Capturing Sensor-Generated Time Series with Quality Guarantees

lTosif Lazaridis
University of California, Irvine
Irvine, CA, USA
10sif @ics.uci.edu

Abstract

We are interested in capturing time series generated by
small wireless electronic sensors. Battery-operated sensors
must avoid heavy use of their wireless radio which is a key
cause of energy dissipation. When many sensors transmit,
the resources of the recipient of the data are taxed; hence,
limiting communication will benefit the recipient as well. In
our paper we show how time series generated by sensors
can be captured and stored in a database system (archive).
Sensors compress time series instead of sending them in raw
form. We propose an optimal on-line algorithm for con-
structing a piecewise constant approximation (PCA) of a
time series which guarantees that the compressed represen-
tation satisfies an error bound on the L, distance. In addi-
tion to the capture task, we often want to estimate the val-
ues of a time series ahead of time, e.g., to answer real-time
queries. To achieve this, sensors may fit predictive models
on observed data, sending parameters of these models to
the archive. We exploit the interplay between prediction and
compression in a unified framework that avoids duplicating
effort and leads to reduced communication.

1. Introduction

Data generated by small wireless electronic sensors are
increasingly significant for emerging applications [14, 9,
24]. Sensors are becoming smaller, cheaper and more con-
figurable [24]. Current and future sensor designs routinely
include a fully programmable CPU, a local memory buffer
and a wireless radio for communication [24, 16]. Sen-
sors must be treated as equal partners in future distributed
database systems as they can store, manipulate and commu-
nicate information.

1.1. The Time Series Capture Task

In our paper we are interested in capturing sensor-
generated time series. Each sensor, or data producer gener-

Sharad Mehrotra
University of California, Irvine
Irvine, CA, USA
sharad @ics.uci.edu

ates a series of values of some measured attribute, e.g., tem-
perature. Sending these raw values to the data archiver (a
database system) uses up the limited communication band-
width [23, 16] and causes energy drain [24, 20]. If multi-
ple sources of information are involved, bandwidth at the
archiver end may be limited as well [23]. Even if all infor-
mation can be received, it may be too difficult to process
if the rate of data generation is high [2, 30]. Obviously,
limiting communication in a system involving sensors will
benefit all involved parties.

We assume that some loss of precision in the archived
version of the time series can be tolerated if this helps re-
duce communication. We do not want, however, unbounded
inaccuracy in the stored imprecise series. Besides the cap-
ture task, time series values may be needed ahead of time
by real-time applications, e.g., queries. Such applications
and the capture task must gracefully co-exist.

We observe that time series values are not entirely ran-
dom and can thus be compressed. This implies that some
number of samples must be accumulated, since compres-
sion exploits the redundancy of information across many
samples; the sensor must see some samples, compress them
and forward the compressed representation to the archiver.

Propagating messages from the sensor to the archiver
takes time. Hence, any application that requires knowledge
of recent, present or future time series values must wait for
these to arrive. This time will be longer if samples are not
forwarded immediately but are rather compressed. To ad-
dress this issue, sensors are tasked with fitting parametric
predictive models of the time series, sending parameters of
these models to the archive. Using these, values of the time
series can be estimated ahead of time, reducing the latency
seen by applications.

1.2. Why is Capturing Time Series Important?

Many applications over sensors are primarily motivated
by their ability to monitor the physical world in real-time. In
many situations sensor data is useful not only for its present
utility for some application, but for its potential future util-

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2003 2. REPORT TYPE 00-00-2003 to 00-00-2003
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Capturing Sensor-Generated Time Serieswith Quality Guarantees £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of California,Department of I nformation and Computer REPORT NUMBER
Science,Irving,CA,92697

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 12
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ity as well. Therefore, capturing the complete history of a
time series is essential for systems incorporating sensors.
This contrasts somewhat with the emerging paradigm of
rapidly produced data streams whose focus is not primar-
ily on storage [20, 2].

For example, sensors will often be used in large-scale
scientific experiments. Such experiments, often involving
changing behavior (e.g., the diffusion of pollutants in a
water stream), over long periods of time cannot be accu-
rately studied unless one stores the entire history of the phe-
nomenon. In some cases, e.g., major earthquakes, environ-
mental disasters, volcano eruptions, the studied process is
rare and hence the value of data collected about it is signif-
icant.

In a second example, consider an intrusion detection sys-
tem relying on sound and light intensity measuring devices.
A torch-carrying intruder may set off an alarm, but it is con-
ceivable that the real-time application may be misguided
into not raising an alarm. The next day, when the intru-
sion is detected, e.g., a precious item is missing, it would be
useful to “rewind” the time series produced by the system’s
sensors, and try to identify traces of the intrusion.

We view time series generated by sensors as a commod-
ity, besides its real-time usefulness. Our work is part of the
Quality-Aware Sensor Architecture (QUASAR) project at
UC Irvine, which aims to create a general architecture for
different sensor-based applications, both on-line and off-
line, both current and future. This differs from a com-
monplace view in which sensor-based applications are built
from scratch with a single objective (e.g., real-time mon-
itoring) without accounting for unforeseen uses of sensor-
generated data.

1.3. Paper Organization

In Section 2 we formulate our problem and sketch the
proposed solution. In Section 3 we consider compression
with quality guarantees. In Section 4 we motivate the need
for prediction, show how it can be performed, and how it
can co-exist with compression. In Section 5 we evaluate
our techniques experimentally. In Section 6 we cover some
related work, and in Section 7 we summarize our work and
present future research directions.

2. Problem Formulation

We will speak of a single data producer (sensor) and data
archiver (database). Keep in mind that in a real system, the
archiver will interact with many producers. Each producer-
archiver interaction will use the algorithms presented in our
paper. The archiver may assign different importance to dif-
ferent sensors. The problem of gathering data from multiple
sources to achieve an overall level of quality of the archive

is itself very interesting [8, 23]. Rather than capturing the
time series by probing the sensor, we will do so by receiv-
ing messages from it. Wireless devices pay a heavy price
(energy-wise) for listening on the radio channel even if no
data is being transmitted [29].

2.1. Definitions and Assumptions

For simplicity’s sake, we will assume that the producer’s
clock is synchronized with the archiver’s. Time synchro-
nization is an important issue of research in sensor networks
[11] but goes beyond the scope of our paper. We will as-
sume that time is discrete and will denote the time domain
as T = {1, 2, ...}. The time quantum, corresponding to
one step, is the sampling period of the sensor. We will also
deal with time series whose value domain is R, i.e., the real
numbers.

We define a time series as a sequence S =
(s[1], s[2],...) where s[k] € R is the value of an ob-
served real-world process at time position k € T. We
note the time position of now as n. The observed series,
at time n is noted as S™ = (s[1],s[2],..., s[n]). We use
s[i : j] to note a subseries from time ¢ to time j, i.e.,
sfi = 4] = (s[d], s[i +1], ..., s[j — 1], s[j]). Hence,
S™ =s[1:n).

The sensor has a finite energy supply. This is depleted
during normal sensing operation at some rate. Additional
energy drain is caused when using any of the sensor’s equip-
ment, including (i) powering its memory, (ii) using its CPU,
(iii) communicating bits, or listening on the wireless chan-
nel. The specific rates of energy consumption for these
operations are sensor-specific. Modern sensors try to be
power-aware, shutting down components when they are not
used or e.g., changing the frequency/voltage of the proces-
sor [15] depending on the workload.

Different sensors are bound to differ in the details of their
architecture and power consumption. We simply observe
that communication is often the major cause of energy drain
[24, 16] in sensors and hence, in the interest of extending the
sensor’s life, communication must be curtailed.

2.2. Objectives

We identified communication as the main target for op-
timization. Our goals are the following:

e To capture an approximate version S of the series S
in the archive. S is conceptually a time series for the
same time positions as S but has a smaller actual rep-
resentation. We present algorithms to construct such a
compressed representation in Section 3.

e To predict values of S ahead of time, i.e., before re-
ceiving them at the archive. This can be achieved by

fitting predictive models, using these to estimate val-
ues. We examine the problem of prediction in our set-
ting in Section 4.

2.3. Quality Metric

A commonly used metric for comparing time series is
that of Euclidean distance [17, 12]. If S™ = s[1 : n] and

Sn = 5[1 : n] then this is defined as:

(5,8 =~ Yol - 51i)?

k=1

If we were to specify quality as an upper bound on this
distance, then we would make room for large divergence
of individual samples of the time series. For similarity-
retrieval types of applications [26, 17], the main goal is to
identify similarity of overall structure, rather than similarity
of individual values. We do not want to assume the use of
the time series data. Hence, we will use a stronger notion of
quality, namely that the estimation for any individual sam-
ple 5[k] should not deviate from s[k] more than an upper
bound. We can use the L, metric:

Loo(S™,8™) = max |s[k] — 5[k]|

1<k<n
and state the quality requirement as follows:

LOO(S , S) < €capt < 12?%% |8[k] - §[k]| < €capt

S s said to be a within-€qp¢ approximation of S™ if the
above holds. Note that this is a “stronger” notion of quality
in that it implies a bound on the Euclidean distance':

~ ~ 5
Loo(S™,8™) < €capt = d(S™,8™) < €capt
Our first objective can be formalized as capturing and

storing a within-€.,,; version of .S at the archive, where
€capt» 18 a user-specified capture, or compression tolerance.

2.4. Latency and the need for prediction

The use of prediction is motivated by the latency be-
tween the producer and the archiver of the time series. This
can be broken down to:

o Communication Latency, Neomm -— This includes the
transmission, propagation and queuing times in both
the wireless and wired links between producer and
archiver.

! Actually d(S",gn) < € also implies a bound on Lw(Sn,gn),
namely that Lo (S™,S™) < /ne, but this is a very loose bound as it
is proportional to /7.

o Compression Latency, Ncomp .— This consists of the
time spent at the sensor processing S™ so as to produce
S™.

As a result of the oy\erall latency, at time n, the archiver
will have received not S™, but rather S~ ™25 where njqy =
Neomm + Mcomp 1S the number of time positions it is
“behind” the producer. Any real-time applications (e.g.,
queries) that require the value of the time series for any time
position ng, in the future (ny > n), the present (ny = n),
or the recent past (n — nyqy < ng < m) must wait for that
value to arrive from the producer.

Suppose that the value of the time series at time posi-
tion ng > n — nyqg is needed. The system will provide an
estimate s4[n,] using any of the following three evaluation
strategies:

e Predict— Some predictive model M and its parame-
ters @ are stored in the archive. Subsequently, s,[n,] is
predicted as S g[n4]. We will note this as $[n,] when
(M, 8) is known. This raises the issue: how does one
obtain such a predictive model, and how can one be
guaranteed of the difference between the predicted and
the actual value.

e Probe.— The producer is asked directly for s[n]. This
requires from the producer to maintain all samples (or
at least their approximations) it has not forwarded to
the archive. Additionally, the producer must now listen
on the wireless channel for probes. This is a cause of
energy drain [29]. The producer can tune in to listen
for probes occasionally. This will, however, increase
the latency seen by queries.

e Wait.— The final strategy is to simply wait for §[n] to
arrive from the producer. The quality of s4[n,] = §[n,]
is guaranteed; it is within €.qp¢ Of s[n,].

We note here that prediction is very attractive, since it
does away with the latency involved with either doing a
probe or waiting for a value to be sent by the sensor. Our
second objective can be formalized as providing, to any in-
terested applications, a within-€;,.q estimation of time se-
ries values, before these values arrive at the archive. In Sec-
tion 4 we show how this can be achieved. We will also
briefly discuss the important problem of choosing a predic-
tive model among many, and present the criterion by which
different candidate models can be compared.

2.5. Combining Compression with Prediction

Some of the work done for prediction can be used for the
capture task as well. If the predictive model is somewhat
accurate, then the archive already has an idea of some time
series values before receiving them. The sensor can use this

to limit the effort that must be spent to compress the time
series. In Section 4.4 we will show how this basic intuition
can be used algorithmically.

3. Compression Algorithms

Work in approximating time series has been extensive in
the literature. Time series have been approximated using
wavelets [4], Fourier transforms [1], piecewise linear ap-
proximations [18], or polynomials [26]. Since the approx-
imation must be carried out by the sensor, a device of lim-
ited abilities, the employed algorithm must be lightweight
in terms of processing and memory utilization.

3.1. The Piecewise Constant Approximation

An attractive type of lossy> compression is the piecewise
constant apprwcimation3 (PCA) [17], whereby the time se-
ries S is represented as a sequence of K segments:

PCA(S™) = ((c1, €1), (c2, e2),

where ey, is the end-point of a segment and ¢, is a constant
value for times in [ex_1 + 1, ey], or for times in [1, e;] for
the first segment. In such an approximate representation,
we estimate s[k] as:

- (CK7 6[{))

_ C1 lfk§€1
ﬂk]_{ cm ifen1+1<k<en,

This representation is intuitive and easy to index. In
terms of compression, we note that a single segment costs
us bs + by, to store, where b, is the size of a sample value
and by, is the size of a time position index. If a time series
of length n is approximated with a PCA sequence of length
K(bs :btp)

nos

K, then the compression ratio is . If each segment

corresponds to many samples of the time series (% is sig-
nificantly less than 1), then high compression ratios can be
achieved.

A series S™ can be approximated by different PC A(S™)
approximations. As we will see, very simple on-line algo-
rithms with O(1) space requirement can be used to con-
struct a PCA representation that preserves the desired qual-
ity guarantee with minimum K.

3.2. Poor Man’s Compression
Poor Man’s Compression (PMC) is a bare-bones form of

compression that can be used to reduce the size of a time-
series representation. It is an on-line algorithm, producing

2Experimentation with lossless methods (gzip, not reported) indicate
very small (~50%) compression ratios. Lossless compression also does
not exploit the precision-compression tradeoff.

3This was called Adaptive Piecewise Constant Approximation (APCA)
in [17] to distinguish it from a similar approximation (PAA) with equal
segment lengths.

procedure PMC-MR

INPUT:

time series S = (s[1], s[2], ...), tolerance €.qpt > 0.
OUTPUT:

compressed time series PCA(S) within-e.qp¢ 0f S.

(1) PCA(S) + ();

2) n«1;

(3) m < s[n];

(4) M < s[n];

(5) while S.hasMoreSamples()

(6) if max{M, s[n]} — min{m, s[n]} > 2€capt

(7 append (24™ 1 — 1) to PCA(S);

®) m < s[n];
) M < s[n];
(10) else

(11) m < min{m, s[n]};
(12) M «+ max{M, s[n]};

(13) end;
(11) n<n+l;
(12) end;

(13) append (4™ n — 1) to PCA(S);

Figure 1. PMC-MR Algorithm

segments of the PCA representation as new samples arrive.
It requires only O(1) space and performs O(1) computation
per sample. Hence, its overall time complexity for a series
of size n is O(n). This computation is interspersed with the
arrival of samples; the compressed series is “ready to go” as
soon as the last sample is processed. Hence the ncopmm, time
of Section 2 is minimized.

Let s[i : j] be some time series. Can this be compressed
in a single segment in a manner that preserves the €.qp¢
guarantee? Lemma 1 supplies the necessary and sufficient
condition.

Lemma 1 The time series s[i : j| can be compressed in a
single segment (c, j) with an error tolerance € qpy iff:

4] = — mi <2
range[i : j| = max slk] — min_s[k] < 2ecapt

Proof: Ifforallk :i <k < j:|c— s[k]] < €cqpt then
also |c—maxi5k5j S[k” S €capt and |c—min,~§k§]- S[k” S
€capt- HCHCC, |maxi5k5j S[k] — minisksj S[k‘” S 260apt7
or rangeli : j] < 2€.qpt. We used the proposition |a| <
bA|c] < d=|a—c| < b+d. Conversely, if rangeli : j] <

(maxi<k<j s[k]+min;<k<; s[k])
2 > J

2¢€.qpt then the segment
be trivially shown to compress it within-€.qp¢.

can

3.2.1. Poor Man’s Compression - Midrange. Our first al-
gorithm (see Figure 1), PMC-MR (for midrange) uses the
converse of Lemma 1. It monitors the range of its input.
While this is less or equal to 2ecqp: it updates the range
if needed (lines 11-12). When the range exceeds 2¢€.qp¢ at

time n, then the segment ending at n — 1 with a constant be-
ing equal to the midrange of the preceding points is output
(line 7). The algorithm then tries to compress the next set
of samples, starting at time n (lines 8-9).

PMC-MR not only achieves the goal of compression, but
satisfies an even stronger property: that no other PCA repre-
sentation satisfying the €.qp¢ constraint, over any input time
series can be a valid compression for that time series if it
has fewer segments. PMC-MR is thus instance optimal not
only for the class of on-line algorithms, but over any algo-
rithm that solves this problem correctly. We state our claim
and its proof formally.

Theorem 1 Let S™ = s[1 : n] be an aribitrary time se-
ries that must be approximated with a piecewise constant
approximation that satisfies for all k = 1,2,...,n that
[sTk] — s[k]| < ecapt- If the PMC-MR algorithm (Figure
1) produces a PC A(S™) representation with K segments,
then no valid PCA representation with K' < K segments
exists.

Proof: By contradiction. Let BETTER(S™) be a valid
representation of S™ with K’ < K segments. Hence,
K = K' + m where m > 1. Therefore of the K inter-
vals of PC'A(S™) at least one does not contain an endpoint
of BETTER(S™). This cannot be the final one, since
that must be n, which is contained in the final interval of
PCA(S™). Let [e;—1 + 1, e;] be the interval of PC A(S™)
that does not contain an endpoint of BETTER(S™). Let
[ei—1 +1 — v, e; + w] with v > 1,w > 1 be the in-
terval of BETTER(S™) that covers [e;—1 + 1, e;] Thus,
[e;—1+1—wv, e;+w] covers [e;_1+1, e;+ 1] as well (since
w > 1). Butsince [e;—1 +1, ;] is an interval of PCA(S™),
produced by the PMC-MR algorithm, and it is not the fi-
nal one, then the range of values in [e;_1 + 1, e; + 1] is
greater than 2¢.4p;. The range of values in any time interval
is always greater than the range of values in any of its sub-
intervals. Hence, the range of valuesin [e;_1+1—wv, e;+w]
is greater than 2¢.,,¢. Therefore there doesn’t exist a value ¢
such that for all values s[k] where k € [e;_1+1—v, e;+w]
itis |c—s[k]| < €cqpt (Lemma 1). Therefore, the segment of
BETTER(S™) whose endpoint is at time position e; + w
violates the €cqp constraint and BETTER(S™) is not a
valid representation for S™. |

PMC-MR does an optimal job at compression, but it has
two disadvantages. First, the time series it generates can-
not be easily incorporated in similarity-retrieval systems,
which usually rely on PCA representations where the con-
stant value for each segment is the mean of the time series
values for that segment [17]. Second, the mean error pro-
duced by PMC-MR may sometimes be large, even close to
€capt- €specially if the distribution of values is skewed. This
problem does not conflict with our specification of quality,
but it is an undesirable property of the algorithm.

Consider the time series S = (0, 0, 0, 4) and
suppose that €.qpt = 2. PMC-MR will approximate

it with one segment (2, 4). The mean error will be
0-2[+|0-2|+[0—2|+]4-2| _ o
" =2.

3.2.2. Poor Man’s Compression - Mean. To ad-
dress these problems, we propose a modified algorithm,
called Poor Man’s Compression-Mean (PMC-MEAN).
PMC-MEAN is identical to PMC-MR except that it uses
the mean of the points in each segment as the constant
of the segment. Values are sampled until the mean of
the points seen thus far is more than €.,p; away from the
minimum or maximum of the observed points. Then, a
segment is output and the algorithm tries to compress the
next set of points starting from the one that caused the
tolerance violation.

As an example, for the series S above, PMC-MEAN
would output two segments (0, 3) and (4, 4). Its error
would be zero for these segments, but it will have produced
more segments than the optimal algorithm (PMC-MR).
Choosing between these two algorithms must depend
on the use of the data and their relative performance at
compression. In our experiments of Section 5 we will see
that over many datasets, PMC-MEAN performed only little
worse than PMC-MR. Hence, we consider it as a viable
alternative to PMC-MR.

3.23. PCA Segment Transmission. We observe that
the PMC algorithms produce a sequence of compressed
segments. These can be forwarded either immediately, or
aggregated into packets for network transmission when
either the sensor’s memory buffer is filled, or the maximum
packet length is reached. Normally, we would like to fit
as many segments into a packet as possible, since each
packet has some overhead in terms of header information.
However, since packets may be lost, especially over the
unreliable links available to sensors, it might make sense
to limit the maximum packet length for transmission, thus
avoiding the loss of large segments of the time series all at
once.

Note, that there is no guarantee for the time it takes for
a segment to be output. If compression is successful, then
potentially, a single segment could go on forever — if all
new points do not cause the violation of the €.4p; condition.
In practice, we might interrupt these algorithms if we want
to receive segments of the time series in a timely manner.

4. Prediction

In Section 2, we motivated the use of prediction from
the need of real-time applications to co-exist with the cap-
ture task. We will now address some issues arising when
prediction is performed.

4.1. Who should predict?

There are two fundamental ways in which prediction can
be used:

o Archive-side.— The data archive contains at least 3[1 :
n—"nyqg]. This can be used, via some prediction model,
to provide an estimate s[k], for time positions k > n —

Nigg-

e Producer-side— The producer sees the entire s[1 : n].
Hence, it can also use some prediction model to pro-
vide an estimate s[k]. In this case, the parameters of
this model need to be transmitted to the archive.

Archive-side prediction has the obvious advantage of not
requiring communication with the sensor*. A second ad-
vantage is that the archive sees the “broad picture” of the
sensor’s history. It can thus infer predictive models at a
larger time scale, accounting perhaps for cyclic behavior,
global trends or other aspects not discernible from the sen-
sor’s limited (time-wise) perspective. Its disadvantages are:
(i) it is based on S and not on the precise S, (ii) it can-
not provide any prediction quality guarantee, as the archive
does not monitor the precise S which can deviate from the
predicted .S without bound, and (iii) prediction must be ac-
curate nqg4 steps into the future for it to predict the present
value accurately. As we mentioned in Section 3.2.3, njqg
may be very large.

Producer-side prediction has the disadvantage of requir-
ing communication. Since producers have limited memory,
only the most recent past of the time series can be stored in
it, or perhaps very coarse derivative information about the
more distant past. Hence, long-term effects like cycles can-
not be incorporated into the prediction model. However,
the main advantage of producer-side prediction is that it
uses the raw S series, and allows for prediction guarantees.
Producer-side prediction will be used in the following.

4.2. Producer-Side Prediction

The basic form of Producer-Side Prediction (PSP) is
shown in Figure 2. The input of the algorithm is a time
series, a prediction tolerance €4 and a parametric predic-
tive model M. PSP begins by guessing a set of parameters
for M (line 1). Subsequently, each sample s[k] is checked
against the predicted value based on the last set of parame-
ters 6% (line 7). If this is greater than €,,.q, then a new set
of parameters is computed (line 8), by updating the old pa-
rameters with the samples at time positions greater than the
time when the last prediction parameters were estimated.
The algorithm produces a sequence of (8, n) pairs. These

“4In principle, the archive could also send prediction parameters to the
sensor, especially if prediction guarantees are required.

procedure PSP

INPUT:

time series S = (s[1], s[2], ...),

prediction tolerance €preq > 0, model M.
OUTPUT:

prediction sequence PS = {(8,, t1), (85, t2), -..).
(1) guess § for M;

(2) PS«+((6,0));

(3) g%t «0;

4) nlest 0,

B) n«1;

(6) while S.hasMoreSamples()

(M) i |8y grast[n] — s[n]| > €pred

8) 6 < updateParameters(M, glast, s[ntest +1: n))
©) append (¢, n) to PS;

(10) g'st 6;

(1) nlest «p;

(12) end;
13) n «<n+1;
(14) end;

Figure 2. Producer-Side Prediction with Error
Guarantee

predict the time series starting from time n. This sequence
defines a within-€,,.q approximate version of .S, which we

may note as S.

We observe that prediction parameters do not arrive
instantaneously to the archive. Let 7 be an upper bound on
this time. Clearly, if the time were unbounded, then PSP
would provide no guarantee, as queries can never be certain
whether a parameter refresh is on its way or not.

4.2.1. Setting €p.cq. The best value for €,q.q de-
pends on the quality requirements of real-time applications.
If values must be predicted frequently at a high quality,
then €,,.q must be set low. This problem was studied in
detail in [22]. In that paper, the (implicit) prediction model
was 3[k] = s[n!®**]. We can adopt a similar algorithm to
set €preq adaptively. The main intuition in [22] is that as
data becomes more variable, €;,,.4 is increased, to reduce
the number of messages. On the other hand, when queries
arrive at a high rate with small error tolerances, €preq is
decreased to make sure that these queries can be answered
at the server without performing any probes. Setting €,req
adaptively does not conflict with the algorithms presented
in this paper.

4.2.2. Choosing a Prediction Model. Our use of
prediction does not assume a particular predictive model.
The actual model to be used, must be chosen based on
(i) domain knowledge about the monitored attribute, and
(ii) engineering concerns, i.e., the cost associated with
fitting prediction models and (especially) transmitting
their parameters. Traditionally, prediction performance is

gauged by prediction error. Suppose that (My, 6;) and
(M2, 8,) are competing models with their parameters. If
at time n, it is the case that:

|s[] = 8ars0, [0]] > [s[n] = 8as.0, 1]

then (M, 8,) is a “worse” predictor than (M, 8,) at time
n.

From a system performance perspective, as long as
(M;,8,) and (M>,8,) do not produce errors greater than
€pred, (resulting in new transmission of new parameters),
they are equivalent. Consider competing models My, M,
and let |8,], |85| denote the size (in bytes) of their parame-
ters. If K; messages are generated by M; and Ky by Mo,
then M, is preferred if K1]0;| < K>|f,], since this leads
to reduced data transmission.’ If the model must be fixed
a priori, then a decision must be made based on the above
criterion, using experimentation, expert opinion or past
experience to choose between competing models.

4.2.3. Adaptive Model Selection. In many situa-
tions, a global model for predicting a time series is not a
valid assumption. It is likely that a time series can best be
approximated by different models for different epochs of
its history. We informally define an epoch as a time period
during which a time series’ behavior is well-predicted by a
single model.

Consider for example a moving object in one dimension.
The object’s position at different times is the time series of
interest. At times, the object may be idle. The best model
is then 3[n] = c. At other times, it is moving at a constant
speed; a good model is then 3[n] = v-(n—n'®st) 4 s[n'est].
Sometimes it is accelerating, or decelerating, etc. All these
times are epochs of the object’s history.

The problem of detecting changes in sequences is com-
plex [27, 13]. A general solution, applicable to different
types of time series and different classes of models cannot
be easily found. The two main problems in epoch detec-
tion is to (i) discover the epoch boundaries, and (ii) not be
fooled by temporary abnormal behavior into thinking that a
new epoch has commenced. These matters are part of our
current research. Briefly, we anticipate two modes of adap-
tivity:

e Producer-side model selection, in which the sensor
chooses from competing models in reaction to the
changing behavior of the time series.

o Archiver-side model selection, in which the archive
monitors system performance and “uploads” predic-

5Depending on the network protocols in place, the difference of 104 vs.
|85 | may not be critical. Costs associated with the protocols (e.g., headers)
may dominate the cost of transmitting either 8, or 8,, if e.g., the difference
between |8, | and |8,] is only a few bytes. In such a case, the simple test
K1 < K3 would be preferred.

RECENT PAST FUTURE

last : last
n, n inew n

TNE

HISTORY

B 1 B
Casel © Casell Caselll CaselV:
nn . n n+ 1t
lag

- - -
B
B

AQueried Time

' n Refresh
1 q

Parameter l
Time

Figure 3. Estimating Time Series Values

tion code to the sensor, either by expert intervention,
or automatically.

In Section 5 we will perform a simple experiment validating
the need for adaptive model selection.

4.3. Estimating time series values ahead of time

An application q arrives at time n, asking for some esti-
mate s4[n,] of s[n,] with bounded error: |s[n,] — s4[n,]| <
€,4. The discussion that follows will refer to Figure 3.

e Case I: ng < n — njqy. The estimate is based on the
captured series: sq[ng] = §[ng]. If € < €cqpt, then
the quality of the captured series does not suffice to
provide an estimate with error bounded by €,. In such a
case, the system can only provide an estimate sq[n4] =
s[nq] which may violate the €, tolerance.

Let (8'*", n!est) be the most recent parameters re-
ceived at the archive.

e Case II: n'?** > n?. We look at the prediction se-
quence for the parameters (6, n,) where n, is the
most recent time position (with respect to 1) in which
parameters were refreshed. The answer is s4[n,] =
Samo[ng] if €prea < €q. If €5 < €pred, DUt €5 > €capt,
then the application can wait for §[n,] to arrive. As
we have mentioned in Section 3.2.3, this time may be
unbounded. We can force compressed segments to be
sent in a timely manner. Finally, if €, < €cqp¢, then
it is necessary to do a probe which returns the exact®

s[ng].

e Case III: n'*** < n, and n — n, > 7. The answer is
8q[nq] = Sprgtes[ng]. If at time n?, the time series
had violated the €pred tolerance, then we would have
received new parameters by “now” (n). As we have
not received new parameters (since n'?%t < ng < n)

6Samples need to be kept in the sensor’s buffer if applications are al-
lowed to probe the sensor for exact values.

then, we are guaranteed that |s[ng] — s4[n¢]| < €pred-
Again, if €; < €,r¢4, @ probe has to be issued for the
exact s[ng].

e Case IV: n'**" < ngand n — n, < 7. Potentially,
new parameters have been estimated for time n,. The
last update is not guaranteed to be valid until time po-
sition ng + 7. Thus, we wait until that time. While we
wait, it may be that n'®** changes, since parameters
estimated at times both before n, and after n, may ar-
rive. As long as they are before ng, we still have to
wait. Otherwise (new n'®s of Figure 3), it becomes
that nlest > ng, in which case we estimate the value
as described (Case II). Once again, we can choose to
wait for §[n,] or probe for s[n,] depending on the ¢,,.

4.4. Combining Prediction and Compression

In our discussion so far, we have treated compression
and prediction separately. However, both of them estimate
values of the same time series, from its past and its future
respectively. Can we further reduce the communication cost
by combining the two?

Observe, that prediction in itself can be viewed as a form
of compression. Each set of parameters is a within-€p,cq
approximation of the time series for all times until the next
parameter refresh. If we wanted to capture the time series
within €.qp¢, we could just as well have set €preq = €capt-
This would have sufficed to capture the time series in the
archive.

How good would is such a strategy? If the time series
is very predictable, it may work better than any form of
compression that doesn’t assume a model for the time se-
ries. Consider, e.g., the time series s[n] = n. By fitting the
model, E[n] = n, we never need to re-send any parameters
at all. On the other hand, suppose that the model approxi-
mates the time series behavior poorly. Then, parameter re-
freshes would be sent frequently. Compression would work
much better in this case.

Clearly, if €preq < €cqpt, N0 compression is needed. If
€pred > €capt then §[n] may deviate from s[n] by more than
€capt- We can still make use of 5[n] by observing the fol-
lowing result.

Theorem 2 Ler A™ = §[1 : n] = (s[1] — s[1], s[2] —

1], ..., s[n] = 3[n]). IfA™ = 8[1 : n] is a within-
€capt approximation of A", then the series S™ = (3[1] +
0[1], 8[2] + 4[2], ..., 8[n] + d[n]) is a within-€cqpt ap-

proximation of S™.

Proof: By contradiction. Let S™ not be a within-€.qp¢ ap-
proximation of S™. Then, there exists some k such that
|s[k] — 5[kl > €capt & |s[k] — S[k] — O[K]| > €capt

-~

|0[k] — O[k]| > €capt- This contradicts our hypothesis, be-
cause A" is a within-€4,¢ approximation of A™. |

Theorem 2 presents an alternative strategy for compress-
ing S, if prediction is performed in the system. The sensor
can monitor the time series A of the prediction errors and
compress it within €.qp¢. Subsequently, the compressed A
can be sent to the archive which can then obtain a within-
€cqpt Version of S by adding the predicted series S to the
compressed error A.

When is compressing A preferrable to compressing S?
This depends on €p,.q and the quality of the predictive
model. When €¢q is close to €.qp¢ then the error series A,
taking values in the interval [—€preq, €preq] Will probably vi-
olate the €.qp¢ tolerance infrequently. Hence, compressing
A may be better than compressing S. Conversely, as €pred
increases, the error is allowed to fluctuate more; so, perhaps
compressing S is preferrable. The quality of the predictive
model is also a major factor. If A has a small range (irre-
spective of €,,..¢) then it may be more compressible than
S.

In Figure 4 we show (first fourA plots), a time series S, its
within-€.4p¢ = 2 compression S, its within-€,,eq = 2.5
prediction §2_5 and its within-€,,.q = 5 prediction 55.
Subsequently, we show (next four plots)the prediction er-
ror Ao 5, its cgmpression Aj 5, the prediction error Ag, its
compression As. The compression of .S has 14 segments,
while the compression of A, 5 has only 10 segments, since
the prediction tolerance €preq = 2.5 is close 10 €cqpr = 2.
For this time series, the compression of 35 has 16 segments
and is thus worse than the compression of S.

In Section 5 we will see situations where either com-
pressing .S, or A is better. The sensor can compress the
series in both ways. When a message is to be transmitted,
it can choose to forward either the compressed series or the
compressed error, depending on which is smaller. This has
a small overhead for adding a marker to identify the used
strategy and a 2-fold increase in processing and memory us-
age at the sensor. This is reasonable, since it reduces com-
munication.

S. Performance Study

In this section, we perform an evaluation of our ideas in
this paper. The results confirm the good performance of our
algorithms under different situations.

5.1. Compression Experiments

First, we examine the effectiveness of PMC-MR and
PMC-MEAN for synthetic and real-world data. We use syn-
thetic Random Walk data generated as:

z[1] = 0 and z[n] = z[n — 1] + s, where s, ~ U(—1,1)

40

20- 1

0 I I I I I I I I I
500 550 600 650 700 750 800 850 900 950 1000

40
—— Compressed S (ecapt=2,

20

E

0)
500 550 600 650 700 750 800 850 900 950 1000
40
—— Predicted S (epred=2.5)|

20

%

0)
500 550 600 650 700 750 800 850 900 950 1000
401

—— Predicted S (epred=5)

20r
et o]

1

0
500 550 600 650 700 750 800 850 900 950 1000

Delta (epred=1.2)

5
500 550 600 650 700 750 800 850 900 950 1000
5

\ —— Compressed Delta (epred=2.5b

3

5 I I I I I I I I I)
500 550 600 650 700 750 800 850 900 950 1000
5-

Delta (epred=5) |

. | . . .
500 550 600 650 700 750 800 850 900 950 1000
5

“,_,—Ll—]—‘_ﬁ— Compressed Delta (epred:s)
ok :

_5 I I I I I I I I I)
500 550 600 650 700 750 800 850 900 950 1000

Figure 4. Combinng Prediction and Compres-
sion

We also used time series of environmental variables from an
oceanographic buoy sampled at 10 min intervals [21]. We
used a Sea Surface Temperature, Salinity, and Shortwave
Radiation series. Statistics about all used series are given in
Table 1. We preprocessed the buoy series to remove missing
values. We compress these time series at various €.qp¢. We
chose €cqp: as follows. We first determined the range of
each time series and used 1/1000th of that as our baseline
€pase- We compressed the time series €.qp; by multiplying
€pase With factors of v/10. We thus covered compression

1 1 . .
tolerances from 5q5 to 15 of the time series value range.

In Figure 5 we show the % ratio achieved by PMC-MR
and PMC-MEAN over these time series for varying €.qpt.
As expected, this ratio drops as €.4p¢ increases. The perfor-
mance of PMC-MEAN is very slightly worse than the opti-
mal PMC-MR algorithm. For the central €cqp; value (1% of
range), the % ratio was on average 8.3% for PMC-MR and
9.4% for PMC-MEAN.

In Figure 6 we show the mean absolute error over all time
positions. This is roughly less than half the €.qp; maximum.
PMC-MEAN and PMC-MR were comparable over the un-

Dataset n 7 o range[l : n]
Random Walk 100,000 42.50 59.80 [-53.55, 148.35]
Sea Surface Temperature 143,508 28.62 0.67 [25.82, 31.87]
Salinity 54,531 34.75 0.26 [33.41, 35.28]
Shortwave Radiation 117,069 | 269.41 | 358.00 [0, 1351.3]

Table 1. Statistics for Time Series used in our
Compression Experiments

Random Walk Sea Surface Temperature
7 .
07y PMC-MR —— 0942 PMC-MR ——
0.6 PMC-MEAN —<— 0.4 PMC-MEAN —<—
o 05 o 035
® & 03
g 0.4 g 055
g 03 £ 02
< 02 < 0.01?
. 0.05
0 0
0.1 1 10 0.1 1 10
€capt tolerance (% Range) €capt tolerance (% Range)
Salinity Shortwave Radiation
. 4!
0&22 PMC-MR —— Ooi PMC-MR ——
0.4 PMC-MEAN —%— 035 PMC-MEAN —%—
o 035 ° 03
T 03 F 025
@x 0.25 o T
£ 02 s 02
¥ 015 4 001?
0.1 -
0.05 0.05 v
0 0
. 0.1 1 10

€capt tolerance (% Range) €capt tolerance (% Range)

Figure 5. Compression Performance (K/n ra-
tio)

Random Walk Sea Surface Temperature

< 4 < 4.
S 35 PMC-MR —— & i PMC-MR —— -
s 73 PMC-MEAN —X— S 35 PMC-MEAN —x—
i o
X 25 2 3
< < 25
2 15 2 .2
o o 1.5
§ os § oo
g 0.5 g 0.5

0 0

0.1 1 10 0.1 1 10

€capt tolerance (% Range) €capt tolerance (% Range)
Salinity Shortwave Radiation

B ,2 BUCMR 1 | B % PMCMR ——]
S PMC-MEAN —X— 5 6 PMGC-MEAN —x—
2 3 25
= 25 = 4
e 2 K]
w 15 [T
§ 1 5
o 05 o}
= 0 =0

0.1 1 10 0.1 1 10

€capt tolerance (% Range) €capt tolerance (% Range)

Figure 6. Compression Performance (Mean
Absolute Error)

biased synthetic data, but with real data, PMC-MEAN had
a slight edge. This is due to better approximation by using
the mean, and to the greater number of segments output by
PMC-MEAN for the same €cqp;.

Aggregate Queries Selection Queries

®

2 3 AVG with PMC-MR —+— 3 False pos. PMC-MR —+—
8§ 30 AVG with PMC-MEAN —x— False pos. PMC-MEAN —x—
o 25 MIN with PMC-MR N 6 False neg. with PMC-MR

5 MIN with PMC-MEAN 35 False neg. PMC-MEAN

s £ 4

& 15 23

2 10 >

s 5 1

e o 0

= o1 1 10 0.1 1 10

€capt tolerance (% Range) €capt tolerance (% Range)

20-NN Queries
3.5
False pos. PMC-MR —+—
3 False pos. PMC-MEAN —x—
_ 2.5 | False neg. with PMC-MR
@ False neg. PMC-MEAN
.g 2
3 1.5
1
0.5
0
0.1 1 10

€capt tolerance (% Range)

Figure 7. Answering Queries over Com-
pressed Time Series

Next, we test how query performance is impacted by
using compressed as opposed to precise time series. We
generate 100 series, each with 1,000 time positions from
the random walk model, choosing the 2[1] ~ U(0,10) to
simulate the difference in values reported by different sen-
sors. We compressed these using the €p,5e = 0.2019 and
its v/10 multiples as before, and asked: (i) 100 queries,
for random time positions of the form “What is the min-
imum and average sensor reading?”’ (Aggregate Queries),
(i1) 1,000 queries, one per time position of the form “Which
sensors’ values are above ¢?” (Selection Queries), where
¢ is uniformly chosen from [0, 10] for each query, and (iii)
100 queries, asking for the 20 nearest neighbors, in terms of
Euclidean distance, of all 100 time series (20-NN Queries).

The results are shown in Figure 7. We measure, for (i)
the relative error defined as the fraction of the absolute er-
ror over the exact answer, and for (ii) and (iii) the average
number of false positives and false negatives, i.e., number
of time series that should not have been retrieved and num-
ber of time series that should have been retrieved but were
not. For aggregate queries, relative error is large only for
the MIN aggregate, since the PCA representation consis-
tently overestimates the M IN’. For the selection queries,
the number of both false positives and false negatives was
small compared to the average query selectivity of 50.83.
The results are equally good for the 20-NN queries. In fact
PMC-MEAN had no false positives/negatives in this case.

5.2. Prediction Experiments

In our first experiment, we want to motivate experimen-
tally the need for appropriate model selection as hinted in

7A lower bound on the M IN can be easily found, given that the PCA
representation has an €cqpt guarantee

10

Constant Velocity Time Series Constant Acceleration Time Series

Last Known Value Model —+—
e
—x

09 Constant Velocity Model —<—
08 Constant Acceleration Model —*—

0.9 Constant Velocity Model
08 Constant Acceleration Model

K/n Ratio
°
&
K/n Ratio
°
&

80 100 120 140 160 0 20 40 60

€pred

80 100 120 140 160

€pred

Figure 8. Model Selection

Random Walk Sea Surface Temperature

01 0.16
Comp. Only —+— 018 Comp. Only —+—
0.09 Pred. Only —»— - Pred. Only —»—
i Pred. and Comp. of Delta —%— 0.14 Pred. and Comp. of Delta —%—
Pred. and Comp. of S —8— Pred. and Comp. of S —8—
0.08 0.13
o 0.07 o 012
£ £ o
£ 006 g 0
< < 0.09
0.05 0.08
0.07
.04
00 0.06
0.03 0.05
115 2 25 3 35 4 45 5 115 2 25 3 35 4 45 5
£preq/Ecapt Rati0 €pred/Ecapt Rati0
Salinity Shortwave Radiation
0.1 05
Comp. Only —+— Comp. Only —+—
01 Pred. Only —»— Pred. Only —»—
Pred. and Comp. of Delta —*— 0.45 Pred. and Comp. of Delta —*—
0.09 Pred. and Comp. of S —8— Pred. and Comp. of S —8—
o 008 o 04
3 3
< 007 T 035
s s
2 2
0.06 03
0.05 ——
0.04 0.25
0.03 02 I
115 2 25 3 35 4 45 5 115 2 25 3 35 4 45 5

€predCcapt Ratio €predCcapt Ratio

Figure 9. Prediction and Combined Predic-
tion/Compression Experiments

Section 4.2.2. We consider the location of an object mov-
ing in one dimension. This can be captured by a sensor,
either on the object (e.g., GPS) or independent of it (e.g.,
radar). The object may move at a constant speed v for some
length of time or accelerate/decelerate We generated 100
time series of length 500 for each type of motion, choosing
v ~ U(0,50) and a ~ U(0, 10). We added some measure-
ment error ~ U(—25,25) on the location and tried to pre-
dict the location as: (i) last known location, (ii) first-order
model (constant speed), (iii) second-order model (constant
acceleration). We fit these models on the 10 most recent
samples at prediction time. In Figure 8 we show the relative
performance (number of parameter refreshes) using these
three models, for varying €,,¢q ranging from 10 to 160 me-
ters. Not surprisingly, the best predictive model in each case
is the one which generates the behavior. As an example, for
the constant velocity series, the last-know-value is “too sim-
ple” failing to capture the change in the object’s location,
while the constant acceleration model is “too complex” and,
despite encompassing the constant velocity model as a spe-
cial case, fails to outperform it. Our example illustrates the
benefit of pushing some intelligent behavior to the sensor
and the importance of choosing a model carefully.

In our next experiment, we used a simple predictive
model, namely predicting future values of the series as
equal to its value at prediction time. This is optimal if the
series is undergoing an unbiased random walk, since the ex-
pected value of the series at every future time is equal to its
value at prediction time. Using this, each parameter update
consists of a value and the prediction time. It thus has the
same size as a segment of the PCA representation.

We use the same time series as before. We set €.qpt =
10€pgse, 1.€., the “middle” value of our compression exper-
iments. We simulate for €p,.cq in 1- to 5-fold multiples of
€capt- To conserve space, we combine a number of curves
in the graphs of Figure 9. “Compression Only” is the num-
ber of segments for PMC-MR compression of S at €cqpt
tolerance and “Prediction Only” is the number of parameter
refreshes when €preq = €capt, 1.€., when prediction alone
is used to capture the time series. As we expect, compres-
sion works much better because it compresses values al-
ready seen optimally, rather than predicting future (uncer-
tain) values. “Prediction and Compression of S” is the sum
of a within-€.,,; compression of S and the number of pa-
rameter refreshes for €p,.q ranging from one to five times
€capt- For “Prediction and Compression of Delta” we use of
the result of Section 4.4 and compress the error series rather
than S. As mentioned, when €p¢q is small, compressing
A as opposed to S is preferrable. As €preq increases, the
two curves approach each other. In the first two time series,
compression of S is slightly preferrable, while in the other
two the situation is reversed.

6. Related Work

Olston et al. [22] studies the performance/accuracy
tradeoff with approximately replicated data. The motiva-
tion is in reducing communication, quantified as the number
of exchanged messages between producer and the receiver
of data. Interval-based approximations are stored at the re-
ceiver end, supplied as guarantees by the producer. Our
work differs in employing a general model of approximate
replication which considers temporal latency and combines
compression and prediction. [22] proposes an algorithm for
adaptively setting the interval width; this can also be used
to adaptively set €,,.q. The adaptation problem was also
studied by Deolasee et al. [10] for web data.

Sensor databases have recently been the center of much
research in the database community e.g., in the Cougar [3]
and Telegraph [20] projects. These efforts aim to create
technology that will enable the creation of databases where
sensors can be accommodated, taking into account the novel
performance and semantic issues that distinguish sensors
from traditional data sources.

Time series data has long been an important area of re-
search. Our paper is not focused in introducing algorithms

11

for extracting information from time series or in similarity
retrieval as e.g., in Keogh et al. [17], or Agrawal et al. [1].
Our focus is in capturing sensor-generated series; applica-
tions similar to the above can then be applied to such series
in the archive.

Chen et al. [7] propose compression of databases, mo-
tivated by the storage and bandwidth limitations of mobile
devices. Unlike our paper, devices are the destinations of
data. In Chen et al. [6] the problem of database com-
pression and querying over compressed databases is stud-
ied. The authors motivate their work by the increase in
CPU power, making it attractive to spend CPU time in com-
pressing/decompressing data rather than in doing disk 1I/O
for them. Our motivation is similar, making using sensors’
CPU power to limit communication and energy drain.

In our paper, we use prediction as a means of improving
system performance, namely saving communication and en-
ergy drain. This is different from the common use of pre-
diction in which only the predicted values themselves are
of interested. Gao et al. [12] also proposed to use predic-
tion of time series values. In [12], the goal is to enable
similarity-based pattern queries in batch mode by finding
nearest neighbors of an incoming time series. By applying
prediction on this time series, the system can generate can-
didate nearest neighbors ahead of time. When the actual
values of the incoming series arrive, these are filtered and
the actual nearest neighbors are returned.

Chen et al. [5] propose to perform on-line regression
analysis over time series data streams. We also propose to
fit models to time series, but our motivation is to improve
system performance, rather than regression analysis. A use-
ful extension to our work would be to use some of the ideas
in [5] to address correlations between multiple time series
that a single sensor may be monitoring.

Finally, we refer to work in moving object databases
[28, 25, 19]. In this research field, we find the idea of ap-
proximating the time series of an object’s location without
continuous updates, in Wolfson et al. [28], of predicting an
object’s future location based on its velocity vector in Salte-
nis et al. [25], and of using the predictability of motion for
improving performance in Lazaridis et al. [19].

7. Conclusions

In this paper we motivate the importance of capturing
time series generated by wireless sensors. To achieve this
we task sensors with compressing time series and fitting
predictive models. We propose an optimal online algorithm
for creating the piecewise-constant approximation of a real-
valued time series, satisfying a bound on the L, distance
and show how prediction and compression can co-exist in a
system to address the needs of both the time series capture
task and real-time applications.

In the future, we plan to (i) evaluate the effectiveness of
our techniques in a real-world setting, especially for motion
time series, (ii) to examine how to evaluate general SQL
queries with answer quality or response deadline tolerances,
(iii) to develop adaptive algorithms for predictive model se-
lection, and (iv) to investigate lateral communication be-
tween sensors, exploiting redundancy of information across
many sensors to further improve performance in the time
series capture setting.

Acknowledgements

Our work was supported by the National Science Foun-
dation (Awards 11S-9996140, I1S-0086124, CCR-0220069,
IIS-0083489) and by the United States Air Force (Award
F33615-01-C-1902).

References

(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]
(9]

[10]

[11]

[12]

R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient Simi-
larity Search In Sequence Databases. In Proceedings of the
4th International Conference of Foundations of Data Orga-
nization and Algorithms (FODO), pages 69-84, Chicago,
Illinois, 1993. Springer Verlag.

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In Symposium on
Principles of Database Systems (PODS), 2002.

P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor
database systems. In Mobile Data Management (MDM),
2001.

K. Chan and A. W.-C. Fu. Efficient time series matching by
wavelets. In ICDE Conference, pages 126—133, 1999.

Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. Multi-
dimensional regression analysis of time-series data streams.
In VLDB Conference, 2002.

Z. Chen, J. Gehrke, and F. Korn. Query optimization in com-
pressed database systems. In ACM SIGMOD Conference,
2001.

Z. Chen and P. Seshadri. An algebraic compression frame-
work for query results. In International Conference on Data
Engineering (ICDE), 2000.

J. Cho and H. Garcia-Molina. Synchronizing a database to
improve freshness. In ACM SIGMOD Conference, 2000.
W. S. Conner, L. Krishnamurthy, and R. Want. Making ev-
eryday life easier using dense sensor networks. In Ubicomp,
Lecture Notes in Computer Science. Springer, 2001.

P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham,
and P. Shenoy. Adaptive push-pull: disseminating dynamic
web data. In The tenth international World Wide Web con-
ference on World Wide Web, pages 265-274. ACM Press,
2001.

J. Elson and D. Estrin. Time synchronization for wireless
sensor networks. In 2001 International Parallel and Dis-
tributed Processing Symposium (IPDPS), 2001.

L. Gao and X. S. Wang. Continually evaluating similarity-
based pattern queries on a streaming time series. In ACM
SIGMOD Conference, 2002.

12

[13]

(14]

[15]

(16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

W. Gilchrist. Statistical Forecasting. John Wiley & Sons,
London, 1976.

B. Horling, R. Vincent, R. Mailler, J. Shen, R. Becker,
K. Rawlins, and V. Lesser. Distributed sensor network for
real time tracking. In Proceedings of the fifth international
conference on Autonomous agents, pages 417-424. ACM
Press, 2001.

C. Hughes, J. Srinivasan, and S. Adve. Saving energy with
architectural and frequency adaptations for multimedia ap-
plications. In Proceedings of the 34th Annual International
Symposium on Microarchitecture (MICRO-34), Dec. 2001.,
2001.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: a scalable and robust communication paradigm
for sensor networks. In Proceedings of the sixth annual in-
ternational conference on Mobile computing and network-
ing, pages 56—67. ACM Press, 2000.

E.J. Keogh, K. Chakrabarti, S. Mehrotra, and M. J. Pazzani.
Locally adaptive dimensionality reduction for indexing large
time series databases. In ACM SIGMOD Conference, 2001.
E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani. An on-
line algorithm for segmenting time series. In International
Conference on Data Mining. IEEE Computer Society, 2001.
I. Lazaridis, K. Porkaew, and S. Mehrotra. Dynamic queries
over mobile objects. In EDBT Conference, 2002.

S. Madden and M. J. Franklin. Fjording the stream: An
architecture for queries over streaming sensor data. In Inter-
national Conference on Data Engineering (ICDE), 2002.
M. J. McPhaden. Tropical atmosphere ocean
project, pacific marine environmental laboratory.
http://www.pmel.noaa.gov/tao/.

C. Olston, B. T. Loo, and J. Widom. Adaptive precision
setting for cached approximate values. In ACM SIGMOD
Conference, 2001.

C. Olston and J. Widom. Best-effort cache synchroniza-
tion with source cooperation. In ACM SIGMOD Conference,
2002.

G. J. Pottie and W. J. Kaiser. Wireless integrated network
sensors. Communications of the ACM, 43(5):51-58, 2000.
S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A.
Lopez. Indexing the positions of continuously moving ob-
jects. In SIGMOD Conference, 2000.

H. Shatkay and S. B. Zdonik. Approximate queries and rep-
resentations for large data sequences. In ICDE, pages 536—
545, 1996.

L. Telksnys, editor. Detection of changes in random pro-
cesses. New York, Optimization Software, 1986.

O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, and
G. Mendez. Cost and imprecision in modeling the position
of moving objects. In ICDE Conference, 1998.

X. Yang and A. Bouguettaya. Broadcast-based data access
in wireless environments. In International Conference on
Extending Database Technology (EDBT), 2002.

S. Zdonik, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and D. Carney.
Monitoring streams - a new class of data management ap-
plications. In VLDB Conference, 2002.

