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ABSTRACT 

The nerve agent soman produces seizures and seizure-related brain damage (SRBD).  It is 
well known that termination of seizures using anticonvulsant drug therapy is the most effective 
means of preventing soman-induced SRBD.  However, soman-induced seizures become 
refractive to anticonvulsant therapy within 40 minutes after their onset and the development of 
status epilepticus.  It is likely that medical care for some battlefield casualties will be delayed 
beyond the therapeutic window of opportunity to terminate soman-induced seizures.  Thus, there 
is a need for adjunct drug therapy that is neuroprotective when administered more than 40 
minutes following soman exposure.  Numerous evidence supports a pivotal role of sustained 
elevations in intracellular calcium (i.e., delayed calcium overload) in the development of brain 
damage resulting from seizures and status epilepticus.  In addition, recent reports indicate that a 
sizable calcium influx occurs through transient receptor potential (TRP) channels, and this influx 
can be blocked by 2-aminoethyl diphenylborinate (2-APB; also called 2-aminoethoxy 
diphenylbroane and, misleadingly, 2-aminoethoxy diphenylborate).  The present study was 
undertaken to examine the possible neuroprotective effectiveness of 2-APB against SRBD 
resulting from soman exposure.  Our results indicate that 2-APB (5.0 - 22.5 mg/kg in DMSO) 
was unable to ameliorate soman-induced SRBD.  Moreover, we provide evidence that the 
DMSO vehicle itself (0.5 - 1.0 ml/kg) augmented temporal lobe lesions by soman.  
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INTRODUCTION 
 
Protection against brain damage resulting from nerve agent exposure is of significant military 

concern.  The current regimen of antidotal therapy most effectively addresses the acute life-
threatening consequences of exposure.  However, many soldiers surviving the initial life-
threatening effects of nerve agent intoxication are likely to develop seizures.  Anticonvulsants 
such as diazepam can arrest soman-induced seizures when administered shortly following 
seizure onset, but their effectiveness diminishes when treatment is delayed for 40 minutes or 
more (e.g., Lipp, 1972, 1973; Shih, 1990; Shih et al., 1991; Capacio and Shih, 1991; Philippens 
et al., 1992; Sparenborg et al., 1993; McDonough and Shih, 1993; Harris et al., 1994; Shih et al., 
1999; Lallement et al., 2000; McDonough et al., 2000).  Unless seizures are terminated, the 
currently fielded therapy does not afford complete protection against brain damage.  
Furthermore, it is very likely that there will be unconscious nerve agent exposure victims who 
suffer silent seizures.  Since these seizures are not associated with the usual behavioral 
manifestations seen with typical seizures, victims may not receive any anticonvulsant treatment.  
If left untreated, or if they cannot be arrested, nerve agent-induced seizures progress to status 
epilepticus and lead to extensive brain damage.  Therefore, there is a clear need for adjunct 
therapy that is capable of preventing brain damage even if seizures have progressed to status 
epilepticus and cannot be terminated.  Such a compound would greatly increase the window of 
opportunity for the prevention of brain damage resulting from nerve agent-induced seizures and 
would augment the beneficial effects of currently fielded anticonvulsants. 

 
Soman (O-1,2,2-trimethylpropylmethyl-phosphonofluoridate) is an organophosphorous nerve 

agent that produces status epilepticus and seizure-related brain damage (SRBD) (Petras, 1981; 
Lemercier et al., 1983; McLeod et al., 1984; McDonough et al., 1987).  Seizure induction results 
from soman's ability to irreversibly inhibit acetylcholinesterase (AChE), causing an elevation in 
acetylcholine concentration in the brain (reviewed in Solberg and Belkin, 1997).  Once initiated 
by elevated acetylcholine concentrations in susceptible brain regions, seizures are maintained by 
excess glutaminergic synaptic transmission (Olney et al., 1983; Sparenborg et al., 1992; Solberg 
and Belkin, 1997).  It is well known that glutamate receptor abuse produces excitotoxicity and 
neuronal cell death.  Moreover, the mechanism by which glutamate excitotoxicity causes 
neuronal death is dependent on sustained elevations in intracellular free calcium (i.e., delayed 
calcium overload) (Olney et al., 1983, 1987; Choi, 1987, 1988).  There is considerable evidence 
that soman-induced seizure-related brain damage (SRBD) results from glutamate excitotoxicity 
and the ensuing delayed calcium overload.  For example, it has been reported that SRBD 
resulting from soman-induced seizures can be alleviated by administration of various N-methyl-
D-aspartate (NMDA) receptor antagonists:  MK-801, GK-11, TCP and HU-211 (Olney et al., 
1983; Braitman and Sparenborg, 1989; Shih, 1990; Sparenborg et al., 1992; McDonough and 
Shih, 1993; Lallement et al., 1993, 1994, 1997; Solberg and Belkin, 1997; Filbert et al., 1999; 
Carpentier et al., 2001a, 2001b, De Groot et al., 2001).  The NMDA receptor is a ligand-gated 
calcium channel, and the above antagonists counteract delayed calcium overload by blocking 
calcium influx.  Unfortunately, NMDA receptor antagonists have the drawback of being 
neurotoxic themselves.  Neurotoxicity in the posterior cingulate and retrosplenial cortices has 
been reported following their use (Olney et al., 1989; Fix, 1994; Wozniak et al., 1998).  
Additional evidence indicates that a sizable portion of the intracellular free calcium that 
contributes to neuronal pathogenesis comes from intracellular stores (i.e., the endoplasmic 



 2

reticulum, ER) (Randal and Thayer, 1992; Mody and MacDonald, 1995; Yoon et al., 1996; Wei 
and Perry, 1996; Neibauer and Gruenthal, 1999; Pelletier et al., 1999; Yu et al., 1999; Nakayama 
et al., 2002; Verkhratsky and Toescu, 2003).  The ryanodine receptor antagonist dantrolene has 
been shown to diminish soman-induced SRBD by blocking calcium release from the ER 
(Ballough and Filbert, 2003). 

 
Very recent evidence points to the possible involvement of a new class of membrane ion 

channels in the mediation of calcium flux responsible for delayed calcium overload and neuronal 
cell death.  Transient receptor potential (TRP) channels have been referred to as "the last bastion 
of ion channels" (Clapham et al., 2001).  They are also considered the most likely ion channel 
candidates responsible for "capacitative calcium entry" (reviewed in Putney, 2003).  Capacitative 
calcium entry is a process whereby the depletion of calcium from intracellular stores (i.e., ER) 
causes opening of calcium permeable channels in the plasma membrane.  It has been proposed 
that these channels are activated following neurotransmitter receptor activation, by fast acting 
neurotransmitters, and facilitate rapid replenishment of intracellular stores.  These channels 
remain open until intracellular stores of calcium are completely replenished and provide a means 
for inducing prolonged, sustained calcium elevations in intracellular calcium (Putney, 2001; 
Putney, 2003).  Not only are TRP channels the most likely candidates responsible for sustained 
calcium elevations associated with capacitative entry, but their activation has also been linked to 
delayed calcium overload resulting from glutamate excitotoxicity and neuronal cell death (Aarts 
et al., 2003: Chinopoulos et al., 2004; Moran et al., 2004).  Recent findings by Chinopoulos et 
al. (2004) indicate that delayed calcium entry in cortical neurons, excitotoxicity-induced, is 
diminished by the TRP channel antagonist 2-APB. 

 
As a point of clarification, it should be noted that "2-APB" (or 2APB) correctly refers to 2-

aminoethyl diphenylborinate or 2-aminoethoxy diphenylborane; however, it has been 
misleadingly called "2-aminoethoxy diphenylborate" in the vast majority of literature (Chawla et 
al., 2001).  This TRP channel antagonist also inhibits IP3 ionotropic receptors, i.e., ligand-gated 
calcium channels that are responsible for second-messenger mediated release of calcium from 
the ER (Maruyama et al., 1997).  Therefore, 2-APB has the potential of diminishing delayed 
calcium overload in two ways: (1) by blocking calcium influx through TRP channels and (2) by 
preventing calcium efflux from the ER following matabotropic glutamate receptor (mGluR) 
stimulated increase in the IP3 second messenger.  The present study was undertaken to 
investigate the possibility that  2-APB administration, in conjunction with oxime and atropine 
treatments, may augment neuroprotection against brain damage resulting from soman-induced 
seizures and status epilepticus.   

 
METHODS 

 
Fifty-one male Sprague-Dawley rats (CRL: CD[SD]-BR; Charles River Labs, Wilmington, 

MA), weighing between 250-300 g, were used.  Animals were housed individually in 
polycarbonate cages under conditions of constant temperature (21 ± 2°C) and humidity (50 ± 
10%), using at least 10 complete air changes per hour of 100% fresh air, and a 12-hour light-dark 
cycle (full spectrum lighting cycle with no twilight).  Throughout the study, food and water were 
available ad libitum, except during the observation period, which began 1.5 hours prior to and 
ended 6 hours following soman administration. 
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Representative rats from each group were anesthetized with sodium pentobarbital (50 mg/kg, 
diluted in saline to give an intraperitoneal [i.p.] injection volume of 3.3 ml/kg) and positioned in 
a stereotaxic apparatus (David Koff Instruments, Tujunga, CA); for most subjects, supplemental 
injections of dilute pentobarbital (i.e., 10 ± 3 mg/kg) were given prior to completion of surgeries, 
as needed.  Prior to incisions, subcutaneous (s.c.) xylocaine was administered for local analgesia.  
Placement of screw electrodes was performed in accordance with the procedure recommended 
by Braitman and Sparenborg (1989) for electrocorticographic (ECoG) recordings.  Electrodes 
were connected to a standard small-animal head-piece and secured by dental cement.   

 
On the morning of the fifth or sixth day following surgeries, electrode-implanted animals 

were connected to an ECoG recording system and allowed at least 30 min to acclimate.  Baseline 
ECoG activity and behavior were monitored for at least 15 min.  Following baseline recordings, 
animals were injected (i.p.) with 125 mg/kg of the oxime HI-6.  This was followed 30 min later 
by injection of 180 µg/kg soman (1.6 LD50, s.c.) or sterile saline.  Within one min following 
soman or saline injection, animals were injected intramuscularly (i.m.) with 2 mg/kg atropine 
methylnitrate (AMN).  All rats, with the exception of those belonging to the untreated control 
group, received HI-6 and AMN.  These were employed to protect against the peripheral effects 
of soman and to reduce mortality without affecting seizures.  Seizure onset, following soman 
administration, corresponded to the initiation of sustained ECoG amplitudes greater than four 
times baseline (e.g., McDonough and Shih, 1993).  For the remaining rats in each group that 
were not instrumented for ECoG recordings, seizures were inferred from overt manifestations 
(see below) including Straub tail; seizure onset was marked by the occurrence of the latter.  Test 
drugs were administered 5 minutes following seizure onset (see below).  At the end of the 6-h 
observation period, each soman-exposed rat received a supplementary injection of isotonic saline 
(5 ml, i.p.) to prevent dehydration. 

 
Test drugs included 2-aminoethyl diphenylborinate (2-APB; Sigma-Aldrich Co.) and ultra 

pure dimethyl sulfoxide (DMSO; Sigma-Aldrich Co.) vehicle. Treatment groups were as 
follows: 

 
1) Soman-positive controls n = 6  
2) Soman + 2-APB (22.5 mg/kg) in DMSO (1.0 ml/kg) n = 3 
3) Soman + 2-APB (13.7 mg/kg) in DMSO (0.7 ml/kg) n = 11 
4) Soman + 2-APB (10.0 mg/kg) in DMSO (1.0 ml/kg) n = 3 
5) Soman + 2-APB (0.5 mg/kg) in DMSO (0.5 ml/kg) n = 10 
6) Soman + DMSO (1.0 ml/kg) n = 4 
7) Soman + DMSO (0.7 ml/kg) n = 6 
8) Soman + DMSO (0.5 ml/kg) n = 4 
9) Non-Soman + 2-APB (22.5 mg/kg) in DMSO (1.0 ml/kg) n = 2 
10) Untreated controls n = 2 

 
Twenty-nine ± 1 hours after soman administration, rats were given a lethal injection of 

pentobarbital anesthesia (130 mg/kg, i.p.) and euthanized, upon evidence of labored breathing, 
via transcardial perfusion with ice cold 10% NBF.  Brains were excised and post-fixed in 10% 
NBF for approximately 24 hours prior to tissue processing.  Subsequently, brain specimens were 
paraffin processed and coronally sectioned at 4 µm using a rotary microtome.  Two brain 



 4

sections (stereotaxic coordinates between bregma -2.64 and -3.48 [Paxinos and Watson, 2005]) 
from each animal were collected for hematoxylin and eosin (H&E) or microtubule associated 
protein 2 (MAP-2) histo- or immunohistochemical processing, respectively.  H&E stained brain 
sections were assessed for classical histopathological damage to the piriform cortex.  Damage 
was scored on a scale of 0 to 4, where  0 = no histologic lesion, 1 = minimal damage (1-10% 
neuronal loss), 2 = mild (11-25% neuronal loss), 3 = moderate (26-45% neuronal loss) and 4 = 
severe (> 45% neuronal loss).  MAP-2 immunostained brain sections were ranked according to 
severity of temporal lobe necrosis and were further employed for image analysis assessments 
(see below). 

 
MAP2 immunohistochemistry utilized a monoclonal antiserum, raised in mice, against 

microtubule-associated protein 2 (MAP2) (Sigma Chemical Co., St Louis, MO), and employed 
the avidin-biotin-peroxidase method of Hsu et al. (1981).  Morphometric image analysis of 
MAP2 immunostained brain sections was performed using an image analysis system obtained 
through I-CUBE Inc. (Glen Burnie, MD).  This system included Image-Pro Plus v4.1 software, 
Sony Power HAD camera, Hitachi CM771 monitor and I-CUBE computer.  The system was 
interfaced with an Olympus BH-2 Biological Microscope (Olympus Optical Co., Ltd., Tokyo, 
Japan).  Cross-sectional areas of MAP2 negative staining (i.e., necrosis [Ballough et al., 1995; 
Hicks et al., 1995]) in piriform cortex and contiguous brain regions (e.g., amygdaloid nuclei and 
perirhinal cortex) was performed according to the procedure of Ballough et al. (1995).  Previous 
studies have shown that the piriform cortex (with surrounding brain regions) presents the most 
clearly defined and easily quantifiable lesions of contiguous necrosis following soman-induced 
seizures in rats (e.g., Ballough et al., 1995). 

 
H&E and MAP2 qualitative damage ratings were grouped according to treatment and brain 

region, and compared using Mann-Whitney nonparametric statistical analyses.  Cross-sectional 
areas of contiguous necrosis (MAP2 negative) were grouped by treatment and compared using 
one-way analysis of variance (ANOVA), followed by Student Newman Keul (SNK) multiple 
range test.  Values for p < 0.05 were considered significant. 

 
RESULTS 

 
All soman-treated rats exhibited sustained seizures and status epilepticus for several hours.  

Proconvulsive behavioral signs of soman intoxication included repetitive chewing, facial and 
forepaw clonus, motor stereotypy, and wet-dog shakes.  Overt motor convulsions were 
characterized by rhythmic clonic jerks of both head and forepaws, rearing, salivation and Straub 
tail.  Non-soman control rats showed no evidence of seizures or convulsions.  Visual inspection 
of ECoG recordings, from representative animals of each group, revealed no evidence of altered 
seizure activity by 2-APB or DMSO, compared with soman-positive controls. 

 
Mortality appeared to vary with treatment group and seemed most affected by DMSO 

dosage.  Of the 6 rats belonging to the soman-positive control group, 1 died prior to sacrifice.  Of 
the 10 rats that received 1.0 ml/kg DMSO (with and without 2-APB), only 2 survived; survivors 
included 1 rat that also received 10 mg/kg 2-APB (i.e., 1 of 3 rats), and 1 rat in the 1.0 ml/kg 
DMSO soman-positive control group (i.e., 1 of 4 rats).  All 3 rats died that received 22.5 mg/kg 
2-APB in 1.0 ml/kg DMSO.  Of the 17 rats that received 0.7 ml/kg DMSO (with and without 2-
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APB), 12 survived; survivors included 7 of 9 rats that also received 13.7 mg/kg 2-APB, and 5 of 
6 rats in the DMSO (0.7 mg/kg) soman-positive control group.  Of the 14 rats that received 0.5 
ml/kg DMSO (with or without 2-APB), 9 survived; survivors included 6 of 10 rats that also 
received 5 mg/kg 2-APB, and 3 of 4 rats in the DMSO (0.5 ml/kg) soman-positive control group.   

 
Histopathological evaluations of MAP2 and H&E-stained brain sections from all surviving 

soman-exposed animals, irrespective of treatment, revealed severe region-specific brain damage.  
Damage was bilaterally symmetrical and characterized by widespread tissue necrosis, neuronal 
loss, chromatolysis, vacuolization, pyknosis and gliosis.  Between bregma -2.64 and -3.48mm, 
severe damage was consistently observed in the piriform and entorhinal cortices, dorsal 
endopiriform nucleus and the laterodorsal thalamic nucleus.  Pronounced damage was often seen 
in the perirhinal cortex, amygdaloid complex, hippocampus, midline thalamic nuclei, and 
ventrolateral thalamic nuclei.  The pattern of soman-induced seizure-related brain damage 
(SRBD) seen in the present study is consistent with previous reports (e.g., Petras, 1981; 
Lemercier et al., 1983; Pazdernik et al., 1985; Carpentier et al., 1990; Ballough et al., 1995, 
1998; McDonough et al., 1998).  Non-soman, 2-APN/DMSO control rats showed no evidence of 
neuropathology. 

 
Histopathological damage ratings for H&E-stained brain sections are based on the presence 

of necrotic neurons and/or the absence of a defined neuronal population. Shrunken neurons are 
considered the result of artifactual change.  Damage to the neuropil is progressively greater as 
ratings increase from “mild” to “severe,” and is characterized by increasingly severe malacia and 
hyalinization typical of necrosis.  Qualitative MAP2 damage ratings (1-10) were based 
exclusively on the presence and severity of temporal lobe necrosis, as delineated by MAP2-
negative immunostaining.  A rating of "1" indicates no necrosis and is the typical rating assigned 
non-soman control animals.  A rating of "10" is assigned when necrosis is so widespread that the 
entire piriform cortex is necrotic, and necrosis extends dorsally and medially to include 
perirhinal cortex and amygdaloid nuclei, respectively.  Group means for H&E and MAP2 
damage ratings, as well as cross-sectional areas of necrosis are presented in Table 1.  
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Table 1 
  
Treatment Group N MAP2 Ratings H&E Ratings MAP2 Necrosis (mm2) 
(Surviving  Soman-Exposed Rats)  (Mean ± SEM) (Mean ± SEM) (Mean ± SEM) 
      
Soman-Pos Controls 5 7.00 ± 1.14 2.60 ± 0.68* 5.49 ± 1.63 

       2-APB 13.7mg/kg (in DMSO 0.7) 7 8.71 ± 0.42 4.00 ± 0.00 5.69 ± 0.81 
2-APB 5.0mg/kg (in DMSO 0.5) 6 7.50 ± 1.06 3.00 ± 0.45 5.41 ± 0.37 
DMSO 1.0 ml/kg 1 10.0 ± N/A 4.00 ± N/A 8.56 ± N/A 
DMSO 0.7ml/kg 5 8.40 ± 0.68 4.00 ± 0.00 6.66 ± 0.85 
DMSO 0.5ml/kg 3 10.0 ± 0.00 4.00 ± 0.00 8.39 ± 1.59 

       Combined 2APB 13 8.15 ± 0.54 3.54 ± 0.24 5.56 ± 0.45* 
Combined DMSO 9 9.11 ± 0.46 4.00 ± 0.00* 7.45 ± 0.71* 
  

Damage Assessments:  Respective group means for MAP2 (1-10 ratings) and H&E (0-4 ratings) 
were compared using Mann-Whitney nonparametric statistical analyses.  Mean cross-sectional 
areas of temporal lobe necrosis (MAP2 negative immunostaining) were compared using 
ANOVA followed by SNK.  Significant differences (p<0.05) were observed between underlined 
means indicated by asterisks.  Underlined means without asterisks (i.e., MAP2 ratings) showed a 
tendency for difference (i.e., p=0.063). 

 
It can be seen that piriform cortical damage was not diminished by any dosage of 2-APB in 

the DMSO vehicle.  Moreover, from visual inspection of mean damage ratings (Table 1), it 
would appear that damage was increased in groups receiving 2-APB compared with soman-
positive controls.  This, however, does not bear out statistically.  No significant differences were 
found between the individual treatment groups receiving 2-APB (i.e., 13.7 and 5.0 mg/kg, in 
DMSO) and the soman-positive control group for any damage assessment method.  In addition, 
no differences were found between the combined 2-APB group (i.e., pooled data from the 13.7 
and 5.0 mg/kg 2APB groups) and soman-positive controls.  If a statistical "type-2 error" has 
occurred here (i.e., incorrectly concluding no differences between means), it is likely the result of 
the uncharacteristically high variability within the present soman-positive control group (i.e., 
compared with soman control groups of previous studies; data not shown) and insufficient 
animal number in the soman control group. 

 
Despite inconsistencies within the soman-positive control group, a significant difference was 

found between mean H&E damage ratings of the combined DMSO group and soman controls.  
Although these DMSO subjects were initially intended as vehicle controls, average damage H&E 
ratings were significantly higher in this group (4.00 ± 0.00) compared with soman controls (2.60 
± 0.68); p = 0.043 with Mann Whitney non-parametric analysis.  Elevated pathology in the 
combined DMSO group compared with soman controls was somewhat corroborated by MAP2-
negative (necrosis) ratings.  Necrosis ratings were 9.11 ± 0.46 and 7.00 ± 1.14 in the combined 
DMSO and soman control groups, respectively; however, the difference between the groups was 
not significant (i.e., p = 0.063).  Quantitative assessments of temporal lobe necrosis did not 
reveal a significant difference between soman controls (5.49 ± 1.63 mm2) and the combined 
DMSO group (7.45 ± 0.71 mm2), but did show a significant difference (p = 0.029 using 
ANOVA) between the latter group and the combined 2-APB (5.56 ± 0.45 mm2).  Thus, the 
combined DMSO vehicle control group exhibited a 34.0% increase in temporal lobe necrosis 
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(i.e., piriform cortex and contiguous areas) compared with the combined 2-APB in DMSO 
group. 

 
DISCUSSION 

 
The present findings do not demonstrate clear neuroprotective efficacy by 2-APB against 

SRBD resulting from soman-induced seizures.  In Table 1, it can be seen that 5.0 and 13.7 mg/kg 
2-APB (in 0.5 and 0.7 ml/kg DMSO, respectively) did not reduce cross-sectional areas of 
temporal lobe necrosis compared with soman-positive controls.  In fact, H&E and MAP2 
damage ratings appeared higher (not significantly) for these groups compared to soman controls.  
To increase statistical power, data for the above 2-APB groups were pooled into a combined 2-
APB group and compared with soman controls.  Still, no significant differences were seen 
between the combined 2-APB group and soman controls with any of the damage assessments.  
On the other hand, soman-exposed rats that received the DMSO vehicle showed exacerbated 
damage compared with soman controls, in two of three pathological assessments.  A significant 
increase in mean H&E damage ratings was seen in the combined DMSO group compared with 
soman-positive controls (i.e., mean H&E ratings were 4.00 and 2.60, respectively, p=0.043).  A 
tendency for increased damage was also seen in the combined DMSO group compared to soman 
controls based on MAP2 qualitative ratings (i.e., mean ratings were 9.11 and 7.00, respectively, 
p=0.063).  Despite seemingly different means, a significant difference between these two groups 
was not obtained from image analysis data representing cross-sectional areas of temporal lobe 
necrosis (means were 7.45 and 5.49 mm2 for the combined DMSO and soman controls, 
respectively).  Interestingly, a significantly higher cross-sectional area of necrosis was seen in 
the combined DMSO group compared with the combined 2-APB group (means were 7.45 and 
5.56 mm2, respectively, p=0.029).  That significance was obtained in the latter comparison, but 
not in the former, is likely explained by greater than normal variability within the soman-positive 
control group (compared to previous studies) and few subjects within the group (i.e., n=5 
survivors). 

 
The present findings, that DMSO contributed to brain pathology resulting from soman-

induced seizures, are difficult to reconcile in light of its widespread use and well characterized 
effects in mammalian systems.  Early toxicological studies indicate that rats can tolerate chronic 
administration of 9 ml/kg/day DMSO before showing any signs of toxicity (Noel et al., 1975).  
There have been numerous reports of free radical scavenging and other beneficial effects of 
DMSO, in rats, at dosages between 1.0 and 6.0 ml/kg (e.g., Wang et al., 2000; Lind et al., 2000; 
Chang et al., 2001; Nakamuta et al., 2001).  Moreover, DMSO toxicity has not been observed in 
previous studies involving nerve agent administration (e.g., Bodjarian et al., 1995).  In 1966, 
Loomis and Johnson reported a "reversal of soman-induced effects on neuromuscular function 
with oximes in the presence of dimethyl sulfoxide."  On the other hand, it was recently reported 
that DMSO produces osmotically induced nerve structural changes, ion channel block, and 
membrane fluidity changes (Larsen et al., 1996).  With respect to the osmotic effects of DMSO, 
it was reported in 1972, by De Bruijne and Van Steveninck, that DMSO can induce osmotic 
swelling and lysis in various cell types.  Alternatively, Kubota et al. (1998) reported an 
enhancing effect of DMSO on neural transmission that was not explained by osmotic effects or 
blockade of potassium channels, but rather by inhibition of cholinesterase activity or other 
actions involved in increasing transmitter release from nerve endings.  In the present study, it is 
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also possible that DMSO displaced soman that was absorbed into body fat, rendering 
proportionately more soman available to affect the central nervous system (personal 
communication from MAJ J.S. Estep, DVM DACVP).  Irrespective of whether DMSO increased 
necrosis by (1) potentiating osmotic swelling and lysis in neurons already rendered vulnerable by 
metabolic compromise and ionic imbalances, (2) enhancing cholinesterase inhibition, (3) 
exacerbating excitotoxicity by facilitating neuronal firing, or (4) effectively increasing soman 
dosage by displacement from body fat, the present findings give reason for caution when using 
this vehicle in nerve agent models. 

 
In light of the fact that a significant reduction in mean cross-sectional area of temporal lobe 

necrosis was seen in the combined 2-APB-treated group compared with the combined DMSO 
group, it is possible that TRP channel inhibition as well as IP3 receptor antagonism, by 2-APB, 
provided some measure of neuroprotection against the combined soman/DMSO insult.  
However, considering the magnitude of residual brain damage following 2-APB treatment, the 
slight neuroprotective efficacy it offers is deemed insufficient to warrant its further investigation 
in nerve agent models.
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