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Navigation and Control of a Wheeled Mobile Robot1
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Abstract: Several approaches for incorporating nav-
igation function approach into different controllers are
developed in this paper for task execution by a non-
holonomic system (e.g., a wheeled mobile robot) in the
presence of known obstacles. The Þrst approach is a
path planning-based control with planning a desired
path based on a 3-dimensional position and orienta-
tion information. A navigation-like function yields a
path from an initial conÞguration inside the free con-
Þguration space of the mobile robot to a goal conÞg-
uration. A differentiable, oscillator-based controller is
then used to enable the mobile robot to follow the path
and stop at the goal position. A second approach is
developed for a navigation function that is constructed
using 2-dimensional position information. A differen-
tiable controller is proposed based on this navigation
function that yields asymptotic convergence. Simula-
tion results are provided to illustrate the performance
of the second approach.

1 Introduction

Numerous researchers have proposed algorithms to ad-
dress the motion control problem associated with ro-
botic task execution in an obstacle cluttered environ-
ment. A comprehensive summary of techniques that
address the classic geometric problem of constructing
a collision-free path and traditional path planning al-
gorithms is provided in Section 9, �Literature Land-
marks�, of Chapter 1 of [19]. Since the pioneering work
by Khatib in [13], it is clear that the construction and
use of potential functions has continued to be one of
the mainstream approaches to robotic task execution
among known obstacles. In short, potential functions
produce a repulsive potential Þeld around the robot
workspace boundary and obstacles and an attractive
potential Þeld at the goal conÞguration. A comprehen-
sive overview of research directed at potential functions
is provided in [19]. One of criticisms of the potential
function approach is that local minima can occur that

1This work is supported in part by two DOC Grants, an ARO
Automotive Center Grant, a DOE Contract, a Honda Corporation
Grant, U.S. NSF Grant DMI-9457967, ONR Grant N00014-99-1-
0589, and a DARPA Contract at Clemson University, and in part
by AFOSR contract number F49620-03-1-0381 at the University
of Florida.

can cause the robot to �get stuck� without reaching the
goal position. Several researchers have proposed ap-
proaches to address the local minima issue (e.g., see [2],
[3], [5], [14], [25]). One approach to address the local
minima issue was provided by Koditschek in [16] for
holonomic systems (see also [17] and [22]) that is based
on a special kind of potential function, coined a naviga-
tion function, that has a reÞned mathematical structure
which guarantees a unique minimum exists.

By leveraging from previous results directed at clas-
sic (holonomic) systems, more recent research has fo-
cused on the development of potential function-based
approaches for more challenging nonholonomic systems
(e.g., wheeled mobile robots (WMRs)). For example,
Laumond et al. [18] used a geometric path planner to
generate a collision-free path that ignores the nonholo-
nomic constraints of a WMR, then divided the geomet-
ric path into smaller paths that satisfy the nonholo-
nomic constraints, and then applied an optimization
routine to reduce the path length. In [10] and [11],
Guldner et al. use discontinuous, sliding mode con-
trollers to force the position of a WMR to track the
negative gradient of a potential function and to force
the orientation to align with the negative gradient. In
[1], [15], and [21], continuous potential Þeld-based con-
trollers are developed to also ensure position tracking of
the negative gradient of a potential function, and orien-
tation tracking of the negative gradient. More recently,
Ge and Cui present a new repulsive potential function
approach in [9] to address the case when the goal is non-
reachable with obstacles nearby (GNRON). In [23] and
[24], Tanner et al. exploit the navigation function re-
search of [22] along with a dipolar potential Þeld concept
to develop a navigation function-based controller for a
nonholonomic mobile manipulator. SpeciÞcally, the re-
sults in [23] and [24] use a discontinuous controller to
track the negative gradient of the navigation function,
where a nonsmooth dipolar potential Þeld causes the
WMR to turn in place at the goal position to align with
a desired orientation.

In this paper, two different methods are proposed to
achieve a navigation objective for a nonholonomic sys-
tem. In the Þrst approach, a 3-dimensional (3D)
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navigation-like function-based desired trajectory is gen-
erated that is proven to ultimately approach to the goal
position and orientation that is a unique minimum over
the WMR free conÞguration space. A continuous con-
trol structure is then utilized that enables the WMR to
follow the path and stop at the goal position and ori-
entation setpoint (i.e., the controller solves the uniÞed
tracking and regulation problem). The unique aspect
of this approach is that the WMR reaches the goal po-
sition with a desired orientation and is not required to
turn in place as in many of the previous results. As de-
scribed in [4] and [20], factors such as the radial reduc-
tion phenomena, the ability to more effectively penalize
the robot for leaving the desired contour, the ability to
incorporate invariance to the task execution speed, and
the improved ability to achieve task coordination and
synchronization provide motivation to encapsulate the
desired trajectory in terms of the current position and
orientation. For the on-line 2D problem, a continuous
controller is designed to navigate the WMR along the
negative gradient of a navigation function to the goal
position. As in many of the previous results, the orien-
tation for the on-line 2D approach requires additional
development (e.g., a separate regulation controller; a
dipolar potential Þeld approach [23], [24]; or a virtual
obstacle [9]) to align the WMR with a desired orienta-
tion. Simulation results are provided to illustrate the
performance of the second approach.

2 Kinematic Model

The class of nonholonomic systems considered in this
paper can be modeled as a kinematic wheel

úq = S(q)v (1)

where q(t), úq(t) ∈ R3 are deÞned as

q , [xc yc θ]T úq =
h
úxc úyc úθ

iT
. (2)

In (1), the matrix S(q) ∈ R3×2 is deÞned as follows

S(q) ,

 cos θ 0
sin θ 0
0 1

 (3)

and the velocity vector v(t) ∈ R2 is deÞned as

v , [vc ωc]
T (4)

with vc(t),ωc(t) ∈ R denoting the linear and angular
velocity of the system. In (2), xc(t), yc(t), and θ(t) ∈ R
denote the position and orientation, respectively, úxc(t),
úyc(t) denote the Cartesian components of the linear ve-
locity, and úθ(t) ∈ R denotes the angular velocity.

3 Control Objective

The control objective in this paper is to navigate a non-
holonomic system (e.g., a wheeled mobile robot) along
a collision-free path to a constant, goal position and
orientation, denoted by q∗ , [x∗c y∗c θ∗]T ∈ R3, in
an obstacle cluttered environment with known obsta-
cles. SpeciÞcally, the objective is to control the non-
holonomic system along a path from an initial position
and orientation to q∗ ∈ D, where D denotes a free con-
Þguration space. The free conÞguration space D is a
subset of the whole conÞguration space with all conÞg-
urations removed that involve a collision with an ob-
stacle. To quantify the path planning-based control
objective, the difference between the actual Cartesian
position and orientation and the desired position and
orientation, denoted by qd(t) ,[xcd(t) ycd(t) θd(t)]T ,

is deÞned as e (t) ,
£
÷x (t) ÷y (t) ÷θ (t)

¤T ∈ R3 as fol-
lows

÷x , xc − xcd ÷y , yc − ycd ÷θ , θ − θd (5)

where the desired trajectory is designed so that qd(t)→
q∗.

Motived by the navigation function approach in [16], a
navigation-like function is utilized to generate the de-
sired path qd(t). SpeciÞcally, the navigation-like func-
tion used in this paper is deÞned as follows

DeÞnition 1 Let D be a compact connected analytic
manifold with boundary, and let q∗ be a goal point in
the interior of D. The navigation-like function ϕ (q) :
D→[0, 1], is a function satisfy the following properties:

1. ϕ (q(t)) is Þrst order and second order differen-

tiable (i.e., ∂
∂qϕ (q(t))and

∂
∂q

³
∂
∂qϕ (q(t))

´
exist on

D).
2. ϕ (q(t)) obtains its maximum value on the bound-
ary of D.

3. ϕ (q(t)) has unique global minimum at q (t) = q∗.

4. If
°°° ∂
∂qϕ (q(t))

°°°2 ≤ εz, then kq (t)− q∗k ≤ εr with
εz, εr ∈ R being known positive constants.

5. If ϕ (q(t)) is ultimately bounded by ε, then
kq (t)− q∗k is ultimately bounded by εr with ε
∈ R being some known positive constant.

4 Online 3D Path Planner

4.1 Trajectory Planning
The 3D desired trajectory can be generated online as
follows

úqd = −ϕ (q)5 ϕ (q) + vr (6)
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where ϕ (q) ∈ R denotes a navigation-like function de-
Þned in DeÞnition 1, 5ϕ (q) ∈ R3 denotes the gradient
vector of ϕ (q), and vr (t) ∈ R3 is an additional control
term to be designed.

Assumption The navigation-like function deÞned in
DeÞnition 1 along with the desired trajectory gen-
erated by (6) ensures an auxiliary terms N (·) ∈
R3, deÞned as

N , ϕ (qd)5 ϕ (qd)− ϕ (q)5 ϕ (q) , (7)

satisfy the following inequality

kNk 6 ρ (qd, e) kek (8)

where the positive function ρ (·) is nondecreasing
in kqdk and kek. The inequality given by (8) will
be used in the subsequent stability analysis.

4.2 Model Transformation
To achieve the control objective, a controller must be
designed to track the desired trajectory developed in (6)
and stop at the goal position q∗. To this end, the uni-
Þed tracking and regulation controller presented in [7]
can be used. To develop the controller in [7], the open-
loop error system deÞned in (5) must be transformed
into a suitable form. SpeciÞcally, the position and ori-
entation tracking error signals deÞned in (5) are related
to the auxiliary tracking error variables w(t) ∈ R and
z(t) ,

£
z1(t) z2(t)

¤T ∈ R2 through the following
global invertible transformation [8] w
z1
z2

 ,
 −�θ cos θ + 2 sin θ −�θ sin θ − 2 cos θ 0
0 0 1
cos θ sin θ 0

  �x
�y
�θ

 .
(9)

After taking the time derivative of (9) and using (1)-(5)
and (9), the tracking error dynamics can be expressed in
terms of the auxiliary variables deÞned in (9) as follows
[8]

úw = uTJT z + f (10)

úz = u

where J ∈ R2×2 denotes a skew-symmetric matrix de-
Þned as

J ,
·
0 −1
1 0

¸
, (11)

and f(θ, z2, úqd) ∈ R is deÞned as
f , 2

£ − sin θ cos θ z2
¤
úqd. (12)

The auxiliary control input u(t) ,
£
u1(t) u2(t)

¤T ∈
R2 introduced in (10) is deÞned in terms of
v (t) , θ (t) , ÷x (t) , ÷y (t) , and úqd (t) as follows

u =

·
0 1
1 −÷x sin θ + ÷y cos θ

¸
v (13)

−
·
úθd
úxd cos θ + úyd sin θ

¸
.

4.3 Control Development
To facilitate the control development, an auxiliary error
signal, denoted by ÷z(t) ∈ R2, is deÞned as the difference
between the subsequently designed dynamic oscillator-
like signal zd(t) ∈ R2 and the transformed variable z(t),
deÞned in (9), as follows

÷z = zd − z. (14)

Based on the open-loop kinematic system given in (10)
and the subsequent stability analysis, we design u(t) as
follows [7]

u = ua − k2z (15)

where k2 ∈ R is a positive, constant control gain. The
auxiliary control term ua(t) ∈ R2 introduced in (15) is
deÞned as

ua =

µ
k1w + f

δ2d

¶
Jzd +Ω1zd , (16)

where the auxiliary signal zd(t) is deÞned by the follow-
ing differential equation and initial condition

úzd =
úδd
δd
zd +

µ
k1w + f

δ2d
+wΩ1

¶
Jzd

zTd (0)zd(0) = δ2d(0). (17)

The auxiliary terms Ω1(w, f, t) ∈ R and δd(t) ∈ R are
deÞned as

Ω1 = k2 +
úδd
δd
+w

µ
k1w + f

δ2d

¶
(18)

and
δd = α0 exp(−α1t) + ε1 (19)

respectively, k1, α0, α1, ε1 ∈ R are positive, constant
control gains, and f(θ, z2, úqd) was deÞned in (12). As
described in [8], motivation for the structure of (17) and
(19) is based on the fact that

kzdk2 = δ2d. (20)

Based on (9), e (t) can be expressed in terms of w (t),
÷z (t), and zd (t) as follows

e = R1

 w
÷z1
÷z2

+R2 · zd1zd2
¸

(21)

where R1 (·) ∈ R3×3, R2 (·) ∈ R3×2 are deÞned as fol-
lows

R1 ,

 1
2
cos θ − 1

2
zd2 sin θ − 1

2
(z1 sin θ + 2cos θ)

− 1
2
cos θ 1

2
zd2 cos θ

1
2
(z1 cos θ − 2 sin θ)

0 −1 0

 (22)

R2 ,

 1
2zd2 sin θ cos θ
−1
2zd2 cos θ sin θ

1 0

 . (23)
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Motivated by the subsequent stability analysis, the ad-
ditional control term vr (t) in (6) is designed as follows

vr = −k3ρ215 ϕ (qd)− k4ρ22 5 ϕ (qd) (24)

where k3, k4 ∈ R denotes positive, constant con-
trol gains, and the positive functions ρ1 (zd1, z1, qd, e),
ρ2 (zd1, z1, qd, e) ∈ R are deÞned as follows

ρ1 , ρ (qd, e) kR1k ρ2 , ρ (qd, e) kR2k (25)

4.4 Closed-loop Error System
After substituting (15) into (10), the dynamics for w (t)
can be obtained as follows

úw = uTa J÷z − uTa Jzd + f (26)

where (14) and the properties of J in (11) were utilized.
After substituting (16) into (26) for only the second
occurrence of ua(t), utilizing (20) and the properties of
J in (11), the Þnal expression for the closed-loop error
system for w(t) can be obtained as follows

úw = uTa J÷z − k1w. (27)

To determine the closed-loop error system for ÷z (t), we
take the time derivative of (14) and then substitute (10)
and (17) into the resulting expression to obtain the fol-
lowing expression

.
÷z=

úδd
δd
zd +

µ
k1w + f

δ2d
+wΩ1

¶
Jzd − u. (28)

After substituting (15) and (16) into (28), (28) can be
rewritten as follows

.
÷z=

úδd
δd
zd +wΩ1Jzd −Ω1zd + k2z. (29)

After substituting (18) into (29) for only the second
occurrence of Ω1 (t) and then canceling common terms,
the following expression can be obtained

.
÷z= −k2÷z +wJ

·µ
k1w + f

δ2d

¶
Jzd +Ω1zd

¸
. (30)

Since the bracketed term in (30) is equal to ua (t) de-
Þned in (16), the Þnal expression for the closed-loop
error system for ÷z (t) can be obtained as follows

.
÷z= −k2÷z +wJua. (31)

Remark 1 Based on the fact that δd (t) of (19) expo-
nentially approaches an arbitrarily small constant, the
potential singularities in (16), (17), and (18) are always
avoided.

4.5 Stability Analysis

Theorem 1 Provided qd (0) ∈ D, the desired trajec-
tory generated by (6) along with the additional control
term vr (t) designed in (24) ensures that qd(t) ∈ D and
kqd (t)− q∗k 6 εr. where εr is deÞned in DeÞnition 1.

Proof: Let V (t) ∈ R denote the following function
V = kV1 + V2 (32)

where k ∈ R is a positive constant, V1 (t) ∈ R denotes
the following function

V1 =
1

2
w2 +

1

2
÷zT ÷z (33)

and V2 (qd) : D → R denotes a function as follows

V2 (qd) , ϕ (qd) . (34)

After taking the time derivative of (33) and then sub-
stituting (27) and (31) into the resulting expression and
cancelling common terms, the following expression can
be obtained

úV1 = −k1w2 − k2÷zT ÷z. (35)

After taking the time derivative of (34) and utilizing
(6), the following expression can be obtained

úV2 (qd) = (5ϕ (qd))T úqd (36)

= − k5ϕ (qd)k2 ϕ (qd)
+ (5ϕ (qd))T N + (5ϕ (qd))T vr

where N (·) is deÞned in (7). Based on (8), úV2 (t) can
be upper bounded as follows

úV2 6 − k5ϕ (qd)k2 ϕ (qd) (37)

+ρ (qd, e) k5ϕ (qd)k kek+ (5ϕ (qd))T vr.
After substituting (21) into (37), the following inequal-
ity can be obtained

úV2 6 − k5ϕ (qd)k2 ϕ (qd) (38)

+ρ1 (zd1, z1, qd, e) k5ϕ (qd)k kΨ1 (t)k
+ρ2 (zd2, qd, e) k5ϕ (qd)k kzdk
+(5ϕ (qd))T vr

where the vector Ψ1 (t) ∈ R3 is deÞned as follows

Ψ1 (t) =
£
w, ÷zT

¤T
, (39)

and the positive function ρ1 (zd1, z1, qd, e) and
ρ2 (zd1, z1, qd, e) are deÞned in (25). After substi-
tuting (24) into (38), úV2 (t) can be rewritten as
follows

úV2 6 − k5ϕ (qd)k2 ϕ (qd)+ 1

k3

³
w2 + k÷zk2

´
+
1

k4
kzdk2 .
(40)
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Based on (35) and (40), the time derivative of V (t) in
(32) can be upper bounded by the following inequality

úV 6 −øk1w2 − øk2 k÷zk2 (41)

− k5ϕ (qd)k2 ϕ (qd) + 1

k4
kzdk2

where the positive constant øk1, øk2 ∈ R are deÞned as
follows

øk1 , kk1 − 1
k3

øk2 , kk2 − 1
k3
.

Case 1: If k5ϕ (qd)k2 6 εz, from the Property 4 in
DeÞnition 1, it is clear that

kqd (t)− q∗k 6 εr
Case 2: If k5ϕ (qd)k2 > εz, it is clear from (32), (33),
(34), and (41) that

úV 6 −²zV + ²F (42)

where ²z , min
©
1
k
øk1,

1
k
øk2, εz

ª
, and ²F , 1

k4
kzdk2 are

positive constants. Based on (42), V (t) can be upper
bounded as follows

V (t) 6 V (0) exp (−²zt) + ²F
²z
(1− exp (−²zt)) (43)

therefore
V (t) 6 V (0) + ²F

²z
. (44)

Based on (32), (34), and (44), it is clear that

ϕ (qd (t)) 6 ϕ (qd (0)) + k
µ
V1(0) +

²F
²z

¶
. (45)

If qd (0) is not on the boundary of D, ϕ (qd (0)) < 1.
Then k can be adjusted to ensure

ϕ (qd (0)) + k

µ
V1(0) +

²F
²z

¶
< 1. (46)

Based on (45) and (46), ϕ (qd (t)) < 1, hence qd (t) ∈ D
from DeÞnition 1. It is clearly from (43) that ϕ (qd) is
ultimately bounded by ²F

²z
. Therefore, if k5ϕ (qd)k2 >

εz, k4 can be adjusted to ensure ²F
²z
= ε, where ε is

deÞned in DeÞnition 1. Hence by the Property 5 in
DeÞnition 1, kqd (t)− q∗k is ultimately bounded by εr.
¤

Theorem 2 The kinematic control law given in (15)-
(19) ensures global uniformly ultimately bounded
(GUUB) position and orientation tracking in the sense
that

|÷x (t)| , |÷y (t)| ,
¯̄̄
÷θ (t)

¯̄̄
6 ε2 exp (−γ0t) + ε3ε1 (47)

where ε1 was given in (19), ε2 ,p
w2(0) + z21(0) + z

2
2(0), and ε3 and γ0 are posi-

tive constants.

Proof: Based on (33) and (35), úV1 (t) of (35) can be
upper bounded as follows

úV1 6 −2min
©
k1, k2

ª
V1. (48)

Based on (48), the following inequality can be obtained

V1 (t) 6 exp
¡−2min© k1, k2

ª
t
¢
V1 (0) . (49)

Based on (33), (49) can be rewritten as follows

kΨ1 (t)k 6 exp
¡−min© k1, k2

ª
t
¢ kΨ1 (0)k (50)

where the vector Ψ1 (t) is deÞned in (39).

From (33) and (49), it is clear that w (t) , ÷z (t) ∈
L∞. Based on (19) and (20), we can conclude that
zd (t) ∈ L∞. From (14) and ÷z (t) , zd (t) ∈ L∞, it
is clear that z (t) ∈ L∞. Since w (t) , z (t) ∈ L∞,
based on the inverse transformation from (9), e (t) ∈
L∞. Based on qd (t) ∈ L∞ from Theorem 1 and
e (t) ∈ L∞, it is clear that q (t) ∈ L∞. From (22)-
(25), qd (t) , zd (t) , z (t) , e (t) ∈ L∞, and the prop-
erties in DeÞnition 1, we can conclude that vr (t),
úqd (t) ∈ L∞. Based on (12) and q (t) , z (t) , úqd (t) ∈ L∞,
f (θ, z2, úqd) ∈ L∞. Then Ω1 (t) ∈ L∞ from (18). Then
u (t) , ua (t) , úzd (t) ∈ L∞ from (15)-(17). Based on the
fact that f (θ, z2, úqd) , z (t) , u (t) ∈ L∞, then (10) can
be used to conclude úw (t) , úz (t) ∈ L∞. It is clear from
úz (t) , úzd (t) ∈ L∞ that

.
÷z (t) ∈ L∞. Then standard

signal chasing arguments can be employed to conclude
that all of the remaining signals in the control and the
system remain bounded during closed-loop operation.

Based on (19), (20), (39), and (50), the triangle inequal-
ity can be applied to (14) to prove that

kzk 6 k÷zk+ kzdk (51)

6 exp
¡−min© k1, k2

ª
t
¢ kΨ1 (0)k

+α0 exp(−α1t) + ε1.
Utilizing (50)-(51), the result given in (47) can be ob-
tained from taking the inverse of the transformation
given in (9). ¤

Remark 2 Although qd (t) is a collision-free path, the
stability result in Theorem 2 only ensures practical
tracking of the path in the sense that the actual WMR
trajectory is only guaranteed to remain in a neighbor-
hood of the desired path. From (5) and (47), the follow-
ing bound can be developed

kqk ≤ kqdk+
√
3ε2 exp (−γ0t) +

√
3ε3ε1 (52)

where qd (t) ∈ D based on the proof for Theorem 1. To
ensure that q (t) ∈ D, the free conÞguration space needs
to be reduced to incorporate the effects of the second
and third terms on the right hand side of (52). To
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this end, the size of the obstacles could be increased
by
√
3 (ε2 + ε3ε1), where ε3ε1 can be made arbitrarily

small by adjusting the control gains. To minimize the
effects of ε2, the initial conditions w(0) and z(0) (and
hence, ÷x (0) , ÷y (0) , ÷θ (0)) could be required to be suffi-
ciently small enough to yield a feasible path to the goal.

5 Online 2D Navigation

In the previous approach, the size of the obstacles
is required to be increased due to the fact that the
navigation-like function is formulated in terms of the
desired trajectory. In the following approach, the navi-
gation function proposed in [22] is formulated based on
current position feedback, and hence, q (t) can be proven
to be a member of D without placing restrictions on the
initial conditions.

5.1 Trajectory Planning
Let ϕ (xc, yc) ∈ R denote a 2D position-based navi-
gation function deÞned in D that is generated online,
where the gradient vector of ϕ (xc, yc) is deÞned as fol-
lows

5ϕ (xc, yc) ,
·
∂ϕ

∂xc

∂ϕ

∂yc

¸T
. (53)

Let θd (xc, yc) ∈ R denote a desired orientation that is
deÞned as a function of the negated gradient of the 2D
navigation function as follows

θd , arctan 2
µ
− ∂ϕ
∂yc

, − ∂ϕ
∂xc

¶
(54)

where arctan 2 (·) : R2 → R denotes the four quadrant
inverse tangent function [26], where θd (t) is conÞned to
the following region

−π < θd 6 π.
As stated in [21], by deÞning θd|(x∗c ,y∗c ) =
arctan 2 (0, 0) = θ|(x∗c ,y∗c ), then θd(t) remains con-
tinuous along any approaching direction to the goal
position. See Appendix for an expression for úθd(t)
based on the previous continuous deÞnition for θd(t).

Remark 3 As discussed in [22], the construction of the
function ϕ (q(t)), coined a navigation function, that sat-
isÞes the Þrst three properties in DeÞnition 1 for a gen-
eral obstacle avoidance problem is nontrivial. Indeed,
for a typical obstacle avoidance, it does not seem pos-
sible to construct ϕ (q(t)) such that ∂

∂qϕ (q(t)) = 0 only
at q (t) = q∗. That is, as discussed in [22], the appear-
ance of interior saddle points (i.e., unstable equilibria)
seems to be unavoidable; however, these unstable equi-
libria do not really cause any difficulty in practice. That
is, ϕ (q(t)) can be constructed as shown in [22] such that
only a �few� initial conditions will actually get stuck on
the unstable equilibria.

5.2 Control Development
Based on the open-loop system introduced in (1)-(4)
and the subsequent stability analysis, the linear velocity
control input vc (t) is designed as follows

vc , kv k5ϕk cos ÷θ (55)

where kv ∈ R denotes a positive, constant control gain,
and ÷θ(t) was introduced in (5). After substituting (55)
into (1), the following closed-loop system can be ob-
tained ·

úxc
úyc

¸
= kv

·
cos θ
sin θ

¸
k5ϕk cos ÷θ. (56)

The open-loop orientation tracking error system can be
obtained by taking the time derivative of ÷θ(t) in (5) as
follows

.
÷θ= ωc − úθd (57)

where (1) was utilized. Based on (57), the angular ve-
locity control input ωc (t) is designed as follows

ωc , −kω÷θ + úθd (58)

where kω ∈ R denotes a positive, constant control gain,
and úθd(t) denotes the time derivative of the desired ori-
entation. See Appendix for an explicit expression for
úθd (t). After substituting (58) into (57), the closed-loop
orientation tracking error system is given by the follow-
ing linear relationship

.
÷θ= −kω÷θ. (59)

Linear analysis techniques can be used to solve (59) as
follows

÷θ(t) = ÷θ(0) exp(−kωt). (60)

After substituting (60) into (56) the following closed-
loop error system can be determined·

úxc
úyc

¸
= kv

·
cos θ
sin θ

¸
k5ϕk cos

³
÷θ(0) exp(−kωt)

´
.

(61)

5.3 Stability Analysis

Theorem 3 The control input designed in (55) and
(58) along with the navigation function ϕ (xc (t) , yc (t))
ensure asymptotic navigation in the sense that

|x (t)− x∗| , |y (t)− y∗| ,
¯̄̄
÷θ (t)

¯̄̄
→ 0 as t→∞. (62)

Proof: Let V3 (xc, yc) : D → R denote the following
non-negative function

V3 (xc, yc) , ϕ (xc, yc) . (63)
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After taking the time derivative of (63) and utilizing (1),
(53), and (56), the following expression can be obtained

úV3 = kv (5ϕ)T
·
cos θ
sin θ

¸
k5ϕk cos ÷θ. (64)

Based on the development provided in Appendix, the
gradient of the navigation function can be expressed as
follows

5ϕ = − k5ϕk £ cos θd sin θd
¤T
. (65)

After substituting (65) into (64), the following expres-
sion can be obtained

úV3 = −kv k5ϕk2 (cos θ cos θd + sin θ sin θd) cos ÷θ. (66)
After utilizing a trigonometric identity, (66) can be
rewritten as follows

úV3 = −g(t) (67)

where g(t) ∈ R denotes the following positive function

g(t) , kv k5ϕk2 cos2 ÷θ. (68)

Based on (53) and the property of the navigation func-
tion (Similar to the Property 1 of DeÞnition 1), it is
clear that k5ϕ (xc, yc)k ∈ L∞ on D; hence, (55) can be
used to conclude that vc (t) ∈ L∞ on D. Development is
also provided in the Appendix that proves úθd (t) ∈ L∞
on D; hence, (58) can be used to show that ωc (t) ∈ L∞
on D. Based on the fact that vc (t) ∈ L∞ on D, (1)-
(4) can be used to prove that úxc (t), úyc (t) ∈ L∞ on D.
After taking the time derivative of (53) the following
expression can be obtained

d

dt
(5ϕ (xc, yc)) =


∂2ϕ

∂x2c

∂2ϕ

∂yc∂xc
∂2ϕ

∂xc∂yc

∂2ϕ

∂y2c

· úxc
úyc

¸
.

(69)
Since úxc (t), úyc (t) ∈ L∞ on D, and since each element of
the Hessian matrix in (69) is bounded by the property
of the navigation function (Similar to the Property 1 of
DeÞnition 1), it is clear that úg(t) ∈ L∞ on D. Based
on (63), (67), (68), and the fact that úg(t) ∈ L∞ on D,
then Lemma A.6 of [6] can be invoked to prove that

k5ϕ (xc, yc)k2 cos2 ÷θ→ 0 (70)

in the region D. Based on the fact that cos2 ÷θ(t) →
1 from (60), then (70) can be used to prove that
k5ϕ (xc, yc)k → 0. Therefore the result in (62) can
be obtained based on the analysis in Remark 3. ¤

Remark 4 The control development in this section is
based on a 2D position navigation function. To achieve

the objective, a desired orientation θd (t) was deÞned
as a function of the negated gradient of the 2D navi-
gation function. The previous development can be used
to prove the result in (62). If a navigation function
ϕ (xc, yc) can be found such that θd|(x∗c ,y∗c ) = θ∗, then
asymptotic navigation can be achieved by the controller
in (55) and (58); otherwise, a standard regulation con-
troller (e.g., see [8] for several candidates) could be im-
plemented to regulate the orientation of the WMR from
θd|(x∗c ,y∗c ) → θ∗. Alternatively, a dipolar potential Þeld
approach [23], [24] or a virtual obstacle [9] could be uti-
lized to align the gradient Þeld of the navigation function
to the goal orientation of the WMR.

6 Simulation Results

To illustrate the performance of the controller given in
(55) and (58), a numerical simulation was performed
to navigate the WMR from q (xc (0) , yc (0) , θ (0)) to
q∗ (x∗c , y∗c , θ

∗). Since the properties of a navigation func-
tion are invariant under a diffeomorphism, a diffeomor-
phism is developed to map the WMR free conÞguration
space to a model space [17]. SpeciÞcally, a positive func-
tion ϕ (xc, yc) was chosen as follows

ϕ (xc, yc) =
(xc − x∗c)2 + (yc − y∗c )2³³

(xc − x∗c)2 + (yc − y∗c )2
´κ
+ β0β1

´1/κ .
(71)

where κ is positive integer parameter, and the bound-
ary function β0 (xc, yc) ∈ R and the obstacle function
β1 (xc, yc) ∈ R are deÞned as follows

β0 , r20 − (xc − xr0)2 − (yc − yr0)2 (72)

β1 , (xc − xr1)2 + (yc − yr1)2 − r21.
In (72), (xr0 , yr0) and (xr1 , yr1) are the centers of the
boundary and the obstacle respectively, r0, r1 ∈ R are
the radii of the boundary and the obstacle respectively.
From (71) and (72), it is clear that the model space is a
unit circle that excludes a circle described by the obsta-
cle function β1 (xc, yc). If more obstacles are present,
the corresponding obstacle functions can be easily in-
corporated into the navigation function [17]. In [17],
Koditschek proved that ϕ (xc, yc) in (71) is the naviga-
tion function for (xc (t) , yc (t)), provided that κ is big
enough. For the simulation, the model space conÞgura-
tion is selected as follows

xr0 = 0 yr0 = 0 r0 = 1
xr1 = 0 yr1 = 0.1 r1 = 0.15

where the initial and goal conÞguration were selected as

q (0) =
£
0.1 0.6 51.6

¤T
q∗ =

£ −0.2 −0.4 −40.1 ¤T .
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The control inputs deÞned in (55) and (58) were uti-
lized to drive the WMR to the goal point along the
negated gradient angle. The control gains kv and kω
were adjusted to the following values to yield the best
performance

kv = 0.3 kω = 17. (73)

Once the WMR reached the goal position, the regula-
tion controller in [8] was implemented to regulate the
WMR from θd|(x∗c ,y∗c ) → θ∗. The actual trajectory of
WMR is shown in Figure 1. The outer circle in Figure
1 depicts the outer boundary of the obstacle free space
and the inner circle represents the boundary around an
obstacle. The resulting position and orientation errors
for the WMR are depicted in Figure 2, where the rota-
tional error shown in Figure 2 is the error between the
actual orientation and goal orientation. The control in-
put velocities vc(t) and ωc(t) deÞned in (55) and (58),
respectively, are depicted in Figure 3. Note that the an-
gular velocity input was artiÞcially saturated between
±90[deg ·s−1].

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: Actual trajectory of the WMR.

7 Conclusions

Two approaches are developed to incorporate naviga-
tion function approach into different controllers for task
execution by a WMR in the presence of known obsta-
cles. The Þrst approach utilizes a navigation-like func-
tion that is based on 3D position and orientation in-
formation. The navigation-like function yields a path
from an initial conÞguration inside the free conÞgura-
tion space to a goal conÞguration. A differentiable,
oscillator-based controller is then used to enable the
mobile robot to follow the path and stop at the goal
position. Using this approach, a WMR was proven to
yield uniformly ultimately bounded path following and
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Figure 2: Position and orientation errors.
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Figure 3: Linear and angular velocity inputs.
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regulation to the goal point with an arbitrarily deÞned
goal orientation (i.e., the WMR is not required to spin
in place at the goal position to achieve a desired orienta-
tion). A second approach is developed that uses a navi-
gation function that is constructed using 2D position in-
formation. A differentiable controller is proposed based
on this navigation function. The advantage of this ap-
proach is that it yields asymptotic position convergence;
however, the WMR cannot stop at an arbitrary orien-
tation without additional development. Simulation re-
sults are provided to illustrate the performance of the
second approach.
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Appendix

Based on the deÞnition of θd (t) in (54), θd (t) can be ex-
pressed in terms of the natural logarithm as follows [26]

θd = −i ln


− ∂ϕ
∂xc

− i ∂ϕ
∂ycsµ

∂ϕ

∂xc

¶2
+

µ
∂ϕ

∂yc

¶2
 (74)

where i=
√−1. After exploiting the following identities [26]

cos (θd) =
1

2

³
eiθd + e−iθd

´
sin (θd) =

1

2i

³
eiθd − e−iθd

´
and then utilizing (74) the following expressions can be ob-
tained

cos (θd)= −
∂ϕ

∂xcsµ
∂ϕ

∂xc

¶2
+

µ
∂ϕ

∂yc

¶2 (75)

sin (θd) = −
∂ϕ

∂ycsµ
∂ϕ

∂xc

¶2
+

µ
∂ϕ

∂yc

¶2 . (76)

After utilizing (75) and (76), the following expression can
be obtained ∂ϕ

∂xc
∂ϕ

∂yc

 = −
sµ

∂ϕ

∂xc

¶2
+

µ
∂ϕ

∂yc

¶2 ·
cos (θd)
sin (θd)

¸
. (77)

Based on the expression in (74), the time derivative of θd (t)
can be written as follows

úθd =

·
∂θd
∂xc

∂θd
∂yc

¸ ·
úxc
úyc

¸
(78)

where

∂θd

∂xc
=

 −
∂ϕ

∂ycÃ
∂ϕ

∂xc

!2
+

Ã
∂ϕ

∂yc

!2
∂ϕ

∂xcÃ
∂ϕ

∂xc

!2
+

Ã
∂ϕ

∂yc

!2
(79)

·
·
∂2ϕ

∂x2c

∂2ϕ

∂xc∂yc

¸T

∂θd

∂yc
=

 −
∂ϕ

∂ycÃ
∂ϕ

∂xc

!2
+

Ã
∂ϕ

∂yc

!2
∂ϕ

∂xcÃ
∂ϕ

∂xc

!2
+

Ã
∂ϕ

∂yc

!2
(80)

·
·

∂2ϕ

∂yc∂xc

∂2ϕ

∂y2c

¸T
.

After substituting (1), (79), and (80) into (78), the following ex-
pression can be obtained

úθd =

 −
∂ϕ

∂ycÃ
∂ϕ

∂xc

!2
+

Ã
∂ϕ

∂yc

!2
∂ϕ

∂xcÃ
∂ϕ

∂xc

!2
+

Ã
∂ϕ

∂yc

!2
 (81)

·


∂2ϕ

∂x2c

∂2ϕ

∂yc∂xc
∂2ϕ

∂xc∂yc

∂2ϕ

∂y2c

 · cos θ
sin θ

¸
vc.

After substituting (55) and (77) into (81), the following expression
can be obtained

úθd = kv cos
³
�θ
´ £

sin (θd) − cos (θd)
¤

(82)

·


∂2ϕ

∂x2c

∂2ϕ

∂yc∂xc
∂2ϕ

∂xc∂yc

∂2ϕ

∂y2c

 · cos θ
sin θ

¸
.

By part 1 of DeÞnition 1, each element of the Hessian matrix

is bounded; hence, from (82), it is straightforward that úθd (t) ∈
L∞.
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