found with the approximate analysis
agree well with those computed with the numerical analysis except for the highest (n = 5) mode. The reason
for the high value (even larger than that for n = 4) is that there is no transfer of energy to higher modes.
Because the rate of energy dissipation from the highest mode considered, represented by its attenuation
constant, must be such that the total energy loss equals the total rate of energy gain, the amplitude of
the highest mode must be such as to satisfy this condition. Even with only two modes accounted for, the
frequencies and total waveform are quite well predicted. The frequencies are the same as for the case of ¯ve

LINEAR STABILITY OF COMBUSTOR DYNAMICS 

RTO-AG-AVT-039 6 - 51 

 

 



modes; Figure 6.23 shows the waveforms. However, according to Table 6.4, the approximate amplitudes of
the individual modes di®er considerably from the exact values. The phases of the two modes in the approxi-
mate solution apparently assume values that compensate for the consequences of the inaccurate amplitudes.
Figure 6.15a,b

Figure 6.23. E®ect of truncation in the waveforms (Culick and Yang 1992).

6.12. Vorticity and Stability in Solid Propellant Rockets

Vorticity appears in combustion chambers chie°y on three forms: random motions associated with
turbulence; large `coherent' vortices growing out of unstable shear layers; and waves of vorticity generated
by interactions between the acoustic ¯eld and a °ow entering the chamber through the lateral boundary. In
Section 7.6 we regard all random motions together as noise and show how the net pressure may a®ect the
acoustic pressure ¯eld. Here we are concerned only with distributed vorticity, either as waves carried by the
mean °ow or as large vortices.

Probably the ¯rst observations of possible consequences of vorticity29 in a combustor are those reported
by Boys and Scho¯eld (1942). Some features of recorded pressure histories and of grain erosion caused them
to speculate the presence of \ : : : some abnormal °ow on oscillation : : : as if the gas were swirling with a
high velocity." (Quoted by Flandro 1967). Since that time, many examples of scoured lateral boundaries
have been reported, both in liquid rockets and in solid rockets, all for laboratory tests or static ¯rings of
full-scale motors. Green (1958) reported visual observations of swirling °ows in a solid rocket.

By conservation of angular momentum, exhaust of a swirling or vortex °ow from a combustor must
be accompanied by a roll torque (of the opposite sign) exerted about the axis of symmetry. Substantial
roll torques were ¯rst observed in °ight tests of the Sergeant motor (Flandro 1964). An extreme example
occurred in the ¯rst °ight test of the Scout space probe which failed when the control system was unable to
compensate large roll motions (Mayhue 1962).

Swithenbank and Sotter (1963; 1964a,b) were ¯rst to attempt a theoretical explanation of the generation
of roll torques by adapting an analysis of ¯nite amplitude transverse waves by Maslen and Moore (1956).
Partly due to errors in the latter paper, and partly due to some misinterpretations, the results by Swithenbank
and Sotter are incomplete. The main idea is that acoustic streaming generated by the transverse waves carries
angular momentum causing the roll torque.

29We refer to the e®ects of streamwise vorticity or vortices. The discussion in Section 6.12.1 and subsequently is concerned
primarily with azimuthal vorticity generated by processes associated with nonuniform °ow inward at the lateral boundary. The
two kinds of vortices are illustrated in Figure 6.24.
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AZIMUTHAL  VORTICITY

STREAMWISE  VORTICITY

Figure 6.24. Stylized rendition of azimuthal and streamwise vortices in a solid propellant
rocket chamber.

In a ¯ne piece of work, Flandro (1967) corrected the de¯ciencies of Swithenbank and Sotter's work and
produced what is essentially the correct explanation for the generation of roll torques in solid propellant
rockets. That work probably makes unnecessary any further theory of the phenomenon. The details of
Flandro's work need not be covered here. Its importance in the present context is that the analysis is
the ¯rst application of the scheme developed here in Chapters 4 and 5, in which vorticity is explicitly
accommodated in a calculation of the acoustic ¯eld. The most signi¯cant technical point in the analysis
is proper satisfaction of the no-slip boundary condition at the boundary. When a tangential or transverse
acoustic mode is present, which necessarily has a velocity component parallel to the surface, a second
contribution to the velocity is required to cancel the acoustical motion. That second component arises with
generation of vorticity convected into the chamber. Eventually, the vorticity combined with a travelling
transverse wave mode produces the angular moment in the °ow. The reaction to the loss of that angular
momentum appears as a roll torque. Further discussion of the possible °ow ¯elds and the connection with
acoustic streaming are discussed brie°y in Chapter 7.

It's a beautiful model of the problem and successfully explains the observed behavior. Technically, the
essential result was making explicit the basic connection between acoustics and vorticity, the vehicle for the
connection being the mean °ow, and the consequence being generation of angular momentum experienced
as a roll torque. The analytical procedure served as a precursor to Flandro's later analysis of waves of
vorticity generated in response to the presence of longitudinal acoustic instabilities in solid propellant rockets.
(Flandro 1995). That work has several times been misinterpreted and consequently has been unjusti¯ably
and incorrectly criticized.

6.12.1. Generation of Large Vortices; Parietal Vortex Shedding. Oscillations found in large
solid rocket motors, developed as boosters for launching spacecraft, have presented problems somewhat
di®erent from those discussed in most of this book. The primary examples are the Space Shuttle booster
(Mason, Folkman and Behring 1979; Mathes 1980; Blomshield and Mathes 1993); the Titan solid rocket
(Alden 1980; Brown et al. 1981); and the Ariane 5 MPS P230 (Scippa et al. 1994). All these motors have
had relatively low-level pressure, and thrust, oscillations at frequencies suggesting that the ¯rst longitudinal
mode is unstable. Yet estimates based on the ideas developed in Chapters 3 and 4, or similar arguments,
led to the conclusion in each case that the longitudinal mode should be unquestionably stable. For example,
such a conclusion was reached by Kumar and Culick (1977) before the ¯rst test ¯ring of the SRM in the late
1970s. When the motor was ¯red, vibrations at approximately 15 Hz were detected at levels high enough
to cause concern, both in respect to oscillatory accelerations of some structural components and motions of
the pilots' cabin. The existing stability analysis could not explain the observation because, as it turned out,
a contribution was missing. That missing contribution was due to vortex shedding from inhibitor material
exposed at the joints of the segmented motor.
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Figure 6.25. Some con¯gurations used in observations of vortex shedding and instabilities
(adapted from Schadow 2001).

The earlier suggestion by Flandro and Jacobs (1975) that vortex shedding could couple to acoustic
modes of the motor was recalled. That prompted the simple laboratory tests by Culick and Magiawala
(1979) followed later by the extended work of Nomoto and Culick (1982), and Aaron and Culick (1985). The
last contains a simple approximation to the excitation of acoustic waves by the impingement of vortices on
an obstruction. Meanwhile the idea was pursued vigorously in the Titan program, with convincing results
published by Dunlap and Brown (1981) and Brown et al. (1981). At about the same time, Byrne (1981,
1983) suggested vortex shedding in dump combustor con¯gurations as the mechanism for oscillations found
in ramjets (Culick 1980; Culick and Rogers 1980). Thus by 1981, vortex shedding had been established as
a fundamental mechanism of instabilities in combustion systems.

Subsequently, vortex shedding was found to be even more widespread than previously considered. It was
well-established experimentally, especially by the work of Schadow and his colleagues at the Naval Weapons
Center, China Lake, to be a potentially signi¯cant mechanism for oscillations in laboratory dump combustors;
a good summary of the matter was given by Schadow and Gutmark (1992). In his lecture, part of the Short
Course \Active Control of Engine Dynamics" held at the von Karman Institute (VKI), Schadow (2001)
gave a useful tutorial emphasizing vortex shedding in damp combustors. Figure 6.25 summarizes the main
con¯gurations that have been studied; and locations of principal experimental e®orts. The Short Course
given at the Glenn Research Center (Culick 2001) also includes as Section 9 a summary of the subject, with
references. Section 8.6 contains a discussion of vortex shedding and its modi¯cation as a means of passive
control.

A quite di®erent form of vortex shedding as a driving mechanism for oscillations in a combustor was
discovered in series of ¯ne experimental and theoretical works by French investigators motivated by the
Ariane 5 problem. Put most succinctly, they found that unlike all previous demonstrations, and (therefore)
contrary to general expectations, neither obstacles nor edges are required to generate large vortices in a
stream. Lupoglazo® and Vuillot (1996) named the phenomenon \parietal vortex shedding" because the vor-
tices formed in the region close to a wall through which °uid was injected. They discovered the phenomenon
experimentally while carrying out a lengthy series of tests devoted broadly to clarifying the coupling between
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vortex shedding and acoustic modes. The investigations began in the early 1990s, driven by serious practical
considerations. The payload of the Ariane 5 might be reduced (it eventually was) by the mass of devices
added to the solid rocket boosters as protection against the oscillatory accelerations. For example, Pr¶evost
et al. (1996) cited a maximum amplitude of 0.28 bar (14.5 psi) at 20 Hz); the mean chamber pressure is
around 50 bar. Oscillations of this magnitude have persisted in the motor and the Ariane 5 has consequently
su®ered a reduction of payload equal to several hundred pounds.30 Hence the primary goal of the work was
evidently elimination of the vortex shedding or the coupling between the vortices and the acoustic modes.

The problem of oscillations produced by the formation of large vortices was apparently encountered
quite early in the development of the Ariane 5 (c. 1990 in subscale work and during the ¯rst full-scale tests
beginning in 1993). It was the subject of serious concern in the early 1990s; the French work was summarized
in the informative paper by Vuillot (1995) written just prior to the discovery of parietal vortex shedding,
reported by Lupoglazo® and Vuillot (1996). A series of tests was carried out in 1/15 scale laboratory motors,
named LP3A-E shown in Figure 6.26. The results are reported in several places, but the contribution of
Vuillot and Casalis (2002) to the VKI Short Course \Internal Aerodynamics in Solid Rocket Propulsion"
(2002) is the best summary.

There was no °ow visualization of the hot ¯rings in the LP3 test series. Careful interpretation of the
data, and numerical simulation established conclusively that parietal vortex shedding had been shown. Direct
con¯rmation was provided by Avalon et al. (2001) using PLIF with acetone. Figure 6.27 reproduces a picture
they obtained with the ONERA VECLA31 apparatus.

Casalis and coworkers have carried out analyses establishing conclusively the origin of parietal vortex
shedding. (Vuillot and Casalis 2002 Part II, and references there to the original work.) As background, recall
that vortex shedding from edges or obstacles is initiated by an instability of a shear layer. Parietal vortex
shedding occurs because the °ow itself is unstable. Figure 6.28 shows some results of numerical simulations
for the three cases. The case has been established for the pro¯le in a cylindrical cavity closed at one end
having a uniform porous lateral boundary passing a uniform °ow (Taylor 1956, Culick 1966b). The analysis
shows, as observed, that the vortex shedding begins some distance from the closed end of the cylinder where
the pro¯le in question is unstable to small disturbances (Urgutas et al. 2000).

Figure 6.26. The ¯ve two-dimensional con¯gurations of the LP3 test motors. Parietal
vortex shedding was discovered in model D. (Vuillot et al. 1993; Pr¶evost et al. 1996).

30The payload of the Space Shuttle also was reduced in the late 1980s, by an even larger amount due to design changes
following the loss of the Challenger. In that case, parietal vortex shedding was not an issue.

31Veine d'Etude de la Couche Limit¶e Acoustique. The test device operated with air injection through the porous sidewalls,
to allow the °ow visualization shown in Figure 6.27.
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Figure 6.27. Upper image: °ow visualization of parietal vortex shedding, using PLIF with
acetone; Lower image: result of numerical calculations (Avalon et al. 2001).

Figure 6.28. The three kinds of vortex shedding (Fabignon et al. 2003).

Pr¶evost, Godon, and Innegrave (2005) have reported the most recent tests supporting the view that
parietal vortex shedding may be a signi¯cant contribution to the problem of oscillations in the Ariane 5.
Three series of sub-scale tests have been carried out, a total of seventy-six ¯rings in con¯gurations identi¯ed
as LP6(1/15 scale), LP9(1/35 scale) and LP10(1/35 scale). In the series LP6, the propellant was changed to
a non-metallized form during the series. In all tests having no restrictors at the ends of propellant segments,
parietal vortex shedding occurred. Figure 6.29 is a drawing of the test device; Figure 6.30 shows typical
results.

Figure 6.29. A sketch of the LP6 test device (Pr¶evost et al. 2005).

Test series for the LP9 and LP10 con¯gurations showed the presence of oscillations apparently due
to parietal vortex shedding. Accompanying analysis by Chedevergne and Casalis (2005) supports that
explanation. No direct con¯rmation by °ow visualization was reported, but that may be an unnecessary
step. An interesting comment was made in connection with Figure 17 of the paper by Chedevergne and
Casalis, that \...all the instabilities begin at the burnout of the propellant around the submerged nozzle."

The signi¯cance of the parietal form of vortex shedding may be great indeed. If this really is the source
of the acoustic waves (modes) excited in the Ariane 5 or other large boosters), then there are signi¯cant
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Figure 6.30. Experimental results for a test in the LP6 con¯guration showing parietal
vortex shedding (Pr¶evost et al. 2005).

implications for design of new motors to avoid the problem. However, despite the extensive and impressive
accomplishments by the French research program for the Ariane 5, it seems that available evidence doesn't
prove conclusively that familiar vortex shedding originating with an unstable shear layer formed at an edge
is eliminated is a (the?) potential cause in the full-scale motor. Direct con¯rmation is di±cult. However,
it is not clear at this time that the more familiar formation of vortices at the joints of the segments of the
grain can be dismissed as the primary cause, even in the Ariane 5.

6.13. Predictions of Stability Boundaries for Liquid Rockets

Stability boundaries were apparently ¯rst treated systematically for liquid rockets, in the early 1950's. In
1956 Crocco and Cheng completed their book treating one-dimensional motions, with the n¡¿ representation
of the unsteady conversion of liquid to combustion products. That idea, introduced a few years earlier by
von Karman and Summer¯eld (1950) achieved an enormous simpli¯cation of the actual processes. Combined
with signi¯cant approximations to the spatial extent of the unsteady combustion, the model was the basis
for much work in the theory of combustion instabilities in liquid rockets. Attempts to extend application
of the n¡ ¿ model to solid propellant rockets (Cheng 1954a) and other liquid-fueled systems (e.g., Reardon
1983) seem to have had few useful consequences.

From the early 1950s through the 1980s in the U.S. the n¡ ¿ model dominated the views and practical
considerations of unsteady combustion in liquid-fueled systems. First linear behavior and then, beginning in
the early 1960s, nonlinear combustion instabilities were investigated. It is important to appreciate that, as
discussions in Chapter 2 and in the next chapter show clearly, the geometries of combustion chambers treated
in those works were all quite simple variations of a cylindrical chamber with a sonic exhaust nozzle. Thus
the basic °ow ¯elds in all cases shared nearly the same characteristics, di®erences arising from the absence
or presence of a shock wave and the spatial extent of the combustion processes. The general methods used
are cumbersome to apply to distributed combustion. Consequently, most of the analyses were restricted to
concentrated combustion. For example a common choice, perhaps a reasonable approximation to combustion
of fast burning propellants, was combustion in a plane located at the head end of the chamber. One exception
was examination of distributed combustion by Crocco and Cheng (1956; pp. 103®). The practical di±culties
with a formulation based on di®erential equations become apparent fairly soon.

Probably the apex of the Princeton work on linear stability was reached with Crocco's long paper given
at the Tenth Combustion Symposium (1965). Crocco spent at least half of the paper on explicit modeling of
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combustion processes and on nonlinear behavior, virtually signaling the conclusion of their research dealing
with linear problems.

The way in which stability boundaries were treated with the n ¡ ¿ representation has been explained
in Section 2.4.2. It is important to realize that apart from estimates, no work seems to have been done to
predict values of n and ¿ , so there really are no true predictions of stability boundaries using the n ¡ ¿
model. The usual approach in applications has been based on the assumption that all other contributions
to the formula for the growth constant are known. Then setting ® = 0 gives a relation between n and ¿ on
the stability boundary. Or, if one more correctly uses both the real and imaginary parts of the eigenvalue
for wave motions, then there are two relations. These have the forms (2.127)a,b which can, in principle be
used to de¯ne a stability boundary and the variation of the frequency along the boundary.

However, no true predictions of stability boundaries are available without knowledge of n and ¿ . Conse-
quently, for applications to a real system, and to obtain some understanding of the way in which its stability
may depend on important parameters and operating conditions, experimental data are required. Examples
are given in Section 2.4.2; extended discussions may be found in Harrje and Reardon (1972).

Theorists in Russia took a very di®erent approach not married so tightly to a simple representation
of the principle mechanism for instabilities in liquid rockets. Natanzon (1984, 1999) has written the best
known treatise on instabilities in liquid rockets. The work covers several methods not well-known in the West
and includes a summary of some experimental work on hysteresis. Since it is based entirely on di®erential
equations, Natanzon's work has little overlap with the methods covered in this book.

6.14. Contributions to the Growth Constant for Linear Stability

It is one of the great bene¯ts of the linear analysis that the in°uences of the processes causing or
discouraging instabilities are displayed additively. Their relative importance is therefore easily assessed and
the basis is given for determining where most e®ort should be expended to provide good predictions of
stability in actual systems. Consequently much expense and e®ort in the ¯eld of combustion instabilities
generally has been planned according to the formal organization of the subject suggested by the results
(6.94) and (6.161) for the linear growth constant. In this section we will discuss several contributions which
are important mainly in solid propellant rockets. The subjects of Section 6.14.1 and 6.14.2 arise in all types
of propulsion systems.

6.14.1. Mean Flow/Acoustics Interactions. Of the many processes participating in combustion
instabilities those that are purely °uid-mechanical are best known, mainly for two reasons: Their founda-
tions are understood; and usually they can be investigated experimentally with laboratory tests at room
temperature. It is a fortunate peculiarity of the °uid mechanics that the formal results are relatively simple
to ¯rst order in the amplitude and in the mean °ow speed. For internal °ows, the ¯rst order interactions
combine in such a way that the net result appears as convection through the boundary, the surface integral
containing (¹u ¢ n̂)Ãn in (6.87), (6.90) and (6.94).

Thus, to lowest order, the mean °ow/acoustics interactions are simple both in form and interpretation.
As the manipulations leading to (6.87) show, the surface integral in fact accounts for some contributions
occurring in the volume. It is a fortunate accident that for a ¯nite volume, their net contribution turns out
to be represented as a surface e®ect only.

On the other hand, when viscous e®ects and especially °ow separation occur, the situation becomes
immeasurably more complicated. For example, all of the phenomena associated with shear layers and vortex
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shedding enter the picture. We have discussed them elsewhere in this book. It is best to treat them in the
physical contexts where they arise.

6.14.2. Attenuation by a Choked Exhaust Nozzle. Liquid and solid propellant rockets, ramjets
and augmentors for gas turbines all exhaust through choked nozzles. In a gas turbine, the combustor supplies
the turbine directly and the exit °ow from the combustor has traditionally been well below sonic speeds.
In modern gas turbines the exit Mach number is larger, approaching unity in some cases. Combustion
instabilities have become troublesome in gas turbines in recent years, mainly a consequence of the need
to operate at lower fuel/air ratios as part of the strategy to minimize the generation of nitrogen oxides.
Otherwise, undesirable oscillations have been relatively infrequent in such systems.

On the basis of those observations|crude but nevertheless valid|one is tempted to o®er the general-
ization that any combustion system possessing a choked exhaust is liable to exhibit combustion instabilities.
Is there any reason why such a simple characterization might contain some truth? In fact there is, broadly,
a reason: A system having a choked exhaust nozzle in general will have lower acoustic losses than it would
if the exhaust °ow were not choked. The main purpose of this section is to clarify how this result comes
about; and to show how those losses are determined theoretically and experimentally. A useful consequence
is that with the solution we discover how to obtain a good estimate for the length of chamber to use for
approximate calculation of the frequency of an instability.

The essential idea is quite simple, as sketched in Figure 6.31. An acoustic wave is incident from the
left on an axisymmetric sonic nozzle, Figure 6.31(a), or two-dimensional nozzle, Figure 6.31(b). The wave
propagates in the direction parallel to the axis of the nozzle but in general has an unspeci¯ed distribution
of variables in planes normal to the axis. For this analysis we assume the °ow upstream of the entrance to
the nozzle is uniform. Because we consider only linear behavior, it is consistent with the analysis of motions
in the chamber to assume the ¯rst-order representation of the incident wave in the radial and azimuthal
coordinates,32

Jm(·mnr) cosnμ (standing waves)

Jm(·mnr)e
§inμ (travelling or \spinning" waves)

(6.187)

For the two-dimensional case, the incident waves have amplitude independent of y de¯ned in Figure 6.31(b)
and dependence on cos(kl x) upstream of the nozzle. A source of the steady incident waves is assumed to
exist somewhere far to the left (upstream) of the nozzle and is ideal in the sense that it perfectly absorbs
any waves travelling after re°ection from the nozzle.

A large fraction of the incident waves passes through the nozzle and the remainder is re°ected back
to the chamber. That is the result of complicated interactions between the waves, the mean °ow and the
nozzle itself. The last introduces explicit dependence of the re°ected waves on the shape of the nozzle. Most
available calculations of the nozzle admittance function rest partly on the approximation that the nozzle is
slender;33 that restriction eliminates explicit dependence on the shape, where `shape' means the variation of
cross section with position.

Re°ection of a portion of the incident waves therefore occurs because the average °ow is non-uniform
in the streamwise direction. Without the shape of the nozzle appearing in the problem, satisfying any
conditions on a lateral boundary is unnecessary|indeed not possible. The form of a wave having structure

32We use dimensionless coordinates, r standing for r=R and z for z=L where R is the radius of the nozzle at its entrance

and L is the length from the entrance to the throat. For the two-dimensional nozzle, R is replaced by W=2; see Figure 6.31.
33`Slender' means that the slope of the nozzle boundary, the rate of change of the diameter of the cross section with

position, along the axis is small. We will not try to make this statement more precise. See the cited references for somewhat
closer estimates.
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Figure 6.31. Idealized axisymmetric and two-dimensional nozzles for calculating admit-
tance functions.

in transverse planes is set by its form at the entrance. As a result of these approximations we have described
only qualitatively, determining the wave system produced in the nozzle by its action on the planar incident
wave, comes down to ¯nding the variation of one quantity in the °ow through the nozzle. Usually that
quantity has been chosen to be the density, or the pressure, of the wave system.

In his seminal work, Tsien (1952) assumed that the oscillations in the nozzle are isothermal, an approx-
imation corrected by Crocco (1953). Crocco's analysis of purely longitudinal waves for which the velocity
°uctuations are parallel to the axis of the nozzle in included as Appendix B of Crocco and Cheng (1956).
That is probably the best place to become acquainted with analysis of the problem; we follow Crocco's anal-
ysis with little change. The linearized continuity and momentum equations for one-dimensional unsteady
motions can be written
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We assume that the entropy of an element of °uid does not change in passage through the nozzle, so the
linearized equation is μ
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= 0 (6.190)

Note that the averaged quantities ¹½, ¹p, ¹u are all functions of position. They are assumed known from the
shape of the nozzle.

The last equation is integrated to give

s0

Cv
=
p0

¹p
¡ ° ½

0

¹½
= F

0@t¡ zZ
ze

dz0

¹u(z0)

1A (6.191)

in which the function F is determined by the (presumed known) time dependence of the entropy at ze, the
entrance plane of the nozzle. To make the connection with Crocco's analysis easy to follow, we assume
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harmonic time dependence34 and introduce the de¯nitions of '(z), ¾(z), and º(z)

p0

¹p
= '(z)e¡i!t ;

½0

¹½(z)
= ¾(z)e¡i!t ;

u0

¹u(z)
= º(z)e¡i!t (6.192)

Then (6.191) becomes

'(z)¡ °¾(z) = "e
i!

zR
ze

dz0
¹u

(6.193)

where " is C¡1V times the amplitude of the entropy oscillation.

With (6.192), equations (6.188) and (6.189) are now
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(6.195)

Tsien (1952) ¯rst noticed that this pair of equations could be solved to give ¾ and º in terms of a known
function for the special case in which the mean velocity increases linearly with distance from the entrance
plane. To simplify the discussion and results even further we will not account for entropy changes and set
" = 0.

To specify a linear velocity pro¯le, take the slope to be constant, written as

d¹u

dz
=
¹u

z
=
¹a¤
z¤
=
¹a¤ ¡ ¹ue
(z¤ ¡ ze) (6.196)

where ( )¤ denotes values at the throat and, as earlier, ( )e identi¯es values at the entrance.
35 Thus z¤¡ze

is the length of the subsonic section of the nozzle. Tsien introduced the new variable ³,

³ =

μ
z

z¤

¶2
=

μ
¹u

a¤

¶2
(6.197)

The relation between the speed of sound and the Mach number,

T
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= 1 +

° ¡ 1
2

M2

may be used to give the formula μ
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2
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Finally de¯ne a dimensionless or \reduced" angular frequency ¯,

¯ =
z¤!
¹a¤

=
!(z¤ ¡ ze)
¹a¤ ¡ ¹ue (6.199)

Substitution of the preceding de¯nitions and combination of (6.194) and (6.195) eventually produces the
equation with which ¾ may be computed:
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¶
³
d¾

d³
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2¡ i¯
2(° + 1)

¾ = 0 (6.200)

34Recall that we use the convention e¡i!t whereas Crocco uses e+i!t.
35Except MN (not Me) denotes the Mach number of the °ow entering the nozzle.
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The point ³ = 0 lies upstream of the entrance to the nozzle, but ³ = 1 is at the throat ( ¹M = ¹M¤ = 1).
Hence we must choose the solution to (6.200) which is non-singular at ³ = 1, known as the hypergeometric
series (Morse and Feshbach 1953). Expanded in powers of 1¡ ³, the solution is

F (a; b; c; 1¡ ³) = 1 + ab
c
(1¡ ³) + a(a+ 1)b(b+ 1)

c(c+ 1)

(1¡ ³)2
2!

+ ¢ ¢ ¢ (6.201)

with

c = a+ b+ 1 = 2

μ
1¡ 2¯

° + 1

¶
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¡i¯
° + 1

μ
1¡ 1¯

2

¶ (6.202a,b)

Crocco and Cheng (1956) noted that the convergence of (6.201) is slow for 1¡ze near one (i.e. when ze is
small, as the case is for small Mach number at the nozzle entrance) and have given alternative representations
for ze small. Thus the problem of calculating the admittance function is solved, subject to the limitations
of the analysis discussed above. Using the relation for isentropic °ow assumed here, we ¯nd the admittance
function for a nozzle36

AN = ¡(û ¢ n̂)=¹a
(p̂=°¹p)

=
û=¹a

½̂=¹½
= ¹MN

ºe
¾e

(6.203)

where ¹MN stands for the Mach number of the average °ow entering the nozzle.

A particularly important limit of (6.201) is that for very slow or \quasi-static" conditions, the value
assumed for ! ! 0 (i.e. ¯ ! 0). This condition is equivalent to that existing in a \short" nozzle, that is
when the wavelength of the oscillation is long compared with the length of the nozzle. Evidently the same
result can therefore be obtained with at least two arguments. Under these conditions, the °uctuation of
velocity at the nozzle entrance is in phase with the imposed pressure °uctuation. The admittance function
for short nozzles was ¯rst obtained by Crocco (1953, p. 52, ¯ = 0) and subsequently by several others,
including Zinn (1972), the result being

AN = ¹MN
° ¡ 1
2

(6.204)

This is of course the value of the nozzle admittance function for ¯(i.e. !) = 0.

Figure 6.32 shows some results for realistic ranges of ¯ and ¹MN . For example, for a rocket having a
nozzle entrance 15 cm long and with ¹a = 1500 m/s, ¯ = 0:3 when ! = 3000s¡1 (f ¼ 500s¡1). This estimate
shows that for practical purposes, since ¯ is quite small, the approximation (6.204) is in fact quite good.

Experimental results have shown that for the conditions supposed, the theory worked out by Tsien and
Crocco gives accurate results: The action of a choked exhaust nozzle on small amplitude sinusoidal oscillations
may be assumed accurately known. Crocco, Monti and Grey (1961) reported the ¯rst test results, in which
the velocity was measured with a hot wire. Data were obtained for relatively high values of ¯ because the
speed of sound in cold-°ow test is much lower than the values in hot ¯rings. Figures 6.33 and 6.34 show that
their experimental results seem to agree quite well with the theory described above. However, the authors
expressed some reservations since they were forced to apply signi¯cant adjustments to the raw data, owing
in large part to inaccuracies in the results for the velocity °uctuations.

Bell (1972) has obtained the best data for the nozzle admittance function; his experimental results
were included in the papers by Zinn, Bell, Daniel and Smith (1973) and by Bell, Daniel and Zinn (1973).
The data were obtained using the method based on an impedance tube as recommended by Culick and

36Sometimes the density replaces the pressure, giving a quantity di®ering from (6.204) by a factor °. Then (6.204), for
example, becomes ¹MN (° ¡ 1)=2°.
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Figure 6.32. Numerical values for the admittance function of a nozzle exposed to isentropic
oscillations, equation (6.203): (a) real part; (b) imaginary part. (Crocco and Cheng 1956)
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Figure 6.33. Results for the real part of the admittance function for a nozzle. Open
symbols represent uncorrected data; ¯lled symbols represent the same data corrected for
closer agreement with Crocco's theory (Crocco, Monti, and Grey 1961).
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Figure 6.34. Results for the imaginary part of the admittance function for a nozzle
(Crocco, Monti, and Grey 1961).
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Dehority (1969).37 Figures 6.35{6.37 show the experimental results and the predictions according to the
theory described by Crocco and Sirignano (1967). The agreement with the theory is clearly quite good.38

Results are shown for purely longitudinal modes, but Bell reported equally good agreement between theory
and his data for the lowest longitudinal/tangential modes.39
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Figure 6.35. Comparison of the theoretical and experimental admittance results for nozzle
15-08-2.5, longitudinal modes (Bell 1972).

Some related data were taken in tests at the Naval Weapons Center (at that time the Naval Ordnance
Test Station, usually called NOTS), reported by Bu®um, Dehority, Slates and Price (1967); see also cited
documents by the same authors. Those works are useful for a comparison of three methods of measuring the
losses: the decay of pulses produced by small explosive charges; decay of steady oscillations; and properties
of the resonance curve. The last seems to have been the best at that time although the results given are not
useful for other applications.

37The general features of the method and its most e®ective realization, including best experimental procedure, have been
described by Baum (1980).

38The independent variable is the dimensionless frequency, s = !rc
¹a
, where rc is the radius of the impedance tube; rcc is

the radius of the throat of the nozzle.
39Still not ¯rmly established experimentally is the result predicted by the analyses (Culick 1961, Crocco and Sirignano

1967) that under some conditions, tangential modes are ampli¯ed by passage through a choked nozzle.
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Figure 6.36. Comparison of the theoretical and experimental admittance results for nozzle
45-08-2.5, longitudinal modes (Bell 1972).
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Figure 6.37. Comparison of the theoretical and experimental admittance results for nozzle
45-16-2.5, longitudinal modes (Bell 1972).
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6.14.3. Attenuation of Acoustic Energy Due to Condensed Products of Combustion. Par-
ticularly in solid propellant rockets using metallized propellants, but in other systems as well, some of the
combustion products are formed as liquid or solid particles. The viscous interactions between the particles
and the gas may, under conditions, provide signi¯cant dissipation of energy. In the context of this chapter,
that means that the corresponding contribution to ® must be taken into account. It is often the case that
the Reynolds number based on the particle diameter and the relative gas/particle velocity is outside the
range for which Stokes' law|i.e. linear behavior|is a valid approximation. It is then necessary to use a
more realistic nonlinear representation of the drag force. However, the linear approximation to attenuation
tends in a sense to be conservative, so it is a good basis for an approximation. It is conservative in the
sense that the curve of attenuation as a function frequency is broader, for a given particle size, for nonlinear
behavior. Thus, over a frequency range centered at !n¿ = 1, (Figure 6.38), the linear approximation is an
over-estimate of the actual value one might expect would be the actual value.

In this section we discuss a contribution that is well-established as an important factor in the stability of
solid propellant rockets, the energy loss and damping of acoustic waves caused by small-amplitude motions of
small liquid droplets. By far the most important example is the attenuation of instabilities by liquid droplets
of aluminum oxide (Al2O3) produced in the combustion of aluminized propellants.

40 The fact that (due to
the high temperatures) the particles are liquid does not explicitly enter the following analysis. Internal
motions of the droplet material are not accounted for.

The amount of damping provided by condensed material (liquid or solid) depends principally on three
quantities: the mass fraction Cm = ½`=½g of condensed material; the size of the particles; and the frequency
of the oscillations. Perhaps the most signi¯cant practical consequence of the analysis summarized here is the
result that, for a given frequency, there is a particle size (diameter) for which the attenuation per particle
is maximum. That conclusion has been con¯rmed in practice and is the basis for one important means of
treating instabilities in solid propellant rockets.

Attenuation of sound by suspended particles in a gas was ¯rst treated theoretically more than 85 years
ago. The modern theory began with the work of Epstein and Carhart (1953). A simpli¯ed analysis and
experimental con¯rmation of the results have been provided by Temkin and Dobbins (1966)a,b. The calcula-
tions discussed here constitute an alternative method ¯tting naturally in the approximate analysis. Extensive
work by Dehority and Kraeutle (1976) and by Kraeutle et al. (1976) has shown that this approach works in
practice.

The linear gas/particle interactions arise from equations (A.34) and (A.49) written to ¯rst order in the
°uctuations:

±F0l = ¡¹½l
@±u0l
@t

±Q0l = ¡¹½lC
@±T 0l
@t

(6.205a,b)

The parts of F0F0F0 and P0 due to these terms only are found from the linearized forms of equations (A.68) and
(A.70):

FFF0l = ±F
0
l = ¡¹½l

@±u0l
@t

P0 =
R

CV
±Q0l = ¡¹½lR

C

CV

@±T 0l
@t

(6.206)a,b

40The discussion in this section is a slightly revised form of Section IVD of the article by Culick and Yang (1992)
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Thus, equations (6.93) and (6.94) give the contributions to the frequency shift and the growth constant:

(! ¡ !n)l ´ ±!l = ¡¹a2
2!n¹pE2n

(
kn
¹a

R

CV
C ¹½l

Z
1

´n

μ
@±T 0l
@t

¶(i)
ÃndV

¡¹½l
Z

1

´n

μ
@±u0l
@t

¶(r)
¢ rÃndV

) (6.207)

®l =
¡¹a2

2!n¹pE2n

(
kn
¹a

R

CV
C ¹½l

Z
1

´n

μ
@±T 0l
@t

¶(r)
ÃndV

+¹½l

Z
1

´n

μ
@±u0l
@t

¶(i)
¢ rÃndV

) (6.208)

We have assumed, a good approximation in most practical cases, that the mass of particles per unit volume,
½l, and the mass fraction are nearly independent of position in the chamber and constant in time.

To ¯nd ±u0l and ±T
0
l , we treat the motions as locally one-dimensional and solve the problem of single

particle motion, u0l(t) and Tl(t) being the velocity and temperature, respectively, of a particle located in a
gas having oscillatory velocity u0(t) and T 0(t). Temperature gradients within a particle are ignored. See, for
example, Rangel and Sirignano (1989) for a discussion of problems in which this assumption is not made.
Moreover, for the following calculations we also ignore the e®ects of vaporization and combustion of the
particles. In the absence of combustion, condensation or vaporization may cause increased attenuation of
acoustic waves; the matter is addressed at the end of this section. We assume tentatively that the motions are
such that the Reynolds number based on the relative speed, ju0l ¡ uj, is less than unity. The approximation
of Stokes' °ow then applies, and the equations of motion are

du0l
dt

= ¡ 18¹
½s¾2

(u0l ¡ u)
dT 0l
dt

= ¡ 12k

½sC¾2
(T 0l ¡ T )

where u0l is the velocity in the same direction as u
0, and ¾ is the particle diameter. These equations can be

rewritten as

du0l
dt

+
1

¿d
±u0l = ¡

du0

dt

dT 0l
dt

+
1

¿t
±T 0l = ¡

dT 0

dt

(6.208)a,b

The relaxation times are

¿d = ¡½s¾
2

18¹

¿t =

μ
3

2

C¹

k

¶
¿d

(6.209)a,b

With u0 = ( _́n=°k2n)rÃn and T 0= ¹T = (° ¡ 1)´nÃn=°, the steady-state solutions (t ! 1) to equations
(6.208)a,b are

±u0l = X1(´n ¡ ¿d _́n)
1

°k2n
rÃn

±T 0l = ¡X2
μ
¿t´n +

_́n
!2n

¶
° ¡ 1
°

¹TÃn

(6.210)a,b
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Dependence on frequency and particle properties is contained chie°y in the two functions X1 and X2:

X1 =
!n−d
1 + !2d

X2 =
!n−t
1 + !2t

(6.211)a,b

where −d = !n¿d and −t = !n¿t. For use in equations (6.207) and (6.208), the time derivatives of equations
(6.210)a,b are required. This produces terms containing _́n and Ä́n. To be consistent, we replace Ä́n by
¡!2n´n and, after setting ´n = ^́nei!nt, we eventually ¯nd the results

®l = ¡1
2

Cm
1 + Cm

"
X1

1

E2n

ZZ
°
μrÃn
kn

¶2
dV + (° ¡ 1) C

Cp
X2

#

±!l =
1

2

Cm
1 + Cm

"
−dX1

1

E2n

ZZ
°
μrÃn
kn

¶2
dV + (° ¡ 1) C

Cp
−tX2

# (6.212)a,b

Equations (6.212)a,b, normalized to the angular frequency !n, are plotted in Figures 6.38 and 6.39 for
longitudinal oscillations. The independent variable is !n¿d, 2¼ times the ratio of the relaxation time for
relative motion [see equation (6.137)a] to the period of the motion. According to equation (6.137)a, the
dominant in°uence on the relaxation time is the particle diameter ¿d » ¾2. For typical solid propellants and
operating conditions, the diameters of particles may range from fractions of a micron to tens of microns.
The results shown in the ¯gures have been computed for longitudinal oscillations in a chamber of constant
cross section, so Ãn = cos knz = cos(¼nz=L). In this case, equations (6.212)a,b reduce to

®l = ¡1
2

Cm
1 + Cm

·
X1 + (° ¡ 1) C

Cp
X2

¸
±!l =

1

2

Cm
1 + Cm

·
−dX1 + (° ¡ 1) C

Cp
−tX2

¸ (6.213)a,b

The most striking feature of the curves in Figure 6.38 is that, for a ¯xed value of mass loading Cm,
the dimensionless attenuation constant has a maximum value. That is, according to the interpretation
expressed by equation (6.96), the number of cycles of oscillation required to reduce the amplitude by 1=e
is minimum. Thus, for a ¯xed frequency, there is a best value of relaxation time, that is, particle size, for
obtaining maximum attenuation. This result has served as a successful practical guide to treating combustion
instabilities in motors. Addition of inert particles having appropriate sizes, or altering the propellants in
other ways to a®ect the sizes of particular produced, has reduced the amplitudes of oscillations in actual
examples (e.g. Derr et al. 1979), discussed in Section 8.4.

If, as usually is the case, there is a distribution of particle sizes, (6.212)a,b become sums over the
contributions from di®erent sizes:

®` = ¡1
2

Cm
1 + Cm

mX
s=1

Ks

·
x1s + (° ¡ 1) C

Cp
x2s

¸

±!` =
1

2

Cm
1 + Cm

mX
s=1

Ks

·
−dsx1s + (° ¡ 1) C

Cp
−tsx2s

¸ (6.214)a,b

The result (6.145)a was used by Dehority and Kraeutle (1976) to compute the damping for the exper-
imentally determined distribution shown in Figure 6.40. These data were obtained as measured values for
the residue produced in a T-burner ¯ring. The process is extremely tedious and time-consuming. Details
are given in the reference cited and other works. Table 6.5 is a list of the measured mass fractions used in
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Figure 6.40. Mass distribution of subfractions of the combustion residue of NWC Mix
No. 10. The total mass distribution was obtained by recombination of the distributions of
subfractions. The total number distribution was calculated from the total mass distribution.
(Dehority and Kraeutle 1976).

the preparation of Figure 6.40. The main parameter values used in the calculations of the particle damping
are given in Table 6.6.

To check the validity of the theory over a realistic range of frequency, data were used from tests with
T-burners of di®erent lengths. The frequencies of the oscillations were about 290Hz, 640Hz and 1920Hz.
Table 6.7 is a list of the attenuation coe±cients computed for intervals of particle size varying from 0.4 ¹m
to 3 ¹m.
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Table 6.5. Mass Fractions of NWC Mix No. 10 Residue for Particles Smaller than 43 ¹m.

Diameter, Residue in Center of Interval, % residue Mass fraction
¹m % of weight interval, ¹m ¹m in interval in interval
0.5 0.0
0.9 1.9

0.7
0.4 1.9 0.016891

1.3 11.0
1.1

0.4 9.1 0.080899
1.7 24.0

1.5
0.4 13.0 0.115570

2.1 34.5
1.9

0.4 10.0 0.088900
2.5 40.3

2.3
0.4 6.0 0.053340

3.5 49.0
3.0

1.0 8.7 0.077343
4.5 54.4

4.0
1.0 5.4 0.048006

5.5 58.5
5.0

1.0 4.1 0.036449
6.5 61.6

6.0
1.0 3.1 0.027559

7.5 65.0
7.0

1.0 3.4 0.030226
8.5 68.0

8.0
1.0 3.0 0.026670

9.5 70.5
9.0

1.0 2.5 0.022225
10.5 73.0

10.0
1.0 2.5 0.022225

11.5 75.3
11.0

1.0 2.3 0.020447
12.5 77.5

12.0
1.0 2.2 0.019558

13.5 79.7
13.0

1.0 2.2 0.019558
14.5 81.8

14.0
1.0 2.1 0.018669

15.5 83.7
15.0

1.0 1.9 0.016891
16.5 85.4

16.0
1.0 1.7 0.015113

17.5 86.8
17.0

1.0 1.4 0.012446
18.5 88.2

18.0
1.0 1.4 0.012446

19.5 89.5
19.0

1.0 1.3 0.011557
20.5 90.7

20.0
1.0 1.2 0.010668

23.5 93.7
22.0

3.0 3.0 0.026670
26.5 96.0

25.0
3.0 2.3 0.020447

29.5 97.5
28.0

3.0 1.5 0.013335
32.5 98.6

31.0
3.0 1.1 0.009779

35.5 99.3
34.0

3.0 0.7 0.006223
38.5 99.7

37.0
3.0 0.4 0.003556

41.5 99.9
40.0

3.0 0.2 0.001778

Table 6.6. Parameters Used in the Particle Damping Calculations.

C 0.3396 cal/g±C
Cm 0.48 (obtained from propellant composition)
Pr 0.75
° 1.2
½l 3.0 g/cc
¹ 0.00065 poise

The ¯nal results of this work are given in Table 6.8, the measured and calculated values of the attenuation
coe±cient for the three frequencies. The close agreement is actually vary surprising and is probably fortu-
itous. Nevertheless, it is really a testimony to two factors: the careful experimental work by Dr. Kraeutle41

and the apparent accuracy of the approximate theory.

Figure 6.38 shows a strong dependence of the frequency shift on both particle mass loading and on
!n¿d or, as reasoned earlier, on particle size. The behavior is better understood by recognizing that, in a
¯xed geometry (here a tube of length L), the wavelength is ¯xed so that, from the fundamental relation
a = f¸ = !¸=2¼, a frequency shift is equivalent to a change in the speed of sound:

±!

!
=
±a

a
(6.215)

Note especially in Figure 6.39 that, as !n¿d approaches unity, when the attenuation constant is maximum,
the change in the speed of sound is not a small perturbation if the particle mass loading is greater than 0.5.
The mass loading as a function of aluminum content ¹ in the solid propellant is given by the formula

Cm =
1:89¹

1¡ 1:89¹ (6.216)

41Dr. Karl Kraeutle worked at the Naval Air Warfare Center for 40 years and produced many results of fundamental
and practical value. He was widely known and highly respected for his dogged and precise experimental work on problems
associated with solid propellants and hazardous materials. He su®ered a premature death due to cancer in 2003.
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Table 6.7. Damping Coe±cients Measured, NWC Mix No. 10, for Particle Sizes Smaller
than ¹m.

Center of Interval, Damping (sec¡1) for interval
interval, ¹m ¹m 290Hz 640Hz 1,920Hz

0.7 0.4 ¡0:01 ¡0:06 ¡0:56
1.1 0.4 ¡0:15 ¡0:73 ¡6:59
1.5 0.4 ¡0:40 ¡1:94 ¡17:44
1.9 0.4 ¡0:49 ¡2:39 ¡21:37
2.3 0.4 ¡0:43 ¡2:09 ¡18:53
3.0 1.0 ¡1:07 ¡5:14 ¡43:58
4.0 1.0 ¡1:17 ¡5:57 ¡41:68
5.0 1.0 ¡1:38 ¡6:37 ¡38:61
6.0 1.0 ¡1:48 ¡6:51 ¡30:06
7.0 1.0 ¡2:16 ¡8:82 ¡30:55
8.0 1.0 ¡2:41 ¡8:90 ¡23:64
9.0 1.0 ¡2:42 ¡7:95 ¡16:87
10.0 1.0 ¡2:80 ¡8:10 ¡14:36
11.0 1.0 ¡2:88 ¡7:29 ¡11:26
12.0 1.0 ¡2:99 ¡6:63 ¡9:23
13.0 1.0 ¡3:14 ¡6:19 ¡7:97
14.0 1.0 ¡3:07 ¡5:44 ¡6:62
15.0 1.0 ¡2:79 ¡4:51 ¡5:26
16.0 1.0 ¡2:46 ¡3:68 ¡4:15
17.0 1.0 ¡1:97 ¡2:76 ¡3:04
18.0 1.0 ¡1:90 ¡2:51 ¡2:72
19.0 1.0 ¡1:68 ¡2:13 ¡2:27
20.0 1.0 ¡1:48 ¡1:80 ¡1:89
22.0 3.0 ¡3:28 ¡3:78 ¡3:92
25.0 3.0 ¡2:09 ¡2:28 ¡2:33
28.0 3.0 ¡1:13 ¡1:20 ¡1:21
31.0 3.0 ¡0:69 ¡0:72 ¡0:73
34.0 3.0 ¡0:35 ¡0:35 ¡0:36
37.0 3.0 ¡0:17 ¡0:17 ¡0:17
40.0 3.0 ¡0:08 ¡0:08 ¡0:08

Table 6.8. Measured and Calculated Damping Coe±cients for NWC Mix and 10.

NWC Frequency, Measured Calculated
mix No. Hz damping (sec¡1) damping (sec¡1)
10 290.7 ¡46:1 ¡48:52
10 640.6 ¡115:0 ¡116:09
10 1927.3 ¡364:2 ¡367:05

If the propellant contains 15% aluminum (¹ = 0:15), Cm = 0:4, substantial shifts in the speed of sound occur.
That is why this e®ect of particles was included in the formulation of the conservation equations derived
in Annex A and discussed further in Chapter 3. The speed of sound given by equation ¹a = (°RT )1=2 =h

°
1+Cm

³
p
½g

´i1=2
, has the value implied by Figure 6.39 for !n¿d !1.

The dependence of the frequency shift on !n¿d may be interpreted as follows. According to equation
(6.148)a, the relaxation time is proportional to the square of the particle diameter, and so !n¿d » !n¾

2.
For low frequencies or small particles, !n¿d ! 0; according to Figure 6.39, the frequency shift and change
in the speed of sound, equation (6.215), vanish. In either case|slow unsteady motions with ¯nite particle
sizes or vanishingly small particles exposed to unsteady motions|the viscous losses in the °ow about the
particles become negligible. Hence, there can be no frequency shift, a result to be expected by analogy with
the behavior of the resonant frequency of a classical mass/spring/dashpot system.

On the other hand, if the frequency is high enough, even for small particles, or if the particles are large,
the viscous stresses cause substantial motions of the particles. When !n¿d is su±ciently small, the particles
follow the gas motion very closely. The gas/particle mixture then behaves as a single °uid having density
equal to the sum of the mass of gas and condensed material per unit volume, ½ = ½g + ½` = ½g(1 + Cm),
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but the compressibility is provided by the gas. Hence, the speed of sound assumes the equilibrium value,h
°

1+Cm

³
p
½g

´i1=2
with mass-averaged values for the thermodynamic properties.

The preceding results rest crucially on the assumptions of Stokes' °ow and rapid decay of transient
motions so that equations (6.208)a,b apply. It is an easy calculation to show that the Reynolds number
based on the relative velocity exceeds unity for realistic particle sizes (1¹ ¡ 10¹) even for quite modest
amplitudes of oscillation. Hence, it appears that a nonlinear analysis of gas/particle interactions is required
to cover conditions arising in practice. However, in all current applications, including the SSP program
(Nickerson et al. 1983) the linear results are used. Dehority and Kraeutle (1976) based their experimental
con¯rmations on the assumption of linear behavior, and it is likely that nonlinear e®ects cannot be detected
within the experimental uncertainties.

Calculations of the attenuation constant including nonlinear e®ects have shown that the linear results
tend to be conservative. That is, for a ¯xed frequency, increasing the amplitude of oscillation broadens
the curves in Figure 6.38 and moves the peak to slightly larger particle size; the maximum value of the
attenuation is practically constant with amplitude. Levine and Culick (1972, 1974) have produced some
interesting results for the damping of nonlinear waves but with linear gas/particle interactions. The problem
of nonlinear attenuation probably merits careful analysis, but the prospects for experimental veri¯cation are
not especially promising at this time. Probably the best relevant reference for calculations is Korman and
Micheli (1971).

6.15. Distributed Combustion

It may seem somewhat strange to identify `distributed combustion' as a distinguished topic. All of the
systems we have been discussing involve combustion distributed in space. In treatment of liquid rockets one
must in fact take care to specify when the burning processes are idealized to be so rapid that they occur
in thin sheets, in the limit having no volume. The early works at Princeton described in Sections 6.1 and
7.1 are well-known examples. Distributed combustion has therefore become a term and a subject referring
virtually always to solid propellant rockets. The discussion in this chapter has illustrated some advantages
of the realistic approximation that combustion is then con¯ned to the boundary. This section is a brief essay
on some problems arising with the presence of combustion distributed in space away from the surface.

In the context of an analysis based on spatial averaging, however, there is hardly any di®erence in
the computational di±culties presented by processes concentrated or distributed in space. The important
distinctions between combustion in a thin zone and distributed combustion are associated mainly with the
modeling required: Attention is forcibly directed to the aspects of the subject where it will produce the
greatest bene¯ts.

Combustion processes in virtually all gas- and liquid-fueled systems are spread out in space and are
logically referred to as distributed, except when approximated as isolated °ame sheets. It is a matter of
convention that the term `distributed combustion' has come to refer to combustion within the volume of a
solid rocket, removed from the boundary where most of the conversion solid ¡! products occurs. Moreover,
at the usual chamber pressures, if distributed combustion occurs, it probably is primarily the oxidation of
aluminum to aluminum oxide. That is the subject of this section.

The principal motivation to study distributed (sometimes referred to as `residual') combustion has been
the burning of aluminum. It's a subject which has received much attention, for several reasons, in connection
with the formation of `slag', relatively large collections or coalescences, of aluminum oxide (liquid Al2O3). So
far as combustion instabilities are concerned, the central questions are directed to the dynamics. Particularly,
do the dominant processes depend on frequency, or are they essentially quasi-static?
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Although the idea that combustion of aluminum continues far from the primary burning surface of a
metallized solid propellant, it had been considered mainly a matter of steady burning until the late 1970s. For
example, in 1977 Geisler (1977) chaired a workshop on aluminum combustion in which the topic of residual
combustion, re°ected as distributed combustion in a chamber, received considerable attention. General
characteristics of aluminum combustion, including behavior far from a propellant burning surface, was at
that time a topic of fairly active research (e.g., see Derr et al. 1974, Micheli and Schmidt 1977, and a later
comprehensive report by Price et al. 1982) which is especially interesting for its photographic evidence.

Beckstead (1987) ¯rst proposed that unsteady combustion of aluminum might not be negligible in the
interpretation of T-burner data. His reasoning was based on unusually large values of the velocity-coupled
response function inferred for metallized propellants, as much as ten times the values normally measured for
the pressure-coupled response. The velocity-coupled T-burner has test grains on the lateral walls. Hence
when a longitudinal mode is unstable, as suggested in Figure 6.41, the velocity °uctuation acts to `scour'
aluminum particles from the test propellant. Then the aluminum burns as it moves with the °ow away from
burning surface. Any °uctuations in the burning rate of the aluminum may contribute to the instability of
waves in the chamber, but should not be attributed to the response of surface combustion.

ACOUSTIC

VELOCITY

ACOUSTIC

PRESSURE

DRIVER

GRAIN

TEST
GRAIN

EXHAUST

BURNING

Al PARTICLES

Figure 6.41. A possible explanation of increased growth rate due to distributed combustion
of aluminum in a T-burner.

Consequently, the distributed combustion of aluminum could conceivably give falsely increased values
of the surface response if the traditional interpretation is used. This idea seems not to have been pursued
further. There have been other, isolated and brief, speculations concerning the possible importance of
distributed combustion of aluminum in laboratory test devices but no incontrovertible evidence is available
and the matter remains open.

The term involving combustion in the volume of a chamber is explicit in the general equations developed
in Annex A and Chapter 3. Formally, then, it is quite easy in a linear analysis to treat distributed combustion.
Beckstead and Brooks (1990) noted that the Standard Stability Program (SSP, Nickerson et al. 1984) contains
the term, therefore providing a means of investigating the possible e®ects of distributed combustion on
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stability. They had only an elementary model of the combustion processes so the results are probably too
over-simpli¯ed to be of great value. However, the strategy is correct and merits further development.

Professor Beckstead and his students reported some interesting work based on use of a Rijke tube to
investigate combustion of aluminum under unsteady conditions. Measurements of distributed combustion
were carried out by Braithwaite et al. (1984) and Beckstead et al. (1985). Results of experimental work
with the Rijke tube were summarized by Finlinson et al. (1987) and Raun and Beckstead (1993); a useful
general review of Rijke tubes was provided by Raun et al. (1993). The main ¯nal results of the program
are summarized in the paper by Brooks and Beckstead (1995) in which they give a good list of references.
Much of the paper is devoted to some aspects of the steady combustion of aluminum and is not of immediate
interest here. So far as the unsteady behavior is concerned, perhaps the main conclusion in the present
context is that the e®ects of aluminum combustion on acoustics are indirect, in the words of the authors,
\... a signi¯cant part of the acoustic growth with the addition of aluminum is due strictly to the change
in the gas temperature pro¯le." The e®ects observed are therefore, apparently, speci¯c to the device. It
does not seem possible to draw any conclusions or guidelines generally helpful to understanding the role of
aluminum combustion in problems of unsteady combustion in solid propellant rockets.

In contrast to the situation in the U.S., there was a signi¯cant e®ort in France devoted to distributed
combustion of aluminum from the mid-1990s to 2002. As true of much of the French work on unsteady
behavior in solid propellant rockets in the 1990s and later, motivation was related to signi¯cant di±culties
associated with an instability of the fundamental longitudinal mode in the Ariane 5 booster motor (P230).
The program devoted to two-phase °ow in that motor apparently began with the doctoral thesis by Dupays
(1996), who remained a central ¯gure in the work until it ended in »2002. Work on distributed combustion
was a logical development in the broader program formed to treat problems in the Ariane motor P230.

Early concern with oscillations in the Ariane 5 led to the integrated e®ort with the broader program
ASSM, Aerodynamics of Segmented Solid Motors. The Pressure Oscillations Program (POP) has been
devoted to obtaining numerical and experimental results for subscale tests (1/15th scale) of the P230. Much
e®ort has been appended on validating numerical tools for predicting the frequencies and amplitudes of
oscillations. Fabignon et al. (2003) gave a very informative overview of the principal results for oscillations
studied in ASSM and POP. A general view of the three-segment motor in question is shown in Figure 6.42.

Figure 6.42. General view of the Ariane 5 strap-on booster motor P230 (Fabignon et al. 2003).

Evidence of a serious problem is reproduced in Figure 6.43, based on measurements taken during static
quali¯cation tests of the full-scale motor performed sometime in 1993{1995. The maximum amplitude of the
oscillatory pressure is about 0.5% of the mean pressure but the thrust oscillation has maximum amplitude 5%
which causes practical problems due to oscillatory accelerations. That is the main reason that the programs
ASSM and POP have existed.42 Recall that the propellant in the Ariane 5 contains 18% aluminum. Vortex
shedding leads to interactions between the vortices and either the internal structural surfaces of the motor,
or the mean °ow ¯eld. There are two potentially troublesome consequences: Acoustic waves may be excited
and sustained; and the accompanying °uctuations of thrust are liable to be unacceptably large.

42The greater thrust oscillations, for roughly the same amplitude of pressure oscillations, in the Ariane 5 than in the
Shuttle, are due to geometrical and phase relations (Vuillot and Casalis 2002).
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Already by the early 1990s, subscale ¯rings of motors related to the P230 con¯guration had caused
concern about the prospects for oscillations in the full-scale motor. The possible amplitudes were of course
unknown, but more worrisome for the program, as were the causes. For the range of low frequencies charac-
terizing the ¯rst few longitudinal modes, weak pressure and velocity-coupled driving (nearly quasi-steady),
combined with the large damping associated with the nozzle and convective °ow acoustic losses, to give
stable modes according to widely accepted procedures based on the ideas developed in this chapter. How-
ever, known experience with the Shuttle SRMs and the Titan had shown that vortex shedding in segmented
motors could drive the fundamental mode to relatively low amplitudes. (See discussion in Sections 1.3.3,
2.2.7, and 6.12.1. The process of vortex shedding is not included in the systematic treatment of unsteady
motions based on the ideas and equations developed in the framework suggested by classical acoustics.

Figure 6.43. Results for the unsteady pressure measured in a static test ¯ring of the Ariane
5, P230 motor (Fabignon et al. 2003).

We have already discussed the developments beginning with the suggestion by Flandro and Jacobs (1973)
followed by the sequence of analytical and experimental works establishing the importance of the process in
particular cases (Dunlap and Brown 1981, Dotson et al. 1997) and in general (Flandro 1995, Vuillot 1995).
Vortex shedding from edges exposed as propellant burned away from inhibitor material installed between
segments in the Shuttle SRM was con¯rmed in the 1980s as the source of low-level oscillations (Blomshield
2001, Blomshield and Mathis 1993). Reproducibly present during a predictable interval of every ¯ring, the
oscillations have never become a practical problem.

It was therefore logical to investigate vortex shedding as a possible, if not likely, cause of oscillations
in the Ariane 5 booster motor. The ¯rst report of this cause was the paper by Scippa, Pascal and Zanier
(1994). For the next eight years, researchers at ONERA especially, but at several other organizations in
France as well, collaborated in a broadly based program directed to solving the problem of vortex shedding.
The immediate motivation of course came from the Ariane 5; the research has, however, been su±ciently
general to be of value much more generally. Progress in understanding the phenomenon of vortex shedding,
particularly the discovery of parietal vortex shedding, has been discussed in Section 6.12.1.

As noted above, the work was coordinated in the ASSM program which began with de¯nition of two
phases (Fabignon et al. 2003):

(1) demonstration of numerical tools to predict instabilities excited and sustained by vortex shedding;
(2) development of physical models including the propellant combustion response with two-phase °ow

accounted for.
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The second item bears directly on the subject of distributed combustion. A report of results obtained
in the ¯rst half of the program was published by Dupays et al. (2000). Various aspects of two-phase °ows,
with emphasis on slag accumulation and, relevant here, interactions associated with acoustic oscillations as
well as vortex shedding. It was in this work that, based on earlier results obtained by Dupays and Vuillot
(1998), the suggestion was made that distributed combustion is potentially an important contribution to
instabilities.

Subsequent calculations by Lupoglazo® et al. (2000) showed that with distributed combustion accounted
for, oscillations in the Ariane 5 boosters seem to be ampli¯ed by combustion of small aluminum drops
and attenuated by combustion of large drops (> 125¹m). The situation is in fact more complicated than
this simple conclusion suggests. Simulations were carried out for the full-scale P230 motor with a rough
approximation to the particle size distribution and combustion. An important factor is interaction between
parietal vortex shedding and vortices shed from the vicinity of the joint between segments. Figure 6.44 is
a sketch of the grain geometry used in the simulations. It is an interesting example of how far simulations
have progressed in treating realistic con¯gurations. Compare Figure 6.44 with the actual shape shown in
Figure 6.42; there is little di®erence. The paper by Lupoglazo® et al. is really a progress report, but their
conclusion that distributed combustion was essential for successful simulation of unsteady °ow in the Ariane
5 must be taken into account in formulating simulations for other large boosters.

Figure 6.44. Shape of the grain used in simulations of two-phase unsteady °ow in the
Ariane 5, P230 motor (Lupoglazo® et al. 2000).
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CHAPTER 7

Nonlinear B ehavior of Combustor Dynamics

It is linear behavior, especially linear stability, that is most easily understood and therefore has dominated
discussions of combustion instabilities, particularly for solid propellant rockets. For example, the conclusion
that a disturbance is unstable if the gain of energy exceeds the loss of energy in a short time interval, is
founded in the ¯rst instance on linear ideas, although properly interpreted it is true generally. Because in a
combustor there are many species and processes, the situation is extremely complicated. Moreover, unlike
the case for linear motions, there are almost no generalizations available for nonlinear behavior to serve as
the basis for classifying the results of either experiments or of theory.

The situation is simpli¯ed considerably if we restrict our attention to gas dynamics. Nonlinear behavior
of disturbances in a compressible medium has long been the subject of research, steady shock waves being
the most familiar phenomenon. Although there are many examples of shock waves generated in severe
combustion instabilities, usually the motions do not contain shocks, or if they do, the amplitudes are small.
In this chapter we examine various consequences of nonlinear gasdynamics within the framework developed in
Chapters 3 and 4. Moreover, almost all of our discussion will be limited to second order nonlinear behavior,
that is, to analysis in which only terms containing squares of the gasdynamic variables are considered.
It appears that this approximation in fact accommodates a surprisingly large part of observed behavior,
although not enough has been accomplished to assess the results in a de¯nitive fashion.

While there is a broad spectrum of nonlinear problems that arise in combustion systems, two kinds of
behavior have most recently received much of the attention: unsteady °ows in solid propellant rockets; and
the motions in gas turbine combustors. The ¯rst form the main subject of this chapter while the second
are particularly common in systems intended for power generation. In the period stretching roughly from
the early 1960s into the 1980s, for reasons earlier related, nonlinear behavior in liquid rockets attracted
much interest, both in the U.S. (e.g., Sirignano 1964, Crocco 1965, Zinn 1966, Mitchell 1967) and in Russia
(Natanzon 1999, where earlier work in Russia is cited and discussed at length). Nonlinear processes act to
limit unsteady motions in augmentors. However, despite the work devoted to instabilities in augmentors
for gas turbines over many years, relatively little seems to have been established concering the fundamental
character of the instabilities and for the reasons that their amplitudes may|or may not|be limited.

Although we will not discuss nonlinear control of combustion instabilities in this book, the subject is
probably more important than the lack of general interest suggests. In fact, little attention has been paid
to understanding nonlinear behavior in works on control of combustion instabilities. One justi¯cation for
that de¯ciency has been the view that if control of the oscillations works properly, it should stop the growth
of the motion before its amplitude reaches a large value. There are several reasons why that reasoning is
°awed:

(i) if the growth rates are unusually large, the control system may not have a su±ciently large bandwidth
to be e®ective;

(ii) because combustion systems are intrinsically nonlinear, design of a control system based only on linear
behavior may produce a control system far from optimal;
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(iii) linear control demands actuation at the frequency of the oscillation to be controlled, while nonlinear
control of particular types may be e®ective at frequencies lower than that of the oscillation being
controlled;

(iv) observed nonlinear behavior contains much information about properties of the system in question
and in the interests of understanding should not be ignored.

Limitations of an interpretation based entirely on linear behavior may therefore become especially evident
in attempts to control an unstable motion. Existing examples of controlling combustion instabilities have
almost totally ignored issues of nonlinear behavior, although such behavior is evident in all experimental
work. In no demonstration, either laboratory or full-scale, have the amplitudes of the oscillations been
predicted or interpreted either before or after control has been exercised. Hence nothing has been learned
about why the initially unstable motions reach the amplitudes they did, or why the control system a®ected
them in the observed way. In fact, few attempts exist to determine quantitatively the stability of motions.
Consequently the subject of controlling the dynamics of combustion systems has largely been a matter
at best of exercising the principles of control with little attention paid to the characteristics of the systems
(`plants') being controlled. It seems that following this strategy is likely not the most fruitful way of achieving
meaningful progress. Especially, this is not a sound approach to developing the basis for designing control
systems. The current practice in this ¯eld is often that feedback control is designed and applied in ad hoc
fashion for systems already built and exhibiting instabilities.1

A central concern of a control system designer is construction of a `reduced order' model of the system.
What that really means in the present context is the need to convert the partial di®erential equations
of conservation developed in Chapter 3, to a ¯nite|and probably small|system of ordinary di®erential
equations. The analysis developed in Chapters 3 and 4 accomplishes exactly that purpose. It is not the
only approach possible|e.g., although proper orthogonal decomposition has been examined brie°y, in the
author's experience no useful results have yet been found|but the method of modal expansion and spatial
averaging has many favorable properties and has been proven to work well.

Nonlinear behavior is always present and is essential if disturbances are to have ¯nite size in a self-excited
unstable system. Thus, any considerations of limiting amplitudes|a practical matter in the treatment of
instabilities in actual systems|must account for nonlinear processes. At the present time the subject is
in a relatively weak state. The presence of nonlinear behavior is often remarked upon in discussions of
observations. But it seems that little of practical value has been accomplished theoretically, and experimen-
tal results supporting conclusions reached in theory are almost non-existent. It does seem, however, that
potentially useful theoretical results are available and some interesting opportunities exist which have not
yet been explored.

The main purposes of this chapter are to examine a few results displaying some aspects of the nonlinear
behavior arising from gasdynamics; and to illustrate some consequences of truncating the modal expansion,
that is, what might be the consequences of reducing the order of the model. Another important issue we
will examine brie°y is the application of time-averaging. As the calculations in Chapter 4 showed, the great
advantage of time-averaging is that it replaces N second order oscillator equation by 2N ¯rst order equations.
That transformation enormously reduces the cost of obtaining solutions, aids theoretical work, and provides
a simpli¯ed representation for application of feedback control. But as for truncation, the question arises:
How accurate are the results and what are the limits of the validity of time-averaging?

It happens that both important matters of truncation and time-averaging can be investigated by applying
a continuation method outlined in Section 7.7. The method has not yet been widely used but o®ers an
e±cient means for investigating solutions over wide ranges of parameters. It is a grand recipe for discovering
how solutions behave as some de¯ning quantities (such as the number of dependent variables and hence

1There are some recent exceptions, for example the experiments reported by Liewen et al. (2004).
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the number of equations) is changed. Moreover, the method has been used to determine the existence of
sub-critical bifurcations. It is therefore a promising approach to the practical problem of pulsed instabilities,
examined in Section 7.11.

Mainly the nonlinearities due to gasdynamics are treated in this chapter. The results must be viewed
with that caveat, particularly because the forms of the nonlinearities are very special, if only because the
dominant coupling acts to cause energy to °ow from low to high frequency waves, the tendency which
produces the familiar steepening of compressive disturbances into shock waves. The results can be applied
to other nonlinearities only with care because, in particular, the coupling between modes will di®er from the
special form provided by gasdynamics.

7.1. Early Works on Nonlinear Combustion Instabilities

It is a classical result established by Riemann (1858) and Rankine (1870) that a planar compressive wave
tends to steepen, forming, in the absence of adequate dissipative processes, a shock wave as suggested by the
sketch in Figure 7.1. The interpretation of this fundamental behavior rests on the fact that the propagation
speed of a disturbance depends on amplitude because it depends on the temperature.2 Thus it is mainly the
change in the local speed of sound that is the cause of the steepening.

a + δa

SHOCK

WAVE

a

p

Figure 7.1. Steepening of a planar compressive wave into a shock wave.

The process sketched in Figure 7.1 is always active in combustion instabilities. Thus the real question in
respect to observed behavior concerns the importance of wave steepening, i.e., is it a dominant process? It is
never the only process at work, for in addition to those responsible for an instability (the mechanism) there
are necessarily dissipative processes acting. The competition between the steepening and those processes
tending to cause decay of a wave, or to modify the steepening process, is the substance of one way to view
a combustion stability. This is the simplest and most fundamental basis for interpreting results found with
the expansion in normal modes and spatial averaging discussed in Chapters 3 and 4.

Motivated by many observations of transverse waves in liquid and solid rockets, Maslen and Moore
(1956) investigated the nonlinear problem in a circular cylinder, without combustion and °ow. They were
particularly concerned with steepening of transverse waves, and the accompanying change of frequency. At
that time (1955) the nonlinear behavior of plane waves was quite well understood, but transverse waves had
not been studied. The main di®erence from longitudinal waves is evident if one considers travelling waves.
A wave that travels circumferentially su®ers continuous re°ections from the boundary. That process may
be regarded as a kind of scattering which of course is absent from the case of plane wave propagation and
re°ection. The tendency for a wave to steepen is evidently softened in the case of transverse waves. This

2The ideal propagation speed of a weak isentropic disturbance is
p
°RT in an ideal gas, where T stands for the temperature

of the medium. However, the local temperature change in an isentropic wave having local pressure ±p di®erent from the ambient

value is ±T = °¡1
°
T (±p=p) while ±T = 0 for an isothermal wave. For combustion instabilities, speeds of propagation are more

closely given by the values for isentropic processes.
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Recirculating streaming in a long tube

Kundt's tube: streaming produced by a standing acoustic wave

(a)

NODE

NODE

(b)

Figure 7.2. Acoustic streaming, a consequence of small viscous e®ects and nonlinear acous-
tics (a) plane waves (Figures 5.6.6 and 5.6.7 of Howe 1998); (b) transverse standing waves
in a cylinder (Maslen and Moore 1956).

result suggests what was shown to be the case by Maslen and Moore, that transverse waves will grow to
higher amplitudes without the formation of shocks than will longitudinal waves.3

One consequence of this behavior is a quite natural development of the low order nonlinear phenomenon
known as \acoustic streaming," also shown by Maslen and Moore for transverse waves. For plane wave motion
parallel to a wall, a pattern of cellular motions is formed, as sketched in Figure 7.2(a). The con¯nement
provided by the boundary causes the cells to ¯ll the cylinder de¯ning a transverse wave, producing a streaming
motion of the form shown in Maslen and Moore's Figure 6 reproduced as Figure 7.2(b).

Much later, Flandro (1964, 1967) analyzed the problem of unwanted roll torques in solid propellant
rocket motors building on the ideas of Maslen and Moore, using the formulation described here in Chapters
3 and 4; recall the remarks in Section 6.12. It's an interesting and useful analysis illustrating the procedure
applied to a serious practical problem arising with a special case of combustion instability. As an example,
suppose that transverse travelling waves develop in all cavities in a motor having ¯ve slots, as suggested in
Figure 7.3. There is therefore an imbalance of rotating motions (an odd number of slots is required) and
when the °ow exhausts, a roll torque is created. The sign of the roll torque and how it is actually exerted
on the motor requires careful attention to the angular momentum involved, as Flandro (1967) has shown.

Before high-speed computers became generally available, the method of characteristics was commonly
used as the basis for analysis of several classes of problems involving large amplitude waves. Theoretical work
in this vein seems to have originated with the analysis by Betchov (1958) who had no interest in combustion
instabilities. He was concerned with oscillations in a closed tube of gas driven by an oscillating piston at
one end. When viscous e®ects are ignored, the small amplitude motion has the familiar linear form, with
the velocity given by

u = up
sin kx

sin kL
cos!t (7.1)

3Zinn (private communication) has found errors of details in the work, but Maslen and Moore's conclusions are broadly
una®ected.
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Figure 7.3. Finite streaming motions in a motor having ¯ve slots, giving net counterclock-
wise circulation (adapted from Flandro 1964).

where ! = kc and L is the length of the tube. Evidently the velocity becomes inde¯nitely large when kL = ¼.
The e®ects of viscous friction can be computed within the linear approximation to show that they limit the
amplitude. However, if the radius of the pipe is imagined to increase, frictional e®ects are less important,
the amplitude becomes inde¯nitely large and nonlinear e®ects become more signi¯cant than viscous e®ects.
Thus, especially so when the frequency is near resonance, nonlinear e®ects are increasingly signi¯cant as the
amplitude increases. Not surprisingly, this problem, relatively simple and easily formulated, has attracted
much attention.

0                τ/2               τ             3τ/2             2τ

L
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Figure 7.4. An oscillating shock wave in a closed tube (Betchov 1958).

On physical grounds, one may anticipate that if the amplitude and frequency of the piston's oscillatory
motion are ¯xed, the motions of the gas will eventually settle down to a periodic form. Moreover, to
emphasize the nonlinear e®ects, one may suppose that the periodic motion consists of a shock travelling
back-and-forth in the tube with period ¿ . Figure 7.4, adapted from Betchov's paper, is an approximation to
the °ow showing only the shock wave. Betchov analyzed this problem using the method of characteristics as
explained by Courant and Friedrichs (1948) and by Shapiro (1953). His discussion of the analysis includes
useful comments interpreting the formalism in physical terms.

Chu (1963) and Chu and Ying (1963) analyzed a similar problem which is much more di±cult to solve,
although it remains quite simple compared to actual problems. A source of waves is contained in the tube,
Figure 7.5, but to simplify the analysis, the source has no extent in space and is placed at the midpoint of
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Figure 7.5. Closed tube containing heater at its midpoint.

the tube.4 There is no °ow in the tube but the source emits heat at a rate proportional to the local pressure
°uctuation (Chu) or in addition the rate is modulated sinusoidally (Chu and Ying):

heat release rate »
(
±p (Chu)

±p sin−(t+ t0) (Chu and Ying)
(7.2)

Chu solved the problems of the initial growth of a disturbance, and self-sustained periodic oscillations. In
both cases the °uid motion is essentially that associated with a single shock wave propagating in the tube
and re°ecting from the end closures. The calculations were done using a perturbation form of the method of
characteristics due to Lin (1954), which in turn was suggested by the method introduced by Lighthill (1949).

The analysis by Chu and Ying was motivated mainly by the motions observed in a Rijke tube (Section
2.7) but also by combustion instabilities. Perhaps the most important aspect of this work is application
of Lin's formulation of the method of characteristics to nonlinear problems involving heat addition. Two
earlier reports Chu (1955, 1956), are instructive discussions of these problems, but because, as in virtually
all of Chu's work, no average °uid motion is accounted for, their applications to combustion instabilities are
limited.

An important qualitative change in the Princeton analyses of combustion instabilities occurred in the
early 1960s when the ¯rst investigations of nonlinear behavior were carried out. Refer to Table 7.1 for a
summary of the works in question. Experimental results with gas-fueled rockets had shown the presence of
discrete sharp-fronted waves, suggesting a model that could be analyzed using the method of characteristics5

as ¯rst accomplished by Sirignano (1964a,b) and Sirignano and Crocco (1964). Those papers introduced
several phenomena which have since been commonly found in treatments of nonlinear instabilities. Both
works are based largely on the thesis by Sirignano (1964) and treat variants of the same basic problem: the
motion of a shock wave in a rocket chamber having planar combustion concentrated at the head end and
terminating in a choked nozzle, Figure 7.6; or unsteady °ow without a shock wave. Besides the presence
or absence of a shock wave, a main di®erence between the two works is the model used for the response of
the sheet of combustion to unsteady °ow conditions. In both analyses, solutions were discussed for periodic
motions, the shock wave neither growing nor decaying. The authors speculate that the driving mechanism
could be related to the instability in such a way that it could be investigated by observing and interpreting
the waveform. That goal has been re-stated many times since but it remains unattained.

Although he used the time lag (n; ¿) model exclusively in his thesis (Sirignano 1964a), Sirignano (1968),
and Sirignano and Crocco (1964) represented unsteady mass °ux at the head end of the rocket by a somewhat
di®erent form not containing a time lag. With steady values denoted by subscript ( )0, Sirignano and Crocco

4This problem is a simpli¯ed form of that treated in Section 2.7. It is also solved (approximately) by Culick (2002). The

second work shows that if a formulation based on spatial averaging is used, it is not necessary to simplify the analysis by
supposing the heater to be ¯xed at the midpoint of the tube.

5There is no obvious way to extend to nonlinear instabilities the methods used by Crocco and Cheng (1956) in their
analysis of one-dimensional linear instabilities, although the authors brie°y discussed some aspects of nonlinear behavior.
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Figure 7.6. Model of a liquid rocket analyzed in the Princeton works. The shock wave is
sometimes absent.

Table 7.1. Summary of Some Works from Princeton on a Theory of Combustion Instabilities.

Combustion Wave Type of Triggering Method of
Model Motion Mode Analysis

Sirignano (1964a, 1968) n; ¿ ;u0inj

(
Continuous

Shock Waves
Axial Inconclusive Characteristics

Sirignano and n; ¿

(
Continuous

Shock Waves
Axial | Characteristics

Crocco (1964)

Zinn (1966, 1968) n; ¿ Continuous Axial Unstable Expansion
(Irrotational)

Mitchell (1967) n; ¿

(
Continuous

Shock Waves
Axial Inconclusive Chester (1964)

(Distributed)

Mitchell, Crocco n; ¿ ;u0inj

(
Continuous

Shock Waves
Axial Inconclusive Chester (1964)

and Sirignano (1969)

Crocco and n; ¿

(
Continuous

Shock Waves
Axial Inconclusive Chester (1964)

Mitchell (1969) (Distributed) Transverse

Notes:
(i) Concentrated combustion except where noted.

(ii) u0inj 6= 0 implies ¿ = 0.

(iii) Triggering to stable motions may have been found to exist in some cases but the references are unclear on this point.

wrote the velocity deviation from the mean value,

u¡ u0
u0

= !

μ
a¡ a0
a0

¶
+ ±

μ
a¡ a0
a0

¶2
+O

μ
a¡ a0
a0

¶
(7.3)

and carried their analysis to second order in changes of the speed of sound. They compared their results
with some observations reported by Schob, Glassman and Webb (1963) made on a gas-¯red rocket. Figure
7.7 shows an example of the waveform for an instability having amplitude ¢p=p = 0:115. Note that the
secondary peaks in the waveform suggest that the motion could be accurately represented by a superposition
of ¯ve normal modes. Thus the observations lend support of the general model used in this book. A clear
case for comparison is the example cited in Section 6.11, especially Figure 6.22.
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Figure 7.7. Waveforms observed in a gas rocket (Schob, Glassman and Webb 1963).

Sirignano (1968) analyzed the same problem using essentially the same computational methods. The
main di®erence between that work and the calculations he did with Crocco, just mentioned, was the expres-
sion of the boundary condition at the head end,

@

@t

T 0

T
= A

T 0

T
+B

p0

p
(7.4)

The relation @=@t(T 0=T ) » A(T 0=T ) inserts a time lag in the response at the head end, distinguishing this
analysis in an important qualitative way.6 Numerical values of A and B were set according to the model for a
°ame response worked out by Krier et al. (1968). Then the results represent an approximation to the periodic
motion of a shock wave in an end-burning solid propellant rocket. The behavior found is, not surprisingly,
similar to that reported by Sirignano and Crocco. The idea that \information about the combustion process
can be determined by experimental observation of the nonlinear waveforms" while appealingly suggested
by the calculations, seems never to have been realized in practice, for any system. Mitchell, Crocco and
Sirignano (1969) also examined essentially the same problem, but used a method similar to that worked out
by Chester (1964).

Zinn (1966, 1968) seems to have been ¯rst in the U.S. to treat nonlinear motions not entirely in the
axial direction.7 While still analyzing the same problem shown in Figure 7.6|but, importantly, without a
shock wave|he calculated results for a class of three-dimensional unsteady motions. The °ow was taken to
be irrotational, a restriction which can be serious under certain conditions as noted elsewhere in this book
(see Chapters 3 and 4). As for most of the Princeton analyses of combustion instabilities, the n¡ ¿ model
was assumed for the unsteady combustion response. Zinn obtained some results which were interpreted to

6In his thesis, Sirignano (1964a) had already accounted for a time lag, following earlier work on the linear problem by
Crocco in several papers, and by Crocco and Cheng (1956).

7See also Zinn and Crocco (1967, 1968) for further details.
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represent triggering but their meaning and value are doubtful because the motions were apparently found
to be unstable.

First in his thesis and subsequently in collaboration with Crocco and Sirignano, Mitchell (1967) was
the last of the Princeton students to analyze the problem sketched in Figure 7.6. He based his analysis on
the recent work of Chester (1964) which gives results more simply than a method using characteristics, but
cannot be used to study three-dimensional motions. A second advantage of the method, compared with the
previous Princeton works, is the possibility of treating continuously distributed combustion. As Table 7.1
shows, Mitchell was able to treat a wider span of nonlinear problems than his predecessors at Princeton.
However, his work still su®ered from several serious de¯ciencies, notably the restriction to the n¡¿ model of
combustion. It is not apparent from the analyses that the combustion model can easily be changed without
embarking on a totally fresh analysis.

Mitchell also attempted to obtain results for triggering. However, it appears that his results share some
of the same di±culties with the other Princeton works of this period. The most serious problem is that the
process called `triggering' does not produce a ¯nal state having a ¯nite amplitude. That is, when pulsed,
the system initially in a state of steady oscillation makes a transition to a condition in which the amplitude
of oscillation grows without limit. Whether this sort of behavior should usefully be called `triggering' is
arguable. The de¯nition followed in the present work is the conventional choice that triggering involves a
subcritical bifurcation for which the ¯nal state is one of steady oscillation.

The theoretical ideas and approach to analyzing combustion instabilities originated by Crocco in the
early 1950s dominated the ¯eld for many years in the U.S. More than three decades later the time lag was
still used by some as the basis for understanding and for developing new liquid rocket engines, as discussion
in Section 2.3 has shown. It is probably not an unfair characterization to note that the ideas were applied
beyond their level of usefulness; progress in the design of certain aspects of liquid rockets was likely hindered.
Alternative approaches were of course proposed (see Harrje and Reardon 1972) but for various reasons they
were not developed extensively.

It seems that greater emphasis in the Soviet Union and Russia was placed on fundamental work directed
to understanding details of the causes of instabilities. Theoretical, and some experimental, work is described
in the book by Natanzon (1999). Much of the Russian experience with testing as part of liquid rocket
development has been summarized by Dranovsky (2006). A discussion of those works is outside the intent
of this book, but they are primary references and cannot be ignored.

Closer to the topic of the present chapter is the recent paper by French (2004). That report is a summary
of progress for a program devoted to software development for predicting nonlinear combustion instabilities
in solid propellant rockets. Much of the program is based on methods described in this book. The main
purpose of the work is to produce a computer program capable of providing quantitative results for solid
propellant rockets having quite general con¯gurations. An example showing the growth of a ¯nite, smooth
disturbance into a steep-fronted wave is shown in Figure 7.8. That result shows clearly that the method
developed here in Chapters 3{5 applies quite well to waves characterized by large gradients as well as to less
abrupt disturbances.

Many computer programs have been written to compute various aspects of combustion instabilities in
propulsion systems. In the past ten{¯fteen years there has been increasing use of large eddy simulations
(LES) to investigate °ows in combustion chambers. Especially, applications to unsteady problems in gas
turbines have been reported, with increasingly successful simulations of actual results found experimentally.
Our purpose here is to examine some results found with the method developed in this book. The approach,
based on expansion in modes and spatial averaging, seems to lend itself more e®ectively to understanding
the physical behavior than to accurate simulation of the °ows.
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Figure 7.8. Steepening of a longitudinal wave travelling in a cylindrical chamber; jp0=pj
vs. x (French 2004).
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7.2. A Single Nonlinear Mode

Interpretation of nonlinear behavior with a single mode is a sensible ¯rst step. For some purposes such a
simple representation may be adequate, but experience has demonstrated that description of actual behavior
must be based on more general models. The ¯rst attempt to treat a combustion instability as a single mode
with the point of view taken here was Culick's (1971), an extension of earlier work on linear problems (see
Sections 4.1{4.3).

Many observations suggested that point of view, but one of the clearest and most persuasive has been
reproduced as Figure 1.36, taken from an oscillograph record (Perry 1970). Figure 7.9 is a drawing of the
amplitude measured on Figure 1.36.

25 psi

0.1 sec.

Figure 7.9. The envelope of oscillations for the T-burner ¯ring shown in Figure 1.36 (Culick 1971).

The amplitude of the unstable pressure oscillation in a T-burner initially grows exponentially; levels
o® due to some nonlinear process; executes a limit cycle having approximately constant amplitude; and
¯nally decays exponentially after the driving ceases, due mainly to combustion processes. The idea for a
simple model of this motion was that the pressure in the burner always had the spatial distribution of the
fundamental mode, Ã(r), but with time-dependent amplitude ´(t). Thus the basic assumption was made
that the pressure could be written in separable form,

p(r; t) = ´(t)Ã(r) (7.5)

At the time the analysis was done, the full theoretical apparatus developed here in Chapters 3 and 4 was
not available. A procedure of spatial averaging was applied, similar to the method discussed in Chapter 4
but in a much simpli¯ed form. The most important di®erence is that nonlinear gasdynamics was not treated.
Only the damping processes were ultimately taken to be nonlinear and the wave equation for the amplitude
´(t) took the form

d2´

dt2
+ _́f(´; _́) + !2´ = 0 (7.6)

It seemed reasonable on physical grounds to assume that f(´; _́) had a simple form representing possible
elementary physical processes,

f(´; _́) = ¡2®+ ¯1j´j+ ¯2´2 + °1j _́j+ °2 _́2 (7.7)

Moreover, again based on experimental results, the amplitude was approximated by a sinusoid having ¯xed
frequency ! but time-dependent amplitude A(t) and phase '(t) to be determined,

´(t) = A(t) sin(!t+ '(t)) (7.8)
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Familiar procedures worked out by Krylov and Bogoliubov (1947) and covered here in Section 4.5, then
led to ¯rst order equations for A(t) and '(t). For f(´; _́) given by (7.7), those results are

¡ 1
A

dA

dt
= ¡®+ c1A+ c2A2 (7.9)

d'

dt
=
°1
4¼
A (7.10)

where

c1 =
2

3¼
(¯1 + 2°1!)

c2 =
1

8
(¯2 +

3°2
4
!2)

(7.11)a,b

Equation (7.9) can be integrated by ¯rst factoring the right-hand side to give

dA

dt
= ¡c2(A¡A1)(A¡A2)A

of which the integral is

A

A0

μ
A0 ¡A1
A¡A1

¶a1 μA0 ¡A2
A¡A2

¶a2
= e®t (7.12)

with

a1 =
2·

(1 + 4·)¡p(1 + 4·)
a2 =

2·

(1 + 4·) +
p
(1 + 4·)

(7.13)a,b

and · = ®c2=c
2
1. The amplitude at t = 0 is A0.

Very good and promising results were obtained by Culick (1971) with a linear correction to the attenu-
ation coe±cient, ¯2 = °2 = c2 = 0 so the right-hand side of (7.9) is ¡® + c1A1. Then one ¯nds the simple
results

growth (® > 0)
A

Am
=

³e
j®j
t

1 + ³ej®jt
(7.14)

decay (® < 0)
A

Am
=

³e¡
j®j
t

1¡ ³e¡j®jt (7.15)

with

growth ³ =
A0=Am

1¡A0=Am (7.16)

decay ³ =
A0=Am

1 +A0=Am
(7.17)

For the growth of waves, after a long time (t!1), the limiting amplitude is

A(t!1) = ®

c1
=

3¼®

2j¯1 + 2°1!j = Am (7.18)

Thus the limiting amplitude is independent of the initial amplitude A0 as it should be if the limit cycle is
unique.
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The growth or decay rates for the case ¯2 = °2 = 0, expressed as logarithmic slopes, are

1

A

dA

dt
=

8><>:
j®j

1+³ej®jt (growth)

¡j®j
1¡³e¡j®jt (decay)

(7.19)a,b

which for short and long times become

t! 0 :
1

A

dA

dt
!

8><>:
j®j
1+³ (growth)

¡j®j
1¡³ (decay)

(7.20)

t!1 :
1

A

dA

dt
!
8<: 0 (growth)

¡j®j (decay)
(7.21)

Three interesting conclusions follow from (7.18) and (7.19)a,b:

(i) Both jAmj and (d lnA=dt)t!0 are proportional to j®j; hence the initial growth rate and ¯nal amplitude
increase together with j®j. Because ® represents the di®erence between linear driving and attenuation,
increased driving produces both a larger initial growth rate and a larger ¯nal amplitude.

(ii) If the nonlinear damping is increased, the ¯nal amplitude is reduced. The initial growth rate is
una®ected.

(iii) For a given j®j (i.e., linear contributions) and amplitude prior to decay, the initial decay rate is greater
if the nonlinear coe±cient of attenuation (c1) is increased.
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Figure 7.10. Data for the growth and decay periods of the ¯ring shown in Figure 7.9.
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Test data taken from the ¯ring shown in Figure 7.9 are plotted in semi-logarithmic coordinates, Figure
7.10. The slopes of the lines shown are the values of ®g during the growth period and of ®d during decay.
Figures 7.11 and 7.12 are plots of the data taken during the growth and decay periods, in coordinates giving
a direct comparison with the simple theory outlined above. Apparently the behavior during both periods is
quite well reproduced by this simple theory.
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Figure 7.11. Nonlinear growth of oscillations for several values of the initial amplitude
ratio A0=Am (Culick 1971).
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Figure 7.12. Nonlinear decay of oscillations for several values of the initial amplitude ratio
A0=Am (Culick 1971).
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In several respects the behavior examined in the preceding example is not a particularly di±cult test
of the theory worked out here. In the original work, consideration of the relatively low amplitudes present
in the test discussed with Figures 7.9 to 7.12 was already recognized as a restriction. A T-burner ¯ring at
lower frequency (600 Hz, whereas the frequency of the oscillations in Figure 7.9 was 2800 Hz) exhibited more
apparent nonlinear behavior, Figure 7.13. This aspect of the data was discussed in the paper, but a more
important matter became clear only as the initial ideas were applied to more cases.
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Figure 7.13. A T-burner ¯ring showing stronger nonlinear behavior during the initial
portion of the decay of oscillations (Culick 1971).

Immediately following the accomplishments just described, a project was begun to analyze available
T-burner data to obtain values of the parameters arising with nonlinear behavior. The intent was to dis-
cover trends of the values with characteristics such as propellant composition, pressure and frequency; and
eventually to attach physical meanings to the results. Considerable data was available so there was ample
opportunity for enforcing consistency of the results. Although the initial results were good, a di±culty slowly
became clear: A given set of data could equally well be represented by several combinations of the param-
eters ¯1; °1; °2; : : : . Other choices of parameters exhibited the same property. Thus it was apparently not
possible to settle on unique values of empirically determined parameters. That approach to understanding
nonlinear behavior failed.

As part of the e®ort required to carry out the failed program, it was necessary|better expressed, the
opportunity was provided|to examine spectra of T-burner records. What became particularly apparent was
that records which previously had been treated as `clean', that is consisting of single frequencies, in fact often
contained noticeable amounts of harmonics. That was the beginning of the author's research on systems
having many degrees of freedom and concern with the importance of harmonics in combustion instabilities.
The simplest case is a system having only two degrees of freedom discussed in the next section.

Representation of dynamical behavior with a single degree of freedom is enormously appealing. Not
only is understanding greatly aided, but graphical representation is particularly simpli¯ed. The classic book
by Minorsky (1947) contains many examples of the methods of presenting the behavior of a system. Awad
(1983) and Awad and Culick (1986) used the phase plane in their discussion of nonlinear behavior. The
procedure was later used by Beckstead (1987) to describe possible mechanisms. However, since the approach
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is useful only for a small number of degrees of freedom, its applications are limited and, as the following
remarks show, the results can be mortally misleading if the limitations are not respected.

The phase plane is usually de¯ned with a dependent variable (displacement, say) and its rate of change
(i.e., velocity) as coordinates. Thus, the equations produced by the method of averaging (Section ) are
directly applicable. As the simplest example, consider again the case treated above. The amplitude of the
motion obeys (7.9) which can be written, to second order:

dA

dt
= 2®A+ bA2 = kA(A1 ¡A) (7.22)

If this is taken to serve as an approximation to the behavior we are concerned with here, then the second
order term, bA2, in some sense represents the e®ects of second order acoustics. The integral of (7.22) is

A =
A1

1 +
³
A1

A0
¡ 1
´
e¡®t

(7.23)

where A0 is the initial value of A and kA1 = 2®. We take A to be positive, so two possibilities exist,
corresponding to kA1 = 2® positive or negative. Figure 7.14 shows examples for ® > 0 (`spontaneous'
instability) and ® < 0 (linear stability).

1A

dA
dt

0 A

α > 0

1A

dA
dt

0

α < 0

(a)                                                                                              (b)

A

Figure 7.14. The two cases presented by equation (7.22).

In the case ® > 0, Figure (7.14)a, motions having any initial amplitude are unstable and eventually
reach the limit amplitude A1. This is the same behavior found with the second order acoustics equations
accounting for many modes. The approximate model seems to be promising. However, the promise is
tarnished for the case ® < 0, as shown in Figure (7.14)b; if the initial amplitude A is greater than A1, the
`limit cycle' grows without limit. This behavior is not found with the complete equations (Chapter 4) for
many degrees of freedom discussed in the next section.

In the late 1970s, and later, concern grew with pulsed instabilities in solid rockets. It was logical to
determine ¯rst what might be predicted by the model for a single mode. The equation for a single mode,
now governed by third order acoustics, is

dA

dt
= kA(A1 ¡A)(A2 ¡A) (7.24)

in which kA1 = 2® again. A second possible form is

dA

dt
= kA(A2 ¡A21) (7.25)

The typical plot of (7.25) looks similar to Figure (7.14) and so is not interesting. Equation (7.24) gives the
two possibilities shown in Figure 7.15. For a linearly unstable mode, ® < 0, Figure 7.15(a), the behavior is
similar to that for A < A2. But if the initial amplitude is larger that A2, the motion grows without limit.
This is contrary to the results of numerical calculation for cases covering many modes.
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Figure 7.15. The two cases presented by equation (7.24). Part (b) represents a pulsed
(triggered) instability.

For ® < 0, if the initial amplitude is less than A1, the system ultimately executes a limit cycle having
amplitude A2. Thus, as shown by Figure 7.15(b), third order acoustics seem to hold the possibility of
triggering.

That was an encouraging result, found at a time when interest in determining the condition for triggering,
and hence learning how to avoid the phenomenon in practice, was particularly strong. Several analyses were
carried out to determine how third order acoustics could be used to explain triggering (Awad 1983; Awad and
Culick 1984, 1986; Yang and Culick 1986; Yang, Kim and Culick 1987, 1988, 1990). No cases of triggering
were found in many examples worked out for a range of realistic conditions. It is important that those results
were obtained for systems containing two or more modes.

The conclusions of several years' e®ort, reached not on theoretical grounds but purely by trial and error
`numerical experimenting', was that nonlinear acoustics alone did not contain the possibility of triggering
to a stable limit cycle. That was an important result (albeit not strictly proved) because it implied that
another nonlinear process had to be taken into account. Combustion was the obvious candidate. The matter
was far from settled, however, even on practical grounds. Further exploration showed that rather special
characteristics of nonlinear combustion are required. Culick, Burnley and Swenson (1995) showed that
nonlinear combustion and gasdynamics together could be used to demonstrate the possibility of triggering;
Burnley (1996) discussed further details in his dissertation. See also Section 7.14 here. One practical impli-
cation is that understanding pulsed instabilities requires more thorough experimental results for nonlinear
characteristics|particularly of unsteady combustion|than have been obtained to date.8

From the practical point of view, the procedures involved here have not been developed to the level
required for convenient application. And with the complications accompanying analysis accounting for two
or more degrees of freedom, a simpler approach is desirable. The approximation based on a single degree of
freedom is undeniably attractive. Jensen (1972), Beckstead and Jensen (1972) and Beckstead (1987) have
pursued this approach, and its application to the behavior of instabilities in solid propellant rockets, further
than others working in the ¯eld. They have obtained some appealing results and have emphasized several
practical aspects. However, their conclusions must be viewed with caution, since they are based on a strictly
°awed model having a single degree of freedom.

8The results cited here have apparently been obtained largely for solid propellant rockets. However, because of the
generality of the procedures developed in Chapters 3 and 4, the discussion and conclusions apply equally well to any combustion
system of the form treated.
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7.3. The Two-Mode Approximation

This is the simplest class of problems for which nonlinear mode coupling is accommodated. Each mode
is characterized by two constants: ® (energy gain or loss) and μ (frequency shift). The energy gain or loss
may be nonlinear|that is, ® could in principle depend on amplitude|but here both ® and μ are taken to
be constant, characterizing entirely the linear processes. As a result of several works in the past few years,
the two-mode approximation is quite well understood (Awad and Culick, 1986; Paparizos and Culick, 1989;
Yang and Culick 1990; Jahnke and Culick, 1994; Culick, 1994).

2

1

NONLINEAR

COUPLING

ENERGY

LOSS (α   )2

ENERGY

GAIN (α   )1

Figure 7.16. Energy °ow in the two-mode approximation.

Only gasdynamic nonlinearities to second order are accounted for here. Their special structure allows
the convenient closed form solutions to the time-averaged equations, ¯rst found by Awad (1983). The results
provide much basic understanding which is applicable to more complicated nonlinear problems. For example,
contrary to one's expectation based on the behavior of shock waves, nonlinear behavior in the present context
need not involve large amplitudes, and the pressure oscillation may appear to be a clean sinusoid, free of
signi¯cant harmonic content. The basic reason is that here the two-mode system both gains and loses energy;
each interaction with the environment is necessary. Moreover, both stable and unstable limit cycles exist.
In the absence of nonlinear modal coupling, or some other nonlinear process, limit cycles cannot exist.

Truncation of the modal expansion to two modes introduces errors because the °ow of energy to higher
modes is blocked. The amplitude of the highest mode is therefore greater than the correct value in order to
provide the higher linear rate of energy loss required to sustain a limit cycle. The example in Section 6.11
showed this e®ect.

It's an interesting feature of the two-mode approximation that with linear gains and losses of energy,
nonlinear instability (pulsing) to stable limit cycles seems not to exist. Although no rigorous proof exists,
experience with many examples has shown that conclusion to be quite generally true for any number of
modes if only the acoustic (gasdynamics) nonlinearities are accounted for. `Triggering' or pulsing to stable
limit cycles does occur for special forms of nonlinear energy gain from the environment (i.e., extraction from
the mean °ow or supply from combustion processes) as the example in Section 7.11 shows. By `triggering'
we mean here pulsing from a quiescent initial state or a stable limit cycle, to a stable limit cycle. More
generally, one can imagine triggering from one stable limit cycle to another.

If we ignore linear mode coupling and account for acoustic nonlinearities to second order, the oscillator
equations can be put in the form

d2´n
dt2

+ !2n´n = ®n _́n + μn´n ¡
1X
i=1

1X
j=1

£
Anij _́i _́j +Bnij´i´j

¤
+FNLn (7.26)

where FNLn represents other nonlinear contributions. The coe±cients Anij , Bnij are de¯ned as integrals
involving the basis functions Ãnij . Hence their values are ¯xed primarily by the geometry of the chamber in
question. See Section 4.5 and Culick (1976) for additional details of the derivation of (7.26). It is a crucially
important result that the nonlinear gasdynamic terms involve no cross products _́i´j and also (not obvious
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here) no `self-coupling', terms proportional to _́2n or ´
2
n. Those properties seem to be the formal reasons that

nonlinear (pulsed) instabilities do not exist if only these nonlinearities are included, particularly when the
combustion processes are linear.

Equation (7.26) simpli¯es considerably for longitudinal modes. Due to orthogonality and special prop-
erties of the cos knz, the double sum becomes a single sum and (7.26) can be put in the form (Jahnke and
Culick 1994):

d2´n
dt2

+ !2n´n = ®n _́n + μn´n ¡
1X
i=1

h
C
(1)
ni _́i _́n¡i +D

(1)
ni ´i´n¡i

i
¡

1X
i=1

h
C
(2)
ni _́i _́n+i +D

(2)
ni ´i´n+i

i
+ FNLn

(7.27)

The time-averaged forms of (7.27) are

dAn
dt

= ®nAn + μnBn +
n¯

2

iX
[Ai(An¡i ¡Ai¡n ¡Ai+n)¡Bi(Bn¡i ¡Bi¡n ¡Bi+n)]

dBn
dt

= ¡μnAn + ®nBn + n¯
2

iX
[Ai(Bn¡i ¡Bi¡n ¡Bi+n)¡Bi(An¡i ¡Ai¡n ¡Ai+n)]

(7.28)a,b

where, as in Chapter 3, ´n = An cos!nt+Bn sin!nt. For longitudinal modes, the frequencies are all integral
multiples of the fundamental, a property that is crucial to the forms of (7.28)a,b. For example, for transverse
modes in a cylindrical chamber, the nonlinear terms contain factors representing modulation.

For two modes, the four ¯rst order equations are

dA1
dt

= ®1A1 + μ1B1 ¡ ¯(A1A2 ¡B1B2)
dB1
dt

= ®1B1 + μ1A1 + ¯(B1A2 ¡A1B2)
dA2
dt

= ®2A2 + μ2B2 + ¯(A
2
1 ¡B21)

dB2
dt

= ®2B2 + μ2A2 + 2¯B1A1

(7.29)a,b,c,d

The great advantage of this system of equations is that some useful exact results can be found. One way
to ¯nd them is to change independent variables to the amplitude and phases (rn; Án) of the two modes by
writing

´1(t) = r1(t) sin(!1t+ Á1)

´2(t) = r2(t) sin(2!1t+ Á2)

where rn =
p
A2n +B

2
n. The governing equations for r1; r2 and the e®ective relative phase Ã = 2Á1¡ Á2 are

dr1
dt

= ®1r1 + ¯r1r2 cosÃ

dr2
dt

= ®2r2 + ¯r
2
1 cosÃ

dÃ

dt
= (μ1 ¡ 2μ1) + ¯(2r1 ¡ r

2
1

2
sinÃ)

(7.30)a,b,c

where

¯ =
μ2 ¡ 2μ1
2®1®2

(7.31)
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The problem of linear stability is solved directly:

®1; ®2 < 0() small amplitude motions are stable (7.32)

7.3.1. Existence of Limit Cycles. Nonlinear behavior in general poses two basic questions:

(i) What are the conditions for existence of limit cycles?
(ii) What are the conditions that the limit cycles are stable?

Stability of a limit cycle of course is a matter entirely separate from the linear stability of small amplitude
motions. We are concerned here with a system executing a steady limit cycle. If the limit cycle is stable,
then if slightly disturbed, the motion will eventually return to its initial form.

In this time-averaged formulation, existence of limit cycles corresponds to existence of stationary or
equilibrium points of the system (7.30)a,b,c:

dr1
dt

=
dr2
dt

=
dÃ

dt
= 0() transcendental algebraic equations

The solutions are

r10 =
1

·

p
¡®1®2(1 + ¯2)

r20 =
1

·

q
®21(1 + ¯

2)

Ão = tan
¡1(¡¯)

(7.33)a,b,c

where

· =
° + 1

8°
!1 (7.34)

For r10 to be real, ¡®1®2 must be positive, implying that the constants ®1; ®2 must have opposite signs.
The physical interpretation is that if the ¯rst mode is unstable, for example, (® > 0), then the second mode
must be stable (®2 < 0): the rate of energy °ow into the ¯rst mode must equal the rate of loss from the
second mode in order that the amplitudes be constant in time. The transfer rate upwards due to coupling
must have the same value. Similar reasoning explains the case when the second mode is unstable, requiring
that the ¯rst mode to be stable.

7.3.2. Stability of Limit Cycles. To determine the stability of limit cycles, the variables are written
as ri = ri0 + r

0
i; Ã = Ão + Ã

0 and substituted in the governing equations (7.29)a,b,c,d. The linearized
equations for the disturbances are then solved for the characteristic value ¸ in the assumed forms r0i =
r0i0e

¸t; ¢ ¢ ¢ . For stability, an initial disturbance must decay. Applying that requirement produces regions of
stability in the plane of the parameters ¯o = (μ2 ¡ 2μ1)2=(®2 + 2®1)2 and ®2=®1, shown in Figure 7.17.

There is presently no basis for understanding why stable limit cycles occur only for the special ranges
of parameters shown in Figure 7.17. However, more elaborate analysis (Jahnke and Culick 1994) has shown
that the result that the stability region has boundaries for ¯nite values of ®2 and ®1 is a consequence of
time-averaging. That conclusion shows the importance for both practical and theoretical reasons of assessing
and quantifying as far as possible the consequences of time-averaging and truncation. Considerable progress
has been made in that direction by using a continuation method to solve the systems of oscillator equations.
Some results are discussed in Section 7.7.

Here it is useful to examine the details of several special cases. Figure 7.18 shows that if the parameters
are chosen so that the operating point lies within the range for stable limit cycles and the ¯rst mode is
unstable, truncation may have relatively small e®ects. On the other hand, if the limit cycle is unstable
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Figure 7.17. Regions of stability for two longitudinal modes, time-averaged equations
(Awad and Culick 1986).
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Figure 7.18. E®ects of truncation for a stable limit cycle: ¯rst mode unstable, second
mode stable (Paparizos and Culick 1989).

according to the two-mode approximation with an unstable ¯rst mode, it may become stable (with the same
values of ®1; ®2; μ1; μ2) if higher stable modes are accounted for. That behavior is shown in Figure 7.19

Figure 7.20 is interesting for a quite di®erent reason. In this case the second mode is unstable, and the
motion evolves to a stable limit cycle. However, unlike the example in Figure 7.18, the amplitudes do not
grow smoothly and monotonically to their values in the limit cycle. Their erratic behavior is due to the
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Figure 7.19. E®ects of truncation for an unstable limit cycle: ¯rst mode unstable, second
mode stable (Paparizos and Culick 1989).

fact that with the second mode unstable, energy must °ow from high frequency to low frequency. That is
contrary to the direction of °ow imposed naturally by the °uid mechanics (of the steepening of a compressive
disturbance into a shock wave). The con°ict between the natural action of the nonlinear coupling on the
one hand and the °ow of energy imposed by energy exchange with the environment causes the amplitudes
of the two modes to wander during the transient phase before ¯nally reaching their ultimate values. More
special cases are treated in the references. It is an important conclusion that truncation of the time-averaged
equations for two modes will give misleading or incorrect results unless the initial state is close to the stability
boundary.

0.10

TIME,   sec

0                            0.5                        1.0                        1.5                       2.0

0.06

0.04

0.02

0.08

α   = − 301

α   =  22

1θ  − 2θ   = −145  2

M
O

D
A

L
  

 A
M

P
L

IT
U

D
E

S
, 

  
r

  
, 

 
r

1
2

r

r
1

2

Figure 7.20. Development of a stable limit cycle when the ¯rst mode is stable but the
second mode is unstable (Paparizos and Culick 1989).
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7.4. Transverse Modes and the Method of Averaging

The term \transverse modes" refers to motions which are the simplest involving time-dependent velocity
not aligned with the center-line of a straight chamber. Apart from a rectangular cross section, which is
generally not a practical form for a combustion chamber, the most common geometry is a circular cylinder.
Thus the classical unperturbed linear acoustic modes have the familiar separable form (Section 5.8.2), a
product of a Bessel function of the radius, a trigonometric function of azimuthal angle, and a trigonometric
or hyperbolic function of position along the axis. It has become customary in the ¯eld of combustion
instabilities to call transverse modes any motion which has the same time variation for all degrees of freedom
and the same spatial dependence in planes perpendicular to the axis of the chamber as for classical acoustic
modes. We are concerned in this section with the time dependence of such motions. Their spatial forms
de¯ne normal modes but the time-dependence is not simply trigonometric.

It seems a somewhat remarkable result that relatively simple conditions for existence and stability of
transverse modes, in a circular cylinder, can be obtained by following the same approach used to treat
purely longitudinal modes. The reason is that the time-averaged equations again have a special structure
allowing construction of exact solutions for two modes. Furthermore, some results can be obtained for a
special case of three modes as well. What makes these results surprising in a practical sense is that now the
natural frequencies do not satisfy the conditions !n = n!, and the time-averaged equations contain factors
representing modulation on the right-hand side.

The set of equations valid for second order acoustics in a circular cylindrical chamber have been given
by Yang and Culick (1990),

_An =¡ 1

2!n

1X
i=1

fcni[cos(!n + !i)t+ cos(!n ¡ !i)t]

+sni[sin(!n + !i)t¡ sin(!n ¡ !i)t]g

¡ 1

2!n

1X
i=1

1X
j=1

©
Fnijaij [cos(!n + !ij+)t+ cos(!n ¡ !ij+)t]

+Gnijbij [cos(!n + !ij¡)t+ cos(!n ¡ !ij¡)t]
¡ Fnijdij [sin(!n + !ij+)t+ sin(!n ¡ !ij+)t]
+Gnijeij [sin(!n + !ij¡)t+ sin(!n ¡ !ij¡)t]

ª
;

(7.35)

_Bn =¡ 1

2!n

1X
i=1

fCni[sin(!n + !i)t+ sin(!n ¡ !i)t]

+Sni[¡ cos(!n + !i)t+ cos(!n ¡ !i)t]g

+
1

2!n

1X
i=1

1X
j=1

©
Fnijaij[sin(!n + !ij+)t+ sin(!n ¡ !ij+)t]

+Gnijbij [sin(!n + !ij¡)t+ sin(!n ¡ !ij¡)t]
¡ Fnijdij [cos(!n + !ij+)t¡ cos(!n ¡ !ij+)t]
+Gnijeij [cos(!n + !ij¡)t¡ cos(!n ¡ !ij¡)t]

ª
;

(7.36)

where

!ij+ = !i + !j ; !ij¡ = !i ¡ !j ;
Cni = !iDniAi +EniBi; Sni = ¡!iDniBi + EniAi;
Fnij = !i!jAnij ¡Bnij ; Gnij = !i!jAnij +Bnij ;
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aij =
1

2
(AiAj ¡BiBj); bij =

1

2
(AiAj ¡BiBj);

dij =
1

2
(AiBj ¡AjBi); eij =

1

2
(AiBj ¡AjBi):

We follow the example worked out by Yang and Culick (1990) and consider three transverse modes: the
¯rst and second tangential and the ¯rst radial, having the following wave numbers and mode shapes:

First Tangential Mode (1T)

·1R = 1:8412; Ã1 = cos μJ1(·1r); Ã4 = sin μJ1(·1r); (7.37)

First Radial Mode (1R)

·2R = 3:8317; Ã2 = J0(·2r); (7.38)

Second Tangential Mode (2T)

·3R = 3:0542; Ã3 = cos 2μJ2(·3r); Ã5 = sin 2μJ2(·3r): (7.39)

To simplify writing we have de¯ned ·1 = ·11, ·2 = ·01, ·3 = ·21. The inclusion of both azimuthal
eigenfunctions for tangential modes of oscillations allows the possibility of either standing or spinning waves,
or a combination of both. Only standing modes will be treated here. The corresponding coe±cients Fnij
and Gnij , have non-zero values. Self-coupling terms therefore arise only in the equations for the radial mode,
while the nonlinear behavior of the tangential modes is mainly determined by cross-coupling. However, the
self-coupling terms in the equation for the radial mode drop out after time-averaging and do not a®ect the
results obtained here.

We will treat standing transverse oscillations; only the mode functions Ã1, Ã2 and Ã3 need to be retained.
Moreover, with time-averaging, terms containing oscillations at frequencies greater than half the normal
frequencies drop out (see Yang and Culick 1990) and the equations for An and Bn become

First Tangential Mode (1T)

dA1
dt

= ®1A1 + μ1B1

+ a1(A1A2 +B1B2) cos−1t+ a2(A1A3 +B1B3) cos−2t

+ a1(A1B2 ¡A2B1) sin−1t+ a2(A1B3 ¡A3B1) sin−2t;
(7.40)

dB1
dt

=¡ μ1A1 + ®1B1

¡ a1(A1A2 +B1B2) sin−1t¡ a2(A1A3 +B1B3) sin−2t
+ a1(A1B2 ¡A2B1) cos−1t+ a2(A1B3 ¡A3B1) cos−2t;

(7.41)

First Radial Mode (1R)

dA2
dt

= ®2A2 + μ2B2 + b1(A
2
1 ¡B21) cos−1t¡ b1(2A1B1) sin−1t (7.42)

dB2
dt

=¡ μ2A2 + ®2B2 + b1(A
2
1 ¡B21) sin−1t¡ b1(2A1B1) cos−1t; (7.43)

Second Tangential Mode (2T)

dA3
dt

= ®3A3 + μ3B3 + b2(A
2
1 ¡B21) cos−2t¡ b2(2A1B1) sin−2t (7.44)

dB3
dt

=¡ μ3A3 + ®3B3 + b2(A
2
1 ¡B21) sin−2t¡ b2(2A1B1) cos−2t; (7.45)
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where

®n = ¡Dnn
2
; μn = ¡Enn

2!n
; n = 1; 2; 3;

a1 = ¡ 1

4!1
(G112 +G121) = 0:1570

³ ¹a
R

´
;

a2 = ¡ 1

4!1
(G113 +G131) = ¡0:0521

³ ¹a
R

´
;

b1 = ¡ 1

4!2
F211 = ¡0:1054

³ ¹a
R

´
;

b2 = ¡ 1

4!3
F311 = 0:1873

³ ¹a
R

´
;

−1 = 2!1 ¡ !2 = ¡0:1493
³ ¹a
R

´
;

−2 = 2!1 ¡ !3 = 0:6282
³ ¹a
R

´
7.4.1. Periodic Limit Cycles for Transverse Modes.

(a) First Tangential and First Radial Modes.

Write An(t) and Bn(t) in terms of amplitude and phase, which serve as radial coordinates:

An(t) = rn(t) cos©n(t) Bn(t) = rn(t) sin©n(t) (7.46)a,b

Now substitute (7.46)a,b in (7.40){(7.43), neglect the second tangential mode, and rearrange the results
to give

dr1
dt

= ®1r1 + a1r1r2 cos(2©1 ¡ ©2 +−1t); (7.47)

dr2
dt

= ®2r2 + b1r
2
1 cos(2©1 ¡©2 +−1t); (7.48)

d©1
dt

= ¡μ1 ¡ a1r2 sin(2©1 ¡©2 +−1t); (7.49)

d©2
dt

= ¡μ2 ¡ b1 r
2
1

r2
sin(2©1 ¡©2 +−1t): (7.50)

All of these equations have a common time-varying term 2©1 ¡ ©2 + −1t in the sinusoidal functions. For
convenience, we may combine (7.49) and (7.50) to simplify the analysis. Thus (7.47){(7.50) reduce to

dr1
dt

= ®1r1 + a1r1r2 cosX; (7.51)

dr2
dt

= ®2r2 + b1r
2
1 cosX; (7.52)

dX

dt
= ¡2μ1 + μ2 +−1 ¡

μ
2a1r2 + b1

r21
r2

¶
sinX; (7.53)

where

X(t) = 2©1 ¡©2 +−1t: (7.54)

Figure 7.21 shows two results for di®erent initial conditions. The eventual values of the amplitude are the
same in the two cases, an example of the (apparently) general result for these equations that the limit cycle
(if it exists) is independent of the initial conditions. The property has not been proved; it holds at most if the
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only nonlinear process is given by the °uid mechanics, but seems not to be restricted only to second-order
acoustics. Yang, Kim and Culick (1990) demonstrated the same result for third-order acoustics.
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Figure 7.21. Amplitudes in two limit
cycles involving the ¯rst tangential
and ¯rst radial modes only, based on
the time-averaged equations. The two
cases are for di®erent initial conditions
(Yang and Culick 1990).

0.4

0.3

0.2

0.1

0                        1000                   2000                  3000

 r  (0)

 r  (0)

 r  (0)

1

2 = 0.01

3

1

2 = 0

Φ  (0)

Φ  (0)

Φ  (0)
3

(R / a) α   = 0.0025

(R / a) α
(R / a) α  

1

2

1θ  = θ   = θ   = 0 2 3

3
= - 0.1

NON-DIMENSIONAL  TIME,   (a / R) t

A
M

P
L

IT
U

D
E

0.4

0.3

0.2

0.1

0                        1000                   2000                  3000

 r  (0) = 0.1

 r  (0)

 r  (0) 

1

2

3
= 0

= 0

  (0)

  (0)

  (0)

(R / a) α   = 0.0025

(R / a) α
(R / a) α  

 1

2

3
= - 0.1

1θ  = θ   = θ   = 0 2 3

NON-DIMENSIONAL  TIME,   (a / R) t

A
M

P
L

IT
U

D
E

r1

2
r

3
r

r1

2
r

3
r

1

2

Φ
Φ
Φ

3

Figure 7.22. An example of limit
cycles for three normal modes,
1T/1R/2T accounted for; two cases
of initial conditions are shown (Yang
and Culick 1990).

Although closed form solutions to (7.51){(7.53) have not been found, a great deal of information can be
gained by examining the conditions for periodic limit cycles. The idea is to seek solutions for r1, r2, X when
they are independent of time, and formulate the conditions that must be satis¯ed for those solutions to be
real. The procedure has been worked out by Yang and Culick (1990) giving ®1®2 < 0, as shown already for
two longitudinal modes; the condition must be true according to a physical argument already given. It also
follows from the calculations that the amplitudes in the limit cycle are given as

´16 = r20 sin [(!1 + º1)t+ »1]

´20 = r20 sin [2(!1 + º1)t+ »2]
(7.55)a,b

where ºi and »i are constants. Thus, the amplitude of the second mode oscillates at twice the frequency of
the ¯rst mode in the limit cycle. This must be true for the limit cycle to be periodic. The result was ¯rst
established by Powell (1970) and reported by Zinn and Powell (1971) for transverse modes.
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The conditions for stability of these limit cycles have also been given by Yang and Culick (1990),

®1 + ®2 < 0

2®1 + ®2 < 0

®1®2 < 0

(7.56)a,b

These conditions and their derivation are given in the reference.

Because of the di®erence in frequencies of the ¯rst radial and second tangential modes, the 1T/1R and
1T/2T limit cycles have quite di®erent characteristics (quantitatively). The matter is discussed in some
detail by Yang and Culick (1990) where the relevant energy equations are also considered. The examples
of the 1T/1R and 1T/2T limit cycles form a very useful comparison of limit cycles existing with only two
modes.

(b) Periodic Limit Cycles for Three Modes.

It came originally as a pleasant surprise that a limit cycle for three modes can be analyzed with the
same procedures used for two modes. Much of the detail has been given by Yang and Culick (1990) and will
not be repeated here. Only the case 1T/1R/2T has been worked out; it is simply not known a priori how
cases can be solved in this way. Figure 7.22 shows limit cycles computed for two sets of initial conditions.
The amplitudes for long times are evidently independent of initial conditions. In this case the frequencies
for t!1 are !1 + º1, 2(!1 + º1), 2(!1 + º1) where º1 is constant.

7.5. Observations of a Spinning Transverse Mode

Many years ago there were several reports of observational results for travelling waves interpreted as
`spinning' transverse modes. Owing to limitations of the instrumentation, the results depend to some extent
on the interpretational powers of the observers. For example, following the early conjecture by Smith
and Springer (1953) that the instabilities they had observed appeared to be longitudinal detonation waves,
that idea was extended to be the basis for interpreting waves that appeared to rotate about the axis of
the chamber (Denisov et al. 1962, Krieg 1962, Nicholls and Cullen 1965, Oppenheim and Laderman 1965).
The most complete and convincing results were reported by Clayton, Rogero and Sotter (1968) which we
summarize here.9

Figure 7.23 is a picture of the wave, inferred by Clayton et al. from data obtained with pressure trans-
ducers installed on the injection face and on the chamber wall. The chamber; one unlike injector element;
and the device used for pulsing are shown in Figure 7.24. Fifty-two injection elements were mounted in
the injection plane at the head end of motor. The pulsing device is so positioned that it is not surprising
that a spinning tangential wave was initiated by the pulsing. Both clockwise and counterclockwise rota-
tions occurred, depending on, among other quantities, the relative circumferential positions of the pulses
and the pattern of injection elements. This feature of the experimental situation was only remarked upon
in the paper and was not explored further. The authors also noted that in a di®erent but similar engine,
the unstable mode appeared without pulsing. No further details were given and the problem seems not to
have been treated theoretically (see Footnote 9). In particular, there are presently no results|theoretical or
experimental|showing that a spinning mode of the sort reported may be a detonation wave rather than a
large amplitude acoustic wave, or shock wave.

9Flandro (private communication) renewed the author's interest with his recent 2004 remark that he is engaged in work
on this problem.
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Figure 7.23. Sketch of the interpretation as a `detonation' wavefront. 1 Shock wave rotat-
ing within sensitive reaction zone near injector, strong coupling between wave environment,
and energy release from reactants. 2 Fresh reactants continuously replenished during wave
rotation period. 3 Frontal surface inclined to chamber longitudinal axis and oriented nonra-
dially in planes of chamber cross section. 4 Intersection of wave with chamber boundaries.
5 Possible helical path of burned gas immediately following the wave (Clayton, Rogero and
Sotter 1968).

Figure 7.24. The test engine, 20,000 lbf-thrust engine and components (Clayton, Rogero
and Sotter 1968).

7.6. Remarks on Truncation and Reduced-Order Modeling

As a practical matter, the problem of establishing a reduced-order approximation occupies an extremely
important position. In general, the term `reduced-order' has qualitative implications that the formal descrip-
tion of a physical system is simpli¯ed because the governing set of di®erential equations has a lower order. A
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major problem is determining the extent to which the description of the physical system is imperfect: How
good is the approximation? In the present context, an (almost) equivalent question is: How many modes
must be considered in a given problem to obtain `good' results? We have already seen simple special cases
treated with the method of time-averaging; some results are given, for example, in Figures 7.18 and 7.19.
Some results for more di±cult problems are given in Section 7.7.

Reduced-order modeling has become an active area of concern during the past few years owing to its
immediate applications in problems of active control. We will discuss the subject further in Chapter 9.

7.7. Application of a Continuation Method

Much of the work during the past decade at Caltech on chamber dynamics has been directed to under-
standing the extent to which nonlinear behavior can be explained on the basis of nonlinear gasdynamics.
The reasoning is ¯rst that we know the model of gasdynamics|the Navier-Stokes equations for compress-
ible °ow|so we can do accurate analysis; and second, those features that cannot be explained must be
due to other causes so, by elimination we have some guidelines for what we should seek in other processes.
Experience has shown that `other processes' is this context most probably means combustion.

To carry out this program with numerical simulations|after all, few exact results exist|would be a
formidable task because of the number of characteristic parameters. The parameter space comprises those
quantities de¯ning the geometry of a chamber and two parameters (®n; μn) characterizing linear behavior of
each mode. The e®ect required to search the parameter space is much reduced by applying a continuation
method. The procedure is an e±cient systematic means of locating values of parameters for which the
dynamical behavior su®ers a qualitative change, i.e., bifurcation points. The simplest|almost trivial|
example is the Hopf bifurcation point which arises when, for a stable system, one of the values ®n changes
from a negative to a positive value; the system becomes linearly unstable and under suitable conditions the
motion develops into a stable limit cycle. In fact, linear instability is not always such a simple matter. We
have found cases with special sorts of nonlinear processes for which a Hopf bifurcation may occur when the
critical value of ®n is non-zero.

x(t)

μ

Figure 7.25. Schematic illustration of the continuation method applied to limit cycles.

The essential idea of applying a continuation method to limit cycles is illustrated in Figure 7.25 where
the variables of the motion are x(t) and ¹ is the parameter in question, the bifurcation parameter. A
continuation method is a computational (numerical) scheme for following, in this case, the changes of a
period solution|a limit cycle|as the values of one or more parameters are changed. A picture like Figure
7.25 is impossible to draw for more than three coordinates, so the conventional display of information is a
bifurcation diagram in which the amplitude of one variable in the limit cycle is plotted versus the parameters
varied as the continuation method is applied. Figure 7.26 shows two examples, a Hopf bifurcation, also called
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Figure 7.26. Two examples of bifurcation.

a supercritical bifurcation; and a subcritical bifurcation with a turning point. Those are the two types of
bifurcation most common in the present context.

A bifurcation diagram is a locus of equilibrium points traced as the bifurcation parameter is changed. As
a practical matter, a continuation method is more systematic and cheaper to use than numerical simulations.
We have successfully used a continuation method developed by Doedel and colleagues (Doedel et al. 1991a,b;
Doedel et al. 1997) to investigate four classes of problems:

(i) consequences of time-averaging
(ii) consequences of truncating the modal expansion
(iii) in°uences of the linear parameters (®n; μn) on nonlinear behavior
(iv) pulsed instabilities (triggering): the conditions for existence of stable limit cycles in a linearly stable

system.

The problems (i) and (ii) are central to the matter of constructing reduced-order models. Hence it
is important to emphasize that in our view, application of the continuation method to investigate the
consequences of time-averaging and truncation is part of the procedure for establishing the validity of reduced
order models within the framework of analysis based on modal expansion and spatial averaging.

The continuation method is a powerful means for investigating many nonlinear problems in the classes
listed above. Commercial software is available for this purpose. For more extensive discussions see Jahnke
and Culick (1994); Burnley (1996); Burnley and Culick (1996); and Ananthkrishnan, Deo and Culick (2002).
As an illustration we quote here some results for limit cycles in systems of longitudinal modes when only
the gasdynamical nonlinearities are accounted for. We are interested in the consequences of truncation with
time-averaging.

In Section 7.3 we cited a few results for the limiting case of two modes described by the four equations
found with time-averaging. Figure 7.27 shows the special example of the e®ect of truncating the series
expansion for the time-averaged system: Increasing the number of modes apparently widens the region of
stability. In fact, use of the continuation method has established the result that the existence of a region of
stability for limit cycles with two modes is due to truncation. When the ¯rst mode is unstable, stable limit
cycles exist for all values of ®1, if more than two modes are taken into account. That is true even if the
original oscillator equations are used.

Figure 7.28 shows that if time-averaging is not used, there is a turning point in the bifurcation diagram.
Moreover, the boundary of stability persists for the time-averaged equations but moves to larger values of
®, as the number of modes is increased. Figure 7.29 is the result for the time-averaged equations and Figure
7.30 shows the case of 4 modes computed for the full oscillator equations.
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Figure 7.27. The e®ects of truncation for a two-mode system: second mode unstable, all
other modes stable (Paparizos and Culick 1989).
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Figure 7.28. E®ect of time-averaging for two modes (Jahnke and Culick 1994).

It seems true that if the system is only slightly unstable, then the system of time-averaged equations
for two-longitudinal modes is a good approximate model for investigating nonlinear behavior. However, if
one is generally interested in producing reduced order models, the e®ects of truncation and time-averaging
should be investigated. Applying a continuation method seems to be the best approach for doing so. It is a
quick and inexpensive way to learn a great deal about a system.

Ananthkrishnan et al. (2005) have given the ¯rst analysis addressing the practical question of how many|
or perhaps more accurately, how few|modes are required to obtain faithful results. The reasoning is based
on properties of the energy transfer between modes, with the full second-order equations used for the formal
description of longitudinal modes. Thus, errors accompanying application of time-averaging are absent. The
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Figure 7.29. Solutions with truncation of the time-averaged equations (Jahnke and Culick 1994).
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Figure 7.30. Maximum amplitude of ´1 in the limit cycle: four modes, comparison of
results for the full oscillator and the time-averaged equations (Jahnke and Culick 1994).

view is maintained that the global behavior is dominated by the °uid mechanics represented by the second-
order terms in equation (7.27). We emphasize again that the results will be special because the nonlinear
terms involve only squares (´r´s and _́r _́s) and no quadratic terms such as ´r _́s. That property alone has
much to do with the conclusions reached.

The reasoning is covered thoroughly in the reference and will not be reproduced here. An important
conclusion is that for correct qualitative analysis of the motion when the ¯rst mode is unstable requires four
modes: the unstable mode (mode 1); the coupled mode (mode 2) and energy sinks (modes 3 and 4). If the
second mode is linearly unstable, at least the ¯rst eight modes must be retained. Reported results by Janke
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and Culick (1994), Burnley (1996), and Culick, Burnley and Swenson (1995) support the point. See also the
more carefully argued conclusions reached by Ananthkrishnan et al. (2005).

A second conclusion of the last work is that theoretical justi¯cation can be given to the idea that the
second-order gasdynamic nonlinearities alone will not produce subcritical bifurcations, i.e., `triggered' limit
cycles. As we have discussed, various works carried out over roughly two decades suggested this result but
no substantial proof had been previously found. The paper also contains further investigation of triggering
with second-order gasdynamics and nonlinear velocity coupling.

In a general respect, the work reported by Ananthkrishnan et al. shows most clearly the usefulness of a
continuation method as a tool for investigating and understanding nonlinear behavior.

7.8. Recirculation Zones, Hysteresis and Control of Combustion Instabilities

The existence of hysteresis in the dynamical behavior of combustions is both an interesting phenomenon
to investigation and a characteristic that has potentially important practical consequences. It seems that
the ¯rst evidence for hysteresis in combustors was found by Russian researchers concerned with instabilities
in liquid rockets (Natanzon et al. 1978, 1992; Natanzon 1999). In that case, Natanzon and his co-workers
proposed bifurcation of steady states of combustion, and the associated hysteresis, as a possible explanation
for the random occurrences of combustion instabilities. The Russian workers were in a special situation
a®ording them the opportunity to make such observations. The large Russian boosters were designed to
use many (as many as thirty-three) liquid rocket engines in a single stage. Hence large numbers of nomi-
nally identical engines were manufactured and tested for operational use. Su±cient data were obtained that
statistical analysis of the behavior could be carried out. A basis therefore existed for identifying random
behavior. More information is available in Natanzon's monograph, including interesting discussions of ex-
perimental work. The results are convincing arguments for the basic importance of hysteresis, which may
have widespread implications. The idea is the following.

In a liquid rocket many zones of recirculation are created at the injector where jets of liquid fuel and/or
oxidizer enter the chamber. As an approximation, one may regard a recirculation zone as a chemical reactor
whose behavior is known to be well-characterized by the temperature of the incoming gases entrained from the
environment, and the average temperature within the zone. A fairly simple calculation based on consideration
of energy and mass °ows leads to the results sketched in Figure 7.31. The upper and lower branches of the
hysteresis loop represent di®erent branches of stable combustion. Those states have di®erent in°uences on
the state of combustion in the chamber. It was Natanzon's assertion that the state associated with the
lower branch in Figure 7.31 (the cold recirculation zone) is more unstable and prone to lead to combustion
instabilities. Which branch is reached depends on the history of the engine, starting from ignition or some
other sort of abrupt transient. The ¯nal state of a recirculation zone depends on random `accidents' of
history. Therefore, random occurrences of combustion instabilities may be observed. Figure 7.32 is a sketch
of a possible recirculation zone and adjacent °ow of a fuel or oxidizer jet. This model has been used as the
basis for numerical calculations supporting Natanzon's proposal (Natanzon 1999).

In the mid-1980s, research with a dump combustor at Caltech revealed the presence of a di®erent kind
of hysteresis of dynamical states of combustion (Smith, 1985; Sterling, 1987). The combustor has been
described in Chapter 1, Figure 1.17; Figure 7.32 shows the inlet region and the recirculation zone at a dump
plane during steady combustion. The combustor showed combustion instabilities in the neighborhood of the
stability boundary de¯ned in the plane of °ow rate and equivalence ratio, Figure 7.33(a). Figure 7.33(b)
shows an idealized hysteresis loop, observed as dependence of the level of pressure oscillation on equivalent
ratio with the total °ow rate held constant. This sort of behavior has been observed also in other dump
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Figure 7.31. Hysteresis loop for a re-
circulated zone idealized as a simple
chemical reactor.

Figure 7.32. Sketch of a recircula-
tion zone formed by a jet of fuel or
oxidizer (adapted from Natanzon
1999).

combustors as well as in a °ame-driven Rijke tube (Seywert, 2001) and in an electrically driven Rijke tube
(Matveev, 2002; Matveev and Culick, 2002a,c); see Section 2.7.
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Figure 7.33. (a) Stability boundary (Sterling 1987) and (b) an idealized hysteresis loop
suggested by the data shown in (a) for the Caltech dump combustor.

Recent experimental works (Knoop et al. 1996; Isella et al. 1996) have established the physical nature
of the hysteresis in this case and have shown how active control can be used to extend the range of steady
operation into the hysteretic region. High speed ¯lms have con¯rmed that the upper branch of the loop is
associated with shedding of large vortices which, causing periodic combustion of entrained reactants sustain
high amplitude pressure oscillations. The lower branch is associated with relatively quiet combustion in a
shear layer shed from the lip at the inlet.

Familiar considerations of dynamical behavior suggest that it should be possible to achieve pulsed tran-
sitions between the two branches of stable dynamical states. Those processes were demonstrated by Knoop
et al. and Isella et al.by injecting pulses of fuel at the inlet plane. Single pulses of fuel cause transition from
the upper to the lower branch. Thus with suitable sensing and actuation it is possible always to maintain
the low level of oscillations (e®ectively `noise') within the zone where hysteresis exists.

Figure 7.34(a) shows the modi¯ed step allowing injection of pulses; Figure 7.34(b) shows an example
of the hysteresis observed. Examples of the unsteady pressure found during stable burning and unstable
burning, on the lower and upper branches respectively, of the hysteresis loop are reproduced in Figure 7.34(b).
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Figure 7.34. (a) Sketch of the dump combustor modi¯ed to allow injection of pulses;
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1997).
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Figure 7.35. Pressure traces and spectra for the two branches of the hysteresis loop. (a)
stable burning on the lower branch; (b) unstable burning on the upper branch. (Isella,
Seywert, Culick, and Zukoski 1999).

The idea motivating the series of tests (carried out as a project in a student laboratory course) was the
following theoretical notion. If the combustor were operating in an unsteady state on the upper branch of
the hysteresis loop, Figure 7.34(b), then it should be possible, by pulsing, to cause the system to undergo
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a transition to the lower branch, hence reducing the amplitude of the oscillations. Originally it seemed
necessary that fuel be used, because combustion was assumed to be the origin of the behavior. In the event,
it happened that a pulse of nitrogen would also cause a transition, but not always. Thus the behavior, not
surprisingly, involves a combination of combustion processes and the °uid mechanics of the separation zone.

Figure 7.36 shows the time history of oscillations in an interval including the introduction of a pulse.
The series of circled numbers in part (b) identify times when high speed shadowgraphs were taken of °ow
immediately downstream of the step. An example of the results is shown in Figure 7.37. The solid lines
approximately indicate instantaneous lines of °ow. The test results con¯rmed the authors' guess a priori
that the origin of the strong oscillations was associated with combustion in a separated region of recirculation
at the step. Relatively quiet behavior accompanies combustion in turbulent shear layer.

Further discussion of the e®ects of pulsing is given in the references, but many details remain unexplained
in terms of fundamental causes. For example, the consequences of using a noncombustible injected gas,
mentioned above, are similar but not as inevitable as those just described. Interactions of strong acoustic
waves, secondary (including pulsed) °ows and recirculation zones are likely to be more important to the
unsteady behavior of combustors than the present level of understanding may suggest.
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Figure 7.36. Time history of a portion of trace. (a) low resolution showing quenching
pressure oscillations by a pulse; (b) high resolution showing times of the photographs in
Figure 7.37 (Isella, Seywert, Culick and Zukoski 1997).

The behavior shown with a pulsed recirculation zone is a form of nonlinear control. Although it has
been demonstrated only for the range of equivalence ratio covering the zone of hysteresis, it is an important
demonstration of active control at a frequency far less than the frequency of the oscillations. That is a
signi¯cant characteristic because if the reduced bandwidth required of the control system, particularly the
actuation, is smaller, the demands placed on the equipment are reduced. See Chapter 9 for further comments.
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t = ¡3 ms
Large vortex shedding during unstable combustion.

(a)

t = 1:4 ms
Pulse of secondary fuel inhibits formation of next vortex.

(b)

t = 8 ms
Recirculation zone forms at dump plane.

(c)

t = 14 ms
Recirculation zone spreads downstream.

(d)

t = 18 ms
Recirculation zone shrinks.

(e)

t = 30 ms
Stable combustion state beginning to form.

(f)

t = 41 ms
Disturbances have completely disappeared.

(g)

t = 56 ms
Turbulent shear layer burning (stable combustion).

(h)

Figure 7.37. Shadowgraphs of the transition induced by a single pulse initiated at t = 0
(Isella, Seywert, Culick and Zukoski 1997).

7.9. Representing Noise in Analysis of Combustor Dynamics

Generation and emission of noise is a characteristic feature of all combustors. The di®erence in sound
level produced by a burning jet contrasted with an unburning jet, for example, is obvious and convincing
evidence of the phenomenon. Combustion noise has long been studied|see, for example, early interest by
Lord Rayleigh (1945)|and in the past ¯fty years, has been through several periods of increased emphasis,
followed inevitably by general papers such as those by Strahle (1971, 1978, 1985) convey the vicissitudes of
the ¯eld. Currently the developments of large numerical simulations (e.g. LES) hold promise for increased
understanding. It appears that good experimental results may be more di±cult to acquire.
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Considerable experience during the past ¯ve decades has established the result that combustion noise is a
minor part of the noise produced by a gas turbine; see, for example, Cumpsty (1979) and Cumpsty and Marble
(1977). Hence, interest in the subject has not been motivated and sustained by practical considerations of
noise pollution of the environment. The energy contained in the noise ¯eld of a combustor, and the power
radiated, do not have serious environmental consequences in the same sense as, for example, jet noise does.
Our concern here is relatively narrow, related to possible causes or e®ects of combustion instabilities, and
especially how noise may be included in the framework we have been discussing.

Even a small laboratory combustor radiates considerable noise, generated by turbulent motions (often
called `combustion noise') within the chamber. See, for example, the spectrum reproduced earlier as Figure
1.18. The scaling laws are not known, but it is obvious to any bystander that a full-scale combustor of any
sort is noisy indeed. Presently it is not well understood how important noise is to the behavior of combustion
instabilities or to the application of feedback control. The purpose of this section is to introduce a means
for investigating those matters within the framework developed in Chapters 3 and 4.

There are three sorts of problems that will arise:

(i) formal incorporation of noise (stochastic) sources in the framework of spatially averaged equations
for unsteady motions in a combustor;

(ii) modeling the noise sources;
(iii) solving the stochastic di®erential equations.

The ¯rst step, as explained in Section 3.1, is to apply the principle of splitting small disturbances into the
three basic modes of propagation: acoustic waves, vorticity waves, and entropy waves. All of the discussion
so far in this book has been devoted to the acoustic ¯eld. Noise is associated with the random motions
comprising mainly vorticity but also entropy (or temperature) waves in a combustion chamber. Our concern
in the present context is directed chie°y to interactions of those motions with the acoustic ¯eld. The formal
representation will be relatively simple and intuitively persuasive, but modeling the details remains to be
accomplished. Numerical results require assumptions that cannot be justi¯ed a priori.

Following the principle of splitting, we write the °ow variables as sums of the three contributions, one
each corresponding to the three modes of motion:

p0 = p0a + p
0
− + p

0
s

−−−0 = −−−0a +−−−
0
− +−−−

0
s

s0 = s0a + s
0
− + s

0
s

u0 = u0a + u0− + u0s

(7.57)a,b,c,d

Subscripts ( )a, ( )−, ( )s denote acoustic, vortical and entropic contributions. Once again, the ordering
procedure explained in Chapters 3 and 4 allows us to derive meaningful results by considering only the ¯rst
order components. Hence we assume that only the acoustic waves contain pressure °uctuation; in this linear
limit, only the waves of vorticity contain vorticity °uctuations; and only the entropy waves have °uctuations
of entropy. The velocity ¯eld possesses contributions from all three modes.

The idea then is to substitute the assumed general forms of the variables in the primitive equations of
motion expanded to third order in the °uctuations. Then form the nonlinear equation for the pressure and
apply spatial averaging. This procedure was ¯rst reported by Culick et al. (1992) but in revised and corrected
form by Burnley (1996) and Burnley and Culick (1999). Eventually one ¯nds the oscillator equations,

Ä́n + !
2
n´n = Fn

but now Fn contains stochastic sources. The `general' form of Fn is
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and similar de¯nitions for the remaining integrals I1. See Annex D and the references for details.

Then the unsteady velocity ¯eld is split according to (7.57)a,b,c,d. Eventually, re-arrangement and
application of the assumptions discussed above leads to the result

Ä́n + !
2
n´n = 2®n _́n + 2!nμn´n ¡

1X
i=1

1X
i=1

[Anij _́i _́j +Bnij´i´j ]

+
X

[»vni _́i + »ni´i] + ¥n +
¡
FNLn

¢
other

(7.58)

where the »vni, »ni and ¥n are stochastic sources de¯ned as integrals over the vortical and entropic °uctuations
of the velocity. See the references cited above for details.

No intensive modeling based on experimental, theoretical or phenomenological grounds has been ac-
complished. Explicit results have been obtained by approximating the stochastic sources as white noise
processes having properties chosen to be realistic, i.e., the results seem to be reasonably consistent with
available measurements of actual behavior.

Two types of stochastic in°uences arise in (7.58):

(i) »ni, »
v
ni represent stochastic in°uences on the `spring' or natural frequency of the n

th mode and on
the damping or growth rate. These are formally referred to as `multiplicative noise sources' because
they appear as factors multiplying the dependent variables, the displacement and velocity of the nth

oscillator. (Stratonovich 1963)
(ii) »n represents a stochastic driving source causing excitation of the n

th oscillator even in the absence
of driving by combustion processes; the ¥n are formally called `additive noise sources'.

It is evident from the form of (7.58) that the random character of the stochastic sources will appear as
random °uctuations imposed on the amplitudes ´n(t) of the acoustic modes, exactly the sort of behavior
found experimentally. Thus, Fourier synthesis of the pressure ¯eld, the modal expansion, continues to serve
as a good approximate representation of the deterministic results can be obtained by retaining only a small
number of terms.

Results were obtained ¯rst for the simplest case of two modes, with noise sources only in the fundamental
mode. Nonlinear gasdynamic coupling transfer stochastic behavior to the second mode. Computations have
been carried out using a Monte-Carlo method to give probability density functions, with the equations
written in the Stratonovich form of stochastic di®erential equations (Burnley, 1996). Figure 7.38 shows the
pressure trace and spectrum for a simulation in which the ¯rst mode is unstable.

This method of accounting for noise in a combustor seems to be very promising. However, modeling the
noise sources is in a primitive state, and comparisons of results with experimental observations can only be
done qualitatively.
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Figure 7.38. Pressure trace and spectrum for a simulation with noise; four modes included,
¯rst mode unstable (Burnley and Culick 1996).

7.10. System Identi¯cation for Combustor Dynamics with Noise

Use of system identi¯cation in the ¯eld of combustor dynamics seems to have been developed ¯rst by
Russian groups as part of their development of liquid rocket engines, beginning perhaps as early as the 1950s
but certainly in the 1960s (Agarkov et al. 1993).

In several papers during the 1980s, Hessler (1979, 1980, 1982); and Duer and Hessler (1984); and more
recently Hessler and Glick (1998), have asserted that the oscillations observed as combustion instabilities in
solid rocket motors are driven rather than self-excited. The sources of the driving|i.e., the `mechanisms'|
are supposed to be either vortex shedding or noise. Hessler and co-workers conclude that the properties of the
noise measured in a stable chamber can be used as the basis for infusing properties of the primary mechanism
causing instabilities when they arise or more correctly, such data will provide quantitative information about
the static stability margins|how close the dominant acoustic modes are to becoming unstable.

The basic idea is sound. When the mechanisms are interpreted as driving forces independent of the
acoustic ¯eld, and they are assumed to be broad-band, then the acoustic modes are excited to amplitudes
related directly to the amount of damping (®n). Hence the idea is to process noisy records in such a fashion
as to extract the values of the linear parameters (®n; μn). The proposed method can be tested using the
oscillator equations with some sources derived in the preceding chapter.

Seywert (2001) and Seywert and Culick (1999) have reported results of some numerical simulations
carried out to check the idea just described. In particular, the main purpose was to determine the accuracy
with which the experimental method would give the linear parameters. The procedure is straightforward. To
be de¯nite and to keep the computations within practical bounds, we consider a system of four modes, each
containing noise sources which, as explained in Section 7.9, are assumed to be white noise. The amplitudes
of the noise (rms values) are selected so that random amplitude °uctuations in the pressure spectrum have
values in the ranges experimentally observed (Seywert and Culick).
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Three types of problems arise, associated with the three types of noise sources: additive noise, ¥n; and
two kinds of multiplicative noise, »vn which a®ects mainly the growth and decay rates, and »n which causes
random variations of the frequency. In all cases we are concerned here with discovering the ways in which
noise a®ects the result of system identi¯cation. The idea is to select values of the ®n, μn and carry out
numerical simulations. Then the data are processed to give values of the ®n, μn which now have mean values
and some uncertainties due to the presence of the noise. The questions to be answered are: How close are the
mean values to the time values used as inputs? and How large are the uncertainties? These are important
practical matters. If the method is e®ective, then data from hot ¯rings of full-scale combustors could be used
to infer the linear parameters characterizing the dynamics represented by several modes. Those parameters
identify the poles of the response function of the chamber. Hence a relatively straightforward process would
give the information required to proceed with designing a linear control system.

Actually there are two ways to get the information: process pressure records naturally occurring; or
process the pressure record following a pulse. The method of pulsing has long been used as means of
assessing the stability margin of liquid rockets (Harrje and Reardon, 1972). Both methods have been used
for a stable system of four longitudinal modes having the parameters given in Table 7.2; the fundamental
frequency is 900 s¡1. Figure 7.39 shows a simulated pressure trace and Figure 7.40 shows its power spectrum
and construction using Berg's method.10

Table 7.2. Values of the Linear Parameters.

mode 1 2 3 4

®n(s
¡1) ¡50 ¡375 ¡584 ¡889

μn(s
¡1) 12:9 46:8 ¡29 ¡131

Without good data for the noise in an actual combustor and no model, we assume white noise sources.
Their amplitudes are chosen so that the average (rms) values of the simulated pressure records are reasonable
Table 7.3 shows the relation between the rms value of the system response (p0=¹p) and the noise power of ¥.
The `noise power' cannot be measured, being the height of the power spectral density of the noise. Figure
7.41 gives a more detailed picture, showing how the amplitudes of the spectra of the four modes increase
with noise power.

Table 7.3. Relation Between the Noise Power of ¥n and the rms Value of the Simulated
Pressure Fluctuation.

Noise Power of ¥n rms Values of p0=¹p

101 :005%

103 :05%

105 :5%

10Berg's method is a standard method of signal processing, widely available. We have used the software included in the
Signal Processing Toolbox, an extension of MATLAB.
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Figure 7.39. Simulated pressure trace with noise; all modes stable.

In Figure 7.42, a simulated response to a pulse is ¯tted by the superposition of four modes:

p0

¹p
=

4X
i=1

Aie
®it cos(!it+ Ái)

The parameters Ai, ®i, !i, Ái are ¯tted using a least squares method.

We use the noise power as a parameter. Figure 7.43 shows an example of the sort of results one ¯nds
for multiplicative noise in the modal damping (»vn 6= 0; »n = 0; ¥n = 0). The corresponding results of using
the pulse method are given in Figure 7.44.

We conclude from these results that substantial errors may accompany system identi¯cation in the
presence of realistic (we believe) noise. How signi¯cant the errors are depends on the particular application
at hand and on how small the stability margins are. For a weakly stable system, values of the margins

Figure 7.40. Application of Berg's method: power spectrum of the pressure trace in Figure
7.39 and its reconstruction.
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Figure 7.41. Dependence of the peak amplitudes of the power spectra for four modes, on
noise power.

Figure 7.42. Reconstructed pressure trace for the transient response excited by a 10% pulse.

determined in this way are suspect because of the ¯nite uncertainties. The results would therefore not be
useful as a basis for representing the combustor's response function.

It should be clear from the nature of the methods described here that the system must be stable (i.e., all
modes must be stable) for this application. For example, if data (simulated) for a limit cycle are processed
in this fashion, the inferred values of ®n, μn have no apparent connection with the correct values.
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Figure 7.43. Values of decay rates (modal attenuation) found with Berg's method with
multiplicative (»n) noise.

Figure 7.44. Values of decay rates (modal attenuation) found with the method of pulsing.

7.11. Pulsed Instabilities; Subcritical Bifurcations

Pulsed instabilities are produced by a process sometimes called `triggering.' We suppose that the dynam-
ical system, here a combustor, is stable; that is, small disturbances decay to vanishingly small amplitude. It
often happens that a real system behaves di®erently if it is exposed to a ¯nite disturbance. There are three
possibilities: the subsequent motion decays; the induced motion grows without limit; or the motion settles
into some form having ¯nite maximum size which, if periodic, is called a limit cycle. It is the last case that
concerns us in this section. We explicitly exclude from our considerations the possibility that the system
may enter an uncontrolled motion. (See Table 7.1 for contrary cases.) Whatever may be the form|i.e., the
shape in time|of the initial disturbance, the overall process is generally called `pulsing.'

Unfortunately, at the time of writing we do not have information about the history or current practice
of pulsing in Russia. It has been and still is an important part of the development of Russian rockets. The
subject is covered in the monograph by Dranovsky (2006), including results obtained in the early 1990s.

As we have already explained, pulsed instabilities include several practical problems involving the initia-
tion of oscillations. It often happens that an instability is born during or soon after ignition of the device. A
rocket, liquid or solid, may su®er a rapid rise of pressure followed by an overshoot of pressure. Oscillations
may be a result, the Russian RD-0110 being just one example; see Chapter 1, and the remarks accompanying
Figures 1.13{1.15. Su±ciently large pulses to excite instabilities may also be produced by material passing
through the nozzle. For example, in large solid rockets, liquid Al2O3 exhausted as streamers, originating from
the cavity surrounding the inlet to the nozzle, has been observed to produce small disturbances of chamber
pressure, a consequence of a temporary reduction of throat area. Inadvertent and undesirable reductions
of throat area are always possible. For these reasons, understanding the causes and consequences of ¯nite
pulses is an important theoretical and practical matter.

Pulsing without intent to cause instabilities has become a standard means of ranking or rating liquid
rocket motors especially. The method has been used less widely for solid rockets. For both solid and liquid

NONLINEAR BEHAVIOR OF COMBUSTOR DYNAMICS 

7 - 44 RTO-AG-AVT-039 

 

 



rockets, repeated pulsing with di®erent size pulses forms the basis for assessing the relative stability of a
motor. For solid rockets, the time of pulsing during a ¯ring is a second, but not necessarily secondary,
variable. The procedure may also be used, for example, to assess the e®ect of modi¯cations of the design
on stability. Presently the status of calculating the unsteady °ow is such that it is not possible to predict
meaningful results.

In this section we are concerned mainly with the development of waves in a chamber following a pulse.
It is not yet possible to predict completely the conditions under which an instability may develop. As an
aid to interpreting the behavior, we will use results we have developed in Chapters 3 and 4. However, the
available conclusions for the behavior and properties of pulses in a combustion chamber are few and quite
limited; much remains to be done before the subject may be considered understood.

7.11.1. Pulsing Solid Propellant Rockets. Dickinsen (1962)11 ¯rst reported pulsed instabilities, in
a simple solid propellant rocket, a circular cylinder having diameter eight inches and initial port four inches
in diameter.12 Reports of the work in detail were given by Brownlee (1963) and Brownlee and Roberts
(1963). Figure 7.45 shows a typical pressure record; see also Figure 1.42. Later, in similar tests, Brownlee
and Kimball (1966) were able to use schlieren apparatus to show directly the discrete nature of the waves. An
example is reproduced in Figure 7.46. The presence of the longitudinal wave train caused a continual rise of
chamber pressure until a safety diaphragm failed. Note that the amplitude of the travelling waves became as
large as (approximately) 30% of the mean pressure. Several characteristics distinguished this instability from
previous works, such as those at NOTS, China Lake, which were concerned with spontaneous instabilities:

(i) All of the propellants tested, even with nineteen percent aluminum, would, under appropriate condi-
tions, support pulsed instabilities;

(ii) The instabilities always involved longitudinal (axial) waves, as shown in Figure 7.47;
(iii) The instability always produced increases in the mean pressure, the average burning rate, and the

thrust, compared with their values in the absence of an instability;
(iv) At su±ciently high chamber pressure, all the propellants tested would support pulsed instabilities;
(v) Propellants having higher burn rates at a given pressure could be operated at higher chamber pressures

before pulsed instabilities could be produced;
(vi) Propellants more susceptible to erosive burning also exhibited more severe instabilities in the axial

mode.

In a paper covering solid rockets more broadly, Dickinson and Jackson (1963) included Figure 7.47(a),
a useful presentation of the stability boundaries for three propellants whose properties were not disclosed.
Examples of the sort of data obtained in those tests are reproduced in Figure 7.47(b) showing the shift of
the stability boundary with chamber pressure (throat diameter). Like many details of stability behavior,
the result shown is likely to be in fact dependent on the propellant used. Thus, generalizing on the basis of
results for one propellant should not be done. In a subsequent paper, Roberts and Brownlee (1971) clearly
made the point by testing 54 propellants (polybutadiene and polyurethane binders) to show that a stability
criterion proposed by Capener, Dickinson and Kier (1967) did not hold generally.

The tests analyzed by Brownlee et al. served to clarify one type of instability and established stability
boundaries for the propellants tested. Unfortunately, the results contain almost no information in respect
to the in°uence of particular propellant properties. It was also not an intent of the work to investigate the
properties of the wave motions or the dependence of the instabilities on the geometry of the combustor.

11The method of pulsing had apparently been in use for two years or so before this ¯rst report was made.
12The Canadian work described in this section was carried out to support development of the Black Brant sounding rocket.

Hence the test conditions don't span the ranges one might prefer, to de¯ne the problem completely.

NONLINEAR BEHAVIOR OF COMBUSTOR DYNAMICS 

RTO-AG-AVT-039 7 - 45 

 

 



Figure 7.45. A pulsed instability initiated in an 80 inch long motor by a small explosive
charge (Dickinson 1963; Brownlee and Roberts 1963).

Figure 7.46. Picture taken with schlieren apparatus midway between the head-end and
the nozzle (Brownlee and Kimbell 1966).

A program carried out at the Stanford Research Institute in the mid and late 1960s was not connected
to a development e®ort and was therefore free to explore more basic questions. The main accomplishments
were reported by Capener, Dickinson and Kier (1967); and Marxman and Wooldridge (1968, 1969). Unlike
the works described above, these investigations placed considerable emphasis on the in°uence of propellant
composition on the combustion instability leading to large-amplitude axial waves. As in the studies by
Brownlee and his colleagues, the instability is `subcritical' in the sense de¯ned in Figure 7.26; to be initiated,
a ¯nite disturbance or pulse is required. Thus the motors, for the propellants used, were intrinsically stable
for the range of conditions tested.
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Figure 7.47. (a) Stability boundaries for three propellants tested in 80 inch motors and
(b) in°uence of mean pressure (throat diameter) on stability (Dickinson and Jackson 1963).

Although some ¯rings were made with potassium perchlorate, by far most propellants used ammonium
perchlorate, the oxidizer used in practice.13 The binder was PBAN (polybutadiene, acrylic acid, acrilonitrile)
which is no longer favored since higher-energy materials are available. Consequently, as often the case
with older propellants, the results may be qualitatively suggestive but certainly not valid quantitatively
for modern propellants. Figure 7.48 is a compilation of data for a 40 inch series of tests, practically all
using AP/PBAN propellants. The similarity with the results obtained by Brownlee, Roberts et al. is clear.
As in the earlier work, the pressure/burn rate relation was varied by changing the oxidizer particle size, a
particularly attractive feature of ammonium perchlorate. The main purpose of the experiments discussed by
Capener et al.was to obtain results like those shown in Figure 7.48 for a broad range of practical propellant
compositions.

Marxman and Wooldridge (1968) apparently were ¯rst to attempt to relate the excitation of the ¯nite-
amplitude instability to the dynamical properties of the propellant. At that time the subject of the dynamics
of propellant burning was a subject of active research; see Section 2.1 and, for example, the extended review
by Culick (1968). In particular, Marxman and Wooldridge (1968) had paid special attention to the in°uence
of surface reactions on the response of a burning surface propellant. Using a linearized representation of the
propellant response (see Section 2.1) they found that surface reactions can have substantial e®ect on the
amplitude of the propellant response.14 So far as the present context is concerned, the importance of this
work is the use Marxman and Wooldridge made of it in their interpretation of travelling waves in a solid
propellant rocket, the axial-mode instability.

The main idea is that the oscillating wave in the chamber is a weak shock wave presenting to the surface
an oscillating pressure. That oscillation of pressure causes the burning rate to oscillate. It is the oscillation
of burning rate that sustains the shock in the presence of losses, notably attenuation accompanying partial
re°ection by the exhaust nozzle. Thus the dynamical burning process, travelling with the shock wave,
\acts essentially as an annular piston behind the shock wave, : : : similar to the role of exothermic chemical
reactions in supporting a detonation wave." This idea was developed by requiring that the frequency of the
wave should be close to the value at which the propellant response is maximum; and that the response at
this frequency should be at least as large as required to support the shock wave.

13For unknown reasons, propellants containing potassium perchlorate were also stable to pulsing. There are practical

reasons for not using potassium perchlorate in operational propellants.
14Marxman and Wooldridge were critical of alternative treatments of surface reactions by Brown et al. (1968); Friedly and

Peterson (1966)a,b; and Krier et al. (1968). The similarities and di®erences among the analyses lie outside the range of the
present discussion.
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Figure 7.48. Stability boundary for 40 inch rockets, 5 inch diameter showing chamber
pressure and burning rate below which pulses of pressure are stable (Capener, Dickinson
and Kier 1967).

For typical conditions in the experiments examined, the value of the response required was about 1{1.2,
ignoring other losses, notably that provided by the nozzle. The response required is reasonable, and overall
the model proposed has several appealing features. However, despite the quantitative estimates, the results
cannot be used, or extended, for predicting details of the instabilities produced in practice.

With a series of papers15 in the period 1981{1986, Levine and co-workers have given the most successful
and thorough numerical solutions for instabilities with steep-fronted waves in solid-propellant rockets. The
success of the work was established by good comparison of the computed results with specially conducted
experiments in cold °ow as well as motor ¯rings. While the calculations cannot give the ¯ne details of
the °ow ¯eld found with LES simulations, the waveforms produced are remarkably close to those observed,
and the consequences of changing physical parameters in the problem are generally explicable and fairly
well-understood.16

In the early 1970s, numerical methods were ¯rst applied to instabilities in solid-propellant rockets,
independently in two e®orts by Levine and Culick (1972, 1974); and by Kooker (1974), reported also by
Kooker and Zinn (1973). Particularly to be noted is that Kooker found a form of triggering in his work.
Figure 7.49 reproduces one of his results showing a clear qualitative change of the response with amplitude
of a continuously applied pressure oscillation. He reported no results for responses to input pulses.

The requirements of the problems taxed computing capabilities to the extent that only a few (c. 20
at most) cycles of an unstable oscillation could be produced with the numerical methods used. There was
therefore strong practical motivation for developing approximate methods (Culick 1973a,b; Powell 1970,

15Levine and Baum (1982, 1983); Baum and Levine (1982, 1986, 1987); Baum, Lovine, and Levine (1983); Baum, Levine,

and Lovine (1984); Baum, Levine, Chew and Lovine (1984); Lovine, Baum, and Levine (1985); and Baum, Levine and Lovine
(1988).

16Recall some basic principles governing the behavior of waves in a compressible medium, formulated by Chu and Kovasznay
(1957) and summarized brie°y in Sections 3.1 and 7.9.
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Figure 7.49. Response of the head end of a motor (L = 10 ft.) to a continuously applied
input pressure (Kooker and Zinn 1973).

example). Comparison of exact and approximate methods was a central issue (Culick and Levine 1974) in
the early work, but in the period covered by the works of immediate concern here, and for the instabilities
treated, the principal matter was reconciliation of the results of numerical calculations with observations.

The works in question (see Footnote 15) form a very instructive example of properly applying numerical
methods and modeling to internal °ows found in solid propellant rockets, accompanied by specially conducted
experimental works. It must be recognized, however, that signi¯cant limitations are imposed on possible
applications because all combustion processes are con¯ned to the lateral surface of a chamber; and the
dynamics of combustion are represented by an extension of the model due to Dennison and Baum (1961),
as described here in Section 2.1. Most of the cases treated in the references are for uniform chambers.

In the ¯rst paper of the series, Baum and Levine (1982) addressed in detail the problem of computing
the development of a standing wave or a pulse into traveling waves. They followed the general strategy
worked out by Levine and Culick (1972, 1974) but used a combination of three computational methods,
the Lax-Wendro®, hybrid, and arti¯cial compression schemes. It was an important achievement that they
were able to treat a shock wave as an abrupt discontinuity \without generating arti¯cial pre- or post-shock
oscillations" and without introducing arti¯cial viscosity.

With subsequent publications Levine and Baum (1982, 1983) demonstrated that by taking velocity
coupling into account, they were able to obtain results for triggering; shifts of the mean pressure when
oscillations are present; and some cases when limit cycles were modulated. They also worked with Lovine at
Aerojet Tactical Systems to demonstrate the ¯rst results comparing numerical computations and oscillations
produced by pulsing in cold °ow tests (Baum, Levine and Levine 1983). Figure 7.50 shows the three devices
used. Figure 7.51 shows the time-evolution of a measured and a predicted pressure perturbation within a
chamber containing only the °ow from the pulsing unit.

In a paper presented publicly in 1982 but published two years later, Baum, Levine and Lovine (1984)
essentially combined the main results presented in their previous works and treated sub-critical instabilities
in laboratory motors and full-scale motors. The laboratory motor was 48 in. (1.22 m) long with internal
case diameter 2.25 in. (5-7 cm); results were reported for three tests having partial grain either eight or
nine inches long, and a fourth test having three short grain elements. In all cases quite good agreement
was obtained for the observed and calculated time evolutions of sharp fronted wave following pulses. An
example is reproduced as Figure 7.52 showing the results for the ¯rst and second pulses of the second test
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(a) (b) (c)

Figure 7.50. Three types of pulsing devices used by Baum, Lovine and Levine (1983). (a)
pyro pulser; (b) low-brisance pulser; (c) piston pulser.

(a) (b)

Figure 7.51. Time evolution of pressure perturbations produced by a pyro pulser. (a)
measured; (b) calculated (Baum, Lovine and Levine 1983).

called PCC4. The wave following the ¯rst pulse was stable and decayed before the second pulse was ¯red
0.23s after the ¯rst.17

There is a signi¯cant piece of the problem which is certainly not known well, namely representation of
the dynamical characteristics of the propellant combustion. Levine et al. chose to use the basic result of

17Note the horizontal scale in Figure 7.52.
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(a) (b)

Figure 7.52. Comparison of measured and predicted pressures at the head end, test PCC4
(a) ¯rst pulse; (b) second pulse (Baum, Levine and Lovine 1984).

(a) (b) (c)

Figure 7.53. Response functions for the three propellants used by Baum, Levine and
Lovine (1988).

Figure 7.54. Comparison of observed and calculated pulsed instabilities in an aft-¯nocyl
motor (a) observed; (b) calculated (Baum, Levine and Lovine 1988).

Dennison and Baum (1961) which forty years later still remains the best starting point. However, to obtain
(even qualitatively in some respects) their good results, Levine and Baum found it essential that the surface
combustion should be sensitive not only to pressure changes but also to °uctuations of velocity tangential to
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the surface, velocity coupling. The idea that velocity coupling may be an important aspect of the dynamics
of surface combustion is not new, dating back to the late 1950s; see Culick (1970) for a review of early work.
In a later paper Baum and Levine (1983) have given a short discussion of their experience with modeling
velocity coupling. They eventually chose the form for the °uctuation of mass °ux produced by the propellant

_m0 = _m0
pc [1 +RvcF

0(~u)] (7.59)

where F (u) = ju0j represents the dependence on the magnitude of the velocity and m0
pc is related to the

response function Rp for pressure coupling by (2.2). Much of the work by Levine et al. to obtain good
agreement between their predicted results and observations was spent on adjustments to the parameters in
(7.59).

The last paper by Baum, Levine and Lovine (1988) not only gives their ¯nal results but also summarizes
their approach in general. It is probably the best paper of the series, giving an overall view of the work as
well as some new ¯ndings. Results are present for eighteen pulsed motor tests in motors 8.38 cm (3.3 in) in
diameter, having lengths 0.61 m., 0.91 m. and 1.22 m. (24, 36, 48 in). Three reduced-smoke propellants were
tested in four di®erent grain designs: cylinder, fore- and aft-¯nocyls and \dog-bone". In all tests three pulses
were planned, a pyrotechnic, an ejected sphere, and a pyrotechnic in that order; ten tests were unstable on
the second pulse and nine on the ¯rst, leading to amplitudes ¢p=p = 0:1 to 0.3. Two of the propellants
produced \signi¯cantly higher wave amplitudes" in the aft-end ¯nocyl con¯guration. That con¯guration
also produced consistently greater DC shifts of mean pressure then the fore-end ¯nocyl, a behavior that was
found also in numerical predictions.

A limited amount of T-burner data, shown in Figure 7.53, was available for the response functions of the
propellants used. These results for the parameters A and B were used to ¯x the response function according
to our form (2.67) of Dennison and Baum's formula. Experience has shown that the values of A and B
suggested are quite reasonable; see Section 2.2.3.

The discussion by Baum, Levine and Lovine explains how the values of the various parameters were
chosen and ¯xed for comparison of predicted and observed waveforms. In the paper, six remarkably good
comparisons are given. Figure 7.54 shows an example in which a secondary wave grows out of the primary
wave. The original reference contains not only further examples but informative discussion and interpreta-
tion.

7.12. Dependence of Wall Heat Transfer on the Amplitude of Oscillations

Surface heat transfer is sometimes an important contribution to the loss of acoustic energy for oscillations
in chamber. Normally for solid rockets that is not the case, but the T-burner (Figure 2.7) is a special
contrary case. The problem of measuring the linear limit of heat transfer under oscillatory conditions has
been discussed in Chapter 6 and Annex C. Here we are concerned with the dependence in the amplitude
of oscillation, a very signi¯cant e®ect. The most recent work seems to have been reported by Merkli and
Thomann (1975) in which oscillations were driven mechanically in a tube containing air. The observed
increase of heat transfer rate was shown to be associated with the development of turbulence in part of an
oscillatory cycle.

Combustion driven oscillations may reach considerably higher amplitudes than those sustained mechan-
ically. As part of his work with the T-burner, Perry (1970) inferred mean heat transfer rates (¹h) over
oscillatory amplitudes from 2 to 60 psi, the average pressure being 300 psig. Results are given in Figure 7.55.
The notation ( ) indicates an average over the length of the T-burner so the dependence shown can be re-
garded only as approximate. Data taken for ¯ve propellants, presented in dimensionless correlations, Nusselt
number versus Reynolds number, are plotted in Figure 7.56. The de¯nitions are used

NONLINEAR BEHAVIOR OF COMBUSTOR DYNAMICS 

7 - 52 RTO-AG-AVT-039 

 

 



h p
1/2

'

1                              5           10                            50        100

1000

50

500

100h
 (

 b
tu

/f
t 

  
- 

h
r 

R
)

2

p (psi)'

p  = 300 psi

700
1050
1500
2300

Freq. (Hz)

%

Figure 7.55. Mean heat transfer coe±cient measured in T-burners showing dependence
on amplitude of pressure amplitude (Perry 1970).

Nu =
¹h±
¹k

(7.60)

Re =
¹p 0±
¹¹ ¹a

(7.61)

where ¹a is the average speed of sound, and

± =

r
º

¼f
(7.62)

is the `thickness' of the acoustic boundary layer. The straight line in Figure 7.56 is

Nu = 0:044
p
Re (7.63)

which implies ¹h / p¹p 0f1=4. Perry and Culick (1974) note that the data shown in the ¯gures cover a range
of maximum velocity °uctuation to mean velocity from near zero to twenty.
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Figure 7.56. Mean heat transfer rates correlated as mean Nusselt number versus mean
Reynolds number (Perry 1970).

No theory of the behavior shown in Figures 7.55 and 7.56 was given in the original work, or apparently
since that time. The quantities de¯ned by (7.60){(7.62) were chosen as reasonable references and have at
best qualitative signi¯cance. A brief attempt was made by Perry and Culick (1974) to determine a local
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correlation (local heat transfer rate versus local oscillating pressure amplitude) with some reasonable results
identical to equation (7.62).

The general problem summarized by the title of this section arises in several practical situations. For
example, consequent structural failures in liquid propellant rockets and gas turbine combustors are well-
documented. There is a genuine practical need for further clari¯cation of the matter.

7.13. One Way to Analyze the Behavior of Pulses

Levine and Baum achieved remarkably good results using a one-dimensional representation of the wave
motions. At least two reasons account for their success in obtaining such close agreement between their
computations and observed behavior: careful development and application of the methods to calculate the
steep-fronted waves; and close attention to (and modi¯cation of) the representation of the unsteady supply
of material from the lateral burning surface. The second matter is heavily involved with the problem of
velocity-coupling.

It is intrinsic to the works described in the preceding section that the calculations are elaborate and
must be entirely done with a computer. In this section we discuss a way of computing the same sorts of
problems, which is at best roughly approximate but which o®ers the possible advantage of investigating some
aspects more easily. Although the speci¯c problems discussed in the previous section will not be treated,
the possible applications should be clear.

The basis for this calculation has been thoroughly discussed in Chapters 3 and 4. We will use equations
(4.64)a,b based on the method of averaging applied to the more general second-order equations (4.36), or
(7.5) with FNLn = 0. Since the wave motions that concern us here involve purely longitudinal motions,
we assume that they are well-represented by longitudinal modes; the time-averaged equations are therefore
(7.28)a,b. A simple example, a square pulse propagating in a quiescent gas contained in a closed tube with
no combustion, displays the main idea. As indicated in Figure 7.57, a single pulse within the chamber may
be represented as the superposition of two in¯nitely long trains of pulses, one train moving to the left, and
one to the right. At the instant for which the ¯gure is drawn, the pulse A is about to cross the boundary
z = 0 from left to right, and the pulse B is about to cross from right to left. This represents re°ection of
a leftward moving pulse at the end, z = 0, of the tube. It is easy to deduce from the ¯gure that during
re°ection the amplitude of the pulse is doubled near the re°ecting boundary. Just before re°ection, the real
pulse within the chamber is represented by pulse B, and after re°ection pulse A represents the real pulse.
Note that pulses in each of the trains are separated by the distance 2L, twice the length of the chamber.
Hence the wave system comprising the two wave trains has period 2L. This represents the pulse within the
chamber travelling the distance 2L for a full cycle.

Under the conditions chosen here, the pressure pulse in the chamber must satisfy the homogeneous wave
equation subject to the boundary condition for rigid walls at the ends,

@2p0

@z2
¡ 1

a2
@2p0

@t2
= 0 (7.64)

@p0

@z
= 0 (z = 0; L) (7.65)

The general solution of (7.64) may be written as the sum of rightward and leftward moving waves:

p0

p
= f(z ¡ at) + g(z + at) (7.66)
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Figure 7.58 shows a special case of this solution. The train of pulses moving to the right is represented by
f(z ¡ at) and those moving to the left are contained in g(z + at). It is apparent that in order to satisfy the
boundary conditions at the ends of the chamber having length L, the wave trains must have period 2L.

We will be particularly concerned here with the wave motions subsequent to speci¯ed initial conditions.
Note that the example shown in Figure 7.58 was constructed arti¯cially; it is not immediately obvious what
initial conditions will produce the wave motion. The simplest initial value problem is that for a pulse initially
at rest:

(t = 0; 0 · z · L)

8>><>>:
p0(z; 0) = pP (z)

@p0

dt
(z; 0) = 0

(7.67)

For t > 0 such a pulse splits into two pulses, one moving to the left and one moving to the right. The
solution can be represented as the superposition of two pulse trains as sketched in Figure 7.58. For this case
the pulses in each of the trains have half the amplitude of the initial pulse.

-2L -L 0  L 2L 3L 

A

B

Figure 7.57. Superposition of two pulse trains to represent propagation of a single pulse
in a closed tube.

TIME

TIME PER

ONE CYCLE

-2L        -L 0  L          2L 3L 4L

PRESSURE AT z = L

Initial
Pulse

Figure 7.58. Propagation of pulses developed from a stationary initial pulse in a closed tube.
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Because the initial pulse splits, there are always two pulses in the chamber. Measurement of the pressure
at one end produces a signal which is periodic, having period equal to the round trip time for one of the
pulses. The fundamental frequency of the signal is the fundamental frequency. For example, if a symmetric
pulse is introduced at the center of the chamber, then the fundamental frequency of the signal is the frequency
of the second mode of the chamber.

The case of a single pulse, sketched in Figure 7.57, is the simplest to visualize, and constitutes a special
case of the general initial value problem. In order to satisfy the boundary conditions, it is necessary, as Figure
7.57 illustrates, to use wave trains having period twice the length of the chamber. We wish to account for
both the initial pulse shape, P (z), and its initial rate of change with time, Q(z); the initial conditions are

p0

p
(z; 0) = P (z) (7.68)

@

@t

p0

p
(z; 0) = Q(z) (7.69)

De¯ne the function F (z) representing leftward and rightward moving pulse trains required to satisfy the
initial shape (7.68):

F (z) =

(
P (z) 0 · z · L
P (¡z) ¡L · z · 0 (7.70)

Outside the region ¡2L · z · 2L, F (z) is periodic, having period 2L:
F (z + 2nL) = F (z) ¡ 2L · z · 2L; n = §1; §2; : : : (7.71)

Similarly, a function G(z) is de¯ned to represent pulse trains required to satisfy the initial rate of change of
the pressure ¯eld

G(z) =

(
Q(z) 0 · z · L
¡Q(¡z) ¡L · z · 0 (7.72)

G(z + 2nL) = G(z) ¡ 2L · z · 2L; n = §1; §2; : : : (7.73)

Note that F (z) is an even function and G(z) is an odd function, with respect to the origin z = 0.

The pressure ¯eld for any t ¸ 0 is given by the formula

p0

p
=
1

2
[F (z ¡ at) + F (z + at)] + 1

2a

z+atZ
z¡at

G(»)d» (7.74)

It is easy to con¯rm that this formula for p0=p̂ satis¯es the initial conditions (7.68) and (7.69), and because
of the de¯nitions of F (z) and G(z) as periodic functions, the boundary conditions at z = 0; L are satis¯ed.

Now the connection between the solution (7.74) and the normal modes of the chamber is established by
expanding F (z) and G(z) in Fourier series:

F (z) =
1X
n=0

Bn cos knz

G(z) =
1X
n=0

Cn cos knz

(7.75)a,b
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The Fourier coe±cients are calculated from the formulas

B0 =
1

L

LZ
0

P (z)dz

Bn =
2

L

LZ
0

cos(knz)P (z)dz

C0 =
1

L

LZ
0

Q(z)dz

Cn =
2

L

LZ
0

cos(knz)Q(z)dz

(7.76)a,b,c,d

The average values of the pulse and its rate of change are B0 and C0. In calculations we will be concerned
only with the evolution of departures from the average values. Substitution of (7.75)a,b into (7.49) leads to
the Fourier series for p0(z; t):

p0

p
=
1

2

1X
n=0

Bn [cos kn(z ¡ at) + cos kn(z + at)]

+
1

2

1X
n=0

Cn
1

!n
[sin(z ¡ at) + sin kn(z + at)]

(7.77)

Because Cn has dimensions of frequency, the factor !n = akn makes Cn=!n dimensionless.

Expansion of the functions in (7.77) leads to the form

p0

p
=

1X
n=0

[An sin!nt+Bn cos!nt] cos knz (7.78)

in which An has been written from Cn=!n. This result is identical with the expansion (4.27), using (4.65)
for ´n(t). For a pulse which propagates in a passive medium, with unchanging shape, the Fourier coe±cients
An and Bn are constant. For the problems arising in combustion chambers, An and Bn vary with time
according to equations (4.64)a,b.

Hence we now have a means for analyzing the behavior of an arbitrary pulse in terms of the normal
modes of a chamber, and accounting for nonlinear gasdynamics. The procedure may be summarized in the
following steps.

1) The initial shape and rate of change of the pressure are speci¯ed, giving the functions P (z) and Q(z).
2) The initial values of Bn and An = Cn=!n are calculated from the formulas (7.76)a,b.
3) The time evolution is calculated by using the appropriate forms of equations (7.28)a,b.
4) The pressure ¯eld can then be calculated at any time by using (7.78).

In principle, any problem of one-dimensional pulse propagation can be handled in this way, accounting
for linear and nonlinear processes in the medium. Practical di±culties may arise in the treatment of a
steep-fronted pulse requiring a large number of modes for a faithful representation.

7.13.1. Some Results for the Propagation of Pulses. We shall consider here only cases of rect-
angular pulses with the initial pressure not changing in time. Thus Q(z) = 0 in (7.69), and the Fourier
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coe±cients are given by (7.51)a,b. For a pulse having height ¢, and non-zero in the range L1 · z · L2, the
coe±cients are

B0 = ¢(L2 ¡ L1) (7.79)

Bn =
2¢

n¼

·
sin

μ
n¼
L2
L

¶
¡ sin

μ
n¼
L1
L

¶¸
(7.80)

Figure 7.59 shows the approximations using 10, 20, 30 and 50 modes for a pulse generated at one end of a
chamber in the range :1L · z · :4L.
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0.8

0.4

0

-0.4

Figure 7.59. Approximations to a rectangular initial pulse by 10, 30, 50 modes. Pulse
initially in the range 0:1L · z · 0:4L.

Equations have been solved here for two cases: ®n = μn = 0; and for the values of ®n μn chosen to
illustrate the propagation of pulses. No results have been obtained for the conditions in a motor. The
simplest case is a small amplitude pulse with no losses: ®n = μn = 0. Figure 7.60(a) is the pressure at the
head end (z = 0) for the pulse represented by ten modes, Figure 7.60(b), and ¢ = 0:006. Because only ten
modes are used, ripples appear in the waveform. The pulse shape in the chamber is shown in Figure 7.60(b)
for various times during three cycles. For the small amplitude of this pulse, the second order nonlinearities
have no discernible e®ect on the pulse shape for the short time covered in this ¯gure.

In contrast, the case ¢ = 0:1 is a large amplitude pulse, and the in°uence of nonlinearities appear
already in the ¯rst cycle. The initial shape is that of Figure 7.60(a). Figure 7.60(a) is the waveform at z = 0,
and Figure 7.60(b) shows the pulse shape at various times. For comparison, the waveform of a simple cosine,
the fundamental mode, is shown in Figure 7.61. Note the steepening into a weak shock after three cycles.
The generation of higher harmonics is evident, both in the waveform measured at = 0 and in the shape
of the pressure distribution, in the chamber. However, an interesting feature is that the smoothness of the
spatial distribution is not re°ected in the time history, appearing in Figure 7.61(a). The uneven character
of the latter is due to the excitation of higher frequencies whose associated spatial waves combine to form
the smoothly steeping solitary wave which propagates as shown in Figure 7.61(b).

One of the interesting and potentially useful features exhibited by pulses in motors is the change of
shape due to di®erent rates of decay for the modes. In Figure 7.62, the decay of a small amplitude pulse
is shown. For this case, ®n = ¡40n, and μn = 0 in equations (7.28)a,b; again the initial pulse shape is the
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Figure 7.60. Propagation of a rectangular pulse without losses (10 modes): p0(z; 0) =
0:006p0; 0 · z · 0:3L. (a) Waveform at z = 0; (b) pulse shapes for three cycles.
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Figure 7.61. Propagation of an evolving cosine wave: p0(0; 0) = 0:01po. (a) Waveform at
z = 0; (b) pulse shapes for three cycles. Notice the form of the steepened cosine wave shown
at the end of the third cycle.
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Figure 7.62. Propagation of a rectangular pulse (10 modes): p0(z; 0) = 0:006p0; 0:1L ·
z · 0:4L. (a) Waveform at z = 0; (b) pulse shapes for three cycles.

NONLINEAR BEHAVIOR OF COMBUSTOR DYNAMICS 

RTO-AG-AVT-039 7 - 59 

 

 



approximation for ten modes, Figure 7.62(a). After six cycles there are still substantial amounts of the ¯rst
¯ve harmonics but the next ¯ve are practically absent. The average value of the pulse remains ¯xed at its
initial value, so the pressure °uctuation does not become negative after several cycles.

Finally, in Figure 7.62 the behavior of a rectangular pulse initially displaced from one end is shown.
The initial shape is the approximation with ten modes, Figure 7.62(b). This case corresponds to the perfect
rectangular pulse sketched in Figure 7.58. The qualitative similarities are obvious.

7.14. Spatial Averaging and Dynamical Systems Theory Applied to Pulsed Instabilities

Attention to the problem of triggering shifted in the 1990s from numerical solutions to use of the method
based on spatial averaging as described in Chapters 3 and 4. Although there was no proof, numerous examples
had ¯nally led to the conclusion that the equations with linear combustion sources and second order acoustics
do not contain triggering. Attempts to ¯nd triggering with the equations carried to third order in nonlinear
acoustics also failed (Yang, Kim and Culick 1990). The general conclusion was (and is) that the nonlinear
acoustics alters the distribution of energy among the modes of oscillation, but since there is no external
source of energy, the process cannot support triggering. Therefore, emphasis shifted to the role of the source
terms. Due to the conclusion just stated, it is su±cient, at least for the initial work, to consider only second
order acoustics. To the present time, third and higher order acoustics have not been considered; there seems
to be no need to use an expansion procedure higher than second order.

Earlier work (Yang, Kim and Culick 1990) had shown although the result was not rigorously proven
in general, that triggering could occur if either quadratic self-coupling or linear cross-coupling between
modes are present. For example, in unpublished work, a model system examined by Awad and Culick
(1984) demonstrated the importance of quadratic self-coupling which, however, does not arise in the modal
expansion of the purely °uid mechanics contributions (½~u ¢ r~u; etc.). Thus, it appeared again that the
resolution of the matter lay with the source terms.

In 1996, Wicker, Green, Kim and Yang (1996) used the time-averaged equations accounting for two
modes, to study the conditions under which triggering occurs for ¯ve forms of the unsteady burning rate.
When _m0

1 is proportional to p
02, u02 or p0u0 no triggering. The authors found in that case no linear or quadratic

self-coupling so the result is consistent with the conclusion cited above. However for _m0
b proportional to j~u0j

or p0j~uj. They used the time-averaged equations. An interesting, and probably important, feature of their
results was the fact that linear cross-coupling among the acoustic modes and quadratic self-coupling of the
fundamental mode were the origin of triggering. A bit unsettling is the conclusion that the \initial phase
di®erence and harmonic content can be just as important as initial composite amplitude in determining the
stability of a pulse." This result suggests a certain kind of sensitivity that may be associated with the use of
the time-averaged equations. See Jahnke and Culick (1994) for relevant results dealing with the limitations
of the time-averaged equations; they did not, however, examine triggering.

Nearly contemporaneous with the work of Wicker et al.were results obtained by Jahnke and Culick (1995)
using the continuation method described in Section 7.4. They used two models for nonlinear combustion,
that of Levine and Baum (1983), and a slightly simpler one by Greene (1990) in which _m0

b » j~u0j. We will
discuss only the ¯rst here, for which the °uctuation mass °ux departing the burning surface is computed
with a slightly more complicated form of (7.59). Assume that the total mass °ux (not just _m0) is given by
(7.59) so the °uctuation is now

_m0 = _m¡ _m

=
¡
_m0
pc + _m0

pc

¢
[1 +RvcjU0j]¡ _m0

pc

Some rearrangement and introduction of the response function Rb leads to the relation
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Figure 7.63. The function F (u0) used in the model having a threshold velocity ut > 0; the
value ut = 0:02 is only an example (Burnley 1996).

_m0

m
= Rb

μ
p0

°p

¶
+RvcRb

μ
p0

°p

¶
jU0j+ _mpc

m
RvcjU0j (7.81)

Substitution into the combustion term of the forcing function ( ) leads to

(Fn)comb =
ub
E2n

½
C1

ZZ
@

@t

μ
p0

p
ju0j
¶
ÃndS + C2

ZZ
@ju0j
@t

ju0jÃndS ¡ C3
ZZ

p0

p

@

@t

μ
p0

p

¶
ÃndS

¾
(7.82)

where

C1 = RvcRb ; C2 =
1

°
Rvc ; C3 =

2

°
(Rb ¡ 1) (7.83)

Note that Rvc is a constant but Rb is in general a function of frequency, as for example in (2.52). To simplify
the calculations in order to understand more easily the qualitative behavior, we set the imaginary part of

Rb equal to zero, that is, in (2.40), Rb = R
(r)
b given as the real part of (2.52), with ns = 0.

The functions ju0j and ju0¡utj are shown in Figure 7.63, with ju0¡utj by de¯nition zero for u0 < ut; ut is
called the threshold velocity. Burnley (1996) gave an extended discussion of the consequences of truncation;
various simpli¯cations of the combustion model; the threshold velocity; and time-averaging. Results obtained
with the second-order equations (7.27) compared with those based on time-averaging have shown that time-
averaging must be used with care, for it can lead to misleading results (see Wicker et al. 1996, Burnley and
Culick 2000 and Wicker and Yang 2000).

A main general conclusion reached by Culick, Burnley and Swenson is that triggering exists only if both
nonlinear combustion and nonlinear gasdynamics are included. The point is made most strikingly and clearly
with the bifurcation diagram, Figure 7.64.

The role of velocity coupling is clearly important and the results suggest that it is important for triggering
to occur under practical circumstances, but proof of the point has not been established beyond all doubt.
Much remains to be done on this aspect of the problem.
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Figure 7.64. Maximum amplitude of the ¯rst acoustic mode in the limit cycle showing the
contribution of nonlinear gasdynamics and combustion (Culick, Burnley and Swenson 1995).
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Figure 7.65. Maximum amplitude of the ¯rst acoustic mode in the limit cycle showing a
subcritical bifurcation with a turning point only if both nonlinear gasdynamics and nonlinear
combustion dynamics are accounted for (Culick, Burnley and Swenson 1995).
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CHAPTER 8

Passive C ontrol of Combustion Instabilities

Treating combustion instabilities in combustors for operational propulsion systems has always been and
remains a matter of passive control. Methods of active control, which are discussed in Chapter 9, still (2005)
remain largely in the realm of demonstrations although some recent work suggests that more basic problems
and approaches are attracting attention. Quite generally, methods of passive control fall into two classes:
modi¯cations of the propellant supply system; and changes of the combustor geometry. Both kinds of control
(in this context commonly referred to as `¯xes') have been used in all types of propulsion systems.

For solid rockets, two sorts of passive control are routinely applied: changes in the propellant composition;
or modi¯cations of the geometry of the propellant grain. It is rarely possible to alter the reactants in liquid
fueled systems. Hence passive control in those cases has been exercised largely by adjusting the design of the
fuel supply system; or by changing the combustor geometry, often with the addition of ba²es, resonators, or
acoustic liners. In any case, the basis for using passive control is mainly qualitative and empirical, founded
on understanding the basic processes. The discussion in this chapter is descriptive, largely a brief survey
of experiences. Wherever possible the physical reasons for successes are given. Our treatment is cursory
because much of the material is covered well in easily accessible references.

Further e®ort has been devoted in the past decade to using computational methods to aid design of
passive devices. The approach will clearly become more important as experience grows and the procedures
improve. Nevertheless, testing remains the primary basis for developing practical means of passive control.

8.1. Interpretation of Passive Control

How passive control works in a general sense can be explained most simply by appealing to the basic
ideas illustrated in Figures 1.1 and 1.9. The essential point is that a combustion system really consists of
two dynamical systems: the chamber dynamics and the combustion dynamics. The combustion chamber
acts as an ampli¯er of acoustical motions; the combustion processes provide feedback, giving the possibility
for unstable oscillations. Instabilities will occur if the energy gained by unsteady motions in the chamber
exceeds the energy lost during a cycle. Passive control consists in modifying or blocking at least one of
the factors contributing to the existence of oscillations; or suitably increasing the damping in the system.
Figure 8.1 combines the two parts of Figure 1.9 to show schematically the fact that a mode (here the second
wave mode) of the chamber dynamics will become unstable if the rate of energy gains exceeds the rate of
energy loss in the frequency range covering that mode. Thus there are clearly three possible tactics that may
be followed to eliminate, or at least reduce, the instability: decrease the energy gains; increase the energy
losses; or shift the frequency response of the chamber so all peaks lie outside the shaded range where the
gains exceed the losses. The three possibilities are sketched in Figure 8.2 where the dashed lines indicate
the behavior before modi¯cation, shown in Figure 8.1.

Note that for Figures 8.2(a) and (b) we assume that the losses are increased su±ciently (Part a) or the
gains are reduced su±ciently (Part b) that the losses exceed the gains for all frequencies and the system is
completely stable. In 8.2(c), the gains exceed the losses in the frequency range f1 < f < f2 so the chamber
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Figure 8.1. Schematic diagram showing qualitatively the conditions under which instabil-
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Figure 8.2. Qualitative and stylized interpretation of the possible e®ect of modi¯cations
on the dynamical behavior of a combustion system; dashed lines indicate behavior before
modi¯cations are made to reduce the tendency for instability. (a) energy losses increased,
usually by a small change of the chamber response; (b) energy gains reduced; (c) modi¯ed
chamber response. Dashed lines indicate conditions prior to modi¯cations.

dynamics may exhibit oscillations. However, since no peak of the response lies in that range, the amplitude
of any oscillation will be much reduced from its value existing with the unmodi¯ed chamber response. The
point is that when purely changes of geometry are made, the system may still show instabilities: The details
can be known (approximately) only by carrying out calculations using, for example, the analytical apparatus
developed here in Chapters 3{7.
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Corresponding to the behavior sketched in Figure 8.2, we can construct block diagrams, modi¯ed forms
of Figure 1.1. This procedure makes the connection between the subject at hand and the ¯eld of feedback
control. To illustrate the idea we assume linear behavior and adopt conventions familiar in the theory of
feedback control, elaborated further in the following chapter. We assume that the governing equations have
been transformed from the time domain to the complex frequency (s) domain by applying the Laplace
transform. The various transfer functions are identi¯ed by the following symbols:

G(s): chamber dynamics
Q(s): combustion dynamics
CG(s): modi¯cation of the chamber dynamics
CQ(s): modi¯cation of the combustion dynamics

Then the complete linear dynamical system is represented by the diagram given in Figure 8.3, where F and
P represent the Laplace transforms of the external input and pressure respectively.

F +
+

Σ PCG G

COMBUSTION

DYNAMICS

Q

COMBUSTOR

DYNAMICS

CQ

Figure 8.3. Block diagram of the basic system (G;Q) with passive control due to modi¯-
cations of the chamber dynamics (CG) and of the combustion dynamics (CQ).

The transfer function for the system can be found directly by noting that the input to C is

F +QCQP

and the output of G is therefore
GCG(F +QCQP )

But the output if G is P , so
P = GCG(F +QCQP )

and

P =
(GCG)

1¡ (GCG)(QCQ)F (8.1)

Thus the e®ective transfer functions of the chamber and combustion dynamics are GCG and QCQ.

An instability may be interpreted as a motion, i.e. a non-zero value of the pressure (P ), that occurs when
the external disturbance (F ) is vanishingly small. That event arises if the denominator of (8.1) vanishes,

(GCG)(QCQ) = 1 (8.2)

This equation (here the transfer functions are all assumed to be scalars) gives the values sn of the complex
frequency for which instabilities arise. Those values of sn identify the peaks of the response function sketched
in Figures 8.1 and 8.2.

Instabilities in the unmodi¯ed system are found for values of sn given as the roots of (8.2) with CG =
CQ = 1. Hence, if CG or CQ both di®er from unity, here representing the e®ects of passive control, then
the roots of (8.2) are shifted in the complex plane. The sketches in Figure 8.2 suggest the consequences of
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CG and CQ di®ering from unity. As indicated in Figure 8.2(a), the energy losses tend to be related to the
response of the chamber for liquid fueled systems. If, for example, viscous or acoustic radiation losses are
increased, the peaked portions of the response broadens (the \Q" of each mode is decreased) and the peak
values are reduced. Particularly if losses due to particulate matter are signi¯cant, as for solid rockets, the
connection with the chamber response is relatively weak.

On the other hand, if the combustion processes are a®ected, for example, by small changes in the injection
system of a liquid rocket, and the chamber dynamics are practically una®ected, then the conditions sketched
in Figure 8.2(b) are met. It appears that this case arises when the dynamics of the injection system are
changed for a ¯xed design of the chamber. For solid rockets, the gains of energy|commonly referred to as
`driving'|can be signi¯cantly a®ected by modi¯cations of the propellant.

Finally, if the geometry of the chamber is signi¯cantly altered|as, for example by adding ba²es|then
the frequencies of the natural modes may be shifted, quite possibly with relatively small changes in the
energy losses. That case is represented in Figure 8.2(c).

The preceding discussion is intended only as an introduction to some of the principal ideas applicable to
passive control and one way to think of the problems. For gas turbine combustors and augmentors especially,
real cases become considerably more complicated, involving normally a great deal of testing. Recent articles
by Mongia et al. (2005), Krebs et al. (2005), Richards et al. (2005) and Scarinci (2005) contain informative
discussions of experiences with problems in full-scale operating engines.

8.2. Ba²es

A `ba²e' is a structure placed in a combustion chamber in such a fashion as to reduce the amplitude
of an unacceptable oscillation. There is no unique way to accomplish the desired result, and there are few
well-de¯ned rules for either the shapes or locations of ba²es. Ultimately the best arrangement of ba²es to
e®ect a desired result is established by testing.

Perhaps the earliest discussion of methods to reduce oscillations appears in Chapter 9 of the book Internal
Ballistics of Solid Fuel Rockets by Wimpress (1950). Although it appeared in 1950, the book actually covers
work done during World War II in the period 1941{1945, and therefore does not include discussion of case-
bonded grains which were invented later. Figure 8.4 shows qualitatively three con¯gurations of ba²es used
in solid propellant rockets. Instrumentation available at that time did not resolve oscillations but large
excursions of the average pressure are obvious; examples are shown in Figure 8.5.

Attempts to reduce or eliminate the e®ects such as those shown in Figure 8.5 formed the earliest uses
of passive control. The attempts included inhibiting portions of the grain; changing the internal shape;
installing resonance rods; and drilling holes in the grain normal to the °ow direction. Resonance rods may
be regarded as early forms of ba²es more familiar in liquid-fueled systems which we will mainly discuss here.

Figure 8.6 is a convincing example of the e®ectiveness of an array of ba²es installed in the F-1 engine,
of which ¯ve formed the ¯rst stage of the Apollo vehicle. Ba²es mounted on the injector face and extend-
ing longitudinally formed multiple cavities; the array of twelve cavities is shown. Comparison of the two
results reproduced in the ¯gure shows that the unacceptable time-dependent motions generated by a pulse
were e®ectively eliminated. For ba²es extending from the injector face in a liquid rocket, the three main
geometrical variables are the length and height of the ba²es or `blades' as they are referred to; the number
of blades; and their orientation. This con¯guration, also shown in Figure 8.7, became quite common in U.S.
liquid rockets: Longitudinal ba²es extending from the injector face.
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Figure 8.4. Simple forms of ba²es for solid propellant rockets (Culick 1981).

As shown in Figure 8.8, ba²es may be combined with other devices, such as small acoustic cavities. In
the example shown, the azimuthal slot along the outer periphery is divided into smaller volumes each of
which will contain a mode of oscillation. Because longitudinally a single cavity is closed at one end and open
at the other, it supports naturally a quarter wave and is therefore called a `quarter wave resonator'. If it is
to be e®ective, such a cavity must be `tuned' to support a quarter wave of the correct frequency. That is,
the dimensions must be correctly chosen, a process which is guided to some extent by theory but in practice
involves trial and error. The temperature in the cavity is always known poorly and cannot be computed
accurately. Thus, determining actual behavior must always await test results.

Chapter 8 of the volume by Harrje and Reardon (1972) contains an extensive discussion of ba²es. More
detailed considerations of particular applications and of special characteristics are covered in references cited
there. Figure 8.9 suggests the wide variety of ba²es used in liquid rockets. The con¯guration chosen in a
speci¯c application is motivated, in the ¯rst instance, by the characteristics of the mode to be suppressed.
Figure 8.10 shows the pressure ¯elds for seven of the lowest transverse modes in a circular cylinder. It is
easy to sketch the associated velocity ¯elds. Then a con¯guration of ba²es may be chosen to interrupt the
motions, thus preventing formulation of the mode in question, as indicated in Figure 8.9. Oberg, Haymes and
Wong (1972) have given a brief summary of devices used to suppress oscillations in solid rockets. Installation
of ba²es was the authors' preference for relatively low frequencies, the favored orientation being normal to
the wave motion. Table 8.1, taken from Oberg, Haymes andWong, summarizes many practical considerations
for ba²es and for cavities, covered brie°y in Section 8.3.
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(a)

                                                                                                                            

(b)

Figure 8.5. Early examples showing consequences of high-frequency oscillations. (a) De-
partures of the mean pressure from design values. (b) Uneven burning of a propellant grain
due to oscillations (Wimpress 1950).

Figure 8.6. The importance of ba²es in the F-1 engine (Oefelein and Yang 1993).

An unusual application of ba²es, of a disposable sort never used in the U.S., is shown in Figure 8.11(a),
a photograph of ba²es for the Russian RD{0110 liquid-fueled engine (Rubinsky 1995). The instability was
a longitudinal mode and as Figure 1.15 shows, the ba²es were installed to be oriented with, not normal to,
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Figure 8.7. Perspective view of a
rocket combustion chamber with lon-
gitudinal ba²es installed on the injec-
tor face (Harrje and Reardon 1972).

Figure 8.8. An injector with ba²es
and azimuthal slots (Harrje and Rear-
don 1972).

the wave motion. Moreover, what is unique, the `ribs' were designed to be consumed very early in a ¯ring
and so were fabricated of felt. Figure 8.11(b) shows the very signi¯cant reduction of the amplitude of the
instability due to the ribs. Evidently in this case the ribs acted practically as pure absorbers, and did not
greatly a®ect the modal shape of the wave motion.

Mitchell and his students have for many years used linear theory to study the e®ects of various con¯g-
urations of ba²es on the acoustic ¯eld without taking account of a mean °ow. An accessible discussion of
their work appears as the article by Baer and Mitchell (1977). Their accomplishments are summarized as
part of the report by Mitchell et al. (1987).

The most extensive calculations for a simple con¯guration, to determine the main nonlinear acoustical
e®ects of ba²es appear in the paper by Wicker, Yoon and Yang (1995). A concise survey of work on ba²es
is included as the introduction. Both linear and nonlinear behavior are covered, based on the formulation
summarized here in Chapters 4{7. The details of the analysis are of course conditioned by the con¯guration
treated, which is shown in Figure 8.12. No combustion or °ow were taken into account, but the calculations
form an example of the approach which can be useful for investigating the properties and e®ects of ba²es.
The calculations can be extended to con¯gurations other than that shown in Figure 8.12, but no further
results have been reported and there are no experimental data.

It is a straightforward matter to gain an initial idea of how e®ective a ba²e is by making measurements
in a model at room temperature. For example, the procedure has been used by Laudien et al. (1995) to
assess the e®ectiveness of both resonators and ba²es. Figure 8.13(a) shows their experimental arrangement,
with the results for the spectrum of modes plotted in Figure 8.13(b). Figure 8.14 suggests the two well-
known methods for measuring the damping factor and Figure 8.15 shows measured decay rates per cycle
of oscillation for the ¯rst ¯ve tangential modes of the model shown in Figure 8.13(a). The values for the
decay rate measured in this way will not be the same as those applicable under operating conditions at
high temperature and with °ow. However, as a qualitative indication, room-temperature measurements and
observations are extremely useful.
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Figure 8.9. Examples of the arrangement and shapes of ba²es ¯xed to the injector face
of a liquid rocket (Figure 8.2.2d of Harrje and Reardon 1972).
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Figure 8.10. The pressure ¯elds for the lowest order modes commonly encountered in
circular cylindrical combustion chambers (Figure 8.2.2b of Harrje and Reardon 1972).
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Table 8.1. Considerations of Ba²es for Application to Solid Propellant Rockets (Oberg,
Haymes and Wong 1972).

Transversely Oriented Ba²es Cavities
Type of Longitudinally Located in Forward

Suppression Device Ori¯ce Tab(s) Oriented Ba²es Integral with Igniter or
(Rods and Paddles) Aft End of Case

Fabrication of the Device Insulation/Structure{ ¢ ¢ ¢ same¢ ¢ ¢ ¢ ¢ ¢ same¢ ¢ ¢ ¢ ¢ ¢ same¢ ¢ ¢ ¢ ¢ ¢ same¢ ¢ ¢
General Materials Used High pressure molded

¯lled phenolic/epoxy

Structure-Steel Graphite{ ¢ ¢ ¢ same¢ ¢ ¢ ¢ ¢ ¢ same¢ ¢ ¢ ¢ ¢ ¢ same¢ ¢ ¢ ¢ ¢ ¢ same¢ ¢ ¢
Titanium or high temp

metal

Component Fabrication Insulation/Structure{ Insulation/Structure{

Processes Cut or machined from ¢ ¢ ¢ same¢ ¢ ¢ Cut or machined from ¢ ¢ ¢ same¢ ¢ ¢ ¢ ¢ ¢ same¢ ¢ ¢
sheets or slabs or sheets or slabs or
lay-up/wrap-cure lay-up/wrap-cure

plus molded rods

Structure{Machined, ¢ ¢ ¢ same¢ ¢ ¢ ¢ ¢ ¢ same¢ ¢ ¢ ¢ ¢ ¢ same¢ ¢ ¢ ¢ ¢ ¢ same¢ ¢ ¢
forged, or molded

Assembly Fabrication Integral molding/wrapping
of plastic to metal support ¢ ¢ ¢ same¢ ¢ ¢ ¢ ¢ ¢ same¢ ¢ ¢ ¢ ¢ ¢ same¢ ¢ ¢ ¢ ¢ ¢ same¢ ¢ ¢
or mechanical attachment

Special Installation Plastic parts stored in ¢ ¢ ¢ same¢ ¢ ¢ ¢ ¢ ¢ same¢ ¢ ¢ ¢ ¢ ¢ same¢ ¢ ¢ ¢ ¢ ¢ same¢ ¢ ¢
Preparations/Procedures low-humidity condition

Quality of Materials Materials used should be
and certi¯ed and some degree

Fabrication Processes of receiving inspection ¢ ¢ ¢ same¢ ¢ ¢ ¢ ¢ ¢ same¢ ¢ ¢ ¢ ¢ ¢ same¢ ¢ ¢ ¢ ¢ ¢ same¢ ¢ ¢
used. Critical areas

should receive rigorous
¯nal inspection

Motor Adaptations and Internal tabs or rings Internal frames, rings, Igniter structure Integral tabs or

Installation Requirements may be required to or attachment points attach features may ring(s) may be

Special Case Structural locate and ¯x the ¢ ¢ ¢ same¢ ¢ ¢ in domes may be used be governed by required to ¯x
Features Required assembly in place. integral cavity assembly in place

Hard wall insulation con¯guration
may be used

Special Case Insulation Insulation may have to be Cutouts in dome
Features Required installed in sections and ¢ ¢ ¢ same¢ ¢ ¢ insulation and ¢ ¢ ¢ same¢ ¢ ¢ ¢ ¢ ¢ same¢ ¢ ¢

have special ¯llets and special ¯llets
seals to interface with may be required

assembly

Special Grain Inhibiting Grain may have to be Secondary support on None Grain may require
Required inhibited on one or both ¢ ¢ ¢ same¢ ¢ ¢ internal surface of end inhibitors

sides of ori¯ce assembly. grain may require depending on
Special sealing at wall local surface con¯guration

interface may be required protection

Special Grain Casting/ Two grain casts may be None, unless design Can be none, or Grain may require
Trimming Procedures necessary with curing, interferes with grain. provide for recess end cast relief or

trimming, and inhibiting ¢ ¢ ¢ same¢ ¢ ¢ If required integrated or clearance by trim depending on
for each, or perforated grain-ba²e cast tool- casting mandrel con¯guration
ba²e coordinated with ing must be so designed design or grain trim

casting plate

Special Ignitor or None, unless ori¯ce area None Attach structure may Can be integral None
Ignition Features causes abnormal ignition be integral with igniter with igniter

Required response or transient assembly. Heat absorp- structure
condition tion by device may

require igniter tailoring
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(a) (b)

Figure 8.11. (a) Combustible longitudinal ba²es (ribs) in the Russian RD{0110 engine
and (b) their substantial e®ects on the amplitude of oscillations (Rubinsky 1995).
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Figure 8.12. The combustion chamber with a three-bladed ba²e analyzed by Wicker,
Yoon and Yang (1995).

An important e®ect of a ba²e is often `shadowing' of the combustion zone from °ow disturbances,
particularly the °uctuating velocity associated with acoustic waves. This is evidently a major reason for
the e®ectiveness of ba²es on the injection face in the F-1 engine, Figure 8.6. However, the secondary °ows,
including unsteady vortices, make this method virtually impossible to perfect. Not only is the actual °ow
di±cult to compute, but it is also not easily reproduced in the laboratory. There are no experimental results
directed explicitly to the matter of shadowing.
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(a) (b)

Figure 8.13. A model of a rocket chamber and the measured spectrum of tangential modes
(Laudien et al. , 1995).
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Figure 8.14. Two methods for measuring the damping factor: (a) decay rate, ®; (b) bandwidth.

Figure 8.15. Results for the decay rate of tangential modes in the chamber shown in Figure
8.13(a) (Laudien et al. 1995).
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8.3. Resonators and Acoustic Liners

Resonators are the basic elements of acoustic liners which consist of many elements arranged on the
surface of a combustor. The most important properties of an acoustic resonator are that it responds to an
incident acoustic wave having frequency in a more-or-less narrow range depending on the geometry of the
device and the amplitude of the wave; and the wave produced (re°ected) in the response, while it necessarily
has the same frequency as the incident wave, will be scattered into many directions. Because of the second
property, a resonator causes the incident wave to lose energy independently of any viscous e®ects which add
signi¯cantly to the losses. It is that energy loss that makes a resonator such an attractive and important
tool in practical control of combustion instabilities.

The earliest use of resonators seems to be that reported by Fox (1951), to attenuate oscillations in a
ramjet. An array of ori¯ces was cut in the lateral boundary, backed by small cavities, one for each ori¯ce, thus
forming an array of resonators. That general idea, known from the beginning of concerns with combustion
instabilities, is used at the present time, notably in afterburners, but also in gas turbines and liquid rockets.
In fact, for practical purposes, much of the development of resonators and acoustic liners was completed by
the 1970's. Representative references include Blackman (1960); Chapter 8 of Harrje and Reardon (1972);
Utvik and Blackman (1965); Phillips and Morgan (1967); Phillips (1968); and Phillips, Hannum and Russell
(1969). The principal part of the behavior that required special attention was the in°uence of °ow, both
through the ori¯ce and parallel to the opening, sometimes referred to as grazing °ow. Experiments were
often motivated by the need to specify the behavior in terms of a small number of parameters.

EFFECTIVE

SPRING

ρ a  A
2 2

Vc
VOLUME,  Vc

AREA

INCIDENT WAVES

RADIATED WAVES

EFFECTIVE

MASS, ρ Al

l

Figure 8.16. The essential features of an idealized cavity resonator.

An idealized resonator is sketched in Figure 8.16. The simplest view of the device is that it is a simple
mass/spring/dashpot system. A plug of °uid mainly in the neck, but including small amounts from the
environment at both ends, is the mass; the springiness is provided mainly by the °uid in the cavity having
volume Vc. Damping|identi¯ed with the `dashpot'|accompanies the motion, being caused partly by viscous
forces and partly by radiation of acoustic waves that do not combine with the incident wave. Suppose that
the damping force on the plug of °uid is proportional to its velocity. Then with the de¯nitions given in
Figure 8.16, the equation of motion of the plug is

¹½Al
d2x

dt2
+ °

dx

dt
+
¹½¹a2A2

Vc
x = Ap̂ cos!t (8.3)

where x is the excursion of the plug from its equilibrium position.
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Damping has a small e®ect on the frequency which we ignore in the interest of simplicity. With p̂ = 0,
we have the equation of motion for an undamped oscillator.

¹½Al
d2x

dt2
+
¹½¹a2A2

Vc
x = 0 (8.4)

The frequency of the undamped, unforced oscillator is

! = ¹a

r
A

lVc
(8.5)

If damping is included, the frequency is reduced by a small amount. The formula (8.5) already shows that
using a resonator as a means of a®ecting low-frequency motions is impractical because the size must be
large. For example, suppose the frequency is 100 Hz so ! = 200¼ s¡1. Take ¹a = 1000 m/s and (8.5) givesp
A=lVc = ¼=5 so A=lVc = ¼2=25 ¼ 0:4 m¡2. A reasonable hole might have diameter comparable to its

thickness: A=l » (¼l2=4)=l » l so A=lVc » l=Vc » 0:4 m¡2. and Vc » (0:4=l) m3. The neck of a resonator
is often cut in sheet material (see Figure 8.15) which we may take to be, say, 2 mm thick, or 2 £ 10¡3 m.
Thus Vc » (0:4)=(2£10¡3) » 20 m3 which is of course unacceptably large. This result shows why resonators
are practical for oscillations in the frequency range of thousands of Hertz, not hundreds. If an application
requires attenuation in a moderate range of frequency, then a single or small number of resonators may be
used, perhaps in combination with ba²es, providing there is su±cient volume available for the cavities. In
the range of frequency where resonators are commonly used, they are most commonly used in the form of
acoustic liners.

`Acoustic liner' is the term used to describe the structure covering all or part of the lateral boundary
of a combustor. Figure 8.17 is a good example used on a 15,000-pound thrust rocket motor. Probably the
two main problems arising with installation of a liner are tuning so oscillations in the troublesome frequency
range are attenuated; and cooling. See Section 8.3.5 of Harrje and Reardon (1972) for a good discussion of
the cooling problem and its practical solution for liquid rockets.

It is probably true that acoustic liners are used more widely in gas turbines and their components than
in any other application. They are part, for example, of inlet design to reduce the amount of noise radiated
forward of transport aircraft. Here we are concerned only with acoustic liners incorporated in rockets and
thrust augmentors. It is accepted practice to incorporate a liner as part of the basic design of an augmentor
to attenuate screech or relatively high frequency oscillations. Lower frequencies require special measures,
such as modifying the distribution of injected fuel, even to the extreme of shutting o® some of the injectors.
Such problems may determine limits in some parts of the °ight envelope.

The problem of cooling is commonly reduced by directing a `bias °ow' through the liner. Hughes and
Dowling (1990); and Jing and Sun (1998) seem to have reported the last works on the subject. A central
question is: In what respects does a bias °ow a®ect the acoustics of the liner? Hughes and Dowling worked
out a theory for the absorption coe±cient and its dependence on ·a ´ !a=º where 2a is the diameter of the
holes and º is the mean velocity of the bias °ow. Both they and Jing and Sun measured the absorption with
a form of the impedance tube method (Section 5.11) sketched in Figure 8.18.

A system of holes in a liner supported some distance from a (nearly rigid) wall, with or without a bias
°ow, has certain resonance and re°ection properties which depend on the various geometrical parameters
and the bias °ow. It is those properties that matter for practical applications. For example, the e®ective
absorption by a liner depends on, among other quantities, the thickness of the liner material and the size
and spacing of the holes. In these experiments, the principal parameters are the Mach number of the bias
°ow, certain geometrical parameters and a `resonance parameter' Q de¯ned by Hughes and Dowling. The
resonance parameters are proportional to the square of the wavenumber times the distance d between the
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Figure 8.17. Convectively cooled thrust chamber ¯tted with an acoustic liner (Figure
8.3.5b of Harrje and Reardon (1972).

Figure 8.18. Apparatus for measurement of the acoustic properties of a model of a liner
with bias °ow (Hughes and Dowling 1990).

apertures; and proportional to the ratio of the depth l of liner divided by the diameter 2a of the holes,

Q = (kd cos μ)2
l

2a
(8.6)

where μ is the angle between the direction of wave propagation and the normal to the wall. Figure 8.19
shows a comparison of the theory worked out by Hughes and Dowling with some data taken by themselves
and by Jing and Sun. It appears that the general basis for design of acoustic liners is settled. The di±cult
matter of mounting liners in the hardware at hand must be solved specially for each case.
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(a) (b)

Figure 8.19. Absorption coe±cient for a portion of acoustic liner (a) from Figure 7 of
Hughes and Dowling (1990); (b) from Figure 7 of Jing and Sun (1998).

8.4. Damping Due to the Formation and Presence of Particulate Material

Sometime after aluminum powder (particle sizes< 100¹ usually much less) was introduced as a signi¯cant
constituent in solid propellants, it became apparent that amplitudes of combustion instabilities were often
much reduced. Apparently Neustein and Altman (1958) ¯rst proposed that the reason was the dissipation
of acoustic energy by viscous interactions between Al2O3 particles and the combustion gases induced by
oscillatory motions. The idea was based on earlier work done by Epstein and Carhart (1953) which we
mentioned in Section 6.14.3. An alternative interpretation, which also has a long history, is based on the
idea that condensed-phase reactions may be e®ective, especially if they are exothermic. Waesche (1999)
recently published a note discussing the relative merits (and truths) of these contrasting views. A test
program was carried out some years ago using an unspeci¯ed, but large (perhaps 25{30), number of small
cylindrical laboratory motors 11.5 inches long, having initial port diameters of 5 inches. The motor oscillated
in its ¯rst tangential mode, having frequency 4800 Hz soon after ignition and 4000 Hz at burnout.

Many tests were run, using several additives as well as aluminum and Al2O3. It is inappropriate here
to try to describe the details or to summarize the test program. Waesche's main conclusion was that \heat
release near the surface was a signi¯cant factor in the e®ective suppression of instability." Photographs of the
combustion zone supported the idea that those additives were most e®ective that \liberated large amounts
of energy." The results suggested that \incorporation of an additive that supposes oscillations by releasing
energy appears to be a more practical method of eliminating combustion instability than one based solely
on particle damping."

There is other (publicly unreported) evidence that exothermic reactions in the region where the solid
is converted to gas may be responsible for damping or reducing the amplitudes combustion instabilities; for
example, reference 4 of Waesche's note evidently supports the case. An analysis such as a modi¯ed form
of the sort carried out in Section 2.2.4 could probably be used to con¯rm the proposal; it seems that the
calculations carried out specially for this purpose remain to be done.

Quite a di®erent source of attenuation of oscillations are the responsive motions of particulate matter, the
idea introduced by Neustein and Altman. We have given an appropriate analysis of the basic phenomenon,
and data con¯rming the results, in Section 6.14.3. To summarize, the idea is roughly the following. A solid
propellant containing aluminum to increase its speci¯c impulse, produces condensed aluminum oxide (Al2O3)
among its combustion products. For example, a propellant containing 19% aluminum (said to be \heavily
aluminized") will produce 42% by mass of aluminum oxide in its products of combustion. As an actual
example, the propellant in the Space Shuttle booster motors contains 16% aluminum; the exhaust therefore
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consists of roughly 58% gases and 42% liquid. Many small tactical rockets contain comparable amounts of
aluminum. The presence of a signi¯cant amount of Al2O3 has the secondary e®ect of attenuating unsteady
motions. Note that at the usual combustion temperatures (> 3000±F) the Al2O3 is liquid and exists in
combustion chambers as droplets normally having sizes from the sub-micron range to tens of microns.

The attenuation of sound by particles suspended in a gas has a long history beginning with calculations of
the absorption of sound by fog, by Sewall in 19101. Epstein (1941) discussed comparison of the experimental
results (Knudsen 1931; Laidler and Richardson 1938) with the theory which had been improved by Lamb
(1932) and by Epstein himself. Epstein and Carhart (1953) worked out essentially a complete theory for
the attenuation of sound by non-interacting spherical particles; both the acoustic ¯eld and the motions of
the particles are described by linear equations. The formulas derived in Section 6.14.3 are much simpli¯ed
forms of those given by Epstein and Carhart but, the experimental work by Kraeutle, discussed below, has
established that the approximations are apparently quite accurate.

There are several important consequences of having large amounts of condensed material in a gas. We
are concerned here only with the two main e®ects that interactions between the wave motion and the motions
of the particles may have: the propagation speed of the waves is reduced; and the energy of the wave motions
is dissipated. Figures 6.22 and 6.23 show the approximate results for the frequency shift and attenuation
of a sinusoidal wave propagating in a gas containing particles having uniform size and uniformly dispersed.
The fractional change in frequency of a wave having ¯xed wavelength, as for a standing wave in a closed
volume, is equal to the fractional change of the speed of sound. From the relation ¹a = f¸ = !¸=2¼, we have
equation (6.103),

±f

f
=
±!

!
=
±¹a

¹a
(8.7)

where here the basic change of the speed of sound is due to a change in the number density of particles. We
¯nd ±¹a, or ±!, from Figure 6.39. For a propellant containing 15% aluminum (¹ = 0:15 in equation 6.216),
Cm = 0:4, and the reduction in the speed of sound is about ±¹a = 0:163¹a.

The dissipation of energy associated with the presence of particles is another matter that has for some
time been recognized as an important means of passively controlling combustion instabilities in solid pro-
pellant rockets. Part of the reason for strong practical interest in this behavior is the connection between
attenuation, particle size and frequency of oscillation shown in Figure 6.39. What is particularly important
is the fortuitous circumstances that the particle sizes produced in most solid rockets are in the range for
which the attenuation is greatest for the frequencies of oscillations encountered. Finally, there is a ¯rm basis
for performing the calculations necessary to understand the general behavior and, in principle, carry out the
required design procedure. The most di±cult part of ensuring that the desired conditions are reached in
practice, a goal dependent on the physio/chemical conditions which are partly dependent on uncontrollable
conditions within the combustion processes.

There are many reports of using purposely altered particle sizes to a®ect (the intent is to do this
favorably) the attenuation of acoustic waves by particle damping. A particularly clear discussion of the
matter was given by Derr, Mathes and Crump (1979) which we summarize here. Earlier reports of the
background and progress of the work were given by Mathes et al. (1978), Kraeutle (1977) and Kraeutle et
al. (1976). A central motivation for the series of works was to optimize the attenuation of acoustic waves due
to small particles (`particle damping') by providing the appropriate size distribution of particles. Because the
necessary measurements are carried out in a motor, the information is obtained for the particular operating
system in question. We assume here that the properties of the unstable motions, notably the dominant
frequency, are known from observation of actual ¯rings. Thus we restrict attention to the particles which we
assume are mainly Al2O3 produced in the combustion of aluminum in the propellant.

1Zink (1957), and brie°y Zink and Delsasso (1958), have reviewed the history of the subject.

PASSIVE CONTROL OF COMBUSTION INSTABILITIES 

8 - 16 RTO-AG-AVT-039 

 

 



Figure 8.20 is a diagram showing the strategy. If this procedure is to be successful, there are, at this
stage, three crucial processes which must be well in hand:

(i) Collection of particles from motor ¯rings;
(ii) Analysis of the size distribution;
(iii) Modi¯cation of the propellant to e®ect a favorable in the size distribution.

The details of these three important procedures are outside the scope of this book. We intend here only to
indicate what must be done by outlining the special example treated in the reference cited.

ALUMINUM

BEHAVIOR

SAMPLE OF

CONDENSED

PHASE

DROPLETS

SIZE

ANALYSIS
CALCULATE

DAMPING

MOTOR

FREQUENCY
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ALUMINUM TREAMENT

ALUMINIZED

PROPELLANT
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COMBUSTION

PHOTOGRAPHY

PARTICLE
COLLECTION

BOMB

CELLOSCOPE
SIZE

ANALYSIS

PARTICLE
DAMPING

THEORY

DAMPING

Figure 8.20. Scheme of a procedure followed to improve the attenuation of combustion
instabilities by increasing the particle damping (Derr, Mathes and Crump 1979).

The example is based on a motor cast with a metallized double-base propellant which showed unaccept-
able oscillations in the range of frequency 2K to 4K Hz. Samples of the propellant were burned at the motor
pressure. Collection of the particles and analysis of the sizes gave the results shown in Figure 8.21 with
comparable results from a more `conventional' motor.2 Figure 8.22 is a comparison of the particle damping
calculated with the method discussed in Section 6.14.3, for the size distribution shown in Figure 8.21; and
the particle damping for two uniform size distributions giving optimum damping respectively at 2 KHz and
4 KHz. Evidently the actual particle size distribution is quite far from the best possible. This result was
accepted as the reason that the motor had a problem with oscillations. Correcting the problem required
measures not discussed in the reference.

2The con¯gurations of both motors were omitted from the references.
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Figure 8.21. Particle size distribution for tactical motor propellant and a conventional
aluminized propellant (Derr, Mathes and Crump 1979).
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8.5. Dynamics of Injection Systems

Liquid-fueled systems o®er a special possibility for passively controlling oscillations, based on the dy-
namics of the injection system. The subject has been discussed brie°y with the aid of Figure 1.1 in Section
1.2. Probably the most extensive and e®ective work, both research and practical applications, has been done
by Professor V.G. Bazarov of the Moscow Aviation Institute (for example, much of his work is covered by
Bazarov 1979, Bazarov and Lul'ka 1978, Andreyev et al. 1991, Bazarov 1995, 1998). The most accessible
work in English is Bazarov and Yang 1998 in which some of the ideas are summarized.

Put most simply, the essential idea can be stated in the following way. We view the combustion chamber
containing the °ow of the combustion reactants and products as a dynamical system. The injection system,
the supplied reactants, liquid and gas, and the associated processes form a second, extraordinarily compli-
cated system. Thus we view a liquid- (or gas-) fueled system as consisting of two dynamical systems coupled
in some unknown way by the injection and combustion processes. This sort of simpli¯ed model is implied
by practically all treatments of the time-dependent behavior viewed in this fashion; the consequences are
pursued as a means for passive control of the dynamics of the combined system.

Much of the discussion in Bazarov's papers is concerned with the fundamental unsteady processes oc-
curing within injection devices and in the injected °ows. A signi¯cant theme throughout is the use of
those unsteady processes and their coupling to the chamber dynamics to control unsteadiness|in particular
combustion instabilities|in a combustion chamber. Consequently, a large part of the experimental work
is devoted to the dynamics of the injection processes and how they may be used to a®ect favorably the
dynamics of the combined system. See Figure 1.24 and the accompanying remarks.

8.6. Passive Control of Vortex Shedding

Shedding of large vortices has long been a well-known phenomenon in many contexts. Vortex shedding
occurs in combustion chambers particularly in °ow past blunt °ameholders and rearward-facing steps. Rogers
(1954) carried out experiments establishing the importance of the ¯rst case and reported the work in Rogers
and Marble (1956). We discussed their ¯ndings in Section 2.3.4; for convenience, Figure 8.23 is a repetition

(a)

ACOUSTICAL

TRANSVERSE

MODE

(b)

Figure 8.23. Flow past a blu® body °ameholder under two conditions of °ow at ap-
proximately the same speed. (a) low equivalence ratio, Á~<0:75, no oscillations; (b) high
equivalence ratio Á~>0:90, transverse acoustic oscillations in the channel (Rogers and Marble
1956).
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of Figure 2.32 showing the essential qualitative features. Recall that in this case, the shedding supported a
transverse mode, the particle motions being normal to the streamwise (longitudinal) direction. The frequency
was about 3800{3900 Hz. Pulses of combustion and heat addition associated with the vortices together
formed the driving mechanism of the oscillations. The results obtained by Rogers and Marble and by
Kaskan and Noreen (1955) were the earliest con¯rmations of vortex shedding as a mechanism for oscillations
in a combustion chamber.

Figure 8.24 shows an example of vortex formation at a two-dimensional rearward-facing step, accompa-
nied by a longitudinal mode of oscillation (Smith and Zukoski 1985). Several frequencies were detected in
this case, the highest being 530 Hz; a spectrum is given in Figure 1.18. Many examples of oscillations in
dump combustors have been studied in the past twenty years. Figure 8.25 is a summary of con¯gurations
used in tests involving vortex shedding, a modi¯ed form of a ¯gure prepared by Schadow (2001).

ACOUSTICAL

LONGITUDINAL

MODE

(a)

(b)

Figure 8.24. Vortex shedding from a rearward-facing step. (a) stable °ow without vortex
shedding; (b) unstable °ow with vortex shedding and excitation of longitudinal oscillators
(Smith and Zukoski 1985).

Byrne (1981, 1983) was ¯rst to propose the idea that vortex shedding in a dump combustor could be
the cause of the pressure oscillations observed in tests of full-scale devices (see Section 2.3.4). It is easier
to gain understanding of the related but vastly simpler problem of °ow in the same con¯guration without
combustion. The most extensive works on this subject have been reported by Schadow, Gutmark and
their colleagues (Schadow et al. 1985, 1987a,b; 1989; 1990a,b; Gutmark et al. 1986, 1989, 1990). Schadow
and Gutmark (1992) give a good review of their works, and Schadow (2001) has recently given a concise
summary of the same material, covering examples with and without combustion. We draw heavily on those
two works for the following discussion.

There is no doubt that the presence of combustion a®ects the °ow in signi¯cant fashion. This may be
contrasted with the similar problem of vortex shedding at the joints of a segmented solid rocket described
in Sections 1.2.5, 2.2.7 and 6.8; combustion is then not part of the problem. In the present case, the same
conclusion surely cannot be valid generally. Moreover, it is likely true that as a result of increased mixing,
vortices enhance, or, under some circumstances, could conceivably stabilize combustion, even with the penalty
of generating oscillations. An important purpose here is ¯rst to understand better the relations between
vortex shedding and oscillations in the absence of combustion; and subsequently to gain some con¯dence in
the possible applications of passive control. The eventual goal in practice is to reduce the oscillations, and
accompanying vibrations, without sacri¯cing average performance.
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Figure 8.25. Examples of con¯gurations used to study vortex shedding in combustion
chambers (adapted from Schadow 2001).

The strategy followed to address the problem in dump combustors in a sense has some precedence set
by similar problems in solid propellant rockets. As Flandro and Jacobs (1973) ¯rst suggested, and Culick
and Magiawala (1979) demonstrated with simple apparatus, shed vortices may excite acoustic modes in a
chamber if there is close coincidence between the shedding and modal frequencies (see Figure 2.29). For those
cases and others related to problems in solid propellant rockets the shedding process is often characterized
by a well-de¯ned single frequency. In practice, the \single frequency" has a value which often drifts during
a ¯ring, or may su®er abrupt changes. That behavoir is quite characteristic and generally has served as the
basis for establishing vortex shedding as the determining mechanism. A particularly clear example makes
the point.

The Stage 3 motor of the Minuteman III large booster exhibited two types of instability. For the ¯rst
¯ve seconds or so of a ¯ring, tangential modes were excited in the slots in the forward portion of the grain
sketched in Figure 8.26. There were six ¯ns and slots. The fundamental frequency was 800{900 Hz. Then in
the interval ¯ve to twenty seconds after ignition, a longitudinal mode having frequency 200{400 Hz appeared.
As shown in the `waterfall' plot, Figure 8.27(a), the frequency exhibited both gradual and slow increases.
The variation with time is obviously very di®erent from that of the ¯rst longitudinal mode shown by the
solid line.

A program was carried out at the Air Force Rocket Propulsion Laboratory (AFRPL) to test G.F.
Flandro's suggestion that vortex shedding was responsible for the oscillations in the low frequency range.
The steps at the downstream ends of the slots were removed as indicated in Figure 8.26. A waterfall plot
for a subsequent ¯ring is shown in Figure 8.27(b); the low-frequency oscillations are absent. Both the range
of frequency spanned by the motions shown in Figure 8.27(a) and the trends exhibited, demonstrate beyond
doubt that the oscillations were assiciated with vortex shedding from the steps subsequenty removed. Small
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changes were caused in the tangential modes. It is hard to conceive of a more convincing demonstration of
the connection between nonreactive vortex shedding and pressure oscillations.3

6 fins and slots

Smooth contour

to remove step

Contour before

smoothing

Figure 8.26. Sketch of the origin and elimination of pressure oscillations produced in the
chamber by vortex shedding in a solid propellant rocket (Flandro et al. 1983).

(a) (b)

Figure 8.27. `Waterfall' plots of low-frequency oscillations observed in a Minuteman III
Stage 3 motor. (a) unstable oscillations produced by large vortices shed at the slots; (b)
plot showing the absence of oscillations after modi¯cation of the slots (Dawson et al. 1981).

The examples we concentrate on here have been thoroughly treated due to concern for the problem of
vortex shedding in dump combustors intended for use in ramjets. That problem evolves out of the behavior
of unstable motions in the shear layer at the surface of a jet issuing from a circular ori¯ce. Vortices develop
near the surface of the jet in roughly three stages, ultimately to in°uence much of the volume of the jet; the

3Recall that the actual cause of the pressure oscillations is the generation of pressure pulses as the vortices are carried by
the °ow through the nozzle. The pulses then generate waves that reinforce oscillations in the chamber.
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shadowgraph in Figure 8.28 shows the behavior in a three-dimensional jet issuing from a pipe.4 Three fairly
well-de¯ned stages can be identi¯ed:

(i) initial instability of the shear layer, close to its origin, the most unstable disturbances having frequency
fs (Michalke 1965);

(ii) growth of small, well-de¯ned vortices merging to form larger vortices having the dominant `preferred
mode frequency' fpm near the end of the potential core

5 (Ho and Huerre 1984);
(iii) the subsequent behavior and the physical disposition of the `train' of vortices depends on conditions

in the °ow and environment of the jet.

For the example shown in Figure 8.28, the subsequent behavior referred to consisted in a rapid breakdown
of the coherent vortices into a ¯eld of turbulence. The behavior in Figure 8.28 is to be contrasted with the
sustained form of the shear layer in Figure 8.23(a), for example, which involves combustion in °ow past an
approximately two-dimensional blu® body.

Figure 8.28. Cylindrical jet of carbon monoxide into air, initial Reynolds number approx-
imately 30,000 (average speed, 127 ft/s). The photograph is due to F. Landis and A.H.
Shapiro, published by Van Dyke (1982). Schadow et al. (1987)b added the notes and rough
sketches of spectra.

Viewed in a somewhat simplistic form, the problem of passive control addressed experimentally in the
works referred to here is essentially the same sort faced by those concerned with acoustic modes excited by
vortex shedding in solid propellant rockets discussed in Section 2.2.7. The acoustic oscillations in both cases

4The picture was published by Van Dyke (1982), but was attributed to F. Landis and A.H. Shapiro with reference details.
Schadow and Gutmark (1989) added the remarks and idealized spectra which have been slightly modi¯ed here.

5The distinguished frequencies fs and fpm are denoted fi and fj by Schadow and Gutmark following earlier usage; we

change notation to avoid confusion with summation indices i and j.
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arise because, when an acoustic frequency is approximately coincident with a vortex shedding frequency, a
coupling process produces energy transfer from the vortices to the acoustical motions. In neither case are the
details of the coupling processes completely known. There is a major di®erence between the two bodies of
work. In those works discussed in this section, much greater emphasis is placed on experimentally exploring
the fundamental processes of formation, growth and eventual disposition of the vortices. The main reason is
that, unlike the case of solid rockets, there is ample opportunity for lengthy and repeated tests, often with
considerable freedom to change the geometry involved.

Investigations of vortex shedding in combustion chambers rest heavily on earlier investigations carried
out initially for their own sake, with no particular application intended. Crow and Champagne (1971) had
already shown that when the initial portion of the shear layer created by a jet is exposed to acoustic waves
there are strong e®ects on various properties of the °ow, including the spreading rate and the strength (size)
of shed vortices. Moreover, they found that the forcing was most e®ective when the frequency of the incident
acoustic waves is close to the frequency of the jet's `preferred mode'.

In 1982, Gutmark and Ho (1982) had shown that an elliptical jet, initially laminar, entrained °uid at
many times the rate (up to eight) at which a circular jet does so.6 Some possible implications for practical
application were later investigated by Schadow et al. (1984)b. They found, for example, that due to better
mixing they obtained higher combustion temperatures and combustion e±ciencies with elliptical supply
nozzles in the rig they used. Although they remarked on the presence of large-scale structures, they did not
elaborate upon their role.

Schadow et al. (1987a,b; 1989) carried out extensive tests with the apparatus shown in Figure 8.29. The
lower part of the ¯gure is a sketch of the °ow ¯eld produced by the jet from the inlet duct and °ow through the
lateral boundary. The ori¯ce at the entry to the chamber was either circular or (roughly) elliptical having
a 3:1 aspect ratio in the early tests (1984) referred to above. For the combustion tests gaseous fuel was
injected through the lateral wall of the chamber where N2 was injected for the non-reacting tests. Variations
of this basic design were used in most of the NWC tests. The most extreme geometrical departures involved
triangular inlet ducts, with fuel injection either at the faces or at the apexes of the triangle (Schadow et
al. 1990b) and an inlet with a multi-step dump (Schadow et al. 1990a).

The motivation for the changes of geometry was of course the well-established correlation between the
formation of large coherent vortices, and pressure oscillations. It is helpful to view the situation in simpli¯ed
form as the interaction between, or coupling of, two dynamical systems: the acoustic ¯eld, and the stream
of shed, large-scale vortices. Rather than deal with the coupled problem as it develops with vortex shedding
occurring naturally in a dump combustor, it is much better to have control over some of the behavior. The
most convenient method is based on exciting the acoustic ¯eld independently of the vortex shedding process.
In their ¯rst report of results, Schadow et al. (1984a) showed that the response of the °ow into a dump
chamber (Figure 8.29) was greatest when the forcing frequency approximately matched the `most ampli¯ed
frequency', the latter was either the vortex merging frequency in the initial portion of the shear layer near
the dump plane; or the preferred mode frequency, fpm, in the °ow at the end of the potential core.

Figure 8.30 shows one example of the response of the system measured with a hot wire placed in the
potential core of the jet °ow exiting the inlet duct.7 Forcing the °ow was accomplished with a rotating valve.
The oscillations were longitudinal, the frequencies of the largest response being in the range of one hundred
to several hundred Hertz, increasing with the average speed of °ow through the chamber. Thus, while the
reasoning worked out by Rogers and Marble is relevant, it cannot simply be adopted without change because
the acoustic modes are so di®erent.

6A hint of the reason for this result had been given in the analysis of the behavior of an isolated elliptical vortex by Dhanak
and Debernardinis (1981).

7Although Figure 8.30 shows test results (redrawn Figure 2 of Schadow et al. 1987a), no data points are shown here or in
the original work.
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Figure 8.29. Test equipment for studying reacting and non-reacting jet °ows in a dump
combustor. (a) sketch of the complete apparatus; (b) arrangement of the dump con¯guration
for combustion tests (adapted from Schadow et al. 1987a).

Without forcing, the response of a hot wire placed as shown in Figure 8.29 is typically like that given
by the dotted curve for U0 = 71 m/s in Figure 8.30. The frequency at the peak of the response is called the
preferred mode frequency and was identi¯ed in the experiments as the `vortex shedding frequency'. With
reduced average speed, the peak of the response curve shifts to lower frequency and seems to be smaller.
With forcing|fF is non-zero|the hot wire shows a pronounced response at fF, indicating the presence of
velocity waves superposed on the natural responses of the jet. The enhanced response implies that higher
velocity at the forcing frequency produced more intense vortices, perhaps larger, but that conclusion does not
directly follow from these data. Vortices having dominant frequency fF will always be driven; the response
is greatest when fF = fpm, the preferred mode frequency. According to Schadow and Gutmark, the response
is least when fF = fs, the initial shedding frequency.

Tests of that sort suggest the following behavior in the absence of forcing. Consider a con¯guration
that may contain shedding of vortices, as for example the case is with an annulus (or two annuli) in a
tube, Figure 2.30. If further the con¯guration will easily support acoustic resonances|or, put another way,
acoustic modes are readily excited|the possibility exists for coincidence between the frequencies of the
vortex shedding and the acoustic modes. Figures 2.31 and 2.32 show the apparatus and some results for the
case of vortex shedding in a pair of annuli mounted in a tube which has well-de¯ned modes. The conditions
identi¯ed by the open circle correspond to the cases when the forcing frequency fF equals the preferred
frequency fpm in Figure 8.30.

There is therefore no doubt that quite generally near coincidence of the rate of vortex formation and
the frequency of an impressed acoustic ¯eld will produce a more intense acoustic ¯eld or stronger vortices,
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Figure 8.30. An example of test results showing the presence of coherent vortices when
the acoustic forcing frequency fF equals the preferred mode frequency fpm, the frequency
at the maximum of the response (taken from Schadow et al. 1987a). No data points were
given in the original ¯gure.

or both. The coupled system can extract energy from the average °ow ¯eld. For successful application of
these ideas to combustion chambers, we need to know the extent to which the presence of combustion may
a®ect the fundamental behavior. It appears from available test results that our basic understanding of the
shedding of large vortices, and the signi¯cance of equality between shedding and acoustic frequencies, are
qualitatively una®ected by heat addition and quite large temperature gradients. Essentially that conclusion
guided Schadow, Gutmark et al. and others in their investigations of methods to eliminate oscillations in
dump combustors by passive means.

As the works referred to in Figures 8.23{8.25 have shown, there is virtually an inevitable correlation
between the shedding of large vortices and excitation of pressure oscillations in combustion chambers. The
signi¯cance of resonance between the shedding process and the acoustical vibrations of the chamber has
been shown experimentally by a convincing range of tests with and without combustion. Consequently, the
possibilities for exercising passive control fall into three classes: eliminate the vortex shedding; suppress
the troublesome acoustic modes; or destroy the coupling between the vortex shedding and the acoustics.
The last is not likely to be a realistic strategy in practice. We have discussed the problem of suppressing
acoustic modes in Sections 8.1{8.3. Thus, elimination of unwanted pressure oscillations in the present case
comes down ¯nally to avoiding the cause itself. Taking advantage of the (possible) natural evolution of large
vortices shown in Figure 8.28 is likely not a practical measure because physical conditions that must prevail
are probably not satis¯ed in a combustion chamber.
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Hence, if vortex shedding is established as the cause of pressure oscillations in a combustor, there seems
to be no alternative to destroying the cause. If the necessary re-design of the chamber is not practical,
then the only solution may be restricting the performance of the chamber to conditions under which the
unacceptable oscillations do not occur.
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CHAPTER 9

Feedback Control o f Unsteady Motions in Combustors

Persistent problems of combustion instabilities have motivated serious interest in possible application of
feedback control to combustion systems. The idea is quite simple; successful practical implementation is
another matter and truly successful implementations remain to be found. Although some attention has been
given to active control of instabilities in solid propellant rockets, the only reported successes with laboratory
and full-scale demonstrations have been accomplished with liquid and gaseous fueled systems.

Feedback control has become a central element in the development of modern automobile and truck
engines. Great advances have been made in performance over the entire speed range, and in the reduction
of unwanted emissions, notably oxides of nitrogen. The contrasts between, say, a new four-passenger car
and a 1923 Ford three-door black Model T are obvious, but no distinctions are more impressive than those
de¯ning the engines, hybrid or not. Feedback controls, transparent to the driver, now play a large part in
changing the performance|and selling!|of cars. So what about the corresponding improvements already
made in the design of the systems that concern us here?

In fact, there have been considerable advances in the performance of gas turbines|notably emissions
and fuel consumption|for which feedback control has been a crucial matter. Improved design of mechanical
components as well has produced signi¯cant changes. But probably the greatest qualitative di®erence in
the combustors of those systems we treat in this book on the one hand, and those of internal combustion
engines on the other, is cyclic operation. With intrinsically repetitive, in contrast to continuous, injection
and combustion of reactants comes the fundamental variable called `timing'. It is likely that property, more
than any other, that has allowed the evolution we alluded to above in engines for earthbound vehicles. The
systems we discuss here lack that degree of freedom.

With the exception of solid propellant rockets, all practical combustion systems are nevertheless in some
sense actively controlled during their operation. What is special about the subject of this chapter is the
incorporation of feedback, in other words, closed-loop control. That is, control is exerted on a system in a
manner depending on the current or recent state of the system, and in such a fashion as to achieve a desired
result. While feedback control may under many circumstances be exerted by an operator|a ¯ne example is
the rider on a bicycle|we will be concerned here with control not involving human intervention. Moreover,
because the subject of this book is unsteadiness of combustion processes, we restrict attention mainly to the
use of control to eliminate unwanted motions. We do not cover, for example, possible use of feedback control
in the important problem of lean blowout in gas turbine combustors.

Short of the sort of `intelligent' control systems envisioned here, there have been several e®orts in research
programs to gain control over self-excited instabilities in order to obtain better data. A device invented at
ONERA (Kuentzmann and Nadaud 1975) used a rotating exhaust valve to modulate the °ow and impose
pressure oscillations on a burning solid propellant. The purpose was to provide a controllable means of
measuring the frequency response of a burning surface. Subsequently the method was modi¯ed and used
with some success at lower frequencies by several groups in the U.S. and England. Another technique for
switching oscillations on and o® involves a movable ba²e described in the reference manual edited by Culick
(1974). This technique has been used to produce several growth and decay periods of oscillations during
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¯rings of solid propellant devices lasting less than one minute. Similar results have been obtained with the
addition of control resonators, but with much greater di±culty because the temperature in the ori¯ce and
cavity of a resonator changes rapidly during a test, causing great problems with tuning. All such methods
are motivated largely by the need to gain some measure of control over naturally unstable oscillations in
laboratory tests. Here we are more concerned with techniques that have promise for application to full-scale
propulsion systems, intended to extend the operating range free of oscillations.

The origin of the main subject of this chapter was a proposal by Bollay (1951), ¯rst examined in detail
by Tsien (1952), to use a feedback system to control a low-frequency instability in a liquid rocket. No exper-
imental results were obtained. Control of oscillations in a Rijke tube was demonstrated by Dines in a thesis
completed at Cambridge University in 1983, the ¯rst example of feedback control applied experimentally
to a combustion device. That work was soon followed by successful demonstrations by Heckl (1985, 1988,
1990) in her doctoral program at Cambridge. Proposals for other applications have been made|for example,
control of behavior near the lean blowout limit of a gas turbine combustor|but owing to the immediacy of
the problem, main emphasis has been placed on developing control of combustion instabilities.

Subsequent to the demonstrations at Cambridge, and at ¶Ecole Centrale in Paris, widespread interest
rapidly grew, and several signi¯cant research programs began. Feedback control1 of combustion instabilities|
or, more generally, of the dynamics of combustion systems|is a subject of current research, although interest
(and ¯nancial support) seems to have decayed in the recent past. Despite the demonstrated applications,
relatively little has been accomplished in respect to understanding fundamental issues. The reason for this
state of a®airs seems to be that work in this area has been largely in the nature of ad hoc e®orts. That is,
the common situation has been that feedback control has been applied to a combustor already exhibiting
instabilities. Adjustments have then been made empirically until best results (i.e. greatest reduction of the
amplitudes of oscillations) have been obtained. Then, in only a small number of cases, supporting analysis
has been attempted after the fact to explain what happened. No example exists for which the amplitudes of
oscillations before and after exercising control have been predicted a priori. Comprehensive interpretation
of the action of a feedback control system on an operating combustor is non-existent. To correct that state
of a®airs poses di±cult problems because in all cases nonlinear behavior must eventually be treated.

Presently, there are therefore no ¯rm and general guidelines available to designers for use of feedback
control as a method for improving the performance of a design. That is not to say that no progress has been
made. In fact, su±cient knowledge and experience have been gained that possible use of feedback control
indeed merits serious consideration in particular applications.2 There is no question that continuing research
is merited. One purpose of this chapter is to explain brie°y not only the development and current status of
the subject but also the limitations presently understood.

A recent paper by Hermann and Ho®mann (2005) summarizes what is likely the most advanced|and
well-documented|experience with practical application of a system for active control of oscillations in a
combustor. The control system used is a development based on research carried out ¯rst at the Technische
UniversitÄat MÄunchen (Gleis, Vortmeyer and Rau, 1990; Hermann, Gleis and Vortmeyer 1996; Hantschk,
Hermann and Vortmeyer 1996; and Seume et al. 1997). Control of oscillations in a Siemens 267 MW gas
turbine was achieved for extended periods under practical conditions; the system is not now used owing to
other improvements in the machine. The example is discussed further in Section 9.4.

1We prefer the terms feedback control or `active feedback control of combustion' to descriptors such as `active control
of combustion' or `active combustion control', both of which are conveniently abbreviated to ACC. Feedback is an important

aspect of the subject, and if it is absent we will refer simply to `control' or `open-loop control'. Inclusion of the adjective `active'
in `active feedback control' implies that there is a source of energy in the feedback path.

2A much more optimistic view is held by Professor Zinn (2005), clearly put forward in his recent review, \Smart
Combustors|Just Around the Corner."
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It is important to understand that the subject of this chapter di®ers in fundamental ways from the older
and better known ¯eld of `anti-sound' or `anti-noise', a term implying destructive interference. Covered ¯rst
by a U.S. patent issued to Lueg (1936), following the German patent ¯led in 1933, active noise control, or
cancellation, eventually grew into a successful business owing to the developments of miniature electronics.
A well-known consumers' product is the Bose headset costing approximately one-thousand dollars for the
¯nest version available to private pilots in 2006 and a few hundred dollars for the type suitable for less
demanding use. The principle of operation is based on active cancellation of unwanted background noise;
it's a remarkably e®ective device guaranteed to be a pleasant surprise when experienced for the ¯rst time.
Ffowes-Williams (1984), for example, has given an informative early review of anti-sound; much has happened
in the past two decades but we will consider the subject no further.

Active control of combustion is not a matter of destructive interference in a sound ¯eld. In contrast to
active noise control, the process produces successful results by favorable disruption of the sources generating
the sound. This distinction was not always obvious or convincing in early works relying on secondary sources
of sound for control (e.g., see the apparatus used by Dines 1983, sketched in Figure 9.6). However, it seems
that subsequent work has established beyond doubt that all works on active feedback control of combustion
involve modi¯cations of the primary sources as well as additional secondary sources. This aspect of the
general problem is probably the least well understood of all, while being crucial to success.

To place the ideas in a familiar context, we may interpret the intent of feedback control with the help of
Figure 9.1, an extended form of Figures 1.1 and 8.3. In connection with the latter we have seen that passive
control can be used to a®ect favorably either the dynamics of the combustor (mainly the values of the
resonant frequencies and their attenuation) or the combustor dynamics (e.g. by changing the composition of
the propellant or by modifying the injector of liquid reactants). Similarly, feedback control may change the
combustor dynamics or, more signi¯cantly, the combustion dynamics, the processes responsible for providing
energy to unstable motions. However, unlike the case for passive control, we can conceive that feedback
control provides a more °exible means for modifying the system's behavior. That additional capability is
contained in the control blocks labeled Cf in the forward path and Cfb in the feedback path in Figure
9.1, representing control not necessarily associated with the behavior of the combustor or of combustion
dynamics.

F +

−

+

−
Σ

Σ P

Cfb

Cf
CG G

COMBUSTION

DYNAMICS

COMBUSTOR

DYNAMICS

CQ Q

Figure 9.1. Block diagram for a system containing passive (CG and CQ) and feedback (Cf
and Cfb) control.

The scalar transfer function P=F for the system is3

P

F
=

G(CGCf )

1 +G(CGCf )(CQQ+ Cfb)
(9.1)

3Although the use of block diagrams can be helpful in analysis of nonlinear systems, Figure 9.1 and the following manip-
ulations are restricted to a linear system, here having single-input and single-output, a SISO system.
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We can combine CGCf = H to represent the transfer function of the passively controlled combustor; we let
CQQ + Cfb = Gfb represent passive and feedback control of the combustion dynamics. These de¯nitions
lead to the form emphasizing control in the forward (GH) and feedback (Gfb) paths:

P

F
=

GH

1 +GHGfb
(9.2)

The appearance of P=F is simpli¯ed further by de¯ning Gf = GH and the last formula becomes

P

F
=

Gf
1 +GfGfb

(9.3)

This form, the simplest possible, shows that the block diagram in Figure 9.2 is quite general4 for the basic
linear behavior of combustion systems we are concerned with here, but Gf and Gfb must be interpreted
appropriately. It is therefore adequate for carrying out analysis that we need. The expanded form (9.1) is
useful for maintaining clarity in modeling the system.

F P

G

+

−
Σ

fb

G
f

Figure 9.2. General block diagram of a combustion system with passive and active control.

One purpose of this chapter is to make clear the connections between the possible physical systems we are
concerned with here, and the known methods and principles of feedback control. It is important, however, to
remember that Figure 9.1 and the related powerful methods of analysis which have been developed, almost
always imply, or explicitly require, non-°owing systems. Whether that happens to be a crucial factor in a
particular instance should always be checked.

Figure 9.3 is a generic form of block diagram showing essentially the content of Figure 9.1, but including
external disturbances (`noise') and with some labels commonly found in texts of control theory (e.g., Franklin
et al. 2002). Other forms are possible, di®ering only in detail (e.g. placement of sensors) but the ideas are
the same. The block labeled `estimator' is often called `observer', the term used in the original works; see
Franklin et al., Chapter 7 for a good summary.

All of the material covered so far in this book has been concerned with the part of Figure 9.3 labeled
`system', including passive control. In this chapter we will be dealing with problems associated with the
outer feedback loop containing the `controller'; and, to some extent with actuators and sensors which, with
the system, form the `plant'. The blocks labeled `combustor dynamics' and `combustion dynamics' may
here contain forms of passive control. Note that the diagram in Figure 9.3 contains that in Figure 9.2, Gf
standing for the dynamics of the plant, and Gfb for the controller.

Displays like Figures 9.1 to 9.3 are very useful as convenient summaries; and as helpful aids to guiding
analysis, understanding and just thinking about the problems. Methods based on them have evolved in
the context of classical control theory; have been developed further in modern control theory; and have
occasionally been applied in the main subject of this chapter. It's a seductive strategy that should be
followed with caution, for at least two reasons which may render the methods seriously imperfect or, in
the extreme, useless: the systems considered in this chapter involve °ow of the working °uid; and their
behavior is intrinsically nonlinear. We shall return later to limitations of the methods at present, but only

4Note, however, that external disturbances are not accounted for in Figure 9.1; see Figure 9.3.
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Σ
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EXTERNAL
NOISE

NOISE

EXTERNAL
NOISE

SYSTEM

PLANT

CONTROLLER

Figure 9.3. A general block diagram for classical and modern control.5(Adapted from a
diagram due to Professor R.C. Murray, private communication.)

in commentary. The ¯eld is generally very promising, but still requires careful and extensive development.
A recent compilation of review articles edited by Lieuwen and Yang (2005) emphasizes the point.

At present there appear to be two principal types of applications of feedback control of dynamics to
combustion systems: control of oscillations in gas turbine combustors operating near the lean limit of com-
bustion; and suppression of combustion instabilities arising in thrust augmentors operated at low °ight Mach
numbers and high altitude, or higher Mach numbers and low altitude (see Figure 2.52). In both cases, un-
derstanding of the unsteady motions occurring in the absence of control is largely semi-empirical (emphasis
placed on both parts of the term!). Consequently, treating practical problems is unavoidably tedious and
expensive. The situation is improving slowly.

As a practical matter, lean blowout (LBO) sets a limit on the operation of a gas turbine. Unexpected
disturbances may cause a combustor to execute a transient carrying operation beyond the LBO limit. Safety
margins are set based on experience, but are occasionally violated in practice. Active control is attractive
as a possible means of avoiding LBO in operating systems.

There is only one reported example of application of feedback control to a full-scale thrust augmentor
(Moran, Steele and Dowling 2000). Because of the requirement for low emission of NOx, gas turbine com-
bustors are commonly designed to operate with lean premixed pre-vaporized (LPP) reactants, as explained
in Section 2.2. An alternative strategy of design, identi¯ed as \rich-quench-lean" (RQL) is currently used by
one manufacturer, Pratt and Whitney, Inc. (Sabnis 2005), and possibly also by Rolls-Royce, Ltd. Most of
our limited discussion here will therefore be devoted to experience with LPP systems, which have inevitably
exhibited problems with combustion instabilities at su±ciently lean fuel/air ratios.

Note in the RTO report:
In order to make this document available for printing, and limited distribution to the most
interested community as early as possible, Chapter 9 was not completed, May 2006. The last
section, 9.5, intended to cover recent progress in applications of feedback control, has therefore
been cut short and forms an abrupt ending to be greatly expanded in its ¯nal version.

5`Classical control' is based on methods (mainly involving the frequency response of a system, Bode plots and the root
locus) which grew from the use of transforms, principally the Laplace transform. The methods are generally applicable only
to linear systems. `Modern control' is based on representing systems and their evolution in state space. Methods have been
developed for analyzing nonlinear as well as linear behavior.
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9.1. The Idea of Feedback Control First Applied to Combustion Systems

The proposal by Tsien (1952) for using feedback control of combustion in a liquid rocket was based on
modulating the capacitance of the supply line of a liquid rocket. Figure 9.4, is Figure 4 of the original paper,
redrawn for inclusion here. With the actuation, the amplitude and phase of energy released in the chamber
might be controlled to combat the common problem of pulsations of pressure at low frequencies (`chugging').

SERVO

INSTRUMENT AMPLIFIER

LINE  CAPACITANCE

CONTROL  CAPACITANCE

PUMP

2
�

2
�

A

Figure 9.4. Schematic of the ¯rst proposal for active feedback control of the dynamics in
a combustion system (Tsien 1952).

Following the reasoning given in Section 1.6.1, we write a model equation for the pressure °uctuation
including a feedback process proportional to the pressure with a time delay, and an external input u(t):

d2p0

dt2
+ 2®

dp0

dt
+ !20p

0 = ¯p0(t¡ ¿) + u(t) (9.4)

The Laplace transform of (9.4) with zero initial conditions leads to

P (s) =
¯e¡s¿G(s)

1¡ ¯e¡s¿G(s)U(s) (9.5)

where P (s), U(s) are the transforms of p0(t) and u0(t), and the transfer function for the chamber is

G(s) =
1

s2 + 2®s+ !20
(9.6)

Equation (9.5) can be interpreted with the block diagram given in Figure 9.5.

βe−sτ

s  + 2 α s  + ω  
2

o
2

1
ΣU (s ) 

+
−

P (s )

Figure 9.5. Block diagram for the system shown in Figure 9.4.

Successful control in this case rests on being able to adjust the parameter ¯ and the delay ¿ within the
frequency range of the dynamics so the roots of the denominator of (9.5) lie in the left half s-plane. The
roots are found as the solutions to

s2 + 2®s+ (!20 + e
¡¿s) = 0 (9.7)

When ¿ = 0, there are of course only two roots, both lying in the left half plane if ® > 0, representing
stable normal modes. However, for ¿ 6= 0, there are in¯nitely many roots and the system is said to be
`in¯nite-dimensional'.
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Tsien's discussion of the problem was much more involved than the preceding summary, relying heavily
on Crocco's formulation of a time lag existing between the moments of injection and combustion of an
element of propellant. The procedure was described in Section 2.3.2. The oscillations are taken to have
su±ciently low frequency that the pressure is uniform (cf. the L¤ instability treated in Section 6.2) and
consequently is governed by a linear ¯rst order equation in time, which Tsien showed to be

¹½V
dp0

dt
+mp0 = ¹pm0(t¡ ¿) + n[m0(t)¡m0(t¡ ¿)] (9.8)

where ¹pV is the total mass in the chamber. The constant n is the same n appearing in Crocco's n ¡ ¿
representation discussed in Section 2.3.2. Hence, the last two terms on the right hand side arise from the
combustion processes while ¹pm0(t¡ ¿) is due to the injection process; it is absent if the rate of injection is
assumed constant.

When the Laplace transform of (9.8) is taken, the exponential e¡s¿ appears in two places. That's the
source of a di±culty when the inverse transform is taken to determine the time histories of the pressure and
mass °ux m0. Tsien solved the di±culty by using a little trick due to Satche (1949) in comments on a paper
by Anso® (1949). See the references for explanations. Software now available allows one to obtain results
without taking special measures to treat the exponentials.

The complete feedback problem represented in Figure 9.4 requires a second equation for the dynamics
of the loop containing the servo. With the additional features, the calculations are more tedious but the
same basic method produces the results required. Tsien showed, with a combination of the Nyquist criterion
and Satche's method for handling the exponential, that the combustion chamber could be stabilized for any
value of the time lag appearing in (9.8).

Marble (1955) and Marble and Cox (1953) extended Tsien's analysis to a bipropellant rocket (oxidizer and
fuel). Although the computations are considerably more complicated, the character of the analysis required
does not change. Crocco and Cheng (1956, Chapter 2) gave a thorough coverage of the works referenced, with
careful attention to computational details and results. There was, in the mid-1950s, considerable optimism
that feedback control might o®er the solution to a nagging problem. When Tsien made his proposal,
some practical di±culties caused realization to be impossible. Without the aid of electronic computers,
investigation of the behavior of the roots of the governing characteristic equation as the time lag was varied
became very tedious. With the availability of digital computers and many versions of the necessary software,
the early methods are now obsolete.

More signi¯cantly, inadequate instrumentation and hardware in the early 1950s apparently blocked
experimental application of Tsien's proposal. So far as the author is aware, no successful tests were ac-
complished although the idea was tried in laboratory tests at Aerojet Corporation. The only residual of
the program seems to be the paper by Lee et al. (1953), an analysis of feedback control applied to a liquid
rocket.

9.2. Early Laboratory Demonstrations

The idea of applying active feedback control to combustion systems was resurrected successfully at
Cambridge University thirty years later. Dines (1983) demonstrated control of a °ame-driven Rijke tube
shown in Figure 9.6(a), using a speaker as an actuator to inject pressure waves. The speaker was placed in a
feedback loop allowing controllable gain and phase. Dines used a light sensor to monitor the light emission
from CH radicals as a measure of heat release. That information was processed as the basis for adjusting
the gain and phase of the speaker. Subsequently Heckl (1985) used the output of a microphone sensing
pressure °uctuations in a much-improved apparatus, Figure 9.6(b), and showed that the amplitude of the
instability could be reduced over a broad frequency range. That result demonstrated that control of the
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combustion instability is not explained by the principal of `anti-sound', which requires a well-de¯ned phase
relation. Eventually the injected ¯eld had a signi¯cant e®ect on the heat transferred from the °ame to the
oscillations.

PHOTOMULTIPLIER

MIRROR

FILTER (CH)

GAUZE  FLAME

RIJKE

TUBE

MICROPHONE

LOUDSPEAKER

GAS

(a)

Phase-shifter Amplifier

Microphone

Loudspeaker
Heat source

L0 lm l + Δl

(b)

Figure 9.6. Feedback control of a Rijke tube by injection of acoustic waves. (a) Emitted
radiation as the sensed variable (Dines 1983); (b) pressure as the sensed variable with air
forced by a blower through the horizontal tube (Heckl 1985, 1986).
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Figure 9.7. An early example of control based on Rayleigh's Criterion (Sreenivasan et al. 1985).
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In her second work on the subject, Heckl (1988, 1990) showed convincingly that for her apparatus, and
the conditions of her experiments, the dominant nonlinear e®ects limiting the amplitude of the oscillations
were associated with °ow in the vicinities of the ends of the tube; and with the energy transfer rate when the
acoustic velocity is of the same order as the mean °ow speed. This seems to have been the ¯rst identi¯cation
of the dominant nonlinear processes in a simple controlled combustion tube. As experiences already discussed
show, the result cannot be generalized. In any case, the experimental work by Dines and Heckl served, with
the ideas of Ffowes-Williams, to form the basis for the ¯rst patent in the ¯eld, granted to Ffowes-Williams,
Dines and Heckl (1986).

At about the same time, Sreenivasan, Raghu and Chu (1985) used secondary heaters in the upper half
of a Rijke tube as actuators, perhaps the ¯rst example of control clearly based on Rayleigh's Criterion.
Figure 9.7 shows the apparatus they used. The idea had been at least discussed for many years and likely
tried informally; some earlier results were reported by Collyer and Ayers (1972) but not in the context of
control. If the °uctuation Á0 of the equivalence ratio has the proper phase and spacial distribution, then the
contribution

R
Á̂(i)ÃndV in the formula for the growth constant can be made negative, so disturbances are

attenuated. In the Rijke tube, the control heater need not be oscillated by external means.

With the source is placed in the upper half of the tube, the °uctuating heat addition arises from
interactions with the velocity and, as implied in Section 2.7, necessarily has the phase lying in the range
to attenuate the waves. That is, the heat source in fact extracts energy from the ¯eld, on the average.
Similar results were reported in the same paper by Sreenivasan et al. with the secondary heaters installed
in an organ pipe and a \whistler-nozzle." The experiments were interesting and useful demonstrations but,
if only because true external control was not exercised, application to propulsion systems seems a doubtful
enterprise.

Following the demonstrations at Cambridge, three groups in Europe launched research programs having
the eventual purpose of applying active control to full-scale systems, a goal which would require roughly
a decade. At Cambridge, Rolls-Royce supported work directed to control an instability in an afterburner;
modest success with full-scale tests was eventually reported by Moran, Steele and Dowling (2000) noted here
in Section 9.5. Work carried out at the Technische UniversitÄat MÄunchen was eventually used as the basis
for the ¯rst demonstration of control of an instability in a large stationary gas turbine (see Hermann et al.
2000 and Section 9.4).

Research at ¶Ecole Centrale in Paris seems to have been motivated in the ¯rst instance more by under-
standing the problem than by rapidly sought applications. Initially, experiments were done in collaboration
with the Munich group (Lang, Poinsot and Candel 1987; Poinsot et al. 1989), using a premixed propane/air
burner in a duct. An acoustic speaker was used as an actuator. Ten years later, problems with the Ariane 5
(see Section 2.2.9) suggested the work reported by Mettenleiter (2000) and Mettenleiter and Candel (2000).
The method, which is described later, has not been used in a full-scale solid propellant rocket.

A series of works carried out at Cambridge in the late 1980s included most signi¯cantly the ¯rst use of
a modulated fuel supply to exercise control of a combustion instability. The program is distinguished by its
orderly development, and results which served as catalysts for research in several other laboratories. Dowling
and Bloxsidge (1984) began work with calculations of the stability of one-dimensional unsteady °ow in a
duct containing an approximately two-dimensional or cylindrically symmetrical °ame held on a `gutter' in a
uniform duct as shown in Figure 9.8. In agreement with experimental conditions set in a rig at Rolls-Royce,
Derby, they assumed the °ow to be choked at the inlet to the duct, and exhausting to atmospheric pressure.
The °ow ¯eld was approximated as one-dimensional except that the orientation of the °ame was accounted
for, as shown in Figure 9.8. Fluctuations in the axial °ow speed cause the °ame to move to and fro. Following
Dowling and Bloxsidge, suppose that the °ame remains anchored at the lip of the gutter so that during the
unsteady motions, the reacting sheet rotates about the lip, causing its area to change when the °ow speed
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Figure 9.8. The geometry of the rig at Rolls-Royce, Derby, with one set of °ow conditions
(Dowling and Bloxsidge 1984).

does so. This motion is represented by the relation

b2 ¡ b1
sin μ

dμ

dt
= (u1g sin μ)

0 (9.9)

where (b2 ¡ b1)= sin μ is the length of the °ame, and u1g is the speed at the lip (Figure 9.8). For small
harmonic motions, this formula gives the connection between the complex amplitude of the rotations and
the °uctuation of axial speed6

μ̂ = ¡ sin ¹μ

¹u1g cos ¹μ ¡ i! (b2¡b1)sin ¹μ

û1g (9.10)

For a two-dimensional or cylindrically symmetric °ame, Dowling and Bloxsidge found the change of area Ŝf
due to an increment μ̂ in angle to be

Ŝf
¹Sf
= ¡cos

¹μ

sin ¹μ
μ̂ =

1

1¡ i!(b2 ¡ b1)=¹u1g sin ¹μ cos ¹μ
û1
¹u1

(9.11)

Heat is released by the °ame at the rate ½1ufSf¢H, where uf is the °ame speed and ¢H is the enthalpy
change in combustion. Then the °uctuation in the total heat release rate for the °ame is

Q̂
¹Q
= ¡ ½̂1

¹½1
+

1

1¡ i!(b2 ¡ b1)=¹u1g sin ¹μ cos ¹μ
û1
¹u1

(9.12)

In this model of the problem, Q̂= ¹Q represents a possible mechanism for an instability. The result (9.12)
with the linearized equations of motion; the equation of state for a perfect gas; and the boundary conditions
that the °ow is choked at the entrance and open to the atmosphere at the exit (see Figure 9.7), de¯ne a soluble
problem. Dowling and Bloxsidge found that the °ow should be unstable over a broad range of equivalence
ratio, with fairly reasonable agreement between their calculated results and observations at Rolls-Royce.
This basic model of the instability was developed in subsequent works.

Reports of the completed work were published by Langhorne (1988) covering the details of experiments;
and by Bloxsidge, Dowling and Langhorne (1988) discussing their theoretical results for interpreting the
experimental results. Both papers were concerned with the apparatus sketched in Figure 9.9(a). The work
is particularly distinguished by the collaboration of experiment and theory. That is perhaps an obvious
strategy to encourage, but it seems that too often experiments have been carried out without useful e®orts
at applying or working out theoretical ideas. Without at least an approximate `theoretical' framework it
is di±cult to discern the extent to which experimental results may be general or useful (or, perhaps, even
correct).

6Because the Cambridge group uses ei!t where here we use e¡i!t, the sign of ! here is everywhere di®erent from that in
the original paper.
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Because the results reported contain more detail than is appropriately covered here, we restrict our
discussion to three items: frequencies of oscillation; amplitudes of limit cycles; and mode shapes. The
observed limit cycles referred to here are of course not the ideal forms having constant amplitudes, but are
motions having dynamical properties approximately constant for some ¯nite time. Because the experiments
used blow-down apparatus, tests were limited to lengths of about twenty minutes. The fuel was ethylene
(C2H4) injected through a manifold upstream of the choked nozzle. Measurements of the equivalence ratio
con¯rmed that mixing was essentially complete upstream of the °ame holder; combustion was ignited down
stream of the gutter. In a typical test, after a °ame was established, steady incoming °ow was maintained
with Mach number usually 0.08, with a few results obtained at ¹M = 0:15. Later tests reported by Macquisten
and Dowling (1993) were carried out with Mach numbers between 0.15{0.27.

70 mm

Fuel manifold

x

Air

Fuel

(air and ethylene)

Quartz tube

Premixed gas

Flame stabilized in the

wake of the gutter

Fixed nozzle
at inlet

(a)

Choked plate

G

Vibrator

V (t)
p  (t)

T

Feedback circuitry

Pressure transducer

Flameholder

(b)

Figure 9.9. Cambridge apparatus. (a) Fixed nozzle for studies of longitudinal instabilities
(Langhorne 1988); (b) Variable nozzle for experiments to determine transfer functions and
for active control (Bloxsidge et al. 1988a, b).

Oscillations were excited and assumed to be driven mainly by interactions between acoustic waves and
the combustion processes; no consideration was given to entropy waves or to possible in°uences of vorticity.
Hence, the primary variables to be determined by measurements are the unsteady pressure; and heat release,
the mechanism for the unstable waves. The pressure was measured using accurate commercial transducers
and a high-quality microphone (BrÄuel and Kjaer). The heat release was determined indirectly, from the
light emitted by species in the °ame. Following previous researchers (Hurle et al. 1968 may have been the
¯rst), Langhorne used emission from C2 radicals, assuming that the rate of heat addition is proportional
to the intensity of radiation. The method is potentially subject to substantial errors from several causes; a
discussion of the problems was not o®ered by the authors, and is outside the present discussion. Langhorne
took care with peripheral experiments to try to minimize the errors.

An example of the distributions of the magnitude and phase for the pressure are shown in Figure 9.10(a).
Data and two computations of the unsteady pressure ¯elds are taken from Figure 4 of Langhorne (1988).
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The transfer function for the unsteady heat release; and the steady heat release all inferred for the same
test, are shown in Part (b) of the ¯gure.
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Figure 9.10. Magnitude and phase of the pressure distribution (a) and the transfer func-
tion for heat release (b) for one con¯guration of the test apparatus shown in Figure 9.9(a).
The solid lines are spline ¯ts to the data. Adapted from Figure 4 of Langhorne (1988).

Two di®erent sorts of unsteady behavior were described by Langhorne, called convecting and concurrent ,
identi¯ed according to the dependence of the unsteady C2 emission on space and time. In the ¯rst case,
the phase of C2 radiation (hence, by assumption, the heat addition) varies linearly with respect to that of
the pressure. For the second case, the phase di®erence is small and approximately constant. Concurrent
behavior then provides, according to Rayleigh's Criterion (Section 6.6), the most favorable conditions for
supporting unstable motions.

Apparently, for many test conditions a °ame extends from the °ameholder, or `gutter', as shown in Figure
9.8, until it strikes the lateral walls. Initially when the °ow is unsteady, convecting behavior dominates, but
if `established buzz' occurred (large amplitude pressure oscillations) Langhorne found concurrent behavior
downstream of some axial position upstream of the anticipated intersection of the °ame with the walls.
Then \...the °ame alternately ¯lls the duct then contracts, leaving only a kernel of °ame on the gutter."
That sort of behavior was evidently always (?) observed for equivalence ratios greater than about 0.65, with
accompanying strong oscillations. The paper contains further observations not covered here. Unfortunately
there are no pictures of the °ow, although some were taken.

In Part 2 of the work, a one-dimensional `theory' was worked out to give mainly the frequency and mode
shape of the instability. For all cases considered, the mean heat release was assumed to have the same piece-
wise linear distribution with constants adjusted for di®erent conditions. The authors correctly recognized
that the most important part of the unsteady problem is the heat release provided by the unsteady °ame.
Their discussion of their procedure for developing the modes of an unsteady °ame and the accompanying
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unsteady heat release occupies nearly one-third of Bloxsidge et al. (1988). The experimental basis was
established by measurements using the apparatus shown in Figure 9.9(b) without the feedback shown (i.e.,
G = 0). The °ame anchored at the gutter was exposed to small, approximately sinusoidal perturbations
produced by the oscillating nozzle. Measurements of the light emission gave an approximation to the phase
between the heat release and the velocity at the lip of the gutter similar to that given above,

q̂(x)

¹q(x)
=

1

iSt

μ
1¡ e

i¯St

iSt

¶
ûG
¹uG
e¡i!¿(x) (9.13)

where St = 2¼!rG=¹uG is a Strouhal number de¯ned with rG the radius of the gutter; ¹uG is the local
°ow speed; and ¿(x) is a time delay, the time for a disturbance to pass from the gutter at xG to position
x, ¿ = (x ¡ xG)=¹uG. For the conditions of the experiments, the author found that the second term in
parentheses is the larger of the two and approximately

q̂(x)

¹q(x)
=

^́G
2¼rG

e¡i!¿(x) (9.14)

The displacement of a °uid particle is ^́G at the lip of the gutter. Boundary conditions for choked °ow at
the entrance (x = 0) and subsonic exhaust °ow (x = L) complete the formulation. Figure 9.10 shows one
example of six cases computed by Bloxsidge et al. (1988). The results of a simpli¯ed version of the problem
were also discussed by Dowling (1988). Because the treatment is linear, the actual values of the amplitude
could not be computed, but generally fairly good agreement between calculated values of the frequency
and observations was found (7% di®erence, about 6 Hz). Also, the authors report good results for changes
with inlet Mach number; equivalence ratio; and geometry, the length of the chamber and location of the
°ameholder.

Probably the weakest part of the entire analysis is the description of the unsteady heat addition. Al-
though the model seems a simple, realistic basis for the calculations, the intermittent character of the
unsteady burning, suggestive of vortex shedding, is not captured in the analysis. Apparent similarity be-
tween experimental results and calculations shown, for example by plots of q̂=¹p such as that in Figure 9.10,
is not consistent with the behavior cited by Langhorne in the quotation above. As we have discussed several
times with examples in Chapters 2 and 6, vortices, or identi¯able regions of concentrated vorticity shed
at °ameholders of various con¯gurations, are common phenomena arising in combustion instabilities. The
general problem has not been satisfactorily solved.

Following the early experiments on control of oscillations in Rijke tubes by Dines (1983) and Heckl
(1985, 1986), the initial results on feedback control at Cambridge were reported by Bloxsidge et al. (1988)
and Langhorne et al. (1989). They ¯rst used the device shown in Figure 9.9(b) showing that control of
the oscillations was exercised by operating the movable nozzle in a feedback path. Figure 9.11(a) shows the
e®ect of control on the oscillations in the duct, and Figure 9.11(b) is the spectrum of the unsteady pressure,
all measured upstream of the °ameholder. The authors conclude that their method of control worked by
increasing the °ux of acoustic energy loss at the downstream end of the duct. Their analysis is incomplete,
having nothing to say, for example, about the substantial reduction of the second harmonic clearly evident in
Figure 9.11(b). This may be simply due to a decrease in the consequences of nonlinear coupling causing °ow
of energy from the fundamental to the second harmonic, but the matter is not addressed in the paper. The
overall performance of the system was, however, quite promising, the peak of the spectrum being reduced
by 20 dB (or 12 dB according to a second paper by Bloxsidge et al. 1987); and the total acoustic energy
in the range 0{800 Hz was lower by 10{11%. One is left wondering why the reduction of amplitude is this
large|or this small.

Although appearing in print earlier, the 1987 paper by Bloxsidge et al. contains some analysis and design
of the control system which is not included in their 1988 paper. Evidently motivated in part by consultation
with a colleague expert in control theory, the authors use a method of `loop shaping' to improve the control
system by inserting elements (e.g. a Butterworth ¯lter as well as a phase shifter and two additional ¯lters)
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Figure 9.11. Unsteady motions in the test rig shown in Figure 9.9(a). (a) Pressure, velocity
and light emission between the inlet nozzle and °ameholder; (b) spectrum of the pressure
(Bloxsidge, Dowling, Hooper and Langhorne 1988).
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Figure 9.12. The device for mixing secondary fuel and air at the upstream end of the
°ameholder shown in Figure 9.9 (Langhorne et al. 1989).

in the feedback loop. The discussion of the design process is the ¯rst application of modern feedback control
design to a combustor, quite detailed, and helpful in understanding the current work as well as later works by
others. It is out of place to cover the subject here; the inclusion of a bit of control theory serves to emphasize
the point that attempts to use active control for improving the performance of combustion systems must
pay attention to both the principles of control and to the physical behavior of combustion processes. It is in
respect to the second that much of the reported work seems often to fall short.

In their second work on active control, Langhorne, Dowling and Hooper (1990) reported the ¯rst use
of secondary fuel injection to reduce a combustion instability. Again they used the apparatus shown in
Figure 9.9(a), but the device sketched in Figure 9.12 was installed at the upstream end of the °ameholder.
Automotive fuel injectors, essentially solenoid valves, pulsed the in°ow of fuel. In operation, then, the °ame

FEEDBACK CONTROL OF UNSTEADY MOTIONS IN COMBUSTORS 

9 - 14 RTO-AG-AVT-039 

 

 



is supplied by the primary premixed stream, plus a non-uniform supply of pulsed fuel/air mixture. The
secondary air °owed steadily; only the secondary fuel was pulsed. Because the control supply of °ow entered
through twenty-four radial holes (see Figure 9.12), mixing in transverse planes was likely quite good. Control
was exerted by varying the voltage operating the solenoid valves, thereby changing the fuel °ow only. In
the paper, the discussion of the test results draws virtually not at all on the picture of the °ow developed
in the works described above, but is based principally on some ideas of linear control theory. For the most
part, the analysis used is that worked out in the 1987 paper by Bloxsidge et al. , although there are some
di®erences in detail.

Langhorne et al. found that with the addition of fuel at a rate equal to 3% of the steady °ow, the peak
of the pressure spectrum was lower by 12 dB. The acoustic energy in the range 0{400 Hz was reduced by
18% when oscillations were controlled. That (fractional) amount of fuel °ow is too large for many practical
applications. Later systems have been shown to be less demanding in their requirements.

Soon after the early Cambridge work on control of combustion instabilities, the group at ¶Ecole Centrale
in Paris began a modest collaborative program of research with a group at Technische UniversitÄat MÄunchen.
Both groups had experience for some years with oscillations in laboratory combustors; the new feature
was the application of control. A postdoctoral researcher from Munich (W. Lang) was the live connection

between the two institutions, participating in tests performed at ¶Ecole Centrale. Two experimental devices
were used, shown in Figures 9.13 and 9.14 (Lang et al. 1987; Poinsot et al. 1987).

The simpler apparatus, Figure 9.13, was a vertical tube containing a °ame burning premixed gases at
the midpoint. An approximate analysis of this burner has been given in Section 2.7. It is not truly a Rijke
tube because its operation does not require that the °ow be induced by buoyancy. At an equivalence ratio
of 0.8, and °ow rate of 0.23 l/s, the system oscillated at 630 Hz, with an amplitude of 220 Pa, i.e., 2:2£10¡3
atmospheres. This was the second acoustic mode, approximately three-quarters of a wavelength contained
in the tube closed at the bottom and open at the top. The main purpose of the tests was to demonstrate
application of feedback control using a speaker as actuator and a microphone as sensor, both items contained
in the single feedback path shown in Figure 9.13(b). Various combinations of the locations of the actuator
and sensor were reported, including cases when both were on the same side of the °ame vertically, location
D, but placed on opposite sides of the tube. Satisfactory suppression of the instability could be obtained in
all cases treated, the noise level being reduced to 1/2 its original value in the best case.
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Figure 9.13. Apparatus used in the ¯rst tests of feedback control of combustion at ¶Ecole
Centrale and the Technische UniversitÄat MÄunchen. (a) Tubular burner exhibiting oscilla-
tions; (b) the con¯guration with provision for feedback control (Lang et al. 1987; Poinsot
et al. 1987, 1989).
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Although the authors suggest at the beginning of this paper that their experiments demonstrate `anti-
sound', they (correctly) later note that the control \system suppresses the noise source by directly controlling
the sound emission by the °ame." The point is that, unlike noise control by the use of anti-sound, (Ffowes-
Williams 1984), the process demonstrated in this work, as in the Cambridge tests, involves active modi¯cation
of the processes in noise production, and the coupling between the motions of the °ame and the acoustic
¯eld. It's an important fundamental point distinguishing combustion systems from most electro-mechanical
systems which have been the usual subjects of control. Application of control in the present case is necessarily
accompanied by changes in the properties of the system, properties which contain both the causes and
corrections of the problem (the instability).

At essentially the same time, tests at μEcole Centrale were carried out with the apparatus shown in
Figure 9.14. The duct burner, Figure 9.14(a), was used to demonstrate feedback control in a con¯guration
somewhat closer to those of practical systems, and under somewhat more realistic conditions. Results were
obtained for turbulent °ows, and reactants not premixed. The combustor, downstream of the injector, had
quartz windows in the lateral walls, was thirty centimeters long and had cross section 10 cm £ 5 cm. Tests
were performed with an air°ow rate of 24 g/s, and equivalence ratio of 0.4; the combustor then operated at
250 kW, which should be compared with the 1 kW burner in Figure 9.13(a).

The control system used speakers shown in Figure 9.14(a); apparently the instrumentation was identical
with that indicated in Figure 9.13(b). Figure 9.14(b) gives a clear picture of the e®ectiveness of (even) simple
actuation. At 230 Hz the peak in the microphone signal was reduced by 24 dB. As implied in the Cambridge
reports, but shown explicitly in the work at μEcole Centrale, the °ames responsible for the instability were
noticeably a®ected by the actions of the oscillations. Figure 9.14(c) shows schleiren photographs of the region
containing the processes of injection, mixing and combustion. Control of the system was accompanied by
streamwise stretching of the two-dimensional mixing layers formed by the injected gas jets. Evidently the
apparent periodic `pinching-o®' process was interrupted by the action of control, as suggested by comparison
of the pictures (i) and (ii), part (c) of the ¯gure. Part (c) is a striking example of one property distinguishing
control of combustion systems, that the action of control itself changes the system being controlled. That
characteristic is fundamental and quite likely lies behind many of the di±culties in this ¯eld, blocking success
with practical systems. Although the two situations are unrelated, note the suggestive similarities between
the °ows shown in Figure 9.14(c) and in Figure 7.37 for a rearward facing step.

Some further discussion and additional tests of details of the work were included|e.g. use of the control
to aid study of the initiation and growth of the instability|but to a large extent the problem remains
open. It seems that the setting chosen for these tests still o®ers a good possibility for studying fundamental
behavior not yet well understood.

Soon after the results at Cambridge and ¶Ecole Centrale became known, a small program of feedback
control was begun at the General Electric Corporate Research and Development Laboratory, initially with
two closely connected e®orts reported by Goodman and Houpt (1991) and by Gulati and Mani (1992).
The apparatus was essentially the same for the two works, sketched in Figure 9.15(a). Each demonstration
used the combustor having length a = 0:5 m and cross section 5 cm £ 5 cm, and a perforated plate as a
°ameholder. Flow rates of premixed air and methane varied from 200{500 ml/s, giving velocities 8{20 cm/s
and equivalence ratio from the lean limit (Á = 0:6) to (Á = 1:4). For the lengths used, the frequencies of
observed oscillations were mainly below 10,000 Hz.

Figure 9.15(b) shows two examples of the spectra measured when (i) there was no °ame (but °ow); and
(ii) when there was a °ame controlled and uncontrolled. The °ow rates were 220 ml/s (Á = 0:8) and 330 ml/s
(Á = 1:0). A dominant peak appeared in all cases. It was identi¯ed by the authors as the second longitudinal
mode of pressure, having an antinode at upstream end (approximately closed by the speaker); and two nodes,
one upstream of the °ame and one at the open exhaust. As comparison of (i) and (ii) in Figure 9.21(b)
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Figure 9.14. Feedback control at ¶Ecole Centrale (a) apparatus with a 250 kW combustor;
(b) e®ects of control on the light emission; (c) schlieren photographs of the combustion
region (i) without and (ii) with control (Poinsot et al. , 1987, 1988, 1989).

shows, modes having higher frequencies were favored by higher °ow speeds. Unfortunately, the controller
became less e®ective as the °ow speed increased. The controller acted by adjusting the amplitude of waves
injected by the speaker, and their phase relative to the measured wave. As the °ow speed increased, the
usable ranges of amplitude and phase of the control signal became less. At equivalence ratios greater than
0.8 and °ow speeds greater than 330 ml/s the control system would not suppress oscillations. Because the
speaker (the actuator) was not a®ected by the °ow, the authors concluded that reduced performance of the
control system was likely caused by unfavorable characteristics of the controller.

To improve the performance of their system, Gulati and Mani modi¯ed the design of their controller
by appealing to ideas of `loop-shaping', following the ¯rst application of this approach to a combustion
system by Bloxsidge et al. (1987, 1988). The general idea (see, e.g., Doyle, Francis and Tannenbaum 1992,
McFarlane and Glover 1992) is that the performance of a feedback system depends on the transfer function
of the `open loop', for example GfGfb in Figure 9.2. Thus, to understand the behavior of the closed-loop
system, for which the transfer function is GfGfb=(1 + GfGfb), we really need to know and work with the
much simpler function GfGfb for the open-loop.
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The basis for doing so was established in 1932 by Nyquist in his wonderful paper \Regeneration Theory,"
`regeneration' being a synonym for feedback. Annex G here is a discussion of Nyquist's `criterion', the relation
(G.10),

Z = N + P (9.15)
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Figure 9.15. GE demonstration of feedback control, results for the ¯rst type of controller;
(a) sketch of apparatus and instrumentation; (b) measured power spectra for (i) °ow only,
and (ii) with a °ame (Gulati and Mani 1992).
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where Z is the number of zeros of the transfer function for the closed-loop system in the right half s-plane;
P is the number of poles of the transfer function for the open-loop system; and N is the number if counter-
clockwise encirclements of the point ¡1 by the polar plot of the open-loop transfer function.

N = ¡P¸ 0 (9.16)

Examples, and much theoretical work with Nyquist's Criterion, make use of explicit forms for the loop
transfer function, labelledHG in Annex G. In contrast to the choice by Bloxsidge et al. (1987) and Langhorne
et al. (1990) to use simple approximations for HG, Gulati and Mani constructed HG from measurements
on their system. Based on the results, they changed the components in the controller as required. The
measurements include the dynamics of the °ame, but must be performed under conditions when oscillations
due to instabilities are suppressed. Figure 9.16 shows an example of a Nyquist diagram obtained from the
measurements. Results discussed in the reference led to inclusion of a notch ¯lter to eliminate a peak in the
spectrum, and a lead compensator to correct for an additional phase shift. That approach gives wider gain
and phase margins (see the discussion in Annex G and Figure G.8).
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Figure 9.16. A Nyquist diagram recorded by Gulati and Mani (1992) for their combustor
with their ¯rst controller. Because of their choice of conventions, encirclements of +1 rather
than ¡1 are counted (cf equation 9.15); only half of the symmetric diagram is shown.

Using essentially the same apparatus, Houpt and Goodman (1991) also applied principles of control
theory to improve the design and performance of a controller indicated by the dashed box in Figure 9.15(a).
Like Gulati and Mani, they measured open-loop dynamics and Nyquist plots for several variants of the system.
The emphasis of the brief work is on di±culties arising with control of a distributed system approximated
as a lumped-parameter system, no attention being directed to the consequences of possible changes in the
hardware or characteristics of the combustion processes. Thus the work is directed to adaption of methods
well-known for control of electro-mechanical systems to systems involving °ow and combustion. The results
are much less important than the tack taken.

In a little noticed short paper, Tierno and Doyle (1991) reported an interesting demonstration of applying
system identi¯cation as the basis for controlling the oscillations in an electrically-driven Rijke tube. A speaker
was used as an actuator and a small FET microphone was the sensor, both devices placed near the intake to
the tube. The open-loop transfer function H(s) for the combined system of ampli¯er, speaker, Rijke tube
and microphone was measured for su±ciently high °ow rate giving stable operation, and represented by a
collection of second order systems:

Y (s)

D(s)
= H(s) =

MX
n=1

bncn
s2 + 2±n!n + !2

(9.17)
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Figure 9.17. Schematic of a Rijke tube apparatus (a) and the block diagram (b) for loop
shaping design (Tierno and Doyle 1992).

Because control is exercised under conditions when the system is unstable|so H(s) is not exactly given
by the function on the right side of (9.17)|the control system must have certain amount of `robustness.'
Except in the range of frequencies 200{400 Hz, equation 9.17 is quite a good representation for 100 < f <
2000 Hz, a range containing about ten modes.

With the objective of reducing the quality factor (center frequency divided by the 3 dB bandwidth of
the spectrum) of the two lowest modes, the authors follow a procedure for designing a controller based on
`loop-shaping' (McFarlane and Glover 1989, 1992). Figure 9.17(b) shows the con¯guration for the loop-
shaping design procedure. The loop-shaping weight WLS is de¯ned by the shape L(s) required to meet the
performance speci¯cation, which in this case if jLj À 1, where

L(s) =WLS(s)H(s) (9.18)

with the chosen weight

WLS(s) =
7

(s+ 1500)(s+ 3000)2
(9.19)

Design of the controller, Figure 9.17(b), involves calculations which we will not cover here, and are only
referred to by Tierno and Doyle.

The main result is successful reduction, by the closed loop control, of the resonances exhibited by the
open loop system. Figure 9.18 shows an example for unspeci¯ed °ow rate and heater power. The system
did not sustain limit cycles at the reduced levels reached where closed loop control was applied.

This is an interesting demonstration introducing the use of a `loop shaping H1' technique similar to
that used in the GE work (Horupt and Goodman, 1991; Gulati and Main, 1992). A signi¯cant di®erence is
the use of an electric heater to drive the instability. Thus the dynamics of the heat source are quite di®erent.
No investigation of the di®erences between the two cases has been published.

Application of feedback control to combustion systems requires merging two historically distinct ¯elds
of study to form a third new ¯eld. Historically, virtually no single person has simultaneously had experience,
knowledge, and depth of understanding in both originating ¯elds. As a result, emphasis in particular works
has tended to lie on one side of the other. As a practical matter, it has been a natural tendency that a
combustion group (in a university or in a commercial organization) would invite people with background
in controls to participate, or advise, in a research project. The interesting|and instructive|aspect of the
work at General Electric is the very substantial in°uence exerted by the controls people. Unfortunately, the
program was abandoned, leaving still unanswered many questions raised by the limited tests, and incomplete
interpretations of the behavior observed. Similarly, the demonstration reported by Tierno and Doyle did not
lead to further work elaborating their only study.
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Figure 9.18. Open and closed loop power spectra for the Rijke tube shown in Fig-
ure 9.17(a) (Tierno and Doyle 1992).

9.3. Modal Control for Combustion Systems

It is probably not an exaggeration to claim that the experimental work with elementary situations in
the 1980's had exposed the general character of most of the basic problems to be overcome before control
of combustion systems could be regarded as successfully achieved. Before we review progress to date, it is
helpful to summarize the general basis for our subsequent remarks.

Given that at a su±ciently high level practically all control systems ¯t the picture shown in Figure 9.1,
and further that the principles of linear control are well-known and their applications highly developed, it
is a reasonable question: What is special about the problem of controlling the dynamics of a combustion
system? Perhaps the best simple answer is that combustion systems bring together at least ¯ve de¯ning
characteristics each of which individually already may be di±cult to treat in control of other kinds of systems:

² internal instabilities
² substantial time lags
² intrinsic nonlinearities
² substantial internal noise
² the action of control changes the properties of the system

The fact that the system is unstable|the origin, after all, of the problems discussed here|is not unusual, nor
is the presence of time lags. Control of nonlinear systems has successfully been treated in special cases and
it seems that much is known about controlling some kinds of nonlinear behavior in other types of physical
systems. Presently the signi¯cance of noise in respect to controlling combustion systems is not understood;
the matter merits consideration since often in combustion chambers the levels of noise are not negligibly
small compared with those of the instabilities. When a combustion system is controlled, signi¯cant changes
in the de¯ning characteristics, such as the distribution of average energy release may occur. In fact those
changes may account for elimination of an instability. That sort of behavior is quite di®erent from the usual
situation in a mechanical system whose de¯ning properties such as masses, are not normally a®ected by the
action of control.

All ¯ve of the items listed above raise issues of modeling, analysis and, ultimately, experimental work.
In the context of control, that situation justi¯es the principal thrust of this book. The general framework
based on spatial averaging is attractive for at least two important reasons:

(i) the process of averaging tends to reduce the consequences of errors in details of modeling;
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(ii) there is a wonderful match between the methods of feedback control in state space on the one hand;
and the theory of combustor dynamics based on spatial averaging and expansion in acoustic modes
on the other.

In the literature of control theory this merging of control theory and the behavior of a continuous system
is often called `control of a distributed parameter system.' Note, however, that label normally implies
representation|i.e. a mathematical model|of the system based on partial di®erential equations.

The main subject of this chapter is perhaps more appropriately identi¯ed by the standard term modal
control, using a representation of the system based on ordinary di®erential equations describing the ampli-
tudes and relative phases of the modes. Modal control has been developed mainly in the ¯eld of structures,
non°owing systems generally, which can be represented as `lumped parameter' systems by working with
Lagrange's equations. Figure 9.19 shows one way of summarizing the scheme we have discussed in the pre-
ceding eight chapters. Matters of control arise in the bottom line of blocks. Our remarks here are limited
to linear control, which encompasses both classical and modern control. It is essential to understand the
well-established principles of classical control. However, for several reasons it is often preferable to treat
control of combustion systems within modern control theory, using representations in state space.

parameters (M  , M'   

Expansion in 2 small

Physical
System

Physical laws

Model of the physical system
based on general principles

and conservation laws

rr )

PDE linear in  M   and M'r r

Linear ODE for modal
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Nonlinear ODE for modal
amplitudes and phases

Linear
stability

Continuation
methods and
bifurcations

Nonlinear PDE and
Integro-differential equations

 

higher order in  M

PDE nonlinear in  M'   andr

r

Spatial averaging
Modal expansion

Work in
Progress

Linear
control

nonlinear in  M'

PDE linear in  M   andr

r

Nonlinear
control

Figure 9.19. The general scheme according to the procedures followed here for connecting
the physical system (a combustor), physical modeling, mathematical modeling, dynamics
and control.

It happens that the formulation based on spatial averaging becomes a state space representation by
simple rede¯nition of symbols. Hence the entire apparatus of modern control theory becomes immediately
applicable. The group at Penn State, for example, seems to have been ¯rst to take advantage of that

FEEDBACK CONTROL OF UNSTEADY MOTIONS IN COMBUSTORS 

9 - 22 RTO-AG-AVT-039 

 

 



attractive feature (Fung, 1991), as described in Section 9.3.1 Many subsequent works by other groups are
related in some respects or other.

The basic idea is quite straightforward, following from the form of the equations (3.53) and their boundary
conditions (3.55) governing the evolution of arbitrary unsteady motions in a combustor:

r2p0 ¡ 1

¹a2
@2p0

@t2
= h+ hc (9.20)

n̂ ¢ rp0 = ¡f ¡ fc (9.21)

The functions hc and fc represent the actions of control. The splitting on the right-hand sides of (9.20)
and (9.21) is legitimate for linear problems because any means of control (passive or active) can work only
because it a®ects the mass, momentum and energy of the system; additivity follows from the assumption
of linearity. In principle, hc and fc can be computed with the same formulas de¯ning h and f discussed
in Section 3.4. The formalism of spatial averaging worked out in Chapters 3 and 4 can be applied without
change to (9.20) and (9.21), giving the extended oscillator equations corresponding to (4.36), written here
for the nth mode,

Ä́n + !
2
n´n = Fn + F

(c)
n (9.22)

where F
(c)
n is the `force' of control acting on the nth oscillator, (i.e. the nth mode). The set of equations

(9.22) forms the mathematical model used in application of the principles of control. We emphasize once
again that the most di±cult part of applications consists in modeling the physical processes7 contained in

Fn and F
(c)
n .

As a simple example of the general procedure, suppose that the combustor is given and that its internal
processes are well-characterized. Thus the mean °ow ¯eld, and the steady distribution of chemical reactions
and energy release are known. Hence we may assume that the basis functions Ãn and the normal frequencies
can be computed and are known. Hidden in Fn are quantities that must be modeled. In particular, the most
important is the °uctuation of energy release, _Q0, associated with the chemical reactivity of the °ow. Its
contribution to Fn has already been introduced in the simple example of the Rijke tube discussed in Section
2.2. The term representing energy addition is

FQN =
° ¡ 1
¹p

1R
Ã2ndV

Z
Ãn
@ _Q0

@t
dV (9.23)

in which in°uences of the mean °ow have been ignored. In reality _Q0 depends on local °uctuations of pres-
sure, temperature, velocity and species concentrations. It therefore cannot be determined from elementary
considerations of chemistry and chemical kinetics alone.

A term similar to (9.23) arises in F
(c)
n so on the right-hand side of (9.22) we have the combination

FQn + F
Q(c)
n =

° ¡ 1
¹p

1R
Ã2ndV

Z
Ãn

"
@ _Q0

@t
+
@ _Q0c
@t

#
dV (9.24)

where _Q0c is the local °uctuation of heat release rate ascribed to the controlled actuation. If
@
@t(

_Q0 + _Q0c)
vanishes, then there is no e®ect of heat in energy release in the excitation and maintenance of unsteady
motions. This seems a simple if not almost obvious result. It seems to be the most elementary formal
expression within the analysis developed here, of what is likely the most e®ective practical means of actively
controlling the dynamics of gas turbine combustors, modulation of the fuel supply.

7The formulation here is very general and of course is valid for non-reacting °ows. Hence, at least in principle, these
equations with noise sources included (Section 7.9) are applicable as well to active control of sound or noise (Nelson and Elliott,
1992; Peake and Crighton, 2000).
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The basic idea is that if the fuel supply is so modulated, or if a secondary fuel supply is injected in
the chamber, and the modulation as e®ected according to the appropriate control law, then the °uctuation
of energy release rate _Q0c due to its action might, under ideal conditions, exactly compensate the amount
_Q0 due to °uctuations due to other causes. `Other causes' might include coupling between the mean °ow
(e.g. vortex shedding) and acoustic modes, and destabilization of °ame stabilization processes near the
lean blowout limit. This kind of control can be interpreted in terms of Rayleigh's original criterion, Section
6.6: If _Q0c = ¡ _Q0 and only this process is accounted for, then r»n, equation (6.67), vanishes. Hence,
control by modulation of the fuel supply is frequently referred to as a strategy \according to Rayleigh's
Criterion" or similar words. For example, the idea is expressed often in the works published by the group
at Georgia Tech (e.g., Butts et al. 2003, Conrad et al. 2004, Zinn 2005). A fundamental di±culty, apparent
in Figure 9.14(c), are the unpredictable signi¯cant e®ect that the action of control has on the dynamical
properties of the combustion and °ow processes. Evidently the meanings and interpretation of Q0 and Q0c
are not clearly de¯ned.

9.3.1. State Feedback Control Based on Spatial Averaging. A group at Pennsylvania State
University ¯rst worked out some results for feedback control using the representation in normal modes. In
his Ph.D. thesis Fung (1991) has covered most of the results reported by Fung, Yang, and Sinha (1991), Fung
and Yang (1991), and Yang, Sinha, and Fung, (1992). Their analyses are based on the formulation covered
in earlier chapters here, leading to the governing equation (9.20) with the boundary condition (9.21). In
terms of the general contributions Pc in the equation (D.1)d for pressure and Fc in the momentum equation
((D.1)b, the source terms representing the actions of control are formed from the last two terms of (D.4)a
and the last term of (D.4)b:

hc = r ¢ F0c ¡
1

¹a2
@P0c
dt

(9.25)

fc = ¡n̂ ¢ F0c (9.26)

The procedure for spatial averaging worked out earlier with the approximations introduced for combustion
with °ow, gives the set of coupled equations for the normal modes,

d2´n
dt2

+ !2n´n = Fn (9.27)

and

Fn =¡
1X
i=1

[Dni _́i +Eni´i]¡
1X
i=1

1X
j=1

[Anij _́i _́j +Bnij´i´j ]

+
1X
i=1

[»
(
niv) _́i + »ni(t)ni] + ¥c(t) + Un(t) (9.28)

As de¯ned in Chapter 4, the coe±cients Dni; Eni can be calculated if the mean °ow and the mode shapes
or eigenfunctions Án are known. In general, they may be constructed from information given or assumed for
the linear processes in question. The coe±cients Anij ; Bnij depend only on the mode shapes and are well-
de¯ned. They arise from nonlinear acoustical interactions which are independent of the mean °ow. Sources
of noise are represented by »ºni _́i, »ni´i and ¥(t). At the present state of theory and experiment, one has
little choice but informed modeling as the basis for specifying representations of noise. The limited results
obtained to date suggest that relatively straightforward and simple models of noise will su±ce for obtaining
useful results. See Sections 7.9 and 7.10. Additional processes may be included in (9.28) but attention must
be paid to the ordering procedure explained in Chapter 4.

The last term in (9.28) represents the control input,

Un(t) = ¡ ¹a2

¹pE2n

·Z
Ãnhc dV +

I
Ãnfc dS

¸
(9.29)

FEEDBACK CONTROL OF UNSTEADY MOTIONS IN COMBUSTORS 

9 - 24 RTO-AG-AVT-039 

 

 



In terms of F0c and P
0
c introduced with (9.25) and (9.26), we have

Un(t) =
¹a2

¹pE2n

Z £
F0c ¢ rÃn +

1

¹a2
@P0c
dt
Ãn
¤
dV (9.30)

Formulation for problems of control is completed, within the present scheme, by specifying F0c and P
0
c.

Whether one continues with a description set in terms of the variables de¯ned in physical space (x; dx=dt;
p; : : : ) or transforms to a description grounded in state space as described shortly, the basic problem is
specifying the control input, which means determining explicit forms for F0c and P0c. That is the most
di±cult part of the entire ¯eld of controlling combustion systems, rendered especially challenging because,
as implied by the last item of the list at the beginning of this section, F0c and P0c are dependent upon the
action of control in ways which are unknown; see, for example, Figure 9.14(c).

Transformation to a description in state space is straightforward. Following Fung (1991), de¯ne the state
variables xn as the amplitudes xn of the modes. Assume that the ¯rst N modes are controllable and that
the system is de¯ned to include the ¯rst K modes, K > N . Then the state vector is taken to be composed
of the controllable, xN and residual, xR, parts,

x = [xn; xr]
t (9.31)

where superscript [ ]t represents the transpose, and

xN = [´1; : : : ; ´N ; _́1; : : : ; _́N ]
t (9.32a)

xR = [´N+1; : : : ; ´K ; _́N+1; : : : _́K ]
t (9.32b)

For combustion systems, which in principle have an in¯nite number and in practice exhibit a large number
of excited modes (cf. Figure 9.14(b) for example), limitations of control systems must cause both N and
K to be non-zero. In other words, there will always be N controlled modes and K{N modes that are not
controlled, the residual modes.8 If the nonlinear part of (9.28) is dropped, then the set (9.27) is linear and
well-known methods developed for control of electro-mechanical systems are applicable. Fung (1991); Fung,
Yang, and Sinha (1991) reported their results based on methods explained by Franklin et al. (2002); Franklin
and Powell (1980); and Ogata (1987, 1990).

To illustrate the transformation to a description in state space, we assume that only three modes are
active and that the system is linear (Anij = Bnij = 0 in FN ). Then the state vector is

x = [n1; n2; n3; _n1; _́2; _́3]
T (9.33)

We do not include uncontrolled (residual) modes. The ¯rst order equations for the components of the state
vector are formed by inspection, using the de¯nitions of the _xi and the equations for

_x1 = _́1 = x4 (9.34)

_x2 = _́2 = x5 (9.35)

_x3 = _́3 = x6 (9.36)

_x4 = ¡!21x1 + [D11x4 +E11x1] + [D12x5 +E12x2] + [D13x6 +E11x3]
+ [»º11x4 + »11x1] + [»

2
12x5 + »12x2] + [»

º
13x6 + »13x3] + ¥1(t) + v1(t) (9.37)

_x5 = ¡!21x2 + [D21x4 +E21x1] + [D22x5 +E22x2] + [D23x6 +E23x3]
+ [»º21x4 + »21x1] + [»22x5 + »22x2] + [»

º
23x6 + »23x2] + +¥3(t) + v2(t) (9.38)

_x6 = ¡!21x3 + [D31x4 +E31x1] + [D32x5 +E32x2] + [D33x6 +E33x3]
+ [»º31x4 + »31x1] + [»

º
32x5 + »32x2] + [»

º
33x6 + »33x3] + ¥3(t) + v2(t) (9.39)

8Although the representation in terms of acoustic modes means strictly that K ! 1, we assume for this discussion that
K is ¯nite.
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Stochastic sources represented by ¥n(t) and the various terms containing »
º
ij and »ij are not accounted for

in the traditional formulations of modem control theory so we split them apart and write

_x = Ax+ »x+¥(t) + u(t) (9.40)

A =

2666666666666664

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

¡ !21 +E11 E12 E13 D11 D21 D31

E21 ¡!21 +E22 E23 D21 D22 D23

E31 E32 ¡!21 +E33 D31 D32 D33

3777777777777775
(9.41)

» =

2666666666666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

»11 »12 »13 »º11 »º12 »º13

»21 »22 »23 »º21 »º22 »º23

»31 »32 »33 »º31 »º32 »º33

3777777777777775
(9.42)

¥(t) =

26666664
0
0
0

¥1(t)
¥2(t)
¥3(t)

37777775 ; u(t) =

26666664
0
0
0

u1(t)
u2(t)
u3(t)

37777775 (9.43)a,b

Much of the theory of linear systems in state space is formulated in terms of the `ABCD' matrices
de¯ned so the systems are described by the equations9

_x = Ax+Bu (9.44)

y = Cx+Du (9.45)

where y is the matrix of the outputs of the system. For a `single-input single-output' (SISO) system, both
u and y are scalars, so B is a column matrix, C is a row matrix and D is a scalar. In general the matrices
have the following forms for systems having N degrees of freedom, giving n = 2N state equations, p inputs
and q outputs:

n

n
h
A
i p

n
h
B
i n

q
h
C
i p

q
h
D
i

(9.46)

Equations ((9.43)a,b) and (9.44) apply if stochastic processes are not accounted for and u(t) is appropriately
de¯ned.

9Franklin et al. (2002) distinguish between `ABCD' matrices used for the `model canonical form' of the governing equations
and then `FGHJ ' matrices for describing a system in general. The non-uniqueness of the state-space formulation causes technical
di±culties but is not a fundamental matter and we will not elaborate here.
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Most early experimental results for combustors have been accomplished for SISO systems; see Figures 9.4,
9.8(a), 9.14, and 9.15. In such cases, q = p = 1 and u becomes u, a scalar. This special but very important
case is treated at length by Franklin et al. (2002).

Although we will not need the result, for completeness we sketch the derivation of a basic result showing
the connection between the transfer function for a linear system and the description in terms of the matrices
ABCD. Take the Laplace transform of the state equation (9.44) to ¯nd

sX(s)¡ x(0) = AX(s) +BU(s) : (9.47)

Solve for X(s) to ¯nd

Xs = (sI¡A)¡1BU(s) + (sI¡A)¡1x(0) (9.48)

where I is the identity matrix having o®-diagonal elements zero and diagonal elements 1.

The transform of the output, equation (9.45), is

Y(s) = CX(s) +DU(s) (9.49)

and substitution of (9.47) gives

Y(s) =G(s)U(s) +C(sI¡A)¡1x(0) (9.50)

where the transfer function, or better, the transfer matrix, is

G(s) = C(sI¡A)¡1B+D =
CAdj(sI¡A)B
det(sI¡A) +D (9.51)

For a single-input single-output system, (9.51) can be put in the simpler scalar form

G(s) =

det

·
A¡ sI B
C D

¸
det[A¡ sI] (9.52)

The results (9.50), (9.51), and (9.52) are the basis, in principle, for calculating the behavior of a linear
system.

9.3.2. Application to Combustion Systems. The results just quoted have wide applications dis-
cussed particularly in tests already referred to. In the Penn State work, special results for combustion
systems were obtained by assigning the source functions Un(t) forms which follow from use of representa-
tions of physical behavior established previously. Thus, the assumption of M `point actuators' implies the
form for the source function in the wave equation for pressure

hc(r; t) =
MX
i=1

±(r¡ ri)ui(t) (9.53)

and the ¯rst integral in (9.29) gives

Un(t) =
¹a2

¹pE2n

MX
i=1

ui(t)Ãn(ri) (9.54)

For these calculations we assume that there is no actuation in the surface of the chamber so fc = 0.

The additional assumption of J point sensors exhibiting no direct dependence on actuation processes
allows (9.45) to take the form

yj(t) = cjp
0(rj ; t) (9.55)
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where the cj are real numbers determined in principle by the sensors. With the usual form of the pressure
¯eld,

yj(t) = cj ¹p
JX
s=1

´s(t)Ãs(rs) (9.56)

What remains to complete speci¯cation of the general problems is de¯nition of the control law, the rule
governing the time-dependent action of the actuators. That is, u(t), which is to say the ui(t) must be set
explicitly. Put another way, the feedback law is required. The most common choice, originated by Collander
et al. (1936) is `PID control,' proportional-integral-derivative control, illustrated by the simpli¯ed diagram
shown in Figure 9.20 for time-dependent behavior. In the case shown, a single state variable x(t) has a
speci¯ed (desired or reference) state r(t) and output y(t).

r(t)       Σ           u(t) = K  (r − y) + K   (r − y)dt + K       (r − y)             x = Ax +Bu             y(t) = Cx +DuP

+
−

d
dtI D

r − y x(t)u(t) .
PID  CONTROLLER                                                 SYSTEM                               OUTPUT

y (t)
'

Figure 9.20. A simple block diagram for proportional-integral-derivative (PID).

Properties and behavior of linear feedback control are usually treated as functions of frequency (`in
the frequency domain'), leading to the appropriate block diagram corresponding to Figure 9.20. Shelves of
texts treat the various e®ects and uses of PID control, and consequences of varying the three main control
variables, KP , KI , and KD.

Yang et al. (1992) ¯rst chose to follow a path common in modern control theory, assuming `state
feedback' control, that is, setting the control linear in the state variables

u(t) = ¡Kx̂N (9.57)

where x̂N is an approximation to the true state vector, an approximation at least because in practice only
a ¯nite number of modes can be controlled. The result is often referred to as an `estimation' quanti¯ed by
an `estimator' introduced in the system.

This situation introduces the idea of an observer ¯rst discussed by Luenberger in his Ph.D. thesis, later
summarized in Luenberger (1971). The use of an observer and estimator is well-developed in control theory
(see Franklin et al. 2002 for a good discussion) and we will not cover the subject here. Put most simply, the
observer acquires approximate (measured) information about the state of the system, which the estimator
then uses to construct the approximation to the state, x̂N , used by the controller according to (9.57) for
example. With this formal basis, Yang et al. follow known procedures and then work out examples showing
application of state feedback. It is not surprising that the results demonstrate success; no connections with
the behavior physical systems are given. At that time (late 1980s, early 1990s) testing had barely begun.

In a subsequent (not according to date of publication, but essentially contemporaneous) paper, Fung et
al. (1991) worked out some results based on assuming distributed actuators, suggested by their Figure 1
redrawn as Figure 9.22. Their analysis di®ers from that worked out by Yang et al. (1992) (submitted earlier
but published later) mainly in the representation of actuators, and the type of control they assumed. Rather
than pursue formalism based on state feedback which o®ers few hints of practical realization, the authors
suppose instead that control involves injection of secondary fuel burning according to the n{¿ model of
Crocco and Cheng (1956) explained here in Section 2.3.2. Eventually this approach applied to n actuators
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leads to the representation of hc(~r; t)

hc(r; t) = ¡
MX
i=1

ui(t)±(r¡ ri) (9.58)

with

ui(t) = R(rit¡ ¿i)¢V (ri)R¢Hc
¹a2Cv

@mi(t¡ ¿i)
@t

(9.59)

R                       K  +    K  + K  s              G(s) Y
     +

−
R  − YΣ 1

sP I D

PID  CONTROLLER               SYSTEM

Figure 9.21. Block diagram for PID control applied to a linear system; the transfer func-
tion G(s) is given by equation (9.52)

CONTROLLER

SECONDARY

FUEL  INJECTOR SENSOR

u
1

u
2

u
3

u
M

. . .COMBUSTIBLE

MIXTURE

Figure 9.22. Simpli¯ed sketch of the system analyzed by Fung, Sinha, and Yang (1991).

Equation (9.58) relates the control source in the wave equation to the time-dependence of point actuators
whose e®ects (i.e., wave generation) are assumed to be exerted with time lags, each actuator characterized
by a di®erent lag or delay. The model is completed by specifying the way in which the mass sources mi(t)
vary in time. Yang et al. chose a proportional/integral (PI) controller, each mass source (actuator) varying
according to the rule

mi(t) = K1

tZ
t0

e(t0 ¡ ¿c) dt0 +K2e(t¡ ¿c) (9.60)

where ¿c is the `time delay in the feedback loop' on e(t) = r(t) ¡ y(t) is the error, the di®erence between
the desired response, r(t)-pressure °uctuation|of the system, speci¯ed to be zero; and the actual pressure
p(t), here set equal to y(t) to conform with standard usage in control theory. Substitution of (9.60) in (9.59)
leads to

ui(t) = KPie(t¡ ¿c) +KDi _e(t¡ ¿c) (9.61)

The source term in the wave equation for the amplitudes ´n(t) may then be put in the form with r(t) = 0
so e(t) = ¡y(t) ´ ¡p0(t) » ´(t):

u(t) = ¡
MX
i=1

NX
j=1

£
KPni´j(t¡ ¿i ¡ ¿c) +KDni _́j(t¡ ¿i ¡ ¿c)

¤
(9.62)

where the details of KPni and KDni are easily found but are unimportant here. What matters is that the
assumptions regarding physical behavior have, in the manner summarized, led to a formulation which can
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be used for solving speci¯c problems. How realistically the actual source terms in an operating combustor
are represented by a form like (9.62) is a totally di®erent and crucial question.

Probably the principal value of the three papers by Fung and coworkers is their explicit and clear use
of examples within the general formulation covered here in Chapters 3 and 4 to study well-known problems
in linear control theory. Results obtained depend on assumptions built into construction of the terms
representing the controller(s). At the time, the work was done (late 1980s) and given the state of the state
of the ¯eld, the choices made were reasonable, and the results make sense within that context. However, the
use of time lag models is no longer defensible for representation of realistic behavior. To achieve meaningful
theoretical results requires much deeper models.

The work just described was extended into the areas of modern control by Hong et al. (2000, 2002),
works which primarily adapt formalisms worked out by others but do not get at the truly fundamental
problems presented by combustion systems. Haddad et al. (1996) cover similar ground, with somewhat
di®erent emphasis. Their discussion is also a useful introduction to adaptation of some of the ideas taken
from modern control theory.

9.4. An Example of Practical Application of Feedback Control

Virtually all progress in applications of feedback control to combustion systems has been achieved without
bene¯t of special theoretical results. General ideas have been useful for interpretation of experiments and to
aid broad planning of tests, but the ability to produce quantitative predictions routinely is missing. In short,
there is no proper theory of the subjects encompassed by the title of this chapter. Highly developed theory
of course exists for feedback, and for systems built on the idea of feedback, but relatively little has been
accomplished to accommodate the theory and actual physical behavior of combustion systems. It is helpful
at this point to summarize a particularly interesting example illustrating how far, nevertheless, practical
application has been accomplished in one case.

So far as the author is aware, there has been only one example of the application of feedback to control
the dynamics over an extended period of time in operational gas turbines. The case was mentioned at
the beginning of this chapter, a Siemens gas turbine used for power generation. Two other programs have
produced documentation of brief experiences with full-scale combustors (Westinghouse; Pratt and Whitney),
and a third (Rolls-Royce) describes limited tests with an augmentor designed many years ago. It seems
that presently there is little industrial activity in pursuing fundamental development of feedback systems
for controlling the dynamics of combustors. Probably a major reason is that the emissions requirements
have been met without resorting to control of oscillations and lean burning conditions. The possible gains
suggested by experiments performed to date apparently do not justify the added expense and complications.
Passive control in the general sense still wins.

Studies of oscillating °ames and acoustics at the Technische UniversitÄat MÄunchen began in the 1970s
with thesis work by Schimmer (1974), reported by Schimmer and Vortmeyer (1977). Apparatus was designed
and constructed to produce °at °ames, found when the °ow speeds of the propane/air mixture was less than
or equal to the laminar °ame speed. Figure 9.23(a) is a sketch of the apparatus, a matrix burner specially
constructed to give °at °ames stabilized near the base. Figure 9.23(b) is a stability diagram in the plane
equivalence ratio versus period of oscillation obtained when the °ow speed just upstream of the °ame is less
than or equal to the adiabatic °ame speed. Greater °ow speeds give wrinkled °ames,10 perhaps indicating
incipient turbulence. The abcissa is the inverse of the frequency, T = 1=f , which is changed by varying the
length L of the tube; if end corrections are ignored, T » L=¹a » L, where ¹a is the mean speed of sound.

10The velocity of °ow can be varied and need not be equal to the unique adiabatic °ame speed because of the upstream
heat losses both to the matrix structure and to the surrounding provisions for cooling.
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Figure 9.23. The apparatus (a) and stability diagram (b) for the results with no feedback
control reported by Schimmer and Vortmeyer (1977).

Because only °at °ames extending nearly to the inner surface of the tube were tested, it is a good
approximation to treat the system as one-dimensional for analyzing the acoustics. The unsteady °ow is
then represented in piecewise fashion by sums of appropriate travelling waves matched at the °ame to give
a standing wave system; cf. the ideas and analyses introduced in Sections 2.7.3 and 5.7. Schimmer and
Vortmeyer interpreted the behavior of the acoustical system in terms of the analogy with electrical waves:
pressure voltage and current » velocity, all quantities carrying harmonically in time. It's an interesting
discussion, but oversimpli¯es the actual physical behavior. For example, the treatment would be greatly
improved if the ideas developed by Chu (1953) were taken into account. The experimental situation developed
in Schimmmer's thesis o®ers a wonderful opportunity to do so.

Joos (1984), and Joos and Vortmeyer (1986) reported later results using apparatus closely resembling
Schimmer's. A signi¯cant di®erence is measurement of OH¡ radiation, and the assumption that the inten-
sity of the radiation, based on the work by Lenz (1980), is a \direct measure of the momentary reaction,"
an assumption which has never been thoroughly investigated. As in the early investigation by Schimmer,
the behavior of the °ame and the acoustics in the tube is interpreted with the help of appeal to electrical
waves. The principal improvements are the measurements of radiation|and consequent inferences of en-
ergy release|and considerations of simultaneous oscillations having unequal frequencies. As in the case of
Schimmer's work, the experiments could be fruitfully repeated with improved forms of the same apparatus,
and with the much superior instrumentation now available.

Investigations of possible use of feedback control at the Technische UniversitÄat MÄunchen were ¯rst
reported in a note by Gleis and Vortmeyer (1989); more easily accessible is the short paper by Gleis,
Vortmeyer and Rau (1990) given at an AGARD meeting. These works used apparatus similar to that

sketched in Figure 9.13 for the initial tests at ¶Ecole Centrale, Paris, which were the result of a collaboration
between ¶Ecole Centrale and Technische UniversitÄat MÄunchen. Because combustion took place in a jet, vortex
shedding was found to be a contributing mechanism under some conditions when pressure oscillations were
driven.
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Figure 9.24. Feedback control at Technische UniversitÄat MÄunchen. (a) apparatus; (b) the
piezo actuator (Hermann, Gleis and Vortmeyer 1996).

A step towards practical application of feedback control was taken with demonstration tests by Gulati
and Bigalow (1990) who used a servo valve to modulate their supply of liquid fuel. They found only a
small (4 dB) reduction of sound pressure level at 130Hz, but theirs were the ¯rst tests of control with a
liquid system. Five years later, Hermann, Gleis and Vortmeyer (1996) reported the ¯rst success over a
practical frequency range (200{600Hz) with a piezo actuator that was operable to \several thousand Hz."
They demonstrated the e®ectiveness of their device with the apparatus sketched in Figure 9.24(a); the piezo
actuator is shown, much simpli¯ed, in Figure 9.24(b). Note that the entire fuel °ow is modulated by the
actuator.

A typical test result is reproduced in Figure 9.25; the unsteady pressure served as input to the controller;
similar results were obtained when the radiation for OH¡ was used. Self-excited oscillations having dominant
frequency 360Hz were found to have peak pressure approximately 140 dB when the equivalence ratio was
0.95. The control system caused the peak to be reduced by about 40 dB, i.e., the oscillatory pressure became
roughly one-quarter its original value (see equation 5.75).

A telling disadvantage of piezo actuators is their relatively short lifetime, far shorter than desirable
for practical application to control systems in power generation equipment. It was therefore a necessary
and signi¯cant advance when Hantschk, Hermann and Vortmeyer (1996) reported successful use of a `direct-
drive valve' (DDV) developed by MOOG-Germany (Teutsch 1990). The test apparatus had the familiar form,
di®ering only in details from that in Figure 9.26. An important aspect of the equipment is the frequency
response of the fuel supply system and the signi¯cance of achieving a favorable match with the fuel nozzle
and the combustion chamber.
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Figure 9.25. Test results found with the apparatus shown in Figure 9.24, Figure 14 of
Hermann, Gleis and Vortmeyer (1996).

The principle variable is the distance l from the DDV to the fuel nozzle in the chamber. Part of the
development process involved changing l to maximize the amplitude of °uctuations in °ow rate when the
direct-drive valve was operated in the frequency range covering the instability in the chamber. Details of
using the DDV and perfecting the system are given in the reference. As a result, the authors learned the
importance of matching the dynamical properties of the DDV and fuel supply on the one hand with the fuel
nozzle and combustor on the other.

Successful control of oscillations in a liquid-fueled laboratory device independently came at a time when
Siemens AG encountered serious troubles with a prototype machine, the Model V84.31 gas turbine, intended
to drive a unit generating 170MW electric power. The experience gained at Technische UniversitÄat MÄunchen
was an important part of the background for constructing and installing a feedback control system which, at
that time, by contemporary standards in the ¯eld, constituted a large step forward. Not only had feedback
control been used only on laboratory scale devices,11 characterized by combustion powers less than 1MW,
but there was no experience with axisymmetric combustors, in this case a ring con¯guration. Further, in
the Siemens machine, troublesome oscillations occurred when the operating point of the gas turbine was
changing, as during start-up, and large adjustments of power level.

Tests with the V84.31 gas turbine ¯tted with a control system developed by Hermann et al. (see Seume
et al. 1998) could reduce the amplitudes of combustion-driven oscillations by 86%. Subsequent re-design of
the combustor eliminated the instabilities and the control system was removed. However, rejoicing with the
success of passive control came to an end with tests of the later model gas turbine, V94.3A, intended for
use in a 270MW electric power generation unit. The problems and their solution with a feedback control

11As reported in the open literature. For some time (at least, roughly, since 1994 or so) rumors persisted that Rolls-Royce
had successfully tested feedback control of combustion instabilities in a thrust augmentor. The ¯rst publicly available paper
(Moran et al. 2000) was given at an RTO meeting. No documentation has appeared publicly since that time.
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Figure 9.26. Test apparatus and feedback control with a simple liquid fuel nozzle and the
direct drive valve (DDV) (Hantschk, Hermann and Vortmeyer 1996).

system are well documented in the papers by Hermann, Orthmann, and Ho®man (1999) and by Hermann
and Ho®mann (2005).

The combustors in the Siemens Vx4.3A series of machines are annular, having the shape sketched in
Figure 9.27(a); a suggestion of their size is given by the photograph reproduced in Figure 9.27(b). There
are 24 burners, each fed by a nozzle like that sketched in Figure 9.28; either liquid or gaseous fuels may be
used, but the small di®usion pilot burner always uses gaseous fuel, and generates \approximately 10% of the
thermal power." Only the °ow through the pilot burner is modulated by the controller. "Detached research
showed that the main premix °ame of the Siemens hybrid burner, controlled by much smaller pilot-di®usion
°ames comprising no more than approximately 10% of the entire mass °ow, will respond very precisely to
°uctuations in conversion rates of those pilot °ames" (Hermann and Ho®mann 2005).

The basic idea of the control system was that modulating °ow through the pilot burners only would
perturb the combustion processes su±ciently to e®ect the desired control. With 24 burners the control
system seem to present a problem of becoming excessively complicated if some reasonable simpli¯cation
could not be achieved. As examples of combustion instabilities have already shown, it's usually the lowest
modes that are unstable. If also standing, not travelling, waves are found, the situation really is much simpler
to treat. For the Siemens Vx3.4 combustor, for example, the ¯rst, second, and fourth standing azimuthal
modes tended to be dominant. If only the second harmonic needed to be controlled, one sensor and one
controller would su±ce to provide the input signals for the necessary four direct-drive valves (Figure 9.29).

Hermann, Othmann and Ho®mann (1999) describe details of the system based on twelve control loops,
six signal processors, each having two input signals and four output signals. Thus there are 6£4 = 24 outputs,
one for each direct drive valve. When used, the system was used to control two modes (frequencies); more
frequencies could be handled with more elaborate signal processing.
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Figure 9.27. A sketch (a) of a combustor used in the Vx4.3A series Siemens gas turbines,
(b) an illustration of the size of the combustor (courtesy of Siemens AG, and Dr. J. Her-
mann).
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Figure 9.28. Simpli¯ed sketches (a) of the Siemens Hybrid Burner; (b) installation of the
controller in the supply for the pilot burner (adapted from Berenbrink and Ho®mann 2000
and Hermann and Ho®mann 2005).

Much more information is contained in the papers cited; three important points should be noted. First,
the feedback control systems were used successfully on fourteen commercially operated V94.3A machines,
over a period of three years. Two systems accumulated more than 18,000 hours of operation; there were no
failures of controls.

FEEDBACK CONTROL OF UNSTEADY MOTIONS IN COMBUSTORS 

RTO-AG-AVT-039 9 - 35 

 

 



Control

Loop 1 
- 1

24 Burners

Valve  1

Valve  7

Valve  13

Valve  19

Annular

combustion

chamber

Sensor 1

Figure 9.29. Minimum number of four actuators, one sensor and one controller to control
a standing second azimuthal mode (Hermann and Ho®mann 2005).

CBO
COMBUSTION CHAMBER

Figure 9.30. Addition of the cylindrical burner outlet (CBO) to the Siemens Hybrid
Burner (Berenbrink and Ho®mann 2000).

Second, two changes in the geometry of the combustor allowed Siemens to cease using the feedback
control systems (Berenbrink and Ho®mann 2000). A cylindrical extension (cylindrical burner outlet, CBO)
was added to the combustor, as sketched in Figure 9.30. This change of geometry modi¯ed the °ow ¯eld
so as to change the \phase/time lag of the heat release response to pressure °uctuations" (Berenbrink and
Ho®mann). In this case, \the length of the cylinder was chosen to increase the time lag from the injection
port to the °ame front by approximately a quarter of an acoustic period." The clear azimuthal symmetry
of the original combustor was also broken by misaligning the centerlines of a few of the burner nozzles.
Berenbrink and Ho®mann o®er the useful observation that \This clearly shows the bene¯t of circumferential
asymmetries for the suppression of combustion oscillations in multiburner arrangements." They evidently
do not have longitudinal modes in mind.

Finally, no analysis or quantitative theory accompanied the last modi¯cations of the hardware. The
¯nal form of the burners (Figure 9.30), and the modi¯ed orientation of their center-lines, rested on further
reasoning supported partly by good intuition, but likely required trial and error interactions with testing.
Interpretation with a time lag is helpful, but should not be mistaken for a theory and the over-simpli¯cation
may be misleading. The idea that intentionally misaligning the burner destroyed azimuthal symmetry is
surely correct. Working out the details requires elaborate three-dimensional calculations accessible, in some
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approximation, to currently available resources. It seems that the Siemens practical experience has suggested
analysis and computations having potentially important implications both for development of theory and
for details of design. Perhaps most importantly, the clear success due partly to three-dimensional behavior
should be an indication of the limitations of, for example, heavy reliance on single-nozzle tests as a sole guide
to combustor development.

9.5. Brie°y on Progress in Practical Feedback Control of Combustor Dynamics

Discussions in the preceding four sections have summarized the ¯rst works on feedback control of com-
bustor dynamics (Sections 9.1 and 9.2); and have described a practical case demonstrating the possibility
for actual realization (Section 9.4). Beginning in the early 1990s, literature dealing with the subject grew
rapidly, although, as we have already noted, interest and research e®orts have slowed considerably in the
recent past. Space and time limitations here do not permit including details of developments beyond those
covered to this point. We must be satis¯ed with only a few remarks. The material covered so far should
provide a reasonable introduction and basis for appreciating subsequent works.

Almost all of the research related to feedback control of combustors has been motivated by possible
applications to gas turbine combustors, and within that domain combustion instabilities have been the
main concern. The report of an AGARD Workshop prepared by Schadow et al. (1997) is an excellent
overall summary of the state of the ¯eld at that time. It provides the best general assessment of the
outstanding problems in 1996, as understood by those interested mainly in applications to propulsion systems.
Combustion instabilities in augmentors and gas turbines were understandably the main object of attention,
but other reasons for pursuing the subject|e.g., controlling emissions and blow-out limits|were discussed.

At about the same time, in the mid- to late-1990s, the Department of Energy (DoE), as part of its
Advanced Gas Turbine Systems Research (AGTSR) program, included feedback control of combustion dy-
namics12 of gas turbines primarily for generating electric power. More recently, the US Department of
Defense and NASA have, at least in principle, included feedback control of combustion dynamics in long-
range programs for advances in gas turbines to be used for propulsion. Our concern in this book lies with
matters at a lower level, encompassing in a general way the research that must be accomplished before the
wonders of automatic control of combustors will be accomplished satisfactorily in all respects.

The recent volume, Combustion Instabilities in Gas Turbine Engines: Operational Experience, Funda-
mental Mechanisms and Modeling, edited by Lieuwen and Yang (2005), is a useful collection of lengthy
papers summarizing several important aspects of the ¯eld, from basic behavior to experiences with combus-
tion dynamics in installed commercial gas turbines. Zinn (2005) has o®ered a good (though understandably
slanted towards Georgia Tech accomplishments) introduction and review of control applied to combustor
dynamics, including also considerations of control applied to lean blow-out (LBO) and pattern factors.

In fact, the greater part of published works are identi¯ed with a relatively small number of organizations
in Europe and the U.S. Research has tended to be strongly biased by the (virtually) immediate needs for
practical results. Unfortunately, therefore, possible fundamental developments have often not been produced.
Practically all of the research has been experimental, for the most part serving to demonstrate the success
(complete or partial) of proposed methods.

While it is true that the essential elements of all activities devoted to control of combustion systems are
captured by the general block diagram in Figure 9.3, the details, emphasis, and points of view may di®er
greatly as speci¯c applications are worked out. At one extreme is the sanguine view that the system to be

12The title of the subject has sometimes been shortened to ACC, active control of combustion; or AIC, active instability
control; or ACS, active control systems, all of which imply inclusion of open-loop as well as closed-loop control.
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controlled requires minimal characterization and may successfully be treated as a `black box.' The process
of control consists then in determining|i.e., measuring with sensors|the time-varying status of the system;
processing that information with a controller, in the feedback path, Figure 9.3; and using the results to cause
operation of actuators which, if e®ective, will alter favorably an unwanted dynamical state of the system.

Even the most devoted followers of the `black box' view of control recognize that at least a certain minimal
understanding of how the system works is necessary. For example, the choice and operation of actuators,
such as those shown in Figures 9.24, 9.26, and 9.28, clearly rests on some understanding of the connection
between operation of the mechanical device and the response of the combustion processes. Moreover, deeper
understanding of certain internal processes in this case allowed the feedback control system to be discarded
and replaced by permanent passive modi¯cation of the system, Figure 9.30 (Berenbrink and Ho®man 2000).

The program of research on feedback control at Georgia Tech advanced signi¯cantly in the late 90s
with development of a rapidly acting `real-time observer' (Neumeier and Zinn, 1994, 1998); Neumeier,
Markopoulos and Zinn 1997) and a responsive actuator to operating on the fuel supply (Neumeier, Nabi,
Arbel, Vatzberger and Zinn 1997). Viewed broadly, the Georgia Tech approach is approximately the same
as that taken by Siemens. However, perhaps because they were controlling instabilities in a lower frequency
range, Hermann and co-workers do not make a special point of their `observer' or `estimator.' The Georgia
Tech device has operated successfully for extended periods of time and under conditions when the waveforms
of the unstable motion has not been so simple.

A signi¯cant di®erence in practical application is Siemens' use of a MIMO (multi-input-multi-output)
system. Because of the attention they gave to the three-dimensional character of the instability, that feature
in a certain sense led to the eventual elimination of dynamical control, supplanted by successful use of passive
control (Figure 9.30). The problem was somewhat simpler in this case as the instability contained only two
well-de¯ned frequencies.

Perhaps the most extensive industrial program concerned with instabilities has been that led by Mongia
at General Electric. Mongia et al. 2003, 2005 have given the most recent summaries of the work which has
progressed over more than a decade (e.g., see Joshi et al. 1994, 1995 for remarks on earlier work). The work
at General Electric has produced a large number of research reports, many of which are included here in
the list of references. To achieve the required low emissions levels, GE has followed the common strategy
based on lean premixed combustion which, in the case of liquid fuels, is often identi¯ed as `lean prevaporized
premixed' (LPP) combustion. It is the presence of the lean combustion, as explained in Section 2.6, that
tends to lead to problems with combustion instabilities|and motivated, for example, the recent collection
edited by Lieuwen and Yang (2005).

Because the characteristics and geometries of the combustors are not readily available, only qualitative
observations can be o®ered here, based on incomplete information. The recent articles by Mongia et al.
(2003, 2005) summarize well the history and current status of the GE `land and marine' (LM) series of
engines, the LM6000, LM2500, and LM1200. Instabilities have been treated largely by passive measures,
including installation of `damper tubes;' scheduled (both spatially and temporally) operation of the fuel
nozzles; and small adjustments to the distribution of injected fuel. Apparently `active control' is integrated
in the control system with `ABAL' (acoustics and blowout avoidance logic). All measures are evidently
standard on all engines. Much less information is currently available for °ight quali¯ed machines.

A contrasting approach to reducing emissions is based on combustor design called generically `rich-
quench-lean' (RQL). The idea is not recent, dating at least to the 1970s. Fuel-rich burning takes place near
the dome of the combustor, followed by a region of rapid quenching by injected air, leading then to further
combustion under lean conditions. Sabnis (2005) has described the use of RQL by Pratt and Whitney in
the TALON (technology for advanced low NOx) series of combustors. Mongia (2004) has presented some
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charts comparing several contemporary combustors, including the TALON II. At this time (June 2006)
the performance and emissions characteristics of the two types of combustors are similar. It seems that
projections by the manufacturers also do not di®er greatly.

In his recent presentation, Sabnis (2005) has given an informative introduction to the basis for the
success of the Pratt and Whitney TALON series of combustors. Consistent with earlier comments regarding
RQL combustors, passive control devices are not required, and Sabnis makes no mention of special demands
placed on the control system by combustion dynamics. The cost of these savings relative to a lean premixed
system is learning how to use, in a rather detailed fashion, the chemical and mixing dynamics of the system.
That process requires, at minimum, careful tailoring of the spatial distribution of the injected fuel, and axial
history of °ow velocity.

A particularly important aspect of that tailoring is the severe restriction on generation of unburnt
hydrocarbons and soot, generally regarded as a virtually unavoidable consequence of rich combustion. In
the TALON design, smoke formed in the region of rich combustion is consumed downstream as combustion
continues under lean conditions. As a result, the Pratt and Whitney combustor design meets current
requirements of reduced emissions and is being developed to satisfy future restrictions.

Most simply put, the two types of combustor design may be characterized qualitatively as 1) lean
premixed, or rapidly mixed, combustion tending to be unstable in some sense, the possible presence of
combustion instabilities being a major problem in practical machines; 2) initially (i.e., at the front end)
fuel rich combustion followed by rapid quenching and mixing leading to lean combustion which produces
acceptably low levels of smoke and gaseous pollutants (NOx, CO, UHC). In return for the much reduced
tendency for instabilities, the RQL combustor presents particular problems of design in the °ow system in
order to realize the favorable consequences of mixing and chemical dynamics. A reasonable question is: Why
are there obvious di±culties in LPP combustors with combustion instabilities which seem practically absent
in RQL combustors?

There seems to be no generally recognized answers to the question, despite many discussions of possible
mechanisms of instabilites. For example, more than ¯fty years ago, °uctuations of the fuel/oxidizer ratio
were recognized as a source of disturbances in a solid propellant rocket. If one assumes that a change in
fuel/oxidizer (or fuel/air, f/a, in the present context) translates to a change in reaction rate and hence rate
of heat release, this becomes practically a generic cause of instabilities and di±cult to accept as a distinction
between LPP and RQL designs. To show a distinction, one would probably need to show that ±(f/a)6= 0
produces consequences more signi¯cant as f/a tends to zero in a LPP combustor.

Perhaps one should explicitly look rather to the reason(s) for loss of stability in an LPP system. As the
lean limit of combustion is approached, stability of the combustion ¯eld in the upstream (inlet) region tends
to vanish. That is, the processes anchoring the °ame zone to the inlet region of the combustor|i.e. the fuel
nozzles|become weaker. Hence the `base(s)' of the °ame(s) becomes increasingly sensitive to disturbances,
eventually entering a condition allowing oscillatory motion coupled to the main °ow in the combustor. The
RQL system will not undergo such a transition because the anchoring region of the combution zone is always
operating under fuel-rich conditions.

The bulk of published works on feedback and open-loop control of combustors has been at the research
level. Since the ¯eld began in the mid-1980s, there have been notable shifts of emphasis. Early positive results
justi¯ed the optimistic view of long-term possibilities. Beginning in the early 1990s some results and methods
known from the analysis of systems were introduced with works at the General Electric Research Laboratory
(Gulati and Mani 1992; Goodman and Haupt 1992); Caltech (Tierno and Doyle 1992) and ¶Ecole Centrale
(Billoud et al. 1992). The last work was the ¯rst on use of adaptive control which has not generated wide
interest. The latest works seem to be the thesis by Evesque (2000) and immediate developments (Evesque
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et al. 2003, 2004). Mettenleiter (2000) has carried out the most thorough examination of application of
adaptive control to solid propellant rockets (Mettenleiter and Candel 2000, Mettenleiter et al. 2000). Those
works were evidently motivated by the oscillations in the Ariane 5 motor (Sections 2.2.9 and 6.15) but have
not led to practical application.

Beginning in the mid-1990s (Annaswamy and Ghoniem 1995) a group at MIT initiated a research
program based on the modal decomposition of the acoustic ¯eld developed here (Chapters Three and Four).
They assume longitudinal oscillations and develop a °ame model (Flei¯l et al. 1996) extending earlier works
explained for example, by Williams (1985). With that model of a combustor, the MIT group has carried
out a number of works drawing on experiences with control theory developed for applications in electrical
engineering.

Research at the United Technologies Research Center has gone far to join the ¯elds of control and
combustion; and to pursue possible applications, taking advantage of their connections to Pratt and Whitney.
An example is the recent article by Cohen and Banaszuk (2005). The work is one example of several from
UTRC involving use of control theory to interpret results of combustion tests, always with a view to improving
the behavior of actual combustors.

Since their initial works on active control referenced above, the group at Georgia Tech has supported
probably the largest university research e®ort in the ¯eld. The program seems to be directed eventually
to practical applications based on stationary gas turbines (Zinn 2005), but for the most part is devoted to
applied research.

Space and time do not allow proper coverage of results accomplished to date. The general problem
of joining the ¯elds of combustion and control at both the research and practical levels remains highly
attractive. The boundaries of both theoretical and experimental progress seem still to be far away.
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AN NEX A

Equations of Motion

Combustion systems commonly contain condensed phases: liquid fuel or oxidizer and combustion products
including soot and condensed metal oxides. Hence the equations of motion must account for two or three
phases and at least one species in each. For investigating the dynamics of combustors, it is entirely adequate
to represent each phase as its mass average over all member species. It is unnecessary to distinguish liquid
and solid material and we assume a single species in the condensed phase, devoted by subscript ( )l. For
some applications it is appropriate to extend the representation slightly to accommodate distributions of
particle sizes, not included in this annex. There is some advantage to treating the gas phase as a multi-
component reacting mixture. As the primitive conservation equations we therefore begin with the following
set:

A.1. General Equations of Motion

Conservation of Species, Gas Phase1

@½gi
@t

+r ¢ (½giugi) = wgi + w(l)gi + wgei (A.1)

Global Conservation of Mass, Gas Phase

@½g
@t

+r ¢ (½gug) = w(l)g + weg (A.2)

Global Conservation of Mass, Condensed Phase2

@½l
@t

+r ¢ (½lul) = ¡w(l)g + wel (A.3)

Global Conservation of Momentum

1Superscript ( )(l) on w
(l)
gi means that the source material is liquid. Thus w

(l)
gi is the rate at which species i of the gas

phase is produced from the liquid phase. The dimensions of w
(l)
gi are mass per unit volume of space, per unit time.

2Note that ½l represents the mass of condensed material per unit volume of chamber, not the density of the material itself.
Subscript ( )l denotes `liquid'; at the temperature prevailing in combustion chambers, most condensed materials are liquid.
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@t

Ã
iX
½giugi + ½lul

!
+r ¢

³X
½giugiugi + ½lul

´
+rp = r ¢$¿$¿$¿ v +meg +mel (A.4)

Global Conservation of Energy

@

@t

³X
½giegoi + ½leol

´
+r ¢

³X
½giugiegoi + ½luleol

´
+r ¢

³X
piugi

´
= r ¢

³$
¿
$
¿
$
¿ v ¢ ug

´
¡r ¢ q+Qe

(A.5)

Equation of State, Gas Phase

p = ½gRgTg (A.6)

For simpli¯cation, the above equations already contain some terms involving mass averaging over the

species comprising the gas phase, namely the viscous tensor
$
¿
$
¿
$
¿ v; the vector q representing heat conduc-

tion; and the equation, of state (A.6). For more complete derivations of the equations for multicomponent
mixtures, see for example Chapman and Cowling (1939); Hirschfelder, Curtis and Bird (1954); Toupin and
Truesdell (1960); and Williams (1985). Superscipt ( )(l) means that the liquid or condensed phase is the

source and subscript ( )e denotes an external source. Thus w
(l)
g represents the rate at which gas is generated

from liquid, and wge stands for the rate at which gas is generated by an external source. It follows from
repeated use of the Gibbs-Dalton law for mixtures of perfect gases that p is the sum of partial pressures; ½g
is the sum of the densities; and R is the mass average of the individual gas species, so for the gas phase we
have

p =
X

pi

½g =
X

½gi (A.7) a,b,c

Rg =
1

½g

X
½giRi

Subscript ( )i identi¯es the i
th gaseous species; and in all cases except Tg, ( )g means a mass average over

all gas species as, for example,

ug =
1

½g

X
½giugi =

X
Ygiugi (A.8)

where Ygi = ½gi=½g is the mass concentration of the i
th species.
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A.2. Mass, Momentum and Energy Transfer by Di®usion

The chief reasons for writing equations (A.1){(A.5) explicitly with sums over species is to show the way
in which di®usion of species arises; and to introduce the formula for the energy released by chemical reactions
written in the conventional fashion. When de¯nite problems are addressed, some approximations will be
made to eliminate explicit dependence on di®usion velocities, but here we retain di®usion explicitly. Let Vi

denote the di®usion velocity of the ith species with the de¯nition

ugi = ug +Vi (A.9)

Multiply by ½gi and sum: X
½giugi =

³X
½gi

´
ug +

X
½giVi

Thus with (A.7)b and (A.8), this relation becomes

X
½giVi = 0 (A.10)

With ½gi = ½gYgi and ugi = ug +Vi, and substitution of equation (A.2) for global conservation of mass, the
species equation (A.1) becomes

½g
@Ygi
@t

+ ½gug ¢ rYgi = ¡r ¢ (½gViYgi) + wgi + w
(l)
gi + wgei (A.11)

In the momentum equation,
P
½giugi = ½gug and with (A.10),

X
½giugiugi =

X
½gi (ug +Vi) (ug +Vi) =

X
½gi (ugug +Viugi + ugiVi +ViVi)

Hence (A.4) is

@

@t
(½gug + ½lul) +r ¢ (½gug + ½lul) +rp = r ¢$¿$¿$¿ v +meg +mel

¡
X

fr ¢ (½giViugi + ½giugiVi) +r ¢ (½giViVi)g
(A.12)

Di®usion in a multicomponent mixture generally involves coupling among all species, accounted for by
introducing a matrix of di®usion coe±cients and Fick's law relating the di®usion velocities to the gradients of
species concentrations. That representation introduces unnecessary complications in the present context. We
use the common approximation that the di®usion velocity of every species is proportional to the concentration
gradient of that species only, and obeys Fick's law of di®usion in a binary mixture,

½giVi = ¡½gDrYgi (A.13)

where D is the binary di®usion coe±cient assumed to have the same value for all species.
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Even with the simple law (A.13), the momentum equation (A.12) is formally coupled nonlinearly to the
species concentrations and to the total velocities ugi of the species. Let mD denote the terms involving
di®usion,

mD = ¡
X

fr ¢ (½giViugi + ½giugiVi) +r ¢ (½giViVi)g (A.14)

and the global momentum equation is

@

@t
(½gug + ½lul) +r ¢ (½gugug + ½lulul) +rp = r ¢$¿$¿$¿ v +me +mD (A.15)

where

me =meg +mel (A.16)

is the total momentum addition from external sources.

The viscous stress tensor
$
¿
$
¿
$
¿ v has a complicated form for a multicomponent mixture (Hirschfelder, Curtis

and Bird, 1954). When necessary we will use a simple approximation. Unless shock waves are present,
viscous e®ects internal to the °ow ¯eld are negligible for combustion instabilities; they cannot be ignored at
the boundaries.

Similar rearrangements of the energy equation (A.5) will lead to a form corresponding to (A.15). Sub-
stitute (A.8) in the ¯rst term of (A.5) and expand to give

X
½giegoi =

X
½gi

Ã
egi +

(ug +Vi)
2

2

!
= ½geog +

X
½gi
V2
i

2
(A.17)

where (A.10) has been applied and the mass averaged stagnation energy is

½geog =
X

½giegoi (A.18)

The term representing the total rate of work done by the partial pressures is

X
piugi =

X
pi (ug +Vi) = pug +

X
piVi (A.19)

and the net e®ect of convection of energy by the motions of the individual species can be written in the
form:
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X
½giugiegoi =

X
½giug

Ã
egi +

u2gi
2

!
+
X

½giViegoi

= ½gugeog + ug
X 1

2
½gi (ug +Vi)

2
+
X

½giViegoi

= ½gugeog + ug
X

½giug ¢Vi + ug
X 1

2
½giV

2
i +

X
½giViegoi

= ½gugeog + ug
X 1

2
½giV

2
i +

X
½giViegoi

(A.20)

Substitution of (A.17), (A.19) and (A.20) in (A.5) leads to

@

@t
(½geog) +r ¢ (½gugeog) + @

@t
(½leol) +r ¢ (½luleol) +r ¢ (pug) +

+

·
@

@t

μX 1

2
½giV

2
i

¶
+r ¢

½
ug
X 1

2
½giV

2
i +

X
(½giViegoi + piVi)

¾¸
=

= r ¢
³$
¿
$
¿
$
¿ v ¢ ug

´
¡r ¢ q+Qe

(A.21)

Let ÂD denote all terms depending explicitly on the di®usion velocities;

¡ÂD = @

@t

μX 1

2
½giV

2
i

¶
+r ¢

½
ug
X 1

2
½giV

2
i +

X
(½giViegoi + piVi)

¾
(A.22)

and the energy equation is

@

@t
(½geog) +r ¢ (½gugeog) + @

@t
(½leol) +r ¢ (½luleol) +r ¢ (½luleol) +r ¢ (pug) = r ¢

³$
¿
$
¿
$
¿ v ¢ ug

´
¡r ¢ q

+Qe + ÂD
(A.23)

A.3. Construction of the Single Fluid Model

The discussion so far has been concerned with a medium consisting of two phases: the condensed phase
denoted by subscript ( )l and the gas phase, identi¯ed by subscript ( )g comprising many species. For a
broad range of conditions in practical propulsion systems, the volume fraction occupied by the condensed
phase is small compared with that for the gas phase, although the mass fraction may be large. For example,
if the propellant contains 19% aluminum, the combustion products in a solid rocket will contain about 38%
by mass of condensed aluminum oxide. In liquid fueled combustors (gas turbines, afterburners and liquid
rockets) limited regions may contain large volumetric fractions of liquid, but generally the volume occupied
by the gaseous species is the greater part.
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Under these conditions it is a valid approximation to use a `single-°uid model' of the medium, a rep-
resentation in which the density is the sum of the densities (mass per unit volume) of gas and condensed
phase, ½ = ½g+½l; the compressibility and pressure are those of the gas phase only; and the thermodynamic
properties are mass averages of the gas and liquid phases. The chief immediate consequence is that the speed
of sound for the single °uid correctly takes into account the primary individual e®ects of the gas and liquid
phases: The sound speed is reduced by the presence of condensed material. Furthermore, the °ow of the
medium is dominated by the gas phase, with perturbations of its motion arising from interactions between
the gas and condensed phases. We therefore seek a system of equations in which the density is the sum

½ = ½g + ½l : (A.24)

Eventually the primary dependent variables for investigating the dynamics of a combustor will be ½ and the
pressure, density and temperature of the gas.3

A.3.1. Equation for the Density. To ¯nd an equation for the density, add (A.2) and (A.3):

@½

@t
+r ¢ (½gug + ½lul) = we (A.25)

where ½ = ½g + ½l and the external source of mass is

we = weg + wel (A.26)

Add r ¢ (½lug) to both sides of (A.25) and rearrange to give the desired equation,

@½

@t
+r ¢ ½u = W (A.27)

where we have set u := ug and the source is

W = we ¡r ¢ (½l±u) (A.28)

The `slip velocity' is

±ul = ul ¡ ug (A.29)

3The basic idea of constructing a single-phase model seems to have originated in early work in two-phase °ow, e.g. Rannie
(1962) and Marble (1963, 1970)
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A.3.2. Equation for Momentum. The momentum equation for the single-°uid model may be found
by expanding the left-hand side of (A.15) and substituting equations (A.2) and (A.3); rearrangement gives

½g

·
@ug
@t

+ ug ¢ rug
¸
+rp = r ¢$¿$¿$¿ v +me +mD ¡ ¾¾¾e + ±ulw(l)g +Fl (A.30)

where

¾¾¾e = ugweg + ulwel (A.31)

Fl = ¡½l
·
@ul
@t

+ ul ¢ rul
¸

(A.32)

Now add ½l

·
@ug
@t

+ ug ¢ rug
¸
to both sides of (A.30) and combine terms on the right-hand side to give

½

·
@u

@t
+ u ¢ ru

¸
+rp = FFF (A.33)

where

FFF = r ¢$¿$¿$¿ v +me +mD ¡ ¾¾¾e ¡ ±ulw(l)g ¡ ½lD±ul
Dt

(A.34)

u := ug (A.35)

and u has been written for ug.

A.3.3. Equation for Energy. The energy equation must be handled somewhat di®erently in order
to introduce the conventional de¯nition of the heat of reaction and the mass-averaged thermodynamic prop-
erties. Denbigh (1961) provides good accessible discussions of these matters; it's a good reference for basic
chemical thermodynamics. First replace the energy eog by the enthalpy hog = eog ¡ p=½g in (A.21) and use
equation (A.2) to ¯nd

½g

·
@hog
@t

+ ug ¢ rhog
¸
¡ ½g

·
@

@t

μ
p

½g

¶
+ ug ¢ r

μ
p

½g

¶
+r ¢ (pug)

¸
= H (A.36)

where H stands temporarily for the remaining terms,

H = r ¢
³$
¿
$
¿
$
¿ v ¢ ug

´
¡r ¢ q¡ (eogwg + eolwl)¡ ½l

·
@eol
@t

+ ul ¢ reol
¸
+Qe + ÂD
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The enthalpy of the mixture is

hg =
1

½g

X
½gihi =

X
Ygihi (A.37)

with

hi = h
(r)
i +

TZ
Tr

c½idT
0 = h(r)i + h

(T )
i (A.38)

and h
(r)
i is the enthalpy of the ith species at the reference temperature Tr; h

(T )
i is sometimes called the

`thermal enthalpy'. Because the h
(r)
i are constants here,

@hog
@t

+ ug ¢ rhog =
·
@hg
@t

+ ug ¢ rhg
¸
+

"
@

@t

Ã
u2g
2

!
+ ug ¢ r

Ã
u2g
2

!#

=
X

Ygi

"
@h

(T )
i

@t
+ ug ¢ rh(T )i

#
+

"
@

@t

Ã
u2g
2

!
+ ug ¢ r

Ã
u2g
2

!#

+
1

½g

X³
h
(r)
i + h

(T )
i

´h
¡r ¢ (½gViYgi) + wgi + w

(l)
gi + wgei

i
(A.39)

after (A.11) has been substituted in the last summation. The sum
P³

h
(r)
i + h

(T )
i

´
wgi is related to the

heat of reaction at the local temperature and pressure. The precise connection is not important here and
for simplicity we will de¯ne the heat of reaction Q and reaction rate w by

¡Qw =
X³

h
(r)
i + h

(T )
i

´³
wgi + w

(l)
gi + wgei

´
(A.40)

Substitution in (A.37) and de¯ning

h
(T )
0 = h(T ) +

u2g
2

(A.41)

we have

½g

·
@hog
@t

+ ug ¢ rhog
¸
= ½g

"
@h

(T )
og

@t
+ ug ¢ rh(T )og

#
¡Qw ¡

X
hir ¢ (½gViYgi) (A.42)

Consistent with the de¯nition (A.38), the thermal internal energy is e(T ) = h(T ) + p=½g and
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e(T )og = e(T ) +
1

2
u2g (A.43)

Substitution of (A.42) and (A.43) in (A.36) and use of (A.3) leads to the new form of the energy equation

½g

"
@e
(T )
og

@t
+ ug ¢ re(T )og

#
+ ½l

·
@el
@t
+ ug ¢ rel

¸
+r ¢ (pug) = r ¢

³$
¿
$
¿
$
¿ v ¢ ug

´
¡r ¢ q+Qw +Qe

¡ (eogwg + eolwl) + ÂD +
X

hir ¢ (½gViYgi)

(A.44)

where wl = wel ¡ w(l)g .

Now remove the kinetic energies of the gas and liquid phases from this equation by subtracting the scalar
products of ug with (A.31) and ul with (A.33). to give

½gCv

·
@Tg
@t

+ ug ¢ rTg
¸
+ ½lCl

·
@Tl
@t

+ ul ¢ rTl
¸
+ pr ¢ ug =

= r ¢
³$
¿
$
¿
$
¿ v ¢ ug

´
¡r ¢ q+Qw +Qe ¡ (eogwg + eolwl) + ÂD +

X
hir ¢ (½gViYgi)

¡u ¢FFF + ul ¢ Fl

(A.45)

where the speci¯c heats are de¯ned by

de(T )g = CvdTg

del = CldTl
(A.46) a,b

Rearrangement of (A.45) in a manner similar to that used for rewriting the momentum equation in the
form (A.34) produces the result

½Cv

·
@T

@t
+ u ¢ rT

¸
+ pr ¢ u = Q (A.47)

where the symbol Tg has been replaced by T
4 and

Q =
$
¿
$
¿
$
¿ v ¢ r ¢ u¡r ¢ q+Qw +Qe ¡ (eogwg + eolwl) + ÂD +

X
hir ¢ (½gViYgi)

¡ u ¢ (me +mD ¡¾¾¾e) + (u ¢ ±u)w(l)g + ±Ql + ±u ¢ Fl ¡ u ¢ (FFF ¡Fl)
(A.48)

±Ql = ¡½lCl
·
@±T

@t
+ ul ¢ r±T + ±ul ¢ rT

¸
(A.49)

with the de¯nitions

±T = Tl ¡ T ; m =me +mD (A.50)

Cv =
½gCv + ½lCl
½g + ½l

=
Cv + CmCl
1 + Cm

(A.51)

The mass fraction Cm = ½l=½g is often called the particle loading because it has commonly appeared in
problems involving °ows of gases containing small solid or liquid particles.

4Thus, in contrast with the density (equation A.25), the temperatures of the gaseous and condensed phases are not formally
combined and the temperature of the condensed phase must be calculated separately.
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A.3.4. Equation for the Pressure. Let Rg denote the gas constant for the mixture and add T times
(A.27) to C¡1v times (A.47) to ¯nd

@

@t
(½T ) + u ¢ r (½T ) +

μ
½T +

p

Cv

¶
r ¢ u = TW ¡ Tr ¢ (½l±u) + 1

Cv
Q (A.52)

The two-phase mixture behaves as a perfect gas having density ½g + ½l and mass averaged properties if we
assume that the mixture of gases only obeys the Gibbs-Dalton law, (A.6):

p = Rg½gT (A.53)

where Rg is the mass-averaged gas constant. Now multiply and divide the right side by ½g + ½l = ½ and set
Tg = T to give

p = R½T (A.54)

where

R =
Rg

1 + Cm
(A.55)

With (A.51), the last implies that the speci¯c heat at constant volume and °°° = Cp=Cv for the two-phase
mixture are:

Cv =
Cv + CmCl
1 + Cm

°°° =
Cp + CmCl
Cv + CmCl

(A.56) a,b

For several reasons clari¯ed in the main text, the theory of combustion instabilities discussed in this
book is based on the wave equation for the pressure derived in Chapter 3. The ¯rst order equation for the
pressure is derived by adding T times equation (A.27) to C¡1v times (A.48):

@

@t
(½T ) + u ¢ r (½T ) +

μ
p

Cv
+ ½T

¶
r ¢ u = T [W ¡r ¢ (½l±ul)] + 1

Cv
Q

Hence with (A.55) we ¯nd

@p

@t
+ °°°pr ¢ u+ u ¢ rp = P (A.57)

where

P=
R

Cv
Q+RT [W ¡r ¢ (½l±ul)] (A.58)

A.4. Muster of Equations

The set of equations forming the basis for all of the theory and analysis we discuss in this book is:

D½

Dt
= ¡½r ¢ u+ W (A.59)
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½
Du

Dt
= ¡rp+FFF (A.60)

½Cv
DT

Dt
= ¡pr ¢ u+ Q (A.61)

Dp

Dt
= ¡°°°pr ¢ u+ P (A.62)

Ds

Dt
=
1

T
S (A.63)

p = R½T (A.64)

where D
Dt =

@
@t + u ¢ r is the connective operator based on the mass-averaged velocity u of the gases.

For completeness we have also included the equation (A.63) for the entropy, obtained in familiar fashion
by applying the combined First and Second Laws of Thermodynamics to an element of °uid. That is, the
relation de = Tds¡ pdv can be written

Ds

Dt
=
1

T

μ
De

Dt
+ p

Dv

Dt

¶
=
1

T

μ
Cv
DT

Dt
+ p

Dv

Dt

¶ (A.65)

Substitution of (A.59) and (A.61) gives (A.63) with the source

S= Q¡ p

½2
W (A.66)

It is important to realize that this formulation contains all relevant physical processes, including those
representing the actions of external in°uences associated, for example, with active control of combustor
dynamics.

The source functions in (A.59){(A.63) are

W = we ¡r ¢ (½l±ul) (A.67)

FFF = r ¢$¿$¿$¿ v +me +mD ¡¾¾¾e ¡ ±ulw(l)g ¡ ½lD±ul
Dt

(A.68)

Q =
$
¿
$
¿
$
¿ v ¢ r ¢ u¡r ¢ q+Qw +Qe ¡ (eogwg + eolwl) + ÂD +

X
hir ¢ (½gViYgi)

¡ u ¢ (me +mD ¡ ¾¾¾e) + (u ¢ ±ul)w(l)g + ±Ql + ±ul ¢ Fl ¡ u ¢ (FFF ¡Fl)
(A.69)
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P=
R

Cv
Q+RT [W ¡r ¢ (½l±ul)] (A.70)

S= Q¡ p

½2
W (A.71)

Recall that Q and w are de¯ned together as the heat (and enthalpy) supplied per unit volume by chemical
reactions, equation (A.40). Also, we have set ug := u and Tg := T .

A.5. Expansions in Mean and Fluctuating Variables

Following the steps suggested in Section 3.3 to produce equations (3.22){(3.27) will give the expressions
for the brackets de¯ned there to simplify the appearance of the equations. As an intermediate step it is
helpful to introduce the de¯nitions:

f½g1 =
¹D½0

Dt
+ ¹½r ¢M0 + ½0r ¢ ¹M+M0 ¢ r¹½¡WWW 0

1 (A.72)

f½g2 =M0 ¢ r½0 + ½0r ¢M0 ¡WWW 0
2 (A.73)

fMg1 = ¹½
¹D ¹M

Dt
+ ¹½M0 ¢ rM0 +rp0 + ½0

¹D ¹M

Dt
¡FFF01 (A.74)

fMg2 = ½0
¹DM0

Dt
+ ½0M0 ¢ r ¹M+ ¹½M0 ¢ rM0 ¡FFF02 (A.75)

fMg3 = ½0M0 ¢ rM0 ¡FFF03 (A.76)

fTg1 = ¹½Cv
¹DT 0

Dt
+ ¹½CvM

0 ¢ rM0 +r ¹T + ¹prM0 + ½0Cv
¹D ¹T

Dt
¡ Q01 (A.77)

fTg2 = ½0Cv
¹DT 0

Dt
+ ½0CvM0 ¢ r ¹T + ¹½CvM0 ¢ rT 0 ¡ Q02 (A.78)

fTg3 = ½0CvM0 ¢ rT 0 ¡ Q03 (A.79)

fpg1 =
¹Dp0

Dt
+ °¹½r ¢M0 + °p0r ¢ ¹M¡ P01 (A.80)

fpg2 =M0 ¢ rp0 + °p0r ¢M0 ¡ P02 (A.81)

fsg1 = ¹½ ¹T
¹Ds0

Dt
+
¡
½0 ¹T + ¹½T 0

¢ ¹D¹s
Dt

+ ¹½ ¹TM0 ¢ r¹s¡S01 (A.82)
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fsg2 = ¡½0 ¹T + ¹½T 0¢ ¹D¹s
Dt

+ ¹½ ¹TM0 ¢ rs0 + ½0T 0 ¹M ¢ rs0

+
¡
½0 ¹T + ¹½T 0

¢
M0 ¢ r¹s¡ S02

(A.83)

fsg3 = ½0T 0
¹Ds0

Dt
+ ½0T 0 ¹M ¢ rs0 + ½0T 0M0 ¢ r¹s¡S03 (A.84)

fsg4 = ½0T 0M0 ¢ rs0 ¡S04 (A.85)

where D=Dt = @=@t+M ¢r as de¯ned in Chapter 3, equation (3.21), is the dimensionless convective operator
based on the steady mass-averaged velocity. Superscript f gn and subscript ( )n always mean here that
the indicated quantities are to be written to order n in the °uctuations of the °ow variables.

The °uctuations of the source functions W ; ¢ ¢ ¢ ;Swill be formed as required for particular applications
and cannot be written until literal models are constructed.

A.6. De¯nitions of the Ordering Brackets

The brackets introduced in equations (3.22){(3.27) are obtained by rearrangement of the sums of brackets
de¯ned in Section A.5:

f½g1 + f½g2 = f[½]g1 + f½g2 ¡WWW 0 (A.86)

fMg1 + fMg2 + fMg3 = f[M]g1 + fMg2 + f[M]g2 + fMg3 ¡FFF0 (A.87)

fTg1 + fTg2 + fTg3 = f[T ]g1 + fTg2 + f[T ]g2 + fTg3 ¡ Q0 (A.88)

fpg1 + fpg2 = f[p]g1 + fpg2 ¡ P0 (A.89)

fsg1 + fsg2 + fsg3 + fsg4 = f[s]g1 + fsg2 + f[s]g2 + fsg3 + fsg4 ¡S0 (A.90)

By identifying corresponding terms in these relations, we ¯nd5

5As in Chapter 3, bold symbols R, Cv and °°° are replaced here by the usual forms R, Cv, °, but the symbols continue to
represent mass-averaged properties.
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f[½]g1 = ¹M ¢ r½0 +M0 ¢ r¹½+ ½0r ¢ ¹M f[p]g1 = ¹M ¢ rp0 + °p0r ¢ ¹M+M0 ¢ r¹p

f½g2 =M0 ¢ r½0 + ½0r ¢M0 fpg2 =M0 ¢ rp0 + °p0r ¢M0

f[M ]g1 = ¹½
¡
¹M ¢ rM0 +M0 ¢ r ¹M¢+ ½0 ¹D ¹M

Dt f[T ]g1 = ¹½Cv
¡
¹M ¢ rT 0 +M0 ¢ r ¹T¢+

+Cv½
0 ¹D ¹T
Dt + p

0r ¢ ¹M

fMg2 = ½0 @M
0

@t + ½
0( ¹M ¢ rM0 +M0 ¢ r ¹M) + ¹½M0 ¢ rM0 fTg2 = ½0Cv @T

0
@t + ¹½CvM

0 ¢ rT 0 + p0r ¢M0

f[M ]g2 = ½0
¡
¹M ¢ rM0 +M0 ¢ r ¹M¢ f[T ]g2 = ½0Cv

¡
¹M ¢ rT 0 +M0 ¢ r ¹T¢

fMg3 = ½0M0 ¢ rM0 fTg3 = ½0CvM0 ¢ rT 0

f[s]g1 = ¹½ ¹T
¡
¹M ¢ rs0 +M0 ¢ r¹s¢

fsg2 =
¡
¹½T 0 + ½0 ¹T

¢ @s0
@t
+ ¹½ ¹TM0 ¢ rs0 + ¡½0 ¹T + ¹½T 0¢+ (M0 ¢ r¹s) + ½0T 0 @¹s

@t

f[s]g2 =
¡
¹½T 0 + ½0 ¹T

¢
¹M ¢ rs0

fsg3 = ½0T 0 @s
0

@t
+
¡
¹½T 0 + ½0 ¹T

¢
M0 ¢ rs0 + ½0T 0 (M0 ¢ r¹s) + ¹M ¢ rs0

fsg4 = ½0T 0M0 ¢ rs0

fp¡R½Tg1 = p0 ¡R(½0 ¹T + ¹½T 0)

fp¡R½Tg2 = ¡R½0T 0

The subscript f gn on the curly brackets means that the contained quantities are written to order n in
the °uctuations of °ow variables. Similarly, the square brackets indicate that the terms are of ¯rst order in
the Mach number of the mean °ow. Higher order square brackets are not required, as explained in Section
3.3.1.
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ANNEX B

The Equations for One-Dimensional Un steady Motions

These are many problems for which the °ow may be approximated as one-dimensional. Even when the
approximation may not seem as accurate as we might like, it is always a good beginning. The desired results
are usually obtained without real e®ect and often are inspiringly close to the truth. An elementary example
is computation of the normal modes for a straight tube having discontinuities, Section 5.7.2. Here we are
concerned with situations in which in°uences at the lateral boundary must be accounted for. The formulation
of the general problem is then essentially the counterpart of the constitution of the one-dimensional equations
for steady °ow in ducts thoroughly discussed by Shapiro (1950) and Crocco (1958).

Accounting for changes of area in the one-dimensional approximation is a straightforward matter; fol-
lowing the rules applied to derivations appearing in the three-dimensional equations:

u ¢ r( )! u
@

@x
( )

r ¢ ( )! 1

Sc

@

@x
Sc( )

r2( )! 1

Sc

@

@x
Sc
@( )

@x

(B.1)

where the axis of the duct lies along the x-direction and Sc(x) is the distribution of the cross-section area.

More interesting are consequences of processes at the lateral boundary, particularly when there is °ow
through the surface. The most important applications arise in solid propellant rockets when burning pro-
pellant forms all or part of the lateral surface. In°ow of mass momentum and energy must be accounted
for (Culick 1971, 1973; Culick and Yang 1990). The equations have the same form as the three-dimensional
equations derived in Annex A, equations (A.59){(A.63) but the rule (B.1) has been applied and only the
velocity component u along axis of the duct is non-zero:

Conservation of Mass

D½

Dt
= ¡½ 1

Sc

@

@x
(Scu) + (W 1 + W 1s) (B.2)

Conservation of Momentum

½
Du

Dt
= ¡@p

@x
+ (F1 + F1s) (B.3)

Conservation of Energy

½Cv
DT

Dt
= ¡p 1

Sc

@

@x
(Scu) + (Q1 + Q1s) (B.4)
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Equation for the Pressure

Dp

Dt
= ¡°p 1

Sc

@

@x
(Scu) + (P1 + P1s) (B.5)

Equation for the Entropy

Ds

Dt
=
1

T
(S1 +S1s) (B.6)

where

D

Dt
=
@

@t
+ u

@

@x
(B.7)

The source terms W 1, F1, Q1, P1 and S1 are the one-dimensional forms of (A.67){(A.71) written for the
axial component of velocity only and with the rules (B.1) applied:

W 1 = ¡ 1

Sc

@

@x
(Sc½l±ul) + we (B.8)

F1 =
@¿v
@x

+me +mD ¡ ¾e ¡ ±ulw(l)g ¡ ½lD±ul
Dt

(B.9)

Q1 = ¿v
@u

@x
¡ @q

@x
+Qw +Qe ¡ (eogwg + eolwl)

+ Â0 +§hi
@

@x
(½gViYgi)¡ u(me +mD ¡ ¾e)

(B.10)

+ (u±ul)w
(l)
g + ±Ql + ±ulFl ¡ u(F1 ¡ Fl)

P1 =
R

Cv
Q1 +RT

·
W 1 ¡ @

@x
(½l±ul)

¸
(B.11)

S1 = Q1 ¡ p

½2
W 1 (B.12)

and Fl is the one-dimensional form of (A.32).

In addition, sources of mass, momentum and energy associated with °ow through the lateral boundary
are represented by the symbols with subscript ( )s (Culick 1973; Culick and Yang 1990):

W 1s =
1

Sc

Z
msdq =

1

Sc

Z
[msg +msl] dq (B.13)

F1s =
1

Sc

Z
[(us ¡ u)msg + (uls ¡ ul)msl] dq (B.14)

Q1s =
1

Sc

Z
[(h0s ¡ e0)msg + (el0s ¡ el0)msl] dq (B.15)
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P1s =
R

Cv
Q1s +RTsW 1s =

R

Cv

1

Sc

Z
[(h0s ¡ e0)msg + (el0s ¡ el0)msl + CvTmsg] dq (B.16)

S1s =
1

½
Q1 ¡ p

½
W 1s (B.17)

A useful form for P1s is

P1s =
1

Sc

Z
(a2 + °R¢Ts)msgdq +

R

Cv

1

Sc

Z
(el0s ¡ el0)msl dq (B.18)

where ¢Ts = Ts ¡ T . Terms containing u2smsg or u
2msg are of higher order and therefore are negligible.

Superscripts ( )g and ( )l refer respectively to the gas and liquid phases and subscript ( )s denotes
values at the surface. The mass °uxes at the surface, msg and msl are of course computed as values normal
to the boundary and are positive for inward °ow. Here q stands for the perimeter of the local section normal
to the axis.

B.1. Equations for Unsteady One-Dimensional Motions

Forming the equations for the °uctuating motions within the one-dimensional approximation is done
in exactly the same way as for the general equations, Annex A. We need only apply the rules (B.1) and
add to the inhomogeneous functions h and f the contributions from processes at the boundary. As for the
general three-dimensional equations, we defer writing the °uctuations W 0

1, F
0
1, : : : until we consider speci¯c

problems.

The procedure introduced in Section 3.3.3 for forming the systems of equations for a hierarchy of problems
applies equally to one-dimensional motions. As above, the equations are obtained from the three-dimensional
equations by applying the rules (B.1): the results can be constructed when needed. However, the contribu-
tions from processes at the lateral boundary are special. Written to ¯rst order in the °uctuations and the
Mach number of the mean °ow, (B.13){(B.17) become:

W 0
1s =

1

Sc

Z
m0
sdq (B.19)

F01s =
1

Sc

½
(¹us ¡ ¹u)

Z
m0
sgdq + (¹uls ¡ ¹u)

Z
m0
sldq

¾
+
1

Sc

½
(u0s ¡ u0)

Z
¹msgdq + (u

0
ls ¡ u0l)

Z
¹msldq

¾ (B.20)

Q01s =
1

Sc

½¡
¹h0s ¡ ¹e0

¢ Z
m0
sgdq + (¹el0s ¡ ¹el0)

Z
m0
sldq + Cv ¹T

Z
m0
sgdq

¾
+
1

Sc

½
(h00s ¡ e00)

Z
¹msgdq + (e

0
l0s ¡ e0l0)

Z
¹msl + CvT

0
Z
¹msgdq

¾ (B.21)

P01s =
R

Cv

1

Sc

½¡
¹h0s ¡ ¹e0

¢ Z
m0
sgdq + (¹el0s ¡ ¹el0)

Z
m0
sldq + Cv ¹T

Z
m0
sgdq

¾
+
R

Cv

1

Sc

½
(h00s ¡ e00)

Z
¹msgdq + (e

0
l0s ¡ e0l0)

Z
¹msl + CvT

0
Z
¹msgdq

¾ (B.22)
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S01s =
1

p
Q01s ¡

p

½
W 0
1s (B.23)

The procedure for forming the wave equation in the one-dimensional approximation is the same as that
week in Chapter 4, with the results valid to second order in small quantities

1

Sc

@

@x

μ
Sc
@p0

@x

¶
¡ 1

¹a2
@2p0

@t2
= h1 (B.24)

@p0

@x
= ¡f1 (x = 0; L) (B.25)

and

h1 = ¡¹½ 1
Sc

@

@x

μ
Sc
@¹uu0

@x

¶
+
¹u

¹a2
@2p0

@t@x
+
¹°

¹a2
@p0

@t

1

Sc

@

@x
(Sc¹u)

¡ 1

Sc

@

@x
Sc

μ
¹½u0
@u0

@x
+ ½0

@u0

@t

¶

+
1

¹a2
@

@x

μ
u0
@p0

@x

¶
+
¹°

¹a2
@p0

@t

1

Sc

@

@x
(Scu

0)

+
1

Sc

@

@x
Sc(F

0
1 + F

0
1s)¡

1

¹a2
@(P01 + P01s)

@t

(B.26)

f1 = ¹½
@u0

@t
+ ¹½

@

@x
(¹uu0) + ¹½u0

@u0

@x
+ ½0

@u0

@t
¡ (F01 + F01s) (B.27)

The normal modes for one-dimensional motions are found as the solutions to

1

Sc

d

dx

μ
Sc
dÃl
dx

¶
+ k2l Ãl = 0 (B.28)

dÃl
dx

= 0 (z = 0; L) (B.29)

and the basic expansions for the acoustic ¯eld are

p0(x; t) = ¹p
MX
j=1

´j(t)Ãj(x) (B.30)

u0(x; t) =
MX
j=1

_́j(t)

¹°k2j

dÃj(x)

dx
(B.31)
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Orthogonality of the normal modes is expressed as

LZ
0

ÃjÃlScdx = E
2
l ±jl (B.32)

E2l =

LZ
0

Ã2l Scdx (B.33)

With a procedure similar to that leading to equation (4.36), we ¯nd the equations for the amplitudes:

d2´l
dt2

+ !2l ´l = Fl (B.34)

Fl = ¡ ¹a2

¹pE2l

8<:
LZ
0

h1ÃlScdx+ [f1ÃlSc]
L
0

9=; (B.35)

Note that Fl here is not the one-dimensional form of the force found from (A.32). The current context
will distinguish the two symbols.

Development of the principal basic results for stability treated with the approximation of one-dimensional
motions is covered in Section 6.9.
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ANNEX C

The Acoustic Boundary Layer

Consider an impermeable rigid wall exposed to a °ow of gas oscillating parallel to the surface but having
no average motion. The gas is viscous and heat conducting. At the surface, the velocity is zero and the
temperature is maintained constant. Far from the surface all °ow properties oscillate sinusoidally and the
motion is isentropic. The values of the velocity and temperature vary from their ¯xed values at the surface
to their sinusoidal values far from the surface through a two-dimensional boundary layer. For the following
analysis we assume that there is no communication parallel to the surface. That is, we assume that °ow
within the boundary layer at any position x depends only on the conditions imposed locally by the external
°ow. This assumption is valid because the °ow is oscillating with no mean velocity. Figure C.1 is a sketch
of the °ow.

y

ue

Figure C.1. Sketch of the °ow in an acoustic boundary layer showing the velocity ¯eld at
two instants separated by one-half period.

We assume that the oscillations are sustained by some external actions far from the region under con-
sideration. Moreover, for small viscosity|high Reynolds number based on the amplitude of the velocity
outside the boundary layer, and the `thickness' of the layer, found as part of the solution|the boundary
layer is thin. We may assume this to be the case, and check the assumption later. Then according to the
principles of boundary layer theory, we take the pressure constant in the direction normal to the surface.
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The linearized mass, momentum and energy equations, (5.7){(5.9) written for incompressible °ow with
viscous stresses and heat combustion included, are

@½0

@t
+ ¹½r ¢ u0 = 0

¹½
@u0

@t
+rp0 = r ¢ ¿ 0¿ 0¿ 0v

¹½
@e0

@t
+ ¹½r ¢ u0 = ¡r ¢ q0

(C.1)a,b,c

It is convenient for this problem to replace the energy by the enthalpy, h = e+ p=½, so

@e

@t
=
@h

@t
¡ 1
½

@p

@t
+
p

½2
@½

@t

For incompressible °ow, ½0 is zero and (C.1)a gives r ¢ u0 = 0. By de¯nition, dh = CpdT , and the energy
equation (C.1)c becomes

¹½Cp
@T 0

@t
=
@p0

@t
¡r ¢ q0 (C.2)

Under the conditions supposed here, the contributions from viscous and heat conduction are (see, e.g.,
Schlicting 1960):

r ¢ ¿ 0¿ 0¿ 0v = ¹@
2u0

@y2
; r ¢ q0 = ¡¸c @

2T 0

@y2
(C.3)

Hence the momentum and energy equations for this problem are1

¹½
@u0

@t
= ¹

@2u0

@y2
+ ¹½

@u0e
@t

¹½Cp
@T 0

@t
= ¸c

@2T 0

@y2
+
@p0e
@t

(C.4)a,b

It is an important feature of this formulation that the coordinate x along the surface appears only paramet-
rically in u0e(x; t) and p

0
e(x; t). Later we discuss application and interpretation of this feature.

We assume sinusoidal time dependence and write

u0 = ûe¡i!t ; u0e = ûee
¡i!t ; p0e = p̂ee

¡i!t

Equations (C.4)a,b become

d2û

dy2
+ i

2

±2
û = +i

2

±2
ûe

d2

dy2

Ã
T̂
¹Te

!
+ i
2Pr

±2

Ã
T̂
¹Te

!
û = +i

2Pr

±2
° ¡ 1
°

μ
p̂

¹pe

¶ (C.5)a,b

where the characteristic thickness of the boundary layer is

± =

r
2º

!
(C.6)

1We have replaced the pressure gradient in the momentum equation by the rate of change of acoustic momentum. That
follows because the pressure doesn't change through this layer and therefore obeys the acoustic momentum equation for the
external °ow.
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and º = ¹=¹½ is the kinematic viscosity and Pr = Cp¹=¸c is the Prandtl number. The solutions to the
boundary layer equations can be written as sums of homogeneous and particular solutions

û = ûh + ûe

T̂ = T̂h +
° ¡ 1
°

μ ¹Te
¹pe

¶
p̂e

(C.7)a,b

and ûh, T̂h satisfy

d2ûh
dy2

+ i
2

±2
û = 0

d2T̂h
dy2

+ i
2Pr

±2
T̂h = 0

(C.8)a,b

The solutions (C.7)a,b must satisfy the boundary conditions

y !1 : û = ûe ; T̂ = T̂e

y = 0 : û = 0 ; T̂ = 0
(C.9)

Homogeneous solutions to (C.8)a,b are

ûh = c1e
¡¸y ; T̂h = c2e

¡pPry (C.10)a,b

with ¸ satisfying the equation

¸2 ¡ i 2
±2
= 0 (C.11)

Hence ¸ =
p
2i1± ,

¸ =
1

±
(1¡ i) (C.12)

The value of ¸ having positive real part is chosen so ûh ! 0 as y !1; replacing (C.10)a,b in (C.7)a,b, we
have

û = c1e
¡¸y + ûe

T̂ = c2e
¡pPry +

° ¡ 1
°

μ ¹Te
¹pe

¶
p̂

(C.13)a,b

To satisfy the boundary conditions at the surface, c1 and c2 are assigned the values

c1 = ¡ûe ; c2 = ¡° ¡ 1
°

μ ¹Te
¹pe

¶
Hence the solutions for the distributions of velocity and temperature within the boundary layer are

û = ûe
£
1¡ e¡¸y¤

T̂ = T̂e

h
1¡ e¡¸

p
Pry
i (C.14)a,b

where we have assumed isentropic motion in the external °ow:

T̂e
¹Te
=
° ¡ 1
°

p̂e
¹pe

and ûe =
¡i
½!

dp̂e
dx

Although we have assumed the °ow to be incompressible in the above analysis, the boundary layer is
usually referred to as the `acoustic boundary layer'. The °ow near the surface is dominated by inertial
and viscous forces so compressible e®ects are ignored. However, the result can (and usually is) used with a
compressible, i.e. acoustic, ¯eld external to the boundary layer.
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Mechanical energy of motion is dissipated within the acoustic boundary layer, causing acoustic waves
incident on a wall to be attenuated. That process is analyzed in Section 5.9. For the calculations we need a
formula for the rate of dissipation of energy within the acoustic boundary layer. The general form is (A.63)
with the sources given by (A.66) and the de¯nitions (A.67) and (A.69) for W and Q:

Ds

Dt
=
@s

@t
+ u ¢ ru = 1

T

·
Q¡ p

½2
W

¸
(C.15)

For the conditions here, the only terms surviving in Q and W are those due to viscous stresses and heat
conduction; then W = 0 and

Q = ¿¿¿v ¢ r ¢ u¡r ¢ q
For the one-dimensional °ow in the acoustic layer,

¿¿¿v ¢ r ¢ u = ¹
μ
@u

@y

¶2
¡r ¢ q = @

@y

μ
¸c
@T

@y

¶ (C.16)a,b

and

1

T
Q =

¹

T

μ
@u

@y

¶2
+
1

T

@

@y

μ
¸c
@T

@y

¶
The last term can be rewritten and for this °ow (C.15) becomes

@s

@t
=

"
¹

T

μ
@u

@y

¶2
+
¸c
T 2

μ
@

@y

¶2#
+
@

@y

μ
¸c
T

@T

@y

¶
(C.17)

To understand this result, consider an element of the °ow extending between the planes y1 and y2 and
having unit area. The right hand side of (C.17) represents the rate of entropy production per unit volume
associated with this element. There are two contributions which can be interpreted with the following
calculation. First integrate (C.17) over the volume of the element; for one dimensional °ow, only the integral
over y remains:

y2Z
y1

@s

@t
dy =

y2Z
y1

"
¹

T

μ
@u

@y

¶2
+
¸c
T 2

μ
@T

@y

¶2#
dy +

·
¸c
T 2
@T

@y

¸y2
y1

(C.18)

This result represents the total entropy production associated with the volume element. The bracketted terms
under the integral must be interpreted as the entropy production per unit volume arising from dissipation
of energy. The ¯rst term is due to action of viscous stresses and the second is due to conduction of heat.

The last term in (C.18) is the net entropy production due to conduction of heat through the two faces
of the element at y = y1; y2. This part of the entropy production must be assigned to the environment of
the element, for the following reason. Now apply (C.18) to the acoustic boundary layer with y1 = 0 at the
wall, and y2 !1 so the entire layer is included in the integration. Then @T=@y = 0 in y2 and (C.18) is

1Z
0

@s

@t
dy =

1Z
0

"
¹

T

μ
@u

@y

¶2
+
¸c
T 2

μ
@T

@y

¶2#
dy ¡

μ
¸c
T 2
@T

@y

¶
y=0

Suppose that the temperature increases with y. Then heat is transferred from the element to the wall,
causing a loss of entropy of the element and an increase of entropy of the wall. That heat °ow is non-zero
because of the temperature rise due to energy dissipation within the element. Therefore, if we are concerned
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only with the consequences of processes within the element, we may drop this term. Hence the formula for
the rate of entropy production per unit volume within the element is

@s

@t
=
¹

T

μ
@u

@y

¶2
+
¸c
T 2

μ
@T

@y

¶2
(C.19)
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AN NEX D

Accounting for Waves o f Vorticity and Entropy

In Chapters 3 and 4, the equations of motion have been written in dimensionless variables, mainly as the
basis for the two-parameter expansion. It is often preferable to use dimensionless variable, for example,
in modeling some of the physical processes treated in special problems. In this annex, the main results of
Chapter 3 are reproduced, and extended to show explicitly the formal consequences of including unsteady
vorticity and entropy in the method of spatial averaging developed in Chapter 4.

The basis for the calculations in the set of equations1 (A.59){(A.64)

D½

Dt
= ¡½r ¢ u+ W

½
Du

Dt
= ¡rp+FFF

½Cv
DT

Dt
= ¡pr ¢ u+ Q

Dp

Dt
= ¡°pr ¢ u+ P

Ds

Dt
=
1

T
S

p = ½RT

(D.1)a-f

Following the procedure explained in Chapter 3, expansion of (D.1)a-f to third order in the °uctuations.
Problem III de¯ned in Section 3.3.3 leads to the equations governing the unsteady ¯eld. To simplify the

1Here bold symbols for the mass-averaged °uid properties R, Cp, Cv and °°° are replaced by R, Cp, Cv and °
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results we assume that the average values ¹½, ¹p, ¹T are constant and uniform to give:

@½0

@t
+ ¹½r ¢ u0 = ¡[¹u ¢ r½0 + u0 ¢ r¹½+ ½0r ¢ ¹u]¡ [u0 ¢ r½0 + ½0r ¢ u0] + W 0

¹½
@u0

@t
+rp0 = ¡[¹½(¹u ¢ ru0 + u0 ¢ r¹u)]¡

·
¹½u0 ¢ ru0 + ½0 @u

0

@t

¸
¡ [½0u0 ¢ ru0] +F0F0F0

¹½Cv
@T 0

@t
+ ¹pr ¢ u0 = ¡[¹½Cv(¹u ¢ rT 0 + u0 ¢ r ¹T ) + p0r ¢ ¹u]¡

·
½0Cv

@T 0

@t
+ ¹½Cvu

0 ¢ rT 0 + p0r ¢ u0
¸

¡ [½0Cvu0 ¢ rT 0] + Q0

@p0

@t
+ °¹pr ¢ u0 = ¡[¹u ¢ rp0 + °p0r ¢ ¹u0]¡ [u0 ¢ rp0 + °p0r ¢ u0] + P0

¹½ ¹T
@s0

@t
= ¡[¹½T 0(¹u ¢ rs0 + u0 ¢ r¹s)]¡

·¡
¹½T 0 + ½0 ¹T

¢ @s0
@t
+ ¹½ ¹Tu0 ¢ rs0

¸
¡ [½0T 0 @s

0

@t
+
¡
¹½ ¹T + ½0 ¹T

¢
M0 ¢ rs0] +S0

p0 = [R(½0 ¹T + ¹½T 0)] + [R½0T 0]

(D.2)a-f

Combination of (D.2)b and (D.2)d gives the nonlinear wave equation for the pressure °uctuations and
its boundary condition

r2p0 ¡ 1

¹a2
@2p0

@t2
= h

n̂ ¢ rp0 = ¡f
(D.3)a,b

with

h = ¡¹½r ¢ [f[u]g1 + fug2 + fug3] + 1

¹a2
@

@t
[f[p]g1 + fpg2 + fpg3] +r ¢F0F0F0 ¡ 1

¹a2
@p0

@t

f = ¡¹½@u
0

@t
¢ n̂+ ¹½n̂ ¢ [f[u]g1 + fug2 + fug3]¡F0F0F0 ¢ n̂

(D.4)a,b

The brackets are de¯ned similarly to those in Annex A.6:

f[u]g1 = ¹½(¹u ¢ ru0 + u0 ¢ r¹u) f[p]g1 = ¹u ¢ rp0 + °p0r ¢ ¹u

fug2 = ½0 @u
0

@t
+ ¹½u0 ¢ ru0

+ ½0(¹u ¢ ru0 + u0 ¢ r¹u) fpg2 = u0 ¢ rp0 + °p0r ¢ u0

fug3 = ½0u0 ¢ ru0

(D.5)a{e

ANNEX D – ACCOUNTING FOR WAVES OF VORTICITY AND ENTROPY 

D - 2 RTO-AG-AVT-039 

 

 



A system of oscillator equations is formed as in Chapter 4. Expand the pressure °uctuation in normal
modes:

p0(r; t) = ¹p
MX
m=0

´m(t)Ãm(r) (D.6)

Spatial averaging leads to the result (4.36) with n replacing N ,

Ä́n + !
2
n´n = Fn (D.7)

and

Fn = ¡ ¹a2

¹pE2n

½Z
hÃndV +

ZZ
°fÃndS

¾
(D.8)

With some use of familiar vector identities, for h and f given by (D.6)a,b, Fn can eventually be written

¡ ¹pE
2
n

¹a2
Fn = ¹½I1 +

1

¹a2
I2 + ¹½I3 +

1

¹a2
I4 + ¹½I5 +

ZZ
°¹½@u

@t
¢ n̂dS

¡
Z
F0F0F0 ¢ rÃndV + 1

¹a2

Z
@P0

@t
ÃndV

(D.9)

where

I1 =

Z
(¹u ¢ ru0 + u0 ¢ r¹u) ¢ rÃndV

I2 =
@

@t

Z
(°p0r ¢ ¹u+ ¹u ¢ rp0)ÃndV

I3 =

Z
(u0 ¢ ru0 + ½

0

¹½

@u0

@t
) ¢ rÃndV

I4 =
@

@t

Z
(°p0r ¢ u0 + u0 ¢ rp0)ÃndV

I5 =

Z
½0

¹½
(u0 ¢ ru0) ¢ rÃndV

(D.10)a-e

It is important that both the steady and unsteady velocity ¯elds have not been assumed to be irrotational.

Note also that in (D.9) there is only one surface term, involving the acceleration @u0
@t . However, for irrotational

acoustic motions some of the integrands combine to form a divergence which by Gauss' theorem leads to a
surface integral representing convection of mechanical energy throughout the surface.

These results establish the formal basis for investigating in°uences of vorticity and entropy waves on
an acoustic ¯eld in a chamber. We emphasize again that the expansion (D.6) of the pressure ¯eld is only
the zeroth order approximation. The oscillator equations govern the time-evolution of the amplitudes of
the chosen basis functions, the mode shapes, but the spatial distributions to higher order require further
computations, as explained in Section 4.6. The dependent variables in h and f are not to this point restricted.
Hence in particular, following the idea discussed in Section 4.1 that generally a disturbance in a compressible
°owing medium may be synthesized of three modes of propagation, we write the variables as sums of three
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parts labeled ( )a for acoustic, ( )− for vorticity, ( )s for entropy; the second column of Table D.1 shows
the de¯ning properties of the contributions from the three modes in their zeroth approximation.

Table D.1. De¯nition of Splitting a Disturbance in the Three Modes of Propagation (Chu
and Kovasznay, 1958).

Splitting Variables Basic Properties

Pressure p0 = p0a + p0− + p
0
s p0a 6= 0 ; −0− = −

0
s = 0

Vorticity −0 = −0− +−
0
s + −

0
a −0−6= 0 ; −0s = −

0
a = 0

Entropy s0 = s0s + s0a + s0− s0s 6= 0 ; s0a = s0− = 0

The zeroth approximations (small amplitude; no mean °ow) to the °ow variables in the three modes are
given in Table D.2.

Table D.2. Zeroth Approximation for the Flow Variables in the Three Modes.

Pressure Velocity

Acoustic Mode p0a = ¹p
MP
m=1

´m(t)Ãm(r) u0a =
MP
m=1

_́m
°k2m

rÃm

Vorticity Mode p0− = 0 r£ u0− = 0 ; r ¢ u0− = 0

Entropy Mode p0s = 0 r£ u0s = 0 ; r ¢ u0s = 1
cp
@s0
@t

Thus the total velocity °uctuation to zeroth order is

u0(r; t) = u0a + u0− + u0s (D.11)

The density °uctuation contains a contribution from the entropy °uctuation (related to the temperature);
from the formula for the entropy of a perfect gas,

s¡ s0 = cp log (p=p0)
1=°

(½=½0)
(D.12)

We ¯nd, to second order in the pressure °uctuations,

½0

¹½
=

·
1

°

p0

¹p
¡ s0

cp

¸
¡ ° ¡ 1

2°2

μ
p0

¹p

¶2
(D.13)

The next step is substitution of (D.11) in the integrals (D.10)a-e and rearrangement to give the formulas
for the ¯rst and second order contributions:

I1 = I
a
1 + I

−
1 + I

s
1

I2 = I
a
2

I3 ! Iij3

I4 = I
aa
4

(D.14)a-d
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The elements Iij3 forming I3 =
3P
j=1

3P
i=1

Iij3 are

Iaa3 =

Z μ
u0a ¢ ru0a + ½

0
a

¹½

@u0a
@t

¶
¢ rÃndV ; Ia−3 =

Z
(u0a ¢ ru0−) ¢ rÃndV ;

Ias3 =

Z μ
u0a ¢ ru0s + ½

0
a

¹½

@u0s
@t

¶
¢ rÃndV

I−a3 =

Z
(u0− ¢ ru0a) ¢ rÃndV ; I−−3 =

Z
(u0− ¢ ru0−) ¢ rÃndV ;

I−s3 =

Z
(u0− ¢ ru0s) ¢ rÃndV

Isa3 =

Z μ
u0s ¢ ru0a + ½

0
s

¹½

@u0a
@t

¶
¢ rÃndV ; Is−3 =

Z
(u0s ¢ ru0−) ¢ rÃndV ;

Iss3 =

Z μ
u0s ¢ ru0s + ½

0
s

¹½

@u0s
@t

¶
¢ rÃndV

(D.15)

Equation (D.13) gives the two parts of the density °uctuation:

½0a
¹½
=
1

°

p0

¹p

½0s
¹½
= ¡ s

0

cp

(D.16)a,b

The remaining integrals in (D.14)a-d are de¯ned as

Ia1 =

Z
[r(¹u ¢ u0a)¡ u0a £ (r£ ¹u)] ¢ rÃndV

I−1 =

Z
[r(¹u ¢ u0−)¡ u0− £ (r£ ¹u)¡ ¹u£ −0] ¢ rÃndV

Is1 =

Z
[r(¹u ¢ u0s)¡ u0a £ (r£ ¹u)¡ ¹u£ (r£ u0s)] ¢ rÃndV

(D.17)a,b

and

I2 = I
aa
2 =

@

@t

Z
(°p0ar ¢ ¹u+ ¹u ¢ rp0a)ÃndV

I4 = I
aa
4 =

@

@t

Z
(°p0ar ¢ u0a + u0a ¢ rp0a)ÃndV

(D.18)a,b

Because the integrals Ii are additive in (D.9), we can set down the parts which involve only acoustic,
vorticity or entropy °uctuations, and the interactions; it is more physically appealing to write Fn, equation
(D.9), as the sum:

¡ ¹pE
2
n

¹a2
Fn = Iaa + I−− + Iss + Ia− + Ias + I−s

¡
Z
F0F0F0 ¢ rÃndV + 1

¹a2

Z
@P0

@t
ÃndV

(D.19)

ANNEX D – ACCOUNTING FOR WAVES OF VORTICITY AND ENTROPY 

RTO-AG-AVT-039 D - 5 

 

 



with the de¯nition

Iaa = ¹½k2n

Z
¹u ¢ u0aÃndV ¡ ¹½

Z
(u0a £r£ ¹u) ¢ rÃndV + 1

¹a2
@

@t

Z
(°p0ar ¢ ¹u+ ¹u ¢ ru0a)ÃndV

+¹½Iaa3 +
1

¹a2
Iaa4 + ¹½

ZZ
°@u

0

@t
¢ n̂ÃndV

(D.20)

Substitution of the acoustic approximations to the acoustic pressure and velocity (see Table D.2) leads
eventually to the simpler formula for Iaa:

Iaa = ¹½

ZZ
°
·
@u0

@t
¢ n̂+ 1

°
(¹u ¢ n̂)´nÃn

¸
ÃndS + ¹½

MX0

j=1

_́j
°

Ã
k2n
k2j
+ 1

!Z
(¹u ¢ rÃj)ÃndV

¡¹½
Z
(u0a £r£ ¹u) ¢ rÃndV + ¹½Iaa3 +

1

¹a2
Iaa4

(D.21)

Note that the surface integral contains the entire velocity °uctuation, u0 = u0a + u0− + u0s.

Without modeling the relevant physical processes, the remaining integrals in (D.19) cannot be simpli¯ed
further than their primitive de¯nition written as the sums appearing in (D.9), the individual contributions
being given in (D.15) and (D.17):

I−− = ¹½
©
I−1 + I

−−
3

ª
= ¹½

½Z
[r(¹u ¢ u0−)¡ u0− £ (r£ ¹u)¡ ¹u£−0] ¢ rÃndV +

Z
(u0− ¢ ru0−) ¢ rÃndV

¾

Iss = ¹½ fIs1 + Iss3 g

= ¹½

½Z
[r(¹u ¢ u0s)¡ u0s £ (r£ ¹u)¡ ¹u£ (r£ u0s)] ¢ rÃndV +

Z ·
(u0s ¢ ru0s) + ½

0
s

¹½

@u0s
@t

¸
¢ rÃndV

¾

Ia− = ¹½
©
Ia−3 + I−a3

ª
= ¹½

Z
[u0a ¢ ru0− + u0− ¢ ru0a] ¢ rÃndV

Ias = ¹½ fIas3 + Isa3 g

= ¹½

Z ·
u0a ¢ ru0s + u0s ¢ ru0a + ½

0
a

¹½

@u0s
@t

+
½0s
¹½

@u0a
@t

¸
¢ rÃndV

Is− = ¹½
©
Is−3 + I−s3

ª
= ¹½

Z
[u0s ¢ ru0− + u0− ¢ ru0s] ¢ rÃndV

(D.22)a-e
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ANNEX E

Accommo dating Discont inuities i n t he Metho d of Spatial
Averaging

Especially in problem arising from unsteady behavior in gas turbine combustors and augmentors or after-
burners, representing the combustion ¯eld with one or more °ame sheets is a common strategy; see, for
example Marble and Candel (1978), Cumpsty (1979), Dowling and Bloxsidge (1984), and Dowling (1996).
Modeling with discontinuities requires a little care: not only are distributions of physical quantities a®ected|
in obvious ways|particularly the density, temperature, velocity, and energy release ¯elds, but there is also
a contribution arising with the formulation of the averaged equations. Figure E.1 illustrates several possi-
bilities. We shall examine only the simplest case of a °ame front normal to a one-dimensional °ow, shown
in Figure E.1(c).

Chu (1953) was ¯rst to examine in detail the transient behavior of a °ame treated as a discontinuity.
His analysis was based on equations derived by Tsien (1951) and Emmons (1958). In general, when subject
to a disturbance, the °ame speed, and therefore the position of the °ame, changes. Those perturbations
must be taken into account to obtain completely correct results (cf. the analysis in Section 2.1) but we will
ignore them here in favor of emphasizing certain aspects of the formalism. Our purpose is modest, to show
that spatial discontinuities must be treated carefully to account for all contributions, some of which arise
specially in the process of spatial averaging.

We can most clearly see the problem in the simplest situation of one-dimensional °ow sketched in Figure
E.2. For this calculation only we suppose that the velocity and pressure °uctuations are non-zero, but we
ignore all other contributions, notably density changes. The inhomogeneous equation for the pressure is

@2p0

@x2
¡ 1

¹a2
@2p0

@t2
= h1

@p0

@x
= ¡f1 (x = x1; x0; x2)

(E.1)a,b

with

h1 =
1

¹a2
@m

@t
¡ @M
@x

f1 = ¹½
@u0

@t
+ M

(E.2)a,b

and

M = ¹½

μ
¹u
@u0

@x
+ u0

du0

dx

¶
= ¹½

@

@x
(¹u0u0)

m = °p0
d¹u

dx
+ ¹u

@p0

@x

(E.3)a,b
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v's

u+

u−

n̂

v'
f

u+

u−

n̂

n̂

v'
f

u+

u−

u+

u−

n̂

v'
f

v's

n̂

u+

u−

v'
f

u+

u−

n̂

(a)  Shear Layer

(b)  Flame Sheet

(c)  Flame Sheet Normal to the Average Flow

Figure E.1. Three examples of discontinuities in a °ow ¯eld.

u
1

u
2

x1
x0 x2

Figure E.2. A discontinuity in a one-dimensional °ow.
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We assume the familiar separable forms for the pressure and velocity perturbations,

p0 = ¹½´`Ã` ; u0 =
_́`
°k2`

dÃ`
dx

(E.4)

Following the procedure worked out in Chapter 3 and applied in Section 6.7 to one-dimensional °ows, we
¯nd the equation for ´`,

d2´`
dt2

+ !2`´` = ¡
¹a2Sc
¹pE2`

8<:
x2Z
x1

h1Ã`dx+ [Ã`f1]
x2
x1
+ [Ã`f1]

x0+
x0¡

9=; (E.5)

The last term containing the jump in Ã`f1 at the discontinuity is, at this stage, the only obvious evidence
of a discontinuity in the °ow. In three dimensions, a corresponding arises at a surface where the function f
is discontinuous. For f1 given by (E.2)a,b,

[Ã`f1]
x0+
x0¡ =

·
Ã`¹½

μ
@u0

@t
+
@

@x
(¹uu0)

¶¸x0+
x0¡

= ¹½Ã`0

·
¹u
@u0

@x

¸x0+
x0¡

= ¹½Ã`0
@u00
@x
¢¹u (E.6)

¢u0 = ¹u(x0+)¡ ¹u(x0¡) (E.7)

The weighted integral of h1 has three parts:

x2Z
x1

Ã`h1dx = ¡¹½
x2Z
x1

Ã`
@2

@x2
(¹uu0)dx+

1

¹a2
@

@t

x2Z
x1

Ã`

μ
°p0
d¹u

dx
+ ¹u

@p0

@x

¶
dx (E.8)

Each of the three pieces has special contributions at the discontinuity: Integration of the ¯rst term by parts
gives

¡¹½
x2Z
x1

Ã`
@2

@x2
(¹uu0)dx = ¡¹½Ã`0

·
@

@x
(¹uu0))

¸x0+
x0¡

¡ ¹½
·
Ã`
@

@x
(¹uu0)

¸x2
x1

+ ¹½

x2Z
x1

dÃ`
dx

@

@x
(¹uu0)dx (E.9)

The last term can be simpli¯ed for the step change assumed for the mean velocity,

¹½

x2Z
x1

dÃ`
dx

@

@x
(¹uu0)dx ¼ ¹½

dÃ`0
dx

u0(0)¢¹u¡ 1

¹a2
@

@t

x2Z
x1

¹u
dÃ`
dx
p0dx (E.10)

With similar calculations, the last two integrals in (E.8) become

1

¹a2
@

@t

x2Z
x1

Ã`¹u
@p0

@x
dx ¼ ¹p

2¹a2
£¡
¹u2Ã

2
` (x2)¡ ¹u1Ã2` (x1)

¢
+ Ã2`0¢¹u

¤
_́` (E.11)

°

¹a2
@

@t

x2Z
x1

Ã`p
0 d¹u
dx
dx ¼ °¹p

¹a2
Ã2`0¢¹u _́` (E.12)

Substitution of (E.9){(E.12) in (E.8) gives

x2Z
x1

Ã`h1dx = ¡¹½Ã`0
·
@

@x
(¹uu0)

¸x0+
x0¡

¡ ¹½
·
Ã`
@

@x
(¹uu0)

¸x2
x1

+ ¹½
dÃ`0
dx

u0(0)¢¹u¡ 1

¹a2
@

@t

x2Z
x1

¹u
dÃ`
dx
p0dx

+
¹p

2¹a2
£¡
¹u2Ã

2
` (x2)¡ ¹u1Ã2` (x1)

¢
+ Ã2`0¢¹u

¤
+
°¹p

¹a2
Ã2`0¢¹u _́`

(E.13)
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Finally, inserting (E.13) in (E.5) and using (E.2)a,b to evaluate the terms containing f1, gives the equation
for ´`:

Ä́` + !
2
` ´` = ¡

¹a2Sc
¹½E2`

½
¹½

μ
Ã`0

@u00
@x

+
dÃ`0
dx

u00

¶
+ _́`

μ
° +

1

2

¶
¹p

2¹a2
Ã2`0

¾
¢¹u+ ¢ ¢ ¢ (E.14)

Only the terms arising at the discontinuity are shown. Note that because u00, the velocity °uctuation at the
discontinuity, is proportional to _́`, all such terms contribute to damping.

The calculations leading to (E.14) have been carried out only as an arti¯cial example to suggest what
may happen in the analysis when a discontinuity is present in the °ow. It should be clear that the result,
equation (E.14), is at best incomplete. Even proper `jump' conditions across the °ame have not been used;
correct conditions would, for example, set the value of ¢¹u in (E.14). One purpose of the analysis carried
out here has been to emphasize that in addition to jump conditions, or some sort of comparable formal
statement, special care is required carrying out integrals. The steps leading from (E.9) to (E.13) make the
point.
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AN NEX F

Basis Functions Satisfying Homogeneous Boundary Conditions

The purpose of this annex is to clarify an important point that has been misunderstood by several critics
of the methods followed in this book. It's a di±culty whose source is readily identi¯ed but a bit of e®ort is
required to resolve the matter. The issue is perhaps best captured by the general question:

How is a true solution satisfying inhomogeneous boundary conditions represented
accurately by an expansion in basis functions satisfying homogeneous boundary
conditions?

In the problems treated in this book, we are concerned often with the unsteady pressure ¯eld governed by
the inhomogeneous wave equation (3.53) with the inhomogeneous boundary condition (3.55),

r2p0 ¡ 1

¹a2
@2p0

@t2
= h (F.1)

n̂ ¢ rp0 = ¡f (F.2)

The approximate method of solution has been based on expansion of the unsteady pressure and velocity
¯elds expressed in the basis functions Ãn taken as normal modes satisfying the problem

r2Ãn + k2nÃn = 0 (F.3)

n̂ ¢ rÃn = 0 (F.4)

Then the pressure and velocity ¯elds are approximated by the classical forms with amplitudes ´n(t) to be
determined:

~p 0(r; t) = ¹p
NX
n=1

´n(t)Ãn(r) (F.5)

~u0(r; t) =
NX
n=1

_́n(t)

°k2n
rÃn(r) (F.6)

where N may become in¯nite; see Section 4.3.

With the representation (F.5), spatially averaging the di®erence between the actual problem. (F.1),
(F.2), and the normal mode problem (F.3), (F.4), gives the equations (4.36) for the amplitudes ´n(t):

d2´n
dt

+ !2n´n = ¡
¹a2

¹p

1

E2n

½Z
hÃndV +

ZZ
° fÃndS

¾
(F.7)

For reasons explained in Section 4.6, we require in this book only the classical formulas for the pressure
and velocity because we compute all quantities|notably the amplitudes ´n and, if necessary, the pressure|
to ¯rst order in the expansion parameter ¹Mr, a measure of the mean °ow Mach number. That is, with only
a modest (but tedious) extension of the apparatus we have covered, we could calculate p0 and u0 to ¯rst
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order,

p0(r; t) = ¹p
NX
n=0

´n(t)Ãn(r)
£
1 + ¹MrP(r; t)

¤
(F.8)

u0(r; t) =
NX
n=0

_́n(t)

°k2n

£rÃn(r) + ¹MrU(r; t)
¤

(F.9)

We will avoid the calculations necessary to prove that the approximate solution, the expansions (F.5) and
(F.6) really do solve the problem (F.1), (F.2) to the order required. To carry through the `proof' would
require ¯nding P and U which the developments in the main text have shown are not needed for useful
results. Therefore we make the point with a much simpler model problem.

y

x

b

a0

u = 0

u = 0

u (x,0) = f (x)

u = 0

Figure F.1. The problem de¯ned for determining p(x; y).

The example was apparently ¯rst worked out by Friedman (1956, pp. 269{272). I learned the lesson,
as well as useful explanation, from Professor D.S. Cohen, who clari¯ed the problem in class notes. The
following is an extended and paraphrased version of those notes as well as including what I learned from
private conversations.

We consider the two-dimensional steady problem of ¯nding u(x; y) satisfying Laplace's equation with
non-zero boundary condition only on the x-axis where u(x; 0) = f(x). Solution is found in the rectangle
0 < x < a, 0 < y < b, Figure F.1. Symbolically we have

@2p

@x2
+
@2p

@y2
= 0

μ
0 < x < a
0 < y < b

¶
(F.10)

p(x; 0) = f(x)
p(x; b) = 0

¾
0 · x · a (F.11)

p(0; y) = 0
p(a; y) = 0

¾
0 · y · b (F.12)

Corresponding to the zeroth order form (F.5) for the pressure ¯eld, we assume the solution to (F.10) which
seemingly cannot satisfy the boundary condition (F.11),

p(x; y) =
1X
n=1

cn(x) sin
n¼y

b
(F.13)
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so

cn(x) =
2

b

bZ
0

p(x; y) sin
n¼y

b
dy (F.14)

The series (F.13) may be regarded as an expansion in the eigenfunctions sin n¼yb corresponding to Ãn in
(F.5). Spatial averaging of the governing equation (F.10) over y, weighted by the basic function, gives

2

b

bZ
0

@2p

@x2
sin

n¼y

b
dy +

2

b

bZ
0

@2p

@y2
sin

n¼y

b
dy = 0

Then substitution of the assumed form (F.13) and integration of the second term by parts leads to

d2cn
dx2

+
2

b

(·
@p

@y
(x; y) sin

n¼y

b

¸y=b
y=0

¡ 2n¼
b2

bZ
0

@p

@y
cos

n¼y

b
dy = 0

The second term is zero and integration of the third term gives

d2cn
dx2

¡ 2n¼
b2

h
p(x; y) cos

n¼y

b

iy=b
y=0

+
2

b

³n¼
b

´2 bZ
0

p(x; y) sin
n¼y

b
dy = 0

After substitution of the boundary condition on y = 0 in the ¯rst term, and the de¯nition (F.14) in the last,
the equation for cn(x) is

d2cn
dx2

¡
³n¼
b

´2
cn = ¡2n¼

b2
f(x) (F.15)

with the end conditions

cn(0) = cn(a) = 0 (F.16)

Solution for cn(x) is conveniently constructed using a one-dimensional Green's function. Hildebrand
(1952, pp. 388®) has given a particularly clear discussion of the calculation which, with only minor changes,
is directly applicable here. The Green's function G(xj») satis¯es the same di®erential equation as cn(x)
does except that the inhomogeneous right-hand side is non-zero at a single point » which lies in the range
a < » < b,

d2G(xj»)
dx2

¡ ·2G(xj») = ±(x¡ ») (F.17)

where · = n¼=b and ±(x¡ ») has the property,
x>»Z
x<»

±(x¡ »)d» = 1 (F.18)

Without additional justi¯cation, we require G to have the four properties:

(i) G is composed of two parts, f and g, which because of the de¯ning property (F.17) satisfy the same
homogeneous equation:

d2g

dx2
¡ ·2g = 0 (0 · x < »)

d2h

dx2
¡ ·2h = 0 (» < x · a)
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and

G =

8<:g(x) 0 · x < »

h(x) » < x · a
(F.19)

(ii) G satis¯es the prescribed homogeneous boundary conditions (F.16),

G(0j») = G(aj») = 0 (F.20)

which imply

g(0) = 0 ; h(a) = 0 (F.21)

(iii) G is continuous at x = »,

g(») = h(») (F.22)

(iv) the derivative of G has discontinuity equal to ¡1 at the point x = »:
dh

dx
¡ dg

dx
= ¡1 (x = »)

Conditions (i) and (ii) are satis¯ed by the functions

g(x) = A sinh·x

h(x) = B sinh·(a¡ x) (F.23)a,b

Conditions (iii) and (iv) then become

A sinh·» ¡ B sinh·(a¡ ») = 0 (F.24)

A cosh·» + B cosh·(a¡ ») = 1

·
(F.25)

The constants A and B are therefore

A =
1

¢

¯̄̄̄
0 ¡ sinh·(a¡ »)
1
· +cosh·(a¡ »)

¯̄̄̄
=

1

·¢
sinh·(a¡ »)

B =
1

¢

¯̄̄̄
sinh·» 0
cosh·» 1

·

¯̄̄̄
=

1

·¢
sinh·»

(F.26)a,b

where

¢ = sinh·» cosh·(a¡ ») + cosh·» sinh·(a¡ ») = sinh·a (F.27)

Thus A = sinh·(a ¡ »)=· sinh·a, B = sinh·»=· sinh·a and the Green's function for this problem follows
from (F.19):

G(xj») =

8>><>>:
sinh·x sinh·(a¡»)

· sinh·a =
sinh n¼x

b sinh n¼
b (a¡»)

n¼
b sinhn¼ a

b
0 · x · »

sinh·» sinh·(a¡x)
· sinh·a =

sinh n¼»
b sinh n¼

b (a¡x)
n¼
b sinhn¼ a

b
» · x · a

(F.28)

Solution for cn(x) is found in familiar fashion by combining (F.15) and (F.17). Multiply (F.17) by cn(x),
(F.15) by G(xj»), subtract the results and integrate over the range of the solution:

aZ
0

·
cn(x)

d2G(xj»)
dx2

¡G(xj»)d
2cn
dx2

¸
dx¡

aZ
0

·
·2cn(x)G(xj»)¡

³n¼
b

´2
G(xj»)cn(x)

¸
dx

=

aZ
0

·
cn(x)±(x¡ ») + 2n¼

b2
f(x)G(xj»)

¸
dx

(F.29)

ANNEX F – BASIS FUNCTIONS 
SATISFYING HOMOGENEOUS BOUNDARY CONDITIONS 

F - 4 RTO-AG-AVT-039 

 

 



The ¯rst term is integrated by parts with the boundary conditions (F.16) and (F.20) applied:

aZ
0

·
cn(x)

d2G(xj»)
dx2

¡G(xj»)d
2cn(x)

dx2

¸
dx =

·
cn
dG

dx
¡Gdcn

dx

¸a
0

¡
aZ
0

·
dcn
dx

dG

dx
¡ dG
dx

dcn
dx

¸
dx = 0

Because · = n¼=b, the integrand of the second integral in (F.29) is zero, giving

aZ
0

cn(x)±(x¡ »)dx = ¡2n¼
b2

aZ
0

f(x)G(xj»)dx

With the property (F.18),

cn(») = ¡2n¼
b2

aZ
0

f(x)G(xj»)d»

Interchange x and », and use the symmetry property which can be con¯rmed with (F.27)1, G(xj») = G(»jx),
the solution cn(x) is

cn(x) = ¡2n¼
b2

aZ
0

f(»)G(xj»)d» (F.30)

Thus with (F.28) we have

cn(x) = ¡2n¼
b2

xZ
0

f(») [G(xj»)]0·»·x d» ¡
2n¼

b2

aZ
x

f(») [G(xj»)]x·»·a d»

= ¡2
b

sinh n¼b (a¡ x)
sinhn¼ ab

xZ
0

f(») sinh
n¼»

b
d» ¡ 2

b

sinh n¼xb
sinhn¼ ab

aZ
x

f(») sinh
n¼

b
(a¡ »)d»

(F.31)

Substitution into (F.13) gives the solution for p(x; y) in terms of its boundary values p(x; 0) = f(x) on the
side of the rectangular region on the x-axis:

p(x; y) = ¡2
b

1X
n=1

sin n¼yb
sin n¼ab

8<:sinh n¼b (a¡ x)
xZ
0

f(») sinh
n¼»

b
d» + sinh

n¼x

b

aZ
x

f(») sinh
n¼

b
(a¡ »)d»

9=;
(F.32)

This result gives p(x; 0) = 0 on the side of the rectangle on the x-axis|where we have already speci¯ed,
and presumably satis¯ed, the condition p(x; 0) = f(x). We therefore have the paradoxical situation quite
analogous to that prevailing for the acoustic ¯eld treated with the method described in Chapter 4: The
solution (F.32) has been constructed to satisfy the boundary condition (F.11) on y = 0, but because sin n¼yb
is zero on y = 0, the speci¯ed boundary condition is obviously not satis¯ed.

Owing to the relative simplicity of the formulas arising in this problem, we can resolve the apparent
paradox explicitly and quite easily. The key to doing so is to show that (F.32) is not a continuous function
of y as y ! 0, expressed by the statements

(i) p(x; 0) = 0, which follows immediately from (F.32); but

(ii) lim
y!1 p(x; y) = f(x), the required boundary condition (F.11)

1Because the di®erential operator de¯ned by (F.15) is self-adjoint, the associated Green's is symmetric (Morse and Feshbach
1948, for example).

ANNEX F – BASIS FUNCTIONS 
SATISFYING HOMOGENEOUS BOUNDARY CONDITIONS 

RTO-AG-AVT-039 F - 5 

 

 



Another way of stating this result is: \the limit of the sum is not equal to the sum of the limits"
R P6=PR

.

We already know by inspection that
PR

= 0 for (F.32), the result following because sin n¼yb = 0 for
y = 0 in all terms of the ¯nite sum, and then letting the sum become in¯nite. So we have only to show that
statement (ii) follows from the solution (F.32). Write (F.32) in the form (F.13),

p(x; y) =
1X
n=1

cn(x) sin
n¼y

b

where cn(x) is given by (F.31). Integrate by parts, the two terms in cn(x),

xZ
0

f(») sinh
n¼»

b
d» =

b

n¼

·
f(») cosh

n¼»

b

¸x
0

¡ b

n¼

xZ
0

df

d»
cosh

n¼»

b
d»

aZ
x

f(») sinh
n¼

b
(a¡ »)d» = ¡ b

n¼

h
f(») cosh

n¼

b
(a¡ »)

ia
x
¡ b

n¼

aZ
x

df

d»
cosh

n¼

b
(a¡ »)d»

The result of substituting into the formula (F.30) can be put in the form

cn(x) = ¡ 2

n¼
f(x) + Cn(x) (F.33)

where

Cn(x) =
2

n¼

1

sinh n¼ab

nh
f(a) sinh

n¼x

b
¡ f(0) sinh n¼

b
(a¡ x)

i
+

24 xZ
0

df

d»
cosh

n¼»

b
d» ¡

aZ
x

df

d»
cosh

n¼

b
(a¡ »)d»

359=;
(F.34)

We take advantage of a result used by Friedman (1956, p. 271) and assumed here without proof. For
the Fourier series

S =
1X
n=1

An sinny;

suppose that for n large,

An =
a1
n
+
a2(n)

n2

where a, is constant and a2(n) is bounded. If a1 6= 0,

S = a1

1X
n=1

sinny

n
+

1X
n=1

a2(n)

n2
sinny
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The second sum tends to zero as y ! 0 and the ¯rst sum is a1(¼ ¡ y)=2 for 0 < y < ¼. Hence, for y ! 0,

S =
1X
n=1

An sinn¼ ¡!
y!1 a1

¼ ¡ y
2

+
1X
n=1

a2(n)

n2
y =

y=0 a1
¼

2
(F.35)

Therefore, p(x; y) given by (F.13) with cn(x) expressed as (F.33) is

p(x; y) =
2

¼
f(x)

1X
n=1

sinny

n
+

1X
n=1

Cn(x) sinny

For y ! 0,

p(x; y ! 0) =
2

¼
f(x)

μ
¼ ¡ y
2

¶
+

1X
n=1

Cn(x) sinny

which for y = 0 becomes

p(x; 0) = f(x) (F.36)

This then demonstrates that with su±cient care, the representation (F.13) which apparently cannot satisfy
the boundary condition p6= 0 on y = 0, in fact does if the in¯nite series is properly summed.

We have not, and will not here, prove the corresponding property for our case summarized by equations
(F.1){(F.7), but throughout this book, whenever necessary, we assume its truth.
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AN NEX G

Nyquist Criterion

Nyquist (1932) established the result which bears his name during his work on problems relating to the
development of the US telephone system. It is a wonderful yet simple general result, a relation among the
poles and zeros of a complex function, established by applying Cauchy's residue theorem. In Section G.5 we
repeat a standard proof to clarify what is implied by use of the criterion in applications to control theory.
We treat only linear single-input-single-output (SISO) systems in detail; at the end of this annex we make
a few remarks on multi-input-multi-output (MIMO) systems.

There are many books devoted to feedback control, but surprisingly few contain proofs of Nyquist's
Criterion. That's a pity because with a little e®ort one gains a great deal of understanding. Besides Bode's
book (1945) volumes that I have found helpful include Franklin et al. (2002), McFarlane and Glover (1992),
Ogata (1990), and DiStefano et al. (1990). For ¯ve years I shared with several faculty, a ¯rst course in
feedback control of dynamical systems. That experience was enormously helpful to me.

In practice, the system or plant dynamics, written in terms of the Laplace transfer variable s and
represented by its transfer function G(s), are known. To meet performance speci¯cations (such as steady-
state error for a step input), a controller is required, having dynamics H(s). Hence the open-loop transfer
function H(s)G(s) is known, practically always in factored form, so the open-loop performance and stability
are readily determined.1

Performance speci¯cations are often such that they cannot be met with open-loop operation. Feedback is
then added, the performance speci¯cations are placed on the closed-loop system, and we must be concerned
with stability of the system shown in Figure G.1, for which the transfer function is

P

F
=

H(s)G(s)

1 +H(s)G(s)

G(s)F 
+

Σ PH(s)
−

Figure G.1. The system G(s) with controller H(s) and negative unity feedback.

Stability now is determined by the zeros of 1 +HG and we are usually faced with two problems in the
analysis and design of a feedback system:

(1) given H(s)G(s), ¯nd the roots of 1 +H(s)G(s);
(2) for the given transfer function G(s) of the plant, ¯nd the transfer functionH(s) of a controller required

to meet the desired closed-loop performance.

1Unlike the convention followed in the remainder of this book, we assume in this annex that the time dependence for steady
waves is e+i! , instead of e¡i!, to be consistent with standard usage in control theory. Also, the complex variable, s = ¾ + i!,
which originates as the Laplace transform variable in control theory, takes the part of z = x+ iy.
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The actual performance depends on the zeros of 1 + HG, which cannot be determined until H(s) is
known. Hence there is clearly a design problem which can be solved only if methods of analysis are available,
the matter we now address. The design process involves some sort of `cut-and-try' or interactive process, at
each stage of which the methods of analysis are applied to check the actual performance and stability.

G.1. The Criterion Stated Without Proof

The closed-loop transfer function will often have the form of 1 plus a rational polynomial,

1 +HG = 1 +K

iQ
(s¡ zi)

s`
jQ
(s¡ pj)

;

where we allow for a pole of order ` at the origin in HG. Stability of the open-loop system depends on the
poles of HG, but the stability of the closed-loop system depends on the zeros of 1+HG. Hence it is possible
that the closed-loop system may be stable even if the open-loop system is unstable, one of the advantages
of feedback.

For practical purposes, it is usually di±cult to factor 1+HG, so closed-loop stability is not easily found.
The Nyquist Criterion allows one to determine without factoring 1 + HG, whether or not the closed-loop
system is stable, and, if it is unstable, the number of unstable poles (i.e., zeros of 1+HG in the right-half of
the s-plane). This remarkable result is based on a polar plot of the open-loop transfer function, proceeding
in the following steps:

(i) locate the poles of H(s)G(s) on the imaginary axis in the s-plane, including the origin;

(ii) construct the Nyquist path in the s-plane (Figure G.2), traversing the imaginary axis excluding the
poles of HG, and closed by a semi-circle in the right-half s-plane. Poles and zeros of HG within the
path are not excluded. Hence the interior of the closed ¯gure lies to the right of the path;2

iω

σ

s

Figure G.2. De¯nition of the Nyquist path excluding poles of HG on the imaginary axis.
Examples of poles and zeros within the path are not excluded.

2This is probably the most common de¯nition of the Nyquist path, excluding poles on Re(s) = 0. Alternatively, poles on
the imaginary axis can be explicitly included by closing the semi-circles to the left of those poles. The details of the following
argument would change, and the statement of Nyquist's Criterion would be di®erent, but the substance of the result would
remain.
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(iii) construct the Nyquist contour or polar plot, i.e. the mapping, of the Nyquist path by the open-loop
transfer function H(s)G(s);

(iv) count the number N of encirclements of the point ¡1 by the polar plot (N > 0 if ¡1 lies inside the
contour and N < 0 if ¡1 lies outside, i.e. the contour makes counter-clockwise encirclements of ¡1);

(v) let P be the number of poles of HG in the right-half s-plane (right-half s-plane [RHP] means
Re(s) > 0); P > 0 if the open-loop system is unstable; P = 0 if the open-loop system is stable,
so all poles are in the left-half s-plane, or if HG has poles on the imaginary axis. Thus P is either
zero or a positive integer.

(vi) then the Nyquist Criterion is:

(1) if N > 0, the number Z of zeros of 1 +HG in the right-half s-plane is

Z = N + P (G.1)

(2) the closed-loop system is stable if and only if the number of counter-clockwise encirclements
equals the number of poles in the right-half s-plane:

N = ¡P· 0 (G.2)

Note that the Nyquist Criterion gives information about the absolute stability of the closed-loop system but
provides no measure of relative stability|i.e., how stable or unstable it is. However, we will see in Section
G.7 that the Nyquist polar plot provides a clear basis for de¯ning measures of relative stability.

G.2. Some General Properties of Polar Plots

In the present context we view a polar plot as a mapping|in the cases which we deal with a conformal
transformation|of a contour in the s-plane to the image ¯gure in the G-plane by G(s). If the contour avoids
poles of G, the mapping is conformal and angles are preserved. In particular, a right angle in the s-plane of
the contour in the s-plane is mapped to the corresponding right angle in the G-plane:

The polar plot of G(s)+g, where g = gr+ igi, is a complex number, is the polar plot of G(s) with origin
shifted to ¡g. This property follows by direct calculation,

G+ g = (Gr + gr) + i(Gi + gi)

which can be interpreted with a sketch of a simple example. See Figure G.8 for a case when g = gr = 1.

For a time-invariant linear system the polar plot of G(s) antisymmetric about the real axis for s = i!,

ImG(¡i!) = ¡ImG(i!) (G.3)

To show this, suppose that G(s) is a rational polynomial with a pole of order ` at the origin,

G(s) =
K

s`
¦(s¡ zi)
¦(s¡ pj) =

K

s`
snN + aN¡1snN¡1 + ¢ ¢ ¢
snD + anD¡1snD¡1 + ¢ ¢ ¢

in which the coe±cient in the polynomials, as well as the constant K, are real. On the imaginary axis of s,

G(i!) =
K

(i!)`
¢ ¢ ¢ (i! ¡ zn)(i! ¡ z¤n) ¢ ¢ ¢
¢ ¢ ¢ (i! ¡ pn)(i! ¡ p¤n) ¢ ¢ ¢
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and the complex conjugate is

G¤(i!) = G(¡i!) = Gr ¡ iGi = K

(¡i!)`
¢ ¢ ¢ (¡i! ¡ z¤n)(¡i! ¡ zn) ¢ ¢ ¢
¢ ¢ ¢ (¡i! ¡ p¤n)(¡i! ¡ pn) ¢ ¢ ¢

Consider the pair of factors shown in the numerators of G and G¤,

G : (i! ¡ zn)(i! ¡ z¤n) = (jznj2 ¡ !2)¡ i(2!zrn)
G¤ : (¡i! ¡ z¤n)(¡i! ¡ zn) = (jznj2 ¡ !2) + i(2!zrn)

These are typical factors so we conclude that G(¡i!) has imaginary part having the same numerical value,
but opposite sign compared with that of G(i!) if we ignore the pole of order ` at the origin, i.e. take ` = 0.
In this case, G(i!) is antisymmetric about the real axis, as asserted by (G.1).

When ` = 1; 2; 3; : : : , G has the additional multiplying factor 1s ,
1
s2 ,

1
s3 , ¢ ¢ ¢ or 1

i! ,
1

(i!)2 ,
1

(i!)3 , ¢ ¢ ¢ , that
is 1

i! , ¡ 1
!2 , ¡ 1

i!3 , ¢ ¢ ¢ . Thus G¤ contains the corresponding factors ¡ 1
i! , ¡ 1

!2 ,
1
i!3 , ¢ ¢ ¢ . Hence, when ` is

even, the pole has no e®ect on the above argument and (G.1) still holds. But when ` is odd, the polar plot
of G is symmetric about the real axis and the values of G(¡i!) overlay those of G(i!).

G.3. Construction of Nyquist Contours (Polar Plots)

The Nyquist contour, or polar plot, is the mapping of the Nyquist path, Figure G.2, to the HG plane.
Poles on the path are avoided by indenting the path, as shown in Figure G.3, with a small semi-circle of
radius ½ (½! 0 eventually); the path is closed by the large semi-circle of radius R (R!1 eventually). The
indentations on the imaginary s-axis exclude poles representing undamped motions, for example, oscillations
of constant amplitude.

θ

iω

σ

θ

θ

θ

ρ

ρ

πiω

π− iω

R

s

Figure G.3. Indentations around poles on the imaginary axis. Poles and zeros within the
contour are supressed.
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As an aid to constructing the mapping, note that on the various portions of the Nyquist path, s assumes
the following values:

(i) on the positive imaginary axis: s = i!

(ii) on an indentation around a pole
on the positive imaginary axis: s = i!p = ½e

iμ ¡¼
2 · μ · ¼

2

(iii) on the large semi-circle: s = Reiμ ¼
2 · μ · ¡¼

2

(iv) on an indentation around a pole
on the negative imaginary axis: s = i!p + ½e

iμ ¡¼
2 · μ · ¼

2

(v) on the indentation around the origin: s = ½eiμ ¡¼
2 · μ · ¼

2

For simplicity in the following examples we set H = 1.3

(a) G(s) = 1
s+1

There are no poles on the Nyquist path and the polar plot is sketched below.

− 1

s

G(s)

ω      − oo

iGi

Gr

ω = −1

ω = 1

ω      + oo

ω      0 −

ω      0 +
0.5             1.0

G

(b) G(s) = 1
s(s+1)

This is example (a) plus a simple pole at the origin. The path in the s-plane must be indented
to avoid the pole. On this indentation we set s = ½eiμ and G is

G =
1

½eiμ(1 + ½eiμ)
¡!
½!0

1

½
e¡iμ

³
¡¼
2
· μ · ¼

2

´
=)

³¼
2
¸ Á ¸ ¡¼

2

´
Hence jGj ! 1 as the radius of the semi-circle shrinks, and the polar angle changes from
¡ ¡¡¼

2

¢
= ¼

2 to ¡¼
2 , traversing a large semi-circle in the counter-clockwise direction, as

sketched below. (Points A! A0, B ! B0, and C ! C 0.)

On the large semi-circle of the path, s = Reiμ and

G =
1

Reiμ (1 +Reiμ)
¡!
R!1

1

R2
e¡i2μ

³¼
2
¸ μ ¸ ¡¼

2

´
=) (¡¼ · Á · ¼)

3For the examples here and in Section G.6, I have relied heavily on DiStefano, Stubberud and Williams (1990), Franklin
et al. (2002) and Ogata (1990).
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For μ ! ¼
2 (! !1 on the positive imaginary axis), G! 1

R2 e
¡i¼; and for μ ! ¡¼

2 (! ! ¡1
on the negative imaginary axis), G! 1

R2 e
i¼. Hence we ¯nd the mapping of the Nyquist path

to the Nyquist polar plot shown below.

G(s)

ω − oo

Grω + oo ω 0 e i  (0)

G
iGi

C

A

B

'

'

'

θ

iω

σ
ρC

A

B

− 1

s

Compare this result with the ¯gure for example (a). The pole at the origin causes the Nyquist
contour to approach the origin along the negative real axis instead of tangent to the imaginary
axis, and a portion of the contour therefore lies in the left half-plane.

(c) G(s) = 1
s2(s+1)

Now we have a third-order pole at the origin, which will have a signi¯cant e®ect on the
Nyquist contour at in¯nity. The path in the s-plane is the same as in example (b). For s on
the indentation at the origin,

G =
1

½3ei3μ
1

(1 + ½eiμ)
» 1

½3
e¡i3μ

³
¡¼
2
· μ · ¼

2

´
Thus as μ increases from ¡¼

2 through zero to +
¼
2 , argG decreases from +

3¼
2 to ¡3¼

2 . However,
care is required to get the proper behavior. A clue is found by computing the total change of
argG for the change in μ, ¢μ = ¼:

¢(argG) = ¡3¢μ = ¡3¼
Hence the contour makes an encirclement of the origin, a result that is clari¯ed further by
constructing the following table for argG as a function of μ, plotted in the adjacent sketch.

The question now is|how does the contour close? For s on the large semi-circle, we have

G » 1

R4
e¡i4μ

³¼
2
¸ μ ¸ ¡¼

2

´
so argG changes from ¡2¼ for ! !1 on the positive imaginary axis, to +2¼ for ! ! ¡1 on
the negative imaginary axis. Hence the contour comes into the origin tangent to the positive
real axis, in the ¯rst quadrant (argG = ¡2¼) for ! ! ¡1 and in the fourth quadrant for
! ! ¡1.

The Nyquist plot has the form shown in the ¯gure, again with a few corresponding points
indicated in the s- and G-planes. The dashed line is completely the image of the portion of the
Nyquist path near the origin! Note especially that while the path in the s-plane is traversed
once, the image polar plot encircles the origin twice in the G-plane. This is an example of
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μ argG = ¡3μ

¡¼=2 3¼=2
¡¼=3 ¼
0 0
¼=3 ¡¼
¼=2 ¡3¼=2

(θ = π/2)

(θ = −π/3) (θ= π/3)

(θ = −π/2)

(θ = 0)
Gr

GiG

G(s)

iω

σ

C

A

B

− 1

s

E

D

C'

A'

B'
Gr

G
iGi

D'
F'

E'

the importance of the behavior of G(s) for s ! 0. In view of the ¯nal value theorem, this
re°ects the behavior that we can expect in the time domain for large times. So it may not be
surprising that encirclements by the contours should be closely related to stability, one aspect
of the long-time behavior of a system. In fact, stability is the only characteristic of long-time
behavior that is independent of the forcing function or input|and nothing we are doing here is
related to the input. These remarks suggest that we should be more precise with our de¯nition
of encirclement.

G.4. De¯nition of Encirclement

A closed contour in the HG plane is said to make N0 positive encirclements of the origin if a line drawn
from the origin to a point on the contour rotates clockwise through 2¼N0 radians as the point traverses
the contour. It is essential that the de¯nition of positive be maintained, as we shall see with the proof of
Nyquist's criterion, and emphasized in Figure G.4. The reason for this de¯nition of positive follows from the
chosen direction for positive traversal of the Nyquist contour in the s-plane.

As a practical matter, two points should be noted. First, polar plots for the systems we are concerned
with are symmetrical about the real axis. That is particularly to be kept in mind when drawing or viewing
contours making several encirclements of the origin|it is a matter of convenience in drawing that the portions
far from the origin seem not to satisfy that symmetry, as is the case for example (c).
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iω

σ

s

Gr

G
iGi iGi G

Gr

POSITIVE                                               POSITIVE                                              NEGATIVE

Figure G.4. De¯nitions of positive and negative encirclements.

Second, an operational hint, another way of determining the number of encirclements of the origin by a
contour is to draw a line from the origin to in¯nity and count the net number of crossings of that line by
the contour, taking into account the de¯nition of `positive' (hence of `negative') given above.

G.5. Proof of Nyquist's Criterion

G.5.1. Principle of the Argument. We ¯rst establish an important relation among the numbers
of poles and zeros of a function by applying Cauchy's residue theorem.4 Consider a simple closed contour
C in the s-plane and a function f(s) analytic within C except for isolated poles, none of which are on C.
Moreover, we assume that f(s) may have zeros in the region enclosed by C but does not vanish on C. Now
apply Cauchy's residue theorem to the function f 0=f :

1

2¼i

I
C

f 0

f
ds =

X
Residues of

f 0

f

The residues of f 0=f are the coe±cients of 1=(s¡ sk) in the Laurent-series expansion. In this case, residues
are associated with both poles and zeros of f . First, near a zero of order mi of f , we can approximate f(s)
with the form

f(s) = (s¡ zi)mig(s)

where g(s) is non-zero and analytic at s = zi. Then

f 0

f
=

mi

s¡ zi +
g0

g

and the residue is mi at s = zi.

Similarly, near a pole of order nj ,

f(s) =
h

(s¡ pj)nj
where h is the analytic near pj ; the logarithmic derivative is

f 0

f
=

¡nj
s¡ pj +

h0

h

so the residue is ¡nj . Hence by the residue theorem we ¯nd

1

2¼i

I
C

f 0

f
ds =

X
mi ¡

X
nj (G.4)

4We assume for this discussion su±cient knowledge of functions of a complex variable, at the level of a well-educated
undergraduate. See, e.g., the Caltech undergraduate course ACM 95.
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This result is true independently of the direction in which the contour is traversed: there is no ambiguity of
sign.

If we regard each multiple pole (zero) as equivalent to nj(mi) simple poles (zeros) we can write

1

2¼i

I
C

f 0

f
ds = Z ¡ P (G.5)

where Z and P are the numbers of zeros and poles respectively within C.

Now carry out the integral explicitly:

1

2¼i

I
C

f 0

f
ds =

1

2¼i
[log f ]C

=
1

2¼i
[log jf j]C+

1

2¼
[arg jf j]C

The change of a quantity in one passage around the path C in the s-plane is denoted by the brackets. Hence
the ¯rst term vanishes, because jf j returns to its initial value, and the second term is the increment in the
argument of f , ¢c(arg f). When the value of s traverses the closed path once in the s-plane, the values
of f(s) will also trace a closed contour in the f -plane, which may be simple, or may intersect itself. If the
contour in the f -plane encircles the origin once, then the argument of f changes by 2¼; for N0 encirclements
of the origin, the change of argument is 2¼N0. Figure G.5 illustrates two possibilities (N0 = 0 and N0 = ¡2).

s f

N = 0  N = −2

f

0

Figure G.5. Illustrating no encirclement (N0 = 0) and two negative encirclements (N0 =
¡2) by f(s) when s executes a closed contour encircling the origin.

Therefore, the value of the integral may be written generally

1

2¼i

I
C

f 0

f
ds =

1

2¼
¢c(arg f) = N0 (G.6)

Equating the right-hand sides of (G.5) and (G.6), we have the principle of the argument:

N0 = Z ¡ P (G.7)

We emphasize that the result is independent of the direction in which the path C is traversed in the
s-plane, but the direction (i.e., the de¯nition of \inside" the path) must be consistently maintained in the
f -plane. Figure G.6 shows examples of the point, two cases of clockwise and counter-clockwise traversal of
the path in the s-plane each giving rise to two of the many possible cases in the f -plane. Which case arises
depends of course on the function f . The shading denotes the interior of a path: the interior of a path in
the s-plane maps to the interior of a contour in the f -plane because the mapping is conformal, preserving
both the magnitude and sense of angles locally.
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s G
Q

P

Q'

Q'

G

P'

P'

Clockwise Traversal

(a)                                                                        (b)                                                                           (c)

s
Q

Q'
Q'

P
P' P'

G G

Counter-clockwise Traversal

Figure G.6. Examples showing consistent maintenance of the de¯nition of `interior' of a
path under mapping from the s-plane to the G-plane.

The de¯nition of positive sense of a path is de¯ned in the s-plane. Either case in Figure G.6 is valid: if
the path is traversed in the clockwise sense, the interior is to the right, and if in the counter-clockwise sense
the interior is to the left. The chosen de¯nition is maintained in the G-plane, so the `interior' regions are
mapped as shown. Then an encirclement of a point in the G-plane is positive if that point belongs to the
image of the interior of the path in the s-plane and negative if the point belongs to the image of the exterior.
If the point lies outside the path in the G-plane, then the net phase change is zero for a vector drawn from
the point to a point executing the path. By de¯nition, the encirclement is then zero.

G.5.2. Proof of Nyquist's Criterion. Returning to the demonstration of Nyquist's criterion, we
set f = HG, the forward-path transfer function. Equation (G.7) has then established that the number of
encirclements of the origin by the Nyquist contour in the HG-plane is equal to the number of zeros of HG
minus the number of poles of HG in the right half-plane. Because we chose to execute the Nyquist path
in the clockwise direction in the s-plane, a positive encirclement in the HG- plane is also de¯ned as a 2¼
increase of argHG in the clockwise sense. Figure G.7 illustrates the result.

What we really want to determine is the number of zeros of 1 + HG in the right half-plane, a small
extension of the reasoning leading to equation (G.7) and achieved in the following steps.

(i) Let f(s) = 1 + HG. Then the origin for the mapping 1 + HG in the HG-plane is at HG = ¡1.
(Figure G.8 shows the process.)

(ii) Let N be the number of encirclements of ¡1 by the mapping of the Nyquist path by HG(s).

(iii) Then according to equation (G.7), N = Z ¡ P, where Z, P are the numbers of zeros and poles of
1 +HG enclosed by the Nyquist path in the s-plane (i.e., in the right-half s-plane).
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iω

σ

s

Poles of HG 

Zeros of HG

s

Gr

iGi

N = −2

Figure G.7. An example showing two negative encirclements of the origin by the path
obtained by mapping the Nyquist contour.

HG

Re (HG)− 1

i Im (HG)

Re HG)

i Im (1 + HG) 1 + HG

(1 + 

Figure G.8. Mappings of the Nyquist contour in the HG and 1 +HG planes.

(iv) The poles of 1 +HG are the same as the poles of HG. Hence the number of zeros Z of HG in the
right-half s-plane is

Z = N + P (G.8)

Z: number of zeros of 1 +HG in the right-half s-plane, i.e. the number of unstable
roots of the closed-loop system

N : number of encirclements of ¡1 by the mapping of HG of the Nyquist path

P: number of poles of HG (hence of 1 +HG) in the right-half s-plane

Thus we have shown how to determine the number of zeros of the closed-loop transfer function in the right
half-plane from a polar plot of the open-loop transfer function applied to the Nyquist contour.

Note that if the closed loop is stable, there are no zeros of 1 +HG in the right half-plane, Z = 0, and

N = ¡P¸ 0 (G.9)
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which is zero or negative because by de¯nition P is 0 or a positive number. Conversely, if N = ¡P, then
Z = 0 and the closed-loop system is stable. Hence (G.9) is the necessary and su±cient condition that the
closed-loop system be stable, where `stable' means that the transient motions are bounded for large times
(i.e., neutral stability is included). For N to be negative the point ¡1 is encircled negatively by the Nyquist
path and hence by de¯nition lies outside the path (see Figure G.6 and accompanying remarks). An equivalent
statement is: if the mapping of the right-half s-plane under 1 +HG(s) does not include the point ¡1, then
the system is stable.

If P= 0 (no poles of HG in the right half-plane), then the system is stable if and only if N = 0, for then
Z = 0.

If N > 0, then the point ¡1 lies inside the Nyquist contour and there must be at least one zero of 1+HG
in the right-half s-plane. Figure G.9 illustrates positive and negative encirclements of ¡1.

N  = 1 N  = 0 N = −2

s HG

−1

HG HG

−1 −1

Figure G.9. Examples of positive and negative encirclements of ¡1 by mappings of the
Nyquist contour.

As a ¯nal remark, we note that the portion of the Nyquist path for s ! 1 must map to the origin in
the HG-plane. Otherwise, the initial value theorem gives for the response near t = 0

F (t = 0+) = lim
s!1 sHGP (s)

and for an impulse of amplitude A, P (s!1) = A, so
F (t = 0+) = lim

s!1 sHGA

Thus the initial response becomes in¯nitely large even for in¯nitesimally small impulses, unlessHG » 1=s1+±,
where ± ¸ 0. Hence for any practically realizable system, the open-loop transfer function must have the
behavior

HG » 1

sn
(s!1; n ¸ 1) (G.10)

Thus HG ! 0 for s ! 1 and the Nyquist polar plot approaches the origin for ! ! +1 and leaves the
origin for ! decreasing from ¡1.

It follows that the character of the Nyquist polar plot (the mapping of the Nyquist path by HG) depends
heavily on the portion of the Nyquist path on the imaginary axis. But note that it is not only the array
of poles of HG on the axis that matters, for we are really using the mapping of the Nyquist path by the
function HG(s) so all poles and zeros matter. The behavior required by equation (G.10) is an example.
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G.6. Examples of Nyquist's Criterion

The procedure for applying Nyquist's criterion is straightforward, although the details may cause minor
di±culties. According to our discussion in the preceding sections, there are two preliminary tasks: (1) con-
struct the Nyquist plot as the mapping of the Nyquist contour; and (2) count the number N of encirclements
of the ¡1 point. If N is equal to the number P of poles of the open-loop transfer function in the right
half-plane and the encirclements are in the sense opposite to the traversal of the Nyquist contour, then the
closed-loop system is stable. Otherwise the closed-loop system is unstable, having N + P poles in the right
half-plane.

(a) HG = K
s(s+1) (K > 0)

The Nyquist polar plot sketched in example (b), Section G.3, is repeated here. The plot does

θ

iω

σ

ρ
C

A

B

− 1

s

not encircle the point ¡1, so N = 0; there are no open-loop poles in the right half-plane,
P= 0, and we have N = P = 0 = Z: the closed-loop system is stable for all K. This result is
easily con¯rmed from the closed-loop transfer function:

F

P
=

HG

1 +HG
=

K
s(s+1)

1 + K
s(s+1)

=
K

s2 + s+K

The roots of the denominator always have negative real parts if K > 0.

s1;2 = ¡1
2
§ 1
2

p
1¡ 4K (K · 1

2
)

= ¡1
2
§ i1
2

p
4K ¡ 1 (K ¸ 1

2
)

If K is negative, the plot actually closes in the left half-plane, always enclosing the point ¡1;
the direction of traversal is clockwise, and N = 1. Because P= 0, we then ¯nd correctly that
Z = 1.

(b) HG = K
s3(s+1) (K > 0)
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The Nyquist polar plot is sketched in example (c), Section G.3. The plot encircles ¡1 twice in
the positive direction, N = 2. There are no poles of HG in the right half-plane and the closed-
loop system is unstable with Z = N + P = 2 zeros in the right half-plane. The denominator
of the closed-loop transfer function is s4 + s3 +K, not easily factored, so we cannot con¯rm
the result directly.

(c) HG = K
s(s+p1)(s+p2)

(K > 0; p1; p2 > 0)

This transfer function may represent use of an integrator with a second-order system having
two real stable poles. Now we need to construct the Nyquist plot, sketched in Figure G.10.

We have assumed p1 and p2 positive. This assumption sets the position of the asymptote in
the left half-plane. To see this, write HG for ! ! 0 as

1

K
HG =

1

i!(i! + p1)(i! + p2)

= ¡ i
!

(p1 ¡ i!)(p2 ¡ i!)
!(p21 + !

2)(p22 + !
2)

= ¡ i
!

(p1p2 ¡ !2)¡ i!(p1 + p2)
(p21 + !

2)(p22 + !
2)

Now let ! ! 0 to ¯nd

p            p
12

s

s

p+ p
1 2

p  p
1 2

ω     + oo

i Im(HG)

Re(HG)0

HG

ω     − oo

2 2

Figure G.10. Forming the Nyquist plot for HG = K
s(s+p1)(s+p2)

.

1

K
HG! ¡(p1 + p2)

p21p
2
2

¡ i 1
!

1

p1p2
which shows the asymptote.

Whether or not the plot encircles ¡1 depends on where the point A is. We can ¯nd A by using
the condition that at A, the phase of HG, as ! is increasing from 0+, is ¡¼. Then from the
de¯nition of HG, we have

1

K
argHG ´ ¡ ¼

K
= ¡¼

2
¡ tan¡1 !A

p1
¡ tan¡1 !A

p2
(G.11)

where !A is the frequency at A. Given p1, p2 and K, we solve this equation for !A. Then
calculate jHG(!A)j to ¯nd the position of A; if jHG(!A)j > 1, then the plot makes one positive
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encirclement of ¡1. Hence Z = 1 + P = 1, because we assume that both poles lie in the left
half-plane (p1, p2 > 0 so the values of s1, s2 are negative at the poles). Hence the imaginary
part is

Im fHGg = ¡ K(p1p2 ¡ !2)
!(p21 + !

2)(p22 + !
2)

(G.12)

which vanishes when ! = !A =
p
p1p2. The magnitude of the real part is then

jHGj = K
¯̄̄̄ ¡(p1 + p2)
(p21 + !

2)(p22 + !
2)

¯̄̄̄
!A

= K
(p1 + p2)

p21 + p
2
2 + (p

2
1 + p

2
1)(p1 + p2) + p

2
1 + p

2
2

= K
p1p2

(p21 + 2p1p2 + p
2
2)

= K
(p1 + p2)

(p1p2)(p1 + p2)2

=
K

p1p2(p1 + p2)

Hence the system is unstable if
K

p1p2(p1 + p2)
> 1

or

K > p1p2(p1 + p2) (G.13)

G.7. Relative Stability; Gain and Phase Margins

A great advantage of the Nyquist method is that it suggests a quantitative assessment of relative stability
|i.e., how far is the closed-loop system from being unstable. This result appears in practice as a restriction
on the magnitude of the gain arising from the compensator or controller represented by H. We have already
seen in example (c) of the preceding section how increasing the gain can cause the Nyquist plot to expand
and enclose the ¡1 point, indicating that the system has become unstable.

To reiterate the point, consider the control system in which a plant having two stable poles at ¡1 is
subject to integral control, H = K=s, Figure G.11. The Nyquist plot is the same as Figure G.10, but now
with p1 = p2 = 1, and is re-drawn in Figure G.12. We have already shown, with equation (G.13), that the
plot encircles the point ¡1 if K > 2. To make quantitative statements about how close the system is to
being unstable (i.e., in this case when K < 2), consider the portion of the plot for positive ! and K < 2.

1

(s + 1 )2F(s) 
+

Σ K
s

−
P(s) 

Figure G.11. A stable second order system with an integrator.

The gain margin is de¯ned as a measure of the change of gain necessary to cause point A to reach ¡1. A
common `general' de¯nition is

GM =
1

jHGj¼ (G.14)
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(ω > 0)

HGi Im(HG)

Re(HG)0

2

(ω < 0)

Figure G.12. The Nyquist plot for the system shown in Figure G.11.

where jHGj¼, is the magnitude of HG when argHG = ¼. The meaning is clear if we set H = Kh, where h
is now independent of gain, and rewrite (G.14) as

(GM)KjhGj¼ = 1
Hence GM is the multiplier of the gain required to make jHGj¼ = 1, so the contour passes through the point
¡1 (i.e., when arg(HG) = ¼).

Another measure of relative stability is the phase margin de¯ned as the di®erence between ¼ and the
phase of HG where jHGj = 1; hence for the case drawn here (note that argHG is negative)

PM = argHG(i!1) + ¼ (G.15)

where !1 is the frequency at which jHGj = 1, the condition denoted jHGj¼ = 1.

−1
PM

arg (HG)

HGi Im(HG)

Re(HG)

HG   =
 1 

ω     + oo

Figure G.13. The Nyquist plot for `any' HG near jHGj¼, i.e., the magnitude of HG when
the phase or arg of HG is ¼.

For the example HG = K=s(s+ 1)2 giving Figure G.11, when s = i!,

HG =
K

!(1 + !2)
e¡i(

¼
2+2 tan

¡1 !) (G.16)

The contour crosses the axis when arg(HG) = ¡¼;
¡
³¼
2
+ 2 tan¡1 !

´
= ¡¼

or

2 tan¡1 ! =
¼

2
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Hence tan¡1 ! = ¼=4, or ! = 1. If we set arg(HG) = ¡¼, we ¯nd ! = ¡1, a result also immediately evident
from the symmetry of the contour about the real axis.

When ! = 1,

jHGj¼ = K

!(1 + !2

¯̄̄̄
!=1

=
K

2

Hence from the de¯nition (G.14) we have

GM =
2

K
which is less than unity, and the system is unstable if K > 2, the value given by equation (G.13) for
p1 = p2 = 1. That is, if K > 2, then jHGj¼ = K=2 is greater than 1 and the contour encloses 1.

It is more di±cult to determine the phase margin from the Nyquist plot, for we require the value of !
satisfying the transcendental equation

jHGj = 1 = K

!(1 + !2)
(G.17)

Here, ! is the solution to

!3 + ! ¡K = 0; (G.18)

and this is a simple example!

Consequently, while the ideas and de¯nitions of the gain and phase margins are suggested by the Nyquist
plot, their values are more easily found from Bode plots. To see how the procedure works we continue with
the example given in Figure G.11,

HG(i!) =
K

i!

1

(1 + i!)2

The Bode plot is the graphical representation of the magnitude and phase of HG for ! > 0:

20 log10 jHGj = 20 log10K ¡ 20 log10 ! ¡ 20 log10(1 + !2)
argHG = ¡

³¼
2
+ 2 tan¡1 !

´
These are sketched in Figure G.14; the magnitude is drawn for K = 1.

To compute the gain margin, ¯nd the value of jHGj for argHG = ¡¼, giving jHGj¼ = 0:5. Hence from
equation (G.14), GM = 1=jHGj¼ = 2, which is here the gain margin for K = 1. Similarly, to compute the
phase margin, ¯nd the value of argHG at which jHGj = 1, giving the value here PM = 22±. It should be
evident that Bode plots prepared with readily available computer programs can be used to ¯nd the gain and
phase margins.

The de¯nitions of phase margin and gain margin seemed quite natural for the simple example, Figure
G.11, treated here. One should wonder whether more complicated systems will have Nyquist polar plots
having such a character that the same ideas can be applied. The answer|perhaps surprisingly|is yes.
Although the entire Nyquist plot may be very complicated indeed, nevertheless, in the vicinity of the point
¡1, both the Nyquist plot and the Bode plots commonly behave much like this example.
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π
2

−

20

arg (HG)

HG

− 20

− 40

0 

0.1                                 1                                   10     

10

1

0.1

0.01

PM

HG
dB

GM

−2π

−π

−
2

3π

0.1         0.21                  1                     4.8         10     

PM = 22

GM
1

0.5 =

Figure G.14. The Bode plot for the system shown in Figure G.11, K = 1.
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AN NEX H

Some Alternative Metho ds of Approximately Analyzing
Nonlinear Behavior

Time-dependent nonlinear behavior has long been an object of intensive research in several other ¯elds,
notably electrical and earthquake engineering. Some of the results obtained in this book, or cited, originated
in quite di®erent contexts. Probably the main distinguishing feature of the applications motivating much
of the present work is the emphasis on the transient growth of a small amplitude motion into a limit
cycle executed by a (largely) isolated physical system. Particularly for combustion instabilities in solid
propellant rockets, much e®ort has been devoted to improving the precision of the results; and to broadening
applicability of those results to complicated internal con¯gurations. The purpose of this brief annex is solely
to call attention to other methods which may be attractive for particular applications. No derivations or
results are given and the citations are intended only to provide an entry into the literature. They are neither
the most recent nor are they necessarily the most representative works.

Probably the practical methods most commonly encountered are known by the names harmonic lin-
earization; harmonic balance; equivalent linearization; quasi-linearization; and describing function analysis.
Perhaps the best, through brief, treatment for methods useful in the subject of this book is the discussion
Natanzon (1999) gives in his Chapter Five. This is a particularly interesting brief coverage of some of the
Russian work which evidently was developed for application to liquid rockets, signi¯cantly well in advance
of comparable analyses in the West. The approaches rest ultimately on the in°uential work by Krylov and
Bogoliubov (1943), Bogoliubov and Mitropolsky (1961) and Andronov, Vitt, and Khaikin (1966). A strong
in°uence, particularly in the earlier works, is the behavior of electronic devices and the properties of radio
waves. Attention to continuous systems and the associated systems of nonlinear partial di®erential equations
was therefore not often a leading concern.

Many approximate methods for analyzing nonlinear behavior have developed from the assumption that
the motions of the system at hand are dominated by oscillation at a single frequency. That is the essential
basis for the ¯rst four of the methods listed at the beginning of the preceding paragraph. For example,
Natanzon opens his survey with a development of harmonic linearization, partly a misnomer because it
leads to a nonlinear governing equation which is then `linearized'. Simpli¯cation of the nonlinear behavior
is achieved partly by initially treating steady oscillations occurring in limit cycles. Slow variations are
handled in a manner similar to that explained by Krylov and Bogoliubov. Natanzon then discusses \hard
excitation" of oscillations, i.e., pulsed nonlinear instabilities, with a simple combination of analytical results
and graphical interpretation. It is important to note that, because by assumption motion at one frequency
suppresses other frequencies, there is no possibility of treating such phenomena as, for example, energy
transfer between modes. However, consequences of nonlinear behavior means the assumed single harmonic
can be treated in a heuristic fashion. Natazon (his Section 5.2) does so using a form of the n{¿ model of
combustion. It is an interesting peek at a piece of early Russian work on nonlinear combustion instabilities.
See also MacDonald (1993) for a variation of the technique called the harmonic balance method .

Methods of equivalent linearization have been very popular in earthquake engineering (e.g., Caughey,
1963; Iwan 1973, 1978) but apparently originated in mechanics (Minorsky 1947; Bogoliubov and Mitropolski
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1961). As the term `equivalent linearization' suggests, the idea is to replace a nonlinear problem|typically
involving the motion of an oscillator|by a linear form. Much of the theory which has been developed is
directed to minimizing the error incurred in the process. Caughey (1963), for example, has discussed the
method applied to nonlinear oscillators subject to random forces. Iwan (1978) has given a useful discussion
of the connections between the methods of equivalent linearization and harmonic balance.

Especially in the ¯eld of automatic control|with or without feedback|the method based on describing
functions has long been favored. It is also the method most easily learned, appearing at length in several
texts, e.g., Truxal (1955); Graham and McRuer (1961); and Ogata (1970); and the quite thorough treatment
of Gelb and Vander Velde (1968). The quickest way to obtain an extended introduction is to search on the
web. You should not expect to ¯nd applications to combustion systems. But because the point of view
developed in this book emphasizes the central role of oscillations, the discussions in the references will often
expand one's understanding and perhaps suggest novel calculations.

Ogata (p. 652) de¯nes the describing function as \the complex ratio of the fundamental harmonic
component of the output to the input." Hence the describing function is an extension to nonlinear systems
of the de¯nition of the transfer function for linear systems. The earliest description of the method was by
Kochenburger (1950) based on his MIT Ph.D. thesis. Truxal (1955) has brie°y summarized background and
has given a good introduction to the method. For the most extended treatment, see Gelb and Vander Velde
(1968). One should keep these early references in context, for the ¯eld of dynamical systems, both theory and
analysis, has of course advanced enormously in recent decades. Modern computing machinery has often had
far-reaching qualitative as well as quantitative consequences, but the importance of approximate methods
remains.
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systems; and accessible surveys of the basic material required to understand the subject. Emphasis is placed throughout 
the book on observed behavior. For well-understood reasons, the best, and in many respects most useful quantitative 
data, have been obtained for solid propellant rockets. Hence that type of device occupies a special position in the 
subject. The book comprises nine chapters and eight annexes. Material in the annexes is not essential for reading and 
broadly understanding the main part of the book, but is likely interesting for those choosing to do research on the 
subject. The nine chapters divide into three parts. Chapter 1 covers basic behavior observed in operational systems, and 
includes brief historical summaries as well as qualitative interpretations of observed behavior. Chapter 2 contains 
lengthy descriptions of a few mechanisms, especially for some of the behavior known from observations of solid 
propellant rockets. The second part of the book comprises Chapters 3 and 4 which summarize the development of the 
method of spatial averaging and construction of the systems of equations used for analytical studies in the subject; and 
Chapter 5, a survey of those parts of classical acoustics required to understand unsteady motions in combustors. 
Applications of the formal structure to problems arising in laboratory and full-scale devices are covered in the last four 
chapters. Chapter 6 treats linear behavior, including linear stability with examples; and Chapter 7 covers some aspects 
of nonlinear behavior based on the theory developed in the earlier part of the book. Practical methods of treating 
combustion instabilities are the subjects of the last two chapters. Chapter 8 describes various methods of passive control 
and how they fit in the general understanding of combustion instabilities. The last chapter is largely descriptive, a brief 
summary of some of the accomplishments of active control. It's an interesting and potentially very important subject 
which has fallen short of many optimistic expectations. There are presently no known practical applications. Successful 
advancement likely will rest on better understanding of fundamental behavior. 
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