
Information Survivability Control Systems

Kevin Sullivan, John C. Knight, Xing Du, and Steve Geist
University of Virginia, Department of Computer Science

Thornton Hall, Charlottesville, VA 22903, USA
Tel. (804) 982-2206; FAX: (804) 982-2214; URL: www.cs.virginia.edu

E-mail: { sullivan, knight, xd2a, smg9c) @cs.virginia.edu

ABSTRACT
We address the dependence of critical infrastructures-including
electric power, telecommunications, finance and transportation-
on vulnerable information systems. Our approach is based on the
notion of control systems. We envision hierarchical, adaptive,
multiple model, discrete-state distributed control systems to
monitor infrastructure information systems and respond to
disruptions (e.g., security attacks) by changing operating modes
and design configurations to minimize loss of utility. To explore
and evaluate our approach, we have developed a toolkit for
building distributed dynamic models of infrastructure information
systems. We used this toolkit to build a model of a simple subset
of the United States payment system and a control system for this
model information system.

Keywords
Infrastructure survivability, control, architecture economics

INTRODUCTION
The survivability of critical infrastructure systems, such as electric
power distribution, telecommunications, freight rail and banking,
has become a major concern of the United States government, and
will garner increasing concern from industry [5, 16, 191. The
intuitive notion of survivability is clear: we want infrastructure
systems that continue to provide acceptable service levels to
customers in the face of disturbances, natural, accidental or
malicious.

It is now believed that the reliance of infrastructure systems on
fragile information systems puts infrastructures at risk of
catastrophic failure. Threats arise from reliance on commercial
(COTS) components of unquantified reliability and security,
operational error, legacy software that defies comprehension and
evolution, distribution, complex networks, and openings to
outside manipulation through networks and outsourcing of design.

The vulnerability of critical infrastructure systems to failures in
their information systems creates new challenges for software
engineering research, as well as for research across many related
disciplines, including systems engineering, computer security,
real-time systems, etc. In software engineering, architectural
support for survivability emerges as a research priority.

Permission to make digital or hard copies of all or part ofthis work fh.
personal or classroom use is granted without fcc provided that copies
are not made or distributed for profit or commercial advantage and that
copies hear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists.
requires prior specific pcrmission andior a fcc.
ICSE ‘99 Los Angclcs CA
Copyright ACM 1999 1-581 13-074-0/99/05 ... $5.00

Defensive architectural design, e.g., computer security and
disaster recovery planning, is an aspect of a comprehensive
approach to infrastructure survivability. However, when defenses
fail to prevent disturbances, then reaction will be necessary to
minimize the loss of utility provided by an infrastructure. In this
paper, we address the reactive element of survivability. For
example, in reacting to a coordinated security attack, computers
hosting critical databases might be disconnected from a network.
More generally, many dimensions of software reconfigurability
might be used in a response mode, including but not limited to
module location (mobility), implementation (design diversity),
and interconnection (dynamic architecture).

We describe our approach, which is based on a control systems
perspective and our previous work [l l] . Control theory [I]
provides a vocabulary for reasoning about how to keep systems
operating as desired and for structuring information-based
mechanisms to effect such control.

The characteristics of the systems that we seek to control imply
novel control systems. Infrastructure systems and their
information systems are large and distributed, so control must be
decentralized. System-wide monitoring, reporting, and control
implies some centralization, thus a hierarchical structure.
Controlled systems change (e.g., as hardware fails and as they
evolve), so a control system must be adaptive. Finally, we seek to
control not physical but information systems, whose behaviors are
described not by differential equations but by discrete state
transitions, so we need discrete state control systems. These
considerations take us beyond canonical control theory. We
recognize that our appeal to control theory begins at the
metaphorical level. Strong theorems, e.g., on stability, robust
control, etc, are unlikely to hold in our context.

Section 2 presents the rationale for a control approach. Section 3
introduces a toolkit for building dynamic models of infrastructure
information and systems. Section 4 presents a simple model of
one information system; and Section 5, its controller. We
summarize insights in Section 6 and related work in 7. Section 8
presents our conclusions.

1. SURVIVABILITY CONTROL SYSTEMS
An infrastructure provides to each customer a service stream over
time. For example, the electric grid provides a stream of
electricity to each home and business. Such a stream has a value
or utility to a customer depending on its particular needs.
Provision of energy to homes is more valuable to customers in
winter than summer, for example. At some level, there is an
aggregate value added that depends on the reliance of each
customer on service and the criticality of each customer in a
broader context, as defined by societal or business policy.

184

http://www.cs.virginia.edu
mailto:cs.virginia.edu

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1999 2. REPORT TYPE

3. DATES COVERED
 00-00-1999 to 00-00-1999

4. TITLE AND SUBTITLE
Information Survivability Control Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia,Department of Computer Science,151 Engineer’s
Way,Charlottesville,VA,22904-4740

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

The consequence of a disruption of an infrastructure system is a
reduction in the service streams provided to customers. The result
is a loss of value over time. The cost to a given customer depends
on its reliance on the service and on the kind and duration of
disruption. Individual costs sum to an aggregate cost.
Survivability means that this aggregate cost is minimized and that
it remains within acceptable bounds under a defined set of normal
and adverse circumstances. The definition of acceptable is a
societal issue. The set of circumstances for which assurances are
provided has to be based on a valid understanding of the risks
actually faced.

Society now finds itself in a situation in which survivability is not
ensured under reasonable definitions of acceptable cost and given
apparent risks. Massive computerization of infrastructures has
enabled major efficiency gains but at the cost of tightened
coupling. Just-in-time delivery of automotive parts by rail has
enabled dramatic inventory reductions, for example; but
manufacturers are now more reliant on a reliable stream of timely
rail deliveries. The cost of interruptions grows more rapidly in
time now than before computerization. At the same time, the
increasing reliance of rail on computers increases its vulnerability
to disruption. We need approaches to infrastructure design and
evolution that simultaneously enable the efficiencies that
computers make possible while ensuring that the costs of service
stream interruptions remain acceptable in the face of disruptions
to the information systems.

Control system perspective of survivability
In this paper we outline a control systems approach to the problem
of reactive survivability management. The information systems
that run infrastructures appear to be vulnerable to disruption-by
natural disaster, accident, mismanagement, design error, malicious
attack, etc. In the face of such disruptions, actions must be taken
to ensure that the infrastructures continue to meet their
survivability requirements.

When disrupted, an information system must be adjusted to assure
continued provision of the information services on which the
infrastructure services depend. Adjustment will involve
reconfiguration. To be reconfigured, an information system must
be reconfigurable. System reconfigurability can occur at many
levels, including operating parameters, module implementations,
code location, replacement of physical devices, etc. We will call
the set of possible configurations of an information system its
design space.

The traditional approach to managing complex systems, such as
avionics platforms, to ensure continued acceptable provision of
service is to use a control system. We envision the use of control
to manage information systems based on data from infrastructures,
their information systems, and their operational environments. In
essence, such a control system is responsible for choosing a
configuration at each point in time based on current conditions to
minimize cost, with some assurances that it stays within
acceptable limits.

As illustrated in Figure 1, a given configuration supports some
level of infrastructure service. A given service level is related to
cost through context as discussed above (e.g., is it winter?). The
design space determines the extent to which a control system can
manage cost under disturbance. An information system for a
survivable infrastructure must have a configuration enabling
acceptable service provision for each defined hazard or
circumstance to which the infrastructure and its information
system is subject.

Survivability
requirement

Technical Social
context context

Design space

I space

I State of System in Environment

Figure 1. Survivability control system concept

The idea of using control to manage information systems is not
entirely new, as we discuss in Section 7. Our contributions are:
(1) formulating survivability as a large-scale control problem; (2)
deriving basic characteristics of survivability control systems
from salient properties of infrastructure information systems; (3)
presenting an experimental framework and research methodology;
and (4) a set of insights arising from the control perspective. Our
work represents initial steps in a difficult area. A great deal of
work remains to be done.

Hierarchical adaptive control
To maintain acceptable behavior, a control system manipulates a
controlled system based on a model of the system, sensor data that
reflect its state, degrees of control available to the control system,
and other such information (including, in stochastic control,
estimates of probabilities of future states of nature). Examples are
familiar to every engineer.

We frame decentralized, hierarchical, discrete-state, adaptive
control as an architectural style for survivable infrastructure
information systems. A decentralized control system is one in
which parts of the control system control parts of the underlying
system autonomously. An adaptive control system is one that can
continue providing control in the face of changes to the controlled
system and to the control system. For example, an adaptive
control system for an avionics application can ensure that an
aircraft remains under control even if it loses part of a wing and
some sensors in an air engagement. A hierarchical control
system is one in which control actions are determined at several
levels, with low-level control elements influencing and being
influenced by higher levels of control. Tactical decisions might
be made close to individual components in a controlled system,
while strategic decisions are made at a higher level based on
aggregated global system state.

In our formulation, the controlled system is the information
system automating an infrastructure system. In freight rail, for
example, the physical system comprises rails, cars and
locomotives. This infrastructure is controlled by a complex
information system that manages train assembly, dispatch,
scheduling, motion control, billing, and so on, to meet
performance, safety, business and other objectives. We envision
superimposing a survivability control system atop such an
information system. Among a wide variety of survivability
properties achieved by this structure, such a control system would
implement intrusion monitoring and response; system-wide fault
tolerance; and controlled service degradation under adverse
conditions.

185

Why hierarchical and adaptive?
The need for a hierarchical structure is implied by the size and
distribution of infrastructure information systems. It is
implausible, for example, to have a single computing node
monitoring the entire United States banking system. Each major
bank would have a local control system interacting through
abstract interfaces with higher-level (e.g., Federal Reserve) and
lower-level (e.g., branch) control systems.

A hierarchical structure is natural to support scalability through
local control and the passing of aggregated status information up
and down a hierarchy. Such information flows will be needed in
practice to implement system-wide reconfiguration policies with
acceptable performance. Such a structure enables local control
nodes to implement policies based on both local information and
aggregated global state passed down from above. In addition to
performance, hierarchy enables abstraction and complexity
control in control system design and implementation. Details of
local application nodes are abstracted by local control nodes.
Higher level control nodes are specified and implemented in terms
of the observable and controllable aspects of control nodes at the
next level down the control hierarchy. Hierarchy is also intended
to foster evolvability of control systems as the information and
infrastructure systems and their operational environments change.

A disciplined approach to the modular design of the control
system will also be critical in building adaptive control systems
that can tolerate the loss, addition, or modification of control and
controlled nodes. The control concept of multiple-model adaptive
control-in which the control system views the controlled system
as being in one of a number of possible distinct operating regimes
in which distinct control rules apply-appears to offer attractive
prospects. Our dynamic modeling toolkit, which we describe next,
provides a capability that can be used to connect control nodes so
that a control system has a model of both the controlled system
and of its own configuration.

2.
A serious impediment to research on infrastructure survivability is
that researchers can neither experiment with nor even measure
infrastructures or their information systems because they have
little or no access to them. Our approach is to build operational
models of these systems, and to explore, develop and evaluate our
control systems approach in the context of these models. The idea
of building infrastructure simulations is not new: modeling is
done routinely in the electric power industry, for example; and
such simulations are typically used as subjects of and elements in
control systems for the physical infrastructure elements [26]. We
know of no other work using operational infrastructure models as
subjects of control systems for survivability research.

In this section, we describe briefly our toolkit for building models
of infrastructure systems and their control systems. A more
complete description appears elsewhere [lo]. The basic building
block in this toolkit is a computational process that we call a
virtual message processor (VMP). VMPs are a flexible
mechanism for building distributed dynamic models and control
systems.

A VMP is a multi-threaded message dispatching process that can
be programmed arbitrarily to support object-oriented and other
message passing design styles. VMPs communicate by passing
Message objects, which are structured, application-level messages
that are serialized for network communication. Each VMP in a
system has an integer address. VMPs send messages to each other
using these addresses. At the network level, TCP is used. A VMP

A TOOLKIT FOR EXPERIMENTAL SYSTEMS

is implemented as a Windows NT process. A dynamic model of
an infrastructure system and its associated control system is
implemented as a set of communicating VMPs (henceforth
nodes). In the next section, we describe a highly simplified model
of the United States payment system that we built in this style.

A key property of the design of our toolkit is that a new node can
be inserted transparently between any other two nodes. Each
node used to model an application element (such as a bank) has
one exactly one such associated node. Messages passed between
application nodes are thus routed through these interposed shell
[IO] or mediator [21, 221 nodes. Because messages are
represented as application-level objects, shell nodes can process
communications between application nodes at the application
level, and so can reason about and modify the system state and
behavior in domain terms. This ability enables us to build model
systems that reflect upon and modify their own operation. We use
“shell” and “mediator” nodes in a variety of ways in our models.
Modeling the transparent wrapping and monitoring of legacy
systems is one such use. Other uses are implementation details
within our models. We use shell processes to receive messages
from nodes that simulate failures of and attacks upon application
nodes, for example.

We implemented this “modeling middleware” on Pentium-based
machines running Windows NT, using Visual C++ 5.0 and the
Microsoft Foundation Class (MFC). We have experimented with
models running on a platform of about a dozen machines
distributed across the United States and connected via the Internet,
with machines in Charlottesville (VA), Portland (OR), Tucson
(AZ), and Pittsburgh (PA).

3.
In this section, we describe as an example a distributed dynamic
model of the United States payment system together with a variety
of malicious attacks to which it might be subjected. Our model is
simplified in relation to the real banking system, of course, but it
captures some essential function and architecture [121.

Our system models a three-level hierarchical banking system with
branch banks at the leaves, money-center banks in the middle, and
the Federal Reserve system at the root. Depositing “checks” at a
branch bank results in requests for transfers of funds among
accounts. When a check with a source-account number,
destination-account number, and amount is deposited in a branch
bank, the check is handled internally at the branch bank if both
accounts are within that branch. If not, the check is passed up to
the money center. If the source-account number of the check is at
a branch bank that is connected to the money center in question,
then the check deposit request is routed there. If not, then the
check must be routed through the Federal Reserve. Checks for
small amounts are aggregated at the money centers for processing
through the Federal Reserve in a batch clearing process. Large
checks are handled individually as they are deposited. The Federal
Reserve transfers funds as necessary. When a check reaches the
branch bank holding the source account, the check either clears or
bounces and the status is routed back through the system
accordingly. The money-center banks maintain balances in their
accounts at the Federal Reserve Bank to allow the necessary funds
transfers. This model is based on our domain study of the
banking system [121, and models the payment reasonably well at a
gross level.

Figure 2 illustrates our model in a form simplified slightly for
presentation. The actual model comprises 11 application nodes:
one Federal Reserve Bank node, three money-center bank nodes,

A MODEL OF THE U.S. PAYMENT SYSTEM

186

Federal
reserve

Money
center

Branch
bank

generator U

Figure 2. Payment system model and ancillary nodes

and seven branch-bank nodes, each modeled as a VMP. Each
application node runs on its own computer. In addition, a request-
generator node communicates with application nodes to simulate
bank customers depositing checks. The request generator sends
check deposit requests randomly to branch banks at a specified
frequency. Another node injects faults into the system to simulate
a variety of attacks on banks:

penetration of a single node,

simultaneous penetration of several nodes either within the
same bank company or on several companies, and

penetration of several nodes within a specified time within
the same bank company or across several companies.

The first type of attack models a simple hacker scenario. The
other two model coordinated attacks in which either one
organization is the target or several are simultaneous targets.

4. A SURVIVABILITY CONTROL SYSTEM
To explore, develop, and evaluate control-system based
survivability architectures, we have designed and implemented a
prototype control system to manage our dynamic model of the
banking system under attack. The prototype system includes the
payment system model and a control system that reconfigures the
payment system in response to several types of attack.

System structure
Figure 3 illustrates the structure of the payment system and
superimposed hierarchical control system, omitting the fault
injection and application load generation nodes. The payment
system (application) nodes are white. The bb, are branch banks.
The mcb, are money-center banks. And fib models the Federal
Reserve Bank. Elements of the control system are depicted as
circles and ovals in gray. Successively higher levels of control
appear in successively darker shades. The scope of control of
each level of the control system is indicated by the nesting in the
diagram. Each of the model application and control system nodes
is implemented as a VMP.

Each bank node, including branch banks, money-center banks,
and the Federal Reserve, has a local control node to enforce
policies for that bank. These nodes detect and report potential
intrusions into the bank’s information system and monitor
communication traffic, both incoming and outgoing, for the node.
Each money-center bank has a control node whose scope is the
money-center bank and subordinate branch bank:. This higher
control level manages the system rooted at and including the

Figure 3. Superimposed hierarchical control system

money center bank. This higher-level control node communicates
with subordinate control nodes, accepting reports from them and
passing aggregate system-level information to them. Finally, the
overall system has a control node whose scope is the Federal
Reserve’s local control node and the control nodes of the money-
center banks.

In addition to communicating with higher and lower level control
nodes, each control node provides a user interface at the bank at
that control node’s level in the hierarchy. This monitoring and
control interface reports status to human management, and
provides for human-initiated control actions in addition to
automated control actions.

Hierarchical, distributed, multiple model control
Figure 4 gives a more detailed view of the hierarchical nature of
the control system. The control system building block is the
control component. The control system is decomposed into
several layers of control components. Each controls an application
node or a set of control components-a controlled component.
The dotted lines indicate feedback from lower level to higher level
controls.

A given control policy will perform well under some range of
operating conditions. For example, an efficient but vulnerable
configuration might be controlled under one policy, and under a
different one in a less efficient but more secure configuration
(e.g., in which new application nodes are prohibited from entering
the system).

This observation leads us to the notion of multiple-model control
[15]. In traditional control theory, multiple-model control is used
to partition non-linear systems into piece-wise linear systems,
with each piece subject to a different, analyzable policy. To

C : S . b b l l

i J L
I

. . . .

C . S .
f ... I :A--/

Figure 4. One level of hierarchy in the control system

187

explore this idea for information-systems control, we have
decomposed the operating range of our dynamic model into four
regimes based on the kind of attacks with which we are
concerned. We use this factor as the variable to characterize the
operating regimes:

No-attack. The system is running in its normal state.

Single-attack. The system is experiencing scattered attacks
on individual nodes. The nodes may be branch, money-
center, or Federal Reserve Bank nodes.

Regional-attack. There are coordinated attacks on multiple
nodes belonging to the same company.

Widespread-attack. Multiple bank nodes across several
companies are experiencing coordinated attacks.

For purposes of exploration, we adopt the simplistic view that loss
of value is minimized by shutting down banks that are under
attack, rather than letting them operate with a risk of corrupting
the banking system. In the no-attack regime, controllers monitor
payment system nodes. In this regime, the control system must be
efficient and affect the payment system minimally. The goal is to
maintain close to full service under a single attack, and to secure
trusted nodes under regional or coordinated attack. The control
actions for these regimes are specified as different control
policies.

Multiple-model control is implemented using multiple control
components at various levels of the hierarchy. The structure of a
single control component is shown in Figure 5. A control node has
of a set of models of the controlled system, a set of controllers
implementing control policies, a model selector, and a controller
scheduler. The system behaviors is compared to the multiple
models by the model selector, which determines the regime
(model) in which the controlled component is operating. Using the
selected model and other controlled component information, the
controller scheduler chooses a suitable controller (control policy)
to control the component.

A control component reports local model information both up and
down the control hierarchy. Higher level control nodes collect
information about nodes within their scope of control, form
models, and propagate them to subordinates. The scheduler in
each control component selects a local controller based on the
global model it has, the local model of the system it controls, and
information on other controlled components. The selected local
controller remains active until the scheduler replaces it.

Model and policy representation
At present, our control system nodes are based on finite state
machines (FSMs) with abstract-data-type interfaces. One potential
advantage of this choice is that it will preserve a degree of
analyzability-e.g., using model checking-not feasible with a
richer computational model. However, analysis itself remains as
future work. If we find that a richer computational model is
needed (e.g., abstract data types or adaptive agents), encapsulation
of implementations behind interfaces will ease the transition.

Each local control node is in one of the four operating regimes
described above: one in which there is no attack; one in which
there is a local attack on its controlled node but no other attacks
elsewhere, to the best of its knowledge; one in which the money
center bank to which it belongs is under attack (the Federal
Reserve belongs to no such bank); and one in which the whole
banking system is under attack.

I Actuate commands

Model I I

Figure 5. Structure of a control component.

Our current design is intended to permit us to explore the issues
involved in passing information up and down a control hierarchy
to enable proper switching among models and associated control
rules. In practice, a control system would behave differently in
different modes: e.g., reporting possible more eagerly in
circumstances in which other nodes of the same money center
bank are under attack, or perhaps even disconnecting itself from
the network under a more severe threat, e.g., coordinated attack.

In our implementation, local control nodes receive information
from parent control nodes needed to drive switching among
models; however, we have not yet designed control rules that use
this information in a realistic way. Our local control nodes use a
single policy. Each maintains a sensor logically inserted into the
local banking node. The sensor models an intrusion detection
system running within the organization (branch, money center, or
Federal Reserve) that signals whether that bank is under a security
attack or not. Our sensors send under-local-attack and not-under-
local-attack notifications. At a detailed implementation level,
these events are sent in response to directions from the “fault
injection node,” which simulates effects of intruder behaviors.

The local control policy responds to a under-local-attack status by
switching the controlled bank node to an ofl-line mode, modeling
a bank closure. In this mode, the banking node buffers checking
requests but does not process them. When not-under-local-attack
is detected, the control node puts the bank back in operation.

In addition to reconfiguring bank nodes, local control nodes
forward under-attack and not-under-attack notifications to their
parents. If two or more subordinate control nodes report under-
attack, then the parent control node concludes that its domain is
under coordinated attack, so it sends bank-under-attack to its
subordinate control nodes, and under-attack to its parent. Thus,
for example, if a branch bank and its money center bank both
report local attacks, then the money center control node reports to
the local control nodes for both the money center bank and for
both branch banks that the bank as a whole is under attack.

Similarly, if the top-level control node sees two or more banks
under-attack (e.g., the Federal Reserve and a money center bank),
it sends coordinated-attack to its subordinate nodes, which then
forward this event to their subordinates. Forwarding of bank-
attack and coordinate-attack messages enable switching of
models and coptrol rules at all levels.

188

Implementation status
We have completed implementation of our banking system model
using the node toolkit, and have implemented a simple control
policy in a single node. We are now implementing the distributed
control system. Each node implements either application-specific
(banking) or control-system-specific code.

5. INSIGHTS FROM EXPLORATORY WORK
Work to date has provided insights into research methods for
information survivability, the design of applications for
survivability, and the design of survivability control systems. We
now discuss a number of these insights.

Application design for survivability
For an information system to be subject to control, so as to ensure
continued provision of the information services on which an
enterprise depends, it appears that the information system must be
designed for reconfiguration. That is, the application must provide
a sufficiently rich design space to provide scope for a control
system to reconfigure it to handle specified adverse conditions.
Our situation is different in at least two ways. First, survivability
demands run-time not just design-time reconfiguration. Second, it
demands flexibility to respond to adverse conditions related to
information systems operation, not just for market segmentation
or incremental delivery.

How best to determine and specify requirements for such
flexibility is an open research question in our opinion. The
problem appears complex. It requires an understanding of the
impact on customers of service stream interruptions, how
information system failures can cause interruptions, and how
hazards to information systems lead to failures. Moreover, the
costs of such flexibility have to be balanced against benefits, the
latter of which, like insurance policies, are contingent on the
flexibility being needed at some time.

Flexibility requirements analysis and specification
Information systems that run infrastructures systems should be
amenable to reconfiguration under all kinds of plausible adversity.
Unfortunately, an information system that has not been designed
for flexibility in a specific dimension is unlikely to be flexible.
The extent to which existing infrastructures were so designed in
the dimensions needed for control in the face of emerging hazards
and threats is unclear. Although some flexibility is obviously
present, e.g., often for standard fault tolerance or disaster
recovery, the ability of these systems to handle the novel and
emerging threats is questionable. Some operational systems
clearly were not designed or tested for such flexibility. In the
future, we envision a systematic approach to the design of
infrastructure information systems that integrates mechanisms
which: (a) mask certain disruptive events (such as hardware
failure); (b) limit certain events (such as security violations); and
(c) provide design alternatives to allow controlled reconfiguration.

Subjecting legacy systems to novel forms of control
While analysis and specification of flexibility requirements appear
to present significant challenges, implementing the requirements
presents additional difficulties. One especially difficult problem is
presented by legacy infrastructure information systems. Legacy
software systems are an essential part of most infrastructures. The
problem is two-fold. First, these systems were presumably not
designed to have the kinds of flexibility needed in the face of
novel threats. In our domain analysis of several applications we
have observed such cases. Second, these systems are generally
old, complex, and structurally degraded, and thus hard and costly

to change-often infeasibly so because they are under tight
monetary and intellectual capital-budgeting constraints. What can
we do with legacy systems whose design space is poor and that
cannot easily be changed?

One partial answer appears to lie in transparent extension of the
design space of existing systems. To make the point concrete,
consider our banking dynamic model. Our original banking nodes
had operations permitting the nodes to be either on-line or not, but
the nodes had no function for buffering requests during periods of
suspended operation. We achieved transparent extension of the
space of operating modes using the shell structure provided by our
node mechanism. In particular, by “wrapping” the bare banking
nodes behind transparent wrappers that added a buffering
function, we enriched the design space enough for our control
system to meet its objectives.

In a sense, then, our recipe for survivability hardening of existing
legacy infrastructure information systems is first to extend (and
perhaps also restrict) their design spaces using a wrapping
technique; then subject the modified systems to survivability
control. We have demonstrated this approach in the context of a
simple dynamic model. We have not proven the approach for real
infrastructure systems; but wrapping is a well known and widely
used technique for encapsulating and extending legacy systems.
We have formulated and provided a proof of concept for a
principled approach to an extremely complex problem.

Security of the control system
Adding complexity to a complex system in an attempt to make it
better often makes it worse. This principle applies to our
approach very clearly. A design that inserts into a critical system
a control system able to manipulate it in dramatic ways presents
an obvious risk: the control system becomes a rich target for a
potential adversary.

Securing the control system thus becomes a key objective. A
particularly interesting issue is that sensors that report information
on the controlled system to the control system, on which the
decisions of the control system are based, often run on the same
platforms as the controlled system. If those platforms are
vulnerable to attack, then so are the sensors. By spoofing sensor
data, an adversary could mislead the control system into taking an
action that serves the objectives of the adversary.

This observation has led our research team to focus on a little
studied security problem: running trusted code on untrusted
platforms, a problem dual to the “Java security problem” of
running untrusted code on trusted platforms. We believe that, in
general, there is no solution to the problem we have formulated,
but that means can be used to raise the cost to spoof to a
discouraging level. In practice, a broad range of security and
other measures would be taken to provide defense in depth of
such a control system.

Control structure determined by information flows
One of the things that we learned when taking the control systems
perspective is that the information that has to be passed within a
control system depends in large part on the control rules to be
enforced. A policy declaring a global bank holiday if any bank is
attacked requires the propagation only of a Boolean value
indicating whether any bank is under attack, for example; while
our richer policy requires richer flows. Thus, there is likely no one
architecture for survivability control. Rather, we envision an
architectural style for survivability control based on concepts and
structures from the intellectual discipline of control theory.

189

Need to reason about relative dynamics
Another observation is that the dynamics of a control system have
to be sufficiently faster than those of the controlled system in
order for time-sensitive control rules (survivability policies) to be
enforced. For example, a policy might require that a subtree be
spliced out of the network before a disturbance within that subtree
can propagate to other parts of the application system. Functional
properties are not enough; real-time control appears likely to
emerge as an important issue.

6. RELATED WORK
Control theory [l] provides a mature way of thinking about and
designing information flows and feedback to maintain complex
systems under desired behavioral conditions over time. For
traditionally engineered systems, control theory provides a rich set
of modeling and analysis methods based on advanced
mathematical analysis. At present we have in control theory a
metaphor that appears able to serve as a basis for a novel software
architectural style, leading to a deeper understanding of the nature
of the important but still inchoate concept of suwivabiliry.

The simple control system that we presented implements a static
optimization scheme: a precomputed policy that defines the action
to take under specified circumstances. Control theory suggests an
appeal to the idea of stochastic optimal control, with a control
system using a probabilistic model of possible future conditions to
choose an action that yields best expected results. Management of
uncertainty appears to be a key problem for infrastructure
suvivability. However, it is too early to know whether stochastic
control has a significant role. One problem is that policy-makers
might not be willing to permit probabilistic control rules.

A second problem is that it might difficult to formulate an explicit
objective function (cost) for a control system to minimize in the
complex and policy-dependent domain of infrastructure
protection. Computational complexity owing to the sizes of the
state spaces involved also seem likely to be a serious issue.
Nevertheless, the metaphor seems to lead to interesting structuring
techniques and to useful albeit still imprecise problem
formulations.

We will continue to pursue connections between software design
for survivable infrastructures and the clean but not always directly
applicable concepts of control. In a related project, we are
applying concepts from options theory-an economic application
of stochastic optimal control, and of optimal stopping theory in
particular-to reason about the value of flexibility in software
products and processes [23].

The application of control systems concepts in software design is
not new. Jehuda and Israeli [9] propose a control system for
dynamically adapting a software configuration to accommodate
varying runtime circumstances impacting on real-time
performance. In contrast to our work, which leaves the objective
function as a qualitative notion, Jehuda and Israeli use explicit
optimization. In CHAOS [7], real time systems are adapted with
the use of an entity-relation database modeling system structure.
Control systems ideas have been used in distributed application
management. Meta [14] is an architecture and a tool that uses a
non-hierarchical control system to optimize performance in fault-
tolerant distributed systems using Isis. Distributed application
management (e.g., [2, 241) employs services supporting the
dynamic management of distributed applications. Network
management uses control concepts to manage networks and their
running software [3,4].

However, the major objective in such work is to monitor and
improve application or network performance in traditional
dimensions, e.g., runtime efficiency. By contrast, our use of
control is targeted at enhancing the survivability of controlled
applications. Many of the control-based ideas that have been
developed by others promise to contribute to our work on
survivability control.

When considered from the perspective of survivability, the
techniques developed in the areas of reliability, availability and
security can contribute to system survivability but they are not
sufficient. Techniques for achieving reliability, for example,
assume different failure models and are aimed at different target
applications. Similarly, security techniques are used to harden a
system but typically do not provide any solution when the system
is compromised.

Intrusion detection provides a way to monitor abnormal behaviors
of a system. EMERALD [18] introduces an approach to network
surveillance, attack isolation, and automated response. It uses
distributed, independently tunable surveillance and response
monitors as basic building blocks, and it combines signature
analysis with statistical profiling to provide localized protection.
A recursive framework is proposed for coordinating the
dissemination of analyses from the distributed monitors to provide
a global detection and response capability. At present, Emerald
primarily focuses on the monitoring of security disturbances. Our
control metaphor emphasizes the need to monitor a range of
phenomena (e.g., dissemination of corrupt data) and to have high-
level policies for automatic response.

GrIDS [20] is a graph based large network intrusion detection
system. It collects data about computer activity and network
traffic, and aggregates this information into activity graphs which
reveal the causal structure of network activity. This is an intrusion
detection system. No response mechanism is discussed. The graph
based detection mechanism could perhaps be used in our
architecture.

The Dynamic, Cooperating Boundary Controllers program [25] is
developing a capability to allow traditionally static and standalone
network boundary controllers (e.g. filtering routers and firewalls)
to work cooperatively to protect networks. The capability is
achieved through the use of an Intruder Detection and Isolation
Protocol (IDIP). The work attempts to address the network
intrusion problem only.

Hiltunen and Schlichting propose a model for adaptive systems
[8] that respond to changes in three phases: change detection,
agreement, and action. It is used for performance and fault-
tolerance. Goldberg et al. discuss adaptive fault-resistant systems
and present some examples [6]. Our approach provides a way to
embed adaptation in the system through multiple model control.
Different control policies may be adaptively used for different
operating regimes.

Pamas has discussed specification of computer programs that
serve as control systems. In his view, the salient variables are the
monitored and controlled quantities in the environment, and the
inputs and outputs of the software system, which represent those
quantities. The requirements are then specified by relations on
these variables [17]. This work appears directly applicable within
our framework.

Finally, we note that a range of results in the broader area of
theoretical software architecture promise to aid progress in
survivability research. The ability to analyze control policies and

190

their implementations would likely depend on such work. For
instance, such research as that by Kramer and McGee on
reasoning about component interconnection structures that change
dynamically [13] could play a role in validating control policies
that manipulate architectural interconnection for survivability
control.

7. CONCLUSIONS
Dealing with the fragility of critical information systems is a
significant problem that must be addressed if disruptions to our
everyday activities are to be prevented. That disruptions can occur
is well illustrated by the many incidents that have already been
reported.

Societal exposure to information systems is increasing as new
applications (such as electronic commerce) are developed, as
existing applications incorporate information systems to improve
their efficiency, and as existing applications move from expensive
closed private networks to less-expensive open Internet-based
communication. The threats are also increasing. On the horizon is
the prospect that critical information systems will become the
targets of terrorist groups and even unfriendly foreign
governments.

Dealing with disruptions that occur, no matter what the cause,
requires diagnostic and corrective actions to be taken. In almost
all cases, minimizing the loss of aggregate value to users and
ensuring that it remains within a range required to safeguard the
public interest is achieved only by taking a system-wide view.

We claim that one formalism that shows promise to aid in
reasoning about this problem in infrastructure information
systems is hierarchic adaptive control. In this paper, we have
presented the architectural notion of survivability control systems.
We have described some of the details of this architecture and
illustrated the approach using a simple example derived from the
banking domain. The implausibility of experimenting with actual
infrastructures led us to a research methodology based on
dynamic models as platforms on which to build and evaluate
architectures, with room for expansion through the use of richer
models.

Developing highly survivable critical information systems is not
going to come about as the result of any single advance. These
systems pose many challenges that will require innovation in a
number of areas if they are to be addressed adequately. The
control-system architectural perspective is a general framework
for dealing with part of the problem.

ACKNOWLEDGEMENTS
This work was sponsored by the Defense Advanced Research
projects Agency and Rome Laboratory, Air Force Materiel
Command, USAF, under agreement number F30602-96- 1-03 14.
The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright annotation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either express or implied, of the Defense Advanced
Research Projects Agency, Rome Laboratory or the U.S.
Government. Support was also provided by the National Science
Foundation under grants CCR-9502029, CCR-9506779 and CCR-
9804078.

REFERENCES
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

R. Bateson, Introduction to Control System Technology, (61h
ed.), Upper Saddle River, NJ: Prentice Hall, (1998).

M. A. Bauer, R. B. Bunt, A. El Rayess, P. J. Finnigan, T.
Kunz, H. L. Lutfiyya, A. D. Marshall, P. Martin, G. M.
Oster, W. Powley, J. Rolia, D. Taylor, and M. Woodside,
Services Supporting Management of Distributed
Applications and Systems, IBM Systems Journal, 36, 4,

B. Boardman, Network Management Solutions Lack Clear
Leader, Network Computing, (August 15, 1998), 54-67.

Computer Associates, Enterprise Management Strategy:
Managing the New Enterprise, White paper,
httr,://www.cai.com/products/unicentwhiteDaD.htm, (1996).

R. J. Ellison, D. A. Fisher, R. C. Linger, H. F. Lipson, T.
Longstaff, and N. R. Mead, Survivable Network Systems: An
Emerging Discipline, Technical Report CMU/SEI-97-TR-
01 3, Software Engineering Institute, Carnegie Mellon
University, (November 1997).

J. Goldberg, L. Gong, I. Greenberg, R. Clark, E. D. Jensen,
K. Kim, and D. Wells, Adaptive Fault-Resistant Systems,
Technical Report, SRI, (1994).

P. Gopinath, R. Ramnath, and K. Schwan, Data base Design
for Real-Time Adaptations, Journal of Systems and Software,
17, (1992), 155-167.

M. A. Hiltunen and R. D. Schlichting, Adaptive Distributed
and Fault-Tolerant Systems, International Journal of
Computer Systems and Engineering, 11, 5, (1995), 125-133.

J. Jehuda and A. Israeli, Automated Meta-Control for
Adaptive Real-Time Software, Real-Time Systems, 14,

(1997), 508-526.

(1998), 107-134.

J.C. Knight, K. Sullivan, J. McHugh, X. Du and S. Geist, A
Framework for Experimental Systems Research in
Distributed Survivability Architectures, University of
Virginia Department of Computer Science Technical Report
CS-98-37, December 1998, submitted for publication.

J.C. Knight, R. W. Lubinsky, J. McHugh, and K. J. Sullivan,
Architectural Approaches to Information Survivability,
Technical Report CS-97-25, Department of Computer
Science, University of Virginia, Charlottesville, VA 22903
(September 1 997).

J. C. Knight, M. C. Elder, J. Flinn, and P. Marx, Summaries
of Three Critical Infrastructure Applications, Technical
Report CS-97-27, Department of Computer Science,
University of Virginia, Charlottesville, VA 22903 (December
1997).

J. Kramer and J. McGee, Dynamic structure in software
architectures, SIGSOFT'96, Proceedings of the 4rh ACM-
SIGSOFT Conference on the Foundations of Software
Engineering, D. Garlan, ed., Oct. 1996, pp. 3-14.

K. Marzullo, R. Cooper, M. D. Wood, and K. P. Birman,
Tools for Distributed Application Management, IEEE
Computer, (August 1991), 42-51.

Multiple Model Approaches to Modelling and Control, R.

191

Murray-Smith and T.A. Johansen (eds.), Taylor & Francis:
London, UK, (1 997).

16. Office of the Undersecretary of Defense for Acquisition &
Technology, Report of the Defense Science Board Task
Force on Information Wagare-Defense (IW-D), (November
1996).

17. D.L. Parnas and J. Madey, Functional Documents for
Computer Systems, Science of Computer Programming, vol.
25, no. 1, Oct. 1995, pp. 4 1 - 6 1 .

18. P. A. Porras and P. Neumann, EMERALD: Event
Monitoring Enabling Responses to Anomalous Live
Disturbances, 1997 National Information Systems Security
Conference, (October 7-10, 1997), Baltimore, Maryland.
(Proceedings on the CD-ROM.)

19. President's Commission on Critical Infrastructure Protection,
Critical Foundations: Protecting America's Infrastructures,
United States Government Printing Office (GPO), No. 040-

20. S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J.
Frank, J. Hoagland, K. Levitt, C. Wee, R. Yip, and D. Zerkle,
GrIDS - A Graph Based Intrusion Detection System for
Large Networks, Proceedings of The 19th National
Information Systems Security Conference. (October 22-25,
1996), Baltimore, MD, USA, 361-370.

21. K. Sullivan, Mediators: Easing the Design and Evolution of
Integrated Systems. Ph.D Dissertation, Department of
Computer Science and Engineering, University of
Washington, TR UW-CSE-94-08-01, (August 1994).

22. K. Sullivan, I. J. Kalet, and D. Notkin, Evaluating the
Mediator Methods: Prism as a Case Study. IEEE
Transactions on Sofmare Engineering. 22, 8, (1996). 563-
579.

23. K. Sullivan, S. Jha and P. Chalasani, Software Design

000-00699-1.

Decisions as Real Options, IEEE Transactions on Sofmare
Engineering. To appear.

24. Tivoli Systems, Tivoli and Application Management, White
paper,
httu://www.tivoli.com/o Droductslhtndhodv maD wmhtml,
(1998).

25. UC Davis and Boeing Co., Intrusion Detection and Isolation
Protocol (IDIP). http:llwww.cs.ucdavis.edd
projects/idip.html.

26. A.J. Wood and B.F. Wollenberg, Power Generation,
Operation and Control. New York: John Wiley & Sons,
1996 (2nd ed.)

192

http:llwww.cs.ucdavis.edd

