
Performance Evaluation of a Firm Real-Time DataBase System 

Stuart Shih, Young-Kuk Kim, and Sang H. Son 
Dept. of Computer Science 

University of Virginia 
Charlottesville, VA 22903, USA 

son@cs.virginia.edu 

Abstract 

In conventional database systems, performance is pri- 
marily measured by the number of transactions com- 
pleted within a unit time. In real-time applications, 
timing and criticality characteristics of transactions 
must be taken into account. In this paper, we examine 
the performance of StarBase, a firm real-time database 
system. The deadline guarantee ratio and average 
response times are the primary performance measures. 
There have been performance studies on real-time data- 
base systems, but most of them were performed using 
simulation. This work demonstrates the feasibility of 
developing a real-time database system with an accept- 
able performance. 

1. Introduction 

As real-time appiications increase in complexity, so do 
their data requirements. For several years, researchers 
have sought a general solution to the problem of collect- 
ing, storing, and retrieving data in real-time by devising 
database mwanagement systems to manage data in a time- 
cognizant and predictable manner [Yu94]. Despite all of 
its features, a conventional database system is not quite 
capable of meeting the demands of a real-time system. 
Typically, its goals are to maximize transaction through- 
put, minimize response time, and provide some degree 
of fairness. A real-time database system, however, must 
adopt goals which are consistent with any real-time sys- 
tem: providing the best service to the most critical trans- 
actions and ensuring some degree of predictability in 
transaction processing [Son94]. 
In conventional database systems, all transactions 
should have the same opportunity to obtain system 
resources to help complete their execution. Since the 
number, not type of transactions completed in a given 
time unit is important, measuring throughput and aver- 
age response time is an accurate way of accessing the 
performance of a conventional database system. In a 
real-time database system, timing and criticality charac- 
teristics of transactions must be taken into account, and 
hence a different performance measure should be used. 
Transactions with higher timing or criticality constraints 

are of greater importance to the database system and 
thus, should be allocated a larger share of the available 
computation time and resources. Given these con- 
straints, the deadline guarantee ratio is a much more 
accurate measure of performance for real-time database 
systems. To differentiate the importance of individual 
transactions, real-time transactions are assigned a prior- 
ity or criticality when submitted. The real-time database 
attempts to maximize the total value for a set of transac- 
tions by allocating system resources to transactions with 
the highest priority to provide the best chance of com- 
pletion before their deadline expires. 
In this paper, we examine the performance of a firm 
real-time database system, called StarB ase, being devel- 
oped at the University of Virginia. One of our goal is to 
demonstrate the feasibility of developing a real-time 
database system with an acceptable performance. 

2. StarBase 

StarBase is a firm real-time database system which sup- 
ports the concurrent execution of transactions and seeks 
to minimize the number of high-priority transactions 
that miss their deadlines keh951. StarBase uses no a 
priori information about the transaction workload and 
discards tardy transactions at their deadline points. Star- 
Base runs on top of RT-Mach, a real-time operating sys- 
tem under development at Carnegie Mellon University 
Fok901. 
In a firm real-time setting, if a transaction cannot be 
completed by the database system within the given 
deadline time, then that transaction is discarded from the 
system. This is in contrast to a hard real-time database 
system, where a transaction missing a deadline can 
result in a catastrophic event, and a soft real-time data- 
base system, where there is still some value associated 
with completing a transaction even after its deadline has 
passed. 
StarBase differs from previous real-time database work 
in that a) it relies on a real-time operating system which 
provides priority-based scheduling and time-based syn- 
chronization, and b) it deals explicitly with data conten- 
tion and deadline handling in addition to transaction 
scheduling, the traditional focus of simulation studies. 

0-8186-7106-8/95 $04.00 0 1995 IEEE 
116 

mailto:son@cs.virginia.edu


Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
1995 2. REPORT TYPE 

3. DATES COVERED 
  00-00-1995 to 00-00-1995  

4. TITLE AND SUBTITLE 
Performance Evaluation of a Firm Real-Time DataBase System 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Virginia,Department of Computer Science,151 Engineer’s 
Way,Charlottesville,VA,22904-4740 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

9 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Fig. 1: StarBase Server Architecture 

The design of StarBase is shown in Fig. 1. 
The StarBase database system receives transaction 
requests from database clients and places them on a pri- 
ority queue. It is assumed that database clients are phys- 
ically disparate from the server, so they pass messages 
to communicate with the DBMS server. Transaction 
requests are sent via RT-Mach’s Inter-Process Commu- 
nication (IPC) mechanism and are queued at the server’s 
service port. RT-Mach provides a naming service with 
which StarBase registers its service port during initial- 
ization. Clients look up the service port by querying the 
name server with StarBase’s well-known name. There 
are a fixed number of threads (light-weight processes), 
called Transaction Managers, which dequeue those 
requests and perform the basic operations which consti- 
tute the transaction. The transaction processing unit in 
turn implements these basic operations. The transaction 
managers rely on lower-level services to obtain the 
resources (memory, relations, etc.) necessary for the 
transaction. Each resource manager must ensure that 
transactions access their resources in a consistent and 
orderly fashion. 
When the transaction manager starts to service a new 
transaction request, a deadline thread also begins its 
execution. If the deadline time expires at any point 
before the completion of the transaction manager, then 
the deadline thread informs the transaction manager of 
the expired deadline situation. The transaction manager 

then terminates its execution and returns a deadline 
abort message to the client. Otherwise, the transaction 
manager informs the client with either a simple “suc- 
cess” response message or possibly retrieved results, 
depending on the transaction request submitted. During 
this time however, the client is blocked waiting for a 
message from the server. This limitation prevents the 
same client from submitting multiple transaction 
requests while a former request is still pending. 
To resolve data conflicts between competing transac- 
tions, a concurrency control algorithm must be used. 
There are two major types of concurrency control which 
have been considered for use in real-time databases: 
lock-based and optimistic methods. In general, lock- 
based methods delay transactions to avoid having them 
access data in an inconsistent way, whereas optimistic 
methods abort transactions. 
StarBase uses a real-time optimistic concurrency control 
method called WAIT-X [Har91], which has been experi- 
mentally shown to outperform lock-based concurrency 
control methods in a firm real-time setting. With WAIT- 
X, a transaction T executes unhindered until it reaches 
the point where it can commit (i.e., make its changes to 
the data permanent) and WAIT-X determines which 
transactions should be aborted due to the conflict with T. 
Unlike conventional concurrency control, WAIT-X 
employs a priority-cognizant commit test: If high-prior- 
ity transactions comprise less than X% of all of T’s con- 
flictors, T can commit, aborting all conflictors in the 
process. Otherwise T waits so that higher priority trans- 
actions may proceed. It was found experimentally that 
low values of X tend to minimize the deadline miss ratio 
for light loads, and high values of X tend to minimize 
the deadline miss ratio for heavy loads. When X = 50% 
is used as the threshold value, it minimizes the overall 
deadline miss ratio, but applications which require mini- 
mization of the highest-priority deadline miss ratio must 
use a greater value for X. 
StarBase uses T-Tree indexing to decrease the data con- 
flict rate and improve response time. T-tree indexing 
was proposed specifically for in-memory retrieval to 
improve the performance over indexing mechanisms for 
disk-based data [Leh86]. The T-tree is a binary tree 
which contains multiple elements in each node. The 
description and implementation of the T-Tree indexing 
mechanism in StarBase is described in [Geo93]. 

3. Real-Time Mach 

StarBase currently runs on a 486 DX2/5OE machine 
running the RT-Mach MK83i operating system. RT- 
Mach, a variant of Mach, provides many of the priority- 
based real-time features that StarBase relies on to ser- 

117 



vice transactions in a real-time environment. The RT- 
Mach features StarBase employs are briefly described in 
this section. 

3.1. Real-Time Threads 

All real-time threads in StarBase are created as aperi- 
odic threads. Given a real-time application however, we 
expect that some of the transaction requests will arrive 
periodically, so it is a good feature that RT-Mach pro- 
vides both types of threads frok901. The priority field in 
the thread structure is used by RT-Mach for scheduling, 
priority handoff and priority inheritance in RT-IPC, and 
in RT-Sync. 

3.2. Real-Time IPC (RT-IPC) 

The manner in which the IPC mechanism in RT-Mach 
handles messages for StarBase can be described by 
three main attributes: the message queueing policy, the 
priority hand-off policy, and the priority inheritance pol- 
icy. For StarBase, the queueing policy chosen is prior- 
ity-based, so that the highest priority transaction is 
always serviced by the next available transaction man- 
ager. Since this message ordering does not take the 
deadline into account, transactions with the same prior- 
ity are queued depending on their order of arrival. 
The priority handoff is enabled in StarBase, allowing 
the transaction manager thread that reads the transaction 
request message to execute at the priority specified in 
the request message. This priority message inheritance 
mechanism lasts until the transaction manager thread 
has finished servicing the transaction request. If a higher 
priority thread receives a message with a lower priority, 
then no inheritance occurs and the thread continues to 
execute at the same priority. To prevent such a situation 
from occurring in StarBase, the transaction managers 
are initialized with the lowest system priority level pos- 
sible. The inheritance mechanism will always then cor- 
rectly raise the priority level of the transaction manager 
to reflect the importance of the transaction request 
[Kit93]. 

3.3. Real-Time Synchronization (RT-Sync) 

Currently, StarBase relies on the mutual exclusion with 
a lock variable supplied by RT-Mach to provide syn- 
chronization between transactions during the read, vali- 
dation, and write phase of the WAIT-50 scheme. To 
ensure that the next highest priority transaction obtains 
the lock object after it is released by the current transac- 
tion, the lock policy follows the basic priority inherit- 
ance protocol. This policy prevents any possible chain 

of blocking from middle priority transactions and guar- 
antees that the lower priority transaction is serviced 
quickly so that the lock can be released Pok911. 

3.4. Real-Time Scheduling 

RT-Mach supports many different scheduling policies, 
but all RT-Mach scheduling policies other than the 
Mach timesharing policy causes the MK83i version of 
the RT-Mach operating system to halt after executing 
StarBase for a short time. As a result, the priorities of 
the transaction manager threads in StarBase are not 
taken into account by the Mach scheduler, and threads 
receive equal time quantums during execution of trans- 
action requests. Ideally, StarBase should incorporate the 
fixed-priority round robin scheduling policy, which allo- 
cates a higher time quantum of execution for threads 
with higher priorities [TokBO]. 

4. StarBase Transaction Workload Generator 

The workload generator is modelled after previous work 
on two-phase locking (2PL) and optimistic concurrency 
control (OCC) Lee95, Hua911. In each of these studies, 
the workload generator provides adjustable runtime 
parameters to alter the workload submitted to the data- 
base system. This section describes how the StarBase 
transaction workload generator creates different work- 
load and environments to test the performance of Star- 
Base. 

4.1. Test Environment 

The workload created by the StarBase workload genera- 
tor can simulate incoming transactions for two different 
types of real-time application areas. The first area is 
information management systems, where transactions 
arrive aperiodically and consecutive transactions have a 
certain arrival period between each other. In such a sys- 
tem, the number of users is fixed, and each user submits 
a new transaction only after the previous one has com- 
pleted. These transactions may or may not have timing 
constraints, and therefore have soft deadlines. An airline 
reservation system is a good example of this application 
area [Hua91]. 
The other application area is the real-time process con- 
trol systems. Unlike transactions in information man- 
agement systems, these transactions have hard timing 
constraints that must be met to prevent a catastrophic 
event from occurring. Transactions in such a system 
arrive periodically and with hard real-time constraints. 
Network management, traffic control, and nuclear 
power plants all fall in this application area [Kim95]. 

118 



Since StarBase is a firm real-time database, it is reason- 
able to ask why a hard real-time and soft real-time envi- 
ronment is being used to test performance. This is the 
first time StarBase has undergone any rigorous perfor- 
mance testing. To accurately determine how StarBase 
performs, it was decided to examine StarBase under 
both real-time environments. The results from perfor- 
mance testing would be applied to the future develop- 
ment of StarBase in possibly one of these two 
application areas, or for the area in which different types 
of transactions (soft, firm, and hard) are all mixed. 

4.2. Workload Transactions 

Transactions in a workload consist of either read (select) 
or read/write (update) operations. The number of select 
and update operations in a workload is modified using 
the probability of write parameter Pw. As this probabil- 
ity increases, the possibilities of data conflicts between 
transactions increases as well. The length of a transac- 
tion is determined using the tuples accessed parameter. 
The tuples accessed by a transaction can be an explicit 
number or an interval range, where the number of tuples 
is randomly chosen from the given range of numbers. 
Each of the transactions in a workload performs an 
operation on relational tables.These tables must be 
defined in advance so that their schema information can 
be used in the creation of transactions in the workload. 
The sole requirement for tables used in the transaction 
generation for a workload is a primary key attribute field 
of float type. The primary key serves as both a possible 
attribute field for indexing and also as a way for transac- 
tions to access different tuples within a relational table. 

4.3. Transaction Deadline Calculation 

As the transaction generator creates new transactions, a 
deadline function calculates an estimated deadline exe- 
cution time for the transaction. This deadline time for 
the transaction is dependent on the type of database 
operation, the tuples accessed, and memory copies of 
results to the message buffer or to temporary storage. At 
the present time, the deadline function accurately calcu- 
lates deadline times for select and update operations that 
access relational tables given the following constraints: 

All attributes besides the primary key are charac- 
ter data types and of equal length 

A relation table has no more than 1000 tuples 
The total bytes of all the attribute fields in the rela- 

tion is no more than 800 bytes 
All select and update operations have a where 

clause of the form 

"where primary-key >= a & primary-key < b" 
where a and b are constants and a < b 

The calculated deadline time is not total execution time, 
but rather the average expected time to complete a trans- 
action assuming no other transactions are executing in 
the system. This time also does not include the required 
message passing time for sending the transaction mes- 
sage and receiving any results. 
The timing results for select operations on 200 to 1000 
tuple relation tables with different total attribute bytes 
show that the select deadline time, SDT, can be calcu- 
lated using the following equation: 

SDT = SIT + ((2TA/200) * Tr) 

SIT = Select Initialization Time 
Tr = Total time to read 200 tuples from a table 
'ITA = Total tuples accessed 

For tables with total tuples ranging from 0 to 1000 
tuples, there is a direct relation between time and tuples 
read. Tables with 400 tuples have a Tr twice as large as 
the 200 tuple base case, tables with 800 tuples have a Tr 
four times as large, and so on. Tr increases as the total 
attributes bytes for a tuple goes up. This increase is also 
linear and can be calculated from extrapolation of the Tr 
values for the 200 and 1000 tuple relation tables. 
The update deadline time, UDT, is similar to the SDT 
equation with one exception. Whereas the number of 
attributes in a relation does not affect the select opera- 
tion, the update operation must take this into account. A 
table that has 400 tuples with 1 attribute field will have 
different update times than a table that has 200 tuples 
with 2 attribute fields. Each extra attribute adds a con- 
stant time that is included in the modification of the 
SDT equation show below: 

UDT = UIT + ( (ITA/200)  * TU) 
TU = Tbu + ((TA - I ) *  Tx) 

UIT = Update Initialization Time 
Tu = Total time to update 200 tuples from a table 
"TA = Total tuples accessed 
Tbu = Base update time for 200 tuples from a table 
TA = Total attributes updated 
Tx = Extra Time for additional attribute 

Timing results for update operations on 200 to 1000 
tuple relation tables with different total attribute bytes 
confirm the formula above. In Figure 2, the increase in 
update times due to the increase in the number of 
attributes is shown. 

119 



4.4. Transaction Priority Calculation 

Period Window Interval 

Priority 

Longer length transactions are more likely to miss their 
deadlines due to the increased probability of data con- 
flicts as they access more tuples in the relation. To avoid 
the starvation problem mentioned in [Hua91], priorities 
are assigned according to the number of tuples each 
transaction accesses. Given that thread priorities are 
considered in IPC, synchronization, and scheduling in 
RT-Mach, longer transactions with higher priorities have 
a better chance to complete. The following equation is 
used to calculate the priority for a given transaction: 

> 0.0 

0-31  

p = min-priority - { V A  / * {PR) 

External Think Time 

min-priority = 31 
max-priority = 0 
PR = priority range = (min-priority - max-priority) 
TTA = total tuples accessed 
PIT = total tuples in the relation table 

~~~ 

>= 0 

4.5. Transactions in Information Systems 

Eight StarBase clients are initially created when the 
StarBase workload generator is executed. The number 
of clients that are actually used is a parameter that can 
be changed. Once a transaction workload is executed in 
this environment, the client attempts to service the next 
transaction request stored in the workload. A client, 
upon successfully obtaining one of the transaction 
requests from the workload, sends the request to the 
StarBase server, waits for the server to reply, and repeats 
thls process until all transactions in the workload have 
been serviced. 

4.6. Transactions in Process Control Systems 

To simulate periodic transactions, the StarBase work- 
load generator employs periodic threads. Each thread 
has a client session through which it can immediately 
submit a transaction request. After each thread period, 
the next instantiation of the thread submits the next 
transaction request in the workload regardless of 
whether the current thread instantiation has completed. 
The StarBase workload generator currently permits a 
maximum of 8 periodic threads to be created in this test 
environment. 

4.7. Adjustable Run-Time Parameters 

The parameters used strictly for the simulation of infor- 
mation systems are the multiprogramming level and 

external think time. With the multiprogramming level 
parameter, the total number of clients that can send a 
transaction request to the StarBase server at any time is 
limited to the MPL level. This parameter allows us to 
simulate an environment with a fixed number of users. 
The external think time, on the other hand, models the 
elapsed time between submission of consecutive trans- 
action requests by the same user. 
The period window factor parameter is only relevant to 
the simulation of open process systems. In the open pro- 
cess system environment, the same transactions arrive 
periodically, so we are more interested in how the data- 
base performs given a particular transaction arrival rate. 
The period window factor for the workload generator 
controls this rate. After every period window interval, a 
new transaction in the workload is sent to the StarBase 
server. Table 1 lists the parameters used to create spe- 
cific transaction workloads. 

Table 1: Workload Transaction Parameters 

I Deadline Window Factor (a) I > 0.0 I 

5. Experimental Results 

5.1. Experiment 1 : Resource/Dat a Contention 

In this experiment, we examine the performance of Star- 
Base under resource and data contention. The deadline 
guarantee ratio is shown in Figures 3 and 4 for updating/ 
selecting 5 tuples from 200, 600, and 1000 tuple size 
relation tables. In Figures 3 and 4, the deadline guaran- 
tee ratio drops as Pw increases and the size of the table 
increases. This is a result of the data contention that 
occurs with the increase of Pw or the table size. 
Although only 5 tuples are being selectedhpdated, in a 
non-indexed table it is necessary to examine all the 
tuples in the table during a database operation. All the 
tuples in the read set are then marked, and the opportu- 
nity for data conflict between read/write transactions is 
greatly increased for larger relation tables as write trans- 

120 



actions take a longer amount of time searching for 
appropriate tuples to update. 

5.2. Experiment 2: llmsaction Priority 

To test how StarBase handles transaction priorities, we 
examine how StarBase performs when given mixed 
transaction workloads. In each of these workloads, we 
vary the write probability Pw again, but we allow the 
tuples updatedhelected to be 5,25, or 45 tuples. Figure 
5 illustrates the deadline guarantee ratio for mixed trans- 
action workloads. The results show that longer transac- 
tions (i.e. those transactions that updatdselect more 
tuples) have a lower deadline guarantee ratio than 
shorter length transactions. As the execution time 
increases, the possibility of data conflict increases as 
well. 
Given enough short transactions, we may eventually get 
a “transaction starvation” [Hua91] situation where long 
transactions are constantly being restarted because of 
conflicts with short transactions. The starvation problem 
can be avoided by assigning long transactions a higher 
priority. The results of running the same workload with 
the new priority assignment is shown in Figure 6 .  Under 
this new priority assignment, we found that the priority 
level, not the length of transactions, determines the 
deadline guarantee ratio. 

53. Experiment 3: Indexing 

To examine the performance of the StarBase T-Tree 
indexing mechanism, we execute the same workloads 
from Experiment 1, but using an indexed primary key 
and indexed transaction deadlines for the three different 
relation table size. We expect to see the deadline guaran- 
tee ratio stay level as Pw increases since only the spe- 
cific tuples selectedhpdated are marked in the 
transaction’s read and write set. The drop in the deadline 
guarantee ratio shown in Figures 7 and 8 can be attrib- 
uted not to data conflicts, but to blocking. In the Star- 
Base T-Tree implementation, the transaction accessing 
tuples from the T-Tree must lock the root of the tree. No 
other transactions can access the T-Tree at this time, 
regardless of the operation being performed on the tree. 
As Pw increases, update operations which lock the T- 
Tree for a longer period will decrease the overall dead- 
line guarantee ratio for the entire transaction set. 
We have attempted to enhance the performance of the T- 
Tree indexing mechanism by altering the current lock- 
ing strategy. As long as the T-Tree is not altered, then 
transactions are able to concurrently access the T-Tree. 
For a write operation, which alters the tree, the lock is 
once again placed on the root of the tree. The perfor- 

mance of the new locking strategy is compared to the 
former one in Figure 9. For a low resource contention 
level, a = 4, the new locking strategy increases the num- 
ber of transactions meeting their deadlines. However, 
further tests show that as the resource contention level 
increases, the blocking caused by the write operations 
overrides any performance advantage between the two 
locking strategies. 
The long blocking times from write operations also con- 
flict with transaction priority. In Experiment 2, when a 
mixed priority transaction workload was submitted to 
the StarBase server, transactions with higher priority 
showed better deadline guarantee ratios. With all the 
transactions now competing for access to the T-Tree, 
long update transactions cause many more shorter 
length transactions to miss their deadlines. Figure 10 
shows the performance results of the system running a 
mixed transaction workload where transactions have the 
same priority level. As a result of the long blocking time 
on the T-Tree for update operations, longer length trans- 
actions actually have higher deadline guarantee ratios 
than short transactions. The same result occurs if shorter 
length transactions are given higher priorities than the 
longer length transactions. 

6. Conclusions 

This paper presents the design and implementation of a 
firm real-time database system called StarBase, running 
on a real-time operating system kernel, RT-Mach. We 
discuss how performance was evaluated in StarBase 
using the StarBase workload generator. By adjusting 
many of the run-time parameters provided by the work- 
load generator, we have examined the performance of 
StarBase under different environments and different 
transaction workloads. In the work reported in this 
paper, we have taken an in-depth look at how StarBase 
handles resource and data contention, the consideration 
of transaction priorities, and the efficiency of the T-Tree 
indexing mechanism. 
From the resource and data contention experiments, we 
can see that in an environment with high data conten- 
tion, an indexing mechanism must be used. Searching 
though every tuple in a relation is clearly unacceptable 
in a range query, leading to both increased response time 
and increased data conflict rates. An improved T-Tree 
indexing scheme for S tarB ase should help here. 
The results of the transaction priority tests are encourag- 
ing. Even without the proper real-time scheduling policy 
in place, transactions with higher priority display a 
higher deadline guarantee ratio. This increase OCCLXS 

despite the fact that the higher priority transactions in 
the workloads are longer length transactions and have 

121 



the same CPU time quantum as shorter-length transac- 
tions. Thus, to avoid the starvation problem mentioned 
in Section 4, longer-length transactions can simply be 
assigned higher priorities. 
Even though the T-Tree indexing mechanism did not 
perform as well as expected, we believe that the perfor- 
mance can still be improved by a different locking 
scheme. The locking scheme should take the priority of 
transactions into account, and unlike the previous lock- 
ing schemes, it should allow as many transactions to 
access the T-Tree as possible. Such a solution will not 
only reduce the number of transactions missing their 
deadlines due to T-Tree blocking, but also remove the 
transaction priority problem mentioned in Section 5. We 
plan to implement more advanced locking schemes in 
StarBase, and measure the performance improvements. 
Future work should address how StarBase performs in 
an open process systems environment. Currently, RT- 
Mach creates periodic threads only after the instantia- 
tion of the previous thread has completed. This problem 
has prevented any experiments on how StarBase per- 
forms under different transaction arrival rates. We also 
plan to correct the fixed-policy round-robin scheduling 
problem so that we can obtain a truly accurate represen- 
tation of how StarBase performs under a priority-driven 
scheduling policy. 

Acknowledgment 

This work is supported in part by ONR. 

References 

[Geo93] Geroge, D., “Implementation of Indexing and 
Concurrency Control Mechanism in a Real-Time 
Database,” M.S. Project, University of Virginia, 
May 1993. 

[Har91] Haritsa, J., “Transaction Scheduling in Firm 
Real-Time Database Systems,” PhD. thesis, Uni- 
versity of Wisconsin-Madison, August 1991. 

[Hua91] Huang, J., “Real-Time Transaction Processing: 
Design, Implementation, and Performance Evalua- 
tion,” Ph.D. thesis, University of Massachusetts at 
Amherst, May 1991. 

[Kim951 Kim, Y., “Predictability and Consistency in 
Real-Time Transaction Processing,” Ph.D. thesis, 
University of Virginia, May 1995. 

Kitayama, T., T. Nakajima, and H. Tokuda, 
“RT-IPC: An IPC Extension for Real-Time Mach.” 
Proceedings of the Second Microkernel Workshop, 
Sep 1993. 

Lee, J and S. H. Son, “Performance of Con- 

[Kit931 

Lee951 

currency Control Algorithms in Real-Time Data- 
base Systems,” Pegormance of Concurrency 
Control Mechanisms in Centralized Database Sys- 
tems, V. Kumar (ed), Prentice Hall, 1995. 

Leh871 Lehman, T. and M. Carey, “A Recovery Algo- 
rithm for a High Performance Memory-Resident 
Database System,” ACM SIGMOD Conference, 
May 1987. 

[Leh95] Lehr, M., Y. Kim, and S. H. Son, “Managing 
Contention and Timing Constraints in a Real-Time 
Database System,” 16th IEEE Real-Em System 
Symposium, Pisa, Italy, Dec. 1995. 

Kim, Y., M. Lehr, D. George, and S. H. Son, 
“A Database Server for Distributed Real-Time Sys- 
tems: Issues and Experiences,” IEEE Workshop on 
Parallel and Distributed Real-Time Systems, Can- 
cun, Mexico, April 1994,66-75. 

Tokuda, H., T. Nakajima, and I? Rao, “Real- 
Time Mach Towards a Predictable Real-Time Sys- 
tem,” Proceedings of the First USENIX Mach 
Workshop, Oct 1990. 

[Tok 911 Tokuda, H. and T. Nakajima, “Evaluation of 
Real-Time Synchronization in Real-Time Mach,” 
Proceedings of the Second USENIX Mach Work- 
shop, Oct 1991. 

Yu, P., K. Wu, K. Lin, and S.  H. Son,. “On 
Real-Time Databases: Concurrency Control and 
Scheduling,” Proceedings of IEEE, Special Issue on 
Real-Em Systems, vol. 82, no. 1, Jan. 1994. 

[Son941 

[TokW1 

vu941 

I 
/ 

h B 

F; 

w 

IMX) 

0 
I 
* 

g m  

0 
0 2 M 1 4 w 6 w m 1 o w  

Tuples Updated 
Fig. 2: Update time with different attribute number 

122 



1 
1 

+ 
+ 
+ 

200 tuple 
600 tuple 
Iwo tuple 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

Write Probability 
Fig. 3: Resourcddata contention, MPL = 4, a = 8.0, 
tuples = 5 

‘“1 

--t 200 tuple 
+ 600 tuple 
-c- loo0 tuple 

0.0 --, 
0.0 0.2 0.4 0.6 0.8 1.0 

Write Probability 
Fig. 4: Resourcddata contention, MPL = 8, a = 8.0, 
tuples = 5 

+ 5 tuples 
--t n tuple 
--Ir 45 tuples 3 

r3 0.4- 
d 

+ 5 tuples 
--t n tuple 
--Ir 45 tuples 

0.0 
1 , .  , . , , , .  j 

0.0 0.2 0.4 0.6 0.8 1.0 

Write Probability 
Fig. 5: Mixed transactions, MPL = 4, a= 8.0, same prior- 
ity 

1.01 

0.2 
cl 7 

+ s tuples 
+ 2s hlples 
+- 45 h p h  

0.0 -s, 
0.0 0.2 0.4 0.6 0.8 1.0 

Write Probability 
Figd: Mixed transactions, MPL = 4, a = 8.0, higher pri- 
ority for longer transactions 

123 



1 

J 

0.0 

+ 200 bple 
+ 600 bple 
+ loo0 tuple 

s ~ ' l ' l ' l ' l  

0.0 ~ l ' l ' l ' l ' ~  
0.0 0.2 0.4 0.6 0.8 1.0 

Write Probability 
Fig. 7: Resourcddata contention, MPL = 4, a = 8.0, 
tuples = 5,  indexed 

1 0 l 'O1 0.8 
d 
a, 
a, c, 

+ 200 bple E 0.6 

E + 600 bple 
$ -+ loo0 tuple rk 

OA 4 

1 1  1 0.2 

+ Locking-m 
+ Locking-w 

0.0 Q l ' l ' l ' l ' l  
0.0 0.2 0.4 0.6 0.8 1.0 

Write Probability 
Fig. 9: Comparison of locking strategies, MPL = 4, a = 
8.0, tuples = 5, table size = 600 

lSl 1 

+ 5 tuples 
+ 25 bples 
+ 45 tuples 

Write Probability 
Fig. 10: Mixed transactions, MPL = 4, a = 8.0, same pri- 
ority, indexed 

124 


