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1. Executive Summary and Introduction

The goals of the ARMS program were to research and develop state-of-the-art technologies
providing and supporting dynamic Quality of service and resource management, and to apply
them to the challenges of developing modern total ship Naval computing platforms. The program
was organized in two phases, with Phase 1 concentrating on the concepts underlying research in
multi-layered, dynamic resource management and the design and prototyping of an integrated
multi-layer resource management (MLRM) capability. Phase 2 then concentrated on additional
research in areas building upon this MLRM capability, to develop significantly greater
capabilities in the areas of resource and QoS management algorithms and MLRM fault tolerance,
and to transition ARMS technologies to the Navy Program of Record (PoR).

The ARMS program prime contractors worked on different aspects of the ARMS technologies,
with cooperative R&D on some aspects between projects. Each phase of the ARMS program had
Gate Metrics to meet, divided into separate, but sometimes related individual Gate Tests (GTs).
The gate tests were program milestones quantitatively confirming that the ARMS technologies
provide significant improvement over the baseline current state of the practice and were
applicable to the requirements of the PoR. .

In Phase 1, the BBN team was instrumental in the design of the MLRM architecture, adapting it
to the specific context of the Navy PoR, development of an integrated MLRM prototype, and
passing of the performance oriented gate tests to establish operational viability of the concept.
Specifically, in addition to initiating many of the driving architectural concepts, the BBN team
provided application and end-to-end application string management architectural components;
developed a common system service for collecting and disseminating resource status information
system wide; provided a standards based software platform for easily linking and connecting the
various MLRM software components; led system integration, test and evaluation activities; and
introduced and supported a commonly accessible testbed facility to organize and significantly
improve multi-technology developer (TD) integration and testing activities. Together with other
program participants, we were successful in developing a prototype MLRM subsystem sufficient
to demonstrate and measure dynamic resource management principles operating against
simulated PoR workloads, and effectively managing a wide variety of alternative configurations,
managing application overload while maximizing resources applied to high priority tasks, and
recovering from large scale failures. These prototype capabilities were evaluated against pre-
established program metrics defined by the Phase 1 gate tests. They showed sufficient maturity
and continued potential to provide the intended risk reduction attributes for developing similar
operational surface ship capabilities and to warrant an ARMS Phase 2. Our Phase 1 efforts are
discussed in Section 2.
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During Phase 2 we built upon the accomplishments in Phase 1 to extend the technology base
more thoroughly into and across the space of issues underlying multi-layer dynamic resource
management. The BBN team conducted R&D in rapid recovery fault tolerance mechanisms and
mission-based dynamic resource management algorithms; designed, prototyped and integrated a
real-time Fault-Tolerant (FT) functionality applicable to the requirements of an MLRM,
developed and transitioned to the Navy PoR a highly scalable and high performance Node
Failure Detection capability, and developed Dynamic Resource Management designs, algorithms
and methods appropriate for and evaluated against a proxy for the ongoing design of the PoR
system. The BBN team led the efforts to successfully pass Gate Test 3 and contributed
significantly to the successful completion of the Phase 2 Gate Tests 1 and 4. Our Phase 2
activities are discussed in depth in Sections 3, 0 and 5.

The first major part of our effort during ARMS Phase 2 was spent in researching advanced fault
tolerance technologies and enhancing the previously developed non-Fault Tolerant MLRM to
make it fault tolerant. Fault tolerance (FT) is a crucial design consideration for mission-critical
distributed real-time and embedded (DRE) infrastructure and services, such as the MLRM. DRE
systems such as the MLRM combine the real-time characteristics of embedded platforms with
the dynamic characteristics of distributed platforms. However, many of the characteristics of
these systems, such as heterogeneity, strict timing requirements, scalability, and non-client-
server application interactions, prove challenging to implementing a fault-tolerance solution with
the techniques and technology that existed at the beginning of ARMS. In order to make the
MLRM fault tolerant, we had to design and implement several innovative advancements to the
state of the art in fault tolerance. These advancements included (a) enabling the cooperative use
of group and non-group communications, and as a result improving efficiency and scalability; (b)
developing fault tolerance support for CORBA components and their peer-to-peer calling
patterns; (c) developing dynamic deployment of CORBA components; and (d) supporting
multiple languages (C++ and Java); among other advances. We describe our development
process, the fault tolerance advancements that we made, and how this system was used to pass
the ARMS Gate Test 3 in Section 2.
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The second major aspect of our effort in ARMS Phase 2 was the design and development of a
highly scalable, adaptive, multi-layered node failure detection (NFD) capability. By their nature,
mission critical applications often require constant availability. Since no hardware is immune to
failures, either from normal wear and tear or from battle damage, these mission critical
applications need a NFD capability to provide support for activating backups or backup plans in
the case of failures The team at BBN developed a proof-of-concept implementation of a
software-based node-failure detection capability, which was both fault-tolerant and highly
scalable, while at the same time ensuring that the solution maintained a very low-overhead
footprint, in line with the requirements of the PoR. This NFD capability applied and combined
our earlier R&D results from the fault tolerance and multi-layered design aspects of the ARMS
program, against the set of operational requirements from the PoR for it to be a potential
transition candidate. BBN also performed extensive tests of the resulting implementation to
demonstrate that all of the PoR’s requirements were satisfied. The result of this activity was
successful in terms of both advancing the state of the art and in providing the PoR with a drop-in
technology to fill their node-detection technology gap. In Section 4, we discuss the design and
implementation of the NFD system, and present the results of experiments measuring, evaluating
and comparing the R&D version of the NFD against an earlier, non-scaleable, non-fault tolerant
version. We also give an account of interactions with the PoR to transition the NFD into use in
the PoR environment.

The third major aspect of our Phase 2 effort was the development of dynamic resource
management (DRM) algorithms for the Multi-Layer Resource Management system. In the
ARMS/MLRM design, we established that system behavior could be decomposed into various
missions and every mission in the system could be decomposed into possibly repeated sub-
missions called strings. For our dynamic resource management efforts, we developed a set of
utility functions as real-time measures of system performance. We used our utility functions to
guide the design of a hierarchical resource management system based on a string-mission-system
decomposition of system behavior. As we were designing the control system, we developed
Matlab/Simulink simulations of the ARMS/MLRM system to examine the benefits of the various
resource control algorithms in the warfighter domain context. We used measures of effectiveness
taken from the concept of operations for Gate Test 4 (GT4 CONOPS) which was evaluating a
simplified variant of dynamic response. We used these simulations to select a set of algorithms
for managing the control hierarchy. That design was implemented in the GT4 testbed and
extended the simplified GT4 results using a much more detailed and realistic set of system and
workload assumptions. Using our algorithms, we were able to achieve an order of magnitude
improvement in DRM performance as measured by the GT4 warfighter value metrics. The
DRM aspects of Phase 2 efforts are discussed in Section 5.

1.1 Programmatic Data

The ARMS program had 2 phases. The BBN project, “Adaptive Multilevel Middleware for
Object Systems” was one of a number of simultaneous and cooperating projects in the ARMS
program, and spanned the two phases.

Phase 1 of the Adaptive Multilevel Middleware for Object Systems project ran from November
2003 through March 2005. The Principal Investigator at BBN for the ARMS Phase 1 effort was
Dr. Richard Schantz. Vanderbilt University was a subcontractor on phase 1.
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Phase 2 of the Adaptive and Reflective Middleware Systems (ARMS) project ran from June,
2005 through December, 2006. The Principal Investigator for the ARMS project was Dr. Richard
Schantz and Dr. Joseph P. Loyall was a co-P1. Carnegie Mellon and Vanderbilt Universities
were subcontractors on phase 2 of the project.

1.2 Goals of the project

The main goals of this project were to research and develop state-of-the-art technologies in
dynamic Quality of service and resource management, and to apply them to the challenges of
designing, constructing and fielding modern total ship Navy computing platforms. This will
enable the paradigm shift to a total ship computing approach for the computing infrastructure,
which requires a more sophisticated and dynamic level of resource management than anything
available today. It will be common to all shipboard application elements and manage the
collection of resources available on a shared, total ship basis, not just on an individual subsystem
basis, reconfiguring to meet evolving and changing requirements, demands, and priorities. There
are two sub-goals for this project that derive from the main goal:

e An agile, multi-layer approach to managing resources, where the higher layers set the
appropriate policy on a more global (ship) basis, while lower layers monitor and react
rapidly to maintain those policies and maximizing derived computational value by
regulating local subsystem behavior.

¢ An adaptive resource management strategy where changes in mission requirements, load,
or available resources can lead to rapid reconfiguration with appropriate tradeoffs among
the managed properties.

While each of these sub-goals is a significant challenge in its own right, their solution is tightly
intertwined. The capability we envision would become part of the standard off-the-shelf
middleware interposed between the application subsystems and integrated with lower level
common off-the-shelf (COTS) infrastructure elements. It would serve to provision, configure,
monitor and adapt the elements requiring coordinated or controlled actions to achieve the
appropriate end-to-end QoS results over a shared resource base. It would automatically select the
appropriate real-time property management discipline for the current configuration, regulating
other aspects as a side effect. It would scale to the size anticipated for larger versions of PoR
class platforms and have a reaction/reconfiguration cycle time commensurate with the
requirements from the current complement of sensor and weapons platforms anticipated for the
PoR. The middleware resource management algorithms and mechanisms will be parameterized
and easily replaceable, to allow additional strategies to be inserted as the ship’s configuration
and the knowledge of how to construct and run these more dynamic software capabilities evolve
over time.

At a more specific granularity, the research goals of the BBN team’s project in ARMS Phase 1
were:

Use or disclosure of the data contained on this page is subject to the restriction on the title page of this document.

4



BBN TECHNOLOGIES ADAPTIVE MULTILEVEL MIDDLEWARE FOR OBJECT SYSTEMS

e Establish a multi-layer architecture, supporting dynamic resource decision making,
suitable for the PoR total ship computing context. Investigate and instantiate an
application-centric management function with dynamic properties for end-to-end QoS
and resource management. With other ARMS researchers, develop a working prototype
for the dynamic multi-layer resource management capability.

e Investigate and instantiate a multi-layer resource status service for the shipboard
environment that is used to assess current conditions and drive resource reallocation
decisions.

e Provide a standards-based component infrastructure on which to build the dynamic
resource management capability to demonstrate the feasibility of using an open COTS
base capability for shipboard real-time computing.

e Test, measure, evaluate and iterate on the proposed solution to ensure its effectiveness for
timely dynamic resource management under changing conditions and in processing
typical PoR workloads and missions.

Phase 2 of ARMS augmented the research agenda established and accomplished to a concept
enabling degree during phase 1, with the following goals:

e Research new fault tolerance technologies suitable for the dynamic and distributed real-
time characteristics of the shipboard infrastructure environment.

e Develop and demonstrate a fault tolerant MLLRM in keeping within constraints and
requirements from the PoR components of similar functionality.

e Develop advanced resource management strategies and algorithms that incorporate
mission priorities and effective usage of resources.

e Lead efforts to successfully pass the Phase 2 Gate Test 3 program evaluation milestone.

e With other researchers, contribute to successfully pass the Phase 2 Gate Test 1 and 4
program evaluation milestones.

1.3 Comparison with Current Technology

There is no current capability technology available for shipboard dynamic resource management.
Currently available designs and components use static resource management, with any dynamic
decision making being employed in an ad hoc, case at a time manner. Instantiating the dynamic,
multi-layer capability proposed here would effect a revolutionary change in the approach toward
building more responsive systems over shared resources for PoR types of systems on a common
platform. Developing the concepts and designs for such a manageable, shared infrastructure, and
demonstrating the feasibility of constructing it to meet the demanding requirements of a PoR
system, represents the major change from current practice.

1.4 Organization of This Report

This report is organized into five main parts.
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e Section 1 introduces the report with an executive summary. Section 1.1 discusses
programmatic data. The goals of the project are discussed in Section 1.2. A description
of the technological basis upon which the project started is given in Sectionl.3, and the
organization of the report is described in Section 4.

e Section 2 describes the efforts associated with the program during Phase 1. An overview
of the ARMS architecture is given in Section 2.1 Section 2.2 discusses our development
activities. Testing and laboratory support are discussed in Sections 2.3 and 2.4
respectively.

e Section 3 describes our development process and demonstrates how this was used to pass
Gate Test 3. Section 3.2 discusses the Gate Test 3 results. Fault Tolerant research results
are discussed in Section 3.3.

e Section 4 discusses the NFD system. We present the results of various experiments, and
compare results with similar experiments using an earlier, less capable NFD prototype.
We also give an account of transition-related interactions with the PoR in this section.
Section 4 discusses the program’s NFD requirements. Section 4.2 discusses the design
and implementation of the NFD system. Sections 4.3 and 4.4 describe the NFD
technology transition activities. Section 4.5 discusses research into an adaptive NFD
capability.

e Section 5 discusses the DRM aspects of the ARMS Phase 2 effort. In Section 5.1 we
describe the utility functions developed to measure system performance. In Section 5.2
we describe the initial design of a hierarchical resource management system capability.
We refined and tested this initial design with the aid of models of the MLLRM system in
Matlab/Simulink. These efforts are described in Section 5.3. Section 5.4 describes
experiments in using and evaluating our refined DRM technology as part of extending the
ARMS Gate Test 4 dynamic response evaluation effort beyond its simplified basics.

e Section 6 contains chronological reviews of ARMS publications and activities.
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2. ARMS Phase 1 Development

The main goal of ARMS Phase 1 was to design and prototype a runtime Quality of Service
(QoS) management capability appropriate for a common, shared, shipboard network and host
platform. This would enable a paradigm shift to a total ship computing approach for the
computing infrastructure, requiring a more sophisticated level of QoS management than anything
available at the start of the ARMS program. It will be common to all shipboard application
elements and manage the collection of resources available on a shared, total ship basis, not just
on an individual subsystem basis. There were two sub-goals for the Phase 1 effort of this project
derived from the main goal:

1. Developing an agile, multi-layer approach to managing resources, where the higher layers set
the appropriate policy on a more global (ship) basis, while lower layers monitor and react
rapidly to maintain those policies by regulating local subsystem behavior.

2. Developing an adaptive resource management strategy where changes in mission
requirements, load, or available resources would lead to rapid reconfiguration with
appropriate tradeoffs among the managed properties.

While each of these sub-goals was a significant challenge in its own right, their solution was
tightly intertwined for the target shipboard computing environment. The resulting capability
became known as dynamic Multi-Layer Resource Management, or MLRM. MLRM was a
distinct departure from common practice for Navy shipboard systems, which utilized strictly
static resource allocation techniques in a single layer approach. MLRM served as a basis for the
Phase 2 efforts of this project described in Sections 3, 0 and 5.

The capability we envisioned could become part of the standard off-the-shelf middleware
interposed between the application subsystems and integrated with lower level COTS
infrastructure elements. It would serve to provision, configure, monitor and adapt the elements
requiring coordinated or controlled actions to achieve the appropriate end-to-end QoS results
over a shared resource base. It would automatically select the appropriate real-time property
management discipline for the current configuration, regulating other aspects as a side effect. It
would scale to the size anticipated for larger versions of PoR class platforms and have a
reaction/reconfiguration cycle time commensurate with the requirements from the current
complement of sensor and weapons platforms anticipated for the PoR. The middleware resource
management algorithms and mechanisms would be parameterized and easily replaceable, to
allow additional strategies to be inserted as the ship’s configuration and the knowledge of how to
construct and run these more dynamic software capabilities evolved over time.

At a more focused granularity, the research goals for Phase 1 were:

e Establishing a multi-layer architecture, supporting dynamic resource decision making,
suitable for the PoR computing environment.

e Within that architecture, investigating and instantiating an application-centric
management function with dynamic properties for end to end management of application
functionality appropriate for changing shipboard conditions.
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e Investigating and instantiating a multi-layer resource status service for the shipboard
environment which could be used to assess current conditions and drive resource
reallocation decisions.

e Providing a standards-based component infrastructure on which to build the dynamic
resource management capability to demonstrate the feasibility of using an open COTS
base capability for shipboard real-time computing.

o With other ARMS researchers, developing a working prototype for the dynamic multi-
layer resource management capability through integration of the various parts of the
architecture and integration with the proxy PoR system components.

e Testing, measuring, evaluating and iterating on the proposed solution to ensure its
effectiveness for timely dynamic resource management under changing conditions and in
processing typical PoR workloads and missions, and to meet the pre-established ARMS
Phase 1 Gate Test program performance metrics.

There were three gate tests for the ARMS program in Phase 1: 1) enhanced configuration
options, 2) dynamic resource management handling application overload conditions, and 3)
dynamic resource management recovering from resource pool failure.

In carrying out these tasks, the BBN team developed and delivered the following MLRM system
software components:

1. A resource status service (RSS), customized for the low-layer, mid-layer, and top-layer
resource management needed for MLRM.

2. An application string (i.e., collection of integrated applications) manager (ASM)
capability and an application proxy capability for providing integrated end-to
management of applications.

3. A design time and runtime implementation for the CORBA Component Model (CCM)
software engineering paradigm as a COTS base platform for developing the PoR dynamic
resource management capability.

As the project progressed, we added an additional task, in conjunction with integrating and
evaluating the various components of the MLRM capability. This additional task involved
organizing, configuring and supporting the use of the University of Utah Emulab facility as an
integration, testing and benchmarking platform for the various ARMS contractors individually
and collectively to demonstrate the viability and effectiveness of the ARMS MLRM technology.

2.1 Architecture
2.1.1 Multi-Layer Resource Management
2.1.1.1 Overview

For our Phase 1 effort, the primary decomposition of resources into layers was based primarily
on locality. As a design principle, policy directives flow from the upper layers to the lower
layers, while the status of the system flows from the lower layers to the upper layers.
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The lowest layer is the Resource layer. Each individual resource node is characterized by its
particular capabilities and capacities for performing useful work. The entity which performs the
work is referred to as an Application. The applications on a particular resource node are
controlled via a local Node Provisioner.

The next layer is the Pool layer. Pools collect sets of related resources into a single management
domain, overseen by a Pool Manager. Pools are typically defined by locality, both physically and
with respect to network topology, but may also take into account resource types, security
constraints, etc. The Pool Manager uses a Resource Allocator to determine how best to disperse
work across its resource nodes, then works with the Node Provisioners on those nodes to deploy
the associated applications.

The next layer is the String layer. Strings are defined as communicating collections of
applications that are logically organized to accomplish some set of user-level tasks, or end-to-end
capability. Strings will often span pools in order to access specialized resources, balance load,
and provide fault tolerance. In some cases applications may be shared across strings, increasing
the work done by the application due to increased string communication. Since the Pool layer
can only manage the portion of the string within its own pool, the Application String Manager is
assigned the responsibility for managing the behavior of the string overall.

The next layer is the Infrastructure layer. This layer is responsible for assigning resources and
work to pools. Allocation of work to pools is done in terms of aggregate pool resource
availability instead of detailed node level resources, allowing for rapid allocation without the
overhead of fine-grained centralized data collection. The management of this layer is performed
by the Infrastructure Allocator.

Figure 1: Layers

The top layer is the Mission layer, which defines the work to be done and its relative importance
for the current mission. Figure 1 illustrates how these layers conceptually relate to one another,
while Figure 2 indicates how the MLRM layers fit within a common multi-layer system software
organization.
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2.1.1.2 Deployment

A typical mission deployment in this architecture progresses as follows. Some entity in the
Mission layer presents the Infrastructure Allocator with an Application String definition. The
Infrastructure Allocator examines the requirements of the Applications within the String and the
total resources available within each pool and assigns the applications to pools. To maintain
consistency across layers, the communicating groups of applications that are assigned to the
same pool are bound together as smaller strings, or Substrings. The original String and the
Substring/Pool pairs are then passed to the Application String Manager.

]
Infrastructure

1 Node Layer

Figure 2: Components

The Application String Manager hands the various substrings to the Pool Manager in their
respective pools, which consults a Resource Allocator to select nodes and a number of Node
Provisioners to deploy the applications. Application control information is returned to the
Application String Manager, which starts the applications in the proper order and returns string
control information to the Infrastructure Allocator, which in turn returns string status information
to the Mission layer.

2.1.2 Monitoring/Response

To deal with unexpected events during runtime we define three roles:
e Condition Monitor

e Determinator
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e Reaction Coordinator

A Condition Monitor gathers any detailed information required to determine that some specific
condition has occurred, (e.g., a particular value has exceeded a threshold,) and emits Condition
Events. A Determinator takes in one or more Condition Events, determines that a Problem has
occurred, and generates Problem Events. (This role includes any future Root Cause Analysis
functionality.) A Reaction Coordinator accepts Problem Events and is responsible for driving the
system's reaction to the Events.

For both types of Event, we define two classes and four levels. The Event classes are Liveness
and Performance, while the levels are Application, Host, String, and Pool. Any given Event has
both a class and a level, so e.g., a Condition Event indicating a threshold crossing for CPU
consumption by an application is an Application Performance Condition Event. A single
Determinator is responsible for generating Problem Events of a particular class at a particular
level, and a single Reaction Coordinator is responsible for reacting to Events of that class and
level.

To deal with cases where lower level problems should be treated as part of higher level
problems, Determinators may be arranged in a hierarchy, with a given Determinator having zero
or more parents. Before emitting a Problem Event a Determinator passes the proposed Problem
Event to its parent(s), any of which may decide to suppress the problem and optionally use the
information in the production of a higher level Problem Event. The suppression logic may be
arbitrarily complex, so it may be used to perform a full Root Cause Analysis. However, the
amount of delay should generally be kept to a minimum to allow for rapid reaction to lower level
problems. '

Reaction Coordinators will generally attempt to react to the problem by dealing with services at
or below the level of the Problem Event. If the problem cannot be resolved at the given level,
(e.g., due to lack of resources) the Reaction Coordinator can take on the role of a Condition
Monitor and generate a higher level Condition Event for further processing. A Reaction
Coordinator may have several approaches for dealing with a Problem, and some approaches may
not always be desirable, so a Reaction Policy is required to determine the applicability and
relative desirability of each approach.

2.1.3 Application String Management

The basic notion of Application String Management is that resource management should be
focused on maintaining mission capabilities. While the Infrastructure layer has a coarse overall
view, and the Pool and Node layers have detailed local views, these layers can’t ensure that the
needs of the mission are being met when the application string is distributed across pools. In
addition, the sort of dynamic tradeoffs we are exploring need to be made with the knowledge of
their impact on the affected strings and the mission capabilities underlying them.

This leads to two areas where Application String Management is necessary:

e Monitoring applications for proper behavior relative to the strings in which they
participate

o Enforcing string-based policy in MLRM adaptations
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As an example of string-based monitoring, consider strings of applications which do work when
messages pass between them. If some of the messages are periodic, we can expect that the
recipient applications will execute periodically and use a certain amount of CPU resources,
which we can monitor and verify. However, if a recipient application is shared across multiple
strings, the expected number of messages and CPU resources consumed by the application will
increase, so the monitoring needs to be string-aware. Other monitoring, such as end-to-end (or
critical path) latency, is inherently string based and reflects directly on the system’s ability to
meet the requirements of the mission capability.

An MLRM system can encounter a wide variety of undesired behaviors at runtime, including:
¢ overloaded nodes

load imbalance across nodes

e overloaded pools
¢ load imbalance across pools
¢ node failures

e pool failures

When these things occur, MLRM adapts to deal with them. While it may be possible to resolve
such problems by addressing the symptom, it is more appropriate to address their impact on the
affected strings. For example, in the case of an overloaded node, a possible initial adaptation is to
give priority to the more important applications on the node and deprecate the others. However,
the importance of the applications is based on the importance of the strings in which they
participate, and deprecating one application in a string is going to impact the rest of the string, so
such decisions must take into account string-based policies. For example, it may be the case that
a string of lesser importance can’t produce useful results in a deprecated mode, in which case it
would make more sense to shut it down and free all of its resources for more important strings
until sufficient resources are made available.

2.1.3.1 Resource Status Service

Dynamic adaptation to changes in resource availability requires timely, accurate relatively high-
level and to some extent domain-specific data. This data generally has to be synthesized from a
set of simpler data of variable reliability and timeliness. This is what the Resource Status
Service (RSS) provides within the ARMS MLRM architecture.

The core RSS comprises a collection of data definitions, some general and some domain-
specific, which form a natural dependency graph rooted at very basic sensor-like data. These
definitions and their relationships (the meta-data) are currently specified in advance, at compile
time, and are a natural candidate for code-generation from a more abstract data model, though
this kind of linkage hasn't yet been made. The meta-data could be made accessible at runtime as
well, for instance to define new relationships or refine old ones on the fly, if it seems useful to do
SO.
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The current runtime interfaces to the RSS correspond directly to inputs and outputs represented
by the data graph. Inputs supply values for root nodes of the graph and take the form of simple
tagged data. These can arrive and be processed at a very high frequency. Outputs, either in the
form of an in-band response to a query or an out-of-band callback to a subscriber, provide high-
level data values to the ultimate consumers. The transformation chains between lower and
higher level data values can either happen on-demand or in the background.

The efficiency requirements of the RSS make it more useful as a local service (i.e., as part of a
running application or as a standalone application per host) than as a single global, shared
service. At the same time, experiments have shown that a collection of RSS instances in a
distributed system can share data with one another without excess overhead by using the idea of
“gossip” — extra data piggybacked on the messages that are already flowing between the
distributed system's components anyway. The result of using gossip in this way is a highly
extensible distributed resource status service at a comparatively low cost.

2.2 Implementation Development Activities
2.2.1 Overview

The implementation of the MLRM is oriented towards the CORBA Component Model. The
various MLRM components are linked together using facets and receptacles for the primary
operations, with event ports used to communicate system status. The components are deployed in
hierarchical groups based on locality. A “Global” (or Coordinator) group includes the
Infrastructure Allocator, the Security Provisioner, and the Application String Manager Global
components. A “per-Pool” group includes the Application String Manager Pool Agent, Pool
Manager, and Resource Allocator components. A “per-Node” group includes the Node
Provisioner component. The Global components are placed in one assembly and the per-Pool and
per-Node components in another, with additional tools connecting components from the two
assemblies.

Because they are based on existing tools, the Resource Status Service and Bandwidth Broker
components don’t follow the CORBA Component Model, instead using a CORBA Naming
Service to publish their services.

The source code for all of the components, shared libraries, and middleware was stored in a
common CVS repository to track revisions and facilitate integration.

Development was directed towards satisfying the following ARMS Phase 1 Gate Tests:
. GM1 — Multiple Configurations
e GM2 - Increased Capability
e GM3 — Fault Tolerance

Use or disclosure of the data contained on this page is subject to the restriction on the title page of this document.

13




BBN TECHNOLOGIES ADAPTIVE MULTILEVEL MIDDLEWARE FOR OBJECT SYSTEMS

GM1 was met by demonstrating basic dynamic deployment capabilities. GM2 was met by
detecting the increased resource demands imposed by increasing capability and adjusting less
important activities to compensate in order to stabilize the system. GM3 was met by
automatically redeploying application strings in a scenario in which static failover mechanisms
were unable to operate.

2.2.2 Application String Manager (ASM) Functionality
2.2.2.1 ASM Capabilities

The Application String Manager software had the following capabilities (and the primary Gate
Tests which required them) as of the end of Phase 1:

e Deploy Applications Strings (GM1)

e Start Applications within an Application String in Specified Startup Order (GM1)
e Deploy Application Strings with Substrings (GM2)

e Deploy Application Strings with Substrings to Multiple Pools (GM2)

e Configure Network Bandwidth between Pools (GM2)

e Deploy Substrings within Pools (GM2)

e Configure Condition Monitors on Shared Applications (GM2)

e React to Application Overloads by Deprecating Competing Strings of Lesser Importance
(GM2)

e Deploy Application Strings with Replica Applications (GM3)
e Configure Condition Monitors on Pools (GM3)

e Detect Pool Liveness Problems (GM3)

e Redeploy Application Strings to deal with Pool Failures (GM3)

2.2.2.2 ASM Interactions
The Application String Manager interacts with the following MLRM components:

Component Gets from ASM Sends to ASM

Infrastructure | String Deployment Status, Pool | String Deployment and
Allocator Failure Problem Events Redeployment Directives

Substring Deployment Status
Events, Application Proxy
References

Substring Deployment and

Pool Manager : . L
& Reconfiguration Directives
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Component Gets from ASM Sends to ASM
Bandwidth Inter-Pool Network Reservation .
Broker Requests Network QoS Settings

Application Start, Monitor, and

Node Provisioner o
Pro Network QoS Directives

Application Load, Host Liveness,
and Pool Liveness Data

Resource Status

] Subscription Requests
Service p q

Security MLRM Component
Provisioner Registration

2.2.2.3 ASM Implementation
The Application String Manager (ASM) is implemented in C++ as two CIAO components:

e ASM Global (ASM-G)
e ASM Pool Agent (ASM-PA)

The former is responsible for managing entire strings, while the latter is responsible for
managing the portion that resides within a single pool.

The ASM components act as normal CIAO components with a few caveats:

1. Anticipating that pools will need to come and go at run time, and given that the current
CIAO tools didn't allow for dynamic changes to assemblies at the time, we don't use the
standard assembly tools to connect ASM-G to the various ASM-PAs. Instead they are
connected using the ASM_connect utility, which takes object references for the ASM-
G and an ASM-PA with its associated pool-id and makes the appropriate calls to connect
the two. (The current state of CIAO would allow us to use more standard CCM interfaces
(i.e., multiplex receptacles); we just haven't made the change yet.)

2. Object references for some non-CCM CORBA services, namely the Bandwidth Broker
and Resource Status Service are accessed through a name service instead of through a
receptacle.

3. ASM relies on a third party to initialize the logdcplus library before we are started, so a
LoggingInit component needs to be included in any <processcollocation> which
contains an ASM component.

The source code for the ASM interfaces and implementation reside in the ARMS CVS repository
under:

DRM/DRM_Services/ApplicationStringManager/Simple-BBN

The IDL which defines the ASM interfaces resides in:

e papplicationStringManagerGlobal.idl
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e ApplicationStringManagerPoolAgent.idl
e ApplicationStringInstanceManagement.idl
e ApplicationSubstringInstanceManagement.idl

e StringOverloadDeterminator.idl

The first two define the component interfaces. The second two define the facet interfaces used by
the components. The last one is not used; it is provided only as a possible future component
interface for a StringOverloadDeterminator component separate from ASM-G.

2.2.3 Resource Status Service (RSS) Functionality
2.2.3.1 RSS Capabilities

The Resource Status Service provides a common service for acquiring, providing and
aggregating status information pertinent to monitoring and controlling applications and the
system itself, including individual components. It serves as the common sensor component for
MLRM, by providing the common framework for acquiring status data from particular resources
(including hardware resources, system (software) resources, and application level resources), and
for providing various clients with customizable and periodic “reports” updating current status.
Included in the status information is “heartbeat” collection from the active software elements of
the system (and applications) as a proxy or indication that a component is still running and
operating correctly. Clients subscribe to various status data feeds from the common RSS to get
periodic updates based on various events, and use this information to make evaluation and
reconfiguration decisions. The frequency of collecting and reporting status is configurable. In
addition, capabilities are provided for aggregating collections of data (often from lower level
resources) and providing a higher level integrated or summary view across a variety of resources
types. The RSS service tries to efficiently serve many clients, often accessing common subsets of
data, and at the same time try to optimize the method and form of delivery to satisfy real-time
delivery requirements. To do this, the RSS uses a distributed implementation, with elements of
the RSS cooperating with each other to provide common access to dispersed data, and to
expedite collection and delivery of remote data to dispersed clients. The RSS has also been used
as a shared transaction status repository for resource management allocations performed in part
by multiple resource managers.

2.2.3.2 RSS Interactions

The RSS itself does not supply any data. It depends on other tools, software sensors, to do that.
These sensors have to exist and be running wherever needed, e.g., on hosts if they're gathering
host resource data (CPU usage, load average etc) or on routers if they're gathering network
resource data (bandwidth etc.). Existing sensor tools can be linked into the RSS via CORBA.
But for some domains, new sensors will have to be written and deployed.

2.2.3.3 RSS Implementation
The RSS is currently implemented as CORBA-accessible Java code.
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2.3 Laboratory Support

The target integration, testing and experimentation environment for ARMS Phase 1 was the
Operational Experimentation Platform provider’s (OEP, which was the Raytheon Company)
ARMS Integration Facility (AIF). However, the AIF had a number of problems which limited its
usefulness:

Initially there was no remote access, and remote access remained limited and difficult for
some non-OEP personnel.

Each machine was configured differently, making it difficult to run tests.
The machines were also used for development, which conflicted with testing.

There was only a single set of machines, limiting the lab to a single experiment or test at
a time and creating scheduling issues.

To provide a stable environment for initial integration and testing for all Technology Developers
(TDs), BBN took on the responsibility of setting up and maintaining an ARMS project within the
University of Utah’s Emulab' system for dynamically allocating and configuring collections of
integrated nodes into a testbed. This involved:

Configuring host node operating system images
Configuring network node operating system images
Setting up builds of the ARMS middleware

Setting up builds of the OEP and MLRM software
Setting up MLRM disk images

Producing a prototype network configuration (experiment)

Uhitp://www.emulab.net/
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The use of the Emulab was a great success, with the majority of the TDs using it at one point or
another, and a number using it on a regular basis. Without the initial integration and testing in the
Emulab the integration, testing, and experimentation in the AIF would have gone much less
smoothly, and the program would have been at a much greater risk.

The only significant issue we faced with the Emulab was that of resource contention. Since the
Emulab is shared among a number of different projects, during the busier periods there were
occasionally an insufficient number of resources to run ARMS experiments. This could be easily
remedied by funding additional Emulab resources or by setting up a separate Emulab. [This was
in fact done in ARMS Phase 2.]

2.4 Integration and Testing

Given that the Application String Manager is at the center of the collection of MLRM
components, it was natural for BBN to do much of the initial integration. The integration
generally involved the following steps:

e Building the middleware

¢ Building the OEP software and addressing build problems

¢ Building the MLRM software and addressing build problems

e Creating CIAO assembly descriptor files for the MLRM components

e Creating startup scripts to deploy the middleware, OEP, and MLRM components
» Running the startup scripts and addressing startup problems

e Deploying application strings using MLRM and addressing execution problems
¢ Running additional tests of advanced features

This integration was generally performed in the Emulab since the environment was already set
up and generally available.

BBN was also heavily involved in the final integration and testing in the AIF. For each Gate Test
we made at least one multi-day trip to Portsmouth, RI, to work with other TDs and the OEP to
get the software to where it could run experiments to demonstrate Gate Test functionality. We
also provided regular support to efforts in the AIF remotely.
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2.5 Conclusion

Phase 1 of the ARMS program was focused on deriving a common architecture for dynamic
multi-layer resource management consistent with the configurations and applications emerging
from the next generation Navy surface ship domain, and having the various TDs, with various
spheres of expertise, contribute components to instantiate that architecture and design sufficient
to have it undergo test and evaluation against program metrics. The BBN team’s specific focus
beside initiating many of the driving architectural concepts was in providing application and end-
to-end application string management components, developing a system service for collecting
and disseminating resource status information system wide, providing a standards based software
platform for easily linking and connecting the various MLRM software components, leading
system integration, test and evaluation activities, and introducing and supporting a commonly
accessible testbed facility to significantly improve multi-TD integration and testing activities.

Together with other program participants, we were successful in developing a prototype MLRM
subsystem sufficient to demonstrate and measure dynamic resource management operating
against simulated PoR workloads, and effectively managing a wide variety of alternative
configurations, managing application overload to maximize resources applied to high priority
tasks, and recovering from large scale failure. These prototype capabilities were evaluated
against pre-established program metrics. They showed sufficient maturity and continued
potential to provide the intended risk reduction attributes for developing similar operational
surface ship capabilities, to warrant an ARMS Phase 2, which is described in the following
sections.
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3. Fault Tolerance Research, Experimentation, and Evaluation
3.1 Introduction to ARMS Fault Tolerance Activities and Results

Fault tolerance (FT) is a crucial design consideration for mission-critical distributed real-time
and embedded (DRE) systems, such as the MLRM. These systems combine the real-time
characteristics of embedded platforms with the dynamic characteristics of distributed platforms.
However, many of the characteristics of these systems, such as heterogeneity, strict timing
requirements, scalability, and non client-server application interactions, prove challenging to
implementing a fault-tolerance solution with the techniques and technology that existed at the
beginning of ARMS. In order to make the MLRM fault tolerant, we had to design and implement
several innovative advancements to the state of the art in fault tolerance. These advancements
included enabling the cooperative use of group and non-group communications, improving
efficiency and scalability; developing fault tolerance support for CORBA components and their
peer-to-peer calling patterns; developing dynamic deployment of CORBA components;
supporting multiple languages (C++ and Java); and supporting multiple replication schemes;
among other advances. Section 3.2 describes our success in meeting these challenges and
fulfilling the ARMS Gate Test 3 requirements, which established an ARMS program wide goal
of creating a high performance fault tolerant MLRM that exceeded the POR RM recovery
requirements. Section 3.3 describes the R&D that enabled this success in detail.

3.2 Gate Test 3 — Fault Tolerance of Dynamic Resource Manager

In Phase I of ARMS, we created a prototype implementation of a Multi-Layer Resource
Management (MLRM) framework. In Phase II we made the MLRM framework fault-tolerant
through a combination of research and implementation of dynamic, real-time, fault tolerance. We
were guided in this undertaking by the ARMS Gate Test 3 requirements and ran a number of
experiments and evaluations, described in this section. The experiments and evaluations enabled
us to quantify our claims that the MLRM is fault-tolerant under a number of scenarios, some
above and beyond the capabilities of the PoR resource manager requirements.

3.2.1 Introduction and Summary of Results

Gate Test 3 was officially defined on June 1, 2005, as one of four ARMS Gate Tests in the
Adaptive and Reflective Middleware Systems Phase Il Experimentation Plan. The purpose of this
Gate Test was to show that we could make the MLRM system developed in ARMS Phase I fault
tolerant (in a manner similar to the requirements of the PoR), meet the PoR's recovery time
requirement, and handle faults (cascading failures) beyond those currently required by the PoR.

In this section, we describe the final results of the Gate Test 3 experiments, supplying values for
the metrics in the Gate Test document, as well as several results that go above and beyond the
descriptions in the Phase I Experimentation Plan document. Incremental steps and intermediate
results can be found in earlier reports on the GateTest3 Wiki page,
https://repo.isis.vanderbilt.edu/twiki/bin/view/ARMS/GateTest3.
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Gate Test 3 was divided into a Scenario 3A, whose purpose was to show that we could meet or
exceed the recovery scope and time requirements of the PoR, and a Scenario 3B, whose purpose
was to show that we could exceed the failure condition recovery requirements of the PoR.

3.2.1.1 Summary of Gate Test 3 Results

This section shows that we
o Satisfy the letter of the law Gate Test 3A requirements;

o Significantly exceed the Gate Test 3A requirements using ARMS fault tolerant research
technology applied to MLRM functionality comparable to the PoR Ensemble
Infrastructure Resource Manager (mIRM) functionality;

e Sarisfy Gate Test 3B requirements to survive cascading failures not required by the PoR;
and

e Exceed the letter of the law of Gate Test 3 with extra capabilities including recovering the
fault tolerance level after failure, recovery using hardware similar to the PoR (ISISlab
where we obtained 16x faster recovery than the PoR's recovery requirement), and
significantly exceeding the Gate Test recovery requirements by optimizing our open-
source commercial database elements.

3.2.1.2 Organization of This Section

In Section 3.2.2, we start by revisiting the Gate Test 3 official definition, which was defined as
an Overview and as an Elaborated Scenario for Gate Tests 3A and 3B, and provide a point-by-
point description of how the Gate Test was conducted to meet the requirements of the definition.
This section also provides the metrics that the Gate Test 3 definition specifies must be collected
and the results we collected. This section is purposefully written to address point-by-point the
letter of the law definition of the Gate Test and retains the redundancy in the originally definition
document. The casual reader might find this section repetitive and might want to read only the
Overview sections, Sections 3.2.2.1 and 3.2.2.2, and then skip ahead to Section 3.2.3.

Section 3.2.3 provides a more detailed set of results and analysis of these results. Section 3.2.4
provides a description and results of the extras we did for Gate Test 3, i.e., things we did above
and beyond the letter of the law of the Gate Test definition. In this section, we describe three of
them: replica reconstitution to get back to an acceptable level of fault tolerance after a failure;
running the experiments on the ISISlab, which is more representative of the PoR's environment;
and tuning the Bandwidth Broker database recovery to get higher performance from the
commercial database used by the Bandwidth Broker.

Section 3.2.5 describes the results of rerunning the Gate Test 3A and 3B experiments on the
ISISlab, with the tuned commercial database, and analyzes the results.

Finally in Section 3.2.6, we draw some conclusions for the Gate Test 3 experiments.
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3.2.2 Definition of Gate Test 3 and Point by Point Results

| The official definition of Gate Test 3 from the Adaptive and Reflective Middleware Systems
Phase II Experimentation Plan includes both an Overview and an Elaborated Scenario each for
Gate Test 3A and 3B. In the following sections, we repeat each of these verbatim from that
document and provide a point-by-point description in italics of how we executed and passed the
Gate Test.

Gate Test 3A was defined to show that we could provide fault tolerance for the ARMS MLRM
that meets the PoR's requirements for fault tolerance of their mIRM. Specifically it states that we
could make the infrastructure elements of MLRM recover from a single pool failure within the
time requirement defined by the PoR. The metrics for Gate Test 3A ask (1) can MLRM recover
from a pool failure and (2) how fast compared to the PoR's mIRM recovery requirement?

Gate Test 3B was defined to exhibit that we could make the ARMS MLRM recover from faults
beyond those required by the PoR, specifically that we could survive the failure of two MLRM
instances (the operational one and a partially recovered replacement) in rapid succession. The
metrics for Gate Test 3B ask (1) can MLRM recover from two cascading pool failures and (2)
within what time (for information only, since it has no comparable baseline requirement).

3.2.2.1 Gate Test 3A Overview and Point by Point Results

Test Scenario 3A (MLRM meets Program needs) - Overview (from Adaptive and Reflective
Middleware Systems Phase Il Experimentation Plan, 1 June 2005)

We will replicate MLRM across multiple data centers in a fashion similar to that for mIRM
(the ensemble Infrastructure Resource Manager in the baseline PoR design) in the
Release 3 System Acceptance Test.

We will fail one of the data centers (in the fashion of one of the major Release 3 System
Acceptance Test failure scenarios).

Observe whether the MLRM recovers within the time required of the mIRM.

Test Scenario 3A Overview Point by Point Results

1. To complete this gate test we replicated the global MLRM management components: the
IA/ASM-Global (IA/ASM-G), the bandwidth broker (BB), and the RSS. The IA/ASM-
Global was actively replicated while the BB and RSS were passively replicated. The BB,
in addition to ARMS FT technology, makes use of an open-source commercial database
(MySQL). We engineered its cluster feature to satisfy our recovery semantics.
Specifically, any cluster partition could take over after a failure.

2. In order to simulate a catastrophic pool failure, as when battle damage destroys the
whole pool, we stopped network traffic at the router passing traffic to and from the pool.
This instantaneously cut off the pools from one another without giving the OS or network
stack any opportunity to communicate failure to the other side of any network
connections.
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3. The MLRM recovered, which we showed by successfully redeploying the application
strings.

Metrics: (from Adaptive and Reflective Middleware Systems Phase Il Experimentation Plan, 1
June 2005)

1. Does the MLRM recover its functionality? (Boolean)

2. Does recovery time of MLRM meet or exceed the Flight 1 recovery time requirement for
the TSCE-I's Resource Manager for the Release 3 System Acceptance Test?

Test Scenario 3A Overview Metrics Point by Point Results

1. Yes (True).

2. Yes. ARMS MLRM management functionality recovered in an average of 60 ms (worst
case 90 ms) and Bandwidth Broker Database functionality recovered in an average of
212 ms (worst case 283 ms). Both numbers are under the PoR recovery requirement time.
In the case of the elements using ARMS technology (the management functionality),
recovery is significantly under the PoR recovery requirement time. Specific numbers are
shown below in Section 3.2.3.2.

3.2.2.2 Gate Test 3B Overview and Point by Point Results

Test Scenario 3B (MLRM provides additional capabilities) - Overview (from Adaptive and
Reflective Middleware Systems Phase Il Experimentation Plan, 1 June 2005)

1. We will replicate MLRM across multiple data centers in a fashion similar to that for
mIRM (the ensemble Infrastructure Resource Manager) in the Release 3 System
Acceptance Test.

2. We will fail one of the data centers followed by an additional failure in an MLRM
component in a surviving data center.

3. Observe whether the MLRM recovers.

Test Scenario 3B Overview Point by Point Results

1. The MLRM was replicated in the same manner as in 3A, with one additional set of
replicas on the third pool.

2. The pool failures were carried out in the same manner as 3A. In order to simulate a
cascading failure, rather than just two failures one right after another or two failures at
the same time, we placed a delay between shutting down the two pools and made sure the
failures were cascading by post-processing the results and throwing out any runs which
did not contain a cascading failure.
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3. The MLRM recovered, which we showed by successfully redeploying the application
strings.

Metrics: (from Adaptive and Reflective Middleware Systems Phase 1l Experimentation Plan, 1
June 2005)

1. Does the MLRM recover its functionality? (Boolean)
2. Time of recovery of MLRM functionality.

Test Scenario 3B Overview Metrics Point by Point Results

1. Yes (True).

2. ARMS MLRM management functionality recovered in an average of 47 ms (worst case
51 ms) and Bandwidth Broker Database functionality recovered in an average of 509 ms
(worst case 580 ms). Specific numbers are shown in Section 3.2.3.3.

More detailed analysis of the Gate Test 3A and 3B results is provided in Sections
3.2.2.3 and 3.2.2.4. A comparison of the results of 3A and 3B is in Section 3.2.3.4.

3.2.2.3 Elaborated Scenario 3A and Point by Point Results

Elaborated Scenario 3A (from Adaptive and Reflective Middleware Systems Phase 11
Experimentation Plan, 1 June 2005)

1. We will replicate MLLRM across multiple data centers in a fashion similar to that for
mIRM (the ensemble Infrastructure Resource Manager for the target program) in the
Release 3 System Acceptance Test (The target program mIRM uses a Master-Slave
replication strategy).

Two pools of 3 processors each representing 2 data centers will be operational.
Deploy the master of Infrastructure Allocator (IA), Application String Manager
(ASM) Global, and Bandwidth Broker on a single machine, with replicas (slaves)

on a different machine in a different pool.

10 application strings representing a mixture of mission critical (7) and mission
support (3) functions have been deployed (this represents a realistic MLRM state)

2. We will fail one of the data centers (in the fashion of one of the major Release 3 System
Acceptance Test failure scenarios).

1. The resource pool containing the master MLRM elements is failed
catastrophically
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2. The Pool Failure Condition Monitor will detect the pool failure and generate a
pool failure event

3. Observe whether the MLRM recovers within the time required of the mIRM.

1. Pool Failure Response Coordinator receives the pool failure event and directs
slave instances of IA, ASM, and Bandwidth Broker to become masters

2. IA, ASM, and Bandwidth Broker slave elements become promoted to master
elements

Elaborated Scenario 3A Point by Point Results

1. We replicated the MLRM using active replication for the IA/ASM-G and passive for the
RSS and BB.

1. We used two pools with three hosts in each pool
2. We deployed replicas of the MLRM components in each pool. The primary
passive replicas were placed on the failed pool so that there would be a fail-over
event when a failure occurred. As there is no primary/backup distinction among
active replicas there was no need to start them in a particular order.
3. We deployed 10 strings as described above.
2. Asdescribed in Section 3.2.2.1, we failed the pool by turning off routing for the pool.
1. The routing failure is a catastrophic failure; the whole pool dies in an instant.
2. The MLRM did report a pool failure event.
3. The time of recovery is reported above in Section 3.2.2.1 and in depth in Section 3.2.3.
1. Our replication middleware noted the failure and made the backup passive
replicas primaries. The actively replicated IA/ASM-G noted that the lost pool's

replica was gone.

Data to Be Measured / Logged (from Adaptive and Reflective Middleware Systems Phase I1
Experimentation Plan, 1 June 2005)

Recovery start time: When the Pool Failure Response Coordinator receives the pool failure
event
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Recovery end time: When all of the IA, ASM Global, and Bandwidth Broker slave elements
have become masters

Elaborated Scenario 3A Data to Be Measured / Logged Point by Point Results

1. To measure the worst-case recovery times, we noted all the times that MLRM elements in
the remaining pool noticed the failure and logged the earliest value as the recovery start
time (receipt of the pool failure event).

2. For both active and passive components we log the recovery end time as the time they are
ready to process new messages. For active replicas, this is the time at which the group
communication system (GCS) is able to process messages from MLRM elements. For
passive replicas, we logged the time at which the GCS is able to process messages plus
the time it took to promote a backup to primary. For the BB DB we measured the time
from detection until a query was successfully completed.

Approach to Compute Test Metrics (from Adaptive and Reflective Middleware Systems Phase
Il Experimentation Plan, 1 June 2005)

1. Metric 1 (Boolean)

1. True if all of IA, ASM Global, and Bandwidth Broker have master elements at the
end of the experiment, False otherwise

2. Metric 2 (Real) Time of recovery
1. Computed by subtracting the Recovery start time from the Recovery end time

2. Compare to Flight 1 recovery time requirement for the TSCE-I's Resource
Manager for the Release 3 System Acceptance Test

Elaborated Scenario 3A Test Metrics Point by Point Results
1. True.

2. ARMS MLRM management functionality recovered in an average of 60 ms (worst case
90 ms) and Bandwidth Broker Database functionality recovered in an average of 212 ms
(worst case 283 ms). Both numbers are under the PoR recovery requirement time. In the
case of the elements using ARMS technology (the management functionality), recovery is
significantly under the PoR recovery requirement time. Specific numbers are shown in
Section 3.2.3.2.

Envisioned Test-bed Environment (from Adaptive and Reflective Middleware Systems Phase II
Experimentation Plan, 1 June 2005)
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1. 6 nodes, 2 pools, in Emulab environment with
1. 10 application strings, 15 apps per application string

Elaborated Scenario 3A Test-bed Environment Point by Point Results

1. This was done exactly as listed.
1. We used 10 application strings for 15 apps each as noted above.

3.2.2.4 Elaborated Scenario 3B and Point by Point Results

Elaborated Scenario 3B (from Adaptive and Reflective Middleware Systems Phase I1
Experimentation Plan, 1 June 2005)

1. We will replicate MLRM across multiple data centers in a fashion similar to that for
mIRM (the ensemble Infrastructure Resource Manager) in the Release 3 System
Acceptance Test.

1. 3 pools of 3 processors each representing 3 data centers

2. Deploy the master of IA, ASM Global, and Bandwidth Broker on a single
machine, with replicas (slaves) on different machines in each pool

3. 10 application strings representing a mixture of mission critical (7) and mission
support (3) functions have been deployed (this represents a realistic MLRM state)

2. We will fail one of the data centers followed by a second failure.

1. The resource pool containing the master MLRM elements is failed
catastrophically

2. The Pool Failure Condition Monitor will detect the pool failure and generate a
pool failure event

3. While the first set of slaves is in the process of recovering to master, we introduce
an additional failure in the recovering MLRM slaves

4. The Recovery Failure Condition Monitor will detect the second failure and
generate a failure event

3. Observe whether the MLLRM recovers.

1. Recovery Failure Response Coordinator receives the failure event and directs
tertiary slave instances of IA, ASM, and Bandwidth Broker to become masters
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2. IA, ASM, and Bandwidth Broker slave elements become promoted to master
elements

Elaborated Scenario 3B Point by Point Results

1. We replicated MLRM using active replication for the IA/ASM-G and passive replication
for the RSS and BB.

1. We used three pools with three hosts in each pool as noted.

2. We deployed replicas of the MLRM components in each pool. The primary
passive replicas were placed on the first pool to fail so that there would be a fail-
over event when a failure occurred. As there is no primary/backup distinction
among active replicas there was no need to start them in a particular order.

3. We deployed 10 strings as described above.

2. As described above we failed the pool by turning off routing for one pool followed by
failing the next pool after a small wait (130ms). We looked at the logs and if the failures
were reported as two independent failures we threw those logs away. We saved values
that had a single failure of two pools knowing that in this case it was a cascading failure
due to the wait between failures. The wait value was experimentally determined to give a
good chance of having the second failure occur just as the first failure was about to be
reported and detected.

1. The routing failures are catastrophic failures.
2. The MLRM did report a pool failure event.
3. Timing values can be found in Section 3.2.3.3.

1. Our replication middleware noted the failure and made the backup passive
replicas primaries. The actively replicated IA/ASM-G noted that the lost pools’
replicas were gone.

Data to Be Measured / Logged (from Adaptive and Reflective Middleware Systems Phase 11
Experimentation Plan, 1 June 2005)

1. Recovery start time: When the Pool Failure Response Coordinator receives the pool
failure event

2. Recovery end time: When all of the IA, ASM Global, and Bandwidth Broker slave
elements have become masters

Elaborated Scenario 3B Data to Be Measured / Logged Point by Point Results
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1. To show the worst-case recovery times, we noted all the times that MLRM elements in the
remaining pool noticed the second failure and logged the earliest value as the recovery
start time (receipt of the pool failure event).

2. For both active and passive components we log the recovery end time as the time they are
ready to process new messages. For active replicas, this is the time at which the group
communication system (GCS) is able to process messages from MLRM elements. For
passive replicas, we logged the time at which the GCS is able to process messages plus
the time it took to promote a backup to primary. For the BB DB we measured the time
from detection until a query was successfully completed.

Approach to Compute Test Metrics (from Adaptive and Reflective Middleware Systems Phase
II Experimentation Plan, 1 June 2005)

1. Metric 1 (Boolean)

1. True if all of IA, ASM Global, and Bandwidth Broker have master elements at the
end of the experiment, False otherwise

2. Metric 2 (Real) Time of recovery
1. Computed by subtracting the Recovery start time from the Recovery end time

Elaborated Scenario 3B Test Metrics Point by Point Results
1. True.

2. ARMS MLRM management functionality recovered in an average of 47 ms (worst case
51 ms) and Bandwidth Broker Database functionality recovered in an average of 509 ms
(worst case 580 ms). Specific numbers are shown below.

Envisioned Test-bed Environment (from Adaptive and Reflective Middleware Systems Phase I1
Experimentation Plan, 1 June 2005)

e 9nodes, 3 pools, in Emulab environment with 10 application strings, 15 apps per
application string

Elaborated Scenario 3B Test-bed Environment Point by Point Results
o This was done exactly as listed. We used 10 app strings for 15 apps each as noted above.

More detailed analysis of the Gate Test 3A and 3B results is provided in Section 3.2.3. A
comparison of the results of 3A and 3B is in Section 3.2.3.4.

3.2.3 Detailed Gate Test 3 Results and Analysis

This section presents more detailed results for Gate Test 3 and analysis of the results.
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3.2.3.1 Explanation of the Two Different Recovery Measurements

In the results presented above in Section 3.2.2 and in this Section, we present the results
separately for:

e The MLRM Management elements which includes the top-level MLRM elements,
namely the Infrastructure Allocator (IA), Application String Manager-Global (ASM-G),
Bandwidth Broker (BB), and the Resource Status Service (RSS)

e The MLRM Management elements plus the Bandwidth Broker Database (BB DB), an
open-source commercial database (MySQL).

We treat the BB DB recovery time separately from the management recovery time for the
following reasons:

1. The MLRM is operational and able to deploy application strings without the BB present,
which means that MLLRM critical functionality can be considered recovered with or
without the BB DB recovered.

2. The PoR mIRM does not have a COTS DB component. The “Management” numbers
provide a better apples-to-apples comparison to the recovery requirement time.

3. The BB DB does not employ ARMS FT technology for its fault tolerance, instead
employing MySQL's fault tolerance features, which were not designed for real-time
behavior. In the Icing section, we show the results of additional efforts to tune the BB DB
recovery time, which resulting in vastly improved failover times.

The first measurement (MLRM Management recovery time) illustrates better the results of
ARMS Gate Test 3 fault tolerance research and development. The second number also includes
an element of engineering an open-source commercial product.

3.2.3.2 Detailed Gate Test 3A Results and Analysis

Results from our 3A runs on emulab can be seen in Table 1 and Figure 3. MLRM management
elements, replicated using ARMS active and passive fault tolerance technology, recovered their
functionality on average within 60.42 ms and in worst case in 89.50 ms. This is well below (less
than one third) the recovery requirement that we were targeting.

Including the Bandwidth Broker database, a commercial database (MySQL) replicated using
MySQL's clustering features (with changes to satisfy our recovery semantics), MLRM with the
BB DB recovered on average in 212.48 ms and in worst case within 283.20 ms. This is also
below the PoR's recovery requirement.
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Table 1: Results from Gate Test 3A runs on Emulab

- MLRM - MLRM mcludmg BB
| Management || DB :
“Average ree()'vei‘yl'tinjel(ms) 60.42 212 48
Minimum recovery tlme (ms) 43.90 150.10
Maximum recovery time (ms) || 89.50 283.20
Standard Deviation (ms) 20.02 52.39
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Figure 3: Recovery Time for Five GT3-A Runs on Emulab

Note that we make use of MySQL clustering rather than MySQL replication. This is due to the
fact that in MySQL replication, consistency between replicated databases is not guaranteed while
the clustering service does guarantee consistency. For example, when using MySQL replication,
a transaction may be complete on a master replica and if that replica fails the newly elected
master may not know of the transaction. These kinds of problems are avoided using the
clustering solution.

The results of Gate Test 3A show that ARMS MLRM Management functionality, made fault
tolerant using ARMS fault tolerance research, significantly exceed the PoR recovery
requirement. The BB DB functionality, made fault tolerant by ARMS engineering using
commercial technology, meet the PoR recovery requirement time.

Therefore, we met the Gate Test 3A requirements with the full MLRM system (including
the BB DB) and greatly exceeded them with the ARMS Fault Tolerant research technology.
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3.2.3.3 Detailed Gate Test 3B Results and Analysis

The Gate Test 3B experiment evaluates whether MLRM can recover from two cascading pool
failures. In the experiments, we injected the first fault in the same place and manner as Gate Test
3A, and injected the second fault in as close to the worst case time as we could, i.e., after the
system is far along in its recovery, but just before it is completely recovered so that the faults
cannot be handled as two distinct faults. Gate Test 3B was defined to be passed if we could
answer “Yes” to the first metric, i.e., that MLRM could survive two cascading failures.

In all experiments, MLLRM was able to recover from both failures.

The second metric for Gate Test 3B is simply a measure of how fast we could recover MLRM
functionality. Results from our experimentation on Emulab can be seen in Table 2 and Figure 4.

ARMS MLRM management functionality recovered from a two-level cascading failure in an
average of 47 ms (worst case 51 ms) and the Bandwidth Broker Database functionality recovered
in an average of 509 ms (worst case 580 ms).
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Figure 4: Recovery Time for Five GT3-B Runs on Emulab

The results of Gate Test 3B show that ARMS MLRM Management functionality, made fault
tolerant using ARMS fault tolerance research, can survive multiple, cascading failures.

Therefore, we have met the Gate Test 3B requirements.
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Table 2: Results from Gate Test 3B runs on Emulab

| MRM | MLRMincluding BB
W ,»“’-;,Max}agement BN R
Averagerecovery timé (1hs)~ 46.96 - —
Mmlmumrecoverytlme (ms) [ 43.00 414.90
Maximum recovery tlme (ms) o )151.00 579.60
StandardDevnatlon (ms)( : 3.02 50.85

3.2.3.4 Comparison of Gate Test 3A and 3B Recovery Measurements

From the numbers above, it appears that the recovery time for MLRM management functionality
decreases from Gate Test 3A to Gate Test 3B, from 60.4ms to 47.0ms. This is a measurement
artifact due to the way we measure recovery. In both sets of Gate Test experiments, we
separated the “recovery” time from the “detection” time in the following manner:

e The end of “detection” time was the smallest of the time to detect by any of the MLRM
elements, i.e., the earliest that any replica detected that a fault had occurred.

e The end of “recovery” time was the largest of any of the times to recover of the MLRM
elements, i.e., the latest that any element had a replica ready to perform its functionality.
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Table 3: Gate Test 3 Recovery Time

‘Experimental Run | 3A IA/ASM | 3B IA/ASM || 3A BB | 3B BB | 3A RSS|[ 3B RSS
1 0 ‘ — 0| os| os| 37| #19
2 0 of o3| tof 395 452
3 0 of o6 o5 430 443
4 0 of os6| o5 448] 439
5 0 o o5 o5 474 422

This means that the “recovery” time we are reporting is the absolute worst case, the difference
between the earliest detection and the latest recovery, from among all MLRM elements. As an

example, if the IA/ASM-G process detected the failure first, that's the reported MLRM detection

time, even if other MLRM elements haven't detected the fault yet. If the RSS process is the last

to recover, the time it is ready to run is the reported time at which MLLRM has recovered, even if

the IA/ASM-G recovered well before.

Recovery Times for Individual MLRM Management Elements

—— Cate Test 3A IAVASM recovery
—=— Gate Test 34 BB recovery

Gate Test 3A RSS recovery
Gate Test 3B IA/ASM recovary
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Figure 5: Recovery Time for MLRM Elements
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Since we are using Spread's group communication to pass around the failure detection (through
its group membership consensus protocol), each individual element, i.e., the IA/ASM-G, BB,
and RSS, has a time at which it knows a failure has occurred and starts recovering. By
comparing those times from 3A to 3B for each individual element, we can determine whether the
difference in recovery times is in the time the detection gets propagated or in the time the
elements take to recover.

Using Table 3 and Figure 5, we can make two observations:

1. The actual recovery time of an individual MLRM management element, once it has
received the failure event, is very similar from Gate Test 3A to 3B.

2. The RSS recovery dominates total recovery in both Gate 3A and 3B, taking
approximately 40 ms versus less than or equal to one ms for the other MLRM
management elements.

Observation number 2 is significant, since if something other than the RSS is the first MLRM
element to receive the failure event, the time to propagate that failure event to the RSS will be
added to the total MLRM recovery time. On the other hand, if the RSS is the first element to
receive the failure event, the time to propagate the failure event to the other elements and their
subsequent recovery will be concurrent with the RSS recovery.

Table 4: Gate Test Failure Propagation Statistics

‘Gate Smallest time to Largest time to propagate ,‘Average(m’s‘) ‘Standard
‘Test propyagateké‘féi‘ll‘l’,vlfé“,é, A “A”‘faill’ll“e eventinan S DeVlathn

evént in ~an'expe1;jvlﬁéirj‘1{“t;i ”Ei:pé&riment rﬁﬁ?(ms) : : o (ms) f‘
3A || 1.8 | 50.’5 18.3 | 22.7
3B 1.6 35.5 133 13.2

In looking at the times to propagate the failure events during the experimental runs for Gate Test
3A and 3B, shown in Table 4, we notice more variance in Gate Test 3A than in Gate Test 3B.
This explains, in part, why the average, maximum, and standard deviation are larger in Gate Test
3A than in Gate Test 3B. Another factor to consider is which element receives the failure event
first, because unless the element with the largest recovery time (the RSS in all the experimental
runs) is the first element to detect the failure, then the difference in receiving the detection event
gets included in the MLLRM recovery time.
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Table 5 and Table 6 show why the MLRM recovery time appears to decrease in Gate Test 3B
from 3A. In 3A, shown in Table 5, the IA/ASM is the first MLRM management element to
receive the failure detection event (the time we collect as the MLRM failure detection time). In
two cases, it takes tens of milliseconds to propagate to the RSS and then the RSS begins its
recovery, which takes about 40 milliseconds. The propagation time is added into the recovery
time for the MLRM total recovery time.

In contrast, in 3B, shown in Table 6, the two longest times taken to propagate the failure
detection event were in experiments in which the RSS received the event first. Even though the
propagation in those two cases takes tens of milliseconds, it is happening concurrently with the
RSS recovery (approximately 40 ms). Once the IA/ASM and BB receive the failure detection
event, each of them recovers in one ms or less. So the faster 3B recovery time is an artifact of the
RSS being notified before any of the more quickly recovering elements.

It is a reasonable question to ask why different elements receive the failure event first and why
there is a variance in failure propagation between experiment runs. Two possibilities are:

1. Uncertainties introduced by the Spread group consensus protocol, which we use to
propagate the failure event and which is based on a token passing scheme. Differences in
where the token starts, whether there are messages waiting to be delivered, and what the
group consensus algorithm is doing when the failure occurs can introduce variability.

2. Uncertainties introduced by using the Emulab testbed and by running the experiments
over a long span of time. Each experiment took hours to run at the Emulab so the time
between running the first Gate Test 3A experiment and the last Gate Test 3B experiment
was days. Although we set up each experiment in the Emulab the same way, it is a shared
testbed and we don't have complete control over the infrastructure to eliminate all
variables introduced by testbed configuration, load, and other factors.

Notice that in the Gate Test 3A and 3B experiments reproduced in the ISISlab, reported in
Section 3.2.4.2, the difference reported here disappears.

Table 5: Failure Propagation Times for GT3A

Run || First detection time (| Last propagation time || Difference | What detects -
(ms) | (ms) B first

1 112.7 163.2 50.5 IA/ASM

2 1154 149.7 34.3 IA/ASM

3 120.2 122.0 1.8 IA/ASM

4 137.6 139.8 2.2 TIA/ASM

5 123.8 126.7 29 IA/ASM
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Table 6: Failure Propagation Times for GT3B

Run || First detection time. Last propagation time- - || Difference | - “What detects
o (ms) 1 s o st

1 239.§ — 275.4) ’ 35.5 RSS’ -

2 237.6 252.0 144 RSS

3 137.0 144.2 7.2 IA/ASM

4 51.5 59.5 8.0 IA/ASM

5 116.3 117.9 1.6 IA/ASM

3.2.4 Gate Test 3 Icing - Going Above and Beyond the GT 3 Requirements

In addition to meeting the letter of the law of Gate Test 3, we undertook several activities that
went above and beyond the definition of the Gate Test. This section describes each of these.

First, we created ARMS capabilities to reconstitute replicas after a failure. This was a significant
undertaking above and beyond the Gate Test, and a research result in its own right. As of the
start of ARMS phase 2, there was no software for providing fault tolerance for component
applications and no capabilities for dynamically deploying components. We had to develop the
concepts for extending fault tolerance (initially developed for pure client-server object
applications) to work with components (with their peer-to-peer and multi-tiered semantics).
Since a fault tolerance solution that would tolerate faults, but not be able to get back up to a
desired level of redundancy is incomplete, we also needed to develop the concepts and software
for dynamic component deployment within a replication framework. We report the results of that
research and development below.

Second, we reproduced the Gate Test 3 experiments on ISISlab, hosted at Vanderbilt University.
The Gate Test 3 definition specified using the Emulab testbed, hosted at the University of Utah
and all the results reported above are from experiments run at the Emulab. However, ISISlab, a
testbed emerging at Vanderbilt, includes hardware more representative of the PoR. We ran the
Gate Test 3 experiments at the ISISlab and the results we report in Section 3.2.4.2 are more
representative of what could be expected in the PoR environment. In doing this, we also helped
mature the ISISlab testbed and its support for experiments like Gate Test 3.

Third, not satisfied with simply meeting the Gate Test 3A requirements with the MySQL
database recovery, we further tuned the database failure recovery mechanisms to see whether we
could get it well below the requirements, thereby making it more suitable for real-time recovery.
Our efforts paid off and we significantly exceeded the PoR recovery requirement. The results are
reported below in Section 3.2.4.3.
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3.2.4.1 Replica Reconstitution

Although not explicitly part of the defined Gate Test 3, we undertook to restore the level of fault
tolerance after a fault to its pre-fault level. This is an obvious piece of icing toward having a fully
fault tolerant capability, since to not do so would mean that the system would be less fault
tolerant after recovery than it was before and periodic recurring failures would prematurely lead
to complete failure.

Replica reconstitution means that after a fault (or multiple faults), we redeploy new replicas to
get back up to a desired level of fault tolerance (i.e., the same level of readily available
redundancy as existed before the faults). This includes deploying new replicas and loading them
with the state of existing replicas.

Developing and experimenting with replica reconstitution presented some challenges, including
the following:

e Prior to ARMS Phase 2, there was no dynamic deployment capability in the CIAO
component middleware being used in ARMS. Since many of the MLRM elements being
recovered were implemented as CIAO components, we had to either work around the
component middleware or develop dynamic deployment capabilities for it. We did both
in parallel, so that we could push the fault tolerance and dynamic component deployment
research and development forward concurrently.

e Similarly, prior to ARMS Phase 2, the FT code bases that existed did not handle
replicating components. As part of Gate Test 3, we had to design and develop capabilities
to replicate components (handling their novel peer-to-peer, multi-tiered semantics and
deployment infrastructure that hung around at runtime). As part of the replica
reconstitution icing, we had to design and develop ways that the component deployment
and fault tolerance infrastructure could cooperate to not only deploy a new component,
but then to have it become a replica (join the right group) and synchronize its state with
the surviving replicas.

We developed these capabilities and, as part of the Gate Test experiments executed above, also
ensured that we could restore the replication to the desired level and measured the speed of
replica reconstitution. Deployment of a new replica takes just a few seconds. During all but a
tiny part of that time, the MLRM functionality (i.e., the surviving MLRM replicas) is up and
running and fully functional. There is a brief interruption (on the order of a few 10s of
milliseconds) when the MLRM synchs up its state with the new replicas. The timeline in Figure
6 shows the replica reconstitution process and the brief interruption of MLRM functionality.
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MERM operation
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Figure 6:Timeline for reconstituting a Replica

Figure 7 shows the total time to deploy new replicas of the MLRM management element from a
representative five experimental runs on Emulab.

For the IA/ASM element, the time to deploy a new replica component consists mainly of the
time to deploy new CIAO components. With the BB and RSS, it is the time associated with
starting new Java processes, including starting the JVM, loading classes, and so on. During all
but a small amount of this time, the MLRM continues to operate. Figure 8 shows the total
amount of MLRM downtime (during state synchronization) during the five representative runs.
In each experiment the downtime is less than 60ms.

The downtime is the time that a primary is packaging up its state to send to the new replica. The
state is primarily the MLRM element's state, but also includes a small amount of middleware
state. The state (and therefore the downtime) can grow or shrink based on what the element is
doing, e.g., how many strings have been deployed. The RSS downtime also includes some
overhead of translating between Java, which the RSS is written in, and C++, which the fault
tolerance middleware is written in. The BB downtime is nearly zero because the BB manager
element is stateless; all of the BB state is contained in the commercial BB DB, which has non
real-time startup and state transfer characteristics.

Time to deploy a new replica component
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Figure 7: Time to deploy a new replica component on Emulab
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Figure 8: Downtime of active MLRM while restoring replicas

3.2.4.2 Results from Running Gate Test 3 Experiments on [ISISlab

We reproduced the Gate Test experiments on the ISISlab testbed at Vanderbilt University. This
section describes Gate Test 3A results on ISISlab with the same code that was used to conduct
the Gate Test 3A experiments on Emulab, so that we can compare them to those we performed
on the Emulab and reported in Section 3.2.3.2. The ISISlab hosts are significantly faster than
those on Emulab so once a failure is detected carrying out the recovery logic is done much more
quickly. (Below we show full Gate Test 3A Gate Test experiments on ISISlab, which were
conducted without the tuned database.)

Gate Test 3A Failover Times on Isislab
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Figure 9: GT 3A Failover Times on 1SISlab
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Table 7: Results from Five GT3A runs on ISISlab

MLRM Management MLRM . MLRM mcludmg BB
TR - e Management i DB ~
,Averagéﬂrécos{ery ,’time‘ (ms) |/ 17.1 167 9
Mlmmum recovery time (ms) | 16.7 116.9
| Maxunum recovery time (ms) |{ 18.2 204.8
I Standard Devnatlon (ms) 0.5 30.8

Figure 9 and Table 7 show that we are able to recover MLRM management functionality in a
fraction of the PoR recovery requirement time, more than 17x faster than the requirement time
on average. Even including the commercial database technology, we are more than 1.75x faster
than the requirement time on average.

Compared to the Gate Test 3A results executed on Emulab, MLRM management functionality
recovers 3.5x faster on average (4.9x better than the worst case, with less than one-fourth the
standard deviation). The MLRM including the database recovers 1.27x faster on ISISlab than on
Emulab on average (1.38x better than the worst case, with a 40% lower standard deviation).

3.2.4.3 Results from Tuning the Bandwidth Broker Database Recovery

It is quite clear from the Emulab and 3A ISISlab results that the MySQL database takes the
longest to recover from a failure. In order to improve this recovery time, we tuned the
configuration of the MySQL cluster and optimized the communication paths with a small source
modification. The result is a much quicker recovery after a failure.

The numbers in Table 8 and values shown in Figure 10 are from a 3A-like scenario. Cluster DB
instances are running on two pools and the connectivity between the pools is taken down. Since
there is no MLRM running to detect the failure we report only the times between the fault
injection and the recovery of the DB shown by a successful query.

With the tuning, the database is able to recover more than 40% quicker from the time of failure,
with a 60% reduction in standard deviation. As evident below in the re-execution of the Gate
Test 3 results on the ISISlab with the tuned database, this has a significant impact on the time of
recovery of the MLRM after detection of a fault.
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Table 8: Database Recovery Statistics, Original and Optimized on 1SISlab

- Original - || Optimized
[ Average recovery [ 281.2 157.3
~time (ms)
Minimum recovery || 226.4 141.1
time (ms) -
Maximum recovery | 322.9 179.8
- time (ms)
Standard Deviation || 34.4 134
(ms)
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400

Original DB =
350 | Optimized DB = -

£ 200 1
150 [ —]
100
50

o . .
1 2 3 4 5

Run Number

Figure 10: Time from Fault Injection to DB Recovery on ISISlab
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|
| Table 9: 3A Results on 1SISlab with a tuned BB DB
vt MLRM: MLRM Includlng BB
o]l Management - fl DB :

* Average recovery time (ms). 172 31.9

Minimum recovery time (ms) || 16.8 16.8

- Maximum recovery tlme 175 60.6

(ms)
- Standard Deviation‘(ms)' 103 16.7

3.2.5 Gate Test 3 Experiments on ISISlab with a Tuned BB DB

We reran the Gate Test 3 experiments on the ISISlab after tuning the database. These results are
beyond the letter of the law of the GT3 definition because they are on the ISISlab instead of the
Emulab, and because they include the database component not used by the PoR. However, as
mentioned above, the ISISlab is more representative of the PoR hardware and we wanted to
experiment with whether we could vastly exceed the PoR recovery requirement time even with
elements above and beyond those required by the PoR.

So, these sets of experiments show how well the full MLRM top level system, with a tuned
database, can recover from single and cascading failures on ISISlab Blade hardware, with a goal
of exceeding the Gate Test 3 recovery requirement. To do so is well above and beyond the
definition of the Gate Test and represents a significant research and development
accomplishment, as well as setting the stage for transition of this technology to the PoR.
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Figure 11: 3A Failover Times on 1SISlab with an optimized DB
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Table 10: 3A Results on 1SISlab with a tuned BB DB

~ MLRM | MLRM Including BB
Management DB
Average recovery time (ms) || 17.2 31.9
‘Minimum recovery time (ms) || 16.8 16.8
Maximum recovery time || 17.5 60.6
o (ms)
Standard Deviation (ms)  |[ 0.3 16.7

3.2.5.1 Gate Test 3A Executed on ISISlab with a Tuned BB DB

Notice that in Table 10 and Figure 11 the MLRM management numbers are very similar to those
reported earlier with the untuned database, as we would expect. However, now with the tuned
database, the maximum recovery time is 3.4x better than with the untuned database, and nearly
5x faster than the Gate Test 3A recovery requirement time. On average, recovery time of the full
MLRM system with the tuned database is nearly 10x the PoR recovery requirement time.

The ARMS real-time fault tolerance capabilities, exemplified by the MLRM management
recovery time, still outperform the capabilities of the commercial database solution with nearly
2x faster recovery time on average and over 50x more predictability (as measured by the
standard deviation), as would be expected. However, as a result of ARMS research and
engineering, these results show that ARMS fault tolerance can provide real-time fault tolerance
for more RM functionality than the baseline system in well under the PoR recovery requirement
time.

3.2.5.2 Gate Test 3B Executed on ISISlab with a Tuned BB DB

Again, Table 11 and Figure 12 shows the ability to reproduce the ability to recover from
cascading failures, exceeding the requirements of the PoR, on the ISISlab hardware, which is
similar to that of the PoR. MLRM recovery is very fast. Even though Gate Test 3B is not
designed to be compared to the PoR recovery requirement time, it compares very favorably,
with recovery (from cascading failures) of management functionality more than 16x faster
than the recovery requirement time on average, and recovery of full MLRM including the BB
DB more than 5x faster than the recovery requirement time on average.
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Table 11: Statistics aon 3B runs on 1SISlab with a tuned BB DB

it | Mg | DB
A,ve}yage”;feicoyery’ time (ms) 18.85 ~ 594
Mmlmum ;eco*’;fery timé (ms) 18.37 22.9
" Max1mum recovery tirﬁe (ms) || 19.48 84.1
" Standari(ri«Dé)viatiOn (ms) | 0.38 20.2
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Figure 12: 3B Failover Times on 1SISlab

3.2.6 Conclusions

The results that we have presented in this section indicate that our efforts for ARMS Gate Test 3
have been extremely successful in not only satisfying the requirements laid out for the Gate Test,
but also vastly exceeding them, in the form of collected metrics and in the results that we have
produced above and beyond the Gate Test 3 letter of the law.

Looking first at the letter of the law requirements of Gate Test 3, we were able to make the
MLRM functionality fault tolerant, as required by Gate Test 3A, and to make it handle cascading
failures, as required by Gate Test 3B. In doing so, we met the PoR recovery requirement time
with functionality (including the Bandwidth Broker database) beyond that of the comparable
PoR system and significantly exceeded (by nearly 5x) the PoR's recovery requirement time with
MLRM management elements comparable to those in the PoR system, all on Emulab hardware,
which is lower performance than the PoR hardware.
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In addition, we replicated the experiments on hardware more representative of the PoR hardware
(on the ISISlab) and further tuned the additional MLLRM elements (i.e., the BB DB). Upon doing
so, we beat the PoR recovery requirement time by over 17x with the apples-to-apples
comparable MLRM management elements and by nearly 10x with the additional BB DB
elements. Furthermore, not only could we recover from cascading failures, we could do so more
than 16x times faster than the PoR recovery requirement time with the MLRM elements and
more than 5x faster than the PoR recovery requirement time including the BB DB, even though
the cascading failure scenario was not meant to be compared to the PoR recovery requirement
time.

The ARMS fault tolerance technology exhibits the characteristics needed for strict real-time
environments such as the PoR in both its rapid recovery and its highly predictable, low variance
recovery. Although we were able to tune the COTS database technology to recover more rapidly
and thereby make it more suitable for real-time applications, it still exhibits the higher variance
of a non real-time solution.

We also produced icing in the form of increased capabilities above and beyond those required by
Gate Test 3 such as: reconstituting replicas by returning to a desired level of fault tolerance,
which required significant research in dynamic component deployment and fault tolerance for
component models; and running tests on ISISlab with an optimized database.

To achieve Gate Test 3, we advanced the state of the art in fault tolerance technologies, including
the following:

e Fault tolerance for components. Previous fault tolerance solutions worked with objects or
databases.

¢ Fault tolerance for multi-tiered applications and peer-to-peer applications. Previous FT
solutions worked only for single-tiered applications (i.e., replicated elements were pure
servers) and round-trip client-server communication.

¢ Co-existence of group communication and non-group communication. Previous FT
solutions required group communication, if used, to be pervasive.

¢ Mixed-mode fault tolerance, i.e., active, passive, and transactional database coexisting.
¢ Multi-ORB (TAO/CIAO and JacORB) and multi-language solutions, C++ and Java

The following section describes these R&D results in more detail.
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3.3 Fault Tolerance Research and Development Results

Moving from a non-FT MLRM to an FT MLRM required solutions to a number of technical
challenges. We first introduce the fault model under which we have been designing the system.
The following sections then discuss some of the research we have undertaken as part of our
ARMS work. Following this we discuss a number of FT challenges and the solutions we
developed for ARMS, both in the context of the Gate Test and also in a broader fault tolerance
domain. These include solutions to dynamically supporting components and their multi-tiered
and peer-to-peer interaction models, supporting multiple languages, supporting multiple
replication schemes, and supporting efficient communication when replication is being used. We
then discuss some of the development necessary to enable the gate test and highlight
experimentation showing the cost of using our solution relative to a non-fault-tolerant solution
and lessons learned. Finally, we also note future directions and ideas for further work.

3.3.1 Fault Model

A fault model describes the types of failures we expect our system to have to deal with. By being
specific about our fault model we both enable simpler solutions when arbitrarily malicious
failures are not a concern and also make clear the types of failures the system is designed to deal
with.

In designing our FT solution we assume that all faults are fail-stop at the process level, i.e., when
an application process fails it stops communicating and does not obstruct the normal functioning
of other unrelated applications. Network and host failures can be seen as a collection of process
failures on the network or host that has failed. Some examples of failures that we will tolerate
include power being disrupted to a host, an application crashing, or a data center being
destroyed. Some examples of failures that we do not currently tolerate are network partition
recovery and general Byzantine [11] failures. When a network splits (partitions), perhaps due to
a network failure, leaving two groups of replicas that move forward independently we assume
that they will never join together again, greatly simplifying the system. Malicious, or Byzantine,
failures are where a process may intentionally attempt to deceive other members or misrepresent
data. Tolerating Byzantine failures requires many constraints on the system and also requires
considerable extra resources. By dealing exclusively with crash failures we are able to support
many more types of applications with fewer resources.

3.3.2 Challenges in Providing Fault Tolerance in DRE Systems

DRE systems provide unique challenges to using many existing fault tolerance implementations
because of the scale, real-time requirements, dynamic configurations, and calling semantics
typical of DRE systems. This section describes four particular challenges with applying existing
fault tolerance solutions to the needs of DRE systems:

o Communicating with replicas in large scale, mixed mode systems
e Handling dynamic system reconfigurations
e Handling peer-to-peer communications and replicated clients and servers.

e Supporting a multi-paradigm, multi-language environment
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3.3.2.1 Communication with groups of replicas

Fault tolerance is commonly provided using replication, which requires a means to communicate
with groups of replicas. A common approach is the use of a group communication (GC) system
(GCS), which ensures consistency between replicas and between replicas and their non-
replicated clients or servers. DRE systems provide several challenges for using GC. They contain
large numbers of elements with varying fault tolerance requirements. Some elements will have
stringent real-time requirements. This means that GC might not be needed, or even acceptable, in
many places in the system. The following paragraphs describe approaches to group
communication and its applicability to DRE systems.

Pervasive GC. Some approaches [1] use GC for communication throughout the entire system.
This approach provides strict guarantees and ensures that interactions between applications and
replicas are always done in the correct manner. It can, however, limit the scalability of resulting
systems and add extra overhead associated with group communication on the communication of
elements that don’t need GC. In very large DRE systems, such as the one in which the MLRM
runs, non-replica communication can be the more common case and using GC everywhere can
severely impact performance.

Pervasive GC is problematic in component-oriented systems due to features of component
deployment. The deployment of components both when new applications are deployed and when
additional replicas are needed (e.g., to replace replicas that have failed) is done using a CORBA-
based deployment framework. The messages related to the deployment of a CCM-based replica
are of concern only to the new replica, yet the use of pervasive GC results in deployment
messages going to existing replicas (which were previously deployed). Thus, replicating
components requires the coexistence of non-group communications (during the deployment of a
new replicated component) and group communications (once all replicas have been fully
deployed).

Gateways. Other systems [3, 4] make use of gateways on the client-side that change interactions
into GC messages. This limits group communication to communication with replicas and
provides the option to use non-GC communication paths where necessary. It is therefore useful
in applications that need group communication for replicas but cannot afford to use group
communication everywhere, especially in applications with relatively small numbers of
replicated elements. The gateway approach does come with tradeoffs, however. First, it is less
transparent than the pure GC approach because the gateway itself has a reference that has to be
explicitly called. Second, gateways typically introduce extra overhead (since messages need to
traverse extra process boundaries before reaching their final destination) and extra elements that
need to be made fault tolerant to avoid single points of failure. Other gateway-like strategies
[5,6] have also been explored, similar to the “fault-tolerance domain” specified in FT-CORBA.

Other projects [7] take a hybrid approach where GC is only used to communicate between
replicas and not to get messages to the replicas. This places the gateway functionality on the
server-side of a client-server interaction, which limits the interactions between replicated clients
and replicated servers but has implications for replicating both clients and servers at the same
time. It introduces the possibility that lost messages may need to be dealt with at the application
level as they cannot use the guarantees provided by the GC system.
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ORB-provided transports. Some service-based approaches [8] completely remove GC from the
fault-tolerance infrastructure and use ORB-provided transports instead, which limits them to
using passive replication.

3.3.2.2 Configuring FT Solutions

A recurring problem with using GC in dynamic systems like DRE systems is keeping track of
groups, replicas, their references, and their supporting infrastructure as elements come and go
during the life of a large DRE system. Many existing fault tolerance solutions make use of static
configuration files or environment variables [1,3]. The DRE systems that we are working with
are highly dynamic, with elements and replicated groups that can come and go and need to make
runtime decisions about things such as fault tolerance strategy, level of replication, and replica
placement. Static configuration strategies lack the flexibility needed to handle these runtime
dynamics. Eternal [9] supports dynamic fault tolerance configurations. Greater flexibility is also
available in some agent-based systems [10] but for more common non-agent infrastructures
adding additional FT elements to a running system is not common.

3.3.2.3 Replicated Client and Servers, Peer-to-Peer Interactions, and Multi-Tiered
Replication

Support for replicated servers is ubiquitous in fault tolerance replication solutions, whereas
support for replicated clients is not as common. Many CORBA-based fault tolerant solutions
concentrate on single-tier replication semantics, in which an unreplicated client calls a replicated
server, which then returns a reply to the client without making additional calls. Multi-tiered or
peer-to-peer invocations are possible but the FT-CORBA standard [11] does not provide
sufficient guarantees or infrastructure to ensure that failures, especially on the client-side, during
these invocations can be recovered from. A similar situation exists in some service-based
approaches [8,12] where peer-to-peer interactions are possible but care must be taken by
developers to make use of the functionality.

In contrast, component-oriented applications exhibit peer-to-peer communication patterns, in
which components can be clients, servers, or even both simultaneously. Many emerging DRE
systems are developed based on component models and exhibit peer-to-peer calling structure.
Because of this, fault tolerance strategies and solutions based on strict server replication are of
limited applicability.

Since components can be both clients and servers, frequently component-oriented DRE systems
have chains of nested calls, in which a client calls (or sends an event to) a server, which in turn
calls another server, and so on. This leads to a need to consider replication of multiple tiers of
servers. Research into supporting fault-tolerance in multi-tiered applications is still ongoing.
Some of the most promising recent work has concentrated on two-tier replication, specifically
addressing applications consisting of a non-replicated client, a replicated server, and a replicated
database [13].
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General, unrestricted calling patterns, such as asynchronous calls, nested client-server calls, and
even callbacks (where clients also act as servers and can have messages arrive via the callback
mechanism while replies from sequential request-reply messages are pending), present
tremendous challenges for fault tolerance solutions. This is partially due to the need for fault
tolerance to maintain message ordering, reliable delivery, and state consistency, which is harder
to do in asynchronous, multi-threaded, and unconstrained calling patterns. It is also due to the
fact that the semantics of such calling patterns in the face of replication are more difficult to
define.

3.3.2.4 Supporting a Multi-Paradigm, Multi-Language Environment

The MLRM environment is not a simple homogeneous one. It contains C++ components
intermixed with Java and C++ CORBA objects as well as different ORBs, aspects of which need
to be made fault-tolerant and interoperable. This heterogeneity requires a fault tolerance solution
that can support components and objects programmed in both Java and C++. Furthermore, the
desire to have a transparent solution (to the degree possible) is often in conflict with the desire to
be portable and efficient across different implementations and platforms.

3.3.3 Fault Tolerance Solutions to the Challenges for DRE Systems

In this section, we describe three new fault tolerance advances that we developed under the
ARMS program. First, we describe a Replica Communicator (RC) that enables the seamless and
transparent coexistence of group communication and non-group communication while providing
guarantees essential for consistent replicas. Next, we describe a self-configuration layer for the
RC that enables dynamic auto-discovery of new applications and replicas. We then describe an
approach to and implementation of duplicate message management for both the client- and
server-side message handling code in order to deal with peer-to-peer interactions. Finally we
discuss the need to support heterogeneity which is an essential component of the three advances.

3.3.3.1 The Replica Communicator

In order to provide the GC underpinnings necessary for maintaining consistent replicas while at
the same time limiting unnecessary resource utilization and not disturbing the delicate tuning
necessary for real-time applications, we needed a way to limit the use of group communication to
those places in which it was absolutely necessary. Analysis of various replication schemes shows
that the only place where GC is necessary is when interacting with a replica. That is, only
replicas and those components that interact with them need the guarantees provided by group
communication. Other applications can use TCP without having to accept the consequences of
using GC, whose benefits are not needed in their case.
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There are several advantages to limiting the use of GC to only those places in which it is needed.
The first reason is that GC introduces a certain amount of extra latency, overhead, and message
traffic that is undesirable in the non-replica case and, in fact, can jeopardize real-time
requirements. Second, many off-the-shelf GC packages, such as Spread [14], have built-in limits
on their scalability and simply do not work with the large-scale DRE systems that we are
targeting. Finally, many of the components of our targeted DRE systems are developed
independently. Since the non-replicated case is the prevalent one (most components are not
replicated), retrofitting these components onto GC, with the subsequent testing and verification,
would be a tremendous extra added effort for no perceived benefit.

Therefore, we developed a new capability, called a Replica Communicator, with the following
features:

e The RC supports the seamless co-existence of mixed mode communications, i.e., group
communication and non-group communication.

e It introduces no new elements in the system.
e It can be implemented in a manner transparent to applications.

The RC can be seen as the introduction of a new role in an application, along with the
corresponding code and functionality to support it. That is, the application now has three
communication patterns, illustrated in Figure 13:

1. Replicas that only communicate with other replicas, which use GC
2. Non-replicas that only communicate with other non-replicas, which use TCP

3. Non-replicas that communicate with non-replicas or replicas, and use an RC to route the
communication along the proper protocol.

[ Client |

HOP

Send ta Send to :]
reps Non-reps

A

Figure 13: Generalized Pattern of the Replica Communicator
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Figure 14: Coexistence of group communication (Spread) and non-group communication, where
elements at the edge of the interaction communicate via both transports.

An abstract view of the RC is illustrated in Figure 14. Its basic functionality consists of the
following pieces:

e Interception of client calls
e A lookup table to hold references to replicas and to non-replicas

e A decision branch that determines whether a call is destined for a non-replica or a replica
and treats it accordingly

e A means to send a message to all replicas, e.g., multicast, a loop over all replica
references, or via GCS

e A default behavior, treating a message by default as one of the branches

e A configuration interface to add references to new servers or to new replicas (to an
existing group), or to remove a replica (if it has failed)

Documented in the above pattern, the RC can be realized with multiple implementations.
Application specific implementations can be made in the application logic itself, using aspect-
oriented programming or component assembly to insert the RC transparently into the path of
client calls. It can also be realized using standardized insertion points, such as library
interpositioning to hook into the system at the system-call level or using the CORBA-standard
Extensible Transport Framework (ETF). Transparent insertion is highly desirable from an
application-developer’s point of view since it makes fault tolerance easier to integrate.

The RC functionality resides in the same process space as the application. This improves over
traditional gateway approaches, because it introduces no extra elements into the system. Notice
that the RC does not need to be made fault tolerant, since it is not a replica.

We have realized a prototype of the RC pattern in the MLRM based on the MEAD framework
[1] and its system call interception layer, as illustrated in Figure 15. CORBA calls are intercepted
by MEAD, which is added to applications at execution time through dynamic loading of
libraries. The RC code maintains a lookup table associating IP addresses and port numbers with
the appropriate transport and group name if GC is used. The default transport is TCP; if there is
no entry in the lookup table, the destination is assumed to be a non-replicated entity. For
replicated entities, the RC sends the message using the Spread GCS, which provides totally-
ordered reliable multicasting. For replies, the RC remembers the transport used for the call, and
returns the reply in the same manner.

Use or disclosure of the data contained on this page is subject to the restriction on the title page of this document.

52



BBN TECHNOLOGIES ADAPTIVE MULTILEVEL MIDDLEWARE FOR OBJECT SYSTEMS

IoP
l System Call inlerception I
v
Replica Port | Transpont
Communicator

B GCSG3
¢ TCP

P
X Y GO&GY
A
P

Non-replicated
Server

Figure 15: The Replica Communicator Instantiated at the System Call Layer

The Replica Communicator was crucial for resolving the problem outlined in Section 3.3.2.1,
namely that the CCM deployment infrastructure needs a way to communicate with exactly one
replica during bootstrapping. We used the RC with our CCM-based active and passive replicas to
allow a replica to be bootstrapped while not disturbing the existing replicas.

3.3.3.2 A Self-Configuring Replica Communicator

Populating the table distinguishing GC and TCP endpoints shown in Figure 16 can be done in
multiple ways. One way is to set all the values statically at application start-up time using
configuration files. However, this leads to static configurations in which groups are defined a
priori and supporting dynamic groups and configurations is difficult and error prone. To better
support the dynamic characteristics of DRE systems and to simplify configuration and replica
component deployment, we developed a self-configuring capability for the RC.

When a GC-using element (i.e., a replica or non-replica RC) is started we have it join a group
used solely for distributing reference information. The new element announces itself to the other
members of the system (shown by the arrows labeled 1 in Figure 16), which add an entry to their
lookup table for the new element. An existing member, in a manner similar to passive
replication, responds to this notification with a complete list of system elements in the form of an
RC lookup table (the arrow labeled 2). The new element blocks until the start-up information is
received, to ensure that the necessary information is available when a connection needs to be
established (i.e., when the element makes a call). When an element using the RC pattern attempts
to initiate a connection, it might be a call that needs to use GC or one that shouldn’t use GC.
Since GC-using elements always register and are blocked at start-up until they are finished
registering, the RC has all the information it needs to initiate the correct connection. If there is no
entry for a given endpoint it means that TCP should be used for that connection.
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Figure 16: Steps in updating a new RC Reference

One complexity that does not affect users, but needs to be taken into account while developing
the self-configuring RC, is that the relationships between elements are not necessarily transitive.
Simply because RC1 interacts with replica R via GC and R also interacts with RC2 via GC, this
does not mean that RC1 should use GC to interact with RC2. In the case of manual configuration
this is handled by having a configuration specific for each application. However, in our
automated solution it is necessary to do more than note that a given endpoint can be contacted
via a given GC group name. We also need to distinguish the circumstances where GC is
necessary and those where it is not. We accomplish this by noting whether a reference refers to a
replica or non-replica. Given that interacting with a replica or being a replica are the only two
times GC is necessary, an RC knows to use GC when it is interacting with a replica (and TCP
elsewhere) and replicas always use GC.

3.3.3.3 Client- and Server-Side Duplicate Management

One step towards a solution for replication in multi-tiered systems is the ability for each side of
an interaction to perform both client and server roles, at the same time. This is essential to our
support of components and allows nested calls to be made without locking up an entire tier while
waiting for a response, which can guarantee consistency, but is very limiting.
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Supporting these dual roles has two aspects. The first is the ability to send and receive in a non-
blocking way. When an application sends out a request the underlying infrastructure cannot
block while waiting for a reply as another request may need to be serviced before the first
request will return. The second aspect is the ability to distinguish and suppress duplicate
messages from both replicated clients and replicated servers. If this suppression is not performed
the applications, which do not know they are replicated, can be confused by receiving the same
message multiple times. Solutions that require idempotent operations [15] also solve this
problem and can work in multi-tiered situations, but are not satisfactory for use in general DRE
systems.

One characteristic necessary to support duplicate management is that messages need to be
globally distinguishable, both within an interaction and between multiple interactions. Within an
interaction, message IDs are often used to distinguish individual messages from one another.
However, when multiple senders independently interact with a shared receiver, it is important to
differentiate messages based not only on message ID, but to use a combination of message ID
and source. In Figure 17 both A and C use sequence number 1 to send a message to B, but since
suppression uses both the sequence number and the sender there is no confusion. An important
note here is that when a new replica is integrated with existing replicas it is essential that the
message ID aspect of the existing replicas’ state is transferred to the new replica. Without this a
new replica could have all of its (non-duplicate) messages dropped.

Method 1
CaIIbacl{‘\

Component A-1
‘1 f \il* /
Component A-2 T BT

Component B /\Cl*
Component C £l

X - Suppressed duplicate messages
ZN* - Reply to message N from group Z

Figure 17: Duplicate Management during Peer-to-Peer Interactions

Our solution enables duplicate management in the highly dynamic situations typical of DRE and
component-based software. Requests and replies are dealt with simultaneously and are
unaffected by failures that could reset application-level sequence numbers. We replace the ORB
supplied request ID with a unique and consistent value for each request or reply and distinguish
messages upon receipt using both the ID as well as the sending group. This allows replicas to
come and go without introducing any extra messages at the application layer.
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3.3.3.4 Supporting a Heterogeneous Environment

Initially MEAD only supported C++ and TAO. It did not support Java, due to difficulties
stemming from non-determinism such as garbage collection and threading. In order to be able to
run the MLRM we enhanced MEAD so that it worked with the two ORBs used by the MLRM:
JacORB, a Java ORB, and CIAO, TAO’s CCM implementation. In adding support for JacORB
into MEAD we did not remove all sources of non-determinism from Java, but rather dealt with
the threading of network 10 in such a way that JacORB behaved deterministically when used
with active replication and could be used with passive replication.

Whereas C++ applications developed with TAO use non-blocking mechanisms, such as the
select system call, to wait for responses, the JVM often makes a new thread for each operation
and blocks, waiting for the operation to finish. This call style is quite different from what MEAD
initially supported and in order to deal with it we added code to the read and write calls that
effectively blocked the application while registering a callback. When data was available the
waiting thread would be called back and allowed to progress. This preserved the semantics
expected by the JVM while allowing us to deliver messages in the ordered manner necessary to
make our fault tolerance solution work, all without application knowledge.

Interactions between CORBA components and objects, whether using TAO, CIAO, or JacORB,
went quite smoothly compared to the differences encountered supporting Java and C++. Due to
the standardization provided by CORBA and a common use of Spread these interactions were
not problematic.

3.3.4 Engineering Developments Needed for Gate Test Success

A number of engineering-level developments were necessary to prepare for the Gate Test. This
section highlights development-related items that contributed to the Gate Test success:
application level state transfer, a special BB fault-tolerance scheme, fault detection, and FT
component deployment. It also includes developments made by our Vanderbilt team to support
the needs of the GT3 FT solution.

3.3.4.1 Application State Transfer for the MLRM and RSS

The state transfer described in Section 3.2.4.1 described state transfer from a high level as a
necessary part of redeploying replicas. While we needed support for state transfer in general in
our FT solution each replicated application also needed to support having its state transferred.
Unlike the stateless (from an application point of view) BB, both the IA/ASM-G and the RSS are
stateful applications and need to transfer their application state when a new replica was started or
in the case of the RSS when they were replicated using a passive scheme.

The IA/ASM-G state was straightforward, though ensuring determinism meant that some
threaded optimizations were not pursued. When requested by our FT middleware, the IA and
ASM-G would gather their application state and return it to the middleware. From there it was
combined with the middleware state and transferred to a new replica.
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The solution for state transfer in the RSS was more complicated. Whereas the IA/ASM-G
only changed state due to network messages (and could thus be actively replicated) the RSS also
made use of timers and one-way messages. This meant that it had to be passively replicated but
had the additional requirement that timer-based changes needed to be propagated to non-leader
replicas on state change, regardless of whether a network event had occurred. In order to support
this we added an application-level hook that enabled the application to notify the FI middleware
that state had changed and that this state should be share with all replicas.

3.3.4.2 Bandwidth Broker Fault Tolerance Scheme

In Section 3.3.3.1 we discussed how, in order to ensure replica consistency, interactions with a
replica need to go over GC. This ensures that all the replicas receive the same messages and that
message ordering is preserved. Unfortunately, it assumes that every item interacting with a
replica over the network can do so using GC. While this may be possible for many applications
there are cases where it is not practical. (Interacting with hardware such as routers and using
SNMP are some examples.) The BB provided one such case as it interacted with an “off-the-
shelf” database, MySQL.

We needed to replicate the BB but also needed to ensure that the state stored in the DB would
not be corrupted due to inconsistent message ordering or a change in the primary replicas. As
designed, the BB was split into two parts, a stateless “front-end” Java process that interacted
with the rest of the MLLRM, and “back-end” DB that saved the BB state but only interacted with
the BB front-end. This is shown in Figure 18. In order to not have a single point of failure both
of these elements needed to be made fault-tolerant.

MLRM Management
Infrastructure Apgltirti:ra:tion Actively
Allocator (1A) Manager ?ASM) Replicated
_____ l:_-..\w f_._..______..-...._
; Resource
;i?(g:v;gtg) Status Passively
Service (RSS) Replicated
Replicated
BB using MySQL
Database clustering
MLRM Management and BB Database ...

Figure 18: Bandwidth Broker Integration

The front-end was replicated using a custom passive scheme coupled with application-level
changes in the BB. As in a traditional passive replication scheme, whenever a message was sent
to the front-end it was done so via GC and was received at each member. The non-leaders would
buffer the message in case they became the leader and the leader would pass it to the DB. When
a response was received by the leader, it would share the response with the requesting client as
well as the non-leader BB front-ends. The non-leaders could then remove the request from their
buffers. This scheme was optimized from a straight passive scheme in that it did not attempt to
transfer state between the leader and non-leaders.
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In order to ensure that each message to the DB was processed only once the BB front-end
application was modified to add a request-ID to each invocation. This allowed the BB to detect
and deal with multiple invocations. This change, coupled with the idempotency of a given
message at the DB allowed us to replicate the BB front end.

Our solution for replicating the back-end DB used an off-the-shelf clustering solution modified

to detect and recover quickly from failures. By carefully configuring the DB tuning parameters

and making a small source code change to allow DB identifiers to be specified at configuration-
time rather than coordinated at the time of a failure (saving time and reducing timing variance),
we were able to quickly recover from DB failures, as shown in Section 3.2.5.

Host

Process (replicated)

Execution | Deploy Node  peploy Node  |ioad |
Manager Daemon Application

Component

Figure 19: CIAO includes infrastructure elements that are used to deploy components, only
some of which need to be replicated.

3.3.4.3 Fault Detection

The first step of being able to deal with a failure is to detect it. We relied on Spread’s fault
detection capabilities for Gate Test 3, while simultaneously developing the specialized Node
Failure Detector (NFD) solution described in Section 4, which provides an independent
subsystem for high performance failure detection. In addition to providing messaging
guarantees, Spread also detects node failures and issues group membership changes for each
group that has a member on the failed node. However, the default configuration that Spread has
“out of the box” can take over 5 seconds to detect node failures. We needed faster reaction times
from the Spread daemons. Based on previous work that documented Spread tuning [16], we
adjusted the timeout parameters in Spread to obtain failure detection times under 200
milliseconds. These changes included increasing the frequency of failure detection messages and
decreasing the quiescent time required between the loss of a member and the declaration of a
new group membership.

While these tuned timeouts made the node-failure detection time faster, they also made the
Spread daemon more susceptible to false-positives caused by latency related to processor
scheduling at the operating system level. Our initial testing showed that a high CPU load on a
node would cause the Spread daemon to get scheduled less often than required, which in turn
caused the other nodes to report the high-load node as failed. The daemon needed to run
frequently for very small amounts of time. We solved this problem by making the Spread
daemon the highest priority process on every node. Given the default scheduling time-slice on
Linux (1 ms), this was sufficient to guarantee that the Spread daemon got a chance to run as
often as it needed to.

Once the failures were detected the FT middleware took care of ensuring that the remaining
replicas continued to work as expected.
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3.3.4.4 Deploying Fault-Tolerant Components

Another challenge due to components is that the deployment architecture of CCM is more
complicated than most CORBA 2 solutions. Before a component can be deployed using CIAO, a
Node Daemon (ND) starts up a Node Application (NA), which acts as a container for new
components, as illustrated in Figure 19. The ND makes CORBA calls on the NA, instructing it to
start components, which are not present at NA start up time. Note that the components, when
instantiated in the NA, need to be replicated, but the NDs should not be.

To illustrate this point, consider an existing fault-tolerant component when a new replica is
started. Since MEAD ensures that all messages to and from one replica are seen at every replica,
the existing replicas will receive an extra set of bootstrap interactions each time a new replica is
started. This will not only confuse the existing replicas, but the responses from the new replica
will also confuse the existing NDs. This is one of the motivations for the RC described in 3.3.3.1.

3.3.4.5 Reconciling Objects with Groups and Components with Processes

As part of the GT3 solution we made use of a number of technologies from Vanderbilt, including
The ACE ORB (TAO)[17]; the Component Integrated ACE ORB (CIAO); and the Deployment
And Configuration Engine (DAnCE) [16],. Out of the box these technologies needed additional
development for use in a GT3-like environment. Two of these changes, described below, are
reconciling object reference semantics with GC semantics and reconciling procedural and object-
oriented models in state synchronization.

Reconciling object reference semantics with GC. In a system using GC all members look alike to
the outside world, i.e., they are accessed via a group name. This could result in a single object
reference (IOR) that should be available to clients. However, when dealing with relatively
transparent replication, enforcing the fact that each replica uses the same common IOR is non-
trivial. There is a similarity between GC group names and CORBA interoperable group
references (IOGR), but unfortunately the interoperability is between CORBA implementations
and not between CORBA and Spread. In order to reconcile these differences, our middleware
needs to create exactly the same IOR at each replica. Moreover, when a new replica joins a
group we require it to have the same IOR exposed to the GC. In order to enforce this behavior,
we modified the portable object adapter within TAO to use the USER_ID and PERSISTENT _ID
POA policies. Each set of replicas was given a unique user id corresponding to its group name.
This was done in a seamless manner without manual programmatic effort by delegating the job
of configuring the policies on the objects (or components) using the DAnCE engine and
supplying it with the right set of XML descriptors.

Reconciling process and component models in state synchronization. Our FT framework was
initially developed for CORBA-2 based object systems. Newer systems that make use of
components have requirements that our middleware was not designed to meet. One area where
this occurred was at the interface between our FT middleware and CIAO/TAO/DAnCE.
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Within DAnCE, the NodeApplication is a process, which performs the job of an application or

component server. We interfaced our FT solution with the NodeApplication process and

provided two global functions called get state and set state. Since the FT middleware cannot

differentiate the state of individual components (or objects) we needed to modify CIAO to turn a
single call to get state into multiple calls to each component in the process. This is done using the
DAnNCE's domain application manager, which in turn instructs all the NodeApplication processes

to get/set the state during recovery.
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3.3.5 Overhead of our Fault Tolerance Software

We measured the fault-free overhead of C++/TAO and Java/JacORB versions of our fault-
tolerance solution. These tests did not involve the MRLM system, but instead used a simple
client-server configuration. Our goal was to compare the latency of using CORBA with raw TCP
against the latency of using CORBA with our fault-tolerant middleware (using the Spread GC
and MEAD with our duplicate detection and RC enhancement). Since we were not attempting to
measure CORBA marshaling cost, we chose the simplest variable-sized data structure that
CORBA provides: a sequence of octets. The client sends an octet sequence of a particular size,
and the server responds with a single byte. To avoid the inaccuracies associated with comparing
timestamps from different machines, the round-trip trip time was measured on the client side.

The results shown in Figure 20 show that our fault tolerance software adds a factor of two to the
Jatency compared to CORBA over TCP. However, if we didn't need replicated servers, then we
wouldn't use anything but regular TCP (the whole point of the Replica Communicator). So we
also ran the same tests, but with an actively replicated server. Adding a replicated server using
our fault-tolerant middleware version was trivial. To implement the replicated server in the TCP
version, we constructed a simple sequential invocation scheme where in order to make a single
logical call on 2 replicated servers, the client would make an invocation on server instance 1, and
then after that call returned the client would make the same invocation on server instance 2. The
round trip time for the TCP case is the sum of the round-trip time for both invocations. We
implemented a similar setup for a 3-replica configuration. The results are shown in Figure 21
and Figure 22.

In the two replica case, shown in Figure 21, the results show that the fault tolerance software
using GC performs nearly as well as TCP, introducing very little extra latency for its total order
and consensus capabilities. In the three replica case, shown in Figure 22, the fault tolerance with
GC performs better than raw TCP.

3.3.6 Additional ARMS Fault Tolerance Activities

Replicated Security Provisioner

As we prepared for the Gate Test one of the items we hoped to include with the icing results was
a replicated Security Provisioner (SP). This component was outside the official scope of GT3 but
was something that would run at the global level. It had a number of features and requirements
not shared by other MLRM components. One of these was that local Host Security Agents
(HSAs) needed to register with the SP via an IP multicast message, which was not supported by
our replication framework. Another issue was non-determinism in the SP’s behavior.

One of the features we had developed for CCM support was the notion of a clear delineation
between start-up time as seen by the application and the start-up time seen by the fault-tolerance
portion of the application. By splitting these things apart we enabled CCM bootstrapping to
happen before the fault-tolerance infrastructure began to intercept messages and enabled the
components to be present before FI' made calls on them. This concept is more general than the
component use we had previously used it for.
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We attempted to make the SP FT using two parallel approaches: making the SP deterministic and
dealing with the initial (non-deterministic) multicasting before the FT infrastructure started up.
Both of these required software changes and we worked with Scientific Research Corporation
(SRC), developer of the SP, to make the changes. We implemented support for an initial period
of non-FT execution, where non-determinism could be tolerated. This allowed an SP to register
with its local HSA before enabling FT. Unfortunately, it turned out that the effort needed to
make the SP deterministic, coupled with schedule pressure, proved to be too large an investment
and the integration of a FT SP was not included in the gate test results.

Model-Driven Solutions for Fault Tolerance

During ARMS we defined the concept of a fault tolerance toolkit, which was necessitated due to
the varying fault tolerance and consistency management requirements of different applications.
This required us to envision a fault tolerance solution that can be assembled from smaller
building blocks. To this end Vanderbilt University made an initial effort towards a model-driven
engineering solution to capture fault tolerance requirements of DRE applications.

The model driven engineering approach is illustrated in Figure 23. These capabilities include
defining the failover groups for a group of components that are loosely coupled together, their
replication styles, placement constraints, shared risks among components, and others.
Interpreters associated with these models synthesize deployment artifacts that are passed on to
DAnNCE engine so it can deploy and configure the applications with the desired fault tolerance
capabilities.
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Figure 23: Model Driven Engineering of Fault Tolerance

Since the systems we deal with are dynamic, there is a need for DAnCE to dynamically redeploy
and reconfigure application components while keeping the overall mission operational. To that
end we are investigating new ideas in redeployment and reconfiguration capabilities within the
DAnCE framework. Ultimately our goal is to realize multi-tier fault tolerance capabilities being
automatically assembled, configured and deployed using our toolkit as shown in Figure 23.
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Figure 24: Ideal Model Driven FT Integration

3.3.7 Future Directions and Work in Fault Tolerant Systems

There are a number of areas where future work could provide more efficient, more
comprehensive, and more readily usable FT solutions. Replicating clients, supporting periods of
non-determinism or non-GC use, and truly dynamic GC systems are all areas where future work
could prove fruitful. Also, as we have seen in this and other work even when a solution is
available it is not always easy to integrate into a system, even when existing FT solutions are
running. In this vein future work on a fault tolerance toolkit could also be very useful.

Passively replicated clients pose difficulties that were largely ignored by previous approaches
that focused only on replicated servers. In multi-tiered and peer-to-peer applications, clients (and
elements that can be both clients and servers) can be passively replicated, leading to challenges
of when state should be gathered and transferred. In Gate Test 3, this problem was exemplified
by the Global-RSS passive replicas. For the RSS we added hooks so that the application-level
could explicitly trigger state change notifications, which resulted in the primary replica’s state
being gathered and shared. Another option is to send out state on each client request. A generic
framework for adding state to both requests and replies, and a more general state gathering
framework would provide support for replication of more application elements.
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Currently when a replicated application starts up, there is a time between the application
initializing and the time when the FT middleware begins intercepting its traffic. This works well
when there are initialization tasks that cannot happen through the FT middleware. There is a
more general situation in which an element might need to dynamically (i.e. during normal
operation) operate “outside” the FT infrastructure. Currently this is done in an ad-hoc manner
with no performance guarantees. Developing a mechanism to more systematically support these
different epochs could allow new applications to be replicated for at least some portion of their
execution time and also support warm backups if a problem occurs.

Since the conclusion of gate test 3 one of our foundation technologies, the Spread software, has
seen a major version change and a number of improvements. One of these improvements is the
ability to add daemons during a run without starting all the daemons over again. While this
capability is useful, there is additional work in optimizing the daemons that are in use at a given
time. Optimizing the message flow taking into account group membership could yield significant
improvements in efficiency.
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4. Node Failure Detection and Related Transition Activities

With increasing use of COTS hardware, and the associated decrease in cost of large systems,
distributed systems with 1000+ nodes are being used to host mission-critical distributed
applications. By their nature, mission critical applications often require constant availability.
Since no hardware is immune to failures, either from normal wear and tear or from battle
damage, these mission critical applications must use some sort of fault-tolerance strategy to
provide continuous availability. The Program of Record (PoR) is using a Resource Manager to
provide support for activating backups in the case of failures. For the PoR’s Resource Manager
to provide this functionality, it needs to have accurate and timely notifications of node failures.

The PoR identified the problem of node failure detection (NFD), with the specific scalability and
timing requirements for their environment, as a key problem not solved by current COTS or
GOTS technology, and requiring additional research and development. This gap in capability,
combined with the thrust within ARMS for fault-tolerance techniques provided an excellent
transition opportunity.

Lockheed Martin’s Advanced Technology Labs produced a partial rapid prototype proof-of-
concept implementation of software-based node-failure detection. Starting from that version,
BBN developed a complete solution to the PoR requirements including fault-tolerance and
scalability, while at the same time ensuring that the solution remained low-overhead. BBN also
performed extensive tests of the resulting implementation to demonstrate that it satisfied all of
the PoR’s requirements. The result of this activity was successful in terms of both advancing the
state of the art and in transitioning to the PoR a drop-in technology to fill their node failure-
detection gap.

This section describes all the aspects of BBN’s Node Failure Detection transition activity. First,
we describe the PoR’s baseline implementation (B-NFD) and discuss some scalability tests we
ran using the baseline. Then, the design and implementation of both Lockheed’s initial effort (L-
NFD) and BBN’s complete solution, including the multi-layer aspects (ML-NFD) are discussed.
We then present the results of various experiments using the ML-NFD, and compare them to the
results of similar experiments using B-NFD where appropriate. Finally, we provide an account
of transition-related interactions with the PoR.

4.1 PoR’s NFD requirements

The PoR provided the ARMS project with ambitious requirements for a Node Failure Detector.
Individually, some of these requirements might be addressed by COTS or GOTS technology.
However, the combination that the PoR required was not satisfied by any existing solutions, and
overlapped with the fault tolerance R&D we were doing in the course of carrying out GT3.
There were four primary requirements for a technology that filled the NFD role:

Worst-case Detection Time — To support the real-time mission-critical software, and in
particular to give the resource management algorithm and mechanisms the greatest amount of
time to do their job, the worst-case detection time of a failed node was specified to be under 100
milliseconds.

Use or disclosure of the data contained on this page is subject to the restriction on the title page of this document.

65




BBN TECHNOLOGIES ADAPTIVE MULTILEVEL MIDDLEWARE FOR OBJECT SYSTEMS

Scalability — To support failure detection in the context of the PoR’s large-scale system the NFD
solution needs to scale to 1000 nodes and perhaps more. Combined with the 100ms worst-case
detection time requirement, there is potential for significant network traffic that is not directly
supporting the mission requirements.

Low Overhead — To enable the real-time mission-critical software to do its job, the NFD will
need to run concurrently (i.e., on the same nodes) with this critical software. Therefore, the NFD
solution needs to be low overhead in terms of network and CPU utilization. Specifically, no
NFD task may take up more than 2% of the CPU time on any single node.

Low False Positive Rate — To prevent wasting resources by unnecessarily triggering backup
fail-over, the NFD solution should not generate erroneous failure notifications (false-positives).
This is especially important if backup failover of mission critical applications causes non-
mission critical applications to be terminated due to lack of resources. The acceptable False
Positive Rate was specified as 1 per month.

Fault Tolerance — To remove the existence of a single point of failure, the consumer of failure
notifications will be fault-tolerant itself (i.e., replicated). The current requirements indicate that
there will be exactly two instances of the failure-notification consumer. Therefore, any failure
notification must be delivered to both instances of the consumer. Alternatively, there may be a
mechanism whereby two entities (each co-located with one of the consumers) can determine
failures independently.

4.2 Design and Implementation of Node Failure Detectors
4.2.1 Program of Record’s Baseline Node Failure Detection
4.2.1.1 Architecture

The PoR provided us with a baseline implementation (B-NFD) that uses a TCP-based “pull”
model for heartbeats and was designed with some fault tolerance capability. B-NFD consists of
client and monitor programs. The monitor program instances run on multiple nodes, to provide
fault-tolerance, while client program instances run on all nodes.
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Figure 25: B-NFD Architecture

The interaction between monitor and clients is depicted in Figure 25. For each client, a monitor
makes a request for an explicit “node-alive” message, sleeps for a specified amount of time, and
then checks to see if a node-alive message was received. It takes note of a missing node-alive
message from that particular node and reports a node to be failed if two consecutive node-alive
messages are not received.

The client program runs on all physical nodes, and spawns one thread for each monitor. After
initially making a connection to the monitors, each thread does a blocking read to wait for
requests for node-alive messages from its respective monitor. When a request is received, a
node-alive message (reply) is immediately sent to the monitor. Fault tolerance in this design is
achieved by having two instances of the monitor act independently, each sending its own
requests and getting its own replies. Thus each monitor detects failures independently, and
delivers failure notifications to a local consumer instance.

The PoR already believed that the B-NFD was not sufficient to achieve all the requirements
given in the previous section. However, to motivate the development of L-NFD, and later ML-
NFD, we wanted to prove that B-NFD would not satisfy all the requirements. The version of B-
NFD delivered to BBN was configured for 200 ms worst-case detection time. To bring it in line
with the requirements from the previous section, we tuned the B-NFD such that, when operating
normally, it would detect failures in 100 ms.

We performed some large scale (1000 virtual nodes split evenly between 20 physical hosts)
experiments using this tuned B-NFD. The results showed that at large scale, even in the absence
of other load on the system, B-NFD used significant resources on the monitor nodes (well
beyond the limits set by the PoR requirements), and that the worst-case detection time was
higher than the 100 ms requirement. More details on these experiments can be found in Section
4.3.
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4.2.2 ARMS Multi-Layer Node Failure Detection
4.2.2.1 Lockheed’s NFD

Our collaborator on the ARMS program, Lockheed Martin’s Advanced Technology Labs,
developed an initial rapid prototype implementation of NFD that was based on a “push” model
using UDP. This differed from the “pull” model used in B-NFD since the monitoring nodes did
not request node-alive messages. Instead, the per-node sender processes were simply expected
to produce node-alive messages every interval (where the value of the interval is configurable,
but has a direct impact on the worst-case detection time). By removing the “request” phase, the
L-NFD reduces the bandwidth consumed by more than half compared to the B-NFD.

However, Lockheed’s implementation followed the same two-tier architecture as the B-NFD, as
shown in Figure 25. Some initial scalability tests showed that ~1000 nodes could be handled
only if the worst-case detection time was set three times higher than the requirements (i.e., 300
ms). In addition, the CPU usage was 5% on the monitor nodes, which was higher than the stated
requirements.

4.2.2.2 BBN’s Multi-Layer NFD

There were two areas that BBN believed the L-NFD implementation needed to be improved
upon. The first was the combination of satisfying both the 100 ms worst-case detection time and
the 1000-node scalability requirements. To this end, BBN determined that a multi-layer design,
ML-NFD, based on design principles taken from MLRM research results, was more appropriate
(see Figure 26) than a single-layer solution. The second area of improvement related to the fault-
tolerance requirement. We determined that ML-NFD should be at least as fault tolerant as the B-
NFD implementation, and that any additional layers introduced should not lead to a decreased
level of fault tolerance. We utilized research results from ARMS fault tolerance R&D to address
this issue. Lastly, we implemented a software engineering improvement that turned out to have a
significant impact on real-time performance, and hence the false-positive rate: all logging was
moved to a dedicated, low-priority thread within each process so that it would not interfere with
the primary function of the ML-NFD’s processes.

ML-NFD consists of 3 programs: the Node Status Receiver (NSR), Monitor, and Sender. The
NSR runs on exactly two nodes (although the latest version can handle an arbitrary number of
NSRs). The Monitor program runs on several nodes. Our experiments were run in a
configuration that used two Monitors (each on separate nodes) for each 100 Sender instances, to
form a cluster as seen in the dotted box in Figure 26. An instance of the Sender runs on every
node, and reports to one or more Monitors.
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Figure 26: ML-NFD Architecture

Node Status Receiver (NSR)

The NSR is a surrogate for the failure-notification consumer. The NSR is the top-level element
of the node failure detection system, primarily responsible for collecting a list of failed or newly
“alive” nodes from monitors. Since the design specifies that there may be redundant Monitors
for each Sender, the NSR is designed to handle duplicate node status messages appropriately.

Monitor

The Monitor is responsible for processing node-alive messages from the Senders and detecting
failed nodes. The node-alive messages are processed in a dedicated thread as they arrive on the
UDP port. The detection activity also runs in a dedicated thread, and executes on a periodic
basis. The period of the detection activity is configurable, but to provide 100 ms worst-case
detection time, we used a value of 40 Hz (every 25 ms). We derived this value by modeling the
interactions necessary for notification. Any changes in node status are propagated to the NSR(s)

(top-layer).
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To determine if a node has failed, the detection activity uses a configurable Detection Threshold
(DT). The Monitor loops through a list of all the nodes that it is monitoring, and if the difference
between the current time and the time the last node-alive message was received is greater than
DT, the node is declared dead. To support the 100ms worst-case detection time requirement, all
our experiments used a value of 50ms for DT. Again, this value was derived from our model of
the NFD interactions. Note that, by design, DT is not directly related to the rate at which node-
alive messages are generated by the Sender. Through experimentation, we determined that the
best practice for avoiding a large number of false positives is to have DT at least twice the node-
alive interval. This practice allows the system to avoid declaring an erroneous failure in the case
of (non-consecutive) single-packet losses.

Sender

The Sender process generates node-alive messages at a configurable rate, and sends them to an
arbitrary number of Monitors (determined at process start time). The rate used in all experiments
was 45Hz (every 22 ms).

4.2.2.3 Comparison of ML-NFD and B-NFD

The two implementations described above are different ways of addressing the design for a fast,
large-scale, and error-free node failure detection. The differences include the model used (Push
vs. Pull), the underlying protocol (TCP vs. UDP), and the number of layers. Each of these

differences has implications for scalability and the ability to meet or exceed PoR specifications.

Push / Pull

The “Pull” model used in the B-NFD implementation requires that the server issue a request for a
node-alive message to each client at regular intervals. Given that the packets in both cases (a
request for node-alive, and the node-alive itself) are of equal size (both messages have very small
payload size; almost all the bytes “on the wire” are for protocol headers), a “Pull” model uses
twice as much network bandwidth as a “Push” model. This also has implications for CPU usage:
since the operating system has to do work in the network stack for each packet received, twice as
much work is being done in the “Pull” model. The extra CPU usage becomes significant at large
scales.

TCP/UDP

There are significant differences in the TCP and UDP protocols that have major design
implications. The first difference is that TCP requires acknowledgement (ACK) packets, so even
if there were a “Push” implementation that used TCP, there would be extra traffic over a UDP
“Push” implementation.

Another difference is TCP’s reliability: if message acknowledgements (ACKs) are not received
in a timely manner, TCP will retransmit. This has significant implications with respect to
predictable timing. The combination of retransmissions with TCP’s flow-control mechanisms
make the worst-case latency at high load difficult to predict.
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Finally, a minor issue is that in general TCP is more expensive in terms of CPU load per packet.
Most of this comes from both TCP’s larger header and from needing to calculate the checksum
on the payload portion of the TCP packet, which UDP does not do. However, in this case the
payloads are very small, so this overhead is probably negligible.

Layering

Given unconstrained bandwidth (i.e., the network is grossly over-provisioned), the limiting
factor for scalability becomes the number of packets a single node can handle (and at what CPU
cost). Using the B-NFD implementation, the nodes that need to handle the most packets are the
ones running the server program. Using the ML-NFD implementation, the nodes handling the
most traffic are the ones running Monitor programs.

Since nodes in the ML-NFD are divided into clusters that are serviced by independent Monitors,
it is possible in the multi layer system to significantly decrease the number of packets that any
single node must process.

A multi layer implementation gives enormous flexibility to a system integrator to adapt and
optimize the NFD mechanism according to the physical layout of the network. The multi-layer
configuration has the capacity to scale much higher than a non-layered configuration. While this
design does introduce additional points of failure, we compensate by adding redundancy to each
additional point of failure.

4.3 Evaluation of the ML-NFD
4.3.1 Experiment Design

The goal of our experiments was to provide a high level of confidence that the ML-NFD
implementation satisfied all the requirements given in Section 4. Our general methodology
involved setting up a 1000-node configuration (10 clusters of 100 nodes each), letting it run for
several minutes, and then inducing failures. Throughout the experiment, we instrumented the
CPU usage of all ML-NFD processes and had instrumentation for detecting false positives.

4.3.1.1 Special Concerns

Since NFD programs will be running on actual physical nodes that are doing real work and
generating network traffic, we deployed network load generators on the physical nodes involved
in the experiment. There are many ways network load can be introduced in NFD experiments.
Two possibilities that represent the “ends of the spectrum” are:

The network load generators are uniformly distributed across all nodes in the experiment. An
example of this type of deployment would be if half of the physical machines involved in an
experiment run network load sources and the other half run network load sinks.

The network load generator puts load between two physical nodes. There are several variations
of this experiment that are unique based on which ML-NFD processes are running on the nodes
with artificial network load.
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We determined that since the nodes hosting the Monitor processes handle the most ML-NFD
network traffic, the worst-case load (i.e., the configuration most likely to cause problems) would
be concentrated load between two nodes running Monitors.

The method of inducing faults also warrants special attention. We were interested in verifying
correctness of all aspects of ML-NFD under load. Therefore each experiment had three phases,
all of which had the load generators continuously executing:

Steady-state, pre-failure: All 1000 nodes active and reporting

Failure of a subset of nodes: half the nodes in a cluster (50 nodes) are failed in the same instant,
and timestamps are collected so that we can determine detection time during a post-mortem
analysis of the experiment. To gather more data points per experiment, we do this iteratively for
each cluster; for each of the 10 100-node clusters, we failed 50 nodes.

Steady-state, post-failure: the remaining 500 nodes (50 per cluster) active and reporting.

4.3.1.2 Experiment Descriptions

The total duration of each experiment was at least 60 minutes. The timeline for each experiment
was as follows:

At T = 0 minutes: Experiment Starts, network load is introduced

At T = 31 minutes: Faults are injected causing a subset of nodes to fail.

At T > 60: Experiment is finished.

ML-NFD was subjected to 3 different kinds of network load: high-load (40 Mb/s), low-load (10
Mb/s), and no-load. The B-NFD was only used in a no-load configuration, since the B-NFD used
too much bandwidth at the 1000-node scale to add a consistent amount of load. Choice of 40
Mb/s for the high-load and 10 Mb/s for the low-load were influenced by aggregate network load
generated by the detectors themselves and the network throughput (100 Mbits) supported by
their NIC cards.

4.3.2 Experiment Results
Table 12: No Load Results

Experiment Maximum Number of Network Load CPU load at
Detection false positives | At Monitor in Monitor in %.
Time at NFA in Mbits. Average
ms Actual (Observed Min
(Expected) and Max)
B-NFD 164 0 13-78 (71.5) >25* (25,60)
ML-NFD 80 0 2.34 (2.06) <1(0,8)
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Table 13: Moderate Load Results

Experiment Maximum Number of Network Load CPU load at
Detection false positives | At Monitor in Monitor in %.
Time at NFA in Mbits. Average
ms Actual (Observed Min
(Expected) and Max)
B-NFD N/A N/A N/A N/A
ML-NFD 92** 0 12.14 (11.86) <1(0,8)
Table 14: High Load Results
Experiment Maximum Number of Network Load CPU load at
Detection false positives | At Monitor in Monitor in %.
Time at NFA in Mbits. Average
ms Actual (Observed Min
(Expected) and Max)
B-NFD N/A N/A N/A N/A
ML-NFD 90™* 0 41.55 (41.27) <1(0,8)

*In the low load case the CPU load for the B-NFD was very uneven. With such a high standard
deviation the average was not very insightful. However, we know it was greater than 25%, which
is much greater than the goal of 2%.

**In the low and high load ML-NFD the difference in detection time would seem to indicate the
higher load makes for better detection time. This is not the case and the difference of 2 ms is just
“noise” and the numbers together should be taken to show that load does not greatly affect the

detection time.

4.3.3 Experiment Analysis

Generally speaking, there are two classes of problems that could arise with either
implementation. If there is a problem with the network or a host scheduling problem on the
client/sender side, packets are either lost or delayed. The manifestation of this class of problem
would be in the form of false-positives. If there is a scheduling issue on the monitor nodes such
that their work loops are not running at the intended rate, then the NFD system could exceed
worst-case failure detection time requirement.

4.3.3.1 Failure Detection Time

There are several factors that could lead to an out of specification detection time, all of which
have the basic property that the monitor work loop is not running at the proper rate.
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The first possibility is that CPU load on the system could be preventing the process from running
as often as it needs to. This is remedied by using the real-time scheduling class in a stock Linux
kernel. We used sched_setscheduler system call (with SCHED_FIFO as one parameter) to get
the ML-NFD processes to execute in the real-time scheduling class.

Using relative-time sleep mechanisms can also affect the rate. The standard mechanism used for
sleeping (the nanosleep system call) is subject to accumulation of error. This is a minor
problem, but can cause undesirable side effects such as running at a slower-than-intended rate.
The solution is to use an absolute-time based sleep mechanism, such as the
clock_nanosleep system call.

The final factor is an implementation detail, but an important one. If the monitor has an
expensive operation within its failure detection loop, it opens the possibility that some failures
may not be detected within the required time. For instance, if each failure event is issued as it’s
seen (whether via printf, CORBA call to some other component, etc.), and lots of failures happen
at once, it’s possible that the last nodes to be “detected” in a particular sweep will be beyond the
specified worst-case detection time. The way we dealt with this issue in ML-NFD was to queue
failure events in the detection loop, and then after the loop is done issue all the failure events for
that iteration in one operation.

4.3.3.2 False Positives

There are several scenarios that could cause false positives (reporting that a node is ‘dead” when
itisn’t).

Heartbeat-based solutions are susceptible to network ‘hiccups’. In particular, since both
implementations are configured such that two missed “node-alive” messages means that a node
is dead, a ‘hiccup’ that caused either two consecutive packets to be dropped or caused any packet
to be delayed for a time equal to twice the period at which they are expected would trigger a
false positive. The statistical chances of a ‘hiccup’ (and its nature: dropped vs. delayed packets)
vary greatly with the exact network hardware, topology, and workload used.

During over 20 hours of testing with 100 and 1000 node configurations, both under load and
unloaded, we observed exactly one false positive for each of the B-NFD and the ML-NFD
implementations. We believe that the cause of these two false-positives is the aforementioned
‘hiccup’. The root cause of such a hiccup is difficult to determine, especially given the
experimental test-bed that we used. After we observed the false positive for the ML-NFD
implementation, we added extra instrumentation to help determine the root cause, but never
observed another false positive.

Just as a network hiccup could cause a false-positive, a CPU scheduling hiccup on either the
client/sender nodes or the monitor nodes could cause delays that lead to false-positives. While
CPU scheduling hiccups are somewhat mitigated by using the real-time scheduling class
(SCHED_FIFO) for all the ML-NFD programs, later experiments with CPU load indicate that a
stock Linux kernel is not sufficient to guarantee consistent scheduling at the granularity that is
required for sub-100ms detection times. The PoR was using a real-time version of Linux, so this
issue was determined to not be an immediate concern for the PoR.
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However, gracefully (and correctly) handling “stock” (i.e., non real-time hardened) versions of
Linux at very fine time granularity is a difficult problem, and we believe that its solution would
make ML-NFD more generally applicable outside of the PoR context. To this end, we continued
work on ML-NFD, and in particular have been implementing and evaluating adaptation
strategies that allow ML-NFD to perform acceptably on non-real-time platforms (see Section
4.5).

4.3.3.3 Resource Usage — Network

The difference in network usage is significant. Analysis of theoretical usage shows almost a
factor of two difference between B-NFD and ML-NFD. (Note that packet sizes include all
headers: TCP/UDP/IP/Ethernet)

B-NFD: Average packet size: 71 Bytes (as measured by Ethereal)

71 Bytes * 33 Hz * 2 (for each server node) * 2 (one request packet, one reply packet) * 8 (bits /
byte) = 0.072 Mb/s per node.

ML-NFD: Packet size: 60 Bytes (as measured by Ethereal)
60 Bytes * 45 Hz * 2 (for redundant Monitor node) * 8 (bits / byte) = 0.041 Mb/s per node

At 1000 nodes, with the expected level of fault-tolerance (1 redundant server for B-NFD, 1-
redundant Monitor per cluster and 1 redundant NSR for the ML-NFD), the expected aggregate
network load (i.e., over all the networks in the system) generated by B-NFD is 71.5 Mb/s and by
ML-NFD is 41.2 Mb/s.

The worst-case load at any single node shows an even greater disparity, given that ML-NFD has
only 100 nodes reporting to any given Monitor:

B-NFD server node: 71 Bytes * 33 Hz * 1000 nodes * 2 (request/reply) * 8 = 35.75 Mb/s.
ML-NFD Monitor node: 60 Bytes * 45 Hz * 100 nodes * 8 = 2.06 Mb/s.

What is particularly interesting regarding the network usage is the difference between the
expected load for the B-NFD version and the actual observed load at the client and monitor
nodes. When running 50 clients on one physical node, the expected network load at that physical
node is 3.58 Mbits per second. The observed load was a very consistent 4.2 Mbits per second.
An explanation for this is that TCP is re-transmitting some packets. At the monitor node, the B-
NFD load varied widely between 13 Mbits and 78 MBytes. This bursty behavior seems to
reinforce the theory that TCP retransmissions are happening.

For ML-NFD, actual network usage at the Monitor and Sender nodes is very close to expected
network load. For all configurations that we tested, actual network usage exceeded expected
network usage by approximately 0.28 Mbits.

Use or disclosure of the data contained on this page is subject to the restriction on the title page of this document.

75




BBN TECHNOLOGIES ADAPTIVE MULTILEVEL MIDDLEWARE FOR OBJECT SYSTEMS

4.3.3.4 Resource Usage - CPU

The ML-NFD implementation is efficient in terms of CPU usage on the sender and monitor
nodes. B-NFD implementation is only efficient on client nodes. The dominant factor in CPU
usage for both implementations is directly proportional to the network load at that host. Since
the operating system must do work for each packet, the CPU usage is directly proportional to the
number of packets sent and received. A secondary issue is that TCP packets are generally more
CPU intensive for the operating system than UDP packets, given the extra features (and
complexity) of TCP.

For 1000-node experiments, the observed utilizations at the client for B-NFD and sender for ML-
NFD nodes were negligible, but utilization at all the monitor nodes in ML-NFD (each
monitoring 100 senders) was less than 1% while the monitor nodes in B-NFD had 25%-60%
CPU utilization. It is safe to assume that this wild variation is correlated with the observed
network-load variations mentioned in the previous section.

4.3.3.5 Scalability

The factors that limit scalability of all NFD implementations include total network capacity and
the per-node CPU power and network bandwidth. Our experiences with both the B-NFD and L-
NFD implementations indicate that the latter (per-node CPU and network) restriction was the
limiting factor in all the configurations we used. Experiments showed that both these
implementations had problems with large scale (1000-node) deployments.

The ML-NFD design addresses the per-node limiting factor by putting a hard limit on the
amount of work (both pure CPU and handling network traffic) that needs to be done by any
single node regardless of the total number of nodes.

The size of the clusters determines how much CPU and network traffic will be required at the
Monitor nodes. The key to ML-NFD’s scalability is that there is virtually no additional periodic
(steady-state) overhead on existing nodes when new clusters are added. This means that the
limiting factor in ML-NFD scalability is the total network capacity.

4.4 Transition of ML-NFD to the PoR

The ML-NFD was successfully transitioned to the PoR. In the course of this transition effort, we
delivered several versions of software, along with documentation and experimentation results, to
PoR personnel and worked with the PoR to help them evaluate it and integrate it. The following

timeline shows the important milestones of the ML-NFD transition effort.

Jan 18, 2006: BBN personnel visit PoR personnel at the PoR site in Portsmouth, RI to discuss
transition possibilities of the aspects of our Gate Test 3 and fault-tolerance work that fit the
PoR’s identified needs. PoR gave us a copy of B-NFD for reference.

Mar 02, 2006: Lockheed publishes to PoR L-NFD (ARMS-NFD version 1) and results for 1000-
node experiments using 300ms worst-case detection time.

March 24, 2006: BBN publishes to PoR the first version of the ML-NFD implementation
(ARMS-NFED version 2), along with preliminary experimental results.
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May 11, 2006: BBN personnel visit the PoR site to discuss ML-NFD integration and the
“network load” suite of experiments.

June 12, 2006: BBN publishes a new version of ML-NFD to PoR (ARMS-NFD version 3). This
version included various instrumentation items that were added to conduct our experiments.
During discussions with the PoR, they indicated interest in these additional instrumentation
items, so we packaged a new version and delivered it.

August 03, 2006: BBN publishes a new version of ML-NFD to PoR (ARMS-NFD version 4).
This version included transition of the primary programming language from C to C++, improved
logging that would not interfere with real-time deadlines, and the ability to turn instrumentation
on and off at run-time.

August 04, 2006: Telecon between BBN and PoR to discuss ARMS-NFD version 4.

August 18, 2006: BBN publishes a minor improvement of ML-NFD to PoR (ARMS-NFD
version 4.1). This version included a network interface to turn the instrumentation on and off
remotely and used implicit node identification based on IP address (previous versions used an
abstract Node ID that in practice would have needed to be mapped into an IP address by an
external entity).

September 29, 2006: Telecon between BBN and PoR to discuss PoR integration activities.

4.5 Adaptive ML-NFD

The PoR used a real-time operating system (RTOS) so that hard guarantees about CPU
scheduling could be made. We believe that ML-NFD would be more generally applicable if there
was not a requirement that an RTOS be used. By allowing ML-NFD to be used on a greater
range of commodity hardware and software, its value is multiplied. The greatest challenge when
using a non-RTOS is that CPU scheduling can be more erratic.

To get a feel for what would happen if ML-NFD were deployed in a non-RTOS environment, we
performed several small-scale (approximately 10 nodes), long running (1-2 weeks) experiments
on workstations running several varieties of non-real-time Linux. These workstations were in
use by developers doing normal work throughout the experiments.

This “normal load” induced a surprising number of false positives; some nodes averaged over
200 false positives per day. There were many CPU scheduling hiccups where the periodic
portions of ML-NFD processes (Sender and Monitor) did not get to execute for over 100ms
(which guarantees a false positive). Clearly configuring ML-NFD for 100ms worst-case
detection time on non-RTOS systems would not work in all cases. However, some nodes had
relatively few false positives (averaged 1 per day).

We believed that if the requirement for 100ms worst-case detection time was relaxed, it should
be possible to get the false positive rate down to a very low level (average 1 per month). The
question then became: how much should we relax the requirement by, and should it be done for
all nodes, or on an individual basis?
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The remainder of this section describes some of the adaptation strategies we have developed and
tested for the ML-NFD implementation.

4.5.1 Per-monitor, cluster-based detection-threshold adjustment

Our initial adaptation technique was based on the presence of groups of failures. Initial tests
using a driver program to simulate failures showed that this technique worked as designed.
However, in extended tests without the simulated failures it was not as effective at avoiding false
positives.

4.5.2 Per-monitor scheduling compensation

Analyzing the code and logs from extended runs, we identified a specific case that would cause
all of the nodes being monitored (by a given Monitor instance) to be (false positively) declared
as failed. We determined the cause to be a scheduling hiccup in the Monitor node.

The adaptation strategy that we developed was to have the monitor's periodic failure-detection
thread notice when it doesn't get to execute on schedule, and to ignore reported failures for that
cycle. The impact is slightly increased worst-case detection times. This seems to be an
acceptable tradeoff, since the scheduling hiccups (of duration ) are often much larger than the
intended period of the failure-detection thread (p, which by default is 25 ms). Without this
adaptation, the worst-case detection time is determined by s. With this adaptation, the worst case
detection time is determined by A+p.

Extended tests showed that this technique prevented nearly all the “clusters” of false positives.
This accounted for approximately half the false positives declared during the tests.

4.5.3 Per-monitor, per-node detection-threshold adjustment

While the Per-Monitor Scheduling Compensation deals with groups of failures, we also needed a
way to deal with individual nodes that are unable to schedule their Sender process consistently at
the initial rate, and thus lead to a high false-positive rate.

We have implemented an adaptation that allows the failure-detection threshold to be adjusted
(strictly increasing) on a per-node basis. This allows the NFD software to “discover” appropriate
thresholds for each individual node to avoid repeated false-positives. At the same time, it allows
us to keep tight bounds on worst-case detection time for nodes that are behaving more like real-
time operating systems (i.e., no scheduling hiccups). The threshold adjustments are propagated to
the NSR (top-tier) nodes, so that resource-management software that consumes node failure
events will be able to take worst-case detection time differences in nodes into account.

We are still evaluating this adaptation in combination with the Per-monitor Scheduling
Compensation technique.
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4.6 NFD Conclusions

The PoR came to ARMS with ambitious requirements to detect failures in a timely, accurate, and
efficient, and fault-tolerant manner. Building upon a proof-of-concept implementation and
applying ARMS multi-layered design and fault tolerance R&D results, we were able to increase
the timeliness of the system by making the sending and receiving of heartbeats more efficient
and less susceptible to load on the host system, both on a per-host basis as well as in the overall
system. This leaves more time for the application-level work of the system to complete while
also limiting the effect of the network performance on our detection capability. We improved
accuracy by carefully engineering the timers used by the system and by allowing detections to be
delivered under the imposed time limit. Lowering both the CPU and network utilization
increased the efficiency of the system, while having redundant monitors increased the systems
fault-tolerance. All of these changes were thoroughly tested in a number of scenarios before
being transitioned back to the PoR for inclusion in the operational system under development. In
addition, developing self-adaptation capabilities for false positive management serves as a
significant step forward in the state of the art for node failure detection.
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5. Dynamic Resource Management

In this section we describe BBN activities to develop dynamic resource management (DRM)
methods for the ARMS MLRM system. A goal of the ARMS project is to design a runtime
computational resource allocation engine provides appropriate and sufficient system resources
such as CPUs, memory, and bandwidth to be allocated for application strings to accomplish user
specified tasks across a shared, common computational infrastructure. If there are insufficient
resources to accomplish all desired tasks, resources should be allocated to applications strings so
the value to the warfighter of the computations performed are maximized. In addition, the
system’s resources should be allocated as swiftly as possible and with enough additional
resources in reserve if possible in order to best cope with unforeseen contingencies that might
otherwise require the reallocation of scarce resources.

At a high level the resource management goals in ARMS can be summarized as follows:

Maximize war fighting capability — Maximize string uptime and meet end-to-end real-time
deadlines

Deployment based on relative importance — deploy important application strings ahead of other
strings

Best utilize available resources — deploy as many application strings as possible with best
possible resource utilization efficiency

In the ARMS/MLRM system, we established that system behavior can be decomposed into
various missions. In the POR context, the system might have a radar tracking mission, a target
assignment mission and navigation mission among others. Some of these missions would be
relatively more important than others and their relative importance rankings may change over
time and situation. For instance, when approaching port during stormy weather, navigation may
be more important than target assignment, but conversely, during battle conditions, target
assignment may be more important than navigation.

Every mission in the system can generally be decomposed into possibly repeated sub-missions
called strings. For example, a radar-tracking mission might have multiple strings that correspond
to the tracking of various targets. As with the missions, some strings might be of more
importance than others. To again revisit the radar-tracking mission, it will likely be more
important during some operating conditions to track enemy warplanes more accurately than
friendly aircraft. The decomposition of global system behavior into missions and missions into
strings is depicted visually in Figure 27.

As part of our dynamic resource management R&D activities, we developed a set of utility
functions as real-time measures of system performance. These utility measures were intended to
be high fidelity versions of the two warfighter value metrics in the GT4 CONOPS document.
We defined one utility function, called the application utility, to be both a real-time and an
evaluative measure of how well the system accomplishes the tasks given to it be the user. This
measure could be used by a DRM system for online performance evaluation when making
resource management decisions. We defined another utility function, call the resource utility, to
be a measure of how efficiently DRM actually uses the resources.
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Because of the natural system-mission-string decomposition of the ARMS MLRM, we designed
separate utility functions for each layer of the hierarchy where higher layer utility functions are
composed from lower layer utility functions. This utility function approach to integrated
dynamic resource management also provides a more rigorous and potentially more easily
understood approach than functionally similar ad hoc methods.

observe

v
System
- Controller

_

reconfig.

High Level

N

observe

A 4

Mission
Controller

-

mission op

Middle Level

observe
- String
Controller

string tuning

Low Level

Figure 27 Three-tiered control system hierarchy

We used our utility functions to guide our design of a hierarchical resource management system
based on a string-mission-system decomposition of system behavior. Our hierarchical control
system was designed to use multiple local resource allocation algorithms to tune local resource
management behaviors at the string, mission and multi-mission levels. We investigated multiple
resource management algorithms that could be used at each level of the DRM hierarchy.

As we were designing our control system, we developed Matlab/Simulink simulations of the
ARMS system to examine the benefits of the various resource control algorithms in the context
of the warfighter measures from the GT4 CONOPS. We used these simulations to select a set of
algorithms for the control hierarchy that we implemented in the GT4 testbed and to contribute to
the GT4 icing efforts. Using our algorithms, we were able to achieve an order of magnitude
improvement in DRM performance as measured by the GT4 warfighter value metrics.
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5.1 Utility Functions for DRM Performance Measurement

In order to guide resource management strategies, we defined real-time and evaluative measures
of ARMS DRM performance that are more expressive and take into account more variables than
the baseline warfighter value metrics presented in the GT4 CONOPS. These observable utility
measures for the ARMS system that can be used to objectively compare two systems’
performance operating under different resource management strategies from a user’s perspective
with a higher fidelity than the GT4 CONOPS warfighter metrics. Our goal was for the utility
measures to be used as a guide for the DRM system to decide when and how DRM behavior
would need to be adjusted when the system’s real-time performance degrades. The ultimate goal
of utility function development was to develop a system performance measure that should be
maximized by the DRM during system operation.

We defined utility functions to measure both the Application Utility function and the Resource
Utility. The application utility function is used to evaluate the user-perceived value delivered by
the system. The resource utility function is defined to evaluate how efficiently and quickly
system resources are allocated and utilized.

We present some definitions before the introduction of the application utility functions and
resource utility functions.

e Application — An application is an instance of code running on a node.

e Task — A task or end-to-end task is a logical sequence of applications that perform
countable units of effective work subject to warfighting QoS requirements.

e Job —A job is defined as each invocation of a task.

e Application String — An application string often has multiple tasks that together help to
meet the end user’s requirements (which can either be hard constraints or soft operational
ranges). End-to-end requirements and utilities are generally associated with specific end-
to-end tasks in an application string. One task cannot belong to more than one string.

e Mission — A high-level, possibly repeated, objective that is composed of strings.
5.1.1 Application Utility

The application utility in a system is computed by taking the weighted sum of the Application
Utilities of the system’s missions, and a mission’s application utility is computed by summing
the application utility of the mission’s strings. We first show a method to compute the
application utility of a string before defining the application utility of a mission and the entire
system. Factors contributing to application utility include:

Availability — Is the application string or system up? Services can only be provided to the end-
user when the string or system is operating and free of failures.

Timeliness — Are the end-to-end deadlines met? Missed deadlines can have negative, sometimes
catastrophic, impact on the system.
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Quality — How accurate or complete is the information or data delivered by an application string?
Data compression, filtering, data transformation and incomplete transmission of information, as
side-effects of operating in a network-centric environment, can all affect the quality of
information delivered by the application string in a potentially adverse manner.

Throughput — For repeated jobs, this is a measure of how well an application string is able to
achieve its desired throughput during a given time interval.

We discuss how we perceived the above factors should contribute to the application utility of a
string. We then show how we incorporated these factors into a comprehensive utility function for
the evaluation of application utility. This utility function is only one of several valid and
plausible functions for the assessment of application utility.

5.1.1.1 Timeliness

End-to-end tasks typically have real-time deadlines associated with them. If each task can have
multiple jobs (periodic, aperiodic or sporadic), and deadlines are either met or missed for each
job in a task. Missed deadlines could potentially diminish the warfighting capability of an
application string (soft or firm real-time) or even result in failure of the mission (hard or firm
real-time). There are several possible scenarios for assessing the utility of a job’s timeliness
according to whether a given deadline is met and whether the deadline is hard, firm or soft real-
time:

If the deadline is met, then some utility or value y (0<y<1) can be given for that job.

If a hard real-time deadline is missed, there can be a penalty p (-1<p<0) associated with missing
the deadline.

If a firm real-time deadline is missed, the job has a given value y (0<y<1) if the total number of
missed deadlines in a constant time window 7 is below a given maximum. However, if the total
number of missed deadlines is over the given maximum, then the firm real-time deadlines
become hard real-time deadlines. Therefore, after the maximum number of allowed missed
deadlines has been reached in a specific time window, the penalty p (-1<p<0) is associated with
missing all future firm real-time deadlines in the time window. In this situation the number of
missed firm real-time deadlines needs to be tracked using a fix-sized sliding window. For
notational simplicity, define thr(z,t) to be a Boolean function that returns true if at time ¢ the
number of firm real-time deadlines missed in the window 7T has passed the threshold and false
otherwise.

If a soft real-time deadline is missed, then it is possible for there to be a partial utility associated
with completing the job after the deadline. This partial value could depend on the amount of time
after the deadline that the job is completed so that the longer the time, the smaller the utility.
There are different approaches to capture this concept of diminishing value: one possible
approach is to use the ratio of a job’s deadline 4 to its actual execution completion time ec
(where ec>d), dfec.
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Therefore, based on the above discussion, a job will get either a non-zero value yor a non-zero
penalty p, but not both. (That is, either y or p will always be zero, but not both.) This is due to
the intuition that one cannot be rewarded and penalized at the same time. Suppose the real-time
task types are mapped to the following R values:

R =1 hardreal-time.
R =2 firm real-time.
R =3 soft real-time.

The following functions can then capture the value y (Equation 1) or the penalty p (Equation 2)
under the scenarios discussed above.

y e<dA(R=1vR=2vR=3)

y=f(ec,d,R,t)=3 y ec>d AR=2A—thr(t,T) » (1)
dlec ec>d AR=3
0 otherwise
P ec>d AR=1
pzfp(ec,d,R,t,T)——— p ec>d AR=2Athr(t,T) (2)
0 otherwise
5.1.1.2 Quality

In addition to meeting real-time deadlines, the quality of the delivered information due to a job is
also of importance to a warfighter. When data is moved from producer to end consumer and
processed by a number of applications along the way, the delivery of the data may be delayed,
part of the data may be lost, or the data reaching the consumer may become transformed. For
example, data compression and filtering techniques used to reduce bandwidth usage could
irrecoverably degrade the quality of the data transmitted between the data producer and data
consumer. Let g (0<g<1) be a measure of the relative change in quality of a set of data after it
has been processed by a job. If g=1, then the data processing performed has caused no data loss.
If g=0, then there has been a complete data loss caused by application processing. The value g
can be measured, reasonably estimated or experimentally determined. Furthermore, a value for g
can be assigned in the application mode where data processing occurs.
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For an example of how data quality can affect the utility of a resource allocation, consider the
example illustrated in Figure 28. In delivering air search radar information, various forms of data
could be suitable depending on the resource availability and mission requirements. To reduce the
amount of data transmitted, raw sensor data can be converted to a two-dimensional image. This
conversion/compression is often lossy.

q=08

transmission
AR sensor data in TARGET
RADAR DATA L | COMPRESSION[——»
GENERATION IDENTIFICATION

Figure 28: An example of processing techniques that can impact the
quality of radar sensor data

In this example, the radar data needs to be compressed and sent over a communication link to a
target identification application. Due to limitations in the allocation of computation power and
bandwidth, the radar data is compressed in a lossy manner that results in 20% data loss.
Therefore, this job has a data quality factor of q =0.8.

Note that there may be multiple methods for measuring a change in data quality. One approach
would be to include an information-theoretic entropy measure of data corruption.

5.1.1.3 Availability

Unlike the timeliness and quality factors discussed above, availability is measured on a per string
basis and not on a per job basis. For simplicity, it is considered that a string is down when any of
its individual applications is down due to failure. A string adds no value during down time. Let
T,, be the time that a string is up during a time 7 that is the time window for the evaluation of

availability”. The availability factor a for the string can be expressed as the ratio:

T, 3)
a =
T

2 This time frame is generally different from the sliding time window for the firm real-time tasks.

Use or disclosure of the data contained on this page is subject to the restriction on the title page of this document.

85



BBN TECHNOLOGIES ADAPTIVE MULTILEVEL MIDDLEWARE FOR OBJECT SYSTEMS

5.1.1.4 Throughput

Like availability, throughput is measured on a per string basis. Generally it is desired for a string
with repeated jobs to successfully process as many jobs as possible over a given time interval
without missing any deadlines. Throughput is a measure of the rate at which a string processes
repeated jobs over the time 7. Naturally, this measure is relevant only to jobs that need to be
repeated regularly.

Generally, the higher the throughput of a string, the better, but like timeliness, there can be
several cases for how the relative desirability of a given throughput depends on the rate of job
processing. For instance, if given a maximum desired processing rate omax, the processing rate
a<omax could have a throughput desirability factor of o/amax. This case is called relative
throughput desirability because the desirability of a throughput is relative to a maximum
throughput. However, in the case of threshold throughput desirability, if a processing rate a; is
strictly greater than the processing rate a,, but both a; and a, are greater than a threshold oy, then
a; and ap have the same throughput desirability factor of 1. Furthermore, for a throughput az<ou
that does not exceed the desired threshold, then the throughput desirability factor could be O.

The intuition behind threshold throughput desirability is that the threshold ag, represents the
minimum throughput a string needs to have in order to accomplish its task.

A composite throughput desirability model that combines relative throughput desirability and
threshold relative throughput desirability can also be defined where if a processing rate a; is
strictly greater than the processing rate ap, but both a; and o, are greater than a threshold ay, then
a; and o, have throughput desirability factors of d;/dmax and ax/0max respectively. Furthermore,
for a throughput o3<oy, that does not exceed the desired threshold, then the throughput
desirability factor is 0.

Although only cases of relative throughput desirability, threshold throughput desirability and
composite relative threshold throughput desirability are considered here, it is entirely
conceivable that other methods exist to measure the relative desirability of the throughput of a
string.

Suppose the throughput desirability types are mapped to the following I" values:
I'=1 relative throughput.
I'=2 threshold throughput.
I'=3 composite relative threshold throughput.

The following function captures the throughput desirability factor under the scenarios discussed
above.

ala,,, I'=1
Th = f( r) 1 azo, nI'=2 @
= a’ an’mx ? alx ’ =
' ala,, aza, AT'=3
0 otherwise
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If the string throughput o is controllable, then by adjusting a, the string may be tuned to trade off
decreased string throughput for a higher timeliness factor in the case of resource contention. In
this case, the throughput of a system could be adjusted to optimize the utility of a string.

For an example of a system with a relative throughput measure, consider a string deployed for a
radar tracking system. The throughput of the radar processing string is the rate at which
successive tracks of the same target can be successfully resolved. Naturally, it is preferable for
the string in this radar-processing example to be able to process all given tracks at the same rate
at which the tracking data is generated. The higher the throughput for the radar processing
system on any given interval, the better. However, due to unexpected limitations in computation
power or a surge in trackable objects, the string may not be able to process tracks as fast as
desired while avoiding missed deadlines. By decreasing the processing rate, we could process
the remaining tracks so that their deadlines are met. If ®m,y is the maximum desired throughput

for the tracking system and ®<®,,, is the actual throughput, then % is the throughput

max

desirability for this system.

As would be expected, not all strings have a throughput measure as throughput has no meaning
for strings with jobs that are not repeated. In this case, if a string is not repeated, then the
throughput desirability can always be assigned.

5.1.1.5 Defining Application Utility

To incorporate availability, quality, throughput and timeliness factors into an integrated

application utility function, we first designed strings functions for jobs and tasks that take into
account timeliness and quality. Then, a string level application utility function was developed
that accounts for availability, timeliness, quality and throughput. This string-level application
utility can then be generalized for both single missions and holistic multiple-mission systems.

For an individual string, if a job is penalized because it missed its deadline (hard or firm), then
the quality factor is no longer important and the penalty p should be the utility (albeit negative
utility) of the job. However, if a job is rewarded with a value vy, then one would compute the
utility of a job by taking the product of the value and the quality factor (1 is considered to be the
maximum utility of a job). Therefore, the following function can be used to capture the utility of
the i” job u; in a task with respect to timeliness (value or penalty), and quality.

u, = p; +v4q;

Recall from the discussion of the timeliness factor in Section 5.1.1.1 that either y; or p; will be
zero, but not both. Therefore, if p; is zero, then u, =¥,q,, and if y; is zero, then u, = p,.

In a time frame of length T, two tasks could execute a different number of jobs. Assuming all the
jobs in both tasks met their deadlines and had perfect information quality, then one task would
have a much higher utility simply because it has more jobs (or execute at a higher frequency).
Therefore, it is desired to measure the utility of a task by measuring its average utility per job. If
P is the total number of jobs for the task in the time frame T for evaluation, one could compute
the average utility u; for a task as:
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1 P
Llj =Fz=;ui

An application string may have multiple tasks and the utility of a string could be measured by the
average utility of the tasks in the string. For a string Sy, let Oy denote the number of end-to-end
tasks in S; over some sample period. Then, the application utility of the string Sx without taking
into account the string downtime and throughput is:

1 &
UA, =0—Zuj (5)

koj=1
where u; is the utility for the jth task in the string.

The utility calculated in Equation 5 is over time T under the assumption that the string is up
during the entire evaluation and without taking into consideration the string’s throughput.
Therefore, the application utility of the string S taking into account the string downtime and
throughput is:

aTh &
UA, =— D u, (6)
Ok Jj=1

wherein Equation 6, a is the availability of the string Sy calculated using Equation 3 and Th is the
throughput of the string calculated using Equation 4. The utility calculated using Equation 6 is
essentially the string’s effective uptime (the time a string is up, consuming resources and
effectively performing tasks that contribute to the warfighting capability), which is a good
approximation of the string’s actual warfighting contribution.

It is now shown how a string’s application utility contributes to the application utility of its
mission and hence the application utility of the entire system. Assume there is a set of str(j)
application strings associated with the mission j. Each string S; has a relative value w; associated
with it which indicates the importance of each application string to the mission relative to all
other application strings and is part of the domain meta-information associated with the mission.
For example, a string with an importance value of 0.5 is considered five times more important
than one with an importance of 0.1. Importance values selected using different scales should be
normalized to provide a consistent view. Therefore, the mission level application utility UA (j)
for mission j can be defined as the sum of the Application Utilities of mission j’s strings
weighted by their importance values as shown in Equation 7:

str(j)

UA()= D wUA  (7)

i=1

wherein UA; is the application utility for string i in mission j and it can be computed using
Equation 6. Consequently, if there are m missions, then the global application utility is defined as
the weighted sum of the component mission’s Application Utilities where the weight w(j) is a
measure of the relative importance of the mission j:
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UA=Y WA (8)

j=t

5.1.2 Resource Utility

Although the application utility function assesses the ability of strings to accomplish user-
specified tasks under particular system resource management strategies, they do not assess how
efficiently and quickly system resources are allocated and utilized. Therefore, we defined the
resource utility function to evaluate this aspect of an allocation strategy and algorithm. The
resource utility function presented is based on the factors of resource slack and speed:

Resource slack — What portion of resources remain available to accommodate further
deployments or unforeseen contingencies?

Speed — How fast can an algorithm perform an allocation or reconfiguration?

5.1.2.1 Resource Slack

Resource slack is the measure of the percentage of free resources in the system and it is one way
to measure the quality of the allocation produced by an algorithm. It is significant in two ways:

It is an indication of the efficiency of an allocation algorithm. A resource allocation with a
resource slack of 0.12 (12% resources free) is better than one with a resource slack of 0.10 (10%
resources free) because it is more efficient.

The resource slack also provides a measure of the system’s ability to handle additional loads and
fault situations without resorting to reconfiguration. Free resources provide a buffer that can be
devoted to unpredicted loads and faults without the (more costly) reallocation of resources
already devoted to other strings in the system.
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There are different approaches to capture the resource slack factor and the specific approach
taken is largely dependent on the end requirements of the resource allocation. For example, if a
generally low utilization for all resources is important, then the resource slack factor s due to an
algorithm can be expressed as a function of the average utilization u of all resources combined
(CPU, bandwidth etc) >:

s=f,(W)

In the context of the work discussed in this paper, the resource slack s is normalized without loss
of generality to be a real value between 0 and 1 (0< s <1) for mathematical simplicity.

In order to guarantee that low resource utilization has a higher utility than high resource
utilization, fi( 1) will be strictly decreasing or at least decreasing with respect to .. If fi(1) is
strictly decreasing with respect to # and there are two utilizations W;, W, such that w; < W, then

fs(u1) = f(u2).

Similarly, in order to guarantee that conserving resources at high resource utilizations is
relatively more valuable than conserving a comparable amount of resources at low resource

utilizations, di f.(u) should generally be strictly increasing or at least increasing with respect
u

to & To demonstrate this, let there be two utilizations W, U, such that py < W, and let there be a
value € that represents a possible amount of decrease in these resource utilizations. Then, fy(u,)-
fi(ui-€) is the relative utility of removing an € amount of resources from the utilization p; and
fs(u2)- fs(U2-€) is the relative utility of removing an € amount of resources from the utilization ;.

Because 5-[—— f,(u) is strictly decreasing, then fo(u1)- fo(1i-€) < fo(Wo)- fs(Uz-€) which implies that
u

the utility of removing the € amount of resources at utilization |, is greater the utility of
removing the € amount of resources at utilization p;.

3 The allocation al gorithm can be designed to run on a dedicated node and consequently fi( 1)
does not need to take into account the overhead associated with running the allocation algorithm.
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The relative curvature of f(u) with respect to 4 can be tuned to properly avoid higher levels of
resource utilization based on contextual knowledge of the system. However, a simple approach
for implementing fi(#) used in this version of the paper is a linear function of the average
utilization of all resources (CPU, bandwidth etc), u, as shown below:

s=f(W)=1-p

Another possible approach is to use the peak utilization among all resources as the measure of
resource slack as is commonly done in the field of power generation. Note that in the case that
not all resources are valued equally, fi(#) could be generalized to be a function with a multi-
dimensional input that more explicitly conveys the relative utilizations of the resources. One
example could be that the shared resources in the system are given different relative importance
values, and the benefit of achieving a higher resource slack is ranked by each resource’s
importance, i.e., maximizing the slack for the most important resource is more valuable than for
the second most important resource etc. In this case the input to the resource slack function could
be a vector of resource utilizations.

5.1.2.2 Speed

An additional important factor in the utility of a resource allocation algorithm is the “speed” of
the allocation algorithm. Consider two algorithms that both produce acceptable, working
resource allocations. If one algorithm can always compute an allocation at least as fast as the
other allocation algorithm and both algorithms produce the same amount of resource slack, then
the faster algorithm can intuitively be thought of as a “better” algorithm. However, faster
algorithms might commonly need to tradeoff increased allocation speed for decreased resource
slack. Assume there is a desired time #, for deploying a given set of application strings and # is
the actual time used by the algorithm to produce an allocation for the set of application strings.
Then the speed factor v for an algorithm can be expressed as a function of #y and #:

v=f(t, 1)

The value of v will decrease with respect to t. Generally v can be normalized to be a real value
between 0 and 1 (0< s <1) for mathematical simplicity.

For a simple implementation of the speed factor function, suppose n allocation algorithms are
given that generate solutions with computation times {ty,...ts}. Then, if t = max{tl,...,tn}
define v(i), the speed factor v for the i™ algorithm as:

v(i) = ¢ "%.

Note that this implementation of the speed factor disregards the desired time #, for deploying a
given set of application strings, but normalizes the speed factors so that the algorithm with the
shortest time has the highest speed factor.
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5.1.3 Defining Resource Utility

Based on the speed and efficiency factors discussed above, we established a resource utility
function to evaluate the efficiency of a resource allocation algorithm. In distributed real-time
systems such as ARMS MLRM, resource allocation occurs at multiple layers in the system
hierarchy. It can generally be assumed that high-level resource allocators will not have detailed
information about layers beneath them. Thus, as coarse resource allocations are performed at
higher layers, refined allocations are then performed at lower layers in the system hierarchy. For
example, in ARMS MLRM the Infrastructure Allocator (IA) only has resource information about
the pools (not individual nodes in the pool) and allocates applications to pools based on its coarse
grained information. A pool-level Resource Allocator then assigns applications (allocated to the
pool by the Infrastructure Allocator) to specific nodes in the pool. The assumption is also made
that a feasible allocation at a higher level implies feasibility at lower resource allocation layers
for the sake of simplicity. The resource utility function discussed below is therefore applied to
resource allocation algorithms at different layers of the hierarchy.

In order to trade off the computation speed and resource slack to gain the best possible
performance, the resource utility function could be defined to be a weighted sum of the two
factors:

UR=cyv+c,s (9)

The variables ¢; and c,, are weights for the relative importance of computation speed and
resource slack respectively. Generally, as experience is gained in using the system, the ¢; and ¢,y
values can be adjusted to better reflect the relative importance of speed and resource slack when
computing resource utility. It remains an open area for continued investigation to find
experimentally optimal values for these weights.

The resource utility captured in Equation 9 is a starting point for evaluating the performance of
allocation algorithms including the performance of the incremental mapping algorithm used in
the Infrastructure Allocator and various bin-packing algorithms used at the pool level. If only a
subset of strings can be deployed due to limited resource availability, then the resource utility
alone may not fully indicate the quality of the allocation since the number of strings deployed
might be different and thus produce a different system-level application utility as discussed in
Section 5.1.1. In this case, one needs to look at both aspects of the utility and make a judgment
on which aspect is more important. One possible simple approach to combine these two types of
utilities into one is to define the overall utility U as a weighted sum of these two:

U=c,UA+c,UR  (10)

where ¢, and ¢, are weights for the relative importance of these two forms of utilities to the
system. We realize that developing a comprehensive way to capture the overall utility is a very
hard problem and we’ll try to address this in more depth in our future research.
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5.1.4 Utility Metrics for Control

An important consideration for these systems when designing online metrics to be used with
control functions is the lack of accurate and timely information. Whereas offline system
evaluation is generally performed with full information about system behavior after the fact,
online performance and decision procedures rarely have the benefit of full system oversight. For
instance, the controller would need to know which resources it can (currently) deploy strings on,
but the transmission of this information to the controller may be delayed. Similarly, the
controller may not be instantaneously aware of job and/or string failures. Any design of a
control architecture would need to take these factors into account.

5.1.5 The Gate Test 4 Metrics

As an aid to the reader, we present here the GT4 metrics from the GT4 CONOPS. We designed
our utility function due to perceived deficiencies in using these Metrics to guide control
decisions. These concerns are discussed in Subsection 5.1.5.3. Note that the Warfighter Metrics
are both evaluative metrics and are not intended for use as a run-time measure.

5.1.5.1 Metric 1

An important concept in the definition of the GT4 Metric 1 that is not expressly addressed in our
utility function designs is the concept of “most important strings.” GT4 Metric 1 was designed
to measure “the proportion of time that all of the highest priority applications strings remain
operational.” We understood the most important strings to be the strings which are assigned the
highest importance values. The equation given for Metric 1 in the GT4 CONOPS is:

ZT (Spax )
T SMAX

This function is computed over a run of system operation. It is the sum of the up time of the
most important strings divided by the number of most important strings and the run time of the
experiment.

5.1.5.2 Metric 2

Similar to Metric 1, Metric 2 is the “average total warfighting value of operational application
strings”. Metric 2 can be thought of as analogous to a coarse-grained version of our application
utility divided by the run-time of the experiment.

M1=Z(—Ti’ff(s—)*WFV]

Over a run of system operation, Metric 2 is sum of the proportions of time the strings are running
weighted by their warfighter values.
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5.1.5.3 Perceived Deficiencies in the Gate Test 4 Metrics

The two performance metrics are intuitively designed to measure the ability of the system to
allocate 1) sufficient resources for deploying critical strings and 2) resources to maximize the
sum of the warfighter values of the deployed strings. Unfortunately, the two performance
metrics do not explicitly account for the ability of the system’s strings to process other less
critically important jobs when evaluating system performance. For instance, during situations of
resource contention, if a less-critical string processes jobs at a sufficiently low frequency or
aperiodically such that if between a string’s failure and recovery, no jobs are dropped, then there
should be little or no penalty reflected in the performance evaluation of the system due to the
short-term downtime of this string. This is because the uptime of low frequency or aperiodic
strings is not necessarily proportional to the number of job successfully processed by the string.
On the other hand, the GT4 evaluation metrics as defined would most closely match the intended
purpose when used with strings with very high job processing rates. The reported uptimes of
these strings would be highly correlated with the proportion of jobs processed by these strings.

Because there is a penalty reflected in the performance evaluation of the system due to the short-
term failure of a less-critical string when no jobs are dropped, there is no benefit to prioritizing
less-critical string recovery based on job scheduling.

Naturally, the most critical strings should always be allocated resources no matter there job
scheduling. However, if the system is ever in a situation where there is so much resource
contention that resources cannot always be allocated to even the most critical strings, then the
scheduling approach outlined above for less-critical strings could also be applied to the most
critical strings in order to generate some level of warfighter value from the system.

The resource allocation system should be designed to give higher string recovery priority to
strings with impending jobs to achieve actual warfighter benefit. Therefore, we propose that
evaluative measures for system performance should account not just for the ability of strings to
be allocated sufficient resources, but to explicitly account for string failures during performance
evaluation only when jobs are not processed. In the first part of this section, we discussed our
proposed real-time utility measures not only as an off-line method for evaluating system
performance, but as part of an online system performance measure that the resource allocation
system can use to guide its allocation decisions toward improved warfighter value.

With the currently defined performance metrics, it is natural to define the online control metrics
as an approximate numerical derivative of the offline evaluation function. With this relationship,
if the online control metric reports a high level of value at an instance in time, then the offline
evaluation metric should accumulate a high level of value due to the operations of the system at
that time. This can be done in several ways. Using the currently defined evaluation metrics, the
rate of increase of the offline metrics is equal to a (possibly weighted) sum of the current
deployed strings. If one were to use a performance evaluation metric based on the accumulation
of rewards due to successful job completions, the online control metric should be a (possibly
weighted) function of which strings can successfully process their next jobs in order to better
capture the online ability of the strings to accomplish their tasks.
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Utility Measures of System Performance:

The performance metrics used by the system should naturally be accumulative measures of
system performance. That is, rather than instantaneously attaining high levels of system
performance intermittently, it is generally preferable to attain a lesser level of instantaneous
performance as long as the average warfighter value is higher. This property is well reflected in
the currently defined GT4 performance metrics, which are essentially sums of the integrated
performance of individual strings. However, if one were to take a job-based view of system
performance evaluation, one would need to measure system performance as the weighted
summation of successfully processed jobs rather than the integral of system uptime.

As discussed above, the method used for the evaluation of system performance has a significant
impact on how resource allocation decisions are made when controlling the system. Whereas the
evaluative measure for system performance is computed offline, dynamic resource allocation
systems, such as the MLRM, generally need an online performance measure that can be used to
evaluate the health of the system and decide on the best course of action during run-time. For
instance, when deciding whether to take a resource allocation action, a system controller should
be able to estimate the possible benefits and penalties associated with those actions. A resource
controller should be able to decide online when the system is performing insufficiently and that it
needs to take action to improve performance. Similarly, when deciding how to allocate
resources to strings, a resource controller would need to know the relative benefit of deploying
the strings on the various resources. Because the system performance measures are inherently
defined as integral (summation) equations, it is natural to define the control performance
function as a kind of numerical derivative (or instantaneous rate of change) of the offline
evaluation functions so that the controllers can have information about instantaneous system
performance.

Moving Forward

With the above points we have raised regarding performance metrics for evaluation and control,
we believe that:

Evaluative measures of system performance should account for the ability of strings to
accomplish its jobs, not just that it has sufficient resources to run.

Whereas accumulative and/or average measures of performance are used to evaluative system
performance, control decisions should be made using instantaneous measures of performance
that measures the rate of change of accumulated utility.

Evaluative measures of system performance should use information that is accurately available
to the control system in a timely manner so that the control system can have sufficient
information about system health to make the proper control decisions.
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5.2 Hierarchical Control for Dynamic Resource Management

This section discusses our design for the hierarchical feedback control DRM system approach for
the ARMS Multi-Layered Resource Management (MLRM). Several operational aspects of the
control system introduced in this section are left intentionally vague at this time to more
succinctly convey a high-level overview of our design of the control system. We designed this
DRM system so that various local resource management algorithms can be used at the various
levels of the hierarchy to tune local behavior. Details about our algorithm designs are discussed
in Subsection 5.3. In this following subsection, these algorithms are compared through the use
of a Matlab/Simulink simulation package that we developed and several of the more difficult
implementation issues are identified as areas of continuing investigation.

5.2.1 Control System Overview

Our goal was to design an ARMS MLRM in which computational resources are allocated so that
deployed application strings perform their desired operations with maximum utility. In general it
may occur that some resources, once allocated, may become inaccessible due to resource
contention and unpreventable system behavior such as hardware failures. When these situations
arise, the resource control system should be able to automatically and dynamically manage
resources in order to ideally maximize the system’s application utility. This subsection describes
a multi-level hierarchical control system to dynamically manage resources in the ARMS MLRM
based on a system-mission-string decomposition and motivates the architecture for this control
system in the framework of application utility maximization.

At initialization, strings are deployed using services provided by a resource allocation algorithm
such as incremental mapping or multi-dimensional bin-packing. After initialization, the control
system then dynamically and continuously manages resources in the system under changing
conditions including failure conditions such as node and pool failure. The hierarchical resource
control system interacts with the system at three levels: system, mission, and string.

At the highest level, the system controller has the ability to trigger system-wide full reallocation
or reconfiguration of resources involving coordination between multiple missions. There is
expected to be a relatively high cost associated with performing such a system wide action, so
global allocations should only be performed when the cost of these actions can be justified by a
sufficiently large gain in application utility or when no other effective actions are available.
These system level reallocations or reconfigurations may by driven by command decisions, or
triggered as an automatic response to changes in the system that could not be mitigated by lower
level controls.

At the mission level of operation, the mission controller manages the behavior of strings to
maximize the local mission-level application utility. Possible actions that could be taken at the
mission level include moving strings/substrings operations between pools after failures or in
response to increased load, starting or stopping strings, or killing and generating replicas to attain
proper levels of fault tolerance. Due to its inherent difficulty, we temporarily disregarded the
problem of killing or generating replicas. Because control actions taken at the mission level can
have wide-ranging impact, multiple mission level controllers will typically have to coordinate
their actions with the system level controller or even amongst themselves.
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The application utility functions defined in Subsection 5.1.1 are computed at the lowest level via
the summation of string level utilities. We therefore started from the proposition that string level
control actions are natural to be used at the lowest levels of the control hierarchy. (If this
granularity proved inadequate, we would have provided a finer granularity for control actuation
(e.g. by controlling individual applications).) Strings can locally and independently tune their
operations in order to locally maximize their application utilities by adjusting their controllable
parameters such as throughput and quality factors. There is little or no cost associated with this
low-level fine tuning, so the strings are allowed to perform these actions freely bounded only by
their resources limits and desired operational ranges.

Since controllers at all three levels are simultaneously performing their actions at runtime,
coordination between them is thus critical and essential in order to take appropriate action at the
right time and at the right level while avoiding conflicts between controllers at different levels.
We proposed a fundamentally bottom up approach for the ARMS MILRM design that we
believed to be suitable for managing the type of operations and applications in the system.
Additionally, we augmented this bottom up approach (to the dynamic management) with a top-
down information passing policy so that the system user and/or high-level controllers can prompt
the lower level controllers to take local actions.

With our bottom-up approach for the control system, when a low-level string controller is unable
to markedly improve or maintain its desired application utility, it would communicate this to its
mission controller. This triggering event drives the mission controller to perform mission-wide
adjustments of its strings in order to attempt to improve the string utility if the mission controller
deems these actions feasible. When the mission controller is unable to improve its application
utility (when it is actively seeking improvement’), it would similarly communicate this to the
system controller. This signal may prompt the system controller to perform system-wide
reallocations in order to attempt to improve the mission utility. The advantages of this bottom up
approach include rapid local responses to changes in system behavior, minimized
communication cost between control levels, and scalability of the solution.

Throughout all operations in the ARMS MILRM, all operations have an application utility that
expresses the relative ability of the system to perform its desired behaviors. Along with the
Warfighter Metrics, this utility evaluation should be maximized over the course of system
behavior and in the face of adverse conditions such as equipment failures.

Now that an overview of the multi-level control system has been presented, a more detailed
design of the three levels of the control system is presented in the following subsections.

Use or disclosure of the data contained on this page is subject to the restriction on the title page of this document.

97




BBN TECHNOLOGIES ADAPTIVE MULTILEVEL MIDDLEWARE FOR OBJECT SYSTEMS

5.2.1.1 System Level Management

As described above, the highest level of the resource control system performs system level
reallocations and reconfigurations when the mission level controllers are unable to sufficiently
improve system performance and it is estimated that the utility of the resulting allocation minus
the associated cost is greater than the utility of the current allocation. To illustrate this in a more
formal manner, suppose x is the current resource allocation state, and x’ is the new allocation
state if a candidate reallocation R occurs. This reallocation transition is denoted as x—gx’. Let
EU(x) denote the estimated utility resulting from maintaining the current state x, let EU(x’) be
the estimated utility for the new state x’, and let EC(R) be the estimated cost of performing the
reallocation R. Then, if EU(x’) - EC(R) > EU(x), there would be an overall gain in utility if the
candidate reallocation R were performed. The EU(x’) - EC(R) > EU(x) test is known as a
threshold passing test and it is used to decide if the net utility gain EU(x’)-EC(R) passes the
EU(x) threshold to signal that there would be a net gain in utility by performing the reallocation
R.

We originally conceived that system level resource management operations would typically
occur after dramatic changes in the system such as multiple node and pool failures, or when the
system is asked to reconfigure itself under changing mission priorities.

As a simple example of how we originally conceived the system level controller could work,
suppose nine critical strings are running in a system with three pools. If one of the pools were to
fail and there are three strings partially deployed on that pool, then those three strings would no
longer be running and there might be an estimated utility of EU(xs) of solely maintaining the
remaining six strings on the two operational pools. Suppose one of several possible reallocations
could be performed that the three failed strings (or more precisely their substrings on the failed
pool) are redeployed to the other two pools such that this control action would have a resulting
estimated utility of EU(xp). It is possible that in order to perform this reallocation, it is necessary
to temporarily halt the operation of some of the six running strings on the operational pools with
an estimated cost of EC(R). If EU(x9) - EC(R) > EU(xs), then it would be advantageous to
perform the redeployment, but if the six operational strings are so critical that the reallocation
cost would become so great that EU(xy) - EC(R) < EU(xs), then it would be better to maintain
system operation with only the six strings operating. Although there might be other possible
control actions in order to redeploy the failed substrings, this example is given as a
demonstration of how a change in utility from a deployment might be outweighed by the cost of
performing a control action.
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Any number of possible algorithms could be used to compute candidate reallocations could be
used, such as an implementation of multi-dimensional bin packing which was investigated by
Lockheed-Martin, or a modification of the incremental mapping method being developed by
JHU APL. However, it is necessary that when choosing a candidate reallocation, there be some
method of estimating the reallocation utility, EU(x’) and the reallocation cost, EC(R). We
conceived that a possible methods for finding candidate reallocations would operate in an online
manner such that during the course of system operation, the search algorithm could continually
search for and maintain a list of the “best” found candidate in memory. The internal best
candidate found would be continually available to the high-level control system such that if the
high level control system ever decides that EU(x”)-EC(R) > EU(x), then the reallocation is
performed. In this manner, the high-level control does not necessarily need to wait for the
allocation search algorithm to cease operation or find the optimal solution, but the high-level
controller only needs to wait for a reallocation that is “good enough.” We ended up not
implementing this specific approach, but we did use a related approach based on the estimation
of possible resource allocations.

We realized that the precomputation method for finding candidate reallocations might not always
be viable under sudden and significant changes of state such as those occurring due to battle
damage. During these situations, the controller should have a precomputed static default
deployment to use as a failsafe, baseline mode.

5.2.1.2 Mission Level Adaptation

For mission level control, the underlying philosophy is that instead of performing wholesale
reconfiguration of the system, the mission level controllers are intended to actuate discrete
control actions to adjust the performance of the mission and the performance of all the strings
within the mission. As an example of this philosophy, to revisit the three pool example from
Section 5.2.1.1 where a single pool fails, instead of reallocating all of the three affected strings to
the other pools simultaneously, it would be feasible for the mission level controller to push one
of the failed strings onto one of the other operational pools. Note that in this example, it is
assumed that all of the strings belong to the same mission.

Control actions which we conceive as being feasible at this level include the starting or stopping
of individual strings, killing or generation of replicas, the moving of individual strings or
substrings between pools or nodes, all within a single mission. It is generally assumed that the
control actions at this level have a lower cost and impact than the combined operations that occur
at the system level controller. Similarly, it is assumed that this mission level of the control
hierarchy operates on a faster time scale than the system level controller.

We conceived that at the mission level of operation, the controller would have a finite set of
known possible control actions {uy,...,u,}. Similar to the system level controller, it is assumed
that each of the control actions could have an associated (possibly 0) cost EC(u;) (for
i€{l,...,n}).
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Suppose at time ¢ the system is at state x. For every control action u; taken at x there is a
corresponding resulting state x; such that x—,x;. As for the system level management, if EU(x;) -
EC(u;) > EU(x), then the utility of the reallocation would be more beneficial than the utility of
the original allocation. Therefore, in this case it would be advantageous to take the control
action u; in order to maximize the overall estimated utility. In the case that there are multiple
control actions that result in EU(x;) - EC(u;) > EU(x), the correct control action would be to
choose the u; that maximizes EU(x;) - EC(u;).

Although we did not design the system in this manner, if there are multiple missions in the
system, mission level controllers may need to coordinate their actions, potentially through direct
coordination with the higher level system controller. This need for coordination was perceived
as possibly being of interest because actions taken at the mission level can have wide-ranging
impact. However, during our simulation experimentation, we found that we were able to
significantly improve our system over the baseline without this extra complication.

5.2.1.3 String Level Tuning

At the lowest level of the resource allocation control systems, string operations are dynamically
and continually tuned using a gradient descent algorithm to locally maximize their application
utility. Tunable parameters that locally influence a string’s application utility include quality and
throughput. Mission requirements generally determine the ranges of these tunable parameters
and they need to be captured in the string specification, e.g. AIM or its evolving equivalent.
Other string-level QoS attributes (timeliness, availability, etc...) cannot be directly controlled at
this (string) level. A string’s application utility is directly proportional to both its quality and
throughput. The control actions taken at the string level to adjust a string’s quality and
throughput generally have little or no cost associated with them beyond the cost/utility observed
directly through the application utility function. Therefore, the fine-tuning of these parameters
can be allowed to occur regularly as long as the resource consumption is within its limits and the
string stays within the desired operational range. Note that timeliness is indirectly influenced by
manipulating quality and throughput, so the over-actuation of quality and throughput may
adversely affect application utility by decreasing a string’s timeliness.

Generally, if a string is unable to maintain a sufficient amount of local utility, it would be able to
transmit this difficulty to its mission level controller. In this manner, the control can be properly
transferred to a higher level controller in order to maintain the performance of the system.
Similar control transfers can also occur between the mission level and the system level in this
bottom up control approach.
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5.2.2 Implementation Plan for the DRM Control System

Now that an overview of the MLRM control system has been presented in Section 5.2.1, this
section fills in more details in the above high-level discussion by showing our initial, albeit still
simplistic, implementation plan for the MLRM control system. We used this design to explore
key details of how the control system could operate in practice, and as a means to identify
several key aspects of the MRLM control system which, as properly addressed in future work,
are needed to enable and improve the abilities of the controllers. First, in Subsection 5.2.2.1, we
discuss how we planned on implementing the utility estimation functions from Section 5.1.
Then, in Subsection 5.2.2.2, we discuss how we initially conceived the controllers should operate
and coordinate their actions. Subsection 5.2.2.3 presents a control example for the operation of
this planned system.

5.2.2.1 The Implementation of Utility Estimation Functions

As discussed in Section 5.2, the operation of the hierarchical control system is predicated on
being able to estimate the utility of resource allocations that may result due to its possible control
actions. Several omitted items in our control system description in Section 5.2.1 are the details
of how we planned for the various level of the control system should 1) obtain information about
system behavior, 2) determine what its feasible control actions are and 3) determine how to
actually estimate the utility of those actions.

Observations Of System Behavior

The various controllers in the MLRM system determine their appropriate control actions by
processing information about the current “state” of the MLLRM system. The controllers can
obtain their information through direct observation of behavior in the system via various
monitors in string applications or on nodes, by communicating with other elements of the
MLRM infrastructure such as the pool managers and bandwidth broker, or by querying the RSS
at different levels.

Although there may be more optimal sets of information that the controllers should obtain other
than what we initially expected, our expectation is that this knowledge will become more
intuitive and apparent as experience is gained in working with the system. However, we were
confident that the information specified here for the controllers to be able to access is a
reasonable first step towards the ultimate goal of designing an effective control system for the
MLRM, which is vastly superior to, more flexible, and better organized than current (static)
practice.

To start, the low-level string controllers need to access information about the string’s local
throughput, quality, and timeliness through various string and application level monitors. In
addition, a string failure monitor should push such failure events to the string controller (likely
through an RSS callback). These observations of string behavior are fundamental to the
computation of string application utility in order to maintain the desired operation of the string.
Therefore, this information should be accessible to the string controller. From these
observations, the string level controller can compute the string’s application utility and push this
value to the RSS so that the mission controller can obtain this information to compute its mission
level application utility.
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Because the mission level controllers coordinate the behaviors of sets of strings, the mission
level controllers should be able to obtain the Application Utilities of the strings that belong to the
mission. This information can be obtained either through push or pull from the RSS (as
mentioned above the string controller pushes this information into RSS). Therefore, the mission-
level controllers are able to compute their mission’s application utility and push that to RSS for a
system level controller to consume. Additionally, the string-level controller needs to be able to
transmit information directly to its mission-level controller upon the detection of software
failures in the string.

Because the mission level controllers take control actions with potentially system-wide
implications, they need to obtain resource information, including information about pool and
communication failures, from the Bandwidth-Broker and pool managers via RSS. Additionally,
the mission-level controllers need to obtain information about their ability to allocate resources
for control actions potentially performed by the mission-level controller. This information can
also be obtained by querying pool managers and bandwidth broker.

At the highest control level, the system level controller needs to access mission level application
utilities. Similar to the mission level controllers, information about pools and communication
links including various failure events also need to be made available to the system level
controller. A schematic of how information is passed between the system layers can be seen in
Figure 29.
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One of the key challenges in designing the hierarchical control system is the coordination and
communication between different control levels and the organization of possibly multiple
triggering events in the same controller. As mentioned in Section5.2, the coordination between
controllers at different levels will occur in a bottom-up manner within a top down policy
frameworks that changes in the system will be handled at the lowest control level if possible and
the higher level controllers supervise the local behaviors of the low-level controllers.. In this
manner, a user of the MLRM control system has the ability to give high-level resource
management directions while avoiding the need to dictate low-level operations. Within a
controller, multiple triggering events can be received and the controller needs to figure out the
right action based on the type and timing of these events. For example, during a pool failure
scenario, three events could be reported to the mission level controller: a dropping of mission
Application Utility, string failure, and pool failure. These events could arrive at different times
and we expect failure detection would be generally faster than the detection of utility drop. As a
general approach, we propose that failure events take precedence over making of observations,
and larger scope events take precedence over smaller scope events. Similarly, failure-recovery
operations and command directives pre-empt all other control system operations, and command
directives pre-empt failure-recovery. Therefore, in this case the pool failure event will be
handled by the mission controller instead of the other two, assuming they are received within a
“grace” period. This “grace” period could be the worst-case failure detection at the mission level.
For example, if the “grace” period is set at 2X the effective heartbeat for a computing pool, then
the controller will wait at least that long (to allow other events to come in) after receiving the
first event. In addition, a control action could be preempted if the controller believes the later
action can solve the cause of the problem and the earlier action won’t. For example, a string
failed in the system and for some reason the utility drop was first detected by the string level
controller. Within the grace period, the string failure was not detected and action was taken to
tune the string locally. After that control action, the failure was received by the controller. It
determines that failure was the root cause of the utility drop. At this point the tuning is stopped
and string failure is handled.
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Figure 29 Control communication paths between control system layers

Determining Feasible Control Actions

Now that we have described to a first order of detail how we planned for the multi-level
controllers to obtain and share information about the ARMS MLRM, we describe how the
controllers at the various levels determine what their feasible control actions are.
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As described in Section 5.2.1.3, the low-level string controllers have the ability to tune their local
quality and throughput in attempts to maximize their local control actions. Because the actions
of the string controller are localized, it is generally always feasible for the string controllers to
manipulate these controls as long as it stays within its desired operational ranges. As mentioned
in Section 5.2.1.3 these ranges are captured in the string specifications (and potentially updated
dynamically as has been demonstrated in the PCES program) typically with maximum and
minimum limits. The mission level controllers are generally allowed to generate and/or kill
replicas and move substrings of their strings. For the sake of simplicity at this stage of
development, we purposefully deferred the ability of missions to generate and/or kill replicas.
Therefore, the sole method currently considered for mission-level controllers to perform control
actuations is to move substrings of their strings between pools. The mission level action is
feasible if the action does not impact other missions running in the system. For example, in order
to test if moving a pool substring is feasible, a mission level controller would first have to query
the pool manager of the destination pool for the substring to determine if the destination pool has
the resources to accept the substring. If the destination pool can accept the substring, the
mission-level controller then needs to query the bandwidth broker to verify that the bandwidth
broker will be able to allocate a sufficient amount of resources to move jobs along the string
potentially both to and from the destination pool. If the destination pool can accept the substring,
and the bandwidth broker can allocate sufficient communication resources, then it is feasible for
the mission level controller to move the substring. At this point the whole string will be stopped,
the substring will be killed and redeployed in the destination pool, and then the string will be
restarted.

At the highest level of operation, the system level control performs reallocations or
reconfigurations of the system missions and strings. Similar to control actions performed at the
mission level, the reallocation control actions are generally always feasible as long as the
bandwidth broker and various pool managers verify that there are sufficient resources in the
system to perform the reallocation. If there are no feasible actions for the system level controller
to perform, the system level controller could exercise the option of reverting to a pre-computed
failsafe resource allocation mode, which although not optimal, may permit the system to
continue operation and provide a level of utility to the user.

Estimating the Utility of Control Actions

Now that we have described how we planned for the various system controllers to obtain their
information and determine the feasibility of their possible control actions, we describe how the
controllers decide what their control action should be. Central to determining the correct control
action is the problem of estimating the change in utility due to a control action. That is, for any
possible control action R such that x—gx’, values need to be assigned for EU(x”), EC(R) and
EU(x). To start, we deferred the problem of estimating control cost (EC(R)) to aid in the
simplicity of our initial design. We found in our later simulation implementations, that it was not
necessary to account for control cost to achieve higher levels of performance in the system.
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For our planning at this time, for all possible control actions in the MLRM system
implementation scenario we describe in this section, it needs to be determined if EU(x”) > EU(x)
in order to take the control action R such that that x—gx’. The problem of obtaining a
meaningful and easily computable utility estimation function (EU(e)) is, in our opinion, far and
away the most difficult problem associated with the design of the MLRM control system.
Invariably, like the EC(R) calculation, a high level of contextual system knowledge is required to
develop a meaningful utility estimation function. Ideally, the relative ordering of the estimated
utility of two allocation states should, as often as possible, be identical to the relative ordering of
the observed application utility of those two allocation states. That is, for as many (x,x’) pairs as
possible, we would want an utility estimation function EU(e) such that EU(x’) > EU(x) if and
only if UA(x’) > UA(x). Therefore, in order to implement the proposed hierarchical control
system, we propose a class of simple utility estimation functions for the string, mission and
system level controllers based on estimates of two strings’ expected timeliness, quality and
throughput. Unfortunately, there are inherent computational difficulties associated with
distributed control problems that make it difficult to exactly predict the effect of multiple,
possibly uncoordinated distributed control actions on, for example, local string timeliness
observations. This difficulty would also make it difficult to accurately predict or estimate the
relative ordering of the application utility of two different allocation states. 'The proposed
alternative (below) to the timeliness estimation is a meaningful and useful first step towards the
ultimate development of a “better” or even “best” utility estimation function.

Our expected timeliness estimation computation is based on a method for estimating the
expected delay of jobs in a string. Naturally, jobs in a string should have ideally as small an end-
to-end delay as possible. This sentiment is expressed in the definition of the timeliness factor in
Section 5.1.1.1 above where the timeliness factor decreases as the end-to-end delay of jobs in a
string increases. (For the sake of simplicity, a job’s end-to-end delay in a string is simply called
delay from now on unless explicitly noted otherwise.) Because the application utility of a string
is proportional to timeliness, then the application utility also decreases as delay increases. As an
example of this scenario, consider a string with hard real-time jobs where each job has a
timeliness factor of 3 if the job is completed in less than 4ms and 0 otherwise. Although the
timeliness factor in this example does not depend linearly on delay, timeliness does decrease as
delay increases.

Besides depending on timeliness, as discussed in Section 5.1.1.5, in the application utility
function, utility is directly proportional to the quality factor q and the throughput Th. Therefore,
as a simplistic approximation of a string’s estimated utility, EUs we propose to use Equation 11
where the estimated utility is inversely proportional to d, the delay factor of jobs in a string and
directly proportional to quality and throughput:

EU,=qTh/d  (11)
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As described above, the utility estimation function in Equation 11 encodes the intuition that
strings with high throughput and quality should have a high utility, while strings with a high
delay should have a low utility. Note that in Equation 11 there is an implicit simplifying
assumption that the delays of jobs in a string are independent of quality or throughput. This is
generally not the case, but these effects are ignored for now for the sake of simplicity. There is
also the implicit simplifying assumptions that average delay can be used as a proxy for specific
delays encountered; this is not generally the case either, but hopefully is indicative enough of the
trend to make the simplifications and tradeoffs meaningful.

In order to develop an estimate of observed delay for jobs in a string, suppose a string is
deployed with substrings sequentially in Pools 1 through P such that upon querying the pool
manager for Pool i, the mission controller is told by the pool manager that jobs in the string
belonging to the string controller will have an estimated expected computation time of dp; when
passing through the substring in Pool i. The ability to compute the estimated expected
computation time of jobs on a substring deployed on a pool is not a current ability of a pool
manager, but this ability would need to be added to implement the control system discussed in
this paper. Similarly, suppose that a string passes through inter-pool communication links 1
through L such that upon querying the bandwidth broker, the mission controller is told that data
being processed for the jobs in the string have an estimated expected transmission delay of dl;
when passing through communication link i in the string. The ability to compute the estimated
expected data transmission delay for jobs transmitted between pools on a string is not a current
ability of the bandwidth broker, but this ability would need to be added to implement the control
system discussed in this paper. Due to the sequential data processing in the string in the P pools
and L inter-pool links the string is deployed in, the jobs in the string would have an overall end-
to-end delay to traverse the string proportional to:

d= idpi + ZL;dl,. (12)
i=1 i=1

The delay factor of Equation 12 can then be used as in Equation 11 to estimate the utility of a
resource allocation to a string. As the delay measures returned by the pool managers and
bandwidth broker in Equation 12 is at best an estimate of system behavior, we do not argue that
Equation 12 is the “best” or most accurate method for approximating the end-to-end delay
experienced by jobs in the string, but we propose that this is a reasonable, easily computable
first-order approximation. Note that Equation 12 is only concerned with an estimate of the
expected end-to-end delay of jobs in the string rather than the absolute delay of individual jobs.

Use or disclosure of the data contained on this page is subject to the restriction on the title page of this document.

107




BBN TECHNOLOGIES ADAPTIVE MULTILEVEL MIDDLEWARE FOR OBJECT SYSTEMS

Pool B

Jobs in Pool A has estimated ?(?;)ls C experiences a pool Jobs 111 gools C lt1ats estt1.matedf
expected computation time of arure. t;x3p ccted computation tme o
3ms.

1.2ms.

Pool E

Figure 30 Initial deployment of a string.

To compute the mission level estimated utility, suppose a mission is composed of a set of strings
{S1,...,8m} With relative importance values {wi,...,Wn}. Suppose that any string s; has an
estimated utility of EUg. Therefore, using the summation approach to compute mission level
utility from string-level utility used in the definition of application utility, EUn, the estimated
utility of the mission is

EU, =Y wEU, .
J=1

Similarly, if the system comprises a set of missions {my,...,m,} with relative importance values
{W1,...,wn}. where EUpy is the estimated utility of mission my, then let EUsys, the estimated
utility of the system configuration be:

EU.\‘ys = Z wk EUmk ¢
k=1

As an example of how the estimated utility function can be used to compute the relative
desirability of mission level control actions, consider the system in Figure 30 that comprises one
string deployed sequentially across Pools A, C and B. According to the substring managers of
the strings, jobs in the substring deployed on Pool A have an estimated expected computation
delay of 1.2ms and jobs in the substring deployed on Pool B have an estimated expected
computation delay of 1.3ms.
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Suppose a pool failure occurs in Pool C and the mission controller can redeploy the pool
substring on Pool C to either Pool D or Pool E as seen in Figure 31. Suppose that, according to
the respective pool managers, jobs in the substring in Pool C would have an estimated expected
computation delay of 1ms on both Pool D and Pool E.

Suppose also that it is communicated to the mission controller from the bandwidth broker and
pool managers that the transmission of the data for jobs from Pool A to Pool D would take an
estimated 0.6ms, the transmission of data for jobs from Pool A to Pool E would take an
estimated 0.5ms, the transmission of data for jobs from Pool D to Pool B would take an
estimated 0.4ms and the transmission of data for jobs from Pool E to Pool B would take an
estimated 0.7ms. For the sake of discussion, assume for both redeployments that the string
controller maintains qTh = 1.

On Pool C failure, substring
operations on Pool C can be
redeployed to Pool D or Pool E

Pool D

Jobs transmitted from in Pool
D to Pool B experience 0.4ms
delay

Jobs transmitted from in Pool
A to Pool D experience 0.6ms
delay

Pool A

Control Action 1

Pool B

Pool C
Control Action 2

Jobs transmitted from in Pool E
to Pool B experience 0.7ms
delay

Jobs transmitted from in Pool
A to Pool E experience 0.5ms
delay Jobs in Pools D and E
have estimated expected
computation time of

1.2ms.

Pool E

Figure 31: Two possible redeployment options for a string.

To compute the estimated utilities of the two strings in their current deployment state, the
expected end-to-end delay experienced by jobs in the string if the Pool C substring is moved to
Pool D is 4.5ms and the expected end-to-end delay experienced by jobs in the string if the Pool C
substring is moved to Pool D is 4.7ms. Therefore, EU(String w/ Control 1) = 1/4.5 = 0.22 and
EU(String w/ Control 2) = 1/4.7 = 0.21 by Equation 12.

With this simple analysis of the two possible control actions, the mission controller would attain
the highest utility if the Pool C substring were to move to Pool D.
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Recall that the estimated utility measures are not used to estimate the absolute values of the
system’s application utility due to various control actions, but only as a easily computable
method for approximating the relative ordering of the application utilities of various
deployments. Small difference in the estimated utilities of the two control actions give an
indication that it may be difficult to predict the relative ordering of the two deployments
accurately. However, it is difficult to know how far apart two estimated utility values need to be
in order to have a high level of confidence that one control action is clearly better than another,
as was seen in the example in Figure 30 and Figure 31. Furthermore, there might be different
control costs associated with the two proposed control actions, which although disregarded in
this version of the control system, might be sufficient enough to skew the analysis of the
“correct” control action. These two issues will be addressed in future versions of the control
system through refinements as experience is gained with implementation of system and the
control architecture.

5.2.2.2 Operational Overview

Now that we had organized and had a preliminary design for several of the most important
details associated with the implementation of the MRLM hierarchical control system, we
considered how the above implementations of the utility estimation function, the feasibility
testing operations and information sharing between the system components can be combined into
an implementation of the MLRM control system. The goal of this section is to demonstrate how
the initially planned control system would operate, with special attention paid to the interactions
between the MLRM system and the multiple control levels. We begin by discussing how the
control system operates at initialization and in the absence of any system degradation. Then, we
discuss how the control system operates when behavior in the system begins to decay. As a
motivating example, we discuss how the control system would operate in the occurrence of a
pool failure.

System Initialization and Normal Operation

As described above, at initialization, missions and strings are deployed in the system using the
IA with the incremental mapping resource allocation algorithm. Unfortunately, the current IA
implementation “over packs” strings even if there are insufficient system resources to accept a
given deployment. This deficiency in the current allocation algorithm implementation needs to
be addressed as part of the architecture enhancement so as to have a feasible initialization
resource allocation strategy with acceptable levels of utility over more general configurations.
This would be useful not only for initialization purposes, but would aid in the ongoing operation
of the control system.
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After system initialization and under normal operating conditions, the controllers perform no
control actions and operate in “standby mode” such that at periodic time intervals, not
necessarily synchronized, all controllers in the MLRM system sample their observed application
utilities. The controllers retain the mean of their sampled application utilities in memory. The
local application utility is a measure of how well the system has been performing in the
immediate past. Therefore, if a controller has statistical information about its past application
utility measurements, the controller can then detect a degradation in performance if the
controller’s observed application utility deviates sufficiently from its observed mean application
utility. Upon the detection of a sufficient degradation in its observed application utility, a
controller transitions from “standby mode” to “active mode” and takes actions to raise its
observed application utility as discussed below.

As mentioned in Section 5.2.1.2, in addition to retaining the mean of their mission level
application utilities, the mission level controllers could access the mean of their strings’
individual application utilities. Similarly, at the system level, the system controllers retain the
mean of the system level application utility and have access to the means of the application
utility of missions in the system.

An advantage of using a controller’s mean application utility measurement is that it avoids the
difficulty of retaining all past application utility measurements in memory in order to detect a
change in application utility. Naturally, the controllers observe fluctuations in their application
utility, so a major problem is for the controllers to detect when a deviation in the observed local
application utility from the observed mean warrants them to take action. A simple solution to
this problem is implemented in the next subsection when controller operations are discussed.

When designing the initial DRM plan, it is an open problem to determine how often the
controllers should sample the application utility. As a general rule of thumb, application utility
samples should be taken as often as the controller might need to update its control action. We
intended that optimum values for these parameters would be determined as experience is gained
with exposure to system operation, but we started with the supposition that all controllers sample
their application utility once a second or a sampling rate of 1Hz.

Determining When and How to Take Control Actions

String Level Controllers

At the lowest level of operation are the string level controllers. Transiting from standby mode to
active mode of these string controllers could be triggered by the following three conditions:

The string controller observes a decrease in its local string level application utility.
The string receives a string failure event from RSS.

The string controller receives a wake-up call from its mission level controller.
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For future implementations of the control system, we planned that the string controller will enter
active mode from standby mode for other reasons not considered here for the sake of simplicity.
For instance, it is feasible that the string controller may run a background job in standby mode to
continually test if it can locally improve its application utility. If the string controller detects
such a situation, then it will leave standby mode and act on this opportunity. There may also be
other situations not yet considered where the string controller should enter active mode, but these
will become apparent as more experience is gained with the system.

However, to address the first case for when the controller enters active mode, when a string level
controller observes a drop in its application utility and the observed application utility is less than
90% of its average observed application utility, it enters its active mode. (The choice of a 90%
threshold in this operation is an arbitrary starting point; a more informed choice for this value
can be based on experience gained with the system. Given more in-depth system knowledge, it
is also possible to use more advanced change detection methods drawn from the fields of
estimation and detection theory, but this is an advancement on the current control system that
will be addressed in future work.) If the string controller also receives a string failure event from
the RSS, then a catastrophic hardware failure may have occurred which cannot be compensated
for by the string controller. To verify this situation, the string manager attempts to restart the
string (in place), and only if unsuccessful, the string controller relays the string failure event to
the mission controller. The string controller then reenters standby mode because there is nothing
further the string controller could do to compensate for the hardware failure.

If the string controller’s observed application utility is less than 90% of the average observed
application utility, but no string failure event has been received, then the decrease in the string’s
application utility is most likely due to resource contention. In this case, the string controller
attempts to relieve its resource contention by decreasing the quality and throughput of the string.
The controller does this by incrementally decreasing both its quality and throughput by 10%
every sample period if possible. (Recall that above the sample period was arbitrarily chosen to
be 1 second.) Although not stated earlier, we assumed that 1 second sample period is the
minimum amount of time for the actions of the string controller on one sample period to be seen
on the next sample period. If not, then the sample period should be adjusted accordingly.

On every sample period that the string’s application utility increases due to the decrease of
quality and throughput, the quality and throughput should be decreased again by 10% on the next
sample period. On the first sample period that the string controller sees the application utility
decrease, it stops decreasing quality and throughput, reenters standby mode, reinitializes its
running average of observed local application utility and if the observed application utility due to
the string controller tuning is not at least 90% of the original application utility mean, the string
controller signals its mission controller that it was unable to sufficiently tune the string.
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The overall heuristic of the string level controller in the case of resource contention is that the
controller observes that its string needs to improve its application utility. The string controller
tries to incrementally decrease its resource usage via actuations in the string’s quality and
throughput. The string controller continues to decrease the quality and throughput until those
actions have an adverse effect on the string’s application utility. When this occurs, the string
controller signals the mission controller that it can do no more and reenters standby mode.
Although we have outlined one possible method for the tuning of string-level application utility,
other, more advanced methods are also possible. These control systems will be implemented in
future versions of this work.

The wake-up call from the mission level can in general have three possible requests: deploying
the string, removing the string, or adjusting the application utility threshold. Handling deploying
or removing strings should be straight forward, therefore we’ll only discuss the third case here.
Upon receiving a wake-up call from the mission level controller to adjust the string’s application
utility threshold, it enters active mode and set the new threshold. If the current string application
utility is below this new threshold, then it attempts to tune the string to pass the new threshold as
described in the application utility dropping case; otherwise, the controller will return to standby
mode.

Mission Level Controllers

Now that the behavior of the string-level controllers has been discussed in greater detail, we
present our plan for how to implement the mission level controllers. Like the string level
controllers, the mission level controllers normally operate in standby mode until the controller
enters active mode and begins to take actions. The mission level controllers could be triggered
to enter active mode from their standby mode under five conditions:

1. The mission controller observes a decrease in its local mission level application
utility.

2. The mission controller receives a string failure event from one of its strings.

3. The mission controller receives a signal from a string controller that it was unable to
sufficiently tune its string.

4. The mission controller receives a signal from the RSS that a hardware failure has
occurred that impacts its strings.

5. The mission controller receives a wake-up call from the system level controller.

For future implementations of the control system, we planned on possibly allowing the mission
controller to enter active mode from standby mode for other reasons not considered here. For
instance, it is feasible that the mission controller may run a background job in standby mode to
continually test if it can locally improve its application utility as was done with the string
controller. As experience is gained with the resource allocation system, additional cases for the
mission to take action may become apparent.
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Once a mission level controller has entered active mode, there are three actions it can take: 1)it
can send a wake-up call to the controllers of its strings in order to get those lower level
controllers to perform their self-tuning operations, 2) the mission level controller can strings it
can attempt to redeploy substrings of the strings under its control, and 3) the mission controller
can send a signal to the system controller when it is unable to sufficiently raise its application
utility. For operational simplicity the mission controllers are restricted so that each mission
controller can attempt to redeploy portions of only one string at a time. Therefore, if a mission
controller has multiple strings to adjust, the controller maintains an internal FIFO queue to order
the strings it operates on. Due to the hierarchical nature of the control system, it is possible for
the mission controller to have multiple strings perform their self-tuning simultaneously.
However, it is a non-trivial task to design a mission level controller that would be able to
perform multiple string adjustments simultaneously and this situation is not considered here.
This issue will be addressed in later editions of this work.

It is now described what actions the mission level controller should take in each case of the five
scenarios discussed above which would prompt the controller to enter its active mode:

If the mission level controller transitions to active mode because it receives a string failure
notification from a string controller, then the mission controller attempts to adjust the string by
redeploying parts of the string that have failed. If there are multiple failed strings, then the
mission controller queues the strings in its FIFO queue and adjusts one string at a time until there
are no strings left to adjust. When first attempting to adjust the deployment of a string, the
mission controller first determines which substring in the deployed string is causing the string
failure in order to identify which substrings of the string need to be redeployed. The mission
controller would do this by querying the RSS in order to detect full or partial hardware failures
along the string. The mission controller would also query the bandwidth broker and the string’s
substring managers to identify which substrings might be suffering from resource contention.

Once the substrings have been identified which are causing the string failure, the mission
controller asks the pool managers to redeploy these identified substrings to different nodes in the
pool. The goal of this strategy is that adjustments performed by the mission controller should be
as small in scope as possible.

If the failed substrings cannot be redeployed to different nodes in the same pool, the mission
controller needs to find other pools to place these controllers on. The mission controller, by
querying the IA (which would use a resource allocation algorithm such as incremental mapping
or bin-packing) for a list of possible redeployments of the strings.
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Currently, the IA does not have the ability to generate lists of possible redeployment of
substrings. This capability would have been needed to be added to the JA in order to implement
this control system. We propose that if this modification were made to the IA, then the IA would
return 3 possible deployments, if this many deployments are feasible. (Note that the value of 3 is
arbitrarily chosen, but a better value will become evident as experience is gained in operating
with the system.) Once the mission controller has its list of 3 possible string redeployments, the
mission controller can use the utility estimation function in Equation 11 by querying the
bandwidth broker and appropriate pool managers to identify the control action which would
maximize the redeployed string’s estimated utility. The utility estimation function proposed
above can be calculated easily, so the main challenge in the string adjustment is the problem of
generating the list of feasible control actions which may be very large if multiple pool substrings
need to be moved.

One heuristic algorithm that could be used to generate its list of 3 possible partial string
redeployments is to start by identifying, through queries of the RSS, the substrings of the string
that are causing the greatest degradation in the string’s application utility. Then, for each of
these substrings, a candidate redeployment is generated where the substrings causing the
degradation are moved to a different, randomly selected pool. The IA is then queried to test if
this new redeployment is feasible. If the redeployment is feasible, then the redeployment is
added to the list of the 3 candidate redeployments. This randomized search is continued until 3
feasible candidate redeployments are obtained. We planned that as more experienced is gained
with the system, we would be able to develop a more intelligent redeployment search algorithm
to generate a list of candidate redeployments.

Once the string has been successfully redeployed, the mission controller verifies that the
observed application utility of the redeployed string is at least 90% of the mean application
utility of the previous string configuration by making real-time observations of the string’s
behavior. If the new string does not meet the 90% threshold, then the mission controller sends a
request to system controller that the system controller perform a redeployment of the insufficient
strings. Note that the system level string redeployment is not taken as a first step in string
recovery operations because the system-wide redeployment is global in scope and the underlying
philosophy of the hierarchical control system design is that fast, local actions are generally
preferable to slower, often more expensive global actions, except in designated cases such as
command directives coming from the user.

If the mission controller receives a signal from the RSS that a hardware failure has occurred that
impacts its strings, the mission controller first identifies which of its strings are impacted by the
hardware failure. Then the mission controller attempts to adjust these strings through partial
deployments as was done in the case of a string failure.

Similarly, if the mission controller receives a signal from a string controller that the string
controller was unable to sufficiently tune the string, then the mission controller attempts to adjust
the string as done above with failed strings. Also, if the mission controller observes a drop in its
application utility below the 90% threshold, the mission controller identifies which of its strings
are operating in a sub-optimal manner. The mission controller then sends wake-up calls to the
controllers for those strings to perform their self-tuning operations.
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Upon receiving a wake-up call from the system controller, the mission controller first queries its
string controllers to see if any string failures have occurred. If string failures have occurred, the
mission controller commences string recovery operations for these failed strings as described
earlier in this subsection. If no string failures have occurred, the mission controller sends wake-
up signals to all of its strings to commence their local self-tuning operations.

System Level Controllers

Now that the behavior of the planned string and mission level controllers has been discussed in
greater detail, we present our initial plan of the system level controller. Like the lower level
controllers, the system controller normally operates in standby mode until a transition to active
mode after which the controller begins to take actions. The system controller could be triggered
to enter active mode due to four conditions:

The system controller observes a decrease in the system level application utility.

The system controller receives a request from a mission controller to redeploy or deploy a subset
or all of its strings.

The system controller observes a catastrophic hardware failure via RSS with system-wide
implications (i.e., multiple mission failures).

The system controller receives user commands.

Once the system controller has entered active mode, there are three actions it can take. It can
send a wake-up call to (one or more) mission controllers to get them to attempt to improve their
local Application Utilities specific to their missions; it can attempt to reallocate resources for
strings in a mission or multiple missions; and it can perform full reallocations of system
resources.

When the system controller receives a request from a mission controller to redeploy or deploy a
subset or all of its strings, the system controller initially attempts to generate a partial
redeployment via the IA for the failed mission strings while leaving the resources of all other
missions intact. (This incremental deployment functionality is not currently developed in the IA
algorithm suite.) If there is no feasible partial redeployment for the failed mission, then the
system controller performs a system-wide resource reallocation and reinitialization that could
potentially impact other missions in the system

Upon the observation of a catastrophic hardware failure via RSS with system-wide implications,
the system controller then attempts to redeploy all strings affected by the hardware failure as
described above. There are some hardware failures, such as pool failures that may be best
handled at the mission level when the pool failure affects the operation of only one mission. For
the control implementation in this paper, a hardware failure is determined to have system-wide
implications if the failure affects more than one mission. However, this heuristic threshold for
when the system controller should take action in this case will be refined as more experience is
gained with the system.
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The system controller also enters its active mode if it receives external user commands to
perform various actions. The way these requests are handle is very much the same as in the
mission level controller. Instead of dealing with strings as in the mission level controllers, at the
system level we are dealing with missions. For instance, if the ARMS user wants to deploy an
extra mission in the system, then the system controller would send the allocation request for the
mission to the IA and then reenter standby mode. Similar operations would occur if the external
system user desires to terminate a mission or adjust the application utility threshold from 90% to
95%

5.2.2.3 Pool Failure Example

As an example of how the control system and information acquisition operations described
above could operate, consider a system with three pools and multiple missions deployed and
operating normally. In this example, we describe the operation of the control system and
highlight how information flow occurs to and from various controllers.

If one pool were to fail, several events occur and are reported to controllers at various levels. ;
Namely, a string level controller for a string with substrings deployed on the pool would observe
a sharp decrease in the string’s observed application utility and receive the string failure event.
The mission level controller would then obtain information about the drop in the string’s
application utility from RSS, the report of string failure from the string controller, and the pool
failure from RSS. The system level controller would also observe a drop in system application
utility from the RSS, possible mission failures reported from mission controllers, and the pool
failure event from RSS. (Note that individual string failures due to a mission failure are not
reported to the system controller.) We discuss how these observations and information are
passed in the control hierarchy and how decisions are made in our proposed multi-layer
controller implementation

In our example, the string controller will observe two events: a string application utility drop and
a string failure. . For simplicity, we assume that string controller will first attempt to restart the
string with the current deployment before taking other actions. As discussed in Section 5.2.1, a
more robust mechanism needs to be established to handle the different arrival orders and times of
these events. In this case, the string controller would attempt to handle the string failure event
but not the utility drop event. This is because string tuning after string failure would not result in
any improvement of the observed application utility. However, since the string controller cannot
accommodate the overriding string failure event locally, it would pass this event to its mission
controller.

The mission controller also receives information about its drop in mission level application
utility and would receive information about pool failure from the RSS. In this example it is
assumed that the pool failure involves multiple missions, so system level coordination would
preempt the mission controller.

The system level controller, in addition to receiving pool failure events, would observe the drop
in the system level application utility. After observing these occurrences, the system controller
determines that a system-wide reconfiguration can be performed by querying the IA.. At this
point, the initially planned system controller attempts to redeploy the failed substrings originally
deployed on the failed pool to surviving pools using the system level utility estimation function.
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5.3 Dynamic Resource Management Simulation and Algorithm Refinement

We now describe how we refined our initial plan for DRM in ARMS. We took a bottom-up
approach for our design refinement. We first refined our string-level resource controller. We
then refined our mission-level resource controller and then our system resource controller which
handled multi-mission coordination.

Our refinement of the resource controllers progressed hand-in-hand with the aid of hierarchical
Matlab/Simulink models of the ARMS resource system. We developed resource models at each
layer of the string-mission-system hierarchy to simulation the operation of our resource
controllers. Based on our simulation results with the models, we were able to adjust our design
to improve performance as measured by our utility measures and simplify our designs.

5.3.1 String Control

We started by developing a Simulink model for strings with a generic workload generator for
simulating various computing jobs performed by the application sting with adjustable quality,
throughput and real-time deadlines. Processing power and bandwidth can also be modified in the
model to simulate dynamic properties of the strings’ computing environments. We developed
the simulation model for two simulation runs as a comparison.

During the first experimental run, a static resource control system was used that does not alter
string job quality or throughput when changes in the rate of utility accumulation are observed on
the feedback signal.

On the second experimental run, we deployed a simulated dynamic resource control system to
control job quality that samples the change in utility accumulation at 15Hz. Note that 15Hz is
the rate at which jobs are sent to be processed by the string, so the controller updates at the same
rate that jobs are released to be processed by the string. Therefore, one control action can be
taken for every job processed by the string.

For the dynamic string controller, on every sampling period when the average amount of change
of the utility accumulated by the string per sampling time is negative, the dynamic resource
controller cuts the quality of jobs in the string by half. On every sampling period when the
change in utility accumulation per sampling time is positive, the dynamic resource controller
increases the quality of jobs in the string by 20% as long as the resulting quality remains less
than the initial allocation of 2 units. If the resulting quality is greater than the initial allocation of
2 units, then the resulting quality is set to 2 units so that the string does not process jobs with a
higher quality than initially requested.

The string controller used on the second experimental run is a modification of the proposed
string controller. We used this string controller because it will eventually return the string job
quality to the initial allocation level if the faltering communication link recovers its lost
bandwidth. The string controllers do not observe the occurrence of the communication link
anomaly directly, but observe the utility accumulated by the string as jobs are processed.
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5.3.1.1 String Comparison Setup

For our initial experiment, one application string is deployed over three pools and two
communication links. The string is initially allocated sufficient bandwidth resources along the
communication links to successfully process 15 jobs per second with a desired quality of 2 units
and a hard deadline of 0.08 seconds. Jobs meeting the deadline have a reward of y=0.1units per
job and jobs not meeting the deadline have a penalty p=0.1units per job.

Percent of Allocated Bandwidth Available vs. Time
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Figure 32: How the allocated bandwidth available to the string changes with time

The string application utility function is used to measure the performance of the string and as a
feedback control signal to the string controller. We assumed for this experiment that the string
does not suffer from any catastrophic failures and is therefore always available. Hence, the
availability factor in the utility function (Equation 6) is set to a=1.

Two experimental runs were made during the experiment using our Matlab/Simulink string
model. Both runs lasted 20 seconds. For both runs, a communication link anomaly is introduced
at t=3 seconds that causes the first communication link to lose half its bandwidth. This change in
available bandwidth causes sufficient delay in job processing such that with the initial allocation
of resources, jobs processed by the link miss their deadlines. A graph showing how the allocated
bandwidth available to the string changes with time can be seen in Figure 32.

5.3.1.2 String Control Simulation Resulits

In Figure 33 there are three subgraphs that show measurements taken from the first run of the
experiment when a static resource allocation strategy was used. Note that the experiment is run
from t=0sec to t=20sec and the bandwidth availability in the first link decreases by 50% at
t=3sec.
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Subgraph A: Change in Accumulated Utility per Sampling Period vs. Time
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Figure 33: Experimental Results Due to Static Resource Strategy

Subgraph A in Figure 33 shows how the change in utility accumulation per sampling period
changes with time. Prior to the link anomaly at t=3sec, the allocation of resources to the string
allows all jobs meet their deadlines, so the change in accumulated utility per sample time is
always positive before t=3sec. However, because of the link anomaly, after t=3sec, jobs are
unable to meet their deadlines when job quality is 2 units. Therefore, all jobs miss their
deadlines after t = 3sec and all jobs get assigned a penalty for missing their deadlines.
Consequently, the change in utility per sample time is always negative after t=3sec.

Note that there is discontinuous “jitter” in the change in utility per sample period measurement
during the entire run of the experiment. This is due to the effects of measuring the change in
utility when rewards and penalties are accumulated at discrete instances in time. Furthermore,
from approximately t = 8sec to t = 16sec, there are several spikes on the change in utility per
sample period vs. time graph. These spikes are due to quantization effects associated with the
Simulink simulation tool because it simulates the application string at discrete time steps. These
spurtous behaviors would disappear if a finer time step were used in the simulation and hence
they can be disregarded.

Subgraph B in Figure 33 shows the quality of jobs being processed by the string over time during
the first run of the experiment. The job quality is held constant at the initial setting of 2units
because a static allocation is used.
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Subgraph C in Figure 33 shows the accumulated application utility of the string over time. Up
until t = 3sec, the utility of the string increases because all jobs sent to the string are processed
before their deadlines. After t = 3sec, because of the decreased bandwidth available over the
link, the accumulated application utility in Subgraph C of Figure 33 never increases which
implies that all jobs miss their deadlines after the link anomaly.

In Figure 34 there are three subgraphs that show measurements taken from the second
experimental run when the dynamic resource allocation strategy outlined above was used.

Subgraph A in Figure 34 shows how the change in utility accumulation per sampling period
changes with time. Note that there is “jitter” in the change in utility measurement in Figure 34
due to quantization effects.

Prior to the link anomaly at t=3sec during the second run of the experiment, all jobs meet their
deadlines, so the change in accumulated utility per sample time is always positive. However,
immediately after the link anomaly at t=3sec, jobs are no longer able to meet their deadlines and
penalties are assessed for every job that misses its deadline. Therefore, the change in utility per
sample time is negative immediately after t=3sec.

As can be seen in Subgraph B in Figure 34, the quality setting of jobs being processed by the
string over time during the second run of the experiment is constant at 2units until the simulated
effects of the link anomaly are observed on the sampling period immediately after t=3sec. Then,
because the change in utility accumulation per sampling period is negative in the sampling
period immediately after t=3sec, the string controller decreases job quality by 50%.

On the sampling period after the job quality is decreased, no jobs fail to meet their deadlines and
the observed utility increases as observed in Subgraph C in Figure 34. Therefore, using the
control logic outlined above, the controller increases job quality by 20%. On the next sampling
period, no jobs fail to meet their deadlines and the simulated observed utility again increases.
The controller then again increases job quality by 20%.

This process of checking the change in accumulated utility and incrementally increasing the
quality setting continues until the controller raises the job quality to 2units, the initial allocation
level, and jobs are again dropped due to the decrease in bandwidth. As can be seen in Subgraphs
A and B in Figure 34, the controller again decreases quality by 50% and then incrementally
increases job quality as dictated by the control logic and the observed changes in accumulated
utility per time interval. The process of the controller dropping the job quality by 50% on the
observation of a drop in utility accumulation and then incrementally increasing quality until the
next observation of a drop in utility accumulation continues indefinitely.

As can be seen from Subgraph C in Figure 34, the accumulated utility of the string increases
steadily until the link anomaly at t=3sec. Then there is a small dip in utility when a job is
dropped, but after the one sample period, the accumulated utility continues to increase at a
slightly slower rate after t=3sec due to the quality control logic in the string controller.
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Subgraph A: Change in Accumulated Utility per Sample Period vs. Time
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Figure 34: Experimental Results Due to Dynamic Resource Strategy

Note that a job periodically misses its deadline after t=3sec when the string controller attempts to
bring job quality up to the initial level. Therefore, this control strategy is preferable only when
the cost of missing additional job deadlines after initial failure is non-catastrophic or at least not
too costly. If the cost of a job missing a deadline is very high, the control logic could be easily
changed so that the controller does not attempt to increase quality when there is a chance of a job
missing its deadline. However, although it is not demonstrated in this experiment, if the full
bandwidth is ever restored to the communication link, the string control logic used in this
experiment will eventually restore the string’s job quality to its initial level of 2 units.
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5.3.1.3 Discussion

This experiment demonstrated how using the application utility functiong in conjunction with
string control logic, a high level of string utility can be expected to be maintained to alleviate the
effects of string anomalies that induce delays in job processing. During the first run of the
experiment, all jobs missed their deadlines after the introduction of the anomaly due to link
delays, but in the second run of the experiment when a string control system was used, almost all
jobs met their deadlines due to the resource usage tunings of the string controller. This
simulation provides more convincing evidence that the dynamic alteration of system resource
usage can have a dramatic positive effect on the ability of a system to perform its desired tasks.
This is illustrated in Figure 35 that graphs the simulated accumulated utility achieved using both
resource usage strategies during the experimental runs.

Accumulated Utility vs. Time
40

I T I N — T T T T T
------ Accumulated Utility With No Control Actions
Accumutated Utility With Control Actions

Accumulated Utility

20 1 r I L L I 1 L r
0 2 4 6 8 10 12 14 16 18 20
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Figure 35: Comparison of Simulated Accumulated Utility.

5.3.2 First Approach to Mission Control

After refining the design of the string resource controller, we turned our attention to the mission
controller. Strings are assigned importance values, and for GT4 Metric 1, warfighter value is
computed such that it is better to deploy a higher valued string rather than any combination of
lower valued strings. Therefore, for simplicity in our design in our first refinement of the
mission control system, we started to refine the high-level control logic to select strings to deploy
or kill in order to maintain a high warfighter value with respect to Metric 1. This mission
controller is designed to maintain warfighter value in response to the simultaneous occurrence of
system failures and user-driven changes in the warfighter values of its strings.
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The goal of the mission controllers is to select strings to be deployed and to find resources which
those strings can use. Therefore, we split the mission level control logic into two layers. The
high-level mission control logic attempts to deploy strings by requesting string deployment plan
from a low-level mission control logic. After receiving a deployment plan request, the low-level
control logic attempts to find resources that would be sufficient for the requested string to use to
run. If the low-level control logic finds a deployment plan for the requested string, then this
information is returned to the high-level logic. If the low-level control logic cannot find a
deployment plan for the requested string, then this information is also returned to the high-level
logic. When the high-level control logic is given a deployment plan for a string it wants to
deploy, the high-level control logic deploys the string by sending the appropriate information
about the string’s substrings to the Pool Managers of the pool where the string are placed.

The low-level controller always attempts to find deployments for strings to keep all applications
associated with the string on the same pool. If it is not possible to keep all of the string’s
application on the same pool, then the low-level logic tries to find a resource deployment for the
string that would minimize the amount of inter-pool communication bandwidth required by the
string. Similar to utility-driven high-level control logic, the low-level control logic uses a
resource utility measure when finding resources for strings in order to ensure load-balancing.
The functionality of the low-level control logic is very similar to the previous functionality of the
IA.

5.3.2.1 High-Level Control Logic

The high-level controller is primarily a reactive system in that it responds to information about
failures and changes in the warfighter values of strings. It is designed such that if the mission
receives information about a failure that affects its deployed strings or information about a
revaluation of its deployed strings, then the mission controller kills and restarts the operations of
its high-level logic. In this manner, the mission controller can respond to multiple events that
occur before the mission controller can complete already started operations. The high-level
control logic attempts to deploy strings at system initialization, recover warfighter value in
response to failures and redeploy strings in response to changes in strings’ revaluation with
respect to warfighter value. Consequently, the high-level control logic needs access to
information about its strings’ warfighter value and information about which of its strings are
operating.

The high-level mission control logic receives information about failures from the RSS, and
information about string revaluation from the user via the system controller. Because the low-
level control logic uses functionality associated and information already associated with the IA,
we place the low-level control logic on the IA. This modified functional layout of the MLRM
can be seen in Figure 36.
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Figure 36: MLRM Components and Interaction

As an informal description of the operation of this initial refinement of the high-level mission
control logic of the mission controller, when the controller receives information about a pool-
level failure or a change in string valuation, the high-level logic generates a list of the mission’s
strings which are not deployed but whose redeployment should be attempted. The high-level
sequentially attempts to deploy the strings in this list. If any strings are killed by the mission
controller to free up resources for higher value strings, then these killed strings are added to the
list of strings for which deployment should be attempted. Strings are removed from the list of
strings to attempt deployment for two reasons. Most basically, strings are removed from this list
when they are deployed. Strings are also removed from this list when they cannot be deployed
and there are no deployed lower-valued strings which can be killed to free up additional
resources for the string.

The high-level logic iteratively attempts to always deploy the highest value string in its list of
string for which deployment should be attempted. When the high-level logic attempts to deploy
a string, the high-level logic requests that low-level logic find a deployment plan for the most
important string in the list of non-operational strings.
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highLevelLogic
{
D is the set of strings deployed.
U is the set of strings whose deployment should be attempted.
While U is non-empty
{
s = highestValueString(U);
deploymentPlan = lowLevelLogic(s);
deployable = (deploymentPlan == null);
if deployable
{
deploy(s,deploymentPlan);
D.add(s);
U.remove(s);

}
else
{
d = lowestValueString(D)
if value(s) > value(d)
{
kill(d);
D.remove(d);
U.add(d);
}
else
{
U.remove(s);
}
}

Figure 37: High-Level Control Logic, First Attempt.

If the low-level logic successfully returns a deployment plan, then the high-level logic deploys
that string using the returned plan and removes the string from its list of non-operating strings. If
the low-level logic does not return a valid deployment plan, the high-level logic kills the
mission’s lowest value operating string if this string’s importance value is less than the
importance value of the string the controller is attempting to deploy (if there is such a lower-
valued string). If a lower-valued string is killed, then this killed string is added to the list of
strings which are not operating, but for which deployment should be attempted. If there are no
such lower-valued operating strings to kill, then the original non-operating string is removed
from the list of strings for which deployment should be attempted.
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The high-level logic then iterates by again attempting the deployment of the highest value string
on the deployment list. (Note that this next highest value string may be same as the last highest
value string.) The algorithm ceases operation when its list of string for which deployment should
be attempted is empty. In this manner, all strings which are not deployed, or are killed during
the algorithms operation are always attempted to be (re)deployed.

If the mission controller ever receives updated information about failures or its strings’ values
while the algorithm is operating, then the algorithm is killed and restarted with the updated
information. This algorithm is formalized in the pseudo code in Figure 37.

5.3.2.2 Low-Level Control Logic

The low-level control logic only operates when called by the high-level control logic. Because
the low-level control logic attempts to find resources that the mission’s strings can use, the low-
level logic needs information about the requested strings’ resource requirements. The low-level
logic also needs information about the availability of pool-level resources in the system. Pool-
level resources include information about the pools’ ability to accept a proposed substring and
the amount of free bandwidth on the inter-pool communication links. In order to maintain
information about the ability of a pool to accept a substring, the low-level control logic may
contain estimates of pools’ resource slack. In order for the low-level logic needs to verify that a
pool can accept a substring, the low-level logic should be able to query Pool Managers for this
information.

The low-level control logic develops plans to place substrings on pools. Once a substring is
assigned to a pool, the pool’s Pool Manager assigns the string’s substring to individual nodes in
the pool. Therefore, the low level control logic does not need information about the availability
of individual nodes in pools.

We have designed the low-level control logic to place the entire string onto the same pool is
possible.

Strings are comprised of individual applications that process data and communicate the data to
other applications in the pool. As was discussed in the introduction, inter-pool bandwidth is
generally much more expensive than intra-pool bandwidth. Therefore, to find a deployment plan
for a string that cannot fit on a single pool, our low-level control logic splits the string into two
substrings s, and s, to minimize the bandwidth required to pass data between the substrings.

Therefore when s, and s, are placed on different pools, they use as little inter-pool bandwidth

as possible. Our resource utility measure is described in the next section in greater detail, but we
use it as a measure of the efficiency of proposed resource allocations.

Once the strings s is split into the substrings s, and s, , the low-level control logic is called
recursively to also place these substrings on pools individually in the same manner as the
original string. Therefore, when the low-level control logic is called recursively for s, and s, , it
is first attempted to place these substrings wholly onto a pool. If this is not possible, then the
substrings will potentially be split again. (If the substrings can be split.) Note that if a
(sub)string is comprised of exactly one application, then it cannot be further split into substrings.
The low level control logic algorithm is formally presented in pseudo-code in Figure 38.
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/Now-level logic

lowLevelLogic(s)

{
deploymentPlan = selectPool(s);
if(deploymentPlan != null)
{

}

else if(num of application in s >= 2)

{

return deploymentPlan;

Split s into two substrings s1, s2 to minimize
interpool bandwidth.
deploymentPlanl = lowLevelLogic(s1);
deploymentPlan2 = lowLevelLogic(s2);
if deploymentPlanl !=null & deploymentPlan2 !=null

{
return (deploymentPlanl,deploymentPlan2);
}
else
{
return null;
}
}
else
{
return null

Figure 38: Low-Level Control Logic, First Attempt.

If there exists multiple pools that can accept a (sub)string, then instead of selecting one of these
pools randomly for the (sub)string’s deployment plan, we design the low level control logic to
select the optimum pool as measured by resource utility. This aspect of the (sub)string resource
selection algorithm is seen in Figure 38. We discuss our resource utility measure in the
immediately following section.
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5.3.2.3 Resource Utility Computation

Our initial refinement of the mission-level control algorithms uses a resource utility measure to
decide on where to place strings in the system. We have formulated a resource utility measure
that when used in the low level control logic, leads the system to generate load balancing
deployment plans. We felt that this method was advantageous because hardware failures will
have less of a potentially catastrophic affect. That is any one hardware failure will be less likely
to lead to an inordinate number of string failures.

To compute resource utility, suppose that over the pools P, P,,... P, there is a resource slack of
pSy, PS,,... ps, . Also, over the inter-pool communication links L,, L, ,... L, , suppose there are
resource slacks of Is,,Is,,...Is, . As previously discussed’, resource slack is a measure for the
amount of free resources on the pool.

We define the pool resource utility to be Zi’;ﬂ/ ps; and the link resource utility to be Z;lﬁ .

The total resource utility to be

RU = WPZi:I\/Ei_+ WLZ?:H/TST'

This measure for resource utility implies that the highest utility is obtained by evenly distributing
resource utility over the various pools and links. In the resource utility measure, the factors w,

and w, are weighting factors. If it is much more important to conserve inter-pool bandwidth
than pool resources, then w; should be assigned much greater than w,. The factors w, and w,

will most likely need to be tuned when this control system is deployed on a real system.

selectPool(s)

{

if(no pool can accept s)
return null;

else
{
Compute Resource Utility for all possible
pool assignments;
p = pool associated with highest Resource Utility
return (s,p);
}

Figure 39: Resource Utility Driven Pool Selection Algorithm.
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To illustrate the load balancing effect due to the usage of this resource utility measure, suppose

_ 1 1 . . d 1 h
RU =w, Zi=1,/ps,. +w, Zizl,/ls,. , and a pool substring needs to be assigned to a pool that
would diminish its pool’s resource slack by s. If ps, > ps,, then
\/ ps, —s+ J DS, > J ps, + J ps, —s . Hence there would be a higher utility of placing the string
portion on Pool 1 instead of Pool 2.

5.3.2.4 Mission Simulations

To test our initial refinement of the mission control design, we also developed Matlab/Simulink
simulations. We wanted to investigate the performance of the controllers with respect to GT4
warfighter Metric 1. Scenarios that we were particularly interested in three situations where a
mission with multiple strings and the mission controller needs to respond to:

Hardware failures.
Changes in warfighter value that would drive the most important strings.
Changes in warfighter value while simultaneously recovering from hardware failures.

To evaluate our mission controller design scenarios, we simulated a system comprised of 5 pools
with bounded inter-pool bandwidth. In the system there is one mission with 10 non-trivial, non-
uniform strings. Warfighter Metric 1 was used to evaluate the warfighter value derived from the
controller operating in these scenarios.

Warfighter Value vs. Time

Warfighter Value

. Failure Recovery ,,,,,,,,,,,,,,,, S
Some Low- Prlorlty Strmgs Are Kllled
Failed ngh Prlorlty Strmgs.Are Redeployed
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Time

Figure 40: An overview of warfighter value evolution.
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As a basic assumption to establish a baseline comparison, we assume that the mission controller
only updates once a second. This may or may not be realistic for the ARMS system, but we
needed to use a standard measure to evaluate the abilities of our control system.

Scenario 1

This scenario was used to test the performance of the mission controller with respect to hardware
failures. For this scenario, a mission is initially deployed with 10 strings which are assigned a
mixture of high and low values. There are 5 high importance strings with a warfighter value of
4: Strings 1, 2, 3, 4, 5, and there are 5 low importance strings with a warfighter value of 1: String
6,7,8,9, 10.

After the mission is deployed, it needs to deploy its individual strings. One of the five initially
operating pools is randomly selected to fail permanently at t=20sec. After this failure occurs, the
mission controller should attempt to recover as much warfighter value as possible after the
failure by either killing or (re)deploying its strings.

Graphs of warfighter value versus time for the Matlab/Simulink simulation of the mission
controller in this scenario can be seen in Figure 40 and Figure 41. The graph in Figure 40 shows
in broad strokes the operation of the system during this experiment, while Figure 41 shows the
same data with more detailed information concerning the attempted deployments and killings of
the mission’s strings. As can be seen from these graphs, the mission’s warfighter value drops
immediately after the pool failure occurs, but by killing low priority strings, the mission
controller is able to restart the failed higher priority strings.

Use or disclosure of the data contained on this page is subject to the restriction on the title page of this document.

131




BBN TECHNOLOGIES ADAPTIVE MULTILEVEL MIDDLEWARE FOR OBJECT SYSTEMS

Warfighter Value vs. Time
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Figure 41: A detailed overview of warfighter value evolution.

In addition to the warfighter value graphs, Figure 42, Figure 43 and Figure 44 show snapshots
about the details of the strings’ deployments over time. Figure 42 shows how all of the system’s
strings are deployed after initialization, but before the pool failure occurs. Figure 43 shows how
the mission’s operating strings are deployed immediately after the pool failure, and Figure 44
shows how the mission’s strings are deployed after the mission has attempted to recover from the

pool failure.
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Figure 42: Scenario 1 String Configuration After Initialization

Figure 43: Scenario 1 String Configuration After Failure.
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Figure 44: Scenario 1 String Configuration After Recovery

Scenario 2

This scenario is a continuation of the previous scenario where after the mission controller has
finished recovering from the pool failure, the mission controller should respond to a change in
string valuation. Therefore, at the beginning of this scenario, the system has one mission with 10
strings. Eight of the strings are initially deployed over 4 operating pools. There are 5 high
importance strings with a warfighter value of 4: Strings 1, 2, 3, 4, 5, and there are 5 low
importance strings with a warfighter value of 1: String 6, 7, 8, 9, 10. Strings 9 and 10 are
initially not deployed.
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Warfighting Value vs. Time
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Figure 45: An overview of scenario 2 warfighter value evolution.

At t=10sec, the strings are revaluated such that after the revaluation there are 6 high importance
strings with warfighter value of 4. These strings are Strings 1,2,3,4,9, 10. Additionally, after the
revaluation there are 4 non-critical strings with warfighter value of 1 : String 5, 6, 7, 8. Note that
after the revaluation, Strings 9 and 10 become high-importance, while String 5 becomes low
importance. After the revaluation, the mission controller should deploy or kill its strings as
necessary to obtain as high a warfighter value as possible.

Graphs of warfighter value versus time for the Matlab/Simulink simulation of the mission
controller in this scenario can be seen in Figure 45 and Figure 46. The graph in Figure 45 shows
in broad strokes the operation of the system during this experiment, while Figure 46 shows the
same data with more detailed information concerning the attempted deployments and killings of
the mission’s strings. As can be seen from these graphs, the mission’s warfighter value drops
when the string revaluation occurs, but by killing low priority strings, the mission controller is
able to deploy the newly high priority strings that were not previously deployed.
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Figure 46: A detailed overview of Scenario 2 warfighter value evolution.

In addition to the warfighter value graphs, Figure 47 and Figure 48 show snapshots about the
details of the strings’ deployments over time. Figure 47 shows how all of the system’s strings
are deployed before the revaluation occurs. Figure 48 shows how the mission’s operating strings
are redeployed after the mission controller has responded to the string revaluation.

Figure 47: Scenario 2 String Configuration After Response to String Revaluation
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Figure 48: Scenario 2 String Configuration At T=0sec

Scenario 3

This scenario is a combination of scenarios 1 and 2. For this scenario, a mission is initially
deployed with 10 strings which are assigned a mixture of high and low values. There are 5 high
importance strings with a warfighter value of 4: Strings 1, 2, 3, 4, 5, and there are 5 low
importance strings with a warfighter value of 1: String 6, 7, 8, 9, 10.

After the mission is deployed, it needs to deploy its individual strings. One of the five initially
operating pools is randomly selected to fail permanently at t=20sec. After this failure occurs, the
mission controller should attempt to recover as much warfighter value as possible after the
failure by either killing or (re)deploying its strings. However at t=23sec, before the mission can
completely recover from the pool failure, a revaluation of the mission’s strings occur. The
strings are revaluated such that after the revaluation there are 6 high importance strings with
warfighter value of 4. These strings are Strings 1,2,3,4,9, 10. Additionally, after the revaluation
there are 4 non-critical strings with warfighter value of 1 : String 5, 6, 7, 8. Note that after the
revaluation, Strings 9 and 10 become high-importance, while String 5 becomes low importance.
Because the revaluation occurs before the mission can completely recover from the pool failure,
the mission controller needs to simultaneously respond to the effects of the pool failure and the
string revaluation.
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Figure 49: An overview of scenario 3 warfighter value evolution.
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Warfighting Value vs. Time
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Figure 50: A detailed overview of scenario 3 warfighter value evolution.

Graphs of warfighter value versus time for the Matlab/Simulink simulation of the mission
controller in this scenario can be seen in Figure 49 and Figure 50. The graph in Figure 49 shows
in broad strokes the operation of the system during this experiment, while Figure 50 shows the
same data with more detailed information concerning the attempted deployments and killings of
the mission’s strings. As can be seen from these graphs, the mission’s warfighter value drops
both when the pool failure occurs and when the string revaluation occurs. However, by killing
low priority strings, the mission controller is able to deploy the newly high priority strings that
were not previously deployed.

In addition to the warfighter value graphs, Figure 51, Figure 52, Figure 53 and Figure 54 show
snapshots about the details of the strings’ deployments over time. Figure 51 shows how all of
the system’s strings are deployed after initialization. Figure 52 shows the configuration of the
system immediately after the pool failure has occurred and Figure 53 shows the configuration of
the system when the string revaluation occurs. Figure 54 shows how the mission’s operating
strings are redeployed after the mission controller has finished responding to both the pool
failure and the string revaluation.
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Figure 51: Scenario 3 String Configuration After Initialization

Figure 52: Scenario 3 String Configuration After Failure.
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Figure 53: Scenario 3 String Configuration On String Revaluation

Figure 54: Scenario 3 String Configuration After Response to Failure and Revaluation
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5.3.3 Second Approach to Mission Control

With our experience in mission control design from our first round of refinement and simulation,
we next attempted to improve the mission controllers to account for both GT4 Warfighter
Metrics and our Application Utility Measure. We refined the ARMS mission control system,
which consists of three algorithmic components, to dynamically decide which strings to
deploy/kill/redeploy and what resources the deployed strings should be directed to use. These
algorithmic components take input from the user and interact with the external ARMS system
and one another to perform their resource allocation operations. A high-level schematic of the
interactions between the mission controller algorithm components can be seen in Figure 55.

In order to deploy the mission’s strings, the mission controller is given input parameters from the
user about which strings the mission should attempt to deploy, information about these strings’
importance, and resource requirements. As the mission operates, the user may change any of
these input parameters during run-time.

The sorting logic in the mission controller takes the inputs from the user and generates a sorted
list of the mission strings using the sorting order specified by the user. This sorted list of strings
is passed as input to the mission controller and can have a large impact on the performance of the
system. The mission controller runs the sorting logic for all strings whenever the user inputs
new information to the mission controller.

User-Generated Information On
String Values, Resource Usage

And Desired Ordering Method
Ordered List

Of Strings

\ e String Deployment
- String +| Operations

‘. Selection. . f———
o «Logic

String Status Information 3

String Deployment

& Killing Requests String Deployment

Plans

Resource Status Information

Figure 55: Mission Control Inter-Algorithm Information Flow
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After the sorting logic has completed operation, it passes the sorted list of strings to the string
selection logic. The string selection logic, which we previously called the high-level control
logic, determines which strings to deploy/kill/redeploy based on the strings’ locations in the
ordered list in response to partial system failures and changes in the ordered list of strings
received from the sorting logic. In the previous version of the mission controller, the string
selection logic implicitly used an importance based ordering for string sorting logic. The string
selection logic operates in batch mode in that it deploys/kills/redeploys groups of strings at the
same time. Note that in this design, some deployed strings may be redeployed to use different
resources.

When selecting the groups of strings to deploy/kill/redeploy, the string selection logic
individually sends string deployment plan requests to the string binding logic. The string
binding logic was previously called the low-level control. Upon receiving a string deployment
request from the string selection logic, the string binding logic still generates a string deployment
plan that is returned to the string selection logic, if such a deployment plan is possible. If a
deployment plan is not feasible, then the binding logic returns a null plan.

In order to maintain the best possible estimate of the state of resources available to the mission
controller, the string binding logic maintains an internal estimate of the current availability of
resources. This estimate of resources availability is based on resource information input to the
controller, and is updated as the binding logic generates deployment plans for the selection logic.
Note that external information on the resources available to the mission controller is not updated
instantaneously in real systems. (This is reflected in our updated Simulink model.) Therefore,
the binding logic will generally have delayed information about true the availability of resources
available to the mission controller. In order to further maintain the best possible estimate of the
state of resource availability, the string binding logic is also notified by the string selection logic
about strings that the selection logic plans to kill.

5.3.3.1 String Selection Logic

The string selection logic directs the (re)deployment and killing of the mission’s strings in the
order dictated by an ordered list of the mission’s strings. This ordered list of strings is passed to
the string selection algorithm as a parameter from the sorting logic. In order to operate, the
string selection logic is assumed to have access to information about which of its strings are
deployed, and the occurrence of pool failures. The string selection algorithm is presented in
pseudo code in Figure 56 below.

During operation, the mission controller maintains four separate ordered lists of strings which
have the same relative ordering as the mission-wide ordered string list.:
e  Strings that are currently operating.

e Strings that are not deployed, but whose deployment may be feasible due information about the
success of previous deployment operations.

e  Strings to be killed during the next batch of string deployments.

e  Strings to be (re)deploy during the next batch of string deployments with their deployment plans.
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stringSelectionLogic

{ Given:
L: the ordered list of strings.
S: a list of deployed strings.

From L and S, generate D, an ordered list of deployed, operating strings.
From L and S, generate U, an ordered list of strings not deployed or operating.

Define:
K: a null list of deployed strings to kill.
B: a null list of strings to (re)deploy with deployment plans.

While U is non-empty
{
s = firstString(U);
deploymentPlan = lowLevellLogic(s);
if deploymentPlan != null
{
B.add(s,deploymentPlan);
If K.contains(s)
K.remove(s);
U.remove(s);

else

d = lowestValueString(D)
if sahead of din L
{
K.add(d);
If B.contains(d)
B.remove(s);
D.remove(d);
U.addInOrder(d,L);

else

U.remove(s);

}

}
Kill all strings in K.

Bind all strings in B to their resources.

Figure 56: String selection Logic.
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The string selection logic incrementally attempts to generate deployment plans for its internal list
of undeployed strings by querying the string binding logic. As string deployment plans are
successfully generated for strings on this undeployed list, those strings and their deployment
plans are placed on the list of strings to be (re)deployed.

If a deployment plan cannot be generated for a string, the string selection algorithm may kill a
string to free up resources, depending on the relative ordering of the strings on the list generated
by the sorting logic. To do this, the selection logic tests to see if the last string in the sorted list
of operating strings is behind the undeployable string in the composite sorted list of strings. If
s0, the last string in the sorted list of operating strings is added to the kill list and a notification of
this kill is sent to the binding logic that the killed string’s resources are free. The killed string is
then also added to the list of strings to whose deployment may be feasible because it may be
possible to redeploy the string later on different resources.

The logic continues to kill low ordered strings until enough resources are freed up to deploy the
string. When the string binding logic successfully generates a deployment plan for the string,
this string is added to the list of strings to deploy along with its plan and the string is removed
from list of strings to deploy. If a deployment plan cannot be generated for a string and there are
no strings which could be killed that would be free up resources for the undeployed string, the
string is removed from the list of strings whose deployment may be feasible and not considered
for later deployment.

The string selection logic continues operation until the list of strings whose deployment may be
feasible is empty. When the feasible string list is empty, the string selection algorithm outputs
the list of strings to be killed and the list of strings to be (re)deployed with their deployment
plans. As strings are killed, the killed strings are removed from the list of operating strings and
added to the list of strings whose deployment may be feasible in the order proscribed by the
master string list.

5.3.3.2 Sorting Logic

The operations of the string selection logic (and hence the entire mission control behavior) is
highly dependent on the sorted list of strings passed to the string selection logic. We compare
and contrast three methods for sorting the strings:

1. Sorting based exclusively on the string’s importance value. This method is called the
importance value method.

2. Sorting based on the string’s resource efficiency. This method is called the resource
efficiency method.

3. Sorting based primarily on whether a string is in the set of most important strings and
secondarily on a string’s resource efficiency. This method is called the two-order
method.
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Algorithm A: Importance Value Sorting

The first string sorting method is also the simplest. Each string is assigned a importance value
by the user. The strings are then sorted based on these importance values with the highest
importance values placed first in the list. This was the method used in our initial refinement of
the string selection logic.

Algorithm B: Resource Efficiency Sorting

The second sorting method is based on the intuition that rather than deploying the strings with
the highest importance values, it may be desirable to deploy the strings that use resources most
efficiently. We measure string resource efficiency as the ratio of a string’s importance value to
its resource usage as determined by the string resource usage measure. To demonstrate, suppose

there are n strings with importance values imp,,imp,,...,imp, and resource usage

measures RU,,RU,,...,RU, . Forthese n strings, define their respective resource efficiencies
imp,  imp, imp,,
RU,’RU, "RU,

n

Algorithm C: Two-Order Sorting (aka “Sauerkraut”)

For the two-order string sorting method, the strings are partitioned into sets of strings depending
on their user assigned importance. Although it is possible to partition the strings into more than
two sets, we partition the strings into the most important and non-most important sets. The
strings in their respective subsets are then sorted based on their resource efficiencies and placed
on the main list first in order of their importance set and secondly based on resource efficiency.

As an example of how the string orderings are used, consider a mission with 4 strings
5,,5,,8;,5, with importance values imp, =2,imp, =3,imp, =4,imp, =4 and resource usages of

RU, =5,RU, =6,RU, =4,RU, =10. Therefore, —1=0.4,2P2 ~052%Ps - "Ps _(4.
RU, RU, RU, RU,

The importance value based ordering for this set of strings would be 4,3,2,1 (with 4 arbitrarily

placed ahead of 3), the efficiency based string order would be 3,2,1,4 (with 1 arbitrarily placed

ahead of 4), and the two-order string order would be 3,4,2,1 (where strings 3 and 4 are deemed to

be the most important strings.)

5.3.3.3 Resource Usage Computation

As discussed above, we use a string resource usage measure to aid in the ordering of strings for
the efficiency-based and two-order ordering methods. We have formulated an easily computable
string resource usage heuristic measure similar to the resource utility measure used by the string
binding logic in Section 5.3.2.3.
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Suppose that a string has a applications and hence a —1 inter-application communication links.
Suppose also that the applications require c,,c,,...,c, computational resources locally and the

links each require b,,b,,..., megabits per second of bandwidth. We approximate the string’s

a-1

. a . . .
total computation resource usage to be (ZH N )2 and the string’s communication resource

— 2
usage to be (Z:;:be ) . The total resource usage is therefore the weighted sum:

RU = (275 f + w5 )

This measure for resource usage attempts to quantify the relative usage of the generally

. . a . .
incomparable computation resource usage (Zi_l N )2 and the communication resource usage

— 2

‘ ' /b | . Because these measures are generally incom arable, we use the relative tunin
g y P g

i=1 !

factor w to balance these values. The weighting factor wis a tunable parameter that can be
adjusted depending on relative resource availability. For example, when computation resources
are configured to be scarce, w should be relatively small, while when communication resources
are configured to be scarce, w should be relatively large.

5.3.3.4 Simulation Model and Experiments

We further developed our large-scale, highly configurable Matlab/Simulink model of the ARMS
system to objectively compare the relative benefits of using the three different methods of string
ordering procedures in conjunction with the mission controller,. This simulation model is a
significantly upgraded and expanded version of the simulation model we used during previous
refinements.

For our simulation experiments, we configured the model to consist of a mission with 100 strings
that can be deployed on pool and inter-pool link resources. When the mission controller
performs a string deployment operation, there is a configurable actuation delay between the time
the mission controller sends the actuation signal until the time the string is becomes operational.
Lacking an exact real-world for this deployment delay, we approximated this value as 0.1sec.
Similarly, the mission controller model has a configurable observation delay to better model the
mission controller’s observation of changes in the availability of system resources due to partial
failures or other reasons. Lacking an exact real-world value for this observation delay, this value
is approximated as 0.1sec. We also designed the model to account for the computation time the
mission controller requires to generate string deployment plans. This delay is added to the
deployment delay of strings in order to generate an effective deployment delay.

In the simulation model, the operating conditions of the strings are highly configurable. The
computational and communication requirements of the 100 strings can be customized to model
various mission scenarios as long as there are at least two applications in every string. The user-
assigned importance values of the strings are also configurable and can be used as experimental
parameters in simulation.
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The amount of resources available to a mission can also be adjusted in the simulation model. In
particular, the number of pools and how many applications can be run in each pool and be
individually adjusted along with the amount of inter-pool bandwidth available to the mission’s
strings in the system’s inter-pool communication links. It is not necessary that the pools and
links have homogenous resource configurations. We simulate partial system failures in real-time
in the model by removing all of a pool’s nodes to model a complete pool failures, and bandwidth
is removed from communication links to simulate inter-pool communication link failures.

Simulation Experiments

Using the large-scale Matlab/Simulink model of the ARMS system, we generated 129
experimental string deployment scenarios consisting of 100 strings, each with randomly chosen
application lengths uniformly distributed between 2 and 11. Inter-application bandwidth
requirements were randomly chosen to be either 1 or 2 megabits per second. The 100 strings
were randomly assigned integer importance values with a uniform random distribution between 1
and 10, inclusive.
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Figure 57: A detailed overview of Metric 1 warfighter value evolution during a simulation run.

For each scenario, the system had five operational pools at initialization with sufficient
computational resources and bandwidth to deploy all strings. The pools were allocated
computation resources such that after the failure of a specific pool, the mission controller would
still have sufficient resources to deploy all strings, the failure of another individual pool would
cause the mission to have only 80% of the resources required to deploy all strings, and the failure
of a third individual pool would cause the system to have 50% of the resource to deploy all
strings.
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The Matlab/Simulink simulations were run such that the mission was given sufficient time to
deploy all strings after initialization. After initialization was completed, a pool was failed, and
the mission controller was allowed to complete its recovery operations in response to the pool
failure. We recorded the amount of time for the mission controller to redeploy its most
important strings (if any failed as a result of the pool failure), and we recorded the Metric 2
performance attained by the mission controller immediately before the failure and the Metric 2
performance after failure recovery operations completed.

The simulation was run 9 times for every scenario. During the first 3 simulation runs for every
scenario, the pool that failed was chosen so that the mission would have sufficient resources after
the failure to redeploy all strings. For these 3 simulations, each of the three string ordering
methods was used once. During the second 3 simulation runs for every scenario, the pool that
failed was chosen so that the mission would have 80% of the resources required to deploy all
strings after the failure. For these 3 simulations, each of the three string ordering methods was
used once. During the final 3 simulation runs for every scenario, the pool that failed was chosen
so that the mission would have 50% of the resources required to deploy all strings after the
failure. For these 3 simulations, each of the three string ordering methods was used once.

Figure 57 shows whether all of the most important strings in the system are running. In this
figure, all most important strings are deployed soon after initialization, some most important
strings fail when the pool fails at 20sec, and all failed most important strings fail soon after.
Similarly, Figure 57 shows the sum of the importance values of the deployed strings. After
initialization, the sum of importance values increases until it plateaus when all strings are
deployed. After the pool failure, some strings fail and during recovery operations, some strings
are killed to free up resources to redeploy other strings.

Metric 2 Performance vs. Time

600 T 7 T T 7
500 +
@ 400t Pool Failure Occurs -
o
= Some Deployed High-Priorit
E Strings Fail.
(»3
©
& 300 Failure Recovery. T
3 Some Low-Order Strings Killed.
% Failed High-Order Strings Redeployed
= 2001 -
100 i 4
Strings Are Deployed In Order
] i 1

¢ 5 10 15 20 25 30
Time(Seconds)

Figure 58: A detailed overview of Metric 2 performance evolution during a simulation run.
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Experimental Results

From the simulation runs, we collected data on most important string recovery times for all
simulations. Figure 59 contains a graph that demonstrates how the mean string recovery times
for the simulation runs varies depending on the amount of resources available after the induced
pool failure and the string ordering method used.

, C £1100% Resource Available
4.5 o ‘ e 1 B 80% Resources Available
4 4o e | 050% Resources Available

Strings (Seconds)

Mean Recovery Time for Critical

Algorithm A: Algorithm B: Algorithm C: Two-
Importance Resource Efficiency Order

String Sorting Method

Figure 59: Mean String Recovery Time for Various String Ordering Methods for High and Low
resource Availability.

As can be seen in Figure 59, the data shows that a controller using the two-order ordering
method can achieve most important string recovery performance comparable to a controller
using the importance value sorting method. Also note that the Metric 1 performance when the
efficiency ranking was used is consistently less than the performance attained by the importance
and two-order methods. This is due to the fact that the importance and two-order ranking
methods give a higher priority to redeploying the system’s most important strings while the
resource efficiency method does not. Although the absolute measures of time used in this
experiment are subjective, the data shows that a mission controller using the two-order ordering
method can achieve most important string recovery performance comparable to a mission
controller using the importance value sorting method.
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Figure 60: Decrease in Metric 2 Performance for Various String Ordering Methods During 80%
Post-Failure Resource Availability.
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Figure 61: Decrease in Metric 2 Performance for Various String Ordering Methods During 50%
Post-Failure Resource Availability.
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From the simulation runs, we also collected data on the ability of the mission controllers to
sufficiently regain lost Metric 2 performance after the failures. Figure 60 contains a graph that
demonstrates how much lower the Metric 2 performance was than the pre-failure Metric 2
performance on average for the various ordering methods when there was 80% of the required
resources available after failure. In these scenarios, the efficiency and two-order ordering
methods performed comparably and better than the importance value based ordering method.
The collected data also shows that the two-order and efficiency ordering method were able to
deploy on the order of one more string (out of 100 strings) during failure recovery than the
importance value based method.

Figure 61 contains a graph that demonstrates how much lower the Metric 2 performance was
than the pre-failure Metric 2 performance on average for the various ordering methods when
there was 50% of the required resources available. As can be seen from the graph, the efficiency
and two-order ordering methods performed comparably and consistently better than the
importance value based ordering method. The collected data shows that the two-order and
efficiency ordering method were able to deploy on the order of four more strings (out of 100
total strings) during failure recovery than the importance value based method.

The Metric 2 simulation data clearly shows that the two-order ordering method can be used
successfully to attain the desired behavior of both the importance value ordering under normal
conditions and the efficiency order under constrained conditions. Additionally, there were no
observed drawbacks associated with using the two-order ordering method. The two-order
ordering method can be computed very efficiently and requires no special modifications of the
previously established string selection logic.

5.3.4 Dynamic Programming Algorithm for Mission String Selection

Beyond our simple heuristic approaches to string ordering, we also attempted to use a dynamic
programming approach to string selection. Among the three computationally efficient string
ordering methods presented above, the resource efficiency algorithm achieved the highest Metric
2 performance during our Matlab/Simulink simulation experiments when used in conjunction
with the string selection logic to deploy strings. However, it is still unknown how well the
combined behavior of the string ordering and selection heuristics perform with respect to some
optimal as measured by Metric 2. To formalize the optimal string selection problem at a high
level of abstraction, the mission string selection problem is reducable to a multi-constrained
knapsack problem [22]. The multi-constrained knapsack problems can be stated as selecting a
subset of items with assigned values that satisfy a set of knapsack capacity constraints and
maximize the total value of the selected items.

Formally, suppose we are given n items and m capacity constraints. The » items should be
assigned binary values x,,x,,...,x, to represent whether the n items are placed in the knapsack.

The variables v,,v,,...,v, are the respective values of placing the n items in the knapsack. The

n
multi-constraint knapsack problem is to assign binary values to x,x,,...,x, such that Zv X, 18
j=1

maximized subject to the m capacity constraints.
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For the m capacity constraints, the variables C,,C,,...,C,, represent the size of the capacity

constraints, and s;; is the size of capacity i of item j. Therefore s, x; represents how much of

capacity i is used by item j if it is selected to be placed in the knapsack. If Zs,.jx ; SC, , then
j=1
the i™ capacities of all of the selected items fall within the constraint C;.

Therefore, the formal statement of the multi-constrained knapsack problem is:

Maximize Z VX,
j=1

Subject to D s;x,<C, Vie{l,..,m} and x,€{01} Vje{l,..n}
j=t

A special case of the multi-constrained knapsack problem is the simpler single-constraint
knapsack problem [4] where there is only one constraint and hence m =1. (The single-constraint
knapsack problem is commonly referred to as the “knapsack problem™)

For the single-constraint knapsack problem, suppose you are given a set of n items, with values
V,Vy,...,v, and sizes s,,S,,...,s,. The problem is to choose the subset of items that can be put

into a knapsack with capacity C so that the total value of the items in the knapsack is maximized.

Formally:
Maximize Z VX,
=1
Subject to D s,x,<C and x,€{01} Vje{l..n}

j=t

Methods developed to solve the single-constraint knapsack problem can be used to solve the
mission-level string selection problem when the dominant limiting capacity is the amount of free
computational resources. (That is, when the inter-pool bandwidth is considered sufficiently
abundant.) This reduction is performed as follows:
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The number of strings maps to the number of items, n

The string importance values map to items’ value, v

The string computational resource requirements map to items’ size, s
The total computational resources map to knapsack capacity, C

e o ¢ o

Straightforward use of a dynamic programming algorithm finds the optimal solution to the
single-constraint knapsack problem and thus can be used to solve our string selection problem.
Therefore, dynamic programming can be used to optimally solve the string selection problem in
time (O(nC))*.

There are several benefits to understanding this algorithm. For one, it allows us to analyze the
string selection problem formally and provides an upper bound to the problem. Secondly, we can
compare the performance of the computationally efficient resource efficiency algorithm with the
optimal dynamic programming solution as a baseline. Thirdly, it allows us to evaluate the
effectiveness, benefits and costs of the dynamic programming algorithm as a runtime alternative
in solving the mission string selection problem.

We are currently comparing these two algorithms without the integration of low-level string
binding logic. The total Importance Value (sum of importance values of strings selected to be
deployed) is used to measure its performance. We hypothesize that good total Importance Value
will yield good Metric 2 performance, but we need better end-to-end performance evaluation.
This will be addressed later in the context of the overall mission and system resource
management.

The dynamic programming algorithm and resource efficiency algorithm were implemented in
C++ to compare their performance and execution time. We have not yet implemented the
dynamic programming algorithm in the Matlab/Simulink model.

5.3.4.1 Experiment Setup

* THE ALGORITHM RUNS IN PSEUDO-POLYNOMIAL TIME AND NOT POLYNOMIAL TIME BECAUSE C1S
NOT POLYNOMIAL IN THE LENGTH OF THE INPUT TO THE PROBLEM.
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Figure 62 Comparison of the total Importance Value Achieved with Resource Efficiency and
Dynamic Programming Algorithms under Different Resource Availability

We performed a large number of experiments to evaluate the performance of Dynamic
Programming and Resource Efficiency algorithms under different resource availability, 0.5%,
1%, 5%, 10%, 20%, 50%, 80%, 90% and 95% of what is required to deploy all strings. At each
resource level, 100 test runs were performed and average total importance value and execution
time were measured and analyzed. In each test, there are 100 strings, each with its importance
value and resource requirement picked randomly with a uniform distribution from 1 to 10 and 1
to 100 respectively.

5.3.4.2 Experiment Results

Because the dynamic programming algorithm produces optimal solutions, we use it as the
baseline to evaluate the performance of the Resource Efficiency algorithm. Figure 62 shows that
in our experiments the resource efficiency algorithm performed nearly as well as the dynamic
programming algorithm at all resource levels, and especially at high resource availabilities (Iow
resource contention). The percentage of importance value relative to the optimal only decreased
slightly from 99.9% to 97.4% when the system resource went from 95% to 0.5% of what was
required to deploy all strings. (Because it is optimal, the dynamic programming algorithm
always achieves 100% of the importance value, but takes longer to do so due to the need for
extra computational effort.)
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Figure 63 Comparison of the Execution Time of Resource Efficiency and Dynamic Programming
Algorithms under Different Resource Availabilities

The resource efficiency algorithm can always be performed in time O(rlgn) as it is a sorting

procedure and can be implemented very efficiently using known methods. As with our
Matlab/Simulink experiments, we did not change the number of strings in these experiments.
Therefore, because the execution time of resource efficiency algorithm is dependent only on the
number of strings, in our experiments the average execution time of the resource efficiency
algorithm is independent of the amount of free resources. This is reflected in Figure 63.
Conversely, the execution time of the dynamic programming algorithm is highly dependent on
the number of free resources. More precisely, the single-constraint knapsack problem is NP-hard
and the dynamic programming algorithm runs in pseudo-polynomial time. In our experiments,
the average execution time of the dynamic programming algorithm increased from around 24
microseconds when the system had 0.5% of its required resources to about 7 milliseconds at 95%
of the required resources in our C++ implementation. This can be seen in Figure 63.

Even though the execution time increase is relatively large for the dynamic programming
algorithm, the absolute time increase is relatively small (a few milliseconds) and might be
acceptable in most cases. This is especially true when the number of strings or the resource space
is relatively small. The additional computational cost of using a dynamic programming approach
can be easily justified in order to achieve the optimal performance. The dynamic programming
approach would be costly and impractical as an online procedure (in both time and memory)
when the number of strings is very large (on the order of tens of thousands of strings) and/or the
resource space is very large (sufficiently large to accept tens of thousands of strings), in which
case the resource efficiency algorithm is a viable alternative to the optimal dynamic
programming approach.
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Although the resource efficiency algorithm usually performs well in practice, there are cases
where the efficiency-based method performs noticeably worse than the optimal method. For a
simple example, consider a system where the mission has access to one pool with 10 units of
computational resources after a partial system failure causing some computational resources to
fail. Further, assume that the mission has two strings, s, and s, , with warfighter

valuesimp, =2,imp, =10 and resource usage measures RU, =1,RU, =10. In this example,

imp, ) imp,
RU, 'RU,
method. However, by deploying string 1, there would be insufficient resources to deploy string
2. As can be seen from inspection, the highest total importance value for this example would be
attained if string 2 were deployed. Generally, situations where resource efficiency performs so
poorly as compared to dynamic programming method generally occur when there are very
limited resources. (This is evidenced by the general trend of resource efficiency performance as
resource availability decreases as seen in Figure 62.) This therefore indicates that a general
approach to attaining high Metric 2 performance without high computational cost would be to
use a dynamic programming method when resources are scarce. During this situation, dynamic
programming can be performed quickly. When resources are nearly sufficient, the resource
efficiency method can be used because it is nearly optimal and dynamic programming cannot be
performed quickly.

=1, so string 1 would be deployed first using the resource efficiency ordering

5.3.5 Multi-Mission Coordination

With our refined design of the mission controller, we turned our attention to the system
controller, which we recast as a Multi-Mission-Coordinator (MMC). When selecting which
strings to deploy, the amount of resources the mission is allowed to use is intended to be
provided as a policy input from the MMC so that the MMC can direct the overall division of
resources to the missions. Note that instead of being allocated specific resources, the refined
mission controllers are given policy input as to how much resource they are allowed to use.

5.3.5.1 MMC Conops

When dividing the available system resources up amongst the missions, the MMC needs a way
to predict what value the system would derive from allocating various amounts of resources to
the missions. To do this, the MMC receives a lookup tables from each mission controllers that
maps an approximation of the sums of the importance values of strings the mission controllers
could deploy for their missions if given the ability to use various levels of resources. We further
developed the mission controller design so that the lookup tables are generated and sent to the
MMC by every mission controller at initialization and are based on user-commanded mission
goals. The lookup tables are also intended to be updated regularly whenever a mission receives a
command directive to refine its local behavior based on the relative importance values of the
missions and its strings. Figure 64 contains a schematic of MMC operation which indicates that
the lookup tables of missions’ resource-value mappings.
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When the lookup tables are sent to the mission controller, the resource levels listed in the lookup
table are quantized based on the levels of quality of service provided by the missions for
deploying groups of strings. Because the deployment of the missions’ most important/critical
strings is necessary for minimal mission operation, the lowest quantization level of the lookup
tables correspond to the resources necessary to deploy just the most important/critical strings for
each of the missions. The other quantization levels in the mission lookup tables are dependent
upon the context of the mission and could be used to tune the operation of the MMC when
dividing system resources among the missions.

When the MMC has the lookup tables from the mission controllers and given information about
the availability of resources in the system, the MMC needs to decide how much resources should
be provided to every mission controller in order to guarantee all critical strings can be run and to
maximize the total value of all strings that can be deployed. The problem of the MMC allocating
resources to the missions can be formalized as a multiple-choice knapsack problem. This
problem is discussed in more detail below in the subsection entitled “Multi-Choice Knapsack
and Dynamic Programming”.

The MMC could use any number of algorithms to compute the most efficient division of
resources among the active missions based on information from the lookup tables and resource
efficiency. We found the dynamic programming algorithm to be very effective and efficient
considering the relatively small numbers of missions that we are using.
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Figure 64: MMC Conops

Once the MMC computes the division of the resources amongst the missions, the MMC
communicates to the mission controllers how much of the computation resources they are each
allowed to use. This communication is indicated in the schematic of the MMC operation in

Figure 64.
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When the mission controllers have information about how much resources they are allowed to
use, they make string deployment and killing requests to the system to deploy their strings that
would deploy their critical strings and maximize the sum of the warfighter values of their
deployed strings. The mission controllers receive no information about the allocation of
resources to other missions. Therefore, on the occurrence of significant system events such as
partial system failures or command directives, the mission controllers make all of their local
resource allocation decisions under the assumption that their total resource allocation hasn’t
changed unless they receive updated information from the MMC.

5.3.5.2 Dynamic and Static Multi-Mission Coordinators

To explore the abilities of the MMC, we designed two MMC'’s to explore two variations of the
MMC CONOPS. The first MMC, called the dynamic MMC, continually updates the allocation
of resources to the mission controllers as system behavior evolves. Both MMC’s used the
dynamic programming algorithm to divide up system resources among the missions. After
initialization, the dynamic MMC responds to system events such as partial system failures,
command directives and changes in string values, among others by adjusting the missions’
resource allocations. The static MMC does not adapt the resource allocations to the missions
after initialization.

As previously stated, the static MMC is used as a proxy for a hypothetical baseline behavior that
could be exhibited by the Program of Record (PoR). Although the static MMC does not adjust
the high-level allocation of resources between the missions, the mission controllers continually
attempt to dynamically use their full allocation of resources. We hypothesized that a system
using this MMC could have very bad performance during failure recovery. Due to the operation
of the mission controllers, a mission will not kill a string if it thinks it has sufficient resources to
keep it deployed.

Unfortunately, because the static MMC does not adjust the allocation of resources to the
missions, the mission may not know to kill its strings to free resources for other missions when
the static MMC is used. Additionally, if a mission does kill its strings to free resources, other
mission may take those resources before first mission could start its strings. These scenarios lead
to situations where the missions attempt to use much more resources than it should and not all
critical strings are recovered. We demonstrated this in our Matlab/Simulink simulations of the
system using the static and dynamic MMC’s

5.3.5.3 Multi-Choice Knapsack and Dynamic Programming

To formalize the optimal string selection problem at a high level of abstraction, the MMC
resource division problem is reducible to a multi-choice knapsack problem[21]. The multi-
choice knapsack problems can be stated as making a set of m choices where for each choice, an
item has to be chosen, each with an assigned value and capacity requirements. The set of all
chosen items over all choices has to satisfy a set of knapsack capacity constraints and maximize
the total value of the selected items.

Use or disclosure of the data contained on this page is subject to the restriction on the title page of this document.

160




BBN TECHNOLOGIES ADAPTIVE MULTILEVEL MIDDLEWARE FOR OBJECT SYSTEMS

Formally, suppose n items are partitioned up into m classes, with Ny items in the class  for
kel,...,m. The nitems are assigned binary values x,,x,,...,x, to represent whether the n
items are chosen to be placed in the knapsack. The variables v,,v,,...,v, are the respective
values of placing the n items in the knapsack. The multi-choice knapsack problem is to assign

n

binary values to x,,Xx,,...,x, such that Zv X is maximized subject to the capacity constraint
j=1

and exactly one item in a given class is chosen and assigned binary value 1.

For the capacity constraint, the variable C represent the size of the capacity constraint, and s; is
the size of item j. Therefore s;x; represents how much of the capacity is used by item j if it is

selected to be placed in the knapsack. If ZS ;X; <C , then the capacity of all of the selected
j=1
items fall within the constraint.

Therefore, the formal statement of the multi-constrained knapsack problem is:

n
Maximize Z VX,
j=1
n
Subject to Zijj <C ,x;=1 forexactly one item in each class and x; =0
j=1
otherwise.

We are currently using the dynamic programming algorithm to solve the Multi-Choice Knapsack
problem and perform the MMC-level resource allocation actions. We previously used the
dynamic programming algorithm very effectively to solve resource allocation problems at the
mission control level of the resource allocation hierarchy.

5.3.5.4 Simulation Model and Experiments

We developed a large-scale, highly configurable Matlab/Simulink model of the ARMS multi-
mission system to objectively compare the behavior of the static and dynamic MMC’s. This
simulation model is a significantly upgraded and expanded version of the simulation model in
experiments in Section 5.3.3.

For our simulation experiments, we configured the model to consist of three missions with 100
strings each that can be deployed on pool and inter-pool link resources. When the mission
controllers perform string deployment operations, there is a configurable actuation delay between
the time the mission controller sends the actuation signal until the time the string is becomes
operational. Lacking an exact real-world for this deployment delay, we approximated this value
as 0.1sec. Similarly, the mission controller models have a configurable observation delay to
better model the mission controller’s observation of changes in the availability of system
resources due to partial failures or other reasons. Lacking an exact real-world value for this
observation delay, this value is approximated as 0.1sec.
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In the simulation model, the operating conditions of the strings are highly configurable. The
computational and communication requirements of the strings can be customized to model
various mission scenarios as long as there are at least two applications in every string. The user-
assigned importance values of the strings are also configurable and can be used as experimental
parameters in simulation.

The amount of resources available to the multi-mission system can also be adjusted in the
simulation model. In particular, the number of pools and how many applications can be run in
each pool and be individually adjusted along with the amount of inter-pool bandwidth available
to the mission’s strings in the system’s inter-pool communication links. It is not necessary that
the pools and links have homogenous resource configurations. We simulate partial system
failures in real-time in the model by removing all of a pool’s nodes to model a complete pool
failures, and bandwidth is removed from communication links to simulate inter-pool
communication link failures.

Simulation Experiments

Using the large-scale Matlab/Simulink model of the ARMS system, we generated 100
experimental string deployment scenarios consisting of 3 missions off 100 strings, each with
randomly chosen application lengths uniformly distributed between 2 and 11. Inter-application
bandwidth requirements were randomly chosen to be either 1 or 2 megabits per second. The 100
strings were randomly assigned integer importance values with a uniform random distribution
between 1 and 10, inclusive. To generate the lookup tables generated by the mission controllers
and sent to the MMC, we randomly grouped the missions’ string sets into 10 quantization levels.

For each scenario, the system had five operational pools at initialization with sufficient
computational resources and bandwidth to deploy all strings. The pools were allocated
computation resources such that after the failure of a specific pool, the mission controller would
cause the mission to have only 80% of the resources required to deploy all strings. The failure of
two pools would cause the system to have 60% of the resource to deploy all strings, the failure of
three pools would cause the system to have 40% of the resource to deploy all strings and the
failure of four pools would cause the system to have 20% of the resource to deploy all strings.
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Figure 65: Percentage of Scenarios with Critical String Recovery vs. Resource Deficiency for
Static and Dynamic MMC's.

The Matlab/Simulink simulations were run such that the MMC and mission controllers were
given sufficient time to deploy all strings after initialization. After initialization was completed,
a set of pools was failed, and the mission controller was allowed to complete its recovery
operations in response to the pool failure. We recorded the amount of time for the mission
controller to redeploy its most important strings (if all were able to recover as a result of the pool
failure), and we recorded the Metric 2 performance attained by the mission controller
immediately before the failure and the Metric 2 performance after failure recovery operations
completed.

The simulation was run 8 times for every scenario. During the first 4 simulation runs the
dynamic MMC was used and 1, 2, 3 or 4 of the pools were failed for each of the scenarios,
respectively. During the second 4 simulation runs the static MMC was used and 1, 2, 3 or 4 of
the pools were failed for each scenario, respectively.

Experimental Results

From the simulation runs, we collected data on whether the most important string were able to
recover during the simulations. Figure 65 contains a graph that demonstrates how the percentage
of critical string recovery varies depending on the amount of resources available after the
induced pool failure and the MMC method used. As can be seen in Figure 65, the data shows
that a controller using the dynamic MMC method can achieve acceptable most important string
recovery performance. However, the static MMC was consistently unable to recover critical
strings during low resource deficiency, and almost never able to recover critical strings during
times of high resource deficiency. This is because the mission controllers in the system with a
static MMC do not know to kill some strings to release resources for their more critical strings.
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From the simulation runs, we also collected data on the ability of the mission controllers to
sufficiently regain lost Metric 2 performance after the failures. Figure 66 contains a graph that
demonstrates how the ratio of Metric 2 performance for systems using the static and dynamic
MMC’s vary with resource deficiency. As can be seen from the graph, as resource deficiency
increases, the dynamic MMC is able to achieve over 2x performance gains over the static MMC.

Ratio of Dynamic to Static Assymptotic M2
Performance vs. Resource Deficiency
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Figure 66: Ratio of Static to Dynamic MMC M2 Performance as Determined by Resource
Deficiency

5.4 Transition of DRM Algorithms into ARMS Gate Test 4

As part of the ARMS Gate Test 4 efforts, we implemented our mission-level dynamic resource
technology in the RACE environment. The team members from Raytheon and Lockheed Martin
provided the RACE environment to test mission-level resource control strategies. Our goal was
to demonstrate a two-order importance and resource efficiency planner that shows
improvement over the baseline dynamic planner with respect to Metric 2, with no significant
difference in Metric 1. Our threshold for improvement was 25% improvement, and our goal was
100% improvement.

Our team members had already implemented a baseline mission control system, and our
importance-based mission control algorithm. Our two-order mission control technology was
used as part of the icing efforts. In particular, we implemented our two-order DRM algorithm
and ran tests of the system using this algorithm. We also designed the test scenarios that these
experiments would be run on. Gate Test 4 letter-of-the-law (LoL) experiment’s baseline
dynamic planner was tuned to maintain operation of all high importance application strings and
run as many of the successively next highest importance application string after node failures.
This planning technique maximizes metric 1 but doesn’t necessarily maximize metric 2.
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5.4.1 Simulation Studies

In order to better suggest test scenarios for our team members that would demonstrate the
benefits of our DRM algorithms. We used our Matlab/Simulink simulation environment to test
our algorithms in proposed scenarios. Samples of this simulation data can be seen in Figure 67
and Figure 68.
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Figure 67: Metric 1 Performance of the Two-Order and Importance Algorithm in Simulink
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Figure 68: Metric 2 Performance of the Two-Order and Importance Algorithm in Simulink
Simulation.
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5.4.2 Results:

With the help of our team members, we ran the icing experiments in the RACE environment.
Samples of the data output in these experiments can be seen in Figure 69 and Figure 71.

The compiled results of these experiments can be seen in Figure 70 and Figure 72. The icing
experiments show that we could achieve greater survivability of war-fighting functionality
(Metric 2) using resource allocation based upon the two-order mission control algorithm. In our
test scenario, we measured equivalent values with metric 1 but twice the value (~100%
improvement) with metric 2. We also observed that there were other scenarios (including the
scenarios used for the LoL tests) in which the two algorithms performed equally well.

Our results in this experimentation were consistent with results obtained through Matlab
Simulink simulation before the test runs. This not only demonstrates the usefulness of the DRM
algorithms, but also the viability of our Matlab/Simulink simulation tool to quickly obtain
simulated resource management data.
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Figure 69 Sample Test Run Analysis in Race using Importance-based Mission Control
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6. Additional Programmatic Information
6.1 Chronological List of Publications under the ARMS Project

?Publicatio’n 1

[Titte

|Detection and Reaction to Unplanned Operational Events in
|Large Scale Distributed Real-Time Embedded Systems

[uthor®

Jianming Ye, Joe Loyall, Rick Schantz, Gary Duzan i

fPublication Date

4/4/2005

iPubvlication Venue‘

Internaﬁonal Workshop on Parallel and Distributed Real-Time’
Systems (WPDRTS 2005) ‘

: Keywords Dynamic adaptation, unplanned response

URL f
Comments
[Publication 2

%Title |Detection and Reaction to Unplanned Operational Events in

: |Large Scale Distributed Real-Time Embedded Systems
[Author(s) Jianming Ye, Joe Loyall, Rick Schantz, Gary Duzan
Publication Date

4/4/2005

Publication Venue

Proceedings of the Workshop on Parallel and Distributed Real-
Time Systems :
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Keywords |Adaptive quality of service; detection; decision; reaction
{URL |
|Comments |Includes viewgraphs and presentation |

Publication 3

ITitle |Using Composition of QoS Components to Provide Dynamic,

1End-to-End QoS in Distributed Embedded Applications A
Middleware Approach
Author(s) T |Praveen Sharma, Joseph Loyall, Richard Séhaﬁtz, Jianﬁiiné Yé,

|Prakash Manghwani, Matthew Gillen, and George T. Heineman

iPublication Date l12/31/2010

|Publication Venue |IEEE Internet Computing Journal

Keywords ? .

, |dynamic resource management

|URL -

Comments

{Publication 4

Title A Hierarchical Control System for Dynamic Resource
Management

Author(s) K. Rohloff, J. Ye, J. Loyall, R. Schantz |
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|Publication Date

141412006

Publication Venue

[12th TEEE Real-Time and Embedded Technology and
|Applications Symposium (RTAS)

;Keywords i dynamic resource management, feedback control software
| {
URL (http://www.rtas.org/. ;
Comments

[Publication 5

{Toward an Approach for Specification of QoS and Resource

15/25/2004

[Title
: |Information for Dynamic Resource Management
|Author(s) [Roy Campbell, Rose Daley, B. Dasarathy, Patrick Lardieri, §
f Brad Orner, Rick Schantz, Randy Coleburn, Lonnie Welch, 2
: Paul Work
%Publication Date |

Publication Venue

12nd RTAS Workshop on Model-Driven Embedded Systems
|((MoDES '04), Toronto, Canada

|Keywords

‘multi-layer resource management

URL

|Comments
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[Publication 6

|Utility Functions and Control for Multi-Layer Resource

14/4/2006

[Title

: Management
{Author(s) 1J. Ye, K. Rohloff, R. Schantz, J. Loyall
%Publlcatlon Date % 12/2/2005
zPubllcatlon Venue |ARMS Wiki
Keywords (utility functions, multi-layer resource management, feedback
‘ |control |
[URL 3 - . Lo
, |https://repo.isis.vanderbilt.edu/twiki/bin/view/AR g
|Comments |Initially published on the internal ARMS Wiki for program |
‘ |wide distribution ;
|Publication 7

[Title |Quality Measures for Embedded Systems and Their

: |Application to Control and Certification

|Author(s) |Kurt Rohloff, Joseph Loyall, Richard Schantz.

[Publication Date i

‘Publication Venue

|Real-Time and Embedded Technology and Applications f
|Symposium (RTAS 2006), Workshop on Innovative Techniques'
{for Certification of Embedded Systems {

Keywords

software certification, adaptive reconfiguration

URL

i
i
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1Comments

{Publication 8

Title A Hierarchical Control System for Dynamic Resource
\ ‘Management,

1Author(s)

|Kurt Rohloff, Jianming Ye, Joseph Loyall, Richard Schantz

‘Publication Date

147712006

Publication Venue

12006 IEEE Real-Time and Embedded Technology and |
|Applications Symposium (RTAS 2006) =f

Keywords

multi-layer dynamic resource management é

[oRL

1Comments

|Publication 9

[Title

: Adding Fault-Tolerance to a Hierarchical DRE System

Author(s)

Paul Rubel, Joseph Loyall, Richard Schantz, Matthew Gillen

Publication Date

16/14/2006

|Publication Venue

Proceedings of Distributed Applications and Interoperable

Systems: 6th IFIP WG 6.1 International Conference, DAIS |
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12006
Keywords : fault tolerance mechanisms case study
URL
Comments

[Publication 10

Title Providing Fault-Tolerant Management in a CCM DRE
: Environment
: Author(s) ‘Paul Rubel, Joseph Loyall, Matthew Gillen, Aniruddha
Gokhale, Jaiganesh Balasubramanian, Priya Narasimhan,
‘ ‘{Aaron Paulos
: Publication Date 7/10/2006
: |
|Publication Venue {OMG Workshop on Distributed Object Computing for Real- |
time and Embedded Systems 3
Keywords |fault tolerance, CCM, DRE
{URL
Comments Presentation
|Publication 11
{Title Fault Tolerance in a Multi-Layered DRE System: A Case
Study
|Author(s) Paul Rubel, Joseph Loyall, Richard Schantz, Matthew Gillen
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Publication Date 19/1/2006

gPubhcatlon Venue Journal of Computers, Vol. 1, Issue 6

Keywords ‘fault tolerance, multi-layer dynamic resource management,
’ |component middleware, DRE systems

|URL (http://www.academypublisher.com/jcp/vol01/no06/ind

5 Comments
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6.2 Chronological Review of ARMS Activities

%Meeting or Presentation 1

[Meeting Name |ARMS Kickoff

EPurpose To kickoff the ARMS program

[Start Date 10232003

find Date 11072372003
e
| Location Washington, DC

T

[Attendees [Rick Schantz, Joe Loyall

ETi’tles of presentations that

[were made Adaptive Multilevel Middleware Systems (AMMS)
; 1

E

Meeting or Presentation 2

Mecting Name ARMS kOIva Wéfk;hopv

Purpose Plan for the A‘RMS OEP and TD interactién
Start Date 1171372003

?E"d Date 1171472003

Location Arlington, VA
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Attendees

[Rick Schantz, Joe Loyall, Rich Shapiro

[Titles of presentations that

were made

|Concept of Operation

Adaptive Multilevel Middleware Systems - Extending, i
Elaborating, and Building the Multi-Layer Architecture ;

Meeting or Presentation 3

|were made

Meeting Name Visit with POR software architects
;Purpose |To discuss the nature of the POR software architecture and |
|resource management needs
[Start Date 112/16/2003
Find Date 112/16/2003
; Location {Portsmouth, RI f
! ‘
; ttendees Joe Loyall
|Titles of presentations that'

None

:Meeting or Presentation 4

;Meetmg Name | DARPA ARMS Integration Milestone '"Hotwash' meeting
EPurpose |Raytheon led meeting discussing integration and transition
: 'lactivities
[Start Date 1472972004
[End Date 1412972004
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Location Arlington, Va

EAttendees |Rick Schantz, Joe Loyall, Gary Duzan, Rich Shapiro,
|Balachandran Natarajan, Jeff Parsons

|Titles of presentations that
|were made ‘

Meeting or Presentation 5

{Meeting Name |ARMS PI meeting
fPurpose ]

| Present progress and plans for the ARMS program
[Start Date 141302004
[End Date 1413012004
! Location i Arlington Va
|Attendees iRick Schantz, Joe Loyall, Gary Duzan, Rich Shapiro, Bala ,
% |Natarajan, Jeff Parsons
Titles of presentations that Elaborating and Building the Multi-Layer Dynamic
{were made ~ .

Architecture Concept and Components

IMeeting or Presentation 6

Meeting Name | Design Workshop

Purpose |To flesh out the multi-pool and multi-resource manager design °
|concepts :

; Start Date 6/3/2004
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|End Date l6/4/2004

%Locaﬁon .

‘ ; BBN, Cambridge, MA

gAttendees Schantz, Duzan, Shapiro, Lardieri, Mulholland, Daley, Work,

‘Dasarathy, Coleburn, ...

[Titles of presentations that

|and sponsors

|were made | Various

iM‘eéting or Preseﬁtéﬁoﬁ 7

[Mecting Name |ARMS PI Meeting

Purpose To bring together all of the ARMS progfém participants fowrb
progress review and planning.

|Start Date 712212004

[End Date 1112212004

Location |Arlington Va.

jAtténdées Pélrticipants from all ARMS contractbré and ‘gkovqerx;‘r‘nwénf ﬁ;érs

|Titles of presentations that
|were made

BBN ARMS Components Status and Plans

Meeting or Presentation 8

|Meeting Name

|OMG Workshop on Realtime and Embedded Systems

| Purpose

To attend workshop and present interim project results
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[Start Date (711972004

gEnd Date 7/19/2004
Location Washiﬁgton DC
|Attendees :

B. Natarajan

|Titles of presentations that
|were made

|Using CCM to Develop Resource Status Service

[Meeting or Presentation 9

Meeting Name ARMS Gate Metric Planning Workshop

Purpose Planning Gate Metric experimentation and technical exchange
with PoR program participants ?

[Start Date 1107712004 §

|Find Date 1101872004

|Location Portsmouth, RI

Attendees

|Richard Schantz, Gary Duzan

Titles of presentations that
were made

Planning for the series of Gate Metrics experiments.

Meeting or Presentation 10

Meeting Name

|Gate Metric 2 Test and Evaluation in the OEP Laboratory
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‘Integration of ARMS software for establishing compliance With

{Purpose
|GM2 |

|Start Date 112/18/2004

{End Date | 12/21/2004

|Location : Portsrﬁouth, RI [

Attendees | Gary Duzan

Titles of presentations that
Jwere made '

Meeting or Presentation 11

Richard Schantz, Gary Duzan, Richard Shapiro, Joe Loyall

jMeeting Name Weekly Coordination Teleconferences E
tPurp OSé |Planning and status coordination
[Start Date 10/5/2004 i
End Date 112/23/2004
{Location By Telephone
Attendees

|Titles of presentations that
|were made

|Meeting or Presentation 12
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[Meeting Name |ARMS PI Meeting
? ; 5
|Purpose |To discuss and plan ARMS technical activities
|Start Date 171312005
{End Date 117132005
Location ‘ Arlington, Va. ’
Attendees |

‘ Rick Schantz, Gary Duzan

[Titles of presentations that
|were made f

|ARMS Phase 1 Summary and Candidate ARMS Phase 2
|Activities

?Meeting or Presentation 13

Meeting Name

| Software Integration |
Purpose Test and evaluate ARMS software from multiple contractions |
gStart Date 1/5’/2005
[End Date 1/7/2005
; Location Portsmouth RI 1

; Attendees

Gary Duzan et al

| Titles of presentations that
|were made
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Meeting or Presentation 14

i

Mecting Name Software Integration
%Purpose {Integrate, test and evaluate ARMS software for GM3
| |

End Date 1112712005

; Location Portsmouth RI f
Attendees

|
|

|Gary Duzan et al

|Titles of presentations that
iwere made

| Meeting or Presentation 15

[Meeting Name ARMS Phase 2 Kickoff
iPurp ose To mark the beginning of ARMS phase 2
Start Date 5/3/2005 [
?End Date 157412005

Location f Arlington, Va.

Atténdees |R. Schantz, J. Loyall, G. Duzan, A Gokhale, N. Shankaran and)

|J. Balasubramanian

i Titles of presentations that

''BBN Lessons Learned from Phase 1 and Plans for Phase 2’
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were made

|Meeting or Presentation 16

Meeting Name '{Common planning with Lockheed Martin
[Purpose (Project planning and integration
[Start Date 1512712005 |
|End Date 15/27/2005
[Location Cherry Hill, New Jersey (Lockheed Martin ATL) |

: Attendees

R. Schantz, J. Loyall, P. Lardieri, Ed Mulholland

|Titles of presentations that
|were made

{Meeting or Presentation 17

ﬁ Meeting Name

l ARMS PI Meeting

%Purposé Progress Review and Working Groups

‘Start Date 9/27/2005
;E“d Date 9/28/2005
Location Arlington Va i
|Attendees R. Schantz, J. Loyall, M. Gillen, P. Rubel, J. Ye, K. Rohloff {
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|Titles of presentations that
'were made

Project Summary, Results and Plans Fault Tolerance

Workshop Overview Supporting ACtive Replication in GT3
|Utility Functions: Concepts and Design

Meeting or Presentation 18

Méeting Name’ ARMS Transiigc;l;

;Purpose ; Planning for technology transition
[Start Date 18/30/2005
[End Date [— |
;Location ; Arlington Va

iAttendeésﬂ |

1J. Loyall, P. Work, P. Lardieri, J. Cross, et al

fTitles of presentations that
|were made

ARMS Transition Opportunities

[Meeting or Presentation 19

Meeting Name |Project Coordination Meeting

; Purpose Planning and working development meeting with Vanderbilt
| and CMU

Start Date 17112012005

|End Date 112172005

[Cocation [BBN Cambridge
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|Attendees

| Doug Schmidt, Andy Gohkale, et al, BBN ARMS team

;Titles of presentations that
|were made

various

Meeting or Presentation 20

Meeting Name Fault Tolerance Planning and Design

fPurp dse Working meeting on GT3

Start Date 18/10/2005

[End Date 18/11/2005

Location IBBN, Cambridge

Atténdees | Aaron Paulos, Priya Nahrsimhan, J oe‘Slenillier, BBN ARMS

team

|Titles of presentations that

were made |various
iMeeting or Presentatioh 21
%Meeting Name RT Java
fPurp ose To discuss and review plans for transitioning RT Java
Start Date 7/19/2005
jEnd Date 7/19/2005
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1 Location

Raytheon, Sudbury Ma

|Attendees

R. Schantz, P. Work, J. Cross, D. Schmidt, G. Thacker, et al

|Titles of presentations that
were made

| Meeting or Presentation 22

\Meeting Name

|Gate Test 3 Planning

|Purpose

To work out design, implementation and schedule details for 3 :
‘month gate test plan

i

Start Date

110/31/2005

[End Date

111/1/2005

Location

BBN Technologies, Cambridge Ma.

Attendees

Loyall, Rubel, Gillen, Ye, Schantz, Poulos, Dasarathy ,
Balasubramanian, ...

ETitles of presentations that
iwere made

Numerous by BBN, Telcordia, Vanderbilt, CMU

Meeting or Presentation 23

[Meeting Name

| STAG Telcons

Purpose

Bi-weekly ARMS management team planning sessions

Start Date

110/11/2005
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|End Date 12/13/2005
Location . . ’
|electronic meeting &
[Attendees |Schantz, Loyall, Cross, Howard, Lardieri, Thacker, Schmidt,

{Work, Legault

;Titles of presentations that
iwere made

i
i

[Meeting or Presentation 24

EMeetmg Name ARMS-Navy Tech Transfer Workshop i
;iPurpose 'To exchange and coordinate areas of concentration and plans [
f +for identified areas of technology transition. :
|End Date |212812006
[Location Raytheon DDX Integration Center, Navy Yard Washingto DC
|Attendees |

Rick Schantz, Joe Loyall, et al

|Titles of presentations that
were made :

Meeting or Presentation 25

Meeting Name

Raytheon/BBN Tech exchange workshop

Purpose |To present ARMS technical approaches to Program of Record
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staff‘ in the area of fault tolerance

Start Date |1/18/2006 %

{End Date 1/18/2006

j Location Portsmouth RI ‘

Attendees |Rick Schantz, Joe Loyall, Paul Rubel, Matt Gillen, Paul Work,

[Titles of presentatlons that
{were made

|Approach to Fault tolerance for MLRM (GT3); A design and

| analysis for node failure detection;

fMeeting or Presentation 26

@Meetmg Name Bi-weekly ARMS management telcons %

Purpose |To coordinate and assess progress on ARMS program .
‘|lactivities

|Start Date 1/1/2006

|End Date 13/31/2006

Location |

: |various |

Attendees Schantz, Loyall, et al

{Titles of presentatlons that

'were made

Meeting or Presentation 27

Meeting Name

|ARMS Principal Investigators Meeting
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%PUI’POSC‘ 'To repoi‘t progress and plan neXt stagés of prdg;am w1de W

f objectives

Start Date 4/11/2006

E"d Date 41312006

Location Arlington Va.

iiAttendees

Schantz, Loyall, Gillen, Rohloff, Ye, Manghwani, et al

Titles of presentations that
were made

i

DARPA:ARMS Phase II PI Meeting BBN Technologies Team

|Report
%Meetihg or Presentation 28 %
[Mecting Name Raytheon Site Visit
?Purp ose To discuss details of potential technology transfer
iStart Date ?5/11/2006
fE“d Date |s/1172006
[Location Portsmouth, RI (Raytheon)
Attendees |

R. Schantz, M. Gillen, R. Lescroart, A. Peckham, P. Work

Titles of presentations that
were made

BBN's Node Failure Detection Capability
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%Meeting or Presentation 29

Meefing Name

Transition Review
EPurpose To discuss arms transition activities
Start Date 62612006
%End Date 6/26/2006
[Location [BBN, Cambridge Ma.
Atténdees

[R. Schantz, M. Gillen, Capt. Chris Earl, SRI

iTitles of presentations that
|were made

1Informal discussions

Meeting or Presentation 30

Key PIs , DARPA PM, advisors

Meeting Name ‘ Management Telcons

%iP“l'POSG Bi Weekly progress and planning telcons among senior ARMS |
: |participants ;
§Start Date 4/1/2006

[End Date |6/3012006

iLocatlon telcon, bi weekly

fAttendees

[Titles of presentations that
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|were made

Meeting or Presentation 31

Meeting Name Management Telcons

;Purpose Bi-weekly (or more frequent) and planning telcons among
senior ARMS participants.

:Start Date 1717172006

Find Date 1912672006

[Location ‘| Telcon, bi-weekly

|Attendees

Key PIs, DARPA PM, advisors

[Titles of presentations that
iwere made :

|Meeting or Presentation 32

[Meeting Name ? Integration meeting for Gate Test 4
[Purpose Working on utility function and controller algorithm
enhancements for gate test 4

\Start Date 18/24/2006
|End Date $/24/2006
Location
: 'Raytheon, Portsmouth, RI i
Attendees ‘Jianming Ye, Tom Silveria §
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éTitles of presentations that
{were made

iMeeting or Presentation 33

fMeetlng Name | Transition meeting with DDG 1000 <
Purpose {Discussion of replica communication problem and

‘ \transitionable solution with DDG 1000 personnel

[Start Date 1873072006
@ '@
{End Date 1813012006
Location Telcon
éAttendees |Joe Loyall, Matt Gillen, Paul Rubel, Andy Gokhale, Rick

|LaRowe, Graham Dooley i

[Titles of presentations that
|were made

Ideas and Technologies in Fault Tolerance for Transition to the%

[PoR
iMee‘ting/or Preééhfatidn 34 :
Meeting Narﬁe NFD Telcons
Purpose Discussion of transition of Node Failure Detection technology

to DDG 1000
[ptart Date 181472006
[End Date 1972972006
Location Telcon
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|Attendees Matt Gillen, Allan Peckham, Kun Lu, Rich Lescroart

|Titles of presentations that
'were made
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