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Abstract
Survivability architectures enhance the survivability of
critical information systems by providing a mechanism
that allows the detection and treatment of various types of
faults. In this paper, we discuss four of the issues that
arise in the development of such architectures and
summarize approaches that we are developing for their
solution.

1. Introduction

Dependence on large infrastructure systems has
increased to a point where the loss of the services that they
provide is extremely disruptive. Systems such as
transportation, telecommunications, power distribution,
and financial services are vital to the normal operation of
society. Similarly, systems such as the Global Command
and Control System (GCCS) are vital to defense
operations. We refer to such applications as critical
infrastructure applications.

These applications are themselves dependent on
complex underlying information systems. The information
systems are typically networks with large numbers of
heterogeneous nodes that are distributed over wide
geographic areas and that employ commodity hardware,
and COTS and legacy software. Damage to the
information system will in many cases lead quickly to the
loss of at least a large part of the service provided by the
infrastructure application. We refer to such information
systems as critical information systems.

Having to deal with events in information systems that
might disrupt service leads to the notion of survivability.
Informally by survivability we mean the ability of the
system to continue to provide service (possibly degraded)
when various changes occur in the system or operating
environment. For example, when events such as extensive
hardware failure, software failure, operator error, or
malicious attack occur, a critical subset of normal
functionality or some alternative functionality might be
needed to mitigate the consequences of the event.

Survivability is a system requirement. It is a statement
of the required responses to a variety of prescribed events
that might affect the system and that might cause a loss of
service if nothing is done about them. There is no
presumption about how survivability will be achieved in
the notion of survivability itself. One essential aspect of
system design is to ensure that systems are sufficiently
robust that they are largely unaffected by the majority of
expected events or that expected events occur with a
negligible frequency. Thus, for example, by careful
component selection it might be possible to reduce the rate
of hardware failures to a negligible level, and by suitably
restricting system access it might be possible to eliminate
certain types of security attacks.

The informal notion of an “event” that we have used is
what is referred to formally in the literature as a fault [15].
The process of building a system in such a way that certain
faults do not arise is fault avoidance. Building systems
that are able to react in a requisite way to prescribed faults
is fault tolerance. This paper is about some of the issues
that arise and approaches that we are developing to
enhance the survivability of critical information system
through the introduction of fault tolerance.

We are concerned in this research with the need to
tolerate faults that affect multiple nodes, faults that we
refer to as non-local. Thus, for example, a widespread
power failure in which many network nodes are forced to
terminate operation is a non-local fault. Such faults have
the important characteristic that they are usually non-
maskable—that is, their effects are so extensive that
normal system service cannot be continued with the
resources that remain even if the system includes
extensive redundancy. We are not concerned with faults at
the level of a single hardware or software component. We
refer to such faults as local, and we assume that all local
faults are dealt with by some mechanism that masks their
effects. Thus synchronized, replicated hardware
components are assumed so that losses of single
processors, storage devices, communications links, and so
on are masked by hardware redundancy. If necessary,
more sophisticated techniques such as virtual synchrony
can be used to ensure that the application is unaffected by
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local failures. It is important to note that economic factors
sometimes force poor technical choices in the mechanisms
provided to tolerate local faults thereby causing local
faults to be more disruptive than they need to be.

In practice, the approaches that can be followed to
enhance survivability are limited. For example, there is
little point in considering completely rewriting the
software for an existing critical information system
because the system is almost certainly too large. Similarly,
it is not possible to make drastic changes to the present
system architectures. Computers and network links are
performing various application functions, and this fabric is
determined largely by the application itself. It is not
subject to change, at least not in anything but the very long
term.

Our approach to tolerating non-local faults and thereby
enhancing survivability is through survivability
architectures. By a survivability architecture we mean a
system architecture that is designed specifically to deal
with certain non-local faults. In this paper we review four
of the issues that occur in the development of survivability
architectures and discuss approaches to their solution. The
specific topics that we summarize in the remaining
sections of this paper are: (1) the form of and rational for
the overall architectural approach that we are developing;
(2) an approach to application-system design that permits
reconfiguration of an application following an error; (3)
mechanisms for achieving security of survivability
mechanisms; and (4) an approach to experimentation with
new survivability architecture ideas.

2. Survivability Architectures

2.1. Survivability as control

When affected by a non-local fault, a critical
information system must be adapted so as to continue to
provide information services on which infrastructure
service depends. An important issue, therefore, is how this
can be done.

Control
system

Survivability
requirement

Technical
context

Social
context

Design
space

Service
space

State of System in Environment

The traditional approach to maintaining service in
complex systems (such as avionics platforms) is the use of

explicit control. Our approach to survivability
architectures is based on the use of explicit control to
manage information systems using data from
infrastructures, their information systems, and their
operational environments. In essence, such a control
system is responsible for choosing a configuration for the
critical information system at each point in time based on
current conditions to minimize the loss of service, with
assurances that under defined circumstances service will
meet the survivability requirements.

As illustrated in Figure 1, a given system configuration
supports some level of infrastructure service. The need for
any given level of service is determined by the system’s
owner and reflects the owner’s assessment of the value of
services. The survivability specification documents the
service requirements that need to be met for the various
anticipated faults. The design space determines the extent
to which a control system can manage loss of services
when faults manifest themselves. An information system
for a survivable infrastructure system must have a
configuration enabling service provision that meets service
requirements for each defined fault to which the
infrastructure and its information system is subject.

2.2. Hierarchical adaptive control

The architectural style that we are developing is
documented elsewhere [19]. The key characteristics of the
architectural style are that it effects adaptive control and is
decentralized, hierarchical, and discrete-state. A control
system manipulates a controlled system on the basis of
sensor data from the controlled system, predictions of its
behavior, and other such information to maintain
acceptable levels of system operation. Examples are
familiar to every engineer.

A decentralized control system is one in which parts of
the control system control parts of the underlying system
autonomously. An adaptive control system is one that can
continue providing control in the face of changes to the
controlled system and to the control system. For example,
an adaptive control system for an avionics application can
ensure that an aircraft remains under control even if part of
a wing is damaged in flight. A hierarchical control system
is one in which control actions are determined at a number
of levels in a hierarchical system, with low-level control
system elements influencing and being influenced by
higher levels of control. Tactical decisions might be made
close to individual components in a controlled system,
while strategic decisions are made at a higher level based
on aggregated global system state.

For our purposes, the controlled system is the
information system supporting an infrastructure system. In
the case of freight rail, for example, the physical system
comprises rails, cars and locomotives. This infrastructure
is controlled by a complex information system that
manages train assembly, dispatch, scheduling, move

Figure 1. Survivability control system concept



authority, billing and so on to meet performance, safety,
business and other objectives. A survivability architecture
would supplement the information system with a
survivability control system. A wide variety of
survivability properties can result from the non-local fault
tolerance achieved by this structure including intrusion
monitoring and response and controlled service
degradation under adverse conditions.

The need for a hierarchical structure is implied by the
size and distribution of infrastructure information systems.
It is implausible, for example, to have a single computing
node monitoring the entire United States banking system.
Each major bank would have a local control system
interacting through abstract interfaces with higher-level
(e.g., Federal Reserve) and lower-level (e.g., branch)
control systems.

A hierarchical structure is natural to support scalability
through local control and the passing of aggregated status
information up and down a hierarchy. Such information
flows will be needed in practice to implement non-local
reconfiguration policies with acceptable performance.
Such a structure enables local control nodes to implement
policies based on local information and aggregated global
state passed from above. In addition to performance,
hierarchy enables abstraction and complexity control in
control system implementation. Details of local
application nodes are abstracted by local control nodes.
Higher-level control nodes are specified and implemented
in terms of the observable and controllable aspects of
control nodes at the next level down the control hierarchy.
Hierarchy is also intended to foster evolvability of the
control policies. Such evolvability will be critical to
effective “learning” by a system over time and as the
underlying information and infrastructure systems evolve.

A disciplined approach to the modular design of the
control system will also be critical in building adaptive
control systems that can tolerate the loss, addition, or
modification of control and controlled nodes. The control
theoretic notion of multiple-model adaptive control—in
which the control system views the controlled system as
being in one of a number of possible distinct operating
regimes in which distinct control rules apply—offers
especially attractive prospects. Our experimentation
system (described in section 5) provides a monitoring
capability that is used to connect control nodes in such a
way as to ensure that nodes within the control system have
a model of both the controlled and control system.

2.3. Implications of survivability as control

Analysis of the concept of survivability as control has
revealed the following implications:
• Application reconfiguration

For an information system to be subject to control, so
as to ensure continued provision of the information
services on which an enterprise depends, the

information system must be designed for
reconfiguration. That is, the application must provide
a sufficiently rich design space to provide scope for a
control system to reconfigure it to handle specified
adverse conditions.
How best to determine and specify requirements for
such flexibility is not clear. It requires an
understanding of the impact on customers of service
stream interruptions, how information system failures
can cause interruptions, and how faults in information
systems lead to failures. Moreover, the costs of such
flexibility have to be balanced against benefits, the
latter of which, like insurance policies, are contingent
on the flexibility being needed at some time. A
summary of our work in this area is presented in
section 3.

• Design flexibility
While the analysis and specification of flexibility
requirements appear to present significant challenges,
implementing the requirements presents additional
difficulties. One especially difficult problem is
presented by legacy infrastructure information
systems. Legacy software systems are an essential
part of most infrastructures. The problem is two-fold.
First, these systems were most likely not designed to
have the kinds of flexibility needed in the face of
novel threats. In our domain analysis of several
applications we have observed such cases. Second,
these systems are generally old, complex, and
structurally degraded, and thus hard and costly to
change—often impossibly so because they are under
tight monetary and intellectual capital-budgeting
constraints.
One partial answer appears to lie in transparent
extension of the design space of existing systems. In a
sense, our recipe for survivability hardening of legacy
infrastructure information systems is first to extend
(and perhaps also restrict) their design spaces using a
wrapping technique; then subject the modified
systems to survivability control.

• Securing survivability mechanisms
Adding complexity to a complex system in an attempt
to make it better often makes it worse. This principle
applies to our approach very clearly. A design that
inserts into a critical system a control system able to
manipulate it in dramatic ways presents an obvious
risk: the control system becomes a rich target for a
potential adversary.
We believe that, in general, there is no solution to this
security problem as we have formulated it. However,
techniques can be used to raise the cost of attack to a
discouraging level. In practice, a broad range of
security and other measures would be taken to provide
defense in depth of such a control system. A summary
of our work in this area is presented in section 4.

Finally in this section we note that there is likely no
single architecture for survivability control. Rather, we



envision an architectural style for survivability control
based on concepts and structures from the intellectual
discipline of control theory.

2.4. Previous work

The application of control systems concepts in software
design is not new. Jehuda and Israeli [13] proposed a
control system for dynamically adapting a software
configuration to accommodate varying runtime
circumstances impacting on real-time performance. In
CHAOS [10], real-time systems are adapted with the use
of an entity-relation database modeling system structure.
Control systems ideas have been used in distributed
application management as well. Meta [16] is an
architecture and a tool that uses a non-hierarchical control
system to optimize performance in fault-tolerant
distributed systems using Isis. Distributed application
management (e.g., [2], [21]) employs services supporting
the dynamic management of distributed applications.
Network management uses control concepts to manage
networks and their running software [3], [6].

However, the major objective in such work is to
monitor and improve application or network performance
in traditional dimensions, e.g., runtime efficiency. By
contrast, our use of control is targeted at enhancing the
survivability of controlled applications.

Intrusion detection provides a way to monitor and
control the abnormal behaviors of a system. EMERALD
[17] introduces an approach to network surveillance,
attack isolation, and automated response. It uses
distributed, independently tunable surveillance and
response monitors as the building blocks, and combines
signature analysis with statistical profiling to provide
localized protection. A recursive framework is proposed
for coordinating the dissemination of analyses from the
distributed monitors to provide a global detection and
response capability. We address disturbances not limited
to security.

GrIDS [18] is a graph-based large network intrusion
detection system. It collects data about computer activity
and network traffic, and aggregates this information into
activity graphs which reveal the causal structure of
network activity. This is an intrusion detection system. No
response mechanism is discussed. The graph-based
detection mechanism could perhaps be used in our
architecture.

The Dynamic, Cooperating Boundary Controllers
program [22] is developing a capability to allow
traditionally static and standalone network boundary
controllers (e.g. filtering routers and firewalls) to work
cooperatively to protect networks. The capability is
achieved through the use of an Intruder Detection and
Isolation Protocol (IDIP). The work attempts to address
the network intrusion problem only.

Hiltunen and Schlichting propose a model for adaptive
systems [11] that respond to changes in three phases:
change detection, agreement, and action. It is used for
performance and fault-tolerance. Goldberg et al. discuss
adaptive fault-resistant systems and present some
examples [9]. Our approach provides a way to embed
adaptation in the system through multiple model control.
Different control policies may be adaptively used for
different operating regimes.

3. Application Error Recovery

Tolerating a fault whose effects cannot be masked
requires that the application be reconfigured following
error detection. Unless provision for reconfiguration is
made in the design of the application, reconfiguration will
be ad hoc at best and impossible at worst [14].

The provision for reconfiguration in the application
design has to be quite extensive in practice for three
reasons:
• The number of fault types is likely to be large and

each might require different actions following error
detection.

• It might be necessary to complete reconfiguration in
bounded time so as to ensure that the replacement
service is available in a timely manner.

• Reconfiguration must not introduce new security
vulnerabilities in addition to those already noted.

The high-level concept that we are developing is a
flexible application architecture based on: (1) the use of
formal specification to define the application
reconfiguration elements of the survivability requirements;
(2) a system architecture that provides critical services to
support the application in a coordinated recovery layer;
and (3) a building block for applications that we term a
reconfigurable process.

We begin this section by explaining this concept and
then review the details including the system software
architecture used in each node. Finally, we discuss some
of the implementation details.

3.1. Specification and synthesis

The size of current and expected critical information
systems, the variety and sophistication of the services they
provide, and the complexity of the reconfiguration
requirements mean that a solution approach that depends
upon traditional software development techniques is
infeasible in all but the simplest cases. The likelihood is
that future systems will involve tens of thousands of
nodes, have to tolerate dozens, perhaps hundreds, of
different types of fault, and have to support applications
that provide very elaborate user services. Programming
such a system using conventional methods is quite
impractical, and so our solution approach is based on the
use of a formal specification to describe the required



application reconfiguration and the use of synthesis to
generate the implementation from the formal specification.

There are many advantages to working with
specifications rather than implementations. First and
foremost is the ability to specify solutions at a high level.
This permits the details of the large number of nodes, the
many different node types, and the many different services
to be abstracted away to some extent. An implementation-
based solution would require too much effort dealing with
such a wide variety of nodes, applications, errors, and
recovery strategies. In addition, specifications provide the
ability to reason about and analyze solutions at a higher
level. Finally, an implementation can be synthesized from
a specification and this allows recovery strategies to be
changed quickly. Different error recovery schemes can be
prototyped and explored rapidly.

Precise specification of the error recovery in a critical
information system is a complex undertaking. Our
approach involves implementation synthesis by a
translator from three major sub-specifications:
• System Architecture Specification (SAS)

The system architecture specification describes the
topology of the system and platform including the
computing nodes, the communications links, and
detailed parametric information for key
characteristics. For example, nodes are named and
described additionally with node type, hardware
details, operating system, software versions, and so
on. Links are specified with connection type and
bandwidth capabilities.

• Service-Platform Mapping Specification (SPMS)
The service-platform mapping specification relates
the names of programs to the node names described in
the SAS. The program descriptions in the SPMS
include the services that each program provides,
including alternate and degraded service modes.

• Error Recovery Specification (ERS)
The error-recovery specification defines the necessary
state changes from any acceptable system
reconfiguration to any other in terms of topology,
functionality, and geometry (assignment of services to
nodes).

The overall structure of the specification is that of a
finite-state machine that characterizes the requisite
responses to each fault. Arcs are labeled with faults and
show the state transitions for each fault from every
relevant state. The actions associated with any given
transition are extensive because each action is essentially a
high-level program that implements the error recovery
component of the full system survivability specification.
The complete system-survivability specification
documents the different states (system environments) that
the system can be in, including the errors that will be
detected and handled. The ERS takes this list of system
states and describes the actions—i.e., reconfigurations—
that must be performed when the system transitions from

one environment to another. The ERS uses the SAS and
the SPMS to describe the different system configurations
and alternate service modes under each system state.

3.2. Reconfigurable processes

We define a specialized type of application process, the
reconfigurable process, which is used as the building
block for critical information systems. The key
specialization is that a reconfigurable process supports
certain critical services that are needed for error recovery
in addition to implementing some aspect of the required
system functionality. A recoverable critical information
system is then a collection of reconfigurable processes that
cooperate in the normal way to implement normal
application functionality. However, they can be
manipulated using their critical-service interfaces to
prepare for error recovery and to effect that recovery.

The importance of the addition of critical services is
that they are the basic services needed for reconfiguration
and they are available with every process. Thus the
survivability specification need not be concerned with the
idiosyncrasies of individual node functionality. As an
example of critical service, consider the obvious
implementation requirement that some processes in a
system undergoing error recovery will need to be started
and others stopped. A critical service that processes must
provide is the ability to be started and another is the ability
to be stopped. Neither of these actions is trivial, in fact,
and neither can be left to the basic services of the
operating system.

A second more detailed example of a critical service
arises in the provision of backward error recovery. In the
event that a system designer wishes to exploit a backward
error-recovery mechanism, he or she will want to be sure
that all the processes involved are capable of establishing
recovery points and that groups of processes are capable of
discarding them in synchrony. Since this is such a basic
facility in the context of error recovery, a set of critical
services is required to permit the manipulation of recovery
points.

The critical services that a reconfigurable process has
to support include:
• Start, suspend, resume, terminate, and delay.
• Change process priority.
• Report prescribed status information.
• Establish recovery point, and discard recovery point.
• Effect local forward recovery by manipulation of

local state information (e.g., reset the state).
• Switch to an alternate application function as

specified by a parameter.
• Database management services such as synchronizing

copies, creating copies, withdrawing transactions, and
restoring a default state.

The critical services are conceptually simple in many
cases but this simplicity is deceptive. Many application



processes will include very extensive functionality and
this functionality does not necessarily accommodate
services such as process suspension. Far worse are
situations that involve processes that manipulate
databases. Such processes have to be very carefully
developed if the creation of a checkpoint is to be efficient.

3.3. Node architecture

Each node in a critical information system that supports
comprehensive error recovery using the approach
discussed here will have an architecture that complies with
certain constraints. The basic application will be
constructed in a standard manner as a collection of
processes, each of which is enhanced to support critical
services. Under benign circumstances, these processes
execute in a normal manner and provide normal
functionality. Their critical services will be used
periodically in a proactive manner to make provision for
some form of recovery such as the establishment of
recovery points or the forced synchronization of a
database with backup copies. As noted in section 2.3, for
legacy systems achieving this architecture will probably
require careful wrapping of some components.

The most obvious architectural requirement that has to
be met at each node is that the node architecture support
the provision of the various forms of degraded service
associated with each fault. The software that implements
degraded service is provided by application or domain
experts, and the details (functional, performance, design,
etc.) of this software are not part of the approach being
discussed here. In practice, the way in which the software
that provides degraded service is organized is not an issue
either. The various degraded modes could be implemented
as cases within a single process or as separate processes,
as the designer chooses.

The interface between the node and the error detection
mechanism (the control system) is a communications path
from the control system to an actuator resident on the
node. The actuator is a process that accepts notifications
from the control system about erroneous states and
undertakes the actions needed on that node to cope with
the errors. Thus, the actuator implements the changes
dictated by the survivability specification, and it does this
by making the necessary changes to the node’s software
using the critical services of the various reconfigurable
processes. The survivability specification translator
synthesizes the actuator implementation.

3.4. Critical service implementation

The critical services provided by a reconfigurable
process are implemented by the process itself in the sense
that the service is accessed by a remote procedure call (or
similar) and a mechanism internal to the process
implements the service. The exact way in which the

implementation is done will be system specific but an
obvious layered architecture that supports this
implementation suggests itself.

The coordinated recovery layer provides the interface
that is used in the implementation of critical services
within reconfigurable processes. The following is a list of
the functions that the coordinated recovery layer has to
support:
• Process synchronization.
• Inter-process communication.
• Multicast to a set of processes.
• Establishment of a checkpoint for a process.
• Establishment of a set of coordinated checkpoints for

a group of processes.
• Restoration of the state of a process from a

checkpoint.
• Restoration of the states of a group of processes from

a set of checkpoints.
• Reset of a process’ state in support of forward error

recovery.
• Synchronizing two or more processes to establish

lock-step operation.
• Redirection of communication.

The coordinated recovery layer provides these services
in a largely application-independent manner. Thus, a
common coordinated recovery layer implementation could
be used by multiple applications with initial configuration
achieved by generation parameters such as a process name
table and target system topology.

4. Securing the Survivability Mechanism

The survivability architectures that we are developing
using the mechanisms described in the previous two
sections have the unfortunate characteristic that their
corruption could result in serious security intrusions or
failures in the system’s ability to provide service. For
example, if the sensory component of a network control
system is compromised, it effectively cripples the
mechanism’s ability to monitor the system. Similarly, if
the actuator mechanism were penetrated, the intruder
could gain access to the control of the entire network
simply by manipulating the error-recovery controls.

Such subversions are much more dangerous than a
typical security intrusion. In a typical intrusion, the
intruder might be able to gain unauthorized access to a
part of the system (such as a single node) but compromise
of the entire system is unlikely. Despite this, many current
network management schemes and intrusion-detection
systems1 do not address the security and reliability issues
of the mechanism that is being employed, even when
executing on COTS platforms that are of questionable
trustworthiness. The underlying assumption is that these

                                                       
1 Intrusion detection systems are special cases of network monitoring

systems and are a useful example of the system security issues.



mechanisms will be secure against malicious attacks.
Given the types of system within which these mechanisms
are deployed, this assumption is unfounded and
misleading to say the least.

We argue that protection of the survivability
mechanism is of paramount importance, and that the
analysis and treatment of this problem should be brought
to the foreground of research—as a minimum, the
consequences of security failures in the survivability
components must be studied and understood. Until the
limitations of software protection are well understood, the
current paradigm of intrusion detection and network
management is inherently dangerous.

In this section we discuss the basic problems in
preserving execution integrity of software in
untrustworthy environments, and summarize our solution
approach.

4.1. Vulnerabilities in the monitoring-and-
response paradigm

The task of monitoring is to collect information from
the target system. It is essential that this process be
dependable because it constitutes the foundation of
subsequent analysis. The task of response is to take the
results of analysis and make any changes to the network
that are implied by the analysis. It is essential that this
process be dependable because it constitutes the
foundation of the ensuing network configuration.

A generic survivability mechanism includes a sensing
component, an analysis component and an actuating
component. It must be assumed that the application hosts
are vulnerable to security attacks (hence, in part, the
reason for monitoring). Because of the security
implications of failures in monitoring and response, it
must also be assumed that each of the components of the
survivability mechanism will be attractive targets for
attackers, and that direct corruption of the monitoring and
response process is a distinct possibility.

If the program or data of the sensing component is
corrupted, the perpetrator could, as a minimum, cause
denial of sensing services, i.e. the sensor no longer
executes. A more devious attack is to corrupt the sensors
in some specific way such that the changes are undetected,
and the sensor will go on functioning on corrupted states
or data.

Attacks that entail sophisticated tampering with or
impersonation of the sensor program or data are the most
dangerous. Consider a networked environment where
monitoring information is being collected from distributed
locations across the system. A carefully coordinated attack
on a selected set of sensors could cause the analysis to
reach an inaccurate view of the state of the network, and
arrive at erroneous reactive decisions that may lead to
further deterioration of the system services.

Security attacks against the actuators could be far more
serious. If the actuators are compromised, the intruder will
have available a powerful tool to affect the entire system
state and thereby to perform malicious actions. For
example, malicious commands to the actuators could be
issued that caused nodes to shut down, data to be
corrupted, operating modes to be switched, or any similar
disruptive event.

The security implications of the monitoring-and-
response paradigm for survivability in critical information
systems are significant. This problem is especially
troublesome in the management of large network systems.
First, the scale and size of the systems suggest likely
heterogeneity in the technology and administration
employed in the system—some sites will be more easily
penetrated than others and securing each individual host
from the ground up is clearly not an option. Second, in
order to make timely non-local management decisions, it is
necessary to correlate and integrate local information. This
implies complex control mechanisms as well as inherent
difficulties in identifying corrupted security components.

4.2. A security architecture

Mindful of the problem description described above, in
this section we present an overview of our solution
approach.

Wherever possible, traditional security mechanisms can
be applied. For example, isolation of the survivability
mechanism is the starting point that we adopt. If the
survivability mechanism were isolated, then extreme
physical security and strict access controls could be used
to ensure secure operations.

However, complete isolation of the entire survivability
mechanism is impossible. The survivability mechanism
has to have access to the application system to both
monitor and respond. A recurring theme is that parts of the
survivability mechanism, i.e., the very system element that
detects errors (e.g., discovers security attacks) and
attempts error recovery, must execute in an untrustworthy
environment. The fact that various components of the
survivability mechanism itself could be the target of
security attacks raises the following questions:
• To what extent can this vulnerability be minimized by

isolation?
• To what extent can the elements of the survivability

mechanism that cannot be isolated be protected?
The analysis component of the survivability mechanism

can be isolated as can communication between the
analysis component and the sensing and actuating
components. In fact, everything but the initial data
collection performed by the sensing component and the
final action interface between the actuating component and
the application can be isolated. Thus, the answer to the
first question is quite straightforward—almost all of the
survivability mechanism can be isolated. Unfortunately,



what remains is crucial, and the serious vulnerabilities
outlined above remain. We turn now to the second
question and note that traditional techniques such as
encryption cannot be used for this particular problem
because in general code cannot be encrypted and because
the data has to reside in an untrustworthy environment
where keys cannot be protected.

Our approach to securing the sensors and actuators is
based on two concepts: one-way translation and the
extensive use of diversity. By one-way translation we
mean a compilation process that generates executable
programs that operate normally but which cannot be easily
reverse engineered to permit recreation of the source
program. By diversity we mean the use of components that
differ in some crucial aspect but are otherwise similar.

4.2.1. One-way translation. The goal with one-way
translation is to maximize the difficulty experienced in
trying to discover details of the source programs that could
have produced a given executable program when starting
with the executable program. That is, transformations are
applied at various stages of compilation to introduce
differences between the program’s source and binary
representations. If there are sufficient differences, then no
mapping from an executable program back to its original
source program can be established in a prescribed time
frame.

The role of one-way translation in securing the
survivability mechanism is to allow the executable form of
the sensing and actuating software to reside on
untrustworthy hosts yet for compromise not to be possible
in bounded time. Thus if an adversary is able to penetrate
the application node and copy the executable programs, he
or she will not be able to discover the information needed
to corrupt those programs within some prescribed time
limit. For example, if an adversary were to obtain the
source program for the sensing component and were able
to copy the executing program, he or she would have to be
able to locate specific buffers and code sequences in
memory in order to attack the control system via the
sensor. With one way translation, the claim is that this
could be made sufficiently difficult that it could not be
completed within some time bound.

A wide variety of techniques exist to introduce
complexity and variability into executable programs, some
of which are discussed in other studies [1] [4] [5] [12]. A
critical problem is that the introduction of variability that
is intended to reduce the possibility of analysis of the
resulting executable program must be shown to actually
achieve that reduction. Ad hoc techniques that “seem like
they ought to work” are not sufficient.

Some example semantics-preserving transformations
that can be applied include:
• Random placement

The compiler uses a randomized allocation algorithm
when generating addresses for variables and code.

• Random code selection
The compiler selects at random from different code
skeletons for the same source construct.

• Execution-time reordering
The execution-time system relocates code and data at
random times.

• Introducing concurrency
Parts of a program that are normally sequential are
transformed into a concurrent form.

• Introducing aliases
Aliases to variables and functions are introduced so
that access to a single address can always achieved
through any one of multiple pointers.

Each of the above can play a role in achieving one-way
translation. For each it is necessary to develop a model
that predicts the difficulty that the specific technique
introduces into the goal of defeating reverse engineering,
and this raises the question of how such modeling is done.

To illustrate the analysis, consider the last technique
listed—introducing aliases. Detection of aliases by static
analysis is known to be NP complete. By introducing it
deliberately into a program during compilation, and to do
so in large quantities, leaves an executable program that in
general cannot be analyzed without the expenditure of
unreasonable resources. In practice, additional work is
required to determine circumstances under which a useful
lower bound exists on the resources required for static
analysis.

To assess the performance of this (and other)
techniques, a source-to-source translator for C is being
developed. The translator introduces aliases at the source
level and the resulting program is then compiled normally.

4.2.2. Diversity. Diversity is an important engineering
technique in building dependable systems. For example, in
the design of an aircraft, spatial diversity is used in the
layout of hydraulic lines—each of the three redundant
hydraulic lines feeding control surfaces pass through
different parts of the fuselage and wings. This design helps
to ensure dependable operation by tolerating some
perturbations in the environment.

Incorporating diversity into the design of secure
systems helps to reduce vulnerabilities that arise from
uniform designs that include replicated flaws [8]. We
identify two forms of diversity—spatial diversity and
temporal diversity—that are beneficial in securing
software execution:
• Spatial Diversity

By spatial diversity we mean the deployment of
diverse software copies of security components over
different locations. This will mean that if one copy of
the component is compromised, the same attack might
not work on other components and that they will
remain functional. Spatial diversity is especially
important given that a large number of known security
attacks are based on exploitation of common software



and configuration flaws.
• Temporal Diversity

By temporal diversity we mean the deployment of
diverse software copies of security components over
time. This will mean that effort expended by an
attacker to penetrate a component will be ineffective
provided the component is changed before the attack
succeeds.

As an example, consider a survivability control system
in which the sensors are communicating status information
to the analysis engine, and assume that the status
information is encoded into a set of numerical
representations. If the mapping from status to numerical
representation differs from node to node, an observer
watching messages going across the network will not be
able to deduce easily what status is being reported. Even if
the adversary successfully compromises one mapping and
is then able to impersonate that particular sensor, he or she
will not be able to impersonate other sensors using the
same information.

Despite one-way translation and spatial diversity, an
intruder might eventually be able to deduce what the
program is doing and corrupt or impersonate the legitimate
sensors and actuators. This is analogous to the possibility
that encrypted information might eventually be revealed or
a password discovered by a brute-force attack. And in the
same way that information privacy is strengthened by
carefully changing encryption keys and passwords, control
system security can be improved by introducing temporal
diversity.

Temporal diversity in this case amounts to replacement
of the system elements that might have been compromised
with new versions based on different randomization. Thus,
for example, sensor and actuator binary programs can be
replaced with new instances that have been compiled
using different randomization keys in the one-way
translation process.

A technical challenge with such a mechanism is in the
seamless transition of one version of the executing
program to another. Since program replacement can
happen at arbitrary points during execution, it must be
possible to dynamically save and restore state information.
Several techniques for state save and restore have been
proposed in the literature. The prominent ones include
Ferrari’s Process Introspection [7] and Migration by
Recompilation [20], both of which involve the notion of
dynamic check pointing.

Furthermore, dynamic replacement of executable
programs must be a secure operation in the sense that there
must be a trustworthy path from the generation to the
delivery of the binary program. A careful authentication
mechanism needs to be in place for the monitored hosts to
authenticate the origin of the program binaries—it must
only originate from trusted sources, otherwise the recharge
mechanism will be itself a vulnerability that can be
exploited. Signing each binary with the trusted generator's
private key is a good start.

5. Experimentation System

Experimentation is a crucial element of research in
survivability. It is vital, for example, to the early
evaluation of novel survivability techniques.
Unfortunately, several factors present serious impediments
to experimentation. First, infrastructure systems are
privately owned. Second, they are, by definition, critical
from both business and societal perspectives. It is
inconceivable that their operators would permit
experimentation on them. Third, infrastructures are
enormous in physical scale, cost and complexity, and this
makes it infeasible to replicate them in the laboratory.

We have thus adopted an approach based on the use of
operational models of infrastructure systems as test-beds
for developing and evaluating prototype architectural
mechanisms for survivability. In this section we present an
overview of an experimentation system that permits a
wide range of representative models of critical
infrastructure systems to be built rapidly and made the
subject of experimentation. Provision is made within the
experimentation system for creation, manipulation, and
observation of models of infrastructure systems as well as
the introduction of architectural elements designed to
enhance survivability. The ability to develop and analyze
models and prototype survivability mechanisms rapidly is
an important aspect of the work because we wish to
explore a range of infrastructure applications and a variety
of architectural concepts efficiently.

Given the impediments to direct experimentation with
real infrastructures, we have adopted an experimental
approach based on operational models. By an operational
model, we mean a simplified version of the real system
that executes as the real system does—as a true distributed
system—but that provides only a restricted form of its
functionality. The goal for a given model is to have a
simplified laboratory version of the associated
infrastructure system that is made manageable by
implementing only relevant application functionality and
implementing only essential characteristics of the
underlying target architecture. Most infrastructure
applications, for example, are distributed and this is an
essential characteristic, although in most cases the
particular protocols used in the underlying network are
not. Thus for our purposes an operational model needs to
be truly distributed but it need not use any specific
network protocol.

Building operational models of critical infrastructure
information systems presents two significant challenges:
(1) modeling the critical and no other aspects of
infrastructure systems with sufficient accuracy and
completeness; and (2) facilitating inclusion in the model of
relevant architectural mechanisms to be developed or
evaluated. For purposes of experimentation, an operational
model has to represent relevant functional and
architectural features of a given system, as well as its



operational environment, including a dynamic model of
internal failures and external threats. Once such a model is
built, mechanisms must be present to allow prototypes of
architectural survivability mechanisms to be introduced.
Both models and architectural supplements must be
instrumented for collection of data needed to analyze and
evaluate survivability mechanisms.

Since for our purposes an operational model is a
distributed system, the experimentation system
implements distributed systems with arbitrary numbers of
nodes and arbitrary interconnections between nodes. The
basic communications paradigm that the experimentation
system provides is message passing. Thus, an operational
model within the described experimentation system is a
collection of concurrent computational nodes between
which messages of arbitrary complexity can be passed. In
reality, the nodes and their communication are provided by
a set of networked Windows NT workstations with a

prescribed association between nodes in the model and
physical computers.

Figure 2 provides an overview of the experimentation
system. Solid rectangles represent physical computers;
gray circles represent nodes in the model; and solid lines
between gray circles represent communications links.
Small white circles are proxy processes that act on behalf
of the manager, represented by the large white circle. The
manager provides an interface to control individual nodes
remotely so that, for example, nodes can be managed on
physically remote workstations. Each workstation
executes a proxy process to implement management
functions for the nodes on that workstation. “Data From
Model” is a mechanism for collecting data about the
operating model for display.

For purposes of experimentation, our system provides
the user with an efficient, easily manipulated operational
model of a distributed application with extensive control,

Windows NT Windows NT Windows NT

Figure 2. Experimentation system
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monitoring, and display facilities. It also includes
mechanisms for modifying the architecture of the system
(see below) to permit experimentation with a wide variety
of architectural concepts.

5.1. Building block for models

The experimentation system provides building blocks
that permit models to be built, executed with typical data
streams, observed, and controlled. The basic building
block (i.e., the gray nodes in Figure 2) is an executable
Windows NT process that we refer to as a virtual message
processor. A virtual message processor provide two basic
functions:
• A mechanism for interpreting messages.
• A mechanism for sending and receiving messages to

and from other virtual message processors.
Figure 3 depicts the general structure of a virtual

message processor. A virtual message processor maintains
a queue of incoming messages and a queue of outgoing
messages. Incoming messages are routed from the input
queue to programmable message interpreters. Any new
messages generated as a result of interpreting a received
message are placed in the output queue. Messages can be
generated asynchronously also if needed based on, for

example, a timer event.
A requirement that is especially difficult to satisfy is

the need to model both normal and alternate application
functionality. Clearly, no simple mechanism will allow
arbitrary functionality to be modeled. The way that the
experimentation system meets this requirement is to allow
explicit programming of message interpreters. Message
interpreters absorb a message destined for them and effect
whatever minimal processing is required to achieve the
required level of functionality. Naturally, message
interpretation often involves generation of new messages
for transmission elsewhere.

Virtual message processors provide network addressing
and message transmission at the model level to support
required communication structures. To accommodate
experimentation, messages to and from virtual message
processors can be configured in two ways—with direct or
indirect connection. Other nodes are unaware of how any
given node is connected.

With direct connection, the message traffic for any
particular virtual message processor is routed to and from
destinations and sources normally. With indirect
connection, all messages to and from that particular virtual
message processor pass through a “wrapper” that is not
part of the application functional model. Since the wrapper
can contain message interpreters for all messages, it

Figure 3. Virtual message processor structure
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provides a mechanism for transparent monitoring of all
application network traffic in which a virtual message
processor engages.

We refer to the interposed wrapper as a protection shell
since conceptually it is a shell around the target virtual
message processor. The target message processor cannot
communicate except through the shell. If the shell’s
message interpreters merely copy received messages to the
output, then the shell’s presence is entirely transparent.
However, since it can “see” all messages and process them
at the application semantic level, it can manipulate them in
any manner that is required. Minimally, it can monitor
message types and content, but more importantly, it can
synthesize information about the state of the virtual
message processor that it surrounds for use by higher
levels of control.

Finally, virtual message processors can transmit
messages to their own shells and vice versa (message are
just messages) thereby permitting any degree of state
communication that is desired. Thus shells can acquire and
also change any information about their subject
processor’s state.

5.2. Building operational models

Models are built by combining virtual message
processors in various ways. A model of a distributed
infrastructure application could be built using a virtual
message processor for each application node in the
network. The network topology is defined in a file using a
simple format that defines node addresses and
communication links. Each virtual message processor has
either a name or an integer address within the model and
network links can be specified between any pair of nodes.
Thus arbitrary network topologies are easy to specify, and
large models can be defined easily. Models are limited in
size mostly by available resources but the task of merely
defining a model for a large system is tedious and
therefore also a restriction. Our available resources permit
the creation of models with up to about 1,500 nodes in the
laboratory. Defining such models is simplified by a model
synthesis system that creates model descriptions from a
small set of model parameters (number of nodes, type of
topology required, maximum communication fan out, etc.)

Models can be executed on any available set of
workstations running Windows NT. Application nodes
and their interconnections in the model are mapped to
physical workstations by specifying a mapping from node
number to IP address. To enable more effective
performance studies of prototype architectural
survivability mechanisms, network connections in the
model are mapped to efficient low-level socket
connections.

Architectural supplements, such as superimposed
survivability control systems, are also built for the most
part using the same virtual message processors as building

blocks. These components provide the additional
computational facilities that the architecture requires.
Shells give the ability to insert an additional processing
step transparently into an otherwise active link between
two virtual message processors. This, coupled with the
ability of nodes to communicate by passing arbitrary
message types, provides all the necessary facilities for
interaction between model components and the
supplementary survivability architectural mechanisms to
be evaluated.

Modeling the environment requires supporting the
application system’s input and output requirements and
making provision for all types of faults. The virtual
message processor construct supports these requirements.
Virtual message processors model application input and
output by producing and transmitting appropriate
messages to application model nodes and by receiving and
processing their output messages.

Finally, the virtual message processor construct
supports control, display, and failure injection with
specialized messages. The manager and proxy processes
are merely virtual message processors that effect control
by message transmission. Failure injection is implemented
by sending messages from the manager to the virtual
message processors to be affected, which then interpret the
messages suitably. Thus, for example, node failures are
effected by the node ceasing to process messages after the
failure message is received.

6. An Example System

We illustrate some of the ideas discussed in this paper
using a critical application from the banking system (the
U.S. financial payment system) as an example. Our
selection of this particular application was based on its
absolutely crucial national significance—failure would be
catastrophic for the nation—and the consequent need to
defend it.

The goal for this particular activity was to explore a
survivability architecture in which a supplementary
hierarchical control system is used to react to widespread
failures of several types. This case addresses five critical
research issues: (1) the feasibility of distributed,
hierarchical control as a survivability architecture; (2) the
control algorithms required to respond to failures of
different types; (3) mechanisms that could be employed to
specify survivability control policies for the control
system; (4) the feasibility of detecting the errors resulting
from non-local faults; and (5) the utility, flexibility and
ease of use of the experimentation system.

6.1. Model architecture

The overall network structure in this model is a tree.
This is typical of the way banks are connected for payment
purposes, but our topology is strictly hypothetical. The



model includes four types of application node. The first is
a branch bank providing customer service. Such nodes
appear as leaf nodes in the tree. The second type of node is
a money center bank—essentially the primary information
center for a single commercial bank. A money-center bank
appears as an intermediate-level node in the tree, and has a
set of local banks as children. The third type of node
represents the Federal Reserve System and is the root of
the tree. Money-center banks are connected to the Federal
Reserve System. The fourth node is a transparent node that
merely acts to connect active nodes.

Needless to say, the information system that effects
payment in the United States is a very large network, and
we could not model this scale. Our current model is
composed of several hundred application nodes with
various numbers of money-center and branch banks. There
is a single Federal Reserve System.

The model of the Federal Reserve System includes a
primary server and a local hot spare that is permanently
synchronized with the primary server and is able to mask
failures of the primary. We also model a geographically
remote warm spare that mirrors the data held by the
primary. The warm spare is able to provide service to the
remainder of the network if the primary and hot spare fail;
but in order for it to do so the money-center banks must
reroute payment requests and wait for service to be
initialized. This model is representative of the availability
mechanisms actually used by the Federal Reserve System.

6.2. Application functionality

The application functionality we have implemented in
the model includes check processing and large electronic
funds transfers. Each payment demand includes typical
routing information—source bank, source account
number, and destination account number as well as the
payment amount. User’s bank accounts are held at the
branch banks and it is there that all payment requests are
made. A load generator creates random sequences of
payment demands that take the form of either a “check” or
an EFT request.

As in the real payment system, payment demands
below a certain threshold value are grouped together so
that funds transfers between money-center banks are
handled in bulk by the Federal Reserve System at
scheduled settlement times. Bulk funds received by a
money-center bank have to be dispersed through the
bank’s own network so that the correct value reaches each
destination account. This part of the application models
the processing of paper checks.

Transfers of funds where the value exceeds the
threshold value are effected individually and upon receipt
of the demand. This aspect of the application models large
EFT request processing. The two-tier approach to payment
processing is representative of the overall structure of the
real payment system.

6.3. Architectural supplement

The control systems architecture for this example is a
small, distributed system that is separate from the
application system. Protection shells that surround
application nodes undertake sensing the state of
application nodes and transmitting commands for
reconfiguration. To permit reconfiguration to be tailored to
different semantic levels in the application network
topology, the control system operates hierarchically with
lower levels supplying summary information to upper
levels to optimize control decisions.

For purposes of experimentation, the model
implements two extremely simple survivability policies
that are designed only to demonstrate and evaluate the
control-based survivability architecture and key aspects of
the experimentation system:
• Comprehensive Shutdown

This policy requires that the entire payment system be
shut down if any application node except the Federal
Reserve System fails. This is quite unrealistic of
course but its purpose is to permit experimentation
with hierarchic control.

• Federal Reserve Redirection
This policy requires that the entire payment system
switch to the use of the geographically remote warm
spare in the Federal Reserve System in the event that
the primary server and hot spare both fail.

In both of these policies the notion of failure is quite
general. For simplicity, we do not distinguish between
types of failure at this point. Thus “failure” might mean
physical damage or a security penetration.

None of the key services required by transaction
processing systems (such as two-phase commit protocols)
are provided by the modeling framework, nor are they
intended to be. The modeling of continued service that is
present in this example is at the level of system and
application management. Important issues such as
consistent recovery in distributed heterogeneous systems
are abstracted away. The focus is on monitoring and
control in large distributed systems. We assume that lower
level details are provided by the application. They could
be added explicitly as part of the application functionality
in a model built for a different research goal.

6.4. Error detection

Separately from the simple survivability policies
discussed in the previous section, we have studied the
issue of error detection for non-local faults. As an
example, we have studied the question of whether the
effects of a virus or worm that has infected large parts of a
network can be detected. A useful result of the facilities of
the experimentation system is that we have complete
control over the infection model, the detection semantics
within each node, the actual time at which events take



place, and the time at which the control system observes
any element of the erroneous state.

The question of interest is whether the presence of an
active virus in a network will create a detectable signature.

6.5. Model implementation

The topology of this model is defined entirely in a
specification in the experimentation system’s
configuration file. Application nodes are virtual message
processors and the application’s communications system is
implemented by links between virtual message processors.
The control system architecture model is also built with
virtual message processors.

The application functionality is implemented by small
sections of C++ source providing message interpretation
in the application nodes. The functionality implied by the
redundancy model for the Federal Reserve System is
achieved with a trivial amount of programming within the
application functionality.

For purposes of experimentation with this model we
defined a set of failure injection messages. These
messages can cause any group of nodes to fail either
concurrently, in a random pattern over a prescribed time
interval, or in a cascading fashion over time in which only
nodes connected to a failed node can fail. These failure
models provide a basis for research on architectural
mechanisms to detect and handle such occurrences in real
infrastructure systems.

6.6. Results

Our results obtained with this model are in three areas:
(1) the utility of the experimentation system; (2) the
performance of the experimentation system; and (3) the
feasibility of hierarchic control of network survivability
using the control system paradigm. In the first area, the
experimentation system supported development of the
model that we have described in all respects. Building of
the model was simple and its specification is short. The
facilities of the model, especially the pattern of use of
components, met all of our demands. We have built
several versions of the model quickly and incrementally.

To date we have assessed the runtime performance of
the experimentation system (as opposed to its support for
model construction) informally and only in the area of
runtime performance on a physical computer. On a
Pentium-based machine with 128 Mbytes of main memory
and a typical disk configuration, acceptable performance is
obtained with up to about 350 virtual message processors
running concurrently processing messages associated with
the payment-system model.

The model described here incorporates a preliminary
hierarchic control system that is designed to provide
significant survivability enhancement. Although no
performance quantification has been undertaken, the

model demonstrates the feasibility of non-local state
assessment and damage assessment coupled with a
hierarchic approach to state restoration, and continued
service. The latter is especially important since
survivability of large distributed applications will require
the following two activities to cope with major failures:
• Significant reconfiguration of the network’s topology

(state restoration) where different elements of the
reconfiguration are coordinated yet tailored to
different circumstances throughout the network.

• Substantially different alternative or reduced
applications (continued service) at different locations
based again on the different circumstances throughout
the network.

Finally, our studies of virus propagation in networks
have revealed behavior that was quite unexpected. For
example, the variation over different runs in the time
required to infect the entire network using the same
infection model varies by a factor of two in some
topologies. This along with related observations of
variability in other characteristics suggests that detection
of non-local viral attacks might be very difficult.

7. Conclusions

Survivability architectures offer a useful approach to
the provision of fault tolerance in critical information
systems. In particular they offer an approach to tolerating
faults in which the continued service element of fault
tolerance differs from normal service, i.e., the effects of
the fault are not masked. By introducing this type of fault
tolerance, progress can be made towards meeting the
survivability goals of critical infrastructure applications.

In practice, implementing survivability architectures
raises many issues that have to be dealt with before the
techniques can be applied. Particular issues that we have
started to address include application reconfiguration and
security of the survivability mechanisms.

A significant difficulty arises when the various
concepts involved in survivability architectures have to be
evaluated because experimentation with real systems is
precluded. Our approach to dealing with this problem is to
use operational models that can be built and studied in the
laboratory using an experimentation system that we have
developed.
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