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Abstract—A dependable middleware should be able to adaptively share the distributed resources it manages in order to meet diverse

application requirements, even when the quality of service (QoS) is degraded due to uncertain variations in load and unanticipated

failures. In this paper, we have addressed this issue in the context of a dependable middleware that adaptively manages replicated

servers to deliver a timely and consistent response to time-sensitive client applications. These applications have specific temporal and

consistency requirements, and can tolerate a certain degree of relaxed consistency in exchange for better response time. We propose

a flexible QoS model that allows clients to specify their timeliness and consistency constraints. We also propose an adaptive

framework that dynamically selects replicas to service a client’s request based on the prediction made by probabilistic models. These

models use the feedback from online performance monitoring of the replicas to provide probabilistic guarantees for meeting a client’s

QoS specification. The experimental results we have obtained demonstrate the role of feedback and the efficacy of simple analytical

models for adaptively sharing the available replicas among the users under different workload scenarios.

Index Terms—Replica consistency, middleware, quality of service, timeliness, probabilistic modeling.
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1 INTRODUCTION

OUR motivation for building a QoS-aware middleware
stems from two main observations. First, distributed

systems have different degrees of uncertainty arising from
factors such as transient overloads and failures. Second,
different distributed applications have diverse require-
ments. Hence, it is useful to design middleware-based
solutions for sharing access to distributed services based on
the QoS requirements of the clients. In our work, we target
time-sensitive clients. Our goal is to develop a middleware-
based approach to mediate a client’s access and to allocate
servers based on their ability to meet the quality of service
requirements of the client. Simple as the goal seems, the
problem is challenging, because the timeliness of a service
depends on the performance characteristics of the servers,
the distributed environment in which those services are
deployed, and the number of users accessing a service. All
of these factors vary with time in an unpredictable manner.
As such, access to servers that is based on a simple directory
lookup will not suffice for meeting the temporal constraints.
Rather, the lookup has to be based on actively monitoring
the changes in the dynamic properties of the servers.
Further, in order to cope with the unpredictability, the
middleware has to be designed to meet the demands of the
clients under stable conditions as well as when there is a
change in the availability of a service due to transient
overloads and server failures. In short, the middleware has

to be adaptive in order to provide both fault tolerance and
timeliness.

The approach we use for providing fault-tolerant and
responsive services makes use of replication. Replicating
the servers provides robustness in times of failure by
allowing access to a service even when some of the servers
are not functioning, and improves the response time by
allowing multiple clients to be serviced concurrently.
However, replication by itself is not a solution for meeting
the different QoS requirements. Rather, the available replica
resources have to be managed and allocated to service the
clients based on the QoS requested by the clients. This
requires an understanding of the trade offs between the
different quality of service measures and an ability to map
the requirements appropriately onto properties of the
replicated resources. This mapping is often not straightfor-
ward, especially when some of the QoS requirements may
be conflicting. For example, in order to provide good fault
tolerance, we could allocate all the available replicas to
service a client (e.g., [1], [9], [20], [5], [21]). However, such
an approach would not be scalable, as it would increase the
load on all the replicas and result in higher response times
for the remaining clients. On the other hand, assigning a
single replica to service each client would allow multiple
clients to be serviced concurrently [3], [7]. However, if the
replica failed while servicing a request, the failure might
result in an unacceptable delay for the client being serviced.
Hence, neither approach is suitable when a client has
specific timing constraints and failure to meet those
constraints results in a penalty for the client.

Furthermore, when the replicated state is modified by
the clients, there is the additional challenge of permitting
client operations to execute with the greatest possible
concurrency to provide good response times, while ensur-
ing that the replicated state does not diverge in an
uncontrolled manner. We can ensure immediate conver-
gence of replicated state by forcing all the replicas to
commit the modifications at the same time (e.g., [2], [24],
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[21], [25]). However, such a strategy that ensures strong
replica consistency limits the degree of concurrency and
results in reduced responsiveness. On the other hand, in the
weak consistency model (e.g., [27], [13], [8]), operations are
performed on some subset of replicas, and the updates are
propagated to the other replicas either lazily or on demand.
Typically, the only guarantee provided to the clients is that
the replicated state will eventually converge if update
activity ceases. Several optimistic replication algorithms
(e.g., [6], [22]) have been proposed for applications that can
tolerate relaxed consistency. These algorithms allow a client
to access any replica in order to provide better responsive-
ness, unlike the pessimistic algorithms, which allow access
to only those servers that have the most up-to-date state.
However, if the clients access different servers before their
states converge, the resulting inconsistency may lead to
conflicts.

Finally, when the currently available replicas are
insufficient to meet the requirements of the clients, the
middleware has to decide how to react appropriately. For
example, should the middleware inform the client applica-
tions about the insufficiency and leave it to them to adapt?
Should it limit the number of clients that it admits? Should
it increase the size of the replica pool? If the middleware
decides to add more replicas, it also has to decide how
many to add and where to place them.

To summarize, in order to build a dependable, QoS-
aware middleware for meeting a client’s QoS specification,
we need an approach that adaptively selects the appro-
priate replicas from the available replica pool. The replicas
must be chosen to service the client, based on an under-
standing of the client’s requirements and the dynamic
properties of the replicas. Furthermore, we also need to
enable the middleware to react appropriately when the
available replicas are insufficient to meet the demands of
the clients.

1.1 Paper Contributions

To address the above issues for managing replicated
resources, we have developed a middleware-based frame-
work that allows us to construct customized protocols
tailored to the semantics of specific applications. We have
implemented this framework in AQuA, a CORBA-based
middleware that supports transparent replication of objects
across a LAN [24]. The framework we have built uses
simple analytical models to establish a relationship between
a client’s QoS specification and properties of the replicas. In
[14] and [15], we described an adaptive replica allocation
scheme that uses a probabilistic approach for providing
temporal guarantees to the clients in two different cases:
1) when the replicated state is static and 2) when the
replicated state is dynamic. In the first case, we assume that
the replicas are always consistent and therefore do not
address the issue of maintaining replica consistency. This is
useful in applications such as compute servers, search
engines, and directory servers, which mainly export
interfaces for information retrieval. In the second case in
which the replicated state is time-varying, some of the
replicas may have obsolete state. We target time-sensitive
applications that can tolerate a certain degree of relaxed
consistency in exchange for better response time and
express their timeliness and consistency requirements in
the form of a QoS specification. In order to select replicas to

meet those requirements, we need to take into account the
state of a replica when estimating its responsiveness. To do
this, we developed an adaptive framework that supports
tunable consistency and timeliness. Some of the applica-
tions that motivate the need for such a framework include
real-time database applications, such as electronic patient
recording systems and ticket reservation systems. In this
paper, we compare and contrast the replica selection
approaches used for the static and dynamic replicated
states, and present additional experimental results that
extend our earlier performance evaluation [16], [17].

1.2 Paper Organization

The remainder of this paper is organized as follows: In
Section 2, we describe our QoS model that allows a broad
spectrum of applications to express their timeliness and
consistency requirements. Section 3 provides a brief over-
view of the AQuA architecture. In Section 4, we describe the
replica organization that allows us to build protocols for
providing different consistency guarantees and to use them
on demand. These protocols use a combination of immedi-
ate and lazy update propagation to ensure that the states of
the replicas do not diverge in an unacceptable manner. As
specific examples, we describe the protocols we have
implemented that allow the replicated services to provide
sequential and FIFO ordering guarantees. In Section 5, we
compare the probabilistic approach that uses the perfor-
mance history of the replicas to predict the ability of the
replicas to meet a client’s QoS requirement for static and
dynamic replicated states. In Section 6, we summarize the
algorithms that use the prediction made by the probabilistic
models to select replicas to meet the QoS requirements of
the clients. In Section 7, we present experimental results.
Finally, we discuss ideas for future extensions in Section 8
and present our conclusions in Section 9.

2 QOS MODEL FOR ACCESSING

REPLICATED SERVICES

Our QoS model allows a broad spectrum of applications to
express their requirements at a fairly high level of
abstraction using a uniform interface. Applications may
either specify their QoS requirements at start-up time or
negotiate them at runtime as often as they want. In order to
distinguish invocations that modify the state of an object
from those that merely retrieve state, our QoS model allows
a client application to identify all the read-only methods it
invokes on an object by their names at the beginning of a
session. If an operation is not specified as read-only, then
our middleware considers it to be an update operation. An
update operation is any invocation that modifies the state of
the object on which the operation is performed, and may be
either a write-only operation or a read-write operation. In
order to provide access to replicated servers, we are mainly
interested in providing quality of service along two
dimensions: timeliness of response and consistency of
replicated data.

2.1 Timeliness

Time-sensitive applications require timely execution of
operations and timely responses to their requests. However,
due to the uncertainty in the distributed environment, it is
impossible to provide deterministic guarantees for meeting
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the temporal requirements. Instead, our goal is to provide
probabilistic temporal guarantees. To achieve this, our QoS
model allowsa client to specify its temporal requirements as a
pair of attributes: <response time, probability of timely response>.
This pair specifies the time by which a client expects a
response after it has transmitted its read request, and the
minimum probability with which it expects its temporal
constraint to be met. Failure to meet a client’s response time
constraint results in a timing failure for the client. The
advantage of this probabilistic QoS model is that it allows
the temporal requirements of applications to be treated as a
continuous spectrum, instead of classifying them as hard
real-time and soft real-time.

2.2 Consistency

Replica inconsistency may arise when multiple clients
access an object concurrently, as some of the accesses result
in modifications to the replicated state. In order for the
responses to be meaningful to the clients, it is important to
bound the degree of inconsistency when the replicated
information is time-varying. Since different applications
have different views of consistency, it is hard to capture the
different consistency requirements using a single metric.
Instead of using qualitative measures, such as strong and
weak consistency, we believe that several applications will
benefit from intermediate degrees of consistency that can be
more precisely quantified [26], [30], [23].

Several researchers have extended traditional consis-
tency models by incorporating the notion of time in order to
bound the degree of inconsistency. For example, the notion
of epsilon-serializability (defined in [23]) and timed consis-
tency models (defined in [28], [18]) require that if a write is
executed at time t, then the effect of the write should be
visible to others by tþ x, where x is the maximum
acceptable delay for propagating the effect of the write.
The TACT middleware [30] is another related work that
attempts to provide a middleware framework for tunable
consistency and availability. The consistency measures used
by TACT to bound the level of inconsistency include the
order error, which limits the number of tentative writes that
can be outstanding at any replica; the numerical error, which
bounds the difference between the value delivered to the
client and the most consistent value; and staleness, which
places a real-time bound on the delay for propagating the
writes among the replicas.

Our QoSmodel regards consistency as a two-dimensional
attribute: < orderingguarantee, staleness threshold>.The ordering
guarantee is a service-specific attribute that denotes the
guarantee that a service provides to all of its clients about
the order in which their requests will be processed by the
servers, so as to prevent conflicts between operations. Some
well-known ordering guarantees that a service can offer are
sequential (or total), causal, and FIFO [2], [4]. In ourwork, we
target services that provide sequential and FIFO ordering
guarantees. The staleness threshold, which is specified by the
client, is a measure of the maximum degree of staleness a
client is willing to tolerate in the response it receives. In our
framework, the staleness of a response denotes the staleness
of the state of the replica that sent the response. In order to
meet a client’s QoS specification, a response delivered to the
client should be no more stale than the staleness threshold
specified by the client. We compute the staleness of a replica
by associating a timestamp with each update operation. We

use timestamps based on “logical clocks” [19] because this
obviates the need for synchronized clocks across the dis-
tributed replicas. These logical timestamps make it possible
to specify the staleness in terms of “versions.” Like the
timeliness QoS model described above, the consistency QoS
specification accommodates the needs of a broad spectrumof
applications. For example, a client that requires strong
consistency can request sequential ordering with staleness 0.
On theotherhand, ina scenario inwhich the replicatedstate is
either absent or static (for example, when the client transac-
tions are read-only), clients can allow their accesses to be
unordered and ignore the staleness threshold.

As an example of the use of the above QoS model,
consider a document-sharing application in which multiple
readers and writers concurrently access a document that is
updated in sequential mode. Using the above model, a
client of such an application can specify that it wishes to
obtain a copy of the document that is no more than five
versions old within 2.0 seconds with a probability of at least
0.7. Our goal is to meet the above QoS requirements even
when the availability of a service is degraded due to the
failure of a replica.

3 OVERVIEW OF AQUA

We now briefly describe the AQuA architecture. AQuA
enhances the capabilities of CORBA objects by transparently
replicating the objects across a LAN. A dependability manager
manages the replication level for different applications based
on their dependability requirements. Replicas offering the
same service are organized into a group. Communication
between members of a group takes place through the
Maestro-Ensemble group communication layer [29], [11],
above which AQuA is layered. The use of group commu-
nication in AQuA is transparent to the end applications.
Hence, each of the clients, which are all CORBA objects, is
given the perception that it is communicating with a single
server object using CORBA’s remote method invocation,
although the client’s request may be processed by multiple
server replicas. This transparency is achievedusing anAQuA
gateway, which transparently intercepts a local application’s
CORBA message and forwards it to the destination replica
group through Maestro-Ensemble. While previous work in
AQuA has focused on gateway handlers for providing fault
tolerance using the active and passive handlers [24], we have
enhanced AQuA by developing gateway handlers that
provide tunable consistency and timeliness guarantees for
time-sensitive applications.

4 HIERARCHICAL REPLICA ORGANIZATION

Given the above QoS model, our goal is to build a
framework that can be easily tuned to support the different
application-specific requirements at the middleware layer.
In order to design this framework, we address three main
issues: 1) organization of the replicas, 2) development of
protocols that implement different consistency semantics
and design of an infrastructure that would allow the
protocols to be used on demand, and 3) development of a
mechanism to select replicas to service a client dynamically
based on the client’s QoS requirements. We will now
describe the approach we have used to address these issues
in the context of the AQuA middleware.
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All the replicas offering the same service are organized
into two groups: a primary replication group and a secondary
replication group. We also have a QoS group, which
encompasses all of the replicas of a service and their
clients. The QoS group allows clients and servers to
exchange messages, and it allows the servers to publish
their performance updates to the client subscribers. In our
implementation, all of these groups are derived from
Maestro groups [29], and members of a group communicate
with each other by making use of the Maestro-Ensemble
group communication protocol [11], above which AQuA is
layered. For each group, Ensemble elects one of the
members of the group as the leader. We depend on
Maestro-Ensemble to provide reliable, virtual synchrony
and FIFO messaging guarantees, and build upon these
guarantees to provide the different end-to-end consistency
guarantees. We also depend on Maestro-Ensemble to
inform the group members when changes in the group
membership occur.

The primary and secondary replication groups may be
used to organize the replicas of an object adaptively to
implement different consistency semantics. The primary
replication group is used to implement strong consistency
semantics, whereas the secondary group implements weak-
er consistency semantics. The size of these groups can be
tuned to implement a range of consistency semantics. For
example, when the secondary group is empty and all the
replicas are placed in the primary group, the replica
organization supports an active replication approach (e.g.,
[24], [21]), in which all the replicas implement strong
consistency semantics. On the other hand, by placing one of
the replicas in the primary group and all the remaining
replicas in the secondary group, one can implement a
primary/backup protocol with multiple backup replicas.

In the case of static replicated state in which the servers
permit only read transactions, the primary group is empty
and we place all the replicas offering a service in the
secondary group. However, in the case of dynamic
replicated state, we organize the replicas into the primary
and secondary tiers. This two-level replica organization was
motivated by the need to favor the read operations that can
tolerate relaxed consistency to a certain degree, in exchange
for a timely response. While a write-all scheme that writes
to all the replicas concurrently always provides access to the
latest updates, it may result in higher response times for the
read operations. We therefore reduce the overheads in-
curred by a write-all scheme by performing the updates on
the smaller primary group, while allowing the secondary
replicas, which are greater in number, to handle the read-
only operations of different clients. The primary replicas
subsequently bring the state of the secondary replicas up-
to-date using lazy update propagation. The degree of
divergence between the states of primary and secondary
replicas can be bounded by choosing an appropriate
frequency for the lazy update propagation. Thus, while
clients that need the most up-to-date state to be reflected in
their response may have to depend more on the response
from a primary replica, clients that are willing to tolerate a
certain degree of staleness in their response can achieve
better response times, due to the higher availability of the
secondary replicas. Although in our work we restrict
ourselves to a two-tier organization of replicas in order to
study the trade offs between timeliness and consistency, it

should be easy to extend our architecture to multiple tiers
representing intermediate degrees of staleness in the replica
states.

4.1 Ordering Guarantees

We now describe how we maintain consistency across the
replicas in the case of dynamic state. As mentioned in
Section 2, in order to maintain replica consistency, we need
to ensure that the replicas service their clients by respecting
the ordering guarantee associated with the service. Our
framework allows different ordering guarantees to be
implemented as timed consistency handlers within the AQuA
gateway, as shown in Fig. 1. We have implemented gateway
handlers that provide sequential and FIFO ordering. The
sequential handler was motivated by applications, such as
document-sharing applications, in which all the clients
access a common replicated state, and the servers globally
order the requests of the clients in order to prevent conflicts.
On the other hand, the FIFO handler, which provides
weaker consistency, was designed to support applications,
such as banking transactions, in which the replicated
servers maintain states that are specific to each client. A
client can communicate with a replicated service by using
the gateway handler appropriate for the service. For
example, Fig. 1 shows a client communicating with
Service A using a sequential handler and with Service B
using a FIFO handler. We have designed the protocols to
ensure that the ordering guarantees are provided even
when replica failures occur. The symbols S, W, and G in
Fig. 1 represent different performance parameters of our
probabilistic model. They will be elaborated later in
Section 5.3.

We now compare and contrast the sequential and FIFO
handlers with respect to the way they service a client’s
update and read-only requests. In case of both handlers, a
client’s update request is forwarded by the client gateway
handler to all the primary replicas. The secondary replicas
do not directly service a client’s update request. Instead, the
secondary replicas update their state when one of the
members of the primary group lazily propagates its
updated state to the secondary group. We call this member
the lazy publisher. When a client invokes a read-only request,
the client gateway handler forwards the request to a subset
of primary and secondary replicas. In Section 6, we will
describe the selection of this subset. A selected replica
responds to the read request immediately, if its most
recently updated state is no more than x versions old,
where x is the staleness threshold specified by the client in
its QoS specification. In other words, the replica performs
an immediate read operation if it meets the staleness
specification of the client. However, a secondary replica
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may have a state that is more stale than the staleness
threshold specified by the client, the reason being that the
secondary replicas update their state only upon receiving
the state update from the lazy publisher. In such a case, the
replica performs a deferred read by buffering the read request
and responding to the client upon receiving the next state
update from the lazy publisher.

The sequential and FIFO handlers differ in the order in
which the replicas commit the updates and the manner in
which a replica determines if its state meets the staleness
threshold specified by a client. In the sequential consistency
case, all the replicas see the effects of the updates in the
same sequential order. The order in which the replicas
commit updates is determined by the Global Sequence
Number (GSN) of the update operation, which is assigned
by the leader of the primary group and broadcast by the
leader to the other primary replicas. The leader merely
serves as the sequencer and does not actually service the
client’s request. The value of the GSN at any instant of time
may be considered to be the value of the leader’s logical
clock. For read-only operations, this GSN serves as the basis
for determining the staleness of a replica. In contrast, the
FIFO handler does not use a dedicated sequencer to
determine the order in which the replicas commit their
updates. Instead, the clients send a sequence number along
with their invocations. The primary replicas commit the
updates of each client in increasing order of this sequence
number. In the case of a read request, the replicas use this
client-specific sequence number to determine if their state
with respect to a client’s updates is within the client-
specified staleness threshold. They then perform an im-
mediate or deferred read accordingly.

Failure handling is another point in which the FIFO
handler differs from the sequential handler. In our work,
we assume that replicas fail by crashing. Since both the
leader of the primary group and the lazy publisher play a
crucial role in providing sequential consistency semantics,
our algorithm handles their failures to ensure that the
consistency guarantees are not violated. The Maestro-
Ensemble group communication protocol greatly simplifies
our handling of replica failures. First, if any of the group
members fail, Maestro-Ensemble notifies the remaining
group members about the failure. Further, if the leader of a
group fails, Ensemble elects a new leader and notifies the
other group members about the election. By virtue of this
election protocol, we can guarantee that when the current
sequencer, which in our case is the leader of the primary
group, fails, then another member of the primary group will
be elected the sequencer. The new sequencer first checks if
the lazy publisher is still alive. If the lazy publisher has
crashed, the sequencer designates one of the surviving
members of the primary group as the new lazy publisher.
The sequencer then notifies all the clients that it is the new
sequencer. The sequencer also has the responsibility of
preserving the sequential ordering guarantees during the
transition. Since we depend on Maestro-Ensemble to
provide virtual synchrony and reliability, we assume that
all the replicas would have received the messages that were
sent before the crash. Hence, to ensure sequential ordering,
the new sequencer begins by assigning the GSN to the
pending requests, if any, before making the GSN assign-
ment for the newly incoming requests. Failure handling for
FIFO ordering is relatively simpler because the FIFO
handler does not use a dedicated sequencer. Hence, the

FIFO handler has to handle only the failure of the lazy
publisher. In the case of FIFO protocol, the leader of the
primary group is designated as the lazy publisher. When a
new leader is elected by Ensemble to replace a failed leader,
the leader-elect takes over as the new lazy publisher by first
propagating its state to the secondary replicas. It then
schedules the subsequent lazy updates with the appropriate
frequency, and then continues to service the requests from
the clients.

5 PROBABILISTIC MODELING OF THE

RESPONSE TIME DISTRIBUTION

Having described the processing involved in the gateway
handler on the server side, we now describe the processing
done on the client side in order to meet the QoS
specification of the client. As mentioned in Section 2, our
work targets clients that have specific consistency and
timeliness constraints. Each client expresses its constraints
in the form of a QoS specification that includes the response
time constraint, d, and the minimum probability of meeting
this constraint, PcðdÞ. In the case of dynamic replicated
state, the client also specifies the maximum staleness, a, that
it can tolerate in its response. If a response fails to meet the
deadline constraint of the client, it results in a timing failure
for the client. Hence, one of the important responsibilities of
the client gateway handlers is to select an appropriate
subset of replicas that can deliver a timely and consistent
response to the clients, thereby reducing the occurrence of
timing failures.

In our model, the constraints specified by a client apply
only for the read transactions invoked by the client. For an
update transaction, the only constraint that applies is that it
has to be committed by the replicas in a manner that
respects the ordering guarantee associated with the service.
Hence, our selection algorithm handles an update request
of a client by simply multicasting the request to all the
primary replicas. The handler on the server side takes care
of committing these updates in the appropriate order, as
described in Section 4.1. For the read-only requests, the
selection algorithm has to choose from among the primary
and secondary replicas based on their ability to meet the
client’s temporal requirements, as well as on whether the
state of the replica is within the staleness threshold
specified by the client. However, the uncertainty in the
environment and in the availability of the replicas due to
transient overload and failures makes it impossible for a
client to know with certainty if a set of replicas can meet its
deadline. Further, while a client can be certain that the state
of the primary replicas is always up-to-date, because all of
the clients propagate their updates directly to them, the
client cannot be certain about the state of the secondary
replicas. The reason is that the secondary replicas update
their state only when they receive the lazy updates
propagated by the lazy publisher.

Hence, our selection approach makes use of probabilistic
models to estimate a replica’s staleness and to predict the
probability that the replica will be able to meet the client’s
deadline. These models make their prediction based on
information gathered by monitoring the replicas at runtime.
A selection algorithm then uses this online prediction to
choose a subset of replicas that can together meet the
client’s timing constraints with at least the probability
requested by the client. While the algorithm ensures that the
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response delivered to the client will meet the staleness
constraint, it can only provide probabilistic guarantees
about meeting the temporal constraint. We first present the
probabilistic model we have developed for the static
replicated state, and then describe how we extend it for
the dynamic state.

5.1 Static State

LetM be the set of replicas offering the service requested by
a client and Ri be the random variable denoting the time to
receive a response from a replica i 2 M, after a request was
transmitted to it. We now need to determine the probability
that a response from a subset K � M, consisting of k > 0
replicas, will arrive by the client’s deadline, d, and thereby
avoid the occurrence of a timing failure. This probability is
denoted by PKðdÞ. Each replica in the subset independently
processes the client’s request and sends back its response.
However, only the first response received for a request is
delivered to the client. Therefore, a timing failure occurs
only if no response was received from any of the replicas in
the set K within d time units after the request was sent.
Computing the distribution of the time until a response is
received is straightforward if we assume that the response
times of individual replicas are independent of one another.
While this assumption may not be strictly true in some
cases (e.g., if the network delays are correlated), it does
result in a model that is fast enough to solve online, which is
especially helpful for the time-sensitive applications we
target in our work. Furthermore, the experimental results
we obtained show that the resulting model makes reason-
ably good predictions most of the time [16], [17]. We use the
independence assumption to compute the probability,
PKðdÞ, for the replicas in subset K, as follows:

PKðdÞ ¼ 1� P ðno replica in K responds before dÞ
PKðdÞ ¼ 1�

Y
i2K

P ðRi > dÞ

PKðdÞ ¼ 1�
Y
i2K

ð1� FI
Ri
ðdÞÞ;

ð1Þ

where FI
Ri
ðdÞ is the response time distribution function for

replica i, under the condition that the replica responds to
the request without waiting for a state update.

5.2 Dynamic State

We now explain how we extend the above model to take
into account the state of the replica when estimating its
responsiveness. Let t denote the time at which a request is
transmitted. Since replicas are selected at the time a request
is transmitted, we also use t to denote the time at which the
replica selection is done. Let AiðtÞ denote the staleness of
the state of replica i at time t, and P ðAiðtÞ � aÞ be the
probability that the state of replica i at time t is within the
staleness threshold, a, specified by the client. We call this
the staleness factor for replica i. Let P ðRi � dÞ be the
probability that a response from replica i will be received
by the client within the client’s deadline, d. As before, let
PKðdÞ be the probability that at least one response from the
set K, consisting of k > 0 replicas, will arrive by the client’s
deadline, d. The probability that a replica can meet the
client’s time constraint, d, and thereby prevent a timing
failure depends on whether the replica is functioning and
has a state that can satisfy the client-specified staleness
threshold. We can make use of the probabilities of the

individual replicas to choose a subset K of replicas such
that PKðdÞ � PcðdÞ. The replicas in the set K will then form
the final set selected to service the request.

We now derive the expression for PKðdÞ. Unlike the
static case, which made the selection from a single tier of
replicas, the setK in the case of dynamic state is made up of
a subset Kp of primary replicas and a subset Ks of
secondary replicas (i.e., K ¼ Kp [Ks). While each replica
in K processes the client’s request and returns its response,
only the first response received for a request is delivered to
the client. Hence, a timing failure occurs only if no response
is received from any of the replicas in the selected set K
within d time units after the request was transmitted.
Therefore, we have

PKðdÞ ¼ 1� P ðno replica i 2 K 3 Ri � dÞ:

As in the case of the static state, we assume that the
response times of the replicas are independent because they
process their requests independently. Thus, using the
independence assumption, we obtain

PKðdÞ ¼
1� P ðno i 2 Kp 3 Ri � dÞ � P ðno j 2 Ks 3 Rj � dÞ

� �
:

ð2Þ

5.2.1 Primary Replicas

In Section 4.1, we mentioned that the update requests of the
clients are propagated to the primary group immediately.
Hence, for a primary replica i, the staleness factor
P ðAiðtÞ � aÞ ¼ 1, and the replica always has a state that
can satisfy the staleness threshold of the client. Therefore, in
the case of the primary replicas, we have

P ðno i 2 Kp 3 Ri � dÞ ¼
Y
i2Kp

P ðRi > dÞ

¼
Y
i2Kp

ð1� FI
Ri
ðdÞÞ;

ð3Þ

where FI
Ri
, as in the case of the model for static state,

denotes the response time distribution function for replica i,
given that it can respond immediately to a read request
without waiting for a state update.

5.2.2 Secondary Replicas

The response time of a secondary replica depends on
whether it has a state that can satisfy the client specified
staleness threshold, a. If the replica’s staleness is within the
specified staleness threshold, then the replica can perform
an immediate read. Otherwise, as mentioned in Section 4.1,
the replica has to perform a deferred read. At the time of
replica selection, the client gateway that selects the replicas
does not know for certain how stale the secondary replicas
are. Hence, the client gateway uses a probabilistic approach
to estimate the staleness of the secondary replicas. The
probabilistic approach allows us to express the responsive-
ness of a replica j 2 Ks as a conditional probability using
the following equation:

P ðRj > dÞ ¼ P ðRj > djAjðtÞ � aÞ � P ðAjðtÞ � aÞþ
P ðRj > djAjðtÞ > aÞ � P ðAjðtÞ > aÞ;

where P ðAjðtÞ � aÞ is the staleness factor of replica j as
defined earlier. Since the lazy update is propagated to all
the secondary replicas at the same time, it is reasonable to
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assume that their degrees of staleness at the time of request
transmission, t, are identical. Hence, rather than associate
staleness with an individual replica j as above, we associate
staleness with the entire secondary group of replicas. We
use AsðtÞ to denote the staleness of the secondary group at
the time of request transmission t, and express the
probability that no secondary replica can respond within
the deadline d as follows:

P ðno j 2 Ks 3 Rj � dÞ ¼
� Y
j2Ks

P ðRj > djAsðtÞ � aÞ
�
�

P ðAsðtÞ � aÞþ� Y
j2Ks

P ðRj > djAsðtÞ > aÞ
�
�

P ðAsðtÞ > aÞ

P ðno j 2 Ks 3 Rj � dÞ ¼
� Y
j2Ks

ð1� FI
Rj
ðdÞÞ

�
� P ðAsðtÞ � aÞþ

� Y
j2Ks

ð1� FD
Rj
ðdÞÞ

�
�

ð1� P ðAsðtÞ � aÞÞ;
ð4Þ

where FI
Rj
, as before, denotes the response time distribution

function for the replica j, given that j can respond
immediately to a request without waiting for a state update,
and FD

Rj
is the response time distribution function, given

that the replica defers the read until it has received the lazy
state update. We now describe how we compute the
staleness factor, P ðAsðtÞ � aÞ, for the secondary replicas,
and then follow that with a description of how we compute
the values of the response time distribution functions FI

Ri

and FD
Ri

for a replica i.

5.2.3 Staleness Factor

The staleness of a secondary replica, at the instant t, is the
number of update requests that have been received by the
primary group since the time of the last lazy update. Let tl
denote the duration elapsed between the time of request
transmission, t, and the time of the last lazy update. Let
NuðtlÞ be the total number of update requests received by
the primary group from all the clients in the duration tl.
Since AsðtÞ ¼ NuðtlÞ, we have P ðAsðtÞ � aÞ ¼ P ðNuðtlÞ � aÞ.
Our approach estimates the staleness of the secondary
replicas based on a probabilistic model, rather than using
the prohibitively costlier method of probing the primary
group at the time of request transmission in order to obtain
the value of NuðtlÞ. Using the assumption that the arrival of
update requests from the clients follows a Poisson
distribution with rate �u, we obtain

P ðAsðtÞ � aÞ ¼ P ðNuðtlÞ � aÞ ¼
Xa
n¼0

ð�utlÞne��utl

n!
: ð5Þ

The sequential and FIFO handlers differ slightly in the way
they evaluate the update arrival rate, �u. In sequential
ordering, the replica state is shared by all the clients, and
therefore �u is the rate at which updates are received by the
primary replicas from all the clients. However, in the case of
FIFO ordering, since the updates to the replicated object are

specific to the individual replicas, �u is the rate at which the
client that is making the replica selection updates the
replicated object. In either case, the staleness of the
secondary replicas can be determined probabilistically if
we know the arrival rate of the update requests and the
time elapsed since the last lazy update. We measure those
two parameters at runtime by instrumenting the gateway
handlers, as we have explained in detail in [15]. Although
we have assumed Poisson arrivals in our work, it should be
possible to evaluate the staleness factor when the arrival of
update requests follows a distribution that is not Poisson.
Finally, we can use the expressions in (3), (4), and (5) in (2)
to evaluate the probability PKðdÞ that at least one of the
replicas in the selected set K can deliver a timely and
consistent response.

5.3 Evaluating the Response Time Distribution

We now explain how we determine the values of the
conditional response time distributions, FI

Ri
ðdÞ and FD

Ri
ðdÞ,

for a replica i. To do this, we make use of the performance
history recorded by online performance monitoring to
compute the value of the distribution function for a replica
i. In the case in which a replica can respond to a request
without waiting for a state update, the response time
random variable for a replica i is given by (6):

Ri ¼ Si þWi þGi: ð6Þ

For a deferred read, in which the replica has to buffer the
read request until it has received the next state update in
order to respond to the request, the response time random
variable is given by (7):

Ri ¼ Si þWi þGi þ Ui; ð7Þ

where Si is the random variable denoting the service time
for a read request serviced by replica i, Wi is the random
variable denoting the queuing delay experienced by a
request waiting to be serviced by i, Gi is the random
variable denoting the two-way gateway-to-gateway delay
between the client and replica i, and Ui is the duration of
time the replica spends waiting for the next lazy update. In
the case of sequential ordering, the queuing delay includes
the time the replica spends waiting for the sequencer to
send the GSN for the request. The service time and queuing
delay are specific to the individual replicas, while the
gateway delay is specific to a client-replica pair. These three
parameters are depicted in Fig. 1 by the terms S, W, and G,
respectively.

For each read request, we experimentally measure the
values of the above performance parameters by instrument-
ing the gateway handlers. The values of Si, Wi, and Ui for a
read request are measured by the server-side handler. The
server handler then publishes the new measurements to all
the clients. The value of the two-way gateway delay, Gi, is
measured by the client-side handler when it receives a
response from replica i. For each replica, the client handlers
record the most recent l measurements of these parameters
in separate sliding windows in an information repository
that is local to each client. The size of the sliding window, l,
is chosen so as to include a reasonable number of recent
requests, while eliminating obsolete measurements. The
details of the gateway instrumentation and online perfor-
mance monitoring are provided in [15].
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Given that we can measure the performance parameters
and record them at runtime, we can now compute the value
of the distribution function for a replica i. To do this, we
first compute the probability mass function (pmf) of Si and
Wi based on the relative frequency of their values recorded
in the sliding window, L. We then use the pmf of Si, the
pmf of Wi, and the recently recorded value of Gi to
compute the pmf of the response time Ri as a discrete
convolution of Wi, Si, and Gi. The pmf of Ri can then be
used to compute the value of the distribution function
FI
Ri
ðdÞ. We follow a similar procedure to compute FD

Ri
ðdÞ,

although, in this case, we record a performance history of Ui

and include the pmf of Ui in the convolution.

6 REPLICA SELECTION ALGORITHM

Given the ability to predict the probability that an
individual replica will meet a client’s time constraint based
on the replica’s state, we designed two algorithms that use
this prediction to select a set of replicas that can meet the
time constraint with the probability the client has requested.
We call these two algorithms BEST_PROBABILITY_FIRST and
LEAST_USED_FIRST; we presented the former in [14] and the
latter in [15]. The selection algorithms are executed by each
client gateway when the client associated with it performs a
read-only request on a server object. If the client makes an
update request, the gateway sends the request to all the
primary replicas. In this section, we summarize these
algorithms and highlight their key differences. The BEST_

PROBABILITY_FIRST algorithm selects replicas in decreasing
order of the probability that they can individually meet the
client’s response time requirement. It includes just enough
replicas in K such that the condition PKðdÞ � PcðdÞ is
satisfied, where PKðdÞ is computed using the models
presented in the previous section. The LEAST_USED_FIRST

algorithm, on the other hand, selects replicas in decreasing
order of their elapsed time of response (ETR). The ETR of a
replica is the duration that has elapsed since a reply was last
received by the client from that replica, and is measured at
runtime by instrumenting the gateway handler on the client
side. Like the BEST_PROBABILITY_FIRST algorithm, the
LEAST_USED_FIRST algorithm includes just enough replicas
in K such that the condition PKðdÞ � PcðdÞ is satisfied. Both
algorithms are designed to choose replicas in such a way
that the QoS requirements of the client can be met even if
one of the selected replicas fails before responding.

The BEST_PROBABILITY_FIRST algorithm is a greedy
algorithm because it always picks the best replicas first.
While this results in a smaller subset of replicas, it also
increases the potential for the occurrence of hot-spots due to
the following reason. The model used by the algorithm
makes use of the performance information broadcast by a
replica to estimate the replica’s ability to meet a client’s QoS
specification. Since the performance information is broad-
cast to all the clients and the gateway delays of different
client-replica pairs are not significantly different in a LAN,
the information repositories of different clients may contain
almost identical performance histories for the replicas. That
may cause the clients to select the same or common replicas
for their requests, resulting in hot-spots. In the case of the
LEAST_USED_FIRST algorithm, while the response time
distributions of a replica, which are computed from the
performance history, are nearly identical in all the client

information repositories, the ETR information is specific to
each client-replica pair and is likely to be different for
different clients. That results in a more balanced utilization
of the available replicas and thereby reduces the occurrence
of hot-spots.

7 EXPERIMENTAL RESULTS

We have conducted experiments to study the overhead of
the selection algorithm and studied the effectiveness as well
as the adaptability of the probabilistic model under
different workload scenarios for static and dynamic
replicated states [16], [15]. We also experimentally analyzed
the trade offs between timeliness and consistency, using the
sequential and FIFO ordering handlers we implemented in
AQuA [17]. All of our experiments were conducted using
an experimental setup composed of a set of uniprocessor
Linux machines with processor speeds ranging from
300 MHz to 1 GHz. The machines were distributed over a
100 Mbps LAN. All confidence intervals for the results
presented are at a 95 percent level and have been computed
under the assumption that the number of timing failures
follows a binomial distribution [12]. We now summarize the
key results of the experiments we have published pre-
viously and present additional experimental results that
provide a further evaluation of our work.

Our experiments showed that both the BEST_PROBABIL

ITY_FIRST algorithm as well as the LEAST_USED_FIRST

algorithm adapt to less stringent QoS requirements by
choosing fewer replicas. The reason is that the algorithms
use the model’s prediction to select just enough replicas that
canmeet a client’sQoS request, even if a replica failure should
occur. The less stringent a client’s QoS specification is, the
higher the probability that a chosen replica will meet the
client’s specification.Hence, as theQoS requirement becomes
less stringent, fewer replicas are needed to satisfy the request.
Wewere also able to validate ourmodels experimentally and
show that while the observed probability of timing failures
increases when the requested QoS is more stringent, the
replicas selected by the model were able to maintain the
observed failure probability to be within the threshold
specified by the client, for the workloads we considered. To
experimentally justify the need for a hierarchical replica
organization, we compared the performance of a single-tier
replica organization in which all the replicas were in the
primary group with a two-tier organization in which
40 percent of the replicas were in the primary group with
the remaining in the secondarygroup. The size of theprimary
group represents a trade off between the buffering delay due
to deferred reads and queuing delay due to update requests.
When there are more replicas in the primary group, a greater
number of replicas have consistent state, and therefore the
buffering delays are smaller. However, since more replicas
are involved in committing the updates, the queuing delays
experiencedby the read requests arehigher.Our experiments
showed that for smaller update rates, the single and two-tier
replica organizations perform comparably. However, for
larger update rates, it is possible to tune the lazy update
interval (LUI) such that the two-tier scheme results in lower
probability of timing failures compared to the single-tier
scheme. The LUI is the periodicity with which the lazy
publisher publishes its state to the secondary group of
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replicas. In Section 7.2, wewill discuss the cost/performance
trade offs associated with lazy updates in more detail.

7.1 Performance under Load

We now describe the experiments we carried out to
determine how well our model adapts to meet the client’s
QoS specification under different client-induced workloads.
We present experimental results for the dynamic state using
the sequential consistency guarantee, but we observed
similar behavior for the dynamic state with FIFO order and
for static replicated state as well. Our experimental setup
had 10 server replicas in addition to the sequencer, of which
40 percent were in the primary group and the remainder in
the secondary group. The service time was normally
distributed with a mean of 100 milliseconds and variance
of 50 milliseconds. We present results obtained by varying
two different parameters: 1) the number of clients accessing
a service and 2) the think time between the requests.

In the first case, the client-induced load increases with
the number of clients accessing a service. Each client sent
1,000 alternating update and read requests with a think time
of 1,000 milliseconds between successive requests. One of
the clients specified a staleness threshold of value 2. It
varied its deadline from 100 to 200 milliseconds and
requested that its deadline be met with a probability
� 0.5. All of the remaining clients specified a staleness
threshold of 4, deadline of 200 milliseconds, and requested
that this deadline be met with a probability � 0.1 in each
run. The lazy update interval was 2 seconds. Figs. 2a and 2b
evaluate the performance of the probabilistic scheme using
two, four, and eight clients. Fig. 2a shows the timing failure
probability for each case, as measured at the client that
specified that its probability of timely response should be at
least 0.5, and Fig. 2b shows the average number of replicas
selected by the probabilistic scheme to meet the QoS
specifications of this client in each case. As expected, the
observed timing failure probability increased as the number
of clients requesting service increased, because of the higher
queuing delays. However, we find that for the range of
workloads we considered, the model was able to adapt
appropriately to select a subset of replicas that could meet
the client’s QoS specification.

In the second case, when we varied the client-induced
load by varying the think time, we used a constant number

of clients in our experimental setup, which in our case, was
two. In all of the runs, Client1 specified a staleness
threshold of 4, a deadline of 200 milliseconds, and a
minimum probability of timely response of 0.1. Client2
specified a staleness threshold of 2 and minimum prob-
ability of timely response of 0.9 in all of the runs, but varied
its deadline from 100 to 200 milliseconds. The clients used
different think times between their requests. The induced
load on the servers was higher for smaller think times.
Figs. 3a and 3b present the results, using a lazy update
interval of 2 seconds, for two different values of the think
time: 1,000 milliseconds and 250 milliseconds.

The first observation from Fig. 3a is that the observed
failure probability increases as the think time reduces from
1,000 milliseconds to 250 milliseconds. The reason is that as
the think time reduces from 1,000 milliseconds and
approaches values closer to the mean service time of
100 milliseconds, the number of requests that experience
queuing delays at the servers increases. We also observe
from the graphs in Fig. 3b that as the queuing delay
increases, the probabilistic scheme is sometimes unable to
find enough replicas to meet the deadline with the
probability requested by the client. For instance, when the
think time is 250 milliseconds, the replica subset chosen by
the probabilistic scheme is unable to meet deadline values
� 140 milliseconds with a probability � 0.9, although the
request is sent to all 10 available replicas. In such cases, the
selection handler can inform the client that there are
insufficient resources to satisfy its QoS requirement, so that
the client can choose either to renegotiate its QoS specifica-
tion or to send its requests at a later time when the system is
less loaded. Alternatively, the middleware can choose to
create more replicas to meet the demand, and we describe
how we do that in AQuA later in this section.

7.2 Cost/Performance Trade Offs of Lazy Updates

We now look at the cost/performance trade offs associated
with lazy update propagation. Our earlier results showed
that increasing the frequency of lazy updates resulted in
smaller buffering delays for deferred reads, and thereby
reduced the occurrence of timing failures [15]. However,
there is a cost associated with lazy update propagation. It
arises from timer interrupts, network load, and processing
of the lazy updates, and the cost increases as the frequency
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of lazy update propagation increases. To study how the cost
affects the performance, we repeated our experiments using
a more intense workload than the one we had used in our
earlier studies. In the following experiment, we used four
clients, which is twice the value we used in our earlier
study. The think time is 250 milliseconds, which is one-
fourth the value we used in our earlier study. This resulted
in a client update rate of five updates/second, which is
nearly five times the update rate of our earlier experiments.

Fig. 4a shows the observed timing failure probability as
the lazy update interval increases from 1 second to
6 seconds. We see that as the LUI increases, the failure
probability reduces and stabilizes around 4 seconds, which is
in contrast to the behavior we observed under the less
intense workload in our earlier study. From these results,
we conclude that increasing the lazy update frequency has
the potential to reduce the buffering delay for deferred
reads and thereby improve the responsiveness of the
replicas. However, increasing the frequency beyond a
certain threshold value causes the overheads associated
with the lazy update propagation to become more
dominant, nullifying any performance gains. The threshold
value is specific to each workload. Thus, our experiments
show that the lazy update interval has to be chosen to

balance the cost/performance trade offs, depending on the
update rate of the clients, think time, QoS specification of
the clients, and the primary/secondary group size.

7.3 Impact of the Primary Group Size

We now present experimental results that show how the
size of the primary group impacts the performance for a
given number of server replicas. We used the same
experimental setup with 10 servers and four clients having
a think time of 250 milliseconds, as in the previous
experiment. We used two different values of LUI: 1 second
and 2 seconds. Fig. 4b shows the probability of timing
failures observed by Client1 as the percentage of replicas in
the primary group is varied from 10 percent to 100 percent
(i.e., all 10 replicas are in the primary group). From Fig. 4b,
we see that the observed probability of timing failures
reduces as the size of the primary group increases up to the
point at which 80 percent of the replicas are in the primary
group. However, increasing the size of the primary group
beyond that results in an increase in the number of timing
failures. Those observations can be explained as follows.

As mentioned earlier, the size of the primary group
represents a trade off between two different delay factors:
the buffering delay introduced by the deferred reads and the
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queuing delay caused by the update operations. Increasing
the size of the primary group reduces the buffering delay,
because more replicas have consistent state. On the other
hand, when the arrival rate of updates from the clients is
high, increasing the primary group size causes more
replicas to be involved in update operations. That results
in higher queuing delays, and thereby reduces the avail-
ability of the replicas for the read operations. Applying this
theory to the results in Fig. 4b, we see that the queuing
delay begins to play a more dominant role when more than
80 percent of the replicas are in the primary group.
Although a larger percentage of the replicas have the
appropriate state to meet the client’s staleness threshold in
that region, there are not enough replicas available that can
respond within the client’s deadline. That is the reason for
the increase in timing failures. The above results show that
there is a certain optimal ratio between the sizes of the
primary and secondary groups that can deliver the best
balance between the buffering delay and queuing delay.
That ratio is specific to each workload and can be used to
configure the size of the two groups according to the
workload.

Another observation from Fig. 4b is that the observed
failure probability is lower when the frequency of lazy
updates has the smaller of the two values (i.e., LUI =
2 seconds). The reason is that beyond a certain threshold
frequency, the overhead of the lazy update propagation
becomes dominant. We explained this when we analyzed
the result shown in Fig. 4a, which used 40 percent of
replicas in the primary group. In effect, Fig. 4b shows that
as we increase the size of the primary group, it may be more
beneficial to reduce the frequency of lazy updates, because
a larger fraction of the replicas are consistent.

7.4 Time-Varying Workload

In the experiments we presented so far, the service time was
normally distributed and the mean service time was
stationary. The results we presented showed that the
probabilistic scheme was able to use the performance
history of the replicas effectively and adapt the selection
of replicas to meet the QoS requested by the clients, when
the service time distribution was stationary in the stochastic
sense. We now discuss the experimental evaluation of our
probabilistic framework using a time-varying workload. In
the experiments we present below, we used a workload that
showed heavy-tailed properties. This was motivated by the
evidence that the workloads in many well-known distrib-
uted services exhibit heavy-tailed distribution [10]. A heavy-
tailed distribution is characterized by high variability and is
defined as follows:

Heavy-Tailed Distribution: A random variable X

follows a heavy-tailed distribution with a tail index � if
P ½X > x� � x��; 0 < � < 2. The variance increases as �

decreases. A simple example of a heavy-tailed distribution
is the Pareto distribution.

In a typical client/server application, the service time has
some upper bound. Hence, we model the service time using
a Bounded Pareto distribution [10]. The Bounded Pareto
distribution is characterized by three parameters: �, which
controls the variance and mean of the distribution; k, which
is the lower bound for the samples in the distribution; and
p, which is the upper bound for the samples in the

distribution. The probability density function of the
Bounded Pareto distribution is given by

fðxÞ ¼ � � k�
1� ðk=pÞ� x

���1; k � x � p:

The Bounded Pareto distribution has finite moments, and
therefore does not strictly conform to the above definition of
a heavy-tailed distribution. However, it does display high
variability when k is significantly less than p. In our
experiments, we set k to 50 milliseconds and p to
250 milliseconds. Thus, the service time varied between 50
and 250 milliseconds. To generate a time-varying workload,
we conducted experiments using different values of �. In
general, for a Bounded Pareto distribution, the smaller the
value of �, the higher the mean. We now discuss the results
when we varied � between two values: 0.1 and 1.9. When
� ¼ 0.1, the mean of the samples was 121, and when
� ¼ 1.9, the mean was 84.

As before, we used two clients, Client1 and Client2, each
of which sent 1,000 alternating read and update requests
with a think time of 250 milliseconds. Client1 specified a
staleness threshold of 4, a deadline of 200 milliseconds, and
a probability of timely response of 0.1, while Client2
specified a staleness threshold of 2, varied its deadline
from 100 to 200 milliseconds, and requested a probability of
timely response of 0.9. Forty percent of the replicas were in
the primary group, and the lazy updates were propagated
to the secondary group at intervals of 2 seconds.

We generated the time-varying workload by varying the
service time of a replica between two states, NORMAL and
HIGH. For the workload parameters we used, the HIGH
state corresponds to � ¼ 0.1, where the mean service time
was 121 milliseconds, and the NORMAL state corresponds
to � ¼ 1.9, in which the mean service time was 84 milli-
seconds. For every 100 requests it received, each replica
serviced the first f requests it received in the HIGH state
and then made a transition to the NORMAL state, in which
it serviced the remaining 100� f requests. The replica then
made a transition back to the HIGH state to service the next
f percent of the requests, and repeated the cycle. Thus, the
length of the cycle is 100 requests.

Fig. 5 presents the observed probability of timing failures
and the average number of replicas selected for Client2 for
different values of f , for the sequential consistency case. The
first observation from Fig. 5a is that the probability of timing
failures increased as the percentage of requests processed in
theHIGHstate increased from10percent to 90percent. This is
to be expected as an increasing percentage of requests
experience higher service times with a mean close to
121 milliseconds. The second observation is that when the
value of f increased, the observed failure probability
exceeded the client’s expectation for deadline values that
are close to the mean service time. We considered two
possible explanations for this. Our first hypothesis was that
the model is unable to adapt to a time-varying workload. To
verify the hypothesis, we conducted experiments with an
equivalent, non-time-varyingworkload that used a Bounded
Pareto distribution with the same parameter values as
described above for the time-varying case. In the non-time-
varyingworkload, the transition between theHIGHstate and
NORMAL statewas controlled using a probabilistic measure
as follows. Before servicing a request, each replica used a
uniform random number generator to generate a value p
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between 0 and 1. Like the time-varying case, we studied the
performance using a non-time-varying workload for the
following three cases:

1. When p > 0:9, the replica serviced the request in the
HIGH state; when p � 0:9, it serviced the request in
the NORMAL state. This is equivalent to the time-
varying case in which 10 percent of requests were
serviced in the HIGH state (f ¼ 10).

2. When p > 0:5, the replica serviced the request in the
HIGH state; when p � 0:5, it serviced the request in
the NORMAL state. This is equivalent to the time-
varying case in which 50 percent of requests were
serviced in the HIGH state (f ¼ 50).

3. When p > 0:1, the replica serviced the request in the
HIGH state; when p � 0:1, it serviced the request in
the NORMAL state. This is equivalent to the time-
varying case in which 90 percent of requests were
serviced in the HIGH state (f ¼ 90).

Our opinion was that if the replicas selected by the model
are able to maintain a failure probability within the
acceptable threshold of 0.1 in the case of non-time-varying
workload, then it indicates that our model is unable to cope
with a time-varying workload. However, we observed that
the behavior in the non-time-varying case was nearly
identical to that presented in Fig. 5 for the time-varying
workload.

Having ruled out the first hypothesis, we considered a
second possible explanation, which was that there are not
enough replicas that can deliver a timely response with a
probability � 0.9 for smaller deadline values under a higher
workload. From Fig. 5b, we see that the model tries to meet
strict requirements under higher workload by choosing
more replicas. However, we see that in certain cases, there
are not enough replicas available to deliver a timely and
consistent response with the requested probability. In such
cases, our model saturates the entire pool of replicas.
Therefore, we repeated the experiments in the case of time-
varying workload by reducing the lazy update interval
from 2 seconds to 1 second. That helped reduce the timing
failure probability significantly. These results show that the
model can adapt to a time-varying workload. However,
under stringent demands, there may not be enough replicas
available to meet the demands. In such cases, we can adapt

by propagating the lazy updates more frequently, so that
we have more replicas with up-to-date state. Alternatively,
we can increase the size of the available replica pool by
creating more replicas on demand.

We now briefly describe how our middleware addresses
the problem of creating replicas on demand. In order to
support dynamic replica creation, the middleware needs to
determine when, where, and how many replicas to create.
In our approach, the replica selector in a client’s gateway
requests that the dependability manager, which is one of
the components of the AQuA middleware, create a replica
when the selector is unable to find enough replicas to
provide a timely response with the probability specified by
the client. The new replica is placed on the least loaded
host. The new replica joins the secondary group, but does
not have the most up-to-date state initially. When the lazy
publisher subsequently disseminates its state to the sec-
ondary group, the new replica inherits the correct state and
then begins to service a client’s request.

8 FUTURE EXTENSIONS

Our work motivates some interesting avenues for future
work. First, in our current QoS model, the clients express
their timeliness requirements by specifying their deadlines
and probability of timely response. While it is easy for the
clients to specify the deadline values for their requests, the
way they should choose appropriate probabilities of timely
response may not be very intuitive. It is easy to extend our
framework so that the clients can replace the probability of
timely response with a higher-level specification, such as
the “importance” level, which takes on an integer value
between 0 and 10. Alternatively, the client can specify the
cost it is willing to pay for timely delivery. The middleware
can then internally map these higher-level inputs to an
appropriate probability value and perform adaptive replica
selection as described.

Second, our middleware currently admits all the clients.
If the observed timing failure probability exceeds a client’s
expectations, the middleware informs the client through a
callback. The client can then renegotiate its QoS require-
ments. An alternative approach would be to incorporate
some kind of admission control at the middleware layer, in
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order to determine which clients can be admitted based on
the current availability of the replicas.

Third, we currently associate QoS attributes with read
operations only. Although we allow different ordering
guarantees for write operations, we do not currently
support QoS requirements for write operations that can be
specified at runtime. Our work can be enhanced to
incorporate write-specific QoS attributes, such as the
maximum tolerable delay in propagating an update to a
specified fraction of replicas.

Finally, in a large-scale system, in which the replicas and
clients are more numerous and more widespread, it may
not be feasible to propagate the performance updates to all
of the clients in a timely manner, on account of larger
latencies. That may result in a greater degree of inaccuracy
in the performance histories. Hence, in order to extend our
work to large-scale networks, we need a way to track the
performance histories of the replicas in a scalable manner.
One way to address this issue is by organizing the replicas
into groups, based on their geographic proximity, and
propagating the performance updates to the clients in such
a way that clients that are closer to a replica group can track
the performance information of the replicas in that group
more accurately. At the time of replica selection, the
inaccuracy in the performance histories can be factored in
by associating the response time distribution functions of
the replicas with a weight that is proportional to their
accuracy.

9 CONCLUSIONS

The framework we have developed enables a middleware
to accommodate diverse application requirements by
implementing them as protocols tailored to different
application-specific requirements. The framework allows a
dependable middleware to assign replicated servers to
clients adaptively based on the QoS requirements of the
clients and the current responsiveness and state of the
replicas. It actively monitors the replicas at runtime and
uses the feedback to guide the adaptation. The experimental
results we obtained demonstrate the role of feedback and
the efficacy of analytical models for adaptively sharing the
available resources among the users in a range of different
scenarios. While a static selection scheme or round-robin
scheme would be sufficient when the primary goal is load
balancing and when the clients do not have specific timing
constraints, we believe that a dynamic scheme, like the
probabilistic model-based replica selection scheme we have
developed, would be useful in an environment in which
time-sensitive clients that have different QoS requirements
access servers that display significant variability in their
response times. Our experiments also helped in under-
standing the trade offs between timeliness and consistency
for different consistency semantics, and our results show
that the frequency of lazy updates is an important
parameter that allows us to tune the trade offs between
the desired levels of consistency and timeliness.

Although our probabilistic approach was mainly devel-
oped to adaptively share replicated servers in uncertain
environments, similar techniques can be applied to a range
of problems, including scheduling and other resource

allocation problems. Given the diversity of the require-

ments of client applications when accessing distributed

services, such adaptive frameworks that rely on feedback-

based control are likely to play an increasing role in solving

a range of problems related to building dependable

systems.
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