O-MaSE: A Customizable Approach to Developing
Multiagent Development Processes:

Juan C. Garcia-Ojeda, Scott A. DeLoach, Robby,
Walamitien H. Oyenan and Jorge Valenzuela

Department of Computing and Information Sciencemsas State University,
234 Nichols Hall, Manhattan, Kansas, USA.
{jgarciao,sdeloach,robby,oyenan,jvalenzu}@ksu.edu

Abstract. This paper describes the Organization-based MeltiadSystem
Engineering (O-MaSE) Process Framework, which hgpsess engineers
define custom multiagent systems development psesesO-MaSE builds off
the MaSE methodology and is adapted from the OPEMe&3s Framework
(OPF). OPF implements a Method Engineering appro&ch process
construction. The goal of O-MaSE is to allow designto create customized
agent-oriented software development processes. SEMansists of three basic
structures: (1) a metamodel, (2) a set of methoagnients, and (3) a set of
guidelines. The O-MaSE metamodel defines the keygepts needed to design
and implement multiagent systems. The method fraggnare operations or
tasks that are executed to produce a set of wariusts, which may include
models, documents, or code. The guidelines defave the method fragments
are related to one another. The paper also denabesttwo examples of
creating custom O-MaSE processes.

1. Introduction

The software industry is facing new challenges. iBesses today are demanding
applications that can operate autonomously, carptada response to dynamic
environments, and can interact with other applicati in order to provide
comprehensive solutions. Multiagent system (MAS3htelogy is a promising
approach to these new requirements [13]. Its cent®on — the intelligent agent —
encapsulates all the characteristics (i.e., autgnoproactive, reactivity, and
interactivity) required to fulfill the requirementemanded by these new applications.
In order to develop these autonomous and adapgsterss, novel approaches are
needed. In the last several years, many new presdss developing MAS have been
proposed [1]; unfortunately, none of these proceskave gained widespread
industrial acceptance. Reasons for this lack ofepizace include the variety of
approaches upon which these processes are basedlfiect-oriented, requirements
engineering, and knowledge engineering) and thie ¢dacComputer Aided Software
Engineering (CASE) tools that support the processoftware design. There have

1 This work was supported by grants from the US dtati Science Foundation (0347545) and
the US Air Force Office of Scientific Research (F258-06-1-0058)

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2007 2. REPORT TYPE 00-00-2007 to 00-00-2007
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

O-MaSE: A Customizable Approach to Developing M ultiagent
Development Processes

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
K ansas State Univer sity,Department of Computing and Information REPORT NUMBER
Sciences,234 Nichols Hall,Manhattan,K S,66506-2302

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 15
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

been some approaches suggested for increasinghtire of industry acceptance.
For instance, Odelet al. suggest presenting new techniques as an incremental
extension of known and trusted methods [14], wiBlernon et al. suggest the
integration of existing agent-oriented processés ane highly defined process [3].
Although these suggestions may be helpful in gaimiustrial acceptance of agent-
oriented techniques, we believe that a more promisvay is to provide more
flexibility in the approaches offered. The main lpgeon with these approaches is that
they do not provide assistance to process engimgef®w to extend or tailor these
processes. In this vein, Henderson-Sellers suggksetsise of method engineering
using a well-defined and accepted metamodel inrdaallow users to construct and
to customize their own processes that fit theirtipaliar approaches to systems
development [11]. Henderson-Sellers argues thatelfiping method fragments based
on a common underlying metamodel, new custom psasesan be created that
support user defined goals and preferences.

The goal of this paper is to present an overviewttd Organization-based
Multiagent System Engineering (O-MaSE) Process Ereonk. The goal of the O-
MaSE Process Framework is to allow process engn@econstruct custom agent-
oriented processes using a set of method fragmaht®f which are based on a
common metamodel. To achieve this, we define O-MafSteErms of a metamodel, a
set of method fragments, and a set of guidelinbs. J-MaSEmetamodel defines a
set of analysis, design, and implementation corscaptl a set of constraints between
them. Themethod fragments define how a set of analysis and design produetyg e
created and used within O-MaSE. Finaflyidelines define how the method fragment
may be combined to create valid O-MaSE processbghwve refer to as O-MaSE
compliant processes.

The rest of the paper is organized as follows. i8e@ discusses the background
material on O-MaSE. Section 3 presents a brief voger of the O-MaSE Process
Framework as defined by the proposed metamodehaddtagments, and guidelines.
Section 4 presents examples of two O-MaSE-compliestesses that can be used for
developing a simulated cooperative robotic systéimally, Section 5 concludes and
describes future work.

2. Background

One of the major problems faced by agent-orientéidvare engineering is the failure
to achieve a strong industry acceptance. One ofetagons hindering this acceptance
is a lack of an accepted process-oriented methggidior developing agent-based
systems. An interesting solution to this problerthis use of approaches that allow us
to customize processes based on different typeappfications and development
environments. One technique that provides such taned approach for the
construction of tailored methods is Method Engiireg[5].

Method Engineering is an approach by which process engineers coistruc
processes (i.e., methodologies) from a set of ndefregments instead of trying to
modify a single monolithic, “one-size-fits-all” press. These fragments are generally
identified by analyzing these “one-size-fits-alfopesses and extracting useful tasks
and techniques. The fragments are then redefingerins of a common metamodel

and are stored in a repository for later use. Teater a new process, a process
engineer selects appropriate method fragments ftmmrepository and assembles
them into a complete process based on projectnemgents [5].

However, the application of Method Engineering lve tdevelopment of agent-
oriented applications is non-trivial. Specificaltilere is no consensus on the common
elements of multiagent systems. Thus, it is hasnbseggested that prior to
developing a set of method fragments, a well-defimeetamodel of common agent-
oriented that are typical of most varieties of MgSg., adaptive, competitive, self-
organizing, etc.) should be developed [4].

Fortunately, we can leverage the OPEN Process vark OPF), which provides
an industry-standard approach for applying Methodiieering to the production of
custom processes [9]. The OPF uses an integratezhmodel-based framework that
allows designers to select method fragments fronepmsitory and to construct a
custom process using identified construction andortag guidelines. This
metamodel-based framework is supported by a ttagerischema as shown in Fig. 1.
The M2 layer includes the OPF metamodel, which geaeric process metamodel
defining the types of method fragments that camged in M1. Thus a process (such
as OPEN) can be created in M1 by instantiating oetiragments from the M2
metamodel.

OPF Process

M2 Metamodel

T instance of

OPEN Process

OPEN Metamodel, Method Fragments,
and Usage Guidelines

M1

T instance of

MO OPEN Process Instance

Fig. 1. OPEN Process Framework (adapted from [12])

The OPF metamodel consists of Stages, Work Unitstiities, Tasks, and
Techniques), Producers, Work Products, and LanguafyeStage is defined as a
“formally identified and managed duration withiretiprocess or a point in time at
which some achievement is recognized” [9, pp. S5ges are used to organizerk
Units, which are defined as operations that are cawoigdby aProducer. There are
three kindsof Work Units in OPF: Activities, Tasks, and Tedfunes.Activities are a
collection of Tasks.Tasks are small jobs performed by one or more Producers.
Techniques are detailed approaches to carrying out variousk3.droducers use
Techniques to create, evaluate, iterate, and nailt®rk ProductsWork Products
are pieces of information or physical entities proed (i.e., application, document,
model, diagram, or code) and serve as the inpugstbthe outputs of Work Units.
Work Productare documented in appropridtanguages.

The M1 layer serves as a repository of method fexgminstantiated from the M2
metamodel. A set of rules governing the relatiopdtetween these concepts (i.e., a
process-specific metamodel and a set of reusalleoohéragments) is also defined in
M1. Basically, the process engineer uses the gogelto extend, to instantiate, and
to tailor the predefined method fragments for d¢ngat custom process in the M1
layer. These custom processes are then instantattetie MO level on specific
projects; the actual custom process as enacted speeific project is termed a
process instance.

Alternatively, the FIPA (Foundation for Physical &gs) Technical Committee
(TC) methodology groupis working on defining reusable method fragmentsrider
to allow designers to specify custom agent-oriemsatesses [17]. Although this
approach is quite similar to OPF (they are botheBasn method engineering), its
metamodel is derived from the Object Managemenu@(®@MG) Software Process
Engineering Metamodel(SPEM). SPEM is based on three bgziocess elements
that encapsulate the main features of any developmcess: Activities, Process
Roles, and Work Products. Development processessammbled from a set of SPEM
Activities, which represent tasks that must be done. An HAgtiis essentially
equivalent to an OPF Work Unit and is performeddmg or moreProcess Roles
(which corresponds to OPF Producers). Process Rateg out the Activities in order
to produceWork Products (the same term is used here by SPEM and OPF)tallett
description of this metamodel and a comparison wither method fragment
proposals can be found in [6]. The next sectiou$es on using Method Engineering
and the OPF metamodel to specify O-MaSE.

3. O-MaSE Process Framewor k

In this section, we define the O-MaSE Process Fnarieas shown in Fig. 2, which
is analogous to the OPF from Fig. 1. In fact, we the OPF metamodel in level M2.
Level M1 contains the definition of O-MaSE in tt@rh of the O-MaSE metamodel,
method fragments, and guidelines. In the remaimdethe section, we present the
three components of the O-MaSE contained in the\Wd first describe the O-MaSE
metamodel followed by a description of the methiients obtained. Finally, we
discuss the guidelines that govern the construafdd-MaSE compliant processes.

3.1 Metamodel

The O-MaSE metamodel defines the main concepts seeto define multiagent
systems. It encapsulates the rules (grammar) of nisiation and depicts those
graphically using object-oriented concepts sucklasses and relationships [9]. The
O-MaSE metamodel is based on an organizationaloappr[7, 8]. As shown in Fig.
3, the Organization is composed of five entities: Goals, Roles, Agesmain
Model, and Policies. AGoal defines the overall function of the organizatiord &

2 See http://lwww.fipa.org/activities/methodology.htm
3 See http://www.omg.org/cgi-bin/doc?formal/2005H -

Role defines a position within an organization whoskaséor is expected tachieve
a particular goal or set of goals.

M2 OPF Metamodel

T instance of

0O-MaSE Process

M1
O-MaSE Metamodel, Method Fragments,
and Usage Guidelines
T instance of
0-MaSE Compliant
MO Process Instance

Fig. 2. O-MaSE Process Framewor k (adapted from [12])

Organization
Actor
——
participates-in <>
participates-in
External
Protocol
> Protocol
dk Policy
i <t org Domain ¢ uses
I
Goal <achleves— Role play Agent Agent Mode!
|
possesses
7
Internal responds | require: B
Protocol initiates Capability
Environment Environment
Object Property
relation
]

[]
Plan KC>—— Action

? I— interacts-with

Fig. 3. O-MaSE metamodel (adapted from [8])

Agents are human or artificial (hardware or software)itegg that perceive their
environment and can perform actions upon it. Ineori perceive and to act in an
environment, agents posse€apabilities, which define the percepts/actions the
agents have at their disposal. Capabilities camsdfe (i.e., algorithms or plans) or
hard (i.e., hardware related actior)ans capture algorithms that agents use to carry
out specific tasks, whiléctions allows agents to perceive or sense objects in the
environment. This environment is modeled using Dloenain Model, which defines
the types of objects in the environment and thatimis between them. Each
organization is governed by rules, which are fotyneaptured as Policies. Rolicy

describes how an organization may or not may behmagarticular situation.
Table1l. O-MaSE Method Fragments

Work Units
Activity Task Technique Work Producer Language
Products
Model Goals AND/OR N AND/OR
Requirement Decpmposﬂlon Goal Tree Goal Model
Engineering | Goal ';trgl:beugz:m o Refined oal Modeler
Refinement ; 99¢1 GmoDs
Analysis
Model Organization Natural
Organizationa Organizational Mogdel Organizational | languages, for
Intgrfaces Modeling Modeler textual
documents
Model Roles | Role Modeling | Role Model
Analysis Role Role Modeler | YML, for
Define Roles | Role DescriptigDescription specific models
Document
Model Traditional Domain . Agent-UML
Domain UML notation |Model Domain Expert -
Model Agent [5 1o oing |Agent Class [Agent Class O-MaSE specifiq
Classes 9 9] Model Modeler notation
Model Protocol Protocol Protocol
Protocol Modeling Model Modeler Eormal ‘
Plan Agent Plan anguage, for
Model Plan Specification Model Plan Modeler];Ogg;?flicaﬁon o
Design Model Policy . . :
Policies Specification Policy Model | Policy Modeler| ;S)rc;i):r:?es of the
Model Capability Capabilities | Capabilities Y ’
Capabilities | Modeling Model Modeler
Model Actions| Action Modeling| Action Model | Action Modeler
. _| Service Service Service
Model Service Modeling Model Modeler

3.2 Method Fragments

As mentioned above, the OPF metamodel defines §ta@géork Units, Work
Products, Producers, and Languages, which aretasmhstruct tailorable processes.
In our work, the initial set of method fragments derived from an extended version
of the MaSE methodology [5]. O-MaSE assumes aatitar cycle across all phases
with the intent that successive iterations will alddail to the models until a complete
design is produced. This nicely fits the OPRarative, Incremental, Parallel Life

Cycle model). Our current work focuses on analysis agigh. In O-MaSE, we have
identified three main activities: (1) requiremesmtsgineering, (2) analysis, and (3)
design. As shown in Table 1, we decompose eachvificinto a set of Tasks and
identify a set of Techniques that can be used ¢oraplish each Task. We also show
the different Work Products, Producers, and Langsaglated to the associated Work
Units. Due to the page limitations, we cannot désceach of these separately
However, to illustrate our basic approach, we dbsedhe details of the requirements
engineering activity.

In the Requirement Engineering activity, we seekanslate systems requirement
into system level goals by defining two tasktodel Goals andGoal Refinement. The
first focuses on transforming system requiremeniis & system level goal tree while
the second refines the relationships and attribfdeshe goals. The goal tree is
captured as a Goal Model for Dynamic Systems (GMoP$ The Goal Modeler
must be able to: (1) use AND/OR Decomposition artttitfute-Precede-Trigger
Analysis (APT) techniques, (2) understand the Sgdbescription (SD) or Systems
Requirement Specification (SRS), and (3) interadthwdomain experts and
customers. The result of these two tasks are an/@ROGoal Tree and GMoDS tree.

3.3 Guidelines

Guidelines are used to describe how the methodnieags can be combined in order
to obtain O-MaSE compliant processes. These guelelare specified in terms of a
set of constraints related to Work Units and Workdacts, which are specified as
Work Unit preconditions and postconditions. We faliy specify these guidelines as
a tuple(Input, Output, Precondition, Postcondition) wherelnput is a set of Work
Products that may be used in performing a work, Ubittput is a set of Work
Products that may be produced from the Work URrecondition specifies valid
Work Product/Producer states, aRdstcondition specifies the Work Product State
(see Table 1) that is guaranteed to be true aftaressfully performing a work unit (if
the precondition was true). To formally specify pmed postconditions, we use first
order predicate logic statements defined over tloekVProducts (WP) and Producers
(P), the Work Products states, and the iteratignafhd version rf) of the Work
Products.

Table 2. Work Product States

No. State Definition
1 inProcess() True if the work product is in praces
2 completed() True if the work product has beerskiad.
3 exists() exists() = inProcess() completed()
4 previouslteration() True if the work product’srition is any previous one
5 available() This state applies to producers atdowork products.

Figs. 4 — 8 illustrate a set of guidelines for & f& the Tasks defined in Table 1. Fig.
4 defines theModel Goals task. Inputs to the task may include tBgstems
Description (SD), theSystems Requirement Specification (SRS), theRole Description

4 A detailed description of the current set of O9&aTasks, Techniques, Work Products, and
Producers can be found at http://macr.cis.ksu.edl&SE/

Document (RD), or a previous version of ti@al Model (GM). Actually, only one of
these inputs is required, although as many as\aiable may be used. The inputs
are used by th&oal Model Producer (GMP) to identify organization goals. As a
result of this task, the Work ProdugM is obtained.

TASK NAME: Model Goals

Input Output | Precondition Postcondition
SD,SRS, | GM ((exists(<SD,n,m>)] exists(<SRS,n,m>) completed(<GM,n,m>)
RD,GM O exists(<RD,n,m>]J previouslteration(<GM>))

[available(GMP)

Fig. 4. Model Goal Task Constrains

Fig. 5 depicts the taskoal Refinement. Generally, this task only requires as input a
GM from the Model Goals task and produces a refa®bDS model.

TASK NAME: Goal Refinement
Input Output Precondition Postcondition

GM RG Completed(<GM,n,m>]] available(GMP) exists(<RG,n,m>)

Fig. 5. Goal Refinement Task Constrains

Fig. 6 shows the task Model Agent Classes, whicjuires as input &efined Goal
Modd (RG), anOrganization Model (OM), or aRole Model (RM). As output an
Agent Class Model (AC) is obtained. In the task, thagent Class Modeler (ACM)
identifies the types of agents in the systemCapability Model (CM) may also be
used as input because agents may be defined irs tefrrapabilities. However, the
CM is never sufficient or mandatory and thus isned as amptional input (it is not
part of the Precondition). Therotocol Model (PrM) may be useful in identifying
relationships between agents and thus, it is gitiomal.

TASK NAME: Model Agents Classes

Input Output | Precondition Postcondition

RG,RM, | AC (exists(<RG,n,m>)J exists(<RM,n,m>) completed(<AC,n,m>)
OM,AC, 0 exists(<OM,n,m>Y] exists(<SM,n,m>)

CM,PrM O previouslteration(<AC>)] available(ACM)

Fig. 6. Model Agent Classes Task Constrains

TheModel Plan task is defined in Fig. 7. The inputs can incladeG, RM, or an AC,
which allow thePlan Modeler (PIM) to define plans used by agents to satisfy
organization goals. In addition, a PrM, Action Mb@g&M), and CM are required as
input because such plans may require the interastith other entities using some
defined protocol.

TASK NAME: Model Plan

Input Output|Precondition Postcondition

RG,RM, [PIM |((exists(<RG,n,m>] exists(<AC,n,m>)) completed(<PIM,n,m>
AC,PrM, Oexists(<PrM,n,m>]] exists(<AM,n,m>)

AM,CM O previouslteration(<PIM>)J] available(PIP)

Fig. 7. Model Plans Task Constrains

Finally, the Model Protocol task is defined in Fig. 8. To document a PrM, the
Protocol Modeler (PrP) requires the RM and the AC or a previousiten of the

PrM. TheDomain Modd (DM), OM, and AM are optional inputs to this tagkpy
define actions that the agent may perform on enwirent objects, which can also be
modeled as interactions.

TASK NAME: Model Protocol

Input Output Precondition Postcondition

RM,AC, | PrM ((exists(<RM,n,m>Y] exists(<AC,n,m>)) completed(<PrM,n,m>
DM,OM 0 previouslteration(<PrM>))

AM O available(PrP)

Fig. 8. Model Protocol Task Constrains

4. WMD Search Example

Next, we present two examples of applying the O-El&& derive custom processes.
We combine O-MaSE method fragments to create awruprocess for a Weapon of
Mass Destruction (WMD) system in which agents detew identify WMD in a
given area. There are three types of WMD that canidentified: radioactive,
chemical, and biological. Once a suspicious objectound, it must be tested to
determine the concentration of radioactivity andrvae agents (chemical and
biological). If the object is indeed a WMD, it ismoved. The mission is successful
when the area has been entirely searched ancealVMD have been removed. In the
subsequent subsections, we present two custom gzexefor the WMD Search
application.

4.1 Basic O-M aSE Process

The first process we derive is appropriate for alsagent-oriented project in which
reactive agents achieve goals that have been assardesign time. Essentially, the
only products required for this type of system Hre system goals, agent classes,
agent plans, and inter-agent protocols. This tyfpgracess leads to a rigid MAS but
is very easy and fast to develop. This process atsy be suitable for prototyping,
where a simple and rapid process is needed.

Fig. 9 shows the result of applying O-MaSE guidedirto the creation of our
custom process. (Tasks are represented by rourdtahgles while Work Products
are represented by rectangles.) The Work Produssscéated with the products
identified above are included, along with the Taslquired to produce them. (We do
not show the Producers to simplify the figure, but assume the appropriate
Producers are available.) Connections between TasttNork Products are drawn
and the preconditions and postconditions of eadk Bae verified. Each Task will be
discussed below:

Model Goals/Goal Refinement. From the System Description, the Goal Modeler
defines a set of system level goals in the forraroAND/OR goal tree. The AND/OR
tree is refined into a GMoDS goal tree as showhRign 10. The syntax uses standard
UML class notation with the keywordGoals. The aggregation notation is used to
denote AND refined goals (conjunction), whereasdblreralization notation is used
to denote OR refined goals (disjunction). GMoDS siednclude the notion of goal

precedence and goaltriggering [7]. A precedes determines which goals must be
achieved while d@rigger relation signifies that a new goal may be insttetl when a
specific event occurs during the pursuit of thetheogoal. Fig. 10 captures a goal-
based view of the system operation.

Requirements

Model Agent Classes

Agent Class Model }%(Model Protocol)

NP N2
(Model Plan >é{ Protocol Model ‘

Agent Plan Model

Fig. 9. Basic O-MaSE Process

<<Goal>>
0. WMD
Search
<<Goal>> <<Goal>>
oal
N 2. Remove
1. Find WMD WMD
/«/?\)\ ——
<<Goal>> found(location <<Goal>>
1 1<[<>S/i?f:>A>rea 1.2 Search 1.3 Identify _
: Area Suspicious Object | WMD_detected(location)
area location
k search(area) A\
<<Goal>> <<Goal>> <<Goal>>
1.3.1 Check for 1.3.2 Check for 1.3.3 Check for
Radioactive weapon chemical weapon biological weapon
location location location

clear(location) j\ Lclear(location) ﬂ\

Fig. 10. AND/OR Goal Model

Model Agent Classes. The purpose of this task is to identify the typeagents in the
organization and to document them in an Agent Chdsslel (Fig. 11). In our

example, agents are defined based on the goalscregchieve and the capabilities
they possess as specified by #aehieves and«possesseskeywords in each agent
class (denoted by theAgent> keyword). Protocols between agent classes are
identified by arrows from the initiating agent da® the receiving agent class. The
details of these protocols are specified lateheModel Protocols task.

<<Agent>> <<Agent>>
WMD_Agent_1 WMD_Agent_2
Object_found(location) i
<<achieves>> Search Area - <<achieves>> Search Area
<<achieves>> Check for Radioactive Weapon <<achieves>> Check for Chemical Weapon
<<possesses>> Search_Plan no_detection(location) _ | <<possesses>> Search_Plan
<<possesses>> Radioactive_Detect_Plan P <<possesses>> Chemical_Detect_Plan
A s _ A
o f= —~
S S €
= 7 2
[} o ©
2 S 3}
H H £
] g g g -
g g :
s 2 I 3 s
I [a} a | =
9 s s o g
n Sy Sy 3
n
<<Agent>>
WMD_Agent_3
<<achieves>> Divide Area
<<achieves>> Check for Biological Weapon
<<achieves>> Remove WMD

<<possesses>> Divide_Area_Plan
<<possesses>> Biological_Detect_Plan
<<possesses>> Remove_WMD_Plan

Fig. 11. Agent Class Model

Model Protocol. The Model Protocol task defines the interactionsvben agents.
For example, Fig. 12aptures thaMMD_detected protocol where WMD_Agent_1,
(who is pursuing theCheck for Radioactive Weapon goal) detects a WMD and
notifies WMD_Agent_3 (who is pursuing tfikemove WMD goal). The notification is
done by sending detected message with thiocation as parameter. Upon reception
of this message, an acknowledgment is returned.

WMD_detected J
‘ WMD_Agent_1 : Initiator ‘ ‘WMD_Agent_s : Participant

I 1

. !
: detected(location) -
| |
\ ack]
1 |
| |
X !

Fig. 12. Protocol M odel

Model Plan. The Model Plan task defines plans that agentsfallow to satisfy the
organization’s goals. To model this, we use firstate automata to capture both
internal behavior and message passing between sagéig. 13 shows the
Radioactive_Detect Plan possessed by WMD_Agent_2 to achieve @ieck For

Radioactive Weapon goal. The plan uses the goal parameter, locagsninput.
Notice that, a plan produced in this task shouldespond to all related protocols.

' Init | [succ] ' Ready | [succ] ' Check I
succ = goto(location) succ = activateSensors() value = measureRadioactivity()

[not succ] / failure()

[not succ] / failure()

[value >= thrshold] lvalue < thrshold]

trigger(WMD_detected(location))

. Done
DeactivateSensors()

Fig. 13. Plan M odel

4.2 Extended O-MaSE Process

To produce a more robust system that adapts togelsaand internal failures, it is
necessary to have a process that can produceaddiinformation such as roles and
policies. Roles define behavior that can be assigned to varioestagvhilepolicies
guide and constrain overall system behavior. Toomenodate such a system,
additional Tasks must be introduced into the predesproduce a Role Model and a
Policy Model. This type of process will allow desé to produce a flexible, adaptive,
and autonomous system. Fig. 14 shows the custooegs for this example. Below,
we briefly discuss the added tasks.

Model Roles. The Model Roles task identifies the roles in thgaaization and their
interactions. Role Modelers focus on defining rakest accomplish one or more goals
For example, each role in the Role Model shownim E5 achieves specific goals
from Fig. 10; to do this, each role also requingscific capabilities.

Model Policy. The Model Policy task defines a set of formally Gfsed rules that
describe how an organization may or may not beaparticular situations [10]. For
example, a policy “An agent may only play one raie time” can be translated as

O al,a2:agent, r:role | al.plays(rl) O al.plays(r2) - ril=r2

5. Conclusions and Future Work

In this paper we have presented the O-MaSE Prdé@rassework, which allows users
to construct custom agent-oriented processes froreetaof standard methods
fragments. The main advantages of our approachais (1) all O-MaSE fragments
are based on a common metamodel that ensures thwdn&agments can be
combined in a coherent fashion, (2) each methaghfemt uses only concepts defined
in the metamodel to produce work products thathmunsed as input to other method
fragments; and, (3) the associated guidelines mingtow method fragments may be

combined in order to assemble custom O-MaSE comipfieocesses that produce an
appropriate set of products without producing uessary products.

Requirements

PN
Protocol Model

Policy Model

Agent Class Model

Model Plan

Agent Plan Model

Fig. 14. Extended O-MaSE Process

Although we believe the O-MaSE is headed in thehtridirection with this
approach [11], there is a considerable additionadkvthat must be done in order to
create a process amenable to industrial applicafiarst, although the O-MaSE
metamodel covers the most basic MAS concepts (iagents, interaction,
organization, and interactions), there are otheentgriented methods and
metamodels that deserve further study in orderdptwre all the main concepts
associated with other MAS approaches [2]. We argently studying several
metamodels to determine how to integrate their hoeacepts into the O-MaSE
metamodel. Second, we are currently working on hovinclude software metrics
into O-MaSE. The aim of these metrics is to preétS performance at the analysis
and design level [15]. Third, we are continuindgdamalize our process guidelines in
order to avoid ambiguities between the metamodelthe method fragments used to
assembly the agent-oriented applications.

Finally, we are integrating our working into ageooT Il (aT°)5, which is an
analysis and design tool that supports the use-bfaSE and exists as a plugin for
the Eclipse platforfh Eventually, we envision adding a module td #fat allows

5 See http://agenttool.projects.cis.ksu.edu/
6 See http://www.eclipse.org/

process designers to create and to use custom & Mafpliant processes. Future
plans for a¥ also include code generation for various platfoemd integration with
the Bogor model checking framework for verificati@nd providing predictive
metrics [16].

<<Role>>
Chemical_Detector

<<achieves>> Check for Chemical Weapon
<<requires>> Chemical_Detect_Plan

<<Role>> <<Role>>
Radioactive_Detector Biological_Detector
<<achieves>> Check for Radioactive Weapon <<achieves>> Check for Biological Weapon
<<requires>> Radioactive_Detect Plan <<requires>> Biological_Detect_Plan
<<Role>> <<Role>>
Divider WMD_Remover
<<achieves>> Divide Area <<achieves>> Remove WMD
<<requires>> Divide_Area_Plan <<requires>> Remove_WMD_Plan
<<Role>>
Searcher

<<achieves>> Search Area
<<requires>> Search_Plan

Fig. 15. Role M odel

References

1. Bergenti F., Gleizes M.-P., and Zambonelli F. (pd8lethodologies and Software
Engineering for Agent Systems: The Agent-Orientedivare Engineering Handbook.
Kluwer Academic Publishers (2004).

2. Bernon C., Cossentino M., and Pavon J.: Agent @trSoftware Engineering. The
Knowledge Engineering Review. 20(2005) 99-116.

3. Bernon C., Cossentino M., Gleizes M., Turci P., aabonelli F.: A study of some
multi-agent meta-models. In: Odell, J., Giorgini, &d Mdiller, J. (eds.): Agent Oriented
Software Engineering V. Lectures Notes in Compueience. Vol. 3382. Springer-
Verlag, Berlin Heidelberg New York (2004) 62—77.

4. Beydoun G., Gonzalez-Perez C., Henderson-Sellers LBw G.: Developing and
Evaluating a Generic Metamodel for MAS Work Produdh: Garcia, A., Choren, R.,
Lucena, C. Giorgini, P., Holvoet, T., and Romanggky(eds.): Software Engineering for
Multi-Agent Systems IV. Lecture Notes in Computere®ce, Vol. 3194. Springer-Verlag,
Berlin Heideberg New York (2005) 126-142.

5. Brinkkemper, S.: Method Engineering: Engineeringrdbrmation Systems Development
Methods and Toolslnl of Information and Software Technology. 38(4) (1996) 275-280.

6. Cossentino M., Gaglio S., Henderson-Sellers B., &eidita V.: A metamodelling-based
approach for method fragment comparison. Pnoceedings of the 11" International
Workshop on Exploring Modeling Methods in Systems Analysis and Design (EMMSAD
06). Luxembourg, June 2006.

10.

11.

12.

13.

14.

15.

16.

17.

DelLoach S.A., and Oyenan W. H.: An Organizationadel and Dynamic Goal Model
for Autonomous, Adaptive Systems. Multiagent & Cemgiive Robotics Laboratory
Technical Report No. MACR-TR-2006-01. Kansas Sthteversity. March, 2006.

DelLoach S.A., and Valenzuela Jorge. L.: An AgentiEemment Interaction Model. In:
Padgham, L., and Zambonelli, F. (eds): Agent Oeérgoftware Engineering VII. Lecture
Notes in Computer Science, Vol. 4405. Springer-&gr(2007) to appear.

Firesmith, D.G., and Henderson-Sellers, B.: The RPErocess Framework: An
Introduction. Addison-Wesley, Harlow—England (2002)

Harmon, S.J., DeLoach S.A., and Robby. Guidance laad Policies in Multiagent
Systems. Multiagent & Cooperative Robotics Labamafbechnical Report No. MACR-
TR-2007-02. Kansas State University. March, 2007.

Henderson-Sellers, B., and Giorgini P. (eds.): Agenented Methodologies, Idea Group
Inc., 2005.

Henderson-Sellers, B.: Process Metamodelling armte3s Construction: Examples
Using the OPEN Process Framework (OPF). Annals affw@are Engineering. 14, 1-4
(2002) 341-362.

Luck, M., McBurney, P., Shehory, O., and Willm@t; Agent Technology: Computing as
Interaction (A Roadmap for Agent Based ComputidgjentLink (2005).

Odell J., Parunak V. D., and Bauer B.: Represerfiggnt Interactions Protocols in UML.
In: Ciancarini, P., and Wooldridge, M. (eds.): Ageédriented Software Engineering.
Lecture Notes in Computer Science, Vol. 1957. SmmisVerlag, Berlin Heidelberg New
York (2001) 121-140.

Robby, DeLoach, S.A., and Kolesnikov, V.A.: Usingdign Metrics for Predicting

System Flexibility. In: Baresi, L, and Heckel, Rd¢e): Fundamental Approaches to
Software Engineering. Lectures Notes in Computéer®e, Vol. 3922. Springer-Verlag,
Berlin Heidelberg New York (2006) 184—-198.

Robby, Dwyer, M.B., & Hatcliff J.: Bogor: A Flexibl Framework for Creating
Software Model Checkers. InProceedings of the Testing: Academic & industrial
Conference on Practice and Research Techniques. IEEE Comp Society, Washington,
DC, 3-22.

Seidita, V., Cossentino, M., Gaglio, S.: A reposit@f fragments for agent systems
design. In: Proceedings of the 7" Workshop from Objects to Agents (WOA06). Catania,
Italy (2006) 130-137.

