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ABSTRACT 
We address the dependence of critical infrastructures-including 
electric power, telecommunications, finance and transportation- 
on vulnerable information systems. Our approach is based on the 
notion of control systems. We envision hierarchical, adaptive, 
multiple model, discrete-state distributed control systems to 
monitor infrastructure information systems and respond to 
disruptions (e.g., security attacks) by changing operating modes 
and design configurations to minimize loss of utility. To explore 
and evaluate our approach, we have developed a toolkit for 
building distributed dynamic models of infrastructure information 
systems. We used this toolkit to build a model of a simple subset 
of the United States payment system and a control system for this 
model information system. 
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INTRODUCTION 
The survivability of critical infrastructure systems, such as electric 
power distribution, telecommunications, freight rail and banking, 
has become a major concern of the United States government, and 
will garner increasing concern from industry [5, 16, 191. The 
intuitive notion of survivability is clear: we want infrastructure 
systems that continue to provide acceptable service levels to 
customers in the face of disturbances, natural, accidental or 
malicious. 

It is now believed that the reliance of infrastructure systems on 
fragile information systems puts infrastructures at risk of 
catastrophic failure. Threats arise from reliance on commercial 
(COTS) components of unquantified reliability and security, 
operational error, legacy software that defies comprehension and 
evolution, distribution, complex networks, and openings to 
outside manipulation through networks and outsourcing of design. 

The vulnerability of critical infrastructure systems to failures in 
their information systems creates new challenges for software 
engineering research, as well as for research across many related 
disciplines, including systems engineering, computer security, 
real-time systems, etc. In software engineering, architectural 
support for survivability emerges as a research priority. 
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Defensive architectural design, e.g., computer security and 
disaster recovery planning, is an aspect of a comprehensive 
approach to infrastructure survivability. However, when defenses 
fail to prevent disturbances, then reaction will be necessary to 
minimize the loss of utility provided by an infrastructure. In this 
paper, we address the reactive element of survivability. For 
example, in reacting to a coordinated security attack, computers 
hosting critical databases might be disconnected from a network. 
More generally, many dimensions of software reconfigurability 
might be used in a response mode, including but not limited to 
module location (mobility), implementation (design diversity), 
and interconnection (dynamic architecture). 

We describe our approach, which is based on a control systems 
perspective and our previous work [ l l ] .  Control theory [ I ]  
provides a vocabulary for reasoning about how to keep systems 
operating as desired and for structuring information-based 
mechanisms to effect such control. 

The characteristics of the systems that we seek to control imply 
novel control systems. Infrastructure systems and their 
information systems are large and distributed, so control must be 
decentralized. System-wide monitoring, reporting, and control 
implies some centralization, thus a hierarchical structure. 
Controlled systems change (e.g., as hardware fails and as they 
evolve), so a control system must be adaptive. Finally, we seek to 
control not physical but information systems, whose behaviors are 
described not by differential equations but by discrete state 
transitions, so we need discrete state control systems. These 
considerations take us beyond canonical control theory. We 
recognize that our appeal to control theory begins at the 
metaphorical level. Strong theorems, e.g., on stability, robust 
control, etc, are unlikely to hold in our context. 

Section 2 presents the rationale for a control approach. Section 3 
introduces a toolkit for building dynamic models of infrastructure 
information and systems. Section 4 presents a simple model of 
one information system; and Section 5, its controller. We 
summarize insights in Section 6 and related work in 7. Section 8 
presents our conclusions. 

1. SURVIVABILITY CONTROL SYSTEMS 
An infrastructure provides to each customer a service stream over 
time. For example, the electric grid provides a stream of 
electricity to each home and business. Such a stream has a value 
or utility to a customer depending on its particular needs. 
Provision of energy to homes is more valuable to customers in 
winter than summer, for example. At some level, there is an 
aggregate value added that depends on the reliance of each 
customer on service and the criticality of each customer in a 
broader context, as defined by societal or business policy. 
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The consequence of a disruption of an infrastructure system is a 
reduction in the service streams provided to customers. The result 
is a loss of value over time. The cost to a given customer depends 
on its reliance on the service and on the kind and duration of 
disruption. Individual costs sum to an aggregate cost. 
Survivability means that this aggregate cost is minimized and that 
it remains within acceptable bounds under a defined set of normal 
and adverse circumstances. The definition of acceptable is a 
societal issue. The set of circumstances for which assurances are 
provided has to be based on a valid understanding of the risks 
actually faced. 

Society now finds itself in a situation in which survivability is not 
ensured under reasonable definitions of acceptable cost and given 
apparent risks. Massive computerization of infrastructures has 
enabled major efficiency gains but at the cost of tightened 
coupling. Just-in-time delivery of automotive parts by rail has 
enabled dramatic inventory reductions, for example; but 
manufacturers are now more reliant on a reliable stream of timely 
rail deliveries. The cost of interruptions grows more rapidly in 
time now than before computerization. At the same time, the 
increasing reliance of rail on computers increases its vulnerability 
to disruption. We need approaches to infrastructure design and 
evolution that simultaneously enable the efficiencies that 
computers make possible while ensuring that the costs of service 
stream interruptions remain acceptable in the face of disruptions 
to the information systems. 

Control system perspective of survivability 
In this paper we outline a control systems approach to the problem 
of reactive survivability management. The information systems 
that run infrastructures appear to be vulnerable to disruption-by 
natural disaster, accident, mismanagement, design error, malicious 
attack, etc. In the face of such disruptions, actions must be taken 
to ensure that the infrastructures continue to meet their 
survivability requirements. 

When disrupted, an information system must be adjusted to assure 
continued provision of the information services on which the 
infrastructure services depend. Adjustment will involve 
reconfiguration. To be reconfigured, an information system must 
be reconfigurable. System reconfigurability can occur at many 
levels, including operating parameters, module implementations, 
code location, replacement of physical devices, etc. We will call 
the set of possible configurations of an information system its 
design space. 

The traditional approach to managing complex systems, such as 
avionics platforms, to ensure continued acceptable provision of 
service is to use a control system. We envision the use of control 
to manage information systems based on data from infrastructures, 
their information systems, and their operational environments. In 
essence, such a control system is responsible for choosing a 
configuration at each point in time based on current conditions to 
minimize cost, with some assurances that it stays within 
acceptable limits. 

As illustrated in Figure 1, a given configuration supports some 
level of infrastructure service. A given service level is related to 
cost through context as discussed above (e.g., is it winter?). The 
design space determines the extent to which a control system can 
manage cost under disturbance. An information system for a 
survivable infrastructure must have a configuration enabling 
acceptable service provision for each defined hazard or 
circumstance to which the infrastructure and its information 
system is subject. 

Survivability 
requirement 

Technical Social 
context context 

Design space 

I space 

I State of System in Environment 

Figure 1. Survivability control system concept 

The idea of using control to manage information systems is not 
entirely new, as we discuss in Section 7. Our contributions are: 
(1) formulating survivability as a large-scale control problem; (2) 
deriving basic characteristics of survivability control systems 
from salient properties of infrastructure information systems; (3) 
presenting an experimental framework and research methodology; 
and (4) a set of insights arising from the control perspective. Our 
work represents initial steps in a difficult area. A great deal of 
work remains to be done. 

Hierarchical adaptive control 
To maintain acceptable behavior, a control system manipulates a 
controlled system based on a model of the system, sensor data that 
reflect its state, degrees of control available to the control system, 
and other such information (including, in stochastic control, 
estimates of probabilities of future states of nature). Examples are 
familiar to every engineer. 

We frame decentralized, hierarchical, discrete-state, adaptive 
control as an architectural style for survivable infrastructure 
information systems. A decentralized control system is one in 
which parts of the control system control parts of the underlying 
system autonomously. An adaptive control system is one that can 
continue providing control in the face of changes to the controlled 
system and to the control system. For example, an adaptive 
control system for an avionics application can ensure that an 
aircraft remains under control even if it loses part of a wing and 
some sensors in an air engagement. A hierarchical control 
system is one in which control actions are determined at several 
levels, with low-level control elements influencing and being 
influenced by higher levels of control. Tactical decisions might 
be made close to individual components in a controlled system, 
while strategic decisions are made at a higher level based on 
aggregated global system state. 

In our formulation, the controlled system is the information 
system automating an infrastructure system. In freight rail, for 
example, the physical system comprises rails, cars and 
locomotives. This infrastructure is controlled by a complex 
information system that manages train assembly, dispatch, 
scheduling, motion control, billing, and so on, to meet 
performance, safety, business and other objectives. We envision 
superimposing a survivability control system atop such an 
information system. Among a wide variety of survivability 
properties achieved by this structure, such a control system would 
implement intrusion monitoring and response; system-wide fault 
tolerance; and controlled service degradation under adverse 
conditions. 
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Why hierarchical and adaptive? 
The need for a hierarchical structure is implied by the size and 
distribution of infrastructure information systems. It is 
implausible, for example, to have a single computing node 
monitoring the entire United States banking system. Each major 
bank would have a local control system interacting through 
abstract interfaces with higher-level (e.g., Federal Reserve) and 
lower-level (e.g., branch) control systems. 

A hierarchical structure is natural to support scalability through 
local control and the passing of aggregated status information up 
and down a hierarchy. Such information flows will be needed in 
practice to implement system-wide reconfiguration policies with 
acceptable performance. Such a structure enables local control 
nodes to implement policies based on both local information and 
aggregated global state passed down from above. In addition to 
performance, hierarchy enables abstraction and complexity 
control in control system design and implementation. Details of 
local application nodes are abstracted by local control nodes. 
Higher level control nodes are specified and implemented in terms 
of the observable and controllable aspects of control nodes at the 
next level down the control hierarchy. Hierarchy is also intended 
to foster evolvability of control systems as the information and 
infrastructure systems and their operational environments change. 

A disciplined approach to the modular design of the control 
system will also be critical in building adaptive control systems 
that can tolerate the loss, addition, or modification of control and 
controlled nodes. The control concept of multiple-model adaptive 
control-in which the control system views the controlled system 
as being in one of a number of possible distinct operating regimes 
in which distinct control rules apply-appears to offer attractive 
prospects. Our dynamic modeling toolkit, which we describe next, 
provides a capability that can be used to connect control nodes so 
that a control system has a model of both the controlled system 
and of its own configuration. 

2. 
A serious impediment to research on infrastructure survivability is 
that researchers can neither experiment with nor even measure 
infrastructures or their information systems because they have 
little or no access to them. Our approach is to build operational 
models of these systems, and to explore, develop and evaluate our 
control systems approach in the context of these models. The idea 
of building infrastructure simulations is not new: modeling is 
done routinely in the electric power industry, for example; and 
such simulations are typically used as subjects of and elements in 
control systems for the physical infrastructure elements [26].  We 
know of no other work using operational infrastructure models as 
subjects of control systems for survivability research. 

In this section, we describe briefly our toolkit for building models 
of infrastructure systems and their control systems. A more 
complete description appears elsewhere [lo]. The basic building 
block in this toolkit is a computational process that we call a 
virtual message processor (VMP). VMPs are a flexible 
mechanism for building distributed dynamic models and control 
systems. 

A VMP is a multi-threaded message dispatching process that can 
be programmed arbitrarily to support object-oriented and other 
message passing design styles. VMPs communicate by passing 
Message objects, which are structured, application-level messages 
that are serialized for network communication. Each VMP in a 
system has an integer address. VMPs send messages to each other 
using these addresses. At the network level, TCP is used. A VMP 

A TOOLKIT FOR EXPERIMENTAL SYSTEMS 

is implemented as a Windows NT process. A dynamic model of 
an infrastructure system and its associated control system is 
implemented as a set of communicating VMPs (henceforth 
nodes). In the next section, we describe a highly simplified model 
of the United States payment system that we built in this style. 

A key property of the design of our toolkit is that a new node can 
be inserted transparently between any other two nodes. Each 
node used to model an application element (such as a bank) has 
one exactly one such associated node. Messages passed between 
application nodes are thus routed through these interposed shell 
[IO] or mediator [21, 221 nodes. Because messages are 
represented as application-level objects, shell nodes can process 
communications between application nodes at the application 
level, and so can reason about and modify the system state and 
behavior in domain terms. This ability enables us to build model 
systems that reflect upon and modify their own operation. We use 
“shell” and “mediator” nodes in a variety of ways in our models. 
Modeling the transparent wrapping and monitoring of legacy 
systems is one such use. Other uses are implementation details 
within our models. We use shell processes to receive messages 
from nodes that simulate failures of and attacks upon application 
nodes, for example. 

We implemented this “modeling middleware” on Pentium-based 
machines running Windows NT, using Visual C++ 5.0 and the 
Microsoft Foundation Class (MFC). We have experimented with 
models running on a platform of about a dozen machines 
distributed across the United States and connected via the Internet, 
with machines in Charlottesville (VA), Portland (OR), Tucson 
(AZ), and Pittsburgh (PA). 

3. 
In this section, we describe as an example a distributed dynamic 
model of the United States payment system together with a variety 
of malicious attacks to which it might be subjected. Our model is 
simplified in relation to the real banking system, of course, but it 
captures some essential function and architecture [ 121. 

Our system models a three-level hierarchical banking system with 
branch banks at the leaves, money-center banks in the middle, and 
the Federal Reserve system at the root. Depositing “checks” at a 
branch bank results in requests for transfers of funds among 
accounts. When a check with a source-account number, 
destination-account number, and amount is deposited in a branch 
bank, the check is handled internally at the branch bank if both 
accounts are within that branch. If not, the check is passed up to 
the money center. If the source-account number of the check is at 
a branch bank that is connected to the money center in question, 
then the check deposit request is routed there. If not, then the 
check must be routed through the Federal Reserve. Checks for 
small amounts are aggregated at the money centers for processing 
through the Federal Reserve in a batch clearing process. Large 
checks are handled individually as they are deposited. The Federal 
Reserve transfers funds as necessary. When a check reaches the 
branch bank holding the source account, the check either clears or 
bounces and the status is routed back through the system 
accordingly. The money-center banks maintain balances in their 
accounts at the Federal Reserve Bank to allow the necessary funds 
transfers. This model is based on our domain study of the 
banking system [ 121, and models the payment reasonably well at a 
gross level. 

Figure 2 illustrates our model in a form simplified slightly for 
presentation. The actual model comprises 11 application nodes: 
one Federal Reserve Bank node, three money-center bank nodes, 

A MODEL OF THE U.S. PAYMENT SYSTEM 
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Figure 2. Payment system model and ancillary nodes 

and seven branch-bank nodes, each modeled as a VMP. Each 
application node runs on its own computer. In addition, a request- 
generator node communicates with application nodes to simulate 
bank customers depositing checks. The request generator sends 
check deposit requests randomly to branch banks at a specified 
frequency. Another node injects faults into the system to simulate 
a variety of attacks on banks: 

penetration of a single node, 

simultaneous penetration of several nodes either within the 
same bank company or on several companies, and 

penetration of several nodes within a specified time within 
the same bank company or across several companies. 

The first type of attack models a simple hacker scenario. The 
other two model coordinated attacks in which either one 
organization is the target or several are simultaneous targets. 

4. A SURVIVABILITY CONTROL SYSTEM 
To explore, develop, and evaluate control-system based 
survivability architectures, we have designed and implemented a 
prototype control system to manage our dynamic model of the 
banking system under attack. The prototype system includes the 
payment system model and a control system that reconfigures the 
payment system in response to several types of attack. 

System structure 
Figure 3 illustrates the structure of the payment system and 
superimposed hierarchical control system, omitting the fault 
injection and application load generation nodes. The payment 
system (application) nodes are white. The bb, are branch banks. 
The mcb, are money-center banks. And fib models the Federal 
Reserve Bank. Elements of the control system are depicted as 
circles and ovals in gray. Successively higher levels of control 
appear in successively darker shades. The scope of control of 
each level of the control system is indicated by the nesting in the 
diagram. Each of the model application and control system nodes 
is implemented as a VMP. 

Each bank node, including branch banks, money-center banks, 
and the Federal Reserve, has a local control node to enforce 
policies for that bank. These nodes detect and report potential 
intrusions into the bank’s information system and monitor 
communication traffic, both incoming and outgoing, for the node. 
Each money-center bank has a control node whose scope is the 
money-center bank and subordinate branch bank:. This higher 
control level manages the system rooted at and including the 

Figure 3. Superimposed hierarchical control system 

money center bank. This higher-level control node communicates 
with subordinate control nodes, accepting reports from them and 
passing aggregate system-level information to them. Finally, the 
overall system has a control node whose scope is the Federal 
Reserve’s local control node and the control nodes of the money- 
center banks. 

In addition to communicating with higher and lower level control 
nodes, each control node provides a user interface at the bank at 
that control node’s level in the hierarchy. This monitoring and 
control interface reports status to human management, and 
provides for human-initiated control actions in addition to 
automated control actions. 

Hierarchical, distributed, multiple model control 
Figure 4 gives a more detailed view of the hierarchical nature of 
the control system. The control system building block is the 
control component. The control system is decomposed into 
several layers of control components. Each controls an application 
node or a set of control components-a controlled component. 
The dotted lines indicate feedback from lower level to higher level 
controls. 

A given control policy will perform well under some range of 
operating conditions. For example, an efficient but vulnerable 
configuration might be controlled under one policy, and under a 
different one in a less efficient but more secure configuration 
(e.g., in which new application nodes are prohibited from entering 
the system). 

This observation leads us to the notion of multiple-model control 
[15]. In traditional control theory, multiple-model control is used 
to partition non-linear systems into piece-wise linear systems, 
with each piece subject to a different, analyzable policy. To 

C : S .  b b l l  

i ....................... J ............ L ............... 
I 

. .  . .  

C . S .  
f ..................................................... I :A--/ 

Figure 4. One level of hierarchy in the control system 
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explore this idea for information-systems control, we have 
decomposed the operating range of our dynamic model into four 
regimes based on the kind of attacks with which we are 
concerned. We use this factor as the variable to characterize the 
operating regimes: 

No-attack. The system is running in its normal state. 

Single-attack. The system is experiencing scattered attacks 
on individual nodes. The nodes may be branch, money- 
center, or Federal Reserve Bank nodes. 

Regional-attack. There are coordinated attacks on multiple 
nodes belonging to the same company. 

Widespread-attack. Multiple bank nodes across several 
companies are experiencing coordinated attacks. 

For purposes of exploration, we adopt the simplistic view that loss 
of value is minimized by shutting down banks that are under 
attack, rather than letting them operate with a risk of corrupting 
the banking system. In the no-attack regime, controllers monitor 
payment system nodes. In this regime, the control system must be 
efficient and affect the payment system minimally. The goal is to 
maintain close to full service under a single attack, and to secure 
trusted nodes under regional or coordinated attack. The control 
actions for these regimes are specified as different control 
policies. 

Multiple-model control is implemented using multiple control 
components at various levels of the hierarchy. The structure of a 
single control component is shown in Figure 5. A control node has 
of a set of models of the controlled system, a set of controllers 
implementing control policies, a model selector, and a controller 
scheduler. The system behaviors is compared to the multiple 
models by the model selector, which determines the regime 
(model) in which the controlled component is operating. Using the 
selected model and other controlled component information, the 
controller scheduler chooses a suitable controller (control policy) 
to control the component. 

A control component reports local model information both up and 
down the control hierarchy. Higher level control nodes collect 
information about nodes within their scope of control, form 
models, and propagate them to subordinates. The scheduler in 
each control component selects a local controller based on the 
global model it has, the local model of the system it controls, and 
information on other controlled components. The selected local 
controller remains active until the scheduler replaces it. 

Model and policy representation 
At present, our control system nodes are based on finite state 
machines (FSMs) with abstract-data-type interfaces. One potential 
advantage of this choice is that it will preserve a degree of 
analyzability-e.g., using model checking-not feasible with a 
richer computational model. However, analysis itself remains as 
future work. If we find that a richer computational model is 
needed (e.g., abstract data types or adaptive agents), encapsulation 
of implementations behind interfaces will ease the transition. 

Each local control node is in one of the four operating regimes 
described above: one in which there is no attack; one in which 
there is a local attack on its controlled node but no other attacks 
elsewhere, to the best of its knowledge; one in which the money 
center bank to which it belongs is under attack (the Federal 
Reserve belongs to no such bank); and one in which the whole 
banking system is under attack. 

I Actuate commands 

Model I I 

Figure 5. Structure of a control component. 

Our current design is intended to permit us to explore the issues 
involved in passing information up and down a control hierarchy 
to enable proper switching among models and associated control 
rules. In practice, a control system would behave differently in 
different modes: e.g., reporting possible more eagerly in 
circumstances in which other nodes of the same money center 
bank are under attack, or perhaps even disconnecting itself from 
the network under a more severe threat, e.g., coordinated attack. 

In our implementation, local control nodes receive information 
from parent control nodes needed to drive switching among 
models; however, we have not yet designed control rules that use 
this information in a realistic way. Our local control nodes use a 
single policy. Each maintains a sensor logically inserted into the 
local banking node. The sensor models an intrusion detection 
system running within the organization (branch, money center, or 
Federal Reserve) that signals whether that bank is under a security 
attack or not. Our sensors send under-local-attack and not-under- 
local-attack notifications. At a detailed implementation level, 
these events are sent in response to directions from the “fault 
injection node,” which simulates effects of intruder behaviors. 

The local control policy responds to a under-local-attack status by 
switching the controlled bank node to an ofl-line mode, modeling 
a bank closure. In this mode, the banking node buffers checking 
requests but does not process them. When not-under-local-attack 
is detected, the control node puts the bank back in operation. 

In addition to reconfiguring bank nodes, local control nodes 
forward under-attack and not-under-attack notifications to their 
parents. If two or more subordinate control nodes report under- 
attack, then the parent control node concludes that its domain is 
under coordinated attack, so it sends bank-under-attack to its 
subordinate control nodes, and under-attack to its parent. Thus, 
for example, if a branch bank and its money center bank both 
report local attacks, then the money center control node reports to 
the local control nodes for both the money center bank and for 
both branch banks that the bank as a whole is under attack. 

Similarly, if the top-level control node sees two or more banks 
under-attack (e.g., the Federal Reserve and a money center bank), 
it sends coordinated-attack to its subordinate nodes, which then 
forward this event to their subordinates. Forwarding of bank- 
attack and coordinate-attack messages enable switching of 
models and coptrol rules at all levels. 
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Implementation status 
We have completed implementation of our banking system model 
using the node toolkit, and have implemented a simple control 
policy in a single node. We are now implementing the distributed 
control system. Each node implements either application-specific 
(banking) or control-system-specific code. 

5. INSIGHTS FROM EXPLORATORY WORK 
Work to date has provided insights into research methods for 
information survivability, the design of applications for 
survivability, and the design of survivability control systems. We 
now discuss a number of these insights. 

Application design for survivability 
For an information system to be subject to control, so as to ensure 
continued provision of the information services on which an 
enterprise depends, it appears that the information system must be 
designed for reconfiguration. That is, the application must provide 
a sufficiently rich design space to provide scope for a control 
system to reconfigure it to handle specified adverse conditions. 
Our situation is different in at least two ways. First, survivability 
demands run-time not just design-time reconfiguration. Second, it 
demands flexibility to respond to adverse conditions related to 
information systems operation, not just for market segmentation 
or incremental delivery. 

How best to determine and specify requirements for such 
flexibility is an open research question in our opinion. The 
problem appears complex. It requires an understanding of the 
impact on customers of service stream interruptions, how 
information system failures can cause interruptions, and how 
hazards to information systems lead to failures. Moreover, the 
costs of such flexibility have to be balanced against benefits, the 
latter of which, like insurance policies, are contingent on the 
flexibility being needed at some time. 

Flexibility requirements analysis and specification 
Information systems that run infrastructures systems should be 
amenable to reconfiguration under all kinds of plausible adversity. 
Unfortunately, an information system that has not been designed 
for flexibility in a specific dimension is unlikely to be flexible. 
The extent to which existing infrastructures were so designed in 
the dimensions needed for control in the face of emerging hazards 
and threats is unclear. Although some flexibility is obviously 
present, e.g., often for standard fault tolerance or disaster 
recovery, the ability of these systems to handle the novel and 
emerging threats is questionable. Some operational systems 
clearly were not designed or tested for such flexibility. In the 
future, we envision a systematic approach to the design of 
infrastructure information systems that integrates mechanisms 
which: (a) mask certain disruptive events (such as hardware 
failure); (b) limit certain events (such as security violations); and 
(c) provide design alternatives to allow controlled reconfiguration. 

Subjecting legacy systems to novel forms of control 
While analysis and specification of flexibility requirements appear 
to present significant challenges, implementing the requirements 
presents additional difficulties. One especially difficult problem is 
presented by legacy infrastructure information systems. Legacy 
software systems are an essential part of most infrastructures. The 
problem is two-fold. First, these systems were presumably not 
designed to have the kinds of flexibility needed in the face of 
novel threats. In our domain analysis of several applications we 
have observed such cases. Second, these systems are generally 
old, complex, and structurally degraded, and thus hard and costly 

to change-often infeasibly so because they are under tight 
monetary and intellectual capital-budgeting constraints. What can 
we do with legacy systems whose design space is poor and that 
cannot easily be changed? 

One partial answer appears to lie in transparent extension of the 
design space of existing systems. To make the point concrete, 
consider our banking dynamic model. Our original banking nodes 
had operations permitting the nodes to be either on-line or not, but 
the nodes had no function for buffering requests during periods of 
suspended operation. We achieved transparent extension of the 
space of operating modes using the shell structure provided by our 
node mechanism. In particular, by “wrapping” the bare banking 
nodes behind transparent wrappers that added a buffering 
function, we enriched the design space enough for our control 
system to meet its objectives. 

In a sense, then, our recipe for survivability hardening of existing 
legacy infrastructure information systems is first to extend (and 
perhaps also restrict) their design spaces using a wrapping 
technique; then subject the modified systems to survivability 
control. We have demonstrated this approach in the context of a 
simple dynamic model. We have not proven the approach for real 
infrastructure systems; but wrapping is a well known and widely 
used technique for encapsulating and extending legacy systems. 
We have formulated and provided a proof of concept for a 
principled approach to an extremely complex problem. 

Security of the control system 
Adding complexity to a complex system in an attempt to make it 
better often makes it worse. This principle applies to our 
approach very clearly. A design that inserts into a critical system 
a control system able to manipulate it in dramatic ways presents 
an obvious risk: the control system becomes a rich target for a 
potential adversary. 

Securing the control system thus becomes a key objective. A 
particularly interesting issue is that sensors that report information 
on the controlled system to the control system, on which the 
decisions of the control system are based, often run on the same 
platforms as the controlled system. If those platforms are 
vulnerable to attack, then so are the sensors. By spoofing sensor 
data, an adversary could mislead the control system into taking an 
action that serves the objectives of the adversary. 

This observation has led our research team to focus on a little 
studied security problem: running trusted code on untrusted 
platforms, a problem dual to the “Java security problem” of 
running untrusted code on trusted platforms. We believe that, in 
general, there is no solution to the problem we have formulated, 
but that means can be used to raise the cost to spoof to a 
discouraging level. In practice, a broad range of security and 
other measures would be taken to provide defense in depth of 
such a control system. 

Control structure determined by information flows 
One of the things that we learned when taking the control systems 
perspective is that the information that has to be passed within a 
control system depends in large part on the control rules to be 
enforced. A policy declaring a global bank holiday if any bank is 
attacked requires the propagation only of a Boolean value 
indicating whether any bank is under attack, for example; while 
our richer policy requires richer flows. Thus, there is likely no one 
architecture for survivability control. Rather, we envision an 
architectural style for survivability control based on concepts and 
structures from the intellectual discipline of control theory. 
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Need to reason about relative dynamics 
Another observation is that the dynamics of a control system have 
to be sufficiently faster than those of the controlled system in 
order for time-sensitive control rules (survivability policies) to be 
enforced. For example, a policy might require that a subtree be 
spliced out of the network before a disturbance within that subtree 
can propagate to other parts of the application system. Functional 
properties are not enough; real-time control appears likely to 
emerge as an important issue. 

6.  RELATED WORK 
Control theory [l] provides a mature way of thinking about and 
designing information flows and feedback to maintain complex 
systems under desired behavioral conditions over time. For 
traditionally engineered systems, control theory provides a rich set 
of modeling and analysis methods based on advanced 
mathematical analysis. At present we have in control theory a 
metaphor that appears able to serve as a basis for a novel software 
architectural style, leading to a deeper understanding of the nature 
of the important but still inchoate concept of suwivabiliry. 

The simple control system that we presented implements a static 
optimization scheme: a precomputed policy that defines the action 
to take under specified circumstances. Control theory suggests an 
appeal to the idea of stochastic optimal control, with a control 
system using a probabilistic model of possible future conditions to 
choose an action that yields best expected results. Management of 
uncertainty appears to be a key problem for infrastructure 
suvivability. However, it is too early to know whether stochastic 
control has a significant role. One problem is that policy-makers 
might not be willing to permit probabilistic control rules. 

A second problem is that it might difficult to formulate an explicit 
objective function (cost) for a control system to minimize in the 
complex and policy-dependent domain of infrastructure 
protection. Computational complexity owing to the sizes of the 
state spaces involved also seem likely to be a serious issue. 
Nevertheless, the metaphor seems to lead to interesting structuring 
techniques and to useful albeit still imprecise problem 
formulations. 

We will continue to pursue connections between software design 
for survivable infrastructures and the clean but not always directly 
applicable concepts of control. In a related project, we are 
applying concepts from options theory-an economic application 
of stochastic optimal control, and of optimal stopping theory in 
particular-to reason about the value of flexibility in software 
products and processes [23]. 

The application of control systems concepts in software design is 
not new. Jehuda and Israeli [9] propose a control system for 
dynamically adapting a software configuration to accommodate 
varying runtime circumstances impacting on real-time 
performance. In contrast to our work, which leaves the objective 
function as a qualitative notion, Jehuda and Israeli use explicit 
optimization. In CHAOS [7], real time systems are adapted with 
the use of an entity-relation database modeling system structure. 
Control systems ideas have been used in distributed application 
management. Meta [14] is an architecture and a tool that uses a 
non-hierarchical control system to optimize performance in fault- 
tolerant distributed systems using Isis. Distributed application 
management (e.g., [2, 241) employs services supporting the 
dynamic management of distributed applications. Network 
management uses control concepts to manage networks and their 
running software [3,4]. 

However, the major objective in such work is to monitor and 
improve application or network performance in traditional 
dimensions, e.g., runtime efficiency. By contrast, our use of 
control is targeted at enhancing the survivability of controlled 
applications. Many of the control-based ideas that have been 
developed by others promise to contribute to our work on 
survivability control. 

When considered from the perspective of survivability, the 
techniques developed in the areas of reliability, availability and 
security can contribute to system survivability but they are not 
sufficient. Techniques for achieving reliability, for example, 
assume different failure models and are aimed at different target 
applications. Similarly, security techniques are used to harden a 
system but typically do not provide any solution when the system 
is compromised. 

Intrusion detection provides a way to monitor abnormal behaviors 
of a system. EMERALD [18] introduces an approach to network 
surveillance, attack isolation, and automated response. It uses 
distributed, independently tunable surveillance and response 
monitors as basic building blocks, and it combines signature 
analysis with statistical profiling to provide localized protection. 
A recursive framework is proposed for coordinating the 
dissemination of analyses from the distributed monitors to provide 
a global detection and response capability. At present, Emerald 
primarily focuses on the monitoring of security disturbances. Our 
control metaphor emphasizes the need to monitor a range of 
phenomena (e.g., dissemination of corrupt data) and to have high- 
level policies for automatic response. 

GrIDS [20] is a graph based large network intrusion detection 
system. It collects data about computer activity and network 
traffic, and aggregates this information into activity graphs which 
reveal the causal structure of network activity. This is an intrusion 
detection system. No response mechanism is discussed. The graph 
based detection mechanism could perhaps be used in our 
architecture. 

The Dynamic, Cooperating Boundary Controllers program [25] is 
developing a capability to allow traditionally static and standalone 
network boundary controllers (e.g. filtering routers and firewalls) 
to work cooperatively to protect networks. The capability is 
achieved through the use of an Intruder Detection and Isolation 
Protocol (IDIP). The work attempts to address the network 
intrusion problem only. 

Hiltunen and Schlichting propose a model for adaptive systems 
[8] that respond to changes in three phases: change detection, 
agreement, and action. It is used for performance and fault- 
tolerance. Goldberg et al. discuss adaptive fault-resistant systems 
and present some examples [6]. Our approach provides a way to 
embed adaptation in the system through multiple model control. 
Different control policies may be adaptively used for different 
operating regimes. 

Pamas has discussed specification of computer programs that 
serve as control systems. In his view, the salient variables are the 
monitored and controlled quantities in the environment, and the 
inputs and outputs of the software system, which represent those 
quantities. The requirements are then specified by relations on 
these variables [17]. This work appears directly applicable within 
our framework. 

Finally, we note that a range of results in the broader area of 
theoretical software architecture promise to aid progress in 
survivability research. The ability to analyze control policies and 
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their implementations would likely depend on such work. For 
instance, such research as that by Kramer and McGee on 
reasoning about component interconnection structures that change 
dynamically [13] could play a role in validating control policies 
that manipulate architectural interconnection for survivability 
control. 

7. CONCLUSIONS 
Dealing with the fragility of critical information systems is a 
significant problem that must be addressed if disruptions to our 
everyday activities are to be prevented. That disruptions can occur 
is well illustrated by the many incidents that have already been 
reported. 

Societal exposure to information systems is increasing as new 
applications (such as electronic commerce) are developed, as 
existing applications incorporate information systems to improve 
their efficiency, and as existing applications move from expensive 
closed private networks to less-expensive open Internet-based 
communication. The threats are also increasing. On the horizon is 
the prospect that critical information systems will become the 
targets of terrorist groups and even unfriendly foreign 
governments. 

Dealing with disruptions that occur, no matter what the cause, 
requires diagnostic and corrective actions to be taken. In almost 
all cases, minimizing the loss of aggregate value to users and 
ensuring that it remains within a range required to safeguard the 
public interest is achieved only by taking a system-wide view. 

We claim that one formalism that shows promise to aid in 
reasoning about this problem in infrastructure information 
systems is hierarchic adaptive control. In this paper, we have 
presented the architectural notion of survivability control systems. 
We have described some of the details of this architecture and 
illustrated the approach using a simple example derived from the 
banking domain. The implausibility of experimenting with actual 
infrastructures led us to a research methodology based on 
dynamic models as platforms on which to build and evaluate 
architectures, with room for expansion through the use of richer 
models. 

Developing highly survivable critical information systems is not 
going to come about as the result of any single advance. These 
systems pose many challenges that will require innovation in a 
number of areas if they are to be addressed adequately. The 
control-system architectural perspective is a general framework 
for dealing with part of the problem. 
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