
On the Need for Practical Formal Methods
?

Constance Heitmeyer

Naval Research Laboratory, Code 5546, Washington, DC 20375, USA

Abstract. A controversial issue in the formal methods community is

the degree to which mathematical sophistication and theorem proving
skills should be needed to apply a formal method. A fundamental as-

sumption of this paper is that formal methods research has produced

several classes of analysis that can prove useful in software development.
However, to be useful to software practitioners, most of whom lack ad-

vanced mathematical training and theorem proving skills, current formal

methods need a number of additional attributes, including more user-
friendly notations, completely automatic (i.e., pushbutton) analysis, and

useful, easy to understand feedback. Moreover, formal methods need to

be integrated into a standard development process. I discuss additional
research and engineering that is needed to make the current set of formal

methods more practical. To illustrate the ideas, I present several exam-

ples, many taken from the SCR (Software Cost Reduction) requirements
method, a formal method that software developers can apply without

theorem proving skills, knowledge of temporal and higher order logics,

or consultation with formal methods experts.

1 Formal Methods in Practice: Current Status

During the last decade, researchers have proposed numerous formal methods,
such as model checkers [6] and mechanical theorem provers [21], for developing
computer systems. One area in which formal methods have had a major impact
is hardware design. Not only are companies such as Intel beginning to use model
checking, along with simulation, as a standard technique for detecting errors in
hardware designs, in addition, some companies are developing their own in-house
model checkers. Moreover, a number of model checkers customized for hardware
design have become available commercially [17].

Although some limited progress has been made in applying formal methods
to software, the use of formal methods in practical software development is rare.
A signi�cant barrier is the widespread perception among software developers
that formal notations and formal analysis techniques are di�cult to understand
and apply. Moreover, software developers often express serious doubts about the
scalability and cost-e�ectiveness of formal methods.

Another reason why formal methods have had minimal impact is the absence
in practical software development of two features common in hardware design
environments. First, hardware designers routinely use one of a small group of
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languages, e.g., Verilog or VHDL, to specify their designs. In contrast, precise
speci�cation and design languages are rarely used in software development.

Second, integrating a formal method, such as a model checker, into a hard-
ware design process is relatively easy because other tools, such as simulators and
code synthesis tools, are already a standard part of the design process at many
hardware companies. In contrast, in software development, no standard soft-
ware development environments exist. (Although \object-oriented design" has
gained considerable popularity in recent years, this process is still largely infor-
mal and what \object-oriented design" means varies considerably from one site
to the next.) Moreover, while a number of commercial Computer-Aided Software
Engineering (CASE) tools have become available in recent years, few software
developers are actually using the tools [18].

This paper distinguishes light-weight formal methods from heavy-duty meth-
ods and then describes two broad classes of problems in which formal methods
have been useful. It concludes by proposing a number of guidelines for making
formal methods more useful in practice.

2 Light-Weight vs. Heavy-Duty Techniques

A formal analysis technique may be classi�ed as either \light-weight" or \heavy-
duty". The user of a light-weight technique does not require advanced math-
ematical training and theorem proving skills. One example of a light-weight
technique is an automated consistency checker, which checks a speci�cation for
syntax and type errors, missing cases, instances of nondeterminism, and circular
de�nitions (see, e.g., [11, 10]). In contrast, the user of a heavy-duty technique
must be mathematically mature, a person skilled in the formulation of formal
arguments and clever proof strategies. The most common heavy-weight tech-
niques are mechanical theorem provers, such as PVS [21] and ACL2 [16]. Other
techniques which may be classi�ed as heavy-duty are those that automatically
generate state invariants from speci�cations (e.g., see [15, 3]). Such state invari-
ants can be presented to system users for validation or, alternately, can be used
as auxiliary invariants in proving new properties from the speci�cations.

Model checkers fall somewhere between light-weight and heavy-duty tech-
niques. Once the user has de�ned the state machine model and the property
of interest, the model checker determines automatically whether the property is
satis�ed. One problem with most current model checkers is that the languages
available for representing the state machine model and the properties of inter-
est can be di�cult to learn. Usually, model checkers require the representation
of a property is some form of temporal logic. Expressing certain properties in
temporal logic is complex and error-prone, not only for practitioners but for for-
mal methods experts as well. An additional problem with many current model
checkers is that sometimes the counterexample produced by model checking is
thousands of states long and extremely di�cult to understand (see, e.g., [25]).

Fortunately, many of the current problems with model checkers are not in-
herent in the technology but simply limitations of the current implementations.



In Section 4, I suggest some improvements to model checkers, which should make
them easier to use, more automatic, and hence more light-weight. I also suggest
how automated, mathematically sound abstraction methods, a topic of current
research, can help make model checking more accessible to practitioners.

3 Where Have Formal Methods Been Applied?

We can identify two large classes of problems where formal methods have had
utility. First, formal methods have been used to formalize, debug, and prove the
correctness of algorithms and protocols. Using formal methods to tackle such
problems has proven useful in both hardware and software applications: once
its correctness has been shown formally, the algorithm (or protocol) may be
used with high con�dence in many applications. While model checking has been
used to analyze various protocols, such as cache coherence protocols and security
protocols (see, e.g., [20]), the deep mathematical reasoning needed to verify most
algorithms usually requires a heavy-duty theorem prover.

For example, recently, a microprocessor manufacturer, Advanced Micro De-
vices (AMD), developed a new algorithm for 
oating point division on the
AMD586, a new Pentium-class microprocessor. To increase con�dence in the
algorithm's correctness, AMD hired a team of formal methods experts to verify
the AMD586 microcode that implemented 
oating point division. The experts
used ACL2, an extended version of the Boyer-Moore theorem prover, to formal-
ize the algorithm and to check a relatively deep mathematical proof [16]. After
nine weeks, the veri�cation e�ort was successfully completed. Hiring the formal
methods experts to construct the formal proof and mechanically check it using
ACL2 was a relatively cheap means for AMD to gain con�dence in the AMD586
microcode for 
oating point division. Moreover, AMD can con�dently reuse the
algorithm in future microprocessors.

In a second class of problems, formal methods are used to demonstrate that
a speci�cation of a system (or system part) satis�es certain properties, or that
a detailed description, such as a design or an implementation, of a system sat-
is�es a given speci�cation. In this latter case, the theorems proven have been
referred to as \junk" theorems, since unlike theorems proven about algorithms
and protocols, these theorems are not usually of interest outside the system that
is being analyzed.

Experience applying formal methods to the requirements speci�cations of
TCAS II [10], a collision avoidance system for commercial aircraft, and WCP
[14], a safety-critical component of a U.S. military system, illustrates this sec-
ond class of problems. In each case, the speci�cation was analyzed for selected
properties using both consistency checking and model checking. In both cases,
the analysis exposed signi�cant errors [10, 1, 14]. The properties analyzed in-
cluded both application-independent properties (e.g., a given function is total)
and application-dependent properties. In each case, the properties and their
proofs were of little interest outside the analyzed systems.



The analysis of such speci�cations does not normally require deep reason-
ing. Hence, more light-weight methods, such as consistency checking and model
checking, are more cost-e�ective than heavy-duty theorem proving. Yet, the anal-
yses performed were often quite complex, especially for model checking, due
to the enormous size of the state space that needed to be analyzed. Further,
the presence in the speci�cations of logical expressions containing a mixture of
boolean, enumerated types, integers, and reals as well as arithmetic and func-
tions made automated consistency checking di�cult, especially in the TCAS II
speci�cation. Two potential solutions to these problems, both of which are top-
ics of current research, are automated abstraction methods and more powerful
decision procedures.

4 Guidelines for Producing a Practical Formal Method

Presented below are a number of guidelines for making formal methods more
practical. The objective of these guidelines is to make formal methods light-
weight and thus more accessible to software developers. To a large extent, ap-
plying these guidelines is simply good engineering practice. However, in other
cases, additional research is needed.

4.1 Minimize E�ort and Expertise Needed to Apply the Method

To be useful in practice, formal methods must be convenient and easy to use.
Most current software developers are reluctant to use current formal methods
because they �nd the learning curve too steep and the e�ort required to apply
a formal method too great. In many cases, deciding not to use a formal method
is rational. The time and e�ort required to learn about and apply a formal
method may not be worth the information and insight provided by the method;
in some cases, the e�ort could be better spent applying another method, such
as simulation. Suggested below are three ways in which the di�culty of learning
and applying a formal method can be reduced.

O�er a language that software developers �nd easy to use and easy

to understand. The speci�cation language must be \natural"; to the extent
feasible, a language syntax and semantics familiar to the software practitioner
should be supported. The language must also have an explicitly de�ned formal
semantics and it should scale. Speci�cations in this language should be auto-
matically translated into the language of a model checker or even a mechanical
theorem prover.

Our group and others (see, e.g., [14, 22, 7]) have had moderate success with a
tabular notation for representing the required system behavior. Underlying this
notation is a formal state-machine semantics [11]. Others, such as Heimdahl and
Leveson [10], have proposed a hybrid notation, inspired by Statecharts [9], that
combines tables and graphics; this notation also has a state-machine semantics.



Speci�cations based on tables are easy to understand and easy for software
practitioners to produce. In addition, tables provide a precise, unambiguous basis
for communication among practitioners. They also provide a natural organiza-
tion which permits independent construction, review, modi�cation, and analysis
of smaller parts of a large speci�cation. Finally, tabular notations scale. Evidence
of the scalability of tabular speci�cations has been shown by Lockheed engineers,
who used a tabular notation to specify the complete requirements of the C-130J
Flight Program, a program containing over 230K lines of Ada code [8].

In addition to tabular notations, other user-friendly notations should also
be explored. For example, one group is developing a set of tools which ana-
lyze message sequence charts, a notation commonly used in communication pro-
tocols [24]. Others are exploring a front-end for model checking based on the
graphical notation Statecharts.

Make Formal Analysis as Automatic as Possible. To the extent feasible,
analysis should be \pushbutton". One formal technique that is already largely
pushbutton is automated consistency checking. To achieve this automation, con-
sistency checking is implemented by e�cient decision procedures, such as seman-
tic tableaux [11] and BDDs (Binary Decision Diagrams) [10]. Moreover, a recent
paper [23] shows how the Stanford Validity Checker (SVC), which uses a deci-
sion procedure for a subset of �rst-order logic with linear arithmetic, can check
the validity of expressions containing linear arithmetic, inequalities, and unin-
terpreted function symbols.

More progress is needed, however. Speci�cations of many safety-critical ap-
plications contain logical expressions that mix booleans, enumerated types, inte-
gers, and reals. How to analyze such mixed expressions e�ciently is an unsolved
problem. New research is needed that shows how various decision procedures,
such as term rewriting, BDDs, and constraint solvers, can be combined to check
the validity of such expressions.

Another area where more automation is needed is model checking. Before
practical software speci�cations can be model checked e�ciently, the state explo-

sion problem must be addressed|i.e., the size of the state space to be analyzed
must be reduced. An e�ective way to reduce state explosion is to apply abstrac-
tion. Unfortunately, the most common approach is to develop the abstraction
in ad hoc ways|the correspondence between the abstraction and the original
speci�cation is based on informal, intuitive arguments. Needed are mathemati-
cally sound abstractions that can be constructed automatically. Recent progress
in automatically constructing sound abstractions has been reported in [4, 5].

Provide Good Feedback. When formal analysis exposes an error, the user
should be provided with easy-to-understand feedback useful in correcting the
error. Techniques for achieving this in consistency checking already exist (see,
e.g., [12, 23]). As noted above, counterexamples produced by model checkers
require improvement. One promising approach, already common in hardware
design, uses a simulator to demonstrate and validate the counterexample.



4.2 Provide a Suite of Analysis Tools

Because di�erent tools detect di�erent classes of errors, users should have avail-
able an entire suite of tools. This suite may include a consistency checker, a
simulator, a model checker, as well as a mechanical theorem prover [13]. The
tools should be carefully integrated to work together. This is already happen-
ing in hardware design, where simulators, model checkers, equivalence checkers,
and code synthesis tools are being used in complementary ways; moreover, some
progress has been made in making tools, such as model checkers and simulators,
work together [17]. One bene�t of having a suite of tools is that properties that
have been shown to hold using one tool may simplify the analysis performed
with a second tool. For example, validating that each function in a speci�cation
is total can simplify subsequent veri�cation using a mechanical prover.

4.3 Integrate the Method into the User's Development Process

To the extent feasible, formal methods should be integrated into the existing
user design process. Techniques for exploiting formal methods in object-oriented
software design and in software development processes which use semiformal
languages, such as Statecharts, should also be explored. How formal methods
can be integrated into the user's design process should be described explicitly.

4.4 Provide a Powerful, Customizable Simulation Capability

Many formal methods researchers underestimate the value of simulation in ex-
posing defects in speci�cations. By symbolically executing the system based on
the formal speci�cation, the user can ensure that the behavior speci�ed satis�es
his intent. Thus, unlike consistency checking, model checking, and mechanical
theorem proving, which formally check the speci�cation for properties of interest,
simulation provides a means of validating a speci�cation. In running scenarios
through the simulator, the user can also use the simulator to check properties
of interest. Another use of simulation is in conjunction with model checking; as
suggested above, simulation can be used to demonstrate and validate counterex-
amples obtained from a model checker.

One important approach to selling formal methods is to build customized
simulator front-ends, tailored to particular application domains. For example,
we have developed a customized simulator front-end for pilots to use in evaluat-
ing an attack aircraft speci�cation. Rather than clicking on monitored variable
names, entering values for them, and seeing the results of simulation presented
as variable values, a pilot clicks on visual representations of cockpit controls
and sees results presented on a simulated cockpit display. This front-end allows
the pilot to move out of the world of the speci�cation and into the world of
attack aircraft, where he is the expert. Such an interface facilitates evaluation of
the speci�cation. Using a commercially available GUI (Graphical User Interface)
Builder, one can construct a fancy simulator front-end in a few days.



5 More \Usable" Mechanical Theorem Provers

Although mechanical theorem provers have been used by researchers to verify
various algorithms and protocols, they are rarely used in practical software de-
velopment. For provers to be used more widely, a number of barriers need to
be overcome. First, the speci�cation languages provided by the provers must
be more natural. Second, the reasoning steps supported by a prover should be
closer to the steps produced in a hand proof; current provers support reasoning
steps that are at too low and detailed a level. One approach to this problem is to
build a prover front-end that is designed to support speci�cation and proofs of a
special class of mathematical models. An example of such a front-end is TAME,
a \natural" user interface to PVS that is designed to specify and prove proper-
ties about automata models [2]. Although using a mechanical provers will still
require mathematical maturity and theorem proving skills, making the prover
more \natural" and convenient to use should encourage more widespread usage.

6 Conclusions

It is my belief that software practitioners who are not formal methods experts
can bene�t from formal methods research. However, to do so, they need formal
methods that are user-friendly, robust, and powerful. To enjoy the bene�ts of
formal methods, a user does not need to be mathematically sophisticated nor
need he be capable of proving deep theorems. One analogy that I heard at CAV
'98 is that beautiful music can come from either a good violin or a highly talented
violinist. Light-weight techniques o�er software developers good violins. A user
need not be a talented violinist to bene�t. This is in contrast to heavy-duty
techniques where the user needs to be a good violinist.

Formal methods research has already produced a signi�cant body of theory.
Moreover, some promising research is currently in progress in automated ab-
straction and automatic generation of invariants (e.g., [19, 4, 15, 5]). However,
to make formal methods practical, good engineering is needed. The user of for-
mal methods should not need to communicate the required system behavior in
some arcane language nor to decipher the meaning of obscure feedback from an
analysis tool. What a practical formal method should do is liberate the user to
tackle the hard problems that humans are good at solving, e.g.,

{ What exactly is the required system behavior?

{ What are the critical system properties?

{ How can I make the speci�cation easy for others to understand?

{ What are the likely changes to the speci�cation and how can I organize the
speci�cation to facilitate those changes?

{ What should the missing behavior be? How can this nondeterminism be
eliminated? How do I change the speci�cation to avoid this property viola-
tion?
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