
Goldschlag, D. M. \A Formal Model of Several Fundamental VHDL Concepts," Proceedings of the Ninth Annual Conference on Computer
Assurance (COMPASS '94), pages 177-181, Gaithersburg, Maryland, June 1994.

A Formal Model of Several Fundamental

VHDL Concepts

David M. Goldschlag�

Naval Research Laboratory

Abstract

This paper presents a formal model of several funda-
mental concepts in VHDL including the semantics of
individual concurrent statements, and groups of those
statements, resolution functions, delta delays, and hi-
erarchical component structuring. Based on this model,
several extensions to VHDL are proposed, including
nondeterministic assignments and unbounded asyn-
chrony. Nondeterminism allows the speci�cation of en-
vironments and of classes of devices. This model nat-
urally captures the meaning of composition of VHDL
programs.

1 Introduction

When de�ning a formal semantics for a programming
language, it is important to identify key concepts in
the language, develop a good formalization of those
concepts, and de�ne the rest of the language around
this formalization. Such an approach helps unify the
formalization e�ort, and provides insight into the key
semantic underpinnings of the language. Furthermore,
models of key concepts may suggests extensions to the
programming language which are consistent with its
current structure, yet increase its expressiveness and
utility.

This paper presents a formal model of several funda-
mental VHDL[10, 5, 8] concepts. VHDL is a DOD
standard hardware description language, which has
been gaining wide acceptance in the hardware design
community. It is notable for allowing text based de-
scriptions at many levels, from abstract behavioral
views of designs to gate level circuits which incorpo-
rate precise timing behavior. VHDL and the similar
hardware description language Verilog are based on the
notion of event driven simulation. VHDL is inherently
concurrent, and allows the speci�cation of hard real
time properties. The formalization device used here is
a translation to logic in the style of [6]. This approach
seems very well suited to the semantics of VHDL.

A formal semantics for a programming language is es-
sential for several reasons. If a language's semantics
are ambiguous, there is little hope that compilers, sim-
ulators, and other programming support tools from dif-

�Author's Address: Naval Research Laboratory, Code 5543,

Building 16, Room 241, 4555 Overlook Avenue, S.W., Washing-

ton, D.C. 20375-5337, e-mail: goldschlag@itd.nrl.navy.mil.

ferent vendors will be completely compatible. Further-
more, without a precise de�nition, users of a language
have no solid foundation upon which to analyze the
meaning of their programs. Finally, if one would like
to formally verify programs, a formal semantics is es-
sential.

This paper is organized in the following way. Section
2 presents an informal introduction, by means of an
example program, to the semantics of VHDL; this se-
mantics is formalized in section 3. More of the language
is formalized in section 4. Section 5 models VHDL's
hierarchical approach to programming. Section 6 pro-
poses several useful extensions to VHDL suggested by
the formal semantics presented here, including non-
deterministic assignments and unbounded asynchrony.
Finally, section 7 o�ers some concluding remarks and
comparison to related work.

2 An Informal Semantics

Consider the following fragment of a VHDL program:

x <= y + 1 after 10

(This program lacks the declarations for x and y, and
other syntactic sugar required in a real VHDL pro-
gram. The <= is VHDL's symbol for assignment.)

This program is composed of a single concurrent signal
assignment statement. This sort of statement is funda-
mental to VHDL. In this example, the signal x (signals
di�er from variables) is assigned a value one greater
than (the current value of) y after a delay of ten time
units. The time units used are not relevant.

As mentioned earlier, VHDL is an event driven simu-
lation language. This means that in each simulation
cycle, concurrent statements are only executed if the
signals that they depend on have changed since the
last simulation cycle. In this case, if y has changed,
the concurrent signal assignment statement computes
y + 1 and schedules signal x to get that value ten time
units later.

How is this scheduling accomplished? A signal, un-
like a simple variable, does not possess a simple value.
Rather, a signal's value is obtained from its driver
which is a set of (time, value) pairs called events;
the value of a signal at time t is the value component

177

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1994 2. REPORT TYPE

3. DATES COVERED
 00-00-1994 to 00-00-1994

4. TITLE AND SUBTITLE
A Formal Model of Several Fundamental VHDL Concepts

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Code 5543,4555 Overlook Avenue,
SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

5

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Goldschlag, D. M. \A Formal Model of Several Fundamental VHDL Concepts," Proceedings of the Ninth Annual Conference on Computer
Assurance (COMPASS '94), pages 177-181, Gaithersburg, Maryland, June 1994.

of the (time, value) pair where time is the great-
est time component not greater than t. An equivalent
view is that a driver represents how a signal's value
changes over time, and the value of the signal between
two changes is the previous change.

At the end of the simulation cycle, the current time
is increased to the time of the earliest next scheduled
event among all drivers for all signals. Time, therefore,
may increase by di�erent amounts after each simula-
tion cycle. The simulation cycle then repeats.

In this example, the statement implicitly waits for
changes to the signal y (i.e., the statement waits for
changes to any signal mentioned in the statement's
right hand side).

The other executable statement in VHDL is the con-
current process statement. This construct is a se-
quential set of signal assignment statements with an-
notations identifying where the sequential execution
suspends, and on which signals the statement subse-
quently waits. The concurrent signal assignment state-
ment is really a single statement instance of the con-
current process statement, where the waiting annota-
tion explicitly lists the signals on the assignment's right
hand side.

3 A Formal Model

Before developing the formal model, it is instructive to
make two observations:

� An important feature of signals is that an assign-
ment to a signal never a�ects that signal's value
during the current simulation cycle, so the evalu-
ation of concurrent statements may occur in any
order, or even simultaneously.

� Although the previous section stated that at the
end of a simulation cycle, time is increased to the
time of the earliest next scheduled event, such
large increases are done in one step for the sake
of e�ciency only. If time were increased by any
lesser amount, the next simulation cycle would
essentially be a skip operation, since no signals
would change.

A consequence of the second observation is that state-
ments are really nondeterministic. This means that
a statement may have multiple e�ects. For example,
time increases (by an arbitrary amount) but may not
skip the next event. Extending this insight further sug-
gests that an individual statement only restricts the
behavior of the signal being updated. All other signals
may be modi�ed in an arbitrary way. The behavior of
other signals are themselves restricted by other state-
ments in the program.

This approach suggests that signals not mentioned in a
program are free to change in arbitrary ways. Although
this is not how a VHDL simulator works, this view
is perfectly consistent with the semantics of VHDL,

since those (unmentioned) signals are not relevant to
the program's behavior. If two programs are composed
together (i.e., their concurrent process statements are
merged) each component restricts the behaviors of its
own signals. Signals from the environment should also
be constrained by programs describing the behavior of
the environment.

3.1 The Untimed Model

This approach may be more easily explained in the
context of an (imaginary) untimed version of VHDL,
which allows us to ignore both time and drivers. Con-
sider the following program fragment, with two con-
current signal assignment statements:

y <= x

x <= y

As a result of each simulation cycle, the signals y and
x swap values. The �rst concurrent signal assignment
statement may be translated to the following logical
formula:

y' = x

This formulameans that the value of y in the new state
(i.e., at the end of the current simulation cycle) will be
the old value of x. The concurrent signal assignment
to x may also be translated to:

x' = y

What formula captures the meaning of the program
containing both signal assignment statements? It is
the conjunction of the above two formulas:

y' = x
AND

x' = y

Each formula individually only restricts the behavior
of the primed signal; together they restrict the behav-
ior of both signals. In this formalization, conjunction
is the appropriate composition operator, since the ad-
dition of more program statements serves to restrict
the behaviors of the program. (The resulting program
is more determined.)

The conjunction describes the behavior of a single sim-
ulation cycle for this program. To model the next sim-
ulation cycle, the unprimed variables are updated with
the values of their primed counterparts, and the for-
mula is applied again.

VHDL does not permit multiple concurrent signal as-
signment statements which assign to the same signal,
unless one resolves the potential conict by introducing
resolution functions. Resolution functions are formal-
ized in section 4.2.

178

Goldschlag, D. M. \A Formal Model of Several Fundamental VHDL Concepts," Proceedings of the Ninth Annual Conference on Computer
Assurance (COMPASS '94), pages 177-181, Gaithersburg, Maryland, June 1994.

3.2 The Timed Model

A similar construction for VHDL must permit both
time and drivers. Consider the original program:

x <= y + 1 after 10

This formalization assumes the existence of a distin-
guished variable time which does not conict with the
names of any other state in the program. The transla-
tion is more complicated:

x' = IF has_changed(y, time) THEN
update_inertial(

x, value(y, time) + 1,
time, time + 10)

ELSE x
AND

time' > time
AND

time' � next_event(y', time)

Each concurrent statement in the program is translated
in this way; the semantics of the entire program is the
conjunction of the translations of each component.

Although this translation is signi�cantly more compli-
cated than the untimed model, the form of any trans-
lated concurrent signal assignment statement will be
similar. Each such formula will contain three con-
juncts, each contributing part of the semantics:

� The �rst conjunct speci�es how the driver for x
changes: if the value of y has not just changed at
time time, then the driver for x is unchanged as
well. If however, the value of y has just changed,
then the driver for x is updated with the new time
and value pair. (The driver is updated accord-
ing to the rules for inertial delays, the default in
VHDL, which will not be de�ned here.)

� The second conjunct states that time must in-
crease. But by how much?

� time may not become arbitrarily large. With re-
spect to this particular statement, time must not
skip the next scheduled event on the updated value
of y. Notice that y' is used instead of y. This is
because some other statement may schedule a new
future event on y during this simulation cycle, be-
fore the existing next event on y.

Notice that this conjunct works in concert with
similar conjuncts from the translation of other
statements. Taken together, timewill not increase
past the time of the next scheduled event among
all the drivers of all the signals which are depended
upon by statements in the program (as is required
in section 2).

In particular, one may ask whether this next event
on y would indeed have been the next event on y

once that future time is reached. The answer is
that if it is not, it is because some earlier statement
conspired to schedule an earlier event on y; so time
would have been increased to not greater than the
time of that earlier statement.

Finally, it is important to note that although the
two conjuncts about time guarantee that timewill
increase but will not increase too much, these two
conjuncts do not imply that timewill be set to the
time of the next scheduled event. Rather, time
may increase by some lesser amount. The next
simulation cycle would then essentially be a skip
operation, except that time will be increased fur-
ther. Ultimately, if time has non-Zeno behavior,1

time will increase to the time of the next sched-
uled event.

4 More VHDL

A good way to determine whether this formalization
is appropriate for VHDL is to see whether it is eas-
ily extended to formalize more of the language. This
section describes how to translate VHDL's delta delays
and resolution functions within the logical formalism.

4.1 Delta Delays

In addition to the delay on signals described above,
VHDL has a notion of a delta delay. An event which
is scheduled with a delta delay will occur in the very
next simulation cycle, before any previously scheduled
event. Delta delays are often used to approximate the
delays of gates within combinational circuits; some-
times, two VHDL designs are considered equivalent if
the signals have the same values when the circuit be-
comes quiescent (at non-delta delay times). Delta de-
lays are also used at higher levels of abstraction where
the designer wants to specify only causal behavior.

Delta delays can be modeled here by making time
into a pair, and using a lexicographic measure, as in
SDVS[2]. That is, time would have two components:
(real, delta).2 Delta delays increment the second
component by one; real delays increase the �rst com-
ponent and set the second component to zero. The
lexicographic measure comparing two times (t1, d1)

and (t2, d2) is:

(t1, d1) < (t2, d2) iff t1 < t2 OR

(t1 = t2 AND d1 < d2)

Delta delays allow the non-Zeno condition on time to
be violated, even if both components are non-Zeno.
A reasonable solution is to postulate the existence of
some maximum bound on the size of the delta compo-
nent and prove that it is consistent with some simula-
tion of the program.

1
time is required to have this property. Non-Zeno means that

if a value increases forever, it will approach in�nity. One easy

way to satisfy this requirement is to make time an integer.
2
real here does not imply that time is a real number.

179

Goldschlag, D. M. \A Formal Model of Several Fundamental VHDL Concepts," Proceedings of the Ninth Annual Conference on Computer
Assurance (COMPASS '94), pages 177-181, Gaithersburg, Maryland, June 1994.

4.2 Resolution Functions

The examples so far have considered signals which have
only one driver (i.e., each signal occurs on the left hand
side of only one signal assignment statement). Some-
times, a signal, like a bus or a wired or, might be driven
by several inputs, but it is not natural to state this
merger as a concurrent signal assignment statement in
VHDL. In these cases a resolution function is used.
A resolution function de�nes the value of the signal
in terms of its drivers. In this formalization, a resolu-
tion function can be formalized as an invariant between
driver values and the resolved signal. The invariant
would be conjoined to the translation of the rest of the
program.

5 Hierarchy

Hardware is often designed from components. These
components may contain internal state. When a com-
ponent occurs in several parts of the design, that inter-
nal state is not shared. This section presents a transla-
tion of VHDL components into logic, using the untimed
model for the sake of simplicity.

Consider the following program fragment representing
a bu�er component containing two concurrent signal
assignment statements:

internal <= input
output <= internal

This component links input and output signals by
means of an internal wire named internal. In prac-
tice, the signals input and output will be mapped to
external wires. The logical translation would be:

Lambda(input, output)(Exists internal ::

internal' = input
AND

output' = internal)

When this component is used, the Lambda expression
is applied to the external wires, thereby instantiating
the names input and output. Since the internal wire
is existentially quanti�ed, its name does not conict
with other wires. This component approach can be
used hierarchically to reuse components at any level of
nesting.

6 Extensions

This section proposes extensions to VHDL. Since this
formalization allows nondeterminism, both timing de-
lays and assignments can be made nondeterministic.
For example, using between instead of the modi�er
after to specify delays implies that the new event is
scheduled at some point in that interval. Consider a
variant on the earlier example:

x <= y + 1 between (5, 10)

This statement may be formalized in the followingway:

(Exists delay : 5 � delay � 10 :

x' = IF has_changed(y, time) THEN
update_inertial(

x, value(y, time) + 1,
time, time + delay)

ELSE x)

AND
time' > time

AND
time' � next_event(y', time)

Another extension allows unbounded delays:

x <= y + 1 later

This statement may be formalized in the followingway:

(Exists delay : delay > 0 :
x' = IF has_changed(y, time) THEN

update_inertial(
x, value(y, time) + 1,

time, time + delay)
ELSE x)

AND
time' > time

AND
time' � next_event(y', time)

The later modi�er speci�es that the event will hap-
pen at some unspeci�ed point in the future. later is
especially interesting since it uni�es the hard real time
schedules that VHDL can already handle with com-
pletely asynchronous, yet fair[3], systems.

Another extension allows nondeterministic assign-
ments. For example, VHDL cannot be used to generate
a completely arbitrary sequence of non-negative num-
bers. The following statement (in the untimed model)
would do so:

r in Nat

This would be translated as:

r' � 0

Other extensions may specify that signals are assigned
from smaller sets.

The main di�culty with these extensions is that the
resulting language is no longer simulatable. However,
these types of extensions permit the speci�cation of the
timing properties of classes of devices (or the permitted
tolerances in an implementation), and the speci�cation
of the expected environment of a system, and therefore
signi�cantly enhance the expressiveness of VHDL.

180

Goldschlag, D. M. \A Formal Model of Several Fundamental VHDL Concepts," Proceedings of the Ninth Annual Conference on Computer
Assurance (COMPASS '94), pages 177-181, Gaithersburg, Maryland, June 1994.

7 Conclusion

Several other researchers have been investigating the
formalization of VHDL. Russino�[9] has encoded an
operational semantics of the language on the Boyer-
Moore theorem prover[1]. Van Tassel[11] has devel-
oped a structured operational semantics for a sub-
set which has been embedded on the HOL theorem
prover[4]. Filippenko[2] is continuing to extend his for-
malization of VHDL within the SDVS system[7]. The
approach taken here is novel because it translates pro-
grams to logical relations, and shows that conjunction,
the restriction of the behavior of components, is a good
model for VHDL.

This paper presents a formal model of several funda-
mental concepts in VHDL, including: resolution func-
tions, delta delays, hierarchical component structur-
ing, and the concurrent signal assignment statement.
The collection of concurrent statements within a sin-
gle VHDL program, and in fact, the composition of
VHDL programs in general is easily modeled by the
conjunction of the translations of the components.

The same techniques introduced here may be used to
support a formalization of larger subsets of VHDL.
Concurrent parts of a program, be they signal assign-
ment or process statements, are combined by conjoin-
ing their translations.

This paper also presents several extensions to VHDL,
taking advantage of nondeterminism. Nondetermin-
ism allows the speci�cation of the behavior of environ-
ments, both with respect to their processing of data,
and their timing requirements. These extensions can
also be used to specify classes of devices, or the tol-
erances within which devices must perform. Although
such speci�cations are not simulatable, they are impor-
tant and cannot be currently stated within VHDL.

The ability to specify environments is crucial for formal
veri�cation. When a VHDL program is tested, a set
of test vectors is developed, each of which represent an
instance of the behavior of the program's environment
over time. For formal veri�cation, this environment
should itself be modeled by a program; the test vectors
should be possible simulations of that program.

The modeling of VHDL's hard real time properties
within this nondeterministic framework provides a sim-
ple means for unifying both bounded and unbounded
delays. Although this does not imply that unbounded
delays are really safety properties, being able to state
them within the same (timed) framework is surprising.

This formalization provides a foundation for a formal
semantics for VHDL, which could be used as a formal
standard for the language and could support formal
program veri�cation. The process of formalizing even
parts of the language provides useful insights about the
language too.

References

[1] R. S. Boyer and J S. Moore. A Computational
Logic Handbook. Academic Press, Boston, 1988.

[2] I.V. Filippenko. Vhdl veri�cation in the state
delta veri�cation system (sdvs). In P.A. Subrah-
manyam, editor, 1991 International Workshop on
Formal Methods in VLSI Design. Springer-Verlag,
1991.

[3] Nissim Francez. Fairness. Springer-Verlag, New
York, 1986.

[4] M. Gordon. Hol: A proof generating system for
higher-order logic. Technical Report 103, Univer-
sity of Cambridge, Computer Laboratory, 1987.

[5] IEEE. Draft Standard VHDL Langauage Refer-
ence Manual. IEEE, New York, 1993.

[6] Leslie Lamport. The temporal logic of actions.
Technical Report 79, DEC Systems Research Cen-
ter, 130 Lytton Avenue, Palo Alto, CA 94301,
1991.

[7] Leo Marcus. Sdvs 11 user's manual. Technical
report, The Aerospace Corp., 1992.

[8] Douglas L. Perry. VHDL, Second Edition.
McGraw-Hill, New York, 1994.

[9] David Russino�. A formalization of a subset of
vhdl. Technical report, ComputationalLogic, Inc.,
1993.

[10] DAS Subcommittee. IEEE Standard VHDL Lan-
guage Reference Manual, IEEE Std 1076-1987.
IEEE, Inc., New York, 1987.

[11] John Peter Van Tassel. Femto-VHDL: The Se-
mantics of a Subset of VHDL and its Embedding
in the HOL Proof Assistant. PhD thesis, Univer-
sity of Cambridge, 1993.

181

