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Approach1

V. K. Chitrakaran†, D. M. Dawson†, J. Chen†, and W. E. Dixon‡
†
Department of Electrical & Computer Engineering, Clemson University, Clemson, SC 29634-0915

‡
Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL 32611

E-mail: cvilas, ddawson, jianc@ces.clemson.edu; wdixon@ufl.edu

Abstract

In this paper, an adaptive nonlinear estimator is de-
veloped to identify the Euclidean coordinates of feature
points on a moving object using a single fixed camera.
No explicit model is used to describe the movement of
the object. Homography-based techniques are used in
the development of the object kinematics, while Lya-
punov design methods are utilized in the synthesis of
the adaptive estimator. Simulation results are included
to demonstrate the performance of the estimator.

1 Introduction

The recovery of Euclidean coordinates of feature points on

a moving object from a sequence of images is a mainstream

research problem with significant potential impact for appli-

cations such as autonomous vehicle/robotic guidance, nav-

igation, path planning and control. It bears a close resem-

blance to the classical problem in computer vision, known as

“Structure from Motion (SFM)”, which is the determination

of 3D structure of a scene from its 2D projections on a mov-

ing camera. Although the problem is inherently nonlinear,

typical SFM results are based on linearization based meth-

ods such as extended Kalman filtering [1, 6, 19]. In recent

publications, some researchers have recast the problem as

state estimation of a continuous-time perspective dynamic

system, and have employed nonlinear system analysis tools

in the development of state observers that identify motion

and structure parameters [13, 14]. To summarize, these pa-

pers show that if the velocity of the moving object (or cam-

era) is known, and satisfy certain obervability conditions, an

estimator for the unknown Euclidean position of the feature

points can be developed. In [4], an observer for the estima-

tion of camera motion was presented based on perspective

observations of a single feature point from the (single) mov-

ing camera. The observer development was based on sliding

mode and adaptive control techniques, and it was shown

that upon satisfaction of a persistent excitation condition

[21], the rotational velocity could be fully recovered, and

the translational velocity could be recovered upto a scale

1This work was supported in part by two DOC Grants, an

ARO Automotive Center Grant, a DOE Contract, a Honda Cor-

poration Grant, and a DARPA Contract.

factor. The depth ambiguity attributed to the unknown

scale factor was resolved by resorting to stereo vision. The

afore-mentioned approach requires that a model for object

motion be known.

In this paper, we present a unique nonlinear estimation

strategy to simultaneously estimate the velocity and struc-

ture of a moving object using a single camera. Roughly

speaking, satisfaction of a persistent excitation condition

(similar to [4] and others) allows the determination of the

inertial coordinates for all the feature points on the object.

A homography-based approach is utilized to develop the ob-

ject kinematics in terms of reconstructed Euclidean infor-

mation and image-space information for the fixed camera

system. The development of object kinematics relies on the

work presented in [2] and [17], and requires a priori knowl-

edge of a single geometric length between two feature points

on the object. A novel nonlinear integral feedback estima-

tion method developed in our previous efforts [5] is then

employed to identify the linear and angular velocity of the

moving object. Identifying the velocities of the object fa-

cilitates the development of a measurable error system that

can be used to formulate a nonlinear least squares adaptive

update law. A Lyapunov-based analysis is then presented

that indicates if a persistent excitation condition is satisfied

then the time-varying Euclidean coordinates of each feature

point can be determined.

While the problem of estimating the motion and Euclidean

position of features on a moving object is addressed in this

paper by using a fixed camera system, the development can

also be recast for the camera-in-hand problem where a mov-

ing camera observes stationary objects. That is, by recast-

ing the problem for the camera-in-hand, the development

in this paper can also be used to address the Simultane-

ous Localization and Mapping (SLAM) problem [8], where

the information gathered from a moving camera is utilized

to estimate both the motion of the camera (and hence, the

relative position of the vehicle/robot) as well as position of

static features in the environment.

2 Geometric Model

In order to develop a geometric relationship between the

fixed camera and the moving object, we define an orthogonal

coordinate frame, denoted by F , attached to the object and
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Figure 1: Geometric relationships between a fixed cam-
era and the current and reference positions of a

moving object in its field of view.

an inertial coordinate frame, denoted by I, whose origin
coincides with the optical center of the fixed camera (see

Figure 1). Let the 3D coordinates of the ith feature point

on the object be denoted as the constant si ∈ R3 relative to
the object reference frame F , and m̄i(t) ∈ R3 relative to the
inertial coordinate system I, such that

m̄i ,
£
xi yi zi

¤T
. (1)

It is assumed that the object is always in the field of view

of the camera, and hence the distances from the origin of

I to all the feature points remain positive (i.e., zi(t) > ε,

where ε is an arbitrarily small positive constant). To relate

the coordinate systems, let R(t) ∈ SO(3) and xf (t) ∈ R3
denote the rotation and translation, respectively, between

F and I. Also, let three of the non-collinear feature points
on the object, denoted by Oi ∀i = 1, 2, 3, define the plane
π shown in Figure 1. Now consider the object to be at

some fixed reference position and orientation, denoted by

F∗, as defined by a reference image of the object. We can
similarly define the constant terms m̄∗i , R

∗ and x∗f , and the
plane π∗ for the object at the reference position. From the

geometry between the coordinate frames depicted in Figure

1, the following relationships can be developed

m̄i = xf +Rsi (2)

m̄
∗
i = x

∗
f +R

∗
si . (3)

After solving (3) for si and then substituting the resulting

expression into (2), we have

m̄i = x̄f + R̄m̄
∗
i (4)

where R̄ (t) ∈ SO (3) and x̄f (t) ∈ R3 are new rotational and
translational variables, respectively, defined as follows

R̄ = R (R∗)T x̄f = xf − R̄x∗f . (5)

It is evident from (5) that R̄(t) and x̄f (t) quantify the ro-
tation and translation, respectively, between the frames F
and F∗. As also illustrated in Figure 1, n∗ ∈ R3 denotes
the constant normal to the plane π∗ expressed in the coor-
dinates of I, and the constant projections of m̄∗i along the
unit normal n∗, denoted by d∗i ∈ R are given by

d
∗
i = n

∗T
m̄
∗
i . (6)

Using (6), it can be easily seen that the relationship in equa-

tion (4) can now be expressed as follows

m̄i =

µ
R̄+

x̄f

d∗i
n
∗T
¶

| {z } m̄∗i
H

(7)

where H(t) ∈ R3×3 denotes a Euclidean homography [11].
Since a video camera is our sensing device, we must develop

a geometric relationship between the 3D world in which the

moving object resides and its 2D projection in the image

plane of the camera. To this end, we define normalized

Euclidean coordinates, denoted by mi(t),m
∗
i ∈ R3 for the

feature points as follows

mi ,
m̄i

zi
m
∗
i ,

m̄∗i
z∗i
. (8)

As seen by the camera, each of these feature points have

projected pixel coordinates, denoted by pi(t), p
∗
i ∈ R3, ex-

pressed relative to I as follows

pi =
£
ui vi 1

¤T
p
∗
i =

£
u∗i v∗i 1

¤T
. (9)

The projected pixel coordinates of the feature points are

related to the normalized Euclidean coordinates by the pin-

hole model of [10] such that

pi = Ami p
∗
i = Am

∗
i (10)

where A ∈ R3×3 is a known, constant, upper triangular and
invertible intrinsic camera calibration matrix [18]. From (7),

(8) and (10), the relationship between image coordinates

of the corresponding feature points in F and F∗ can be
expressed as follows

pi =
z∗i
zi|{z} A

³
R̄+ x̄hi(n

∗)T
´
A
−1| {z } p∗i

αi G

(11)

where αi ∈ R denotes the depth ratio, and x̄hi(t) = x̄f (t)

d∗i
∈

R3 denotes the scaled translation vector. The matrix G(t) ∈
R3×3 defined in (11) is a full rank homogeneous collineation
matrix defined upto a scale factor [18]. If the structure of

the moving object is planar, all feature points lie on the

same plane, and hence the distances d∗i defined in (6) is
the same for all feature points, henceforth denoted as d∗.
In this case, the collineation G(t) is defined upto the same
scale factor, and hence, one of its elements can be set to

unity without loss of generality. G(t) can then be estimated
from a set of linear equations (11) obtained from at least

four corresponding feature points that are coplanar but non-

collinear. If the structure of the object is not planar, the



Virtual Parallax method described in [18] could be utilized.

An overview of the determination of the collineation matrix

G(t) and the depth ratios αi(t) using both the methods are
given in Appendix A. Based on the fact that the intrinsic

camera calibration A is known apriori, we can then deter-

mine the Euclidean homography H(t). By utilizing various
techniques (see algorithms in [11, 23]), H(t) can be decom-
posed into its constituent rotation matrix R̄(t), unit normal

vector n∗, scaled translation vector x̄h(t) ,
x̄f (t)

d∗
and the

depth ratio αi(t). It is assumed that the constant rotation
matrix R∗ is known. R(t) can therefore be computed from
(5). Hence R(t), R̄(t), x̄h(t) and αi(t) are known signals that
can be used in the subsequent analysis.

Remark 1 The subsequent development requires that the

constant rotation matrix R∗ be known.

3 Object Kinematics

To quantify the translation of F relative to the fixed coordi-

nate system F∗, we define ev(t) ∈ R3 in terms of the image
coordinates of the feature point O1 as follows

ev ,
£
u1 − u∗1 v1 − v∗1 − ln(α1)

¤T
. (12)

In (12) and in the subsequent development, any point Oi on

π could have been utilized; however, to reduce the notational

complexity, we have elected to select the feature point O1.

The signal ev(t) is measurable since the first two elements of
the vector are obtained from the images and the last element

is available from known signals as discussed in the previous

section. Following the development in [5], the translational

kinematics can be obtained as follows

ėv =
α1

z∗1
Ae1R

£
ve − [s1]× ωe

¤
(13)

where the notation [s1]× denotes the 3× 3 skew symmetric
form of s1, ve(t), ωe(t) ∈ R3 denote the unknown linear

and angular velocity of the object expressed in the local

coordinate frame F , respectively, and Aei(t) ∈ R3×3 is a
function of the camera intrinsic calibration parameters and

image coordinates of the ith feature point as shown below

Aei , A−
⎡⎣ 0 0 ui
0 0 vi
0 0 0

⎤⎦ . (14)

Similarly, to quantify the rotation of F relative to F∗, we
define ew(t) ∈ R3 using the axis-angle representation [22] as
follows

eω , uφ (15)

where u(t) ∈ R3 represents a unit rotation axis, and φ(t) ∈ R
denotes the rotation angle about u(t) that is assumed to be
confined to the region −π < φ(t) < π. After taking the time

derivative of (15), the following expression can be obtained

(see [5] for further details)

ėω = LωRωe . (16)

In (16), the Jacobian-like matrix Lω(t) ∈ R3×3 is defined as

Lω , I3 − φ

2
[u]× +

⎛⎜⎜⎝1− sinc (φ)

sinc2
µ
φ

2

¶
⎞⎟⎟⎠ [u]2× (17)

where [u]× denotes the 3 × 3 skew-symmetric form of u(t),

I3 ∈ R3×3 is the 3× 3 identity matrix, and

sinc (φ (t)) , sinφ (t)

φ (t)
.

From (13) and (16), the kinematics of the object under mo-

tion can be expressed as

ė = Jv (18)

where e(t) ,
£
eTv eTω

¤T ∈ R6, v(t) , £
vTe ωTe

¤T ∈
R6, and J(t) ∈ R6×6 is a Jacobian-like matrix defined as

J =

" α1

z∗1
Ae1R −α1

z∗1
Ae1R [s1]×

03 LωR

#
(19)

where 03 ∈ R3×3 denotes a zero matrix.

Remark 2 In the subsequent analysis, it is assumed that a

single geometric length s1 ∈ R3 between two feature points
is known. With this assumption, each element of J(t) is
known with the possible exception of the constant z∗1 ∈ R.
The reader is referred to [5] where it is shown that z∗1 can
also be computed given s1.

Remark 3 It is assumed that the object never leaves the

field of view of the camera; hence, from (12) and (15), e(t) ∈
L∞. It is also assumed that the object velocity, acceleration
and jerk are bounded, i.e., v(t), v̇(t), v̈(t) ∈ L∞; hence the
structure of (18) allows us to show that ė(t), ë(t),

...
e (t) ∈

L∞.

4 Identification of Velocity

In [5], an estimator was developed for online asymptotic

identification of the signal ė(t). Designating ê(t) as the es-
timate for e(t), the estimator was designed as follows

.

ê ,
Z t

t0

(K + I6)ẽ(τ )dτ +

Z t

t0

ρsgn (ẽ(τ)) dτ

+(K + I6)ẽ(t) (20)

where ẽ(t) , e(t)− ê(t) ∈ R6 is the estimation error for the
signal e(t), K, ρ ∈ R6×6 are positive definite constant diag-
onal gain matrices, I6 ∈ R6×6 is the 6 × 6 identity matrix,
t0 is the initial time, and sgn(ẽ(t)) denotes the standard
signum function applied to each element of the vector ẽ(t).
The reader is referred to [5] and the references therein for

analysis pertaining to the development of the above estima-

tor. In essense, it was shown in [5] that the above estimator

asymptotically identifies the signal ė(t) provided the follow-
ing inequality is satisifed for each diagonal element ρi of the

gain matrix ρ,

ρi ≥
¯̄..
ei
¯̄
+
¯̄...
e i
¯̄ ∀i = 1, 2, ...6. (21)



Hence,
.

êi (t) → ėi(t) as t → ∞,∀i = 1, 2, ...6. Since J(t) is
known and invertible, the six degree-of-freedom velocity of

the moving object can be identified as follows

v̂(t) = J−1(t)
.

ê (t), and hence v̂(t)→ v(t) as t→∞. (22)

5 Euclidean Reconstruction of Feature Points

The central theme of this paper is the identification of

Euclidean coordinates of the feature points on a moving ob-

ject (i.e., the vector si relative to the object frame F , m̄i(t)
and m̄∗i relative to the camera frame I for all i feature points
on the object). To facilitate the development of the estima-

tor, we first define the extended image coordinates, denoted

by pei(t) ∈ R3, for any feature point Oi as follows

pei ,
£
ui vi − ln(αi)

¤T
. (23)

Following the development of translational kinematics in

(13), it can be shown that the time derivative of (23) is

given by

ṗei =
αi

z∗i
AeiR

£
ve + [ωe]× si

¤
= WiVvwθi (24)

where Wi(.) ∈ R3×3, Vvw(t) ∈ R3×4 and θi ∈ R4 are defined
as follows

Wi , αiAeiR (25)

Vvw ,
£
ve [ωe]×

¤
(26)

θi ,
∙
1

z∗i

si

z∗i

T
¸T
. (27)

The elements of Wi(.) are known and bounded, and an es-
timate of Vvw(t), denoted by V̂vw(t), is available by appro-
priately re-ordering the vector v̂(t) given in (22).

Our objective is to identify the unknown constant θi in (24).

To facilitate this objective, we define a parameter estimation

error, denoted by θ̃i(t) ∈ R4, as follows
θ̃i(t) , θi − θ̂i(t) (28)

where θ̂i(t) ∈ R4 is a subsequently designed parameter up-
date signal. We also introduce a measurable filter signal

Wfi(t) ∈ R3×4, and a non-measurable filter signal ηi(t) ∈ R3
defined as follows

Ẇfi = −βiWfi +WiV̂vw (29)

η̇i = −βiηi +WiṼvwθi (30)

where βi ∈ R is a scalar positive gain, and Ṽvw(t) , Vvw(t)−
V̂vw(t) ∈ R3×4 is an estimation error signal.
Motivated by the subsequent stability analysis, we design

the following estimate, denoted by p̂ei(t) ∈ R3, for the ex-
tended image coordinates,

.

p̂ei= βip̃ei +Wfi

.

θ̂i +WiV̂vwθ̂i (31)

where p̃ei(t) , pei(t) − p̂ei(t) ∈ R3 denotes the measurable
estimation error signal for the extended image coordinates

of the feature points. The time derivative of this estimation

error signal is computed from (24) and (31) as follows

.

p̃ei= −βip̃ei −Wfi

.

θ̂i +WiṼvwθi +WiV̂vwθ̃i. (32)

From (30) and (32), it can be shown that

p̃ei =Wfiθ̃i + ηi. (33)

Based on the subsequent analysis, we select the following

least-squares update law [21] for θ̂i(t)

.

θ̂i= LiW
T
fip̃ei (34)

where Li(t) ∈ R4×4 is an estimation gain that is recursively
computed as follows

d

dt
(L−1i ) =WT

fiWfi. (35)

Remark 4 In the subsequent analysis, it is required that

L−1i (0) in (35) be positive definite. This requirement can be
easily satisfied by selecting the appropriate non-zero initial

values.

Remark 5 In the analysis provided in [5], it was shown that

a filter signal r(t) ∈ R6 defined as r(t) = ẽ(t)+
.

ẽ (t) ∈ L∞
∩L2. From this result it is easy to show that the signals ẽ(t),
.

ẽ (t) ∈ L2 [7]. Since J(t) ∈ L∞ and invertible, it follows that

J−1(t)
.

ẽ (t) ∈ L2. Hence ṽ(t) , v(t) − v̂(t) ∈ L2, and it is
easy to show that

°°°Ṽvw(t)°°°2
∞
∈ L1, where the notation k.k∞

denotes the induced ∞-norm of a matrix [15].

5.1 Analysis

Theorem 1 The update law defined in (34) ensures that

θ̃i(t) → 0 as t → ∞ provided that the following persistent

excitation condition [21] holds

γ1I4 ≤
Z t0+T

t0

W
T
fi(τ)Wfi(τ)dτ ≤ γ2I4 (36)

and provided that the gains βi satisfy the following inequality

βi > k1i + k2i kWik2∞ (37)

where t0, γ1, γ2, T, k1i, k2i ∈ R are positive constants, I4 ∈
R4×4 is the 4× 4 identity matrix, the notation k.k∞ denotes

the induced∞-norm of a matrix [15] and k1i must be selected
such that

k1i > 2. (38)

Proof: Let V (t) ∈ R denote a non-negative scalar function
defined as follows

V , 1

2
θ̃
T

i L
−1
i θ̃i +

1

2
η
T
i ηi. (39)



After taking the time derivative of (39), the following ex-

pression can be obtained

V̇ = −1
2

°°°Wfiθ̃i

°°°2 − θ̃Ti W T
fiηi − βi kηik2

+ηTi WiṼvwθi

≤ −1
2

°°°Wfiθ̃i

°°°2 − βi kηik2
+ kθik kWik∞

°°°Ṽvw°°°
∞
kηik

+
°°°Wfiθ̃i

°°° kηik− k1i kηik2 + k1i kηik2
+k2i kWik2∞ kηik2 − k2i kWik2∞ kηik2 (40)

After utilizing the nonlinear damping argument [16], we can

simplify (40) further as follows

V̇ ≤ −
µ
1

2
− 1

k1i

¶°°°Wfiθ̃i

°°°2
− ¡βi − k1i − k2i kWik2∞

¢ kηk2
+
1

k2i
kθik2

°°°Ṽvw°°°2
∞

(41)

where k1i, k2i ∈ R are positive constants as previously men-
tioned. The gains k1i, k2i, and βi must be selected to ensure

that

1

2
− 1

k1i
≥ µ1i > 0 (42)

βi − k1i − k2i kWik2∞ ≥ µ2i > 0 (43)

where µ1i, µ2i ∈ R are positive constants. The gain con-

ditions given by (42) and (43) allow us to formulate the

conditions given by (37) and (38), as well as allowing us to

further upper bound the time derivative of (39) as follows

V̇ ≤ −µ1i
°°°Wfiθ̃i

°°°2 − µ2i kηik2 + 1

k2i
kθik2

°°°Ṽvw°°°2
∞
. (44)

From the discussion given in Remark 5, we can see that the

last term in (44) is L1, hence,Z ∞
0

1

k2i
kθi(τ)k2

°°°Ṽvw(τ)°°°2
∞
dτ ≤ ε (45)

where ε ∈ R is a positive constant. From (39), (44) and (45),
we can conclude thatZ ∞

0

µ
µ1i

°°°Wfi(τ)θ̃i(τ)
°°°2 + µ2i kηi(τ)k2¶ dτ

≤ V (0)− V (∞) + ε. (46)

It can be concluded from (46) that Wfi(t)θ̃i(t), ηi(t) ∈ L2.
From (46) and the fact that V (t) is non-negative, it can
be concluded that V (t) ≤ V (0) + ε for any t, and hence

V (t) ∈ L∞. Therefore, from (39), ηi(t) ∈ L∞ and

θ̃
T

i (t)L
−1
i (t)θ̃i(t) ∈ L∞. Since L−1i (0) is positive definite, and

the persistent excitation condition in (36) is assumed to be

satisfied, we can use (35) to show that L−1i (t) is always pos-
itive definite; hence, it must follow that θ̃i(t) ∈ L∞. Since
v̂(t) ∈ L∞ as shown in [5], it follows from (26) that V̂vw(t) ∈
L∞. Hence from (29), and the fact that Wi(.) defined in
(25) are composed of bounded terms, Wfi(t), Ẇfi(t) ∈ L∞

[7], and consequently, Wfi(t)θ̃i(t) ∈ L∞. Therefore, from
(33), we can see that p̃ei(t) ∈ L∞. It follows from (34)

that

.

θ̂i (t) ∈ L∞, and hence
.

θ̃i (t) ∈ L∞. From the

fact that Ẇfi(t),
.

θ̃i (t) ∈ L∞, it is easy to show that
d
dt

³
Wfi(t)θ̃i(t)

´
∈ L∞. Hence,Wfi(t)θ̃i(t) is uniformly con-

tinuous [9]. Since we also have thatWfi(t)θ̃i(t) ∈ L2, we can
conclude that [9]

Wfi(t)θ̃i(t)→ 0 as t→∞. (47)

As shown in Appendix C, if the signal Wfi(t) satisifies the
persistent excitation condition [21] given in (36), then it can

be concluded from (47) that

θ̃i(t)→ 0 as t→∞. (48)

¤

Remark 6 It can be shown that the output Wfi(t) of the
filter defined in (29) is persistently exciting if the input

Wi(t)V̂
T
vw(t) to the filter is persistently exciting [20]. Hence,

the condition in (36) is satisfied if

γ3I4 ≤
R t0+T
t0

V̂
T
vw(τ )W

T
i (τ )Wi(τ )V̂vw(τ)| {z } dτ ≤ γ4I4

W

(49)

where γ3, γ4 ∈ R are positive constants. It can be shown

upon expansion of the integrand W (t) ∈ R4×4 of (49) that
even if only one of the components of translational velocity

is non-zero, the first element of θ̂i(t), i.e.
1
z∗i
, will converge

to the correct value. It should be noted that the translational

velocity of the object has no bearing on the convergence of

the remaining three elements of θ̂i(t), and unfortunately, it
seems that no inference can be made about the relationship

between convergence of the three remaining elements of θ̂i(t)
and the rotational velocity of the object.

Remark 7 As stated in the previous remarks, the estima-

tion of object velocity requires the knowledge of the constant

rotation matrix R∗ ∈ R3×3 and a single geometric length
s1 ∈ R3 on the object. Then, utilizing (8), (10), (27) and
(34), the estimates for m̄∗i , denoted by ˆ̄m

∗
i (t)∈ R3, can be

obtained as follows

ˆ̄m
∗
i (t) =

1h
θ̂i(t)

i
1

A
−1
p
∗
i (50)

where the term in the denominator denotes the first element

of the vector θ̂i(t). Similarly, the estimates for the time

varying Euclidean position of the feature points on the object

relative to the camera frame, denoted by ˆ̄mi(t)∈ R3, can be
calculated as follows

ˆ̄mi(t) =
1

αi(t)
h
θ̂i(t)

i
1

A
−1
pi(t). (51)
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Figure 2: Estimated parameters for the second feature
point on the simulated moving object.

6 Simulation Results

The adaptive estimation algorithm described in Section 5

was built on top of an existing simulator that was previously

utilized to verify the performance of the veclocity estimator

of Section 4 and described in detail in [5]. We selected a pla-

nar object with four feature points initially 2 meters away

along the axis of the camera as the body undergoing motion.

The velocity of the object along each of the six degrees of

freedom was set to 0.2 sin(t). The coordinates of the ob-
ject feature points in the object’s coordinate frame F were

arbitrarily chosen to be the following

s1 = [ 1.0 0.5 0.1 ]T

s2 = [ 1.2 −0.75 0.1 ]T

s3 = [ 0.0 −1.0 0.1 ]T

s4 = [ −1.0 0.5 0.1 ]T . (52)

The object’s reference orientation R∗ relative to the camera
were selected as diag(1,−1,−1). The simulator operated at
the sampling frequency of 1 kHz. The estimator gain βi
was set to 20 for all i feature points. It was observed that

the estimates θ̂i(t) converged to the correct values within
a span of few seconds. As an example, Figure 2 depicts

the convergence of θ̂2(t) which can be used to compute the
Euclidean coordinates of the second feature point s2 defined

relative to the object frame F and the constant z∗2 defined
relative to the fixed camera frame I as shown in (27).

7 Conclusions

This paper presented an adaptive nonlinear estimator to

identify the Euclidean coordinates of feature points on an

object under motion using a single camera. The only re-

quirements on the object are that its velocity and first two

time derivatives must be bounded, the orientation of the

object at reference position relative to the camera, and the

Euclidean coordinates of a single feature point relative to its

coordinate frame must be known. Lyapunov-based system

analysis methods and homography-based vision techniques

were used in the development of this alternative approach to

the classical problem of estimating structure from motion.
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Appendix A: Calculation of Homography

Homography from Coplanar Feature Points

In this section, we present a method to estimate the

collineation G(t) by solving a set of linear equations (11) ob-
tained from at least four corresponding feature points that

are coplanar but non-collinear. Based on the arguments in

[12], a transformation is applied to the projective coordi-

nates of the corresponding feature points to improve the

accuracy in the estimation of G(t). The transformation ma-
trices, denoted by P (t), P ∗ ∈ R3×3, are defined in terms
of the projective coordinates of three of the coplanar non-

collinear feature points as follows

P ,
£
p1 p2 p3

¤
P
∗ ,

£
p∗1 p∗2 p∗3

¤
. (53)

From (11) and (53), it is easy to show that

PG̃ = GP ∗ (54)

where

G̃ = P
−1
GP
∗

= diag
¡
α
−1
1 , α

−1
2 , α

−1
3

¢
, diag (g̃1, g̃2, g̃3) . (55)

In (55), diag(.) denotes a diagonal matrix with arguments
as the diagonal entries. Utilizing (55), the relationship in

(11) can now be expressed in terms of G̃(t) as follows

qi = αiG̃q
∗
i (56)

where

qi = P
−1
pi (57)

q
∗
i = P

∗−1
p
∗
i (58)

define the new transformed projective coordinates. Note

that the transformation normalizes the projective coor-

dinates, and it is easy to show that
£
q1 q2 q3

¤
=£

q∗1 q∗2 q∗3
¤
= I3 ∈ R3×3 where I3 is the 3 ×

π
∗F ∗

Oj

O’j

lj

Reference view

p
j
∗

p
jp’

j

I ∗

Figure 3: Virtual parallax.

3 identity matrix. Given the transformed image co-

ordinates of a fourth matching pair of feature points

q4(t) ,
£
q4u(t) q4v(t) q4w(t)

¤T ∈ R3 and q∗4 ,£
q∗4u q∗4v q∗4w

¤T ∈ R3, we have
q4 = α4G̃q

∗
4 , (59)

where it can be shown that

q4u =
q4w

q∗4w
q
∗
4u
α3

α1

q4v =
q4w

q∗4w
q
∗
4v
α3

α2
(60)

q4w

q∗4w
=

α4

α3
.

The above set of equations can be solved for
α4(t)

α3(t)
and

α3(t)G̃(t) = diag

µ
α3(t)

α1(t)
,
α3(t)

α2(t)
, 1

¶
. Since the camera in-

trinsic calibration matrix is assumed to be known, we can

obtain the scaled Euclidean homography which was defined

in (7) as α3(t)H(t) = α3(t)A
−1G(t)A. As noted before,

H(t) can be decomposed into its constituent rotation ma-
trix R̄(t), unit normal vector n∗, scaled translation vector

x̄h(t) ,
x̄f (t)

d∗
and the depth ratio α3(t). With the knowl-

edge of α3(t) and
α4(t)

α3(t)
, we can calculate the depth ratios

α1, α2, α3, and α4 for all feature points.

Virtual Parallax Method

In general, all feature points of interest on the moving ob-

ject may not lie on a plane. In such a case, based on the

development in [18], any three feature points on the object

may be selected to define the plane π∗ shown in Figure 3.
All feature points Oi on a plane satisfy (11). Consider a fea-

ture point Oj on the object that is not on the plane π
∗. Let

us define a virtual feature point O0j , on π∗, defined at the
point of intersection of the vector from the optical center of



the camera to Oj and the plane π
∗. Let p∗j be the projective

image coordinates of the point Oj (and O
0
j) on the image

plane when the object is at the reference position denoted

by F∗. As shown in Figure 3, when the object is viewed
from a different pose, resulting from either a motion of the

object or a motion of the camera, the actual feature point

Oj and the virtual feature point O
0
j projects to pj(t) and

p0j(t), respectively, on the image plane of the camera. For
any feature point Oj , both pj(t) and p

0
j(t) line on the same

epipolar line lj [18] that is given by

lj = pj × p0j (61)

where × denotes the cross product of the two vectors. Since
the projective image coordinates of corresponding coplanar

feature points satisfy (11), we have

lj = pj ×Gp∗j . (62)

Based on the constraint that all epipolar lines meet at the

epipole [18], we can select a set of any three non-coplanar

feature points such that the epipolar lines satisfy the follow-

ing constraint ¯̄
lj lk ll

¯̄
= 0 (63)

i.e.,
¯̄
pj ×Gp∗j pk ×Gp∗k pl ×Gp∗l

¯̄
= 0. (64)

The transformation matrices, denoted by P (t), P ∗ ∈ R3×3,
and defined in (53), are constructed using the image coordi-

nates of the three coplanar feature points selected to define

the plane π∗. After coordinate transformations defined in
(57) and (58), the epipolar constraint of (64) now becomes¯̄

qi × G̃q∗i qj × G̃q∗j qk × G̃q∗k
¯̄
= 0 (65)

where G̃(t) ∈ R3×3 is defined in (55). As shown in [18], the
set of homogeneous equations in (65) can be written in the

form

CjklX̄ = 0 (66)

where X̄ =
£
g̃21 g̃2, g̃1g̃

2
2 , g̃

2
1 g̃3, g̃

2
2 g̃3, g̃1g̃

2
3 , g̃2g̃

2
3 , g̃1g̃2g̃3

¤T ∈
R7, and the matrix Cjkl ∈ Rm×7 is of dimension m×7 where
m = n!

6(n−3)! and n is the number of epipolar lines, one for
image coordinates of each feature point. Hence, apart from

three coplanar feature points that define the transformation

matrices in (53), we will require atleast five additional fea-

ture points (i.e., n = 5) in order to solve the set of equations
(66). As shown in [18], we can then calculate G̃(t) and sub-
sequently α1, α2, α3, R̄ and n

∗ as previously explained.

Calculation of Depth Ratios for Non-coplanar Fea-

ture Points: From (4) and (8), it can be easily shown that

mj =
z∗j
zj

µ
x̄f

z∗j
+ R̄m∗j

¶
. (67)

After multiplying both sides of the equation with the skew-

symmetric form of x̄h(t), denoted by [x̄h(t)]× ∈ R3×3, we
have [18]

[x̄h]×mj = αj

µ
[x̄h]×

x̄f

z∗j
+ [x̄h]× R̄m

∗
j

¶
= αj [x̄h]× R̄m

∗
j . (68)

The signal x̄h(t) is directly obtained from the decomposition
of Euclidean homography matrix H(t). Hence, the depth ra-
tios for feature points Oj not lying on the plane π

∗ can be
computed as follows

αj =

°°[x̄h]×mj

°°°°[x̄h]× R̄m∗j°° . (69)

Appendix B: Extension to Camera-in-Hand

A practically significant extension to the fixed camera sys-

tem is the case where the camera can move relative to the

object. For example, as shown in Figure 4, a camera could

be mounted on the end-effector of a robot and used to scan

an object in its workspace to determine its structure, as well

as determine the robot’s position. Let three feature points

on the object, denoted by O1, O2 and O3 define the plane

π∗ in Figure 4. Based on the development in [3], the signal
e(t) ∈ R6 defined previously in (12) and (15) now quantifies
the motion of the camera relative to its reference position.

The time derivative of e(t) can be expressed as follows

ė = Jcv (70)

where Jc(t) ∈ R6×6 is given by

Jc =

"
−α1
z∗1
Ae1 Ae1 [m1]×

03 −Lω

#
(71)

where 03 ∈ R3×3 is a zero matrix, Lω(t) ∈ R3×3 has exactly
the same form as for the fixed camera case in (17), and

v(t) ,
£
vTc ωTc

¤T ∈ R6 now denotes the velocity of the
camera expressed relative to I.
With the exception of the term z∗1 ∈ R, all other terms in
(71) are either measurable or known a priori. If the camera

can be moved away from its reference position by a known

translation vector x̄fk ∈ R3, then z∗1 can be computed of-
fline. Decomposition of the Euclidean homography between

the normalized Euclidean coordinates of the feature points

obtained at the reference position, and at x̄fk away from the

reference position, respectively, can yield the scaled trans-

lation vector
x̄fk

d∗
∈ R3, where d∗ ∈ R is the distance from

the initial camera position, denoted by I∗, to the plane π∗.
Then, it can be seen that1

z
∗
1 =

d∗

n∗Tm∗1
=

d∗

n∗TA−1p∗1
. (72)

From (70) and (71), we can show that for any feature point

Oi

ṗei = −αi
z∗i
Aeivc +Aei [mi]× ωc

= W1ivcθi +W2iωc (73)

where pei(t) ∈ R3 was defined previously in (23), and

W1i(.) ∈ R3×3, W2i(t) ∈ R3×3 and θi ∈ R are given as

1Note that for any feature point Oi coplanar with π
∗, z∗i could

be computed this way.
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follows

W1i = −αiAei (74)

W2i = Aei [mi]× (75)

θi =
1

z∗i
. (76)

The matrices W1i(.) and W2i(t) are measurable and

bounded. The objective is to identify the unknown con-

stant θi in (76). With the knowledge of z
∗
i for all feature

points on the object, their Euclidean coordinates m̄∗i rela-
tive to the camera reference position, denoted by I∗, can be
computed from (??) through (10). As before, we define the

mismatch between the actual signal θi and estimated signal

θ̂i(t) as θ̃(t) ∈ R where θ̃(t) , θ − θ̂(t).
To facilitate our objective, we introduce a measurable fil-

ter signal ζi(t) ∈ R3, and two non-measurable filter signals
κi(t), ηi(t) ∈ R3 defined as follows

ζ̇i = −βiζi +W1iv̂c (77)

κ̇i = −βiκi +W1iṽcθi (78)

η̇i = −βiηi +W2iω̃c (79)

where βi ∈ R is a scalar positive gain, v̂c(t), ω̂c(t) ∈ R3are
the estimates for the translational and rotational velocity,

respectively, obtained from the velocity observer in Section

4, ṽc(t) , vc(t)− v̂c(t) is the mismatch in estimated transla-
tional velocity, and ω̃c(t) , ωc(t)− ω̂c(t) is the mismatch in
estimated rotational velocity. Note that the structure of the

velocity observer and the proof of its convergence is exactly

identical to the fixed camera case. Likewise, we design the

following estimator for the pei(t)

.

p̂ei= βip̃ei + ζi

.

θ̂i +W1iv̂cθ̂i +W2iω̂c. (80)

From (73) and (80), we have

.

p̃ei= −βip̃ei − ζi
.

θ̂i +W1iṽcθi +W1iv̂cθ̃i +W2iω̃c. (81)

From (81), (78) and (79), it can be shown that

p̃ei = ζiθ̃i + κi + ηi. (82)

Based on the subsequent analysis, we select the following

least-squares update law for θ̂i(t)

.

θ̂i= Liζ
T
i p̃ei (83)

where Li(t) ∈ R is an estimation gain that is computed as
follows

d

dt
(L−1i ) = ζ

T
i ζi (84)

and initialized such that L−1i (0) > 0.

Theorem 2 The update law defined in (83) ensures that

θ̃i → 0 as t → ∞ provided that the following persistent

excitation condition [21] holds

γ5 ≤
Z t0+T

t0

ζ
T
i (τ )ζi(τ)dτ ≤ γ6 (85)

and provided that the gains βi satisfy the following inequal-

ities

βi > k3i + k4i kW1ik2∞ (86)

βi > k5i + k6i kW2ik2∞ (87)

where t0,γ5, γ6, T, k3i, k4i, k5i, k6i ∈ R are positive constants,
the notation k.k∞ denotes the induced ∞-norm of a matrix

[15], and k3i, k5i are selected such that

1

k3i
+

1

k5i
<
1

2
. (88)

Proof : Similar to the analysis for the fixed camera case,

a non-negative function denoted by V (t) ∈ R is defined as
follows

V , 1

2
θ̃
T

i L
−1
i θ̃i +

1

2
κ
T
i κi +

1

2
η
T
i ηi. (89)

After taking the time derivative of (89), the following ex-

pression can be obtained

V̇ = −1
2

°°°θ̃i°°°2 kζik2 − βi kκik2 − βi kηik2
−θ̃Ti ζTi κi − θ̃

T

i ζ
T
i ηi + κ

T
i W1iṽcθi

+ηTi W2iω̃c (90)

where (83), (84), (78), (79) and (82) were utilized. Upon

further mathematical manipulation of (90), we have,

V̇ ≤ −1
2

°°°θ̃i°°°2 kζik2
− ¡βi − k3i − k4i kW1ik2∞

¢ kκik2
− ¡βi − k5i − k6i kW2ik2∞

¢ kηik2
+
°°°θ̃i°°° kζik kκik− k3i kκik2

+ kθik kṽck kW1ik∞ kκik− k4i kW1ik2∞ kκik2

+ kζik
°°°θ̃i°°° kηik− k5i kηik2

+ kω̃ck kW2ik∞ kηik− k6i kW2ik2∞ kηik2



≤ −
µ
1

2
− 1

k3i
− 1

k5i

¶°°°θ̃i°°°2 kζik2
− ¡βi − k3i − k4i kW1ik2∞

¢ kκik2
− ¡βi − k5i − k6i kW2ik2∞

¢ kηik2
+
1

k4i
kθik2 kṽck2 + 1

k6i
kω̃ck2 (91)

where k3i, k4i, k5i, k6i ∈ R are positive constants as previ-

ously mentioned. The gain constants are selected to ensure

that

1

2
− 1

k3i
− 1

k5i
≥ µ3i > 0 (92)

βi − k3i − k4i kW1ik2∞ ≥ µ4i > 0 (93)

βi − k5i − k6i kW2ik2∞ ≥ µ5i > 0 (94)

where µ3i, µ4i, µ5i ∈ R are positive constants. The gain

conditions given by (92), (93) and (94) allow us to further

upper bound the time derivative of (89) as follows

V̇ ≤ −µ3i
¯̄̄
θ̃i

¯̄̄2 kζik2 − µ4i kκik2 − µ5i kηik2
+
1

k4i
|θi|2 kṽck2 + 1

k6i
kω̃ck2

≤ −µ3i
¯̄̄
θ̃i

¯̄̄2
kζik2 − µ4i kκik2 − µ5i kηik2

+µ6i kṽk2 (95)

where µ6i = max
n
|θi|2
k4i

, 1
k6i

o
∈ R. Following the argument

in fixed camera case, ṽ(t) ∈ L2, henceZ t

t0

µ6i kṽ(τ )k2 dτ ≤ ε (96)

where ε ∈ R is a positive constant. From (89), (95) and (96),
we can conclude thatZ t

t0

µ
µ3i

¯̄̄
θ̃i(τ)

¯̄̄2 kζi(τ)k2
+ µ4i kκi(τ )k2 + µ5i kηi(τ)k2

¢
dτ

≤ V (0)− V (∞) + ε. (97)

From (97), it is clear that ζi(t)θ̃i(t),κi(t), ηi(t) ∈
L2.Applying the same signal chasing arguments as in the

fixed camera case, it can be shown that θ̃i(t),κi(t), ηi(t) ∈
L∞. It can also be shown that

.

θ̃i (t), ζi(t), ζ̇i(t) ∈ L∞ and

therefore d
dt
ζi(t)θ̃i(t) ∈ L∞. Hence ζi(t)θ̃i(t) is uniformly

continuous [9], and since ζi(t)θ̃i(t) ∈ L∞, we have [9]
ζi(t)θ̃i(t)→ 0 as t→∞. (98)

Applying the same argument as in the fixed camera case,

convergence of θ̂i(t) to true parameters is guaranteed, that
is, θ̃i(t) → 0 as t → ∞, if the signal ζi(t) satisfies the per-
sistent excitation condition in (85). ¤

Remark 8 Utilizing (??), (10) and the update law in (83),

the estimates for Euclidean coordinates of all i feature points

on the object relative to the camera at reference position,

denoted by ˆ̄m
∗
i (t)∈ R3, can be determined as follows

ˆ̄m
∗
i (t) =

1

θ̂i(t)
A
−1
p
∗
i . (99)

Remark 9 If z∗1 can be computed offline as described pre-
viously, then, unlike the fixed camera case, the knowledge

of s1 is not required. Also, terms from the rotation matrix

R(t) are not present in (71), and therefore the estimate of
the velocity of the camera, denoted by v̂(t), can be computed
without the knowledge of the constant rotation matrix R∗.
Note, however, that R̄(t) is required for the computation of
rotational kinematics.

Remark 10 As mentioned in Section ??, decomposition of

the Euclidean homography gives the rotation matrix R̄, the

normal vector n∗ and the scaled translation vector
x̄f (t)

d∗
.

Since d∗ can now be computed from any feature point on the

plane π∗ using (6), this allows us to compute x̄f (t). Hence
the 6 degree-of-freedom position of the moving camera rela-

tive to its reference position can be computed online.

Appendix C

For the sake of clarity in the subsequent analysis, let

Ωi(t0, t) ∈ R4×4 be defined as follows

Ωi(t0, t) =

Z t

t0

W
T
fi(τ )Wfi(τ)dτ (100)

where Wfi(t) ∈ R3×4 was previously defined in (29). Con-
sider the following expressionZ t

t0

θ̃
T

i (τ)Ωi(t0, τ)
dθ̃i(τ )

dτ
dτ

= θ̃
T

i (τ)Ωi(t0, τ )θi(τ)
¯̄̄t
t0

−
Z t

t0

d

dτ

³
θ̃
T

i (τ)Ωi(t0, τ )
´
θ̃i(τ )dτ

= θ̃
T

i (t)Ωi(t0, t)θ̃i(t)−
Z t

t0

θ̃
T

i (τ )Ωi(t0, τ)
dθ̃i(τ)

dτ
dτ

−
Z t

t0

θ̃
T

i (τ)W
T
fi(τ)Wfi(τ )θ̃i(τ)dτ (101)

where we utilized (100) and the fact that Ω(t0, t0) = 0.After
re-arranging (101), we have the following expression

θ̃
T

i (t)Ωi(t0, t)θ̃i(t)

= 2

Z t

t0

θ̃
T

i (τ)Ωi(t0, τ )
dθ̃i(τ)

dτ
dτ

+

Z t

t0

θ̃
T

i (τ )W
T
fi(τ)Wfi(τ)θ̃i(τ)dτ . (102)

To facilitate further analysis, we now state the following

lemma [15]

Lemma 3 Let f(t) be a uniformly continuous function [9].
Then lim

t→∞
f(t) = 0 if and only if

lim
t→∞

Z t+t0

t

f(τ)dτ = 0 (103)

for any positive constant t0 ∈ R.



After substituting for t = t0 + T in (102), where T ∈ R is
a positive constant, and applying the limit on both sides of

the equation, we have

lim
t0→∞

θ̃
T

i (t0 + T )Ωi(t0, t0 + T )θ̃i(t0 + T )

= lim
t0→∞

µ
2

Z t0+T

t0

θ̃
T

i (τ)Ωi(t0, τ )
dθ̃i(τ)

dτ
dτ

+

Z t0+T

t0

θ̃
T

i (τ)W
T
fi(τ)Wfi(τ)θ̃i(τ )dτ

¶
. (104)

We now examine the terms in the first integral of (104).

From the proof of Theorem 1, θ̃i(t) ∈ L∞, and from

(36) and (100), Ωi(t0, t0 + T ) ∈ L∞. It was also proved

that Wfi(t)θ̃i(t), ηi(t) ∈ L∞ ∩L2. Hence, from (33), lim
t→∞

p̃ei(t) = 0 and consequently from (28) and (34), lim
t→∞

.

θ̃i (t) =

0. Hence, after utilizing Lemma 3, the first integral in (104)
vanishes upon evaluation. From (47) and Lemma 3, the sec-

ond integral in (104) vanishes as well. Therefore, we have

lim
t0→∞

θ̃
T

i (t0 + T )Ωi(t0, t0 + T )θ̃i(t0 + T ) = 0. (105)

Since Ωi(t0, t) ≥ γ1I4 from (36) for any t0, we can conclude

from (105) that

θ̃i(t)→ 0 as t→∞. (106)




