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Abstract

This paper presents a novel approach to representing 2-d
shapes that adaptively models different portions of the shape at
different resolutions, having higher resolution where it improves
the quality of the representation and lower resolution elsewhere.
The proposed representation is invariant to scale, translation
and rotation. The representation is amenable to indexing us-
ing existing multidimensional index structures and can thus sup-
port efficient similarity retrieval. Our experiments show that the
adaptive resolution technique performs significantly better com-
pared to the fixed resolution approach previously proposed in
the literature.

1. Introduction

Large repositories of digital images are becoming increas-
ingly common in many application areas such as e-commerce,
medicine, media/entertainment, education and manufacturing.
There is an increasing application need to search these reposito-
ries based on their visual content. For example, in e-commerce
applications, shoppers would like to find items in the store based
on, in addition to other criteria like category and price, visual
criteria i.e. items that look like a selected item (e.g., all shirts
having the same color/pattern as a chosen one). To address this
need, we are building theMultimedia Analysis and Retrieval
System (MARS), a system for effective and efficient content-
based searching and browsing of large scale multimedia reposi-
tories [7]. MARS represents the content of images using visual
features like color, texture and shape along with textual descrip-
tions. The similarity between two images is defined as a combi-
nation of their similarities based on the individual features [7].

One of the most important features that represent the visual
content of an image is theshapeof the object(s) in an image
[6, 4, 5, 3]. In this paper, we address the problem of similar
shape retrieval in MARS. We propose a novel adaptive resolu-
tion (AR) representation of 2-d shapes. We show that our repre-
sentation is invariant to scale, translation and rotation. We show
how each shape, represented by AR, can be mapped to a point
in a high dimensional space and can hence be indexed using
a multidimensional index structure. We define a distance mea-
sure for shapes and discuss how similarity queries, based on the
above distance measure, can be executed efficiently using the
index structure. The experimental results demonstrate the effec-
tiveness of our approach and its superiority to the fixed resolu-
tion (FR) technique previously proposed in the literature.
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2. Related work

In this section, we describe the fixed resolution approach and
other prior work on shape retrieval.

Fixed Resolution (FR) Representation In the FR approach
proposed by Lu and Sajjanhar [4], a grid, just big enough to
cover the entire shape, is overlaid on the shape. Each cell of the
grid has the same size (hence the name fixed resolution). For ex-
ample, in Figure 1(a), the shape is overlaid with a8� 8 grid. If
we assume the grid to be256� 256 pixels, each cell is32� 32
pixels in size. Some grid cells are fully or partially covered by
the shape and some are not. A bitmap is derived for the shape by
assigning 1 to any cell with more than 15% of the pixels covered
by the shape, and 0 to each of the other cells. The shape repre-
sented by the bitmap is shown in Figure 1(a) (below the8 � 8
grid overlay). The quality of the representation (i.e. how closely
it approximates the actual shape) improves as we go to higher
resolutions. Figure 1(b) shows that a higher resolution bitmap
(16� 16 grid) represents the better (i.e. closer approximation to
the original shape) than the8� 8 representation.

(32 rectangles)
(d) Adaptive Resolution

(16 rectangles)
(c) Adaptive Resolution(b) Fixed Resolution

(8X8)
(a) Fixed Resolution

(16X16)
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Figure 1. Fixed resolution and adaptive resolution repre-
sentations

To support similarity queries, [4] defines a distance measure
between shapes. The distance between two shapes is defined
as the number of bits by which their bitmaps differ from each
other. A similarity query computes the distance of the query
shape from every shape in the database and returns thek clos-
est matches as answers to the user. [4] shows that the higher the
resolution, the more closely it approximates the actual shape,
higher the accuracy of the answers (in terms of satisfying the
information need of the user). But high resolution also raises the
query cost: at higher resolutions, we need more bits to represent
each shape which increases both the I/O cost (as we need to scan
a larger sized database) as well as the CPU cost (as we need to
compute distances between longer bit sequences) of the query.
The choice of the resolution thus presents a tradeoff between the
query cost and accuracy.
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Figure 2. Adaptive resolution representations

Indexing in FR Approach There is no obvious way to index
bitmaps. The only way to answer a similarity query is to se-
quentially scan the entire database i.e. compute the distance of
the query from every item in the database. This technique is not
scalable to large databases consisting of millions of shapes as it
may take minutes or even hours to answer a query. To circum-
vent the problem, we propose to index the shapes using a multi-
dimensional index structure (e.g., R-tree, SS-tree, Hybrid Tree).
The index structure would reduce the cost of the query from lin-
ear (of sequential scan) to logarithmic to the size of the database,
thus making the similarity queries scale to large sized databases.
To use the index, instead of assigning a bit to a grid cell, we as-
sign a count toeach cell: the count being the number of pixels in
the cell that are covered by the shape. For a8� 8 grid, we will
get 64 values for each shape, thus mapping each shape to a point
in a 64-dimensional space. The shapes can now be indexed us-
ing a 64-d point index structure. For an1�n2 grid, the number
of dimensionsd = n1:n2. We can use a suitableLp metric as
the distance measure between thed-dimensional vectors. Given
a query which is also a point in the d-dimensional space, we
can use the index structure to quickly find thek shapes that are
closest to the query using the standardk nearest neighbor algo-
rithm [2]. As mentioned before, higher the resolution, more the
dimensionality, higher theaccuracy of the answers, but higher
the execution cost of the query. We will refer to this count-based
(and not the bit-based) representation as the FR representation
for the rest of the paper.

Other shape retrieval techniques Other shape representation
techniques include Fourier descriptors [8], moment descriptors
[6], boundary points [5] and rectangle decomposition [3]. Re-
cent studies have shown that the FR approach performs better
than most of these approaches [4].

3. Adaptive Resolution Approach

Rotation, Scale and Translation Normalization Before we
present the new shape representation, we describe how we nor-
malize the shape to make it invariant to rotation, scale and trans-
lation. Our normalization strategy is similar to that of [4] devel-
oped for the FR representation. To guarantee rotation invariance,
we need to convert an arbitrarily oriented shape into a unique
common orientation. We first find the major axis of the shape
i.e. the straight line segment joining the two pointsP1 andP2
on the boundary farthest away fromeach other [4]. Then we
rotate the shape so that its major axis is parallel to the x-axis.
This orientation is still not unique as there are two possibilities:
P1 can be on the left or on the right. We solve the problem by
computing the centroid of the polygon and making sure that the
centroid is below the major axis, thus guaranteeing an unique
orientation. Let us now consider scale invariance. We define the
bounding rectangle (BR) of a shape as the rectangle with sides
parallel to the x and y axes just large enough to cover the entire
shape (after rotation). Note that the width of the BR is equal to

the length of the major axis. To achieve scale invariance, we pro-
portionally scale all shapes so that their BRs have the same fixed
width. In this paper, we fix the width of the BR to 256 pixels. We
make the BR a square by fixing its height to 256 pixels as well;
non-square shapes are handled by placing the shape at the bot-
tom of the BR and padding zeroes in the remaining (upper) part
of the BR. The shape is translation invariant as it is represented
with respect to its BR (i.e. lower left corner of BR is considered
(0,0)).

Adaptive Resolution Representation The problem with the
FR representation is that it uses the same resolution to represent
the entire shape. There are certain portions of the shape where
low resolution is sufficient i.e. increasing the resolution does not
improve the quality of the representation for these portions of
the shape (e.g., the lower rectangular portion of the shape in
Figures 1(a) and (b)). Using high resolution for these regions in-
creases the number of dimensions without improving the query
accuracy. On the other hand, there are portions of the shape (e.g.,
the upper portion of the shape in Figures 1(a) and (b)) where
higher resolution improves the quality of the representation sig-
nificantly. For these regions, the improvement in query accuracy
obtained by using high resolution is worth the extra cost of hav-
ing more dimensions. Also, high resolution is usually not neces-
sary for the interior of a shape but is important near the border
of the shape. Having the same resolution for the entire shape is
wasteful in terms of the number of dimensions used to represent
the shape and hence the query cost.

To overcome the shortcomings of the FR representation, we
propose anadaptive resolution(AR) representation of shapes
i.e. a representation where the resolution of the grid cells varies
from one portion of the shape to another, having higher resolu-
tion where it improves the quality of representation and lower
resolution where it does not. An adaptive representation of the
same shape is shown in Figure 1(c). It uses 16 grid cells to repre-
sent the entire shape but the cells have different resolutions (i.e.
sizes). The cells in the lower portion and interior of the shape
have lower resolution (i.e. larger size) while those in the upper
portion and near the borders have higher resolution (i.e. smaller
size). Figure 1(d) shows another adaptive representation of the
same shape with 32 grid cells. Note that as the number of cells
increases, more cells are added to the portion of the shape where
higher resolution is required while the other portions remain un-
changed.

Computing AR representation Using Quadtree Decomposi-
tion We compute the AR representation of a shape by apply-
ing quadtree decomposition on the bitmap representation of the
shape. The bitmap is constructed in the same way as the FR ap-
proach discussed in [4] (cf. Section 2). We use the highest reso-
lution bitmap for the decomposition (i.e.each grid cell is1 � 1
pixels) but lower resolution bitmaps could be used as well. The
decomposition is based on successive subdivision of the bitmap
into four equal-size quadrants. If the bitmap does not consist



Distance(int *shape1, int *shape2)

i=0, j=0;
while (i < n AND j < n)

if ith rect r1 of shape1 overlaps withjth rect r2 of shape2
commonarea += OverlapArea(r1, r2);
if (r1 is bigger than r2) j++;
else i++;

else // r1 and r2 do not overlap
if (ZValue(r1)> ZValue(r2)) j++;
else i++;

areaof shape1 =�(n�1)
i=0 Area ofith rectangle;

areaof shape2 =�(n�1)
i=0 Area ofith rectangle;

union area = areaof shape1 + areaof shape2 - commonarea;
distance = 1 -common area

union area
;

return distance;

Table 1. Computing distance between two shapes.

entirely of 1s or entirely of 0s (i.e. the shapepartially covers
the bitmap), it is recursively subdivided into smaller and smaller
quadrants of the bitmap until we reach bitmap-quadrants, pos-
sibly 1 � 1 pixels in size, that consist entirely of 1s or en-
tirely of 0s (termination condition of the recursion). Figure 2(a)
shows a8 � 8 bitmap of the shape in Figure 1 and Figure 2(b)
shows the quadtree decomposition of the bitmap. Each node in
the quadtree covers a rectangular (always square) region of the
bitmap. The level of the node in the quad tree determines the size
of the rectangle. The internal nodes (shown by gray circles) rep-
resent partially covered regions, the leaf nodes shown by white
boxes represent regions with all 0s while the leaf nodes shown
by black boxes represent regions with all 1s. The “all 1” regions
are used to represent the shape. Figure 2(b) has 16 such rectan-
gular regions and the shape represented is shown in Figure 2(c).
Since we perform the quadtree decomposition on the256� 256
bitmap, the number of black leaf nodes in the quadtree is usually
far more than the numbern of rectangles we want to choose to
represent the shape. In that case, we choose then largest rectan-
gles i.e. we do not choose any black leaf node at leveli unless
we have chosen all the black leaf nodes at levelj; j < i where
the levels are numbered in increasing order from top to bottom.
In this way, we can cover the bulk of the shape with a few rect-
angles (i.e. small values ofn) and add details to the shape as we
add more rectangles (i.e. larger values ofn).

Indexing After the n rectangles are chosen, we sort them
based on z-order. The number sequence assigned to the black
leaf nodes of the quad tree in Figure 2(b) represent the z-order.
The same numbers are shown on the corresponding rectangles
in Figure 2(c). Note that the z-ordering is simply a left-to-right
ordering of then selected black leaf nodes in the quad tree. We
represent the shape as asequenceof then rectangles. Since the
rectangles are always squares, we can describe each rectangles
by 3 numbers: its centerC = (Cx; Cy) and its size (i.e. side
length)S. We represent the shape as a sequence of3n numbers
where3i, 3i+1 and3i+2 numbers represent theCx,Cy andS
of theith rectangle (0 � i � (n�1)) in the n-sequence. We have
thus mapped each shape to a point in3n-dimensional space. We
can now index the shapes using a3n-dimensional index struc-
ture. The choice ofn depends on the desired dimensionalityd

of the index structure i.e.n = d
3 .

Executing Similarity Queries Using Multidimensional Index
Structure To support similarity queries, we must first choose
a distance measure between shapes. We choose the popular

“area difference” distance measure previously used in [4, 3]. The
area difference is the area of the regions where the two shapes
do not match when they are overlaid on each other. To normal-
ize the measure, we divide the area difference by the area cov-
ered by the two shapes together i.e. area of the union of the two
shapes. To be able to answer similarity queries using a multidi-
mensional index structure, we should be able to efficiently com-
pute (1) the distance between two points i.e. between two shapes
represented using the AR representation and (2) the minimum
distance (MINDIST) between a point and a node of the multi-
dimensional index structure. Once we can compute the above
distances, we can answer a similarity query by executing thek-
NN algorithm on the multidimensional index structure [2]. The
algorithm works as follows. It maintains the nodes and objects
of the index structure in the priority queue in increasing order of
their distances from the query and uses the queue to traverse the
tree in the same order. At each step, itpops the item from the
top of the queue: if it is an object, it is added to the result list,
if it is a node, it computes, using the above distance functions,
the distance of each of its children from the query and pushes
it back to the queue. The algorithm stops when the result set
containsk objects. We first present the function to compute the
distance between two points. Given two shapess1 ands2 con-
sisting ofn rectangles each (i.e. represented as3n-dimensional
points), a naive way to compute the distance is to compare all
pairs of rectangles and compute the distance between them. This
approach is computationally expensive (O(n2)). We exploit the
following properties of Z-ordering to compute the distance in
O(n) time. Let r1 and r2 be two rectangles ofs1 and s2 re-
spectively. First, ifr1 and r2 do not overlap with each other
andZV alue(r1) > ZV alue(r2) andr10 is a rectangle ins1
that appears afterr1 (i.e. ZV alue(r10) > ZV alue(r1)), then
r10 and r2 do not overlap with each other. Second, if r1 and
r2 overlap with each other andr1 is larger thanr2 (i.e. r1 is
totally coversr2) andr10 is a rectangle ins1 that appears af-
ter r1 (i.e. ZV alue(r10) > ZV alue(r1)), thenr10 andr2 do
not overlap with each other (see [1] for proofs). The procedure
to compute the distance is shown in Table 1. We have also de-
signed an algorithm to compute the MINDIST i.e. the minimum
distance between a point and node of the index structure. We do
not describe the algorithm here due to space limitations but can
be found in [1]. We can now answer similarity queries efficiently
by executing it as a k-NN query on the multidimensional index
structure.

Optimization The quality of the representation (and hence the
accuracy of the answers) increases with the number of rectan-
gles, but so does the dimensionality and hence the query cost.
We present an optimization that increases the number of rect-
angles without increasing the number of dimensions. We merge
rectangles together if they are (1) “mergeable” i.e. produce a
rectangle when merged and (2) appear consecutively in the z-
ordered sequence. Figure 2(d) shows the set of rectangles in
Figure 2(c) after the merging. Since this representation is more
compact (i.e. we can represent the same shape with less num-
ber of rectangles), for a given choice of dimensionalityd, we
can represent the shape more accurately. The merging based on
z-order ensures that the distance functions described above can
be used with some minor modifications. Unlike in the unmerged
representation, the rectangles in the merged representation can
be non-squares; hence, we need to store two sizesSx andSy
for each rectangle instead of one. To representn rectangles, we
need4n numbers instead of3n. For a desired dimensionalityd,
the number of rectangles to choose to represent the shape isd

4

instead ofd3 .

4. Experiments
We conducted several experiments to evaluate the

effectiveness of the AR representation and compare
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it with the FR representation. For our experiments,
we used the “islands” file in the polygon dataset of
the Sequoia benchmark (available online at http://s2k-
ftp.cs.berkeley.edu:8000/sequoia/benchmark/polygon/). The
dataset contains 21,021 shapes. For a given query, we generate
the ground truth by executing the query against the highest
resolution bitmap representation of the shape (i.e. each grid cell
is 1 � 1 pixel) and retrieve the top k answers. We refer to these
answers as therelevant set. We then execute the query against a
given low resolution FR representation using the index structure
and retrieve the top k answers. We refer to these answers as the
retrieved set. We compare the relevant and retrieved sets for
various values ofk (we vary k from 10 to 100) and we plot the
precision (defined asjrelevant\retrievedjjretrievedj ) and recall (defined

as jrelevant\retrievedj
jrelevantj ) graphs for various resolutions (4 � 4,

8 � 4, 8 � 8, 16 � 8 and 16 � 16). The result is shown in
Figure 3. All the measurements are averaged over 100 queries.
The graph shows that the quality of the answers improves as
the resolution increases. We repeat the above experiment for
the AR representation. The result is shown in Figure 4. The
graph shows that the quality of the answers improves with the
increase in the number of rectangles. Note that we are doubling
the number of dimensions at each step in both cases but the
improvement in the quality of answers ateach step is more
significant in the AR technique compared to the FR technique.
The reason is that in the AR case, the additional rectangles
concentrate on improving the representationonly where it is
necessary while in the FR case, the resolution is increased
equally all over, as much in the unnecessary portions as in the
necessary ones, thus diluting the effect and not improving the
quality of representation significantly.

We compare the two techniques in terms of the quality of
retrieval when the same number of dimensions are used to rep-
resent the shape. For a given recall, we compute the precision
of the two techniques at a given dimensionality. Note that for
the FR presentation ofn1 � n2 resolution, the dimensionality
is n1:n2 while for the AR approach withn rectangles, the di-
mensionality is4n. In Figure 5, we plot the precision at 100%
recall for various dimensionalities for both techniques. The AR
technique significantly outperforms the FR technique in terms
of precision at almost all dimensionalities. For example, at 100
dimensions, the AR technique has about 70% precision while
the FR technique has about 50% precision. We observed similar
behaviour at other values of recall. This shows that AR is a more
compact representation i.e. with the same number of dimen-
sions, AR approximates the original shape better than FR and
hence provides higher precision. Assuming that the query cost
is proportional to the number of dimensions used1, the AR tech-

1We have performed experiments using a multidimensional index structure

nique provides significantly better quality answers at the same
cost and is hence a better approach to shape retrieval.

5. Conclusion
Similar shape retrieval is an important problem with a wide

range of applications. In this paper, we have presented a novel
adaptive resolution approach to representing 2-d shapes. The
representation is invariant to scale, translation and rotation. With
the proposed representation, we can index the shapes using a
multidimensional index structure and can thus support efficient
similarity retrieval. Our experiments show that, for the same
query cost, the adaptive technique provides significantly better
quality answers compared to the fixed resolution representation
and is hence a better approach to shape retrieval.
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