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1.0  Introduction 
 
 
Two of the major motivations for solving continuous problems on a 
quantum computer are: 
 
 

A. Many scientific problems have continuous mathematical              
      formulas. Examples of such formulations are:  
 

• Path Integration 
• Feynman-Kac path integration 
• Schrodinger equation 

 
 

  B. In their standard monograph, Nielsen and Chuang [1] state: 
“Of particular interest is a decisive answer to the                
problem whether quantum computers are more powerful than 
classical computers.”  To answer this question one must 
know the classical and quantum computational complexities. 

 
 
By computational complexity (complexity for brevity) is meant               
the minimal computational resources needed to solve a problem.   
Two of the most important resources for quantum computing are         
qubits and queries.  Classical complexity has been extensively    
studied in information-based complexity [2], [3]. 
 
The classical complexity of many continuous problems is known.            
Therefore, when the complexity of these problems is obtained, the 
question as to whether quantum computers are more powerful than 
classical computers can be answered.  Furthermore, it can be 
established how much more powerful.  In contrast, the complexity 
of discrete problems is typically unknown; one has to settle for 
conjectures about the complexity hierarchy.  For example, the 
classical complexity of integer factorization is unknown.  It is 
believed that the classical complexity of integer factorization is 
super-polynomial and that, therefore, Shor’s quantum algorithm for 
factorization is much faster, but there is no proof.  The reason 
why one can establish the complexity of continuous problems but 
has to settle for conjectures about the complexity hierarchy of 
discrete problems is discussed in [4]. 
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In this project, new algorithms and quantum speedups were obtained 
for a number of important problems such as path integration, 
eigenvalues of Hermitian operators, Feynman-Kac path integration, 
high dimensional approximation, and the Sturm-Liouville eigenvalue 
problem. 
 
It would be desirable to implement the new quantum algorithms on  
quantum computers.  Of course, at this time, only a few qubits are 
available.  Nonetheless, a variety of experiments have been 
carried out using available quantum computers, or by simulation. 
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2.0  Algorithms and Complexity 
 
2.1  Multivariate Approximation 
 
The study of quantum complexity, tractability, and strong 
tractability for multivariate approximation was initiated.  A 
space of functions important in many applications (technically 
this is called a Korobov space) was studied.  To report on this 
work a couple of concepts have to be reviewed.  A function space 
is "weighted" if certain variables are more important than others; 
the weights show the relative importance of the variables.  That 
is, the functions are non-isotropic. In an unweighted space, all 
variables are equally important; the functions are isotropic. 
 
A second major concept is that of strong tractability.  A 
multivariate problem is strongly tractable if its complexity is 
independent of the problem's dimension; the complexity depends 
only on the desired error. 
 
It is known that in the worst case setting on a classical computer 
the approximation problem is intractable (it suffers the "curse of 
dimensionality") for both unweighted and weighted Korobov spaces. 
 
There is good news and bad news for quantum computing.  The good 
news is that under a certain assumption on the weights this 
problem is strongly tractable on a quantum computer.  The bad news 
is that it remains intractable for unweighted spaces even on a 
quantum computer. 
     
See 2.2 for more results and a reference. 
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2.2  Multivariate Approximation Continued 
 
If the sum of a certain power of the weights is finite, then 
multivariate approximation is strongly tractable in both                   
quantum and randomized settings.  In the quantum setting, an 
algorithm with error at most E that uses only about d+log(1/E) 
qubits, where d is the number of variables, was designed.  Hence,  
there is only linear dependence on d and logarithmic dependence on 
1/E.   For many practical values of d and E the number of qubits 
is thus quite modest. 
 
The total cost of this algorithm is polynomial in 1/E and is 
roughly (1/E)^ (1 + r) times smaller than the randomized 
complexity of the approximation problem.  Here r is a positive 
parameter that depends on the weights and may be large.  This 
means that the speed-up of quantum over classical computers may  
be much larger than quadratic.  Quadratic speed-up has been 
established for a number of problems.  Hence, multivariate 
approximation is probably the first example of an important 
continuous problem for which quantum computation can lead to 
larger than quadratic speed-up over the classical worst case [30]. 
 
2.3 Path Integration 
 
Path integration on a quantum computer was studied.  Let E be the 
desired error. The main conclusions are:  Path integration on a 
quantum computer is tractable, and can be solved roughly l/E times 
faster than on a classical computer using randomization,  
and exponentially faster than on a classical computer with a 
worst case assurance.  The number of quantum queries is 
the square root of the number of function values needed on a 
classical computer using randomization.  The number of qubits  
is a low degree polynomial in 1/E [10]. 
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2.4  Error Bounds of Quantum Summation 
 
Error bounds on the quantum summation (QS) algorithm for other 
settings were studied.  The first such setting to be studied was 
the average, rather than worst, behavior of the QS algorithm.  For 
this setting a distribution was assumed.  One natural assumption 
is that all inputs are equiprobable.  Then there was a surprising 
result.  If M, the number of quantum queries, is divisible by 4, 
then the upper bound is of order min (1/M, q) where q = l/sqrt 
(N).  Of course, it can always be arranged that M is divisible by 
4, so this result holds without loss of generality.  If, on the 
other hand, it is assumed that all outputs (rather than inputs) 
are equiprobable, then the upper bound is of order 1/M [28] [16].   
 
 
2.5  Eigenvalue of Hermitian Operator 
 
Quantum mechanical problems offer great potential for quantum 
computers to achieve large speedups over classical machines.  An 
important problem of this kind is approximation of an eigenvalue 
of a Hermitian operator.  In a recent paper Abrams and Lloyd [5] 
presented a quantum algorithm for doing this.  Their algorithm is 
exponentially faster than the best classical algorithm, but 
requires a good approximation of an eigenvector as input.                  
It has been shown how to obtain such an approximation efficiently 
which is guaranteed to be good [17]. 
 
 
2.6 Universal Quantum Control 
 
The quantum state-space H encoding information decomposes into 
irreducible sectors and subsystems associated to the group of 
available evolutions.  If this group coincides with the unitary 
part of the group-algebra of some group K then universal control 
is achievable over K-irreducible components of H.  This general 
strategy is applied to different kinds of bosonic systems [37]. 
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2.7 Compiling Quantum Circuits 
 
No matter what technology will ultimately be used to implement 
quantum computers, the quantum circuit is most likely to remain 
the primary model for quantum computation.  A general purpose 
quantum compiler will require both technology-independent and 
technology-dependent optimization techniques.  Until a scalable 
quantum computer technology emerges, development is restricted 
to machine-independent techniques.  New algorithms for compiling 
arbitrary unitary matrices of order 2**m into efficient circuits 
of (m-1)-controlled single-qubit and (m-1)-controlled-NOT gates 
have been developed.  The Palindromic Optimization Algorithm 
significantly reduces the number of gates generated by the 
conventional method [14].   
 
 
2.8 Complexity of Quantum Summation 
 
Summation on a quantum computer is a basic part of the toolbox for        
computing path integrals, high-dimensional integrals, and high-
dimensional approximations.  A particular algorithm, the quantum 
summation (QS) algorithm of Brassard, Hoyer, Mosca and Tapp, which 
approximates the arithmetic mean of a Boolean function defined on 
N elements, is known to be optimal in the usual setting studied in 
quantum computation, the worst-probabilistic setting.  The  
QS algorithm has now been analyzed in the worst-average setting; 
that is worst with respect to all inputs and average with respect 
to all outcomes.  Assume M queries.  Using a number of repetitions 
which is independent of M, the upper bound on the QS algorithm is 
of order l/M.  Since the lower bound on the worst-average error of 
any algorithm is 1/M, the QS algorithm with repetitions is optimal 
in this setting. 
 
Since the complexity of summation on a quantum computer is of 
order l/M in both the worst-probabilistic and worst-average 
setting and the QS algorithm is optimal in both settings, what is 
the significance of the result?  In the worst-probabilistic 
setting (which is the standard setting of quantum computation) a 
good answer is guaranteed with probability p, with probability  
l-p, the answer can be arbitrarily poor.  In the worst-average 
setting, a good answer is guaranteed averaged over all outcomes 
[35].   
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2.9 Query Complexity 
 
Query complexity measures the amount of information an algorithm 
needs about a problem to compute a solution.  On a quantum 
computer there are different realizations of a query and it is 
shown that these are not equivalent. 
   
It was shown that a bit query can always approximate a phase query 
with just two queries, while there exist problems for which the 
number of phase queries which are necessary to approximate a bit 
query must grow exponentially with the precision of the bit  
query [32]. 
 
 
2.10 LDOS on a Quantum Computer 
 
An efficient quantum algorithm for estimating the local density of 
states (LDOS) on a quantum computer has been obtained.  The LDOS 
describes the redistribution of energy levels of a quantum system 
under the influence of a perturbation.  Sometimes known as the 
“strength function” from nuclear spectroscopy experiments, the 
shape of the LDOS is directly related to the survival probability 
of unperturbed eigenstates. For quantum systems that can be 
simulated efficiently on a quantum computer, the LDOS estimation 
algorithm enables an exponential speed-up over direct classical 
computation [34].           
 
 
2.11 Feynman-Kac Path Integral on a Quantum Computer 
 
Many phenomena in quantum chemistry or quantum physics require the         
calculation of the Feynman-Kac path integral.  Furthermore, the 
Feynman-Kac path integral formula can be used to solve the heat 
equation in d space variables.  Algorithms and complexity for 
Feynman-Kac integration in three settings:  classical worst case 
deterministic, classical randomized, and quantum were studied.  In 
the classical randomized and quantum settings the curse of 
dimensionality is broken.  In the classical randomized setting the 
complexity of computing an answer with error tolerance E is 
roughly (1/E)** 2, whereas in the quantum setting it is roughly 
1/E.  Thus the quantum complexity enjoys exponential speedup over 
the classical worst case and polynomial speedup over the classical 
randomized.  The quantum algorithm uses roughly (1/E) bit queries 
and log (1/E) qubits.  The logarithmic qubit dependence is 
particularly gratifying since qubits will be a scarce resource for 
the foreseeable future [38]. 
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2.12  Adiabatic Quantum Computation 
 
Adiabatic quantum computation is a technique in which one encodes 
the answer to a hard problem, such as an NP-complete problem, in 
the ground state of a simple Hamiltonian, then adiabatically 
deforming the Hamiltonian in to the one whose ground state encodes 
the answer to the problem.  One can also think of adiabatic 
quantum computation as an algorithm, in which one uses a quantum 
computer to simulate the adiabatic dynamics.  The key issue in 
adiabatic quantum computation is the size of the gap between the 
ground state and the first excited state.  If this gap does not 
become exponentially small during the course of the adiabatic 
process, then adiabatic quantum computation is efficient.  It was 
shown that ground state quantum computation has a gap that is only 
polynomially small (it goes as one over the length of the 
computation squared).  Accordingly, ground state quantum 
computation is efficient.  In addition, ground state quantum 
computation is immune to a variety of errors:  in particular, 
because the system remains in the ground state throughout, ground 
state quantum computation is resistant to the most common type of 
decoherence, decoherence in the energy eigenbases.  The 
possibility of constructing such adiabatic quantum computers using 
superconducting systems is being investigated [42] [43]. 
 
 
2.13 For Which Quantum Queries Can NP-Complete Problems Be Solved 
 
For which quantum queries can NP-complete problems be solved?  The 
power of quantum computation depends on the power of the permitted 
queries.  There has been much interest on whether NP-complete 
problems are solvable in polynomial time on a quantum computer.  
The goal is to investigate the use of more powerful queries than 
have been used in the past.  The queries under consideration are 
those used in the phase estimation algorithm.  These are referred 
to as power queries because they involve powers of a unitary 
matrix.  For some U, the j-th power can be implemented at polylog 
cost in j. This is the case for Shor’s algorithm.  How many power 
queries are needed to solve NP-complete problems? Here is a 
possible attack.  Perform a series of reductions as follows: 

 
• reduce SAT to quantum summation 
• reduce quantum summation to integration 
• reduce integration to the Sturm-Liouville eigenvalue 

problem (SLE) 
• solve SLE 

 



 9 

Note that a discrete problem, SAT, has been reduced to the 
continuous problem SLE. Preliminary research indicates that SLE 
can be solved by the phase estimation algorithm using power 
queries for the matrix U=exp(i(A+B)).  Here A is a tridiagonal 
matrix related to the quantum Fourier transform and B is diagonal.  
A is fixed; only B depends on the Boolean function specifying SAT.  
The intent is to show that the number of power queries for SAT 
will be polynomial in the number of variables of SAT.   Even if 
the number of power queries is polynomial, the cost of solving SAT 
depends on the cost of power queries.  To solve NP-complete 
problems in polynomial time, power queries in polylog time by 
digital or analog means will need to be computed.  For             
which diagonal matrices is this possible?  In particular, does 
this hold for B which encodes SAT? [47]   
 
 
2.14 Adiabatic Quantum Computation and Path Integration 
 
Significant progress was made relating adiabatic quantum 
computation to path integration.  It was shown that replica 
methods for spin glasses can be applied to calculate gaps for 
adiabatic quantum computing.  The results suggest that adiabatic 
quantum computation should be able to solve average case NP-
complete problems such as random 3-SAT or MAX Clique.  This result 
suggests that adiabatic quantum computing is a powerful technique 
for solving a wide variety of hard optimization problems [15]. 
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2.15 Randomized Quantum Query Setting and Exponential Qubit        
     Speedup 
 
A critical resource for the foreseeable future is the number of 
qubits.  Exponential improvement in the qubit complexity for 
important problems has been obtained.  This is achieved by 
introducing a new setting for quantum computation in which quantum 
queries are randomized.  This setting will be referred to as the 
randomized quantum query setting (RQQ).  This is the quantum 
counterpart of the randomized classical (Monte Carlo) setting.  
Note that the standard quantum setting uses deterministic queries 
and guarantees solutions with a certain probability.  Randomness 
only occurs during measurement.  In the standard setting it was 
shown earlier that a path integral could be computed with 1/E 
qubits and I/E queries.  Here E is the error threshold.  In the 
RQQ setting, path integration can be done with log (l/E) qubits 
and 1/E queries; there is exponential improvement in the number of 
qubits.  These results are best possible; the problems’ 
complexities are known [55] [4]. 
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3.0  Simulation and Implementation  
 
3.1 Implementation of Integration in Nuclear Magnetic Resonance
(NMR) Quantum Information Processing (QIP) 
 
An experimental protocol for implementing integration on an NMR 
quantum information processor was developed.  In particular:  
 
 
     A. investigated protocols for performing summation and                
        integration on 3 and 5 qubit NMR quantum information     
        processor, 
 
     B. devised robust pulse sequences to accomplish sequence of, 
        quantum logic operations without ex post facto fine tuning        
        of the sequences, 
 
     C. programmed a NMR simulator to investigate the  
        properties of different pulse sequences, 
 
     D. analyzed the effects of noise and decoherence                
        on integration algorithms. 
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3.2 Simulation of the Quantum Summation Algorithm 
  
The quantum algorithm of Brassard, Hoyer, Mosca and Tapp that is 
based on Grover’s quantum search algorithm was simulated.  There 
are two versions of this simulation.  The first one simulates all 
intermediate steps of the quantum algorithm whereas the second one 
simulates only quantum results before measurement.  Let N be the 
number of terms in the sum, the cost of the first simulation is 
roughly N(1/E)log(1/E), whereas the cost of the second simulation 
is much cheaper and is roughly equal to N+(1/E)log(1/E). 
 
 
3.3  Implementation of the Quantum Baker’s Map 
 
An experimental implementation of the quantum Baker’s map via a 
three qubit NMR quantum information processor has been completed.  
The experiments tested the sensitivity of the quantum chaotic map 
to perturbations.  These experiments can be used to investigate            
existing theoretical predictions for quantum chaotic dynamics [7]. 
 
 
3.4  NMR Implementation of a Quantum Lattice Gas Algorithm 
     
An ensemble nuclear magnetic resonance implementation of a 
quantum lattice gas algorithm for the diffusion equation was 
studied.   The algorithm employs an array of quantum information 
processors sharing classical information, a novel architecture 
referred to as a type-II quantum computer.  This concrete 
implementation provides a test example from which to probe the 
strengths and limitations of this new computation paradigm.  The 
NMR experiment consists of encoding a mass density onto an array 
of 16 two-qubit quantum information processors and then following 
the computation through 7 time steps of the algorithm.  The 
results show good agreement with the analytic solution for 
diffusive dynamics.  Numerical simulations of the NMR 
implementation are described. The simulations aid in determining 
sources of experimental errors and they help define the limits of 
the implementation [13].   
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3.5  Robust Control of Quantum Information 
  
Incoherent errors can be described, on average, by completely 
positive superoperators, but can nevertheless be corrected by the 
application of a locally unitary operation that “refocuses” them.  
They are due to reproducible spatial or temporal variations in the 
system’s Hamiltonian, so that information on the variations is 
encoded in the system’s spatiotemporal state and can be used to 
correct them.  Liquid-state nuclear magnetic resonance is 
used to demonstrate that such refocusing effects can be built 
directly into the control fields, where the incoherence arises 
from spatial inhomogeneities in the quantizing static magnetic 
field as well as the radio-frequency control fields themselves 
[21].   
 
 
3.6 Compensation of Decoherence with Bang-Bang Control 
 
With the growing efforts in isolating solid-state qubits from 
external decoherence sources, the origins of noise inherent to the 
material start to play a relevant role. The random walk of the 
qubit state on the Bloch sphere with and without bang-bang 
compensation by means of the stochastic Schroedinger equation was 
simulated. The analysis gives the effect of bang-bang control on 
the entire distribution.  Bang-bang control works as a high-pass 
filter on the spectrum of noise sources.  This indicates how the 
influence of 1/f-noise ubiquitous to the solid state world can be 
reduced [18]. 
 
 
3.7 Quantum Pseudo-Random Generators 
 
Random numbers play a key role in a variety of algorithms, notably 
Monte Carlo algorithms.  Similarly, random states and random 
unitary transformations are useful in quantum algorithms.  But 
true random numbers and random unitary transformations are hard to 
construct.  Consequently, classical Monte Carlo algorithms 
typically use pseudo-random “seeds” into long sequences of numbers 
that are “random enough”.  The quantum analog of pseudo-random 
number generators, small quantum circuits that perform pseudo-
random unitary transformations, were constructed.  Quantum pseudo-
random transformation generators were investigated both 
theoretically and experimentally.  It was shown that pseudo-random 
transformations were “random enough” for the purposes of 
investigating quantum chaos and generating entanglement.  Simple 
pseudo-random transformations on room-temperature NMR quantum 
information processors were implemented. 
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3.8 Single Spin Measurement 
 
A clean model for single spin measurement has been provided and 
the essential elements have been experimentally demonstrated
on a simplified system.  The model can be used to explore the 
challenges in applying this approach to a single spin, and gives 
the experimentalists a goal for coherent control.  It clearly 
shows that arrays of spins can be engineered to allow quantum 
information processing on pure, atomic systems (such as Si-29 
patterned in Si-28).  The significance of this effort is that it 
provides a quantum information based approach to measuring the 
state of a single spin.  This will eventually enable moving from 
an ensemble-based approach to quantum computing, to a single 
qubit, pure state approach [45] [46]. 
 
 
3.9 Experiments in Solid-State Simulation 
  
Additional experiments in solid-state quantum simulation produced  
results that show that coherent processes such as spin diffusion in 
solids can be highly enhanced by the presence of entanglement.  In 
addition, decoherence rates for highly entangled states in a 
variety of solid-state systems were investigated.  Highly 
entangled states decay significantly more slowly than predicted, 
suggesting the existence of previously unsuspected physical 
effects [40]. 
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4.0 Summary 
 
One of the goals of the project was to study the quantum speedup 
of important mathematical models.  In every case that was studied, 
there was significant quantum speedup.  For example, for path 
integration (see Section 2.3) there is exponential speedup over 
the classical worst case and polynomial speedup (that is, Grover-
type speedup) over the classical randomized case.  The important 
problem of approximating an eigenvalue of a Hermitian operator 
enjoys exponential quantum speedup (see Section 2.5).  
Multivariate approximation may enjoy polynomial quantum speedup of 
arbitrarily high degree (see Section 2.2). 
 
Two results with considerable promise were achieved recently: 
 
I. Its been shown by a series of reductions that SAT can be                
reduced to a one dimensional Sturm-Liouville eigenvalue problem 
(see Section 2.13).  This is a counter-intuitive result relating a 
famous discrete problem to a one-dimensional continuous one.  Does 
this imply that NP-complete problems can be solved on quantum 
computers?  There’s no question about the reductions; they’re 
solid.  However, to solve NP-complete problems in polynomial time, 
power queries would have to be computed in polylog time.  It is an 
open question whether this can be done. 
 
II. A fundamental proposition of quantum computing should be: 
 
 ANY COMPUTATION THAT CAN BE PERFORMED ON A CLASSICAL 
     COMPUTER CAN BE PERFORMED ON A QUANTUM COMPUTER. 
 
A problem was identified that can be solved on a classical 
computer using the Monte Carlo algorithm but cannot be solved on a 
quantum computer in the standard setting.  In the standard setting 
evolution is deterministic; only the results of a measurement are 
probabilistic.  A new setting has been introduced in which quantum 
queries are randomized (see Section 2.15).  In this setting the 
problem mentioned above can be solved.   
 
It must be stressed that this desirable result is due to the new 
setting and says nothing fundamental about the nature of quantum 
computing.  When path integration was studied in this setting an 
exponential reduction in the qubit complexity was obtained.  This 
is particularly important since the number of qubits is a critical 
resource for the foreseeable future.  This new setting merits 
further study.  
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Among the major accomplishments in the experimental portion of the 
project were the following: 
 
 

A. Developed and experimentally implemented algorithms for            
path integration and quantum simulation on both small-
scale liquid state NMR quantum information processors, and 
large scale solid state NMR quantum information 
processors. 

 
     B. Devised new designs and architectures for adiabatic                

quantum computation. 
 
     C. Devised theoretical analysis of the role of entanglement         
        in regular and chaotic quantum dynamics and performed  

   experimental tests on those analyses. 
 

     D. Designed and implemented quantum random transformation 
generators. 

 
     E. Developed the essential pieces for solid state approaches    

to QIP. 
 

     F. Showed the necessary control in large Hilbert spaces (up       
to ~60 spin coherences) and showed selective spin transfer 
between two dipolar coupled spins without leakage to other 
adjacent spins. 

 
 
A number of lessons were learned in the experimental work.  It was 
harder than expected to develop experimental continuous and hybrid 
quantum systems.  It was easier to harness solid-state NMR quantum 
information processors than expected as they turned out to be 
flexible enough to investigate the kind of entangled complex 
dynamics of interest. 
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5.0 List of Presentations  
 
S. Lloyd, Veridian Colloquium, Ann Arbor, MI, July 2001 
S. Lloyd, NRO, Chantilly, FA. August 2001 
H. Wozniakowski, The Australian National University, Canberra,            
   Australia, August 2001 
H. Wozniakowski, DARPA, Columbia University, NY,NY, September 2001 
J.F. Traub, Los Alamos National Laboratory, Santa Fe, NM, October  
   2001 
S. Lloyd, Solvay Conference, Delphi, Greece, November 2001 
H. Wozniakowski, QuIST, Dallas, TX, November 2001 
H. Wozniakowski, Oberwolfach, Germany, November 2001 
S. Lloyd, Department of Applied Mathematics, Cambridge, England,   
   December 2001                                                           
S. Lloyd, Hewlett Packard, Palo Alto, CA, February 2002 
H. Wozniakowski, Courant Institute, February 2002 
H. Wozniakowski,Department of Physics, Columbia University, NYC,  
   NY, March 2002 
H. Wozniakowski, DARPA, MIT, April 2002 
S. Lloyd, Hewlett Packard, Palo Alto, CA. July 2002 
H. Wozniakowski, FoCM, Minneapolis, MN, August 2002 
J.F. Traub and H. Wozniakowski,Los Alamos National Laboratory,  
   Santa Fe, NM, August 2002 
S. Lloyd and H. Wozniakowski, QuIST, Cambridge, MA, September 2002 
J.F. Traub, Carnegie Mellon University, Pittsburgh, PA, September   
   2002 
J.F. Traub and H. Wozniakowski, Hanscomb Air Force Research  
   Laboratory, September 2002 
S. Lloyd, Quantum Control Workshop, MIT, October 2002 
S. Lloyd, BES-AMOS Meeting, VA, October 2002 
J.F. Traub, Peking University, Beijing, PRC, October 2002 
J.F. Traub, Fudan University, Shanghai, PRC, October 2002 
J.F. Traub, University of Tokyo, Japan, October 2002 
S. Lloyd, Physics Colloquium, Washington University, St. Louis,   
   MO., November, 2002                
S.Lloyd, Physics Colloquium, University of Michigan, November 2002        
H. Wozniakowski, MCQMC 2002, Singapore, November 2002 
S. Lloyd, Lawrence Livermore National Laboratory, LLNL, CA.,  
   January 2003 
J.F. Traub, American Mathematical Society, Baltimore, MD., January  
   2003 
H. Wozniakowski, University of Goettingen, Germany, February 2003 
J.F. Traub, DARPA, MIT, March 2003 
S. Lloyd, Delft Technical Institute, Delft, Netherlands, May 2003 
D. Cory, Harper’s Ferry, June 2003 
D. Cory, Canadian Institute for Advanced Research, Baniff, Canada,  
   June 2003 



 18 

H. Wozniakowski, ICIAM 2003, Sydney, Australia, July 2003 
S. Lloyd, EQIS, Kyoto, Japan, September 2003 
S. Lloyd, Tokyo Institute of Technology, November 2003 
J.F. Traub, Santa Fe Institute, Santa Fe, NM, November 2003 
H. Wozniakowski,Australian Research Council, Melbourne, Australia,  
   November 2003     
S. Lloyd, NTT Quantum Information Conference, Amsterdam,  
   Netherlands, December 2003 
K. Svore, ERATO, Kyoto, Japan, December 2003 
J.F. Traub, University of New South Wales, Sydney, Australia,  
   December 2003 
S. Lloyd and J.F. Traub, Gordon Conference, Ventura, CA, February  
   2004 
S. Lloyd, RIKEN, Japan, February 2004 
J.F. Traub, Perimeter Institute for Theoretical Physics, Waterloo,  
   Canada, April 2004 
J.F. Traub, Toyota Institute, Chicago, IL., May 2004 
H. Wozniakowski, Monte Carlo International Conference, Juan-les-  
   Pins,France, June 2004 
S. Lloyd, Newton Institute Conference on Quantum Information,  
   Cambridge,UK, August 2004 
J.F. Traub, University of Rome, October 2004 
S. Lloyd and J.F. Traub, DARPA, Scottsdale, AZ, November 2004 
S. Lloyd, World Economic Forum, Davos, January 2005 
J.F. Traub, QIP, Cambridge, MA, January 2005 
H. Wozniakowski, The Australian National University, Canberra,  
   Australia, February 2005 
J.F. Traub, QuIST, St. Augustine, FL., April 2005 
S. Lloyd, Institute for Scientific Interchange, Torino, Italy,  
   June 2005 
H. Wozniakowski, FoCM, Santander, Spain June-July 2005 
S. Lloyd, ARDA/NSA Review, Tampa, FL., August 2005 
S. Lloyd, Kodak, Rochester, NY, September 2005 
S. Lloyd, International Center for Theoretical Physics, Trieste,  

France, October 2005    
H. Wozniakowski, Bedlewo, Poland, September 2005 
S. Lloyd, Rockefeller University, NY, NY, November 2005 
J.F. Traub, University of California, Berkeley, January 2006 
J.F. Traub, Google, January 2006 
J.F. Traub, Sun, January 2006 
J.F. Traub, California Institute of Technology, March 2006 
J.F. Traub, Jet Propulsion Laboratories, March 2006 
J.F. Traub, University of California,Santa Barbara, CA, March 2006  
J.F. Traub, University of California, San Diego, CA, March 2006 
J.F. Traub, NIST, Gaithersburg, MD, April 2006                            
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6.0 Inventions or Patent Disclosures 
 
The President of D-Wave Company visited Columbia.  The company is 
interested in our work on quantum algorithms for continuous 
problems. Columbia is applying for a patent on the Jaksch-
Papageorgiou method for finding a good initial eigenvector 
approximation to the Abrams-Lloyd quantum algorithm for 
approximation of a Hermitian operator. D-Wave wishes to use this. 

 
S. Lloyd is working with NEC to construct designs for 
superconducting quantum computers. 

 
D. Cory is working with Bruker Instruments to transfer development 
of active feedback for improved coherent control.  Progress has 
been made in defining the necessary electronics and showing 
significant improvement in performance. 

 
S. Lloyd is working with Hewlett Packard on design and 
implementation of quantum controllers. 
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7.0 Accolades and Awards 
 
S. Lloyd and D. Cory are members of the ARDA Quantum Computing 
Roadmap Committee. 

 
S. Lloyd and J.F. Traub were interviewed by Peter Schwartz as part 
of the DARPA/GBN study on quantum complexity. 

 
J.F. Traub is Editor-in-Chief, Journal of Complexity 

 
D. Corey is Editor-in Chief, Quantum Information Processing 

 
J.F. Traub is Chair of the Computer Science and Telecommunications 
Board (CSTB), National Academies 

 
J.F. Traub was a Member, Panel of Judges, NYC Mayor’s Award for 
Excellence in Science and Technology, 2001, 2003,2004 
 
J.F. Traub was interviewed by SIAM.  The oral interview was posted 
on the SIAM webpage, 2006 
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8.0 PhD Theses  
 
“Exploring Large Coherent Spin Systems with Solid State NMR” 
Hyung Joon Cho, MIT 
 
“Hydrodynamic Simulations of Spin Diffusion”, Daniel Greenbaum, 
MIT 
 
“Quantum Algorithms and Complexity for Certain Continuous and 
Related Discrete Problems”, Marek Kwas, Columbia 
 
“Achieving Reliable, Scalable, Fault-tolerant Quantum 
Computation”, Krysta Svore, Columbia 
 
“Quantum Chaos”, Yaakov Weinstein, MIT 
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