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Abstract

In this paper we show how the NRL Protocol Ana-

lyzer, a special-purpose formal methods tool designed

for the veri�cation of cryptographic protocols, was used

in the analysis of the Internet Key Exchange (IKE)

protocol. We describe some of the challenges we faced

in analyzing IKE, which speci�es a set of closely re-

lated subprotocols, and we show how this led to a num-

ber of improvements to the Analyzer. We also describe

the results of our analysis, which uncovered several

ambiguities and omissions in the speci�cation which

would have made possible attacks on some implemen-

tations that conformed to the letter, if not necessarily

the intentions, of the speci�cations.

1 Introduction

The Internet Key Exchange protocol (IKE) is a key

exchange protocol being developed by the IP Security

Protocol (IPSEC) Working Group of the Internet En-

gineering Task Force (IETF). It is intended to provide

the security support for client protocols of the Inter-

net Protocol. As such, it does much more than simply

distribute keys; it also is intended to be used to es-

tablish Security Associations that specify such things

as the protocol format used, the cryptographic and

hashing algorithms used, and other necessary features

for secure communication. Since it is intended to be


exible, it supports a number of di�erent types of key

exchange options, including digital signatures, pub-

lic key encryption, and conventional encryption using

shared keys. The Di�e-Hellman algorithm is used to

generate shared key material, but is optional in some

cases.

IKE has evolved from a number of di�erent proto-

cols, including ISAKMP [14], Oakley [22], the Station-

to-Station protocol [4], and SKEME [10], the last two

of which in
uenced the development of Oakley. Al-

though the ISAKMP protocol has been analyzed by

Millen [20] using formal methods, IKE itself had not

previously been subjected to formal analysis1. Yet

such analysis is important, not only because IKE in-

troduces new features that go beyond the original pro-

tocols, but because the possible interaction of the dif-

ferent subprotocols, which use similar formats, could

lead to new insecurities. Indeed, this has been shown

to be the case for other protocols of this type. For

example, Benaloh at al. [2] point out an attack on an

early version of SSL in which an intruder can pass o� a

compromised weak key as a strong key by interleaving

two subprotocols, one of which uses the weak key, and

one of which is intended to use a strong key. Kelsey

and Schneier [8] show that, given an initial protocol, it

is always possible to construct one with which it will

interact insecurely. Thus having an analysis of IKE

itself, as well as of its ancestors, is important.

Having a formal analysis of IKE is not only useful

in providing a greater understanding of the protocol

itself, but also because it can help extend the fron-

tiers of the application of formal methods to protocol

analysis. Most applications of formal methods to cryp-

tographic protocols have concentrated on the analysis

of single message sequences. Concurrent, sequential,

and interleaved communications involving either the

same or other parties are also considered, but in each

case the set of actions taken is the same for all par-

ties playing the same role. Most real-life protocols,

however, o�er a number of di�erent optional subpro-

1We should note, however, that a belief logic analysis of IKE

appeared as this paper was being written [13].
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tocols which could possibly interact with each other

in harmful ways. Extending existing formal methods

techniques to handle such potential interactions risks

the possibility of intractable state explosions. This is

probably the reason why until now little work has been

done on this problem (other than to de�ne sub-cases

for which it is tractable [6, 5]), with a few notable

exceptions, such as Paulson in [24], who, although he

does not explicitly address the sub-protocol issue, does

consider the case of a single protocol with optional

messages and �elds.

A formal analysis of IKE is of interest for yet an-

other reason. Although IKE had not previously been

the subject of any formal analysis, it has undergone

the usual vetting procedure for Internet standards:

that is, it has been published on the World Wide Web

and subjected to intense scrutiny by experts. Thus it

has received much more informal analysis than most

cryptographic protocols. A formal analysis of IKE

gives us the opportunity to compare the results of for-

mal with informal analysis: are there types of prob-

lems that the formal analysis would catch that the

informal analysis would not, and vice versa?

In this paper we describe how the NRL Protocol

Analyzer, a tool based on a combination of state ex-

ploration and theorem proving techniques, was used

to the analyze IKE. We show the modi�cations that

needed to be made to the Analyzer before it could

be applied to protocols like IKE, and we describe the

results we obtained. We also describe some changes

to the IKE speci�cation that we suggested as a re-

sult of our analysis, and consider possible further im-

provements that could be made to the NRL Protocol

Analyzer.

Our formal analysis caught several problems with

the IKE speci�cation. These problems were not so

much 
aws in the protocol design itself, but rather am-

biguities and omissions in the speci�cation that could

lead to insecure or incorrect implementations if the

speci�cation were not correctly understood. Indeed,

in one case we found that several incorrect implemen-

tations were being developed as a result of an omission

in the IKE speci�cation.

The rest of the paper is organized as follows. In

Section 2 we describe the IKE protocol. In Section

3 we give a brief overview of the NRL Protocol Ana-

lyzer. In Section 4 we describe the modi�cations that

needed to be made to the Analyzer before it could be

successfully applied to protocols like IKE. In Section 5

we describe our speci�cation of IKE. In Section 6 we

describe the analysis and its results. Section 7 con-

cludes the paper and discusses some issues that were

raised by this work.

2 The IKE Protocol

The IKE protocol can be thought of as a combina-

tion of two protocols, the Internet Security Associa-

tion and Key Management Protocol (ISAKMP) [14]

and Oakley [22]. ISAKMP provides a framework for

establishing security associations and cryptographic

keys, but does not prescribe any particular authentica-

tion mechanism. Indeed, ISAKMP is supposed to be

integrable with a number of security protocols. Oak-

ley, on the other hand, is a suite of key agreement

protocols in which two parties generate a key jointly.

The IKE document describes how Oakley can be used

to provide an instantiation of ISAKMP.

A typical key establishment protocol proceeds in

one phase, in which two parties use master keys to

establish shared keying material. IKE, however, pro-

ceeds in two such phases. In the �rst phase, two en-

tities use master keys to agree, not only on keying

material, but on the various mechanisms (e.g. cryp-

tographic algorithms, hash functions, etc.), that they

will use in the second phase. The keying material and

set of mechanisms thus agreed upon is called a security

association. In the second phase, the keys and mech-

anisms produced in the �rst phase are used to agree

upon new keys and mechanisms (that is, new security

associations) that will be used to protect and authen-

ticate further communications. The security associa-

tion established in Phase One is bidirectional, so the

initiator in the �rst phase can be either initiator or

responder in the second phase.

Oakley may be used in one of four di�erent modes:

main mode, aggressive mode, quick mode, and new

group mode. These o�er di�erent types of services.

Both main and aggressive mode can be used in Phase

One. In main mode, certain types of identifying in-

formation will not be exchanged until some initial au-

thentication has occurred. In aggressive mode, this

level of protection is not provided, but the exchange

is accomplished in fewer messages. Main and aggres-

sive mode can be implemented in four di�erent ways:

using shared keys, signatures, or public keys in two

di�erent ways for authentication. In all of these, the

Di�e-Hellman protocol is used to generate the keying

material.

Quick mode is used as part of the Phase Two ne-

gotiation process. In quick mode, the key material

generated in Phase One is used to encrypt and au-

thenticate messages used to generate the key material

produced for Phase Two. Quick mode o�ers Di�e-



Hellman key exchange as an option that can be used

to provide perfect forward secrecy; the other option is

to use more conventional shared key generation mech-

anisms, which, while they are faster, do not provide

the same degree of security. In IKE, identity informa-

tion is only required in Quick Mode messages when

ISAKMP is acting as a client negotiator on behalf of

another party (for example, hosts negotiating security

associations for applications or users) ; otherwise iden-

tities may be assumed to be the IP addresses of the

ISAKMP peers. Finally, new group mode is used to

agree on a new Di�e-Hellman group.

As we can see, IKE is really a combination of a num-

ber of di�erent subprotocols. Phase One o�ers a choice

of eight di�erent subprotocols, with two choices for

mode, and four choices for authentication mechanism.

Phase Two o�ers a choice of four di�erent subproto-

cols, depending upon whether perfect forward secrecy

is or is not provided, and depending upon whether or

not explicit identity information is included. Thus,

all in all, when the new group protocol is included,

thirteen di�erent subprotocols are o�ered.

3 The NRL Protocol Analyzer

The NRL Protocol Analyzer is a formal methods

tool for analyzing security properties of cryptographic

protocols. It is unique among tools that have been

applied to the analysis of cryptographic protocols in

that it uses automatic invariant generation to limit a

potentially in�nite search space in combination with

exploration of the remaining space to generate attacks

on insecure protocols and provide security proofs for

secure ones, even in the face of a potentially unlimited

number of protocol executions or an unlimited num-

ber of intruder actions. In this combination of meth-

ods it probably most resembles the Stanford Temporal

Prover (STeP) [12], although it and STeP are applica-

ble to somewhat di�erent problem domains.

Protocols in the Analyzer model are speci�ed as

communicating state machines, one of which is a hos-

tile intruder who can read all tra�c, modify or delete

tra�c, perform cryptographic operations, and may be

in cooperation with some legitimate users of the sys-

tem.

Each honest participant is represented as a single

state machine, each of which possesses a set of local

state variables. These local state variables are partic-

ular to the particular protocol speci�cation.

A local execution is de�ned with respect to a party,

plus a role (e.g., initiator or responder), plus the par-

ticular local execution of the protocol. We refer to a

local execution as a round. Each round is identi�ed

by a variable referred to as a round number.

The user of the Analyzer attempts to determine

whether or not a protocol is secure by specifying an

insecure state. The Analyzer works backwards from

that state until it it has explored the search space ex-

haustively, so that each path produced either begins in

an initial state (describing an attack) or an unreach-

able state.

The Analyzer determines whether a protocol rule

could be used to produce a state by means of a process

known as narrowing. Terms (that is expressions made

out of variables, constants, and function symbols) used

in protocol speci�cations are assumed to obey a set of

explicitly de�ned rewrite rules, that is, equations such

that the right-hand side of the equation is \simpler"

than the left-hand side according to some well-de�ned

measure. An example of a rewrite rule would be one

saying that the result of encrypting a term and then

decrypting it with the same key reduces to the original

term. Terms used in state descriptions are assumed to

be irreducible (no further rewrite rules apply), while

terms used as output of rules may possibly not be

reducible. The narrowing algorithm is used to �nd all

substitutions to the variables involved such that the

terms in the rule output become reducible to the terms

in the state description. The narrowing algorithm is

very dependent upon the fact that the identities used

are rewrite rules, as well as the fact that they obey

certain other well-de�ned properties.

The Analyzer makes no assumptions about limits

on the number of protocol executions, the number

of principals performing the di�erent executions, the

number of interleaved executions, or the number of

times cryptographic functions are applied. This re-

sults in a search space that is originally in�nite. How-

ever, the Analyzer provides means for specifying and

proving inductive lemmas about the unreachability of

in�nite classes of states. This allows the user to nar-

row down the search space so that in many cases an

exhaustive search is possible. These inductive lemmas

are formulated in terms of formal languages. The user

gives the Analyzer a seed term, and the Analyzer uses

the seed term to construct a language and prove that,

if the intruder learns a term in the language, then it

must have already known a term in that language,

thus inductively proving that the intruder can never

learn a term in the language. For protocols involving

public and shared-key encryption, we have developed

a standard set of seed terms : master keys, encrypted

data where the data is not known by the intruder, de-

crypted data where the term decrypted is not known



by the intruder, concatenation of two terms where one

of the terms is not yet known by the intruder, and

signed data.

The Analyzer also possesses another means of lim-

iting the search space. If the Analyzer proves that a

certain state is unreachable, or reachable under cer-

tain conditions, it can store that fact in a database

using a tool called the State Uni�er. From then on,

whenever the Analyzer encounters that state during a

search, it will discard it as unreachable if the state was

proved unreachable, or attempt to prove that the con-

ditions can hold if the state was proved reachable only

under certain conditions. Until recently, much of the

work involved in using the Analyzer involved identify-

ing which states found by it would provide most useful

input to the State Uni�er.

The Analyzer has been applied to a number of dif-

ferent cryptographic protocols, and has found 
aws

in several. In some cases the 
aws had not been dis-

covered before. Examples of protocols the Analyzer

has been used to examine are the Simmons Selective

Broadcast Protocol [16], the Burns-Mitchell Ticket

Granting Protocol [15], and an early version of the

Encapsulating Security Protocol [26]. A more detailed

description of the Analyzer is given in [17].

4 Improvements Made to the Protocol

Analyzer

In order to analyze a protocol the size of IKE, it

was necessary to make a number of improvements to

the Protocol Analyzer. We should point out, however,

that although these improvements made the analy-

sis of IKE possible, they were not designed with IKE

alone in mind, but rather any complex protocol that

o�ers multiple options. In particular, we have also

been performing an analysis of the Secure Electronic

Transactions Protocol (SET) [1], a protocol even more

complex than IKE, and we have found these improve-

ments equally helpful there.

Improvements that were made to the Protocol An-

alyzer can be divided into three parts. These are: im-

provements to the Protocol Analyzer language, im-

provements to the theorem prover, and improvements

to the query structure. We will describe each of these

in more detail below.

4.1 Improvements to the Specification Language

The most obviously necessary changes were to the

Protocol Analyzer speci�cation language. The orig-

inal language speci�ed a set of possible state tran-

sitions. Conditions for a transition to �re were set

on messages received and on values of state variables.

Outputs of transition were messages sent and new val-

ues of state variables. Although the language was

expressive enough to specify a protocol like IKE, it

was low-level enough so that it was di�cult to write

and understand a protocol that involved many choices

and/or a long sequences of state transitions. Thus the

language was modi�ed to include more high-level con-

structs such as if-then-else and subroutines. The rep-

resentation of state variables and messages was also

cleaned up and simpli�ed.

This made it possible to specify the execution of

di�erent subroutines in the following way. An ini-

tial transition would be speci�ed in which the ini-

tiator would nondeterministically choose a subproto-

col. Then, depending upon the subprotocol it chose,

it would execute the subroutine appropriate to that

protocol. Subroutines would also be de�ned for each

subprotocol for the responder. The responder would

then chose which subprotocol to execute depending on

the message it received from the initiator.

For example, the initiator's choice of whether or

not to use aggressive or main mode uses the following

transition:

Subroutine

init_choosemode(user(A,honest),N,T):

init_kea := mainmode,

Or:

init_kea := aggressive.

The initiator later on uses the value of the

init kea state variable to decide whether to execute

the init keymain subprotocol (corresponding to main

mode), or the init sendsaggsa subprotocol (corre-

sponding to aggressive mode):

Subroutine init_sendsa(user(A,honest),N,T):

If:

verify({init_kea},mainmode),

Then:

send msg(user(A,honest),{init_dest},

[{init_cookie},nil,

sa,{init_kea},nil,nil,{init_situation},

{init_doi},

nil,

proposal1,

nil,

init_authtype},{init_plist}],N),

init_sendskeymain,

Else If:

verify({init_kea},aggressive),



Then:

init_grp := choice(one,grp,{init_plist}),

init_sendsaggsa.

When the Analyzer is searching backwards, and it

comes to a state in which an input message is speci-

�ed, it will examine all transitions that produce out-

put messages. Any transition producing an output

message that satis�es the requirements of the input

message can be used to produce a previous state, no

matter which subprotocol it corresponds to. This al-

lows us to check for the possible confusion between

messages belonging to di�erent subprotocols.

Decisions as to whether or not to execute options

such as including identities in Quick Mode messages

are speci�ed in a way similar to that used for specify-

ing the choice of subprotocols.

Finally, one minor change to the speci�cation lan-

guage had no e�ect on ease of use or expressiveness,

but was very helpful in increasing the e�ciency of

searches. Originally, values that were supposed to

be unique, such as nonces and keys, were identi�ed

by a name-time stamp, with name and time as ar-

gument. Thus, a key generated by server S at local

time N is di�erent from a key generated by server

T at local time M unless S = T and N = M. This

was a useful way of ensuring uniqueness. But it had

the following undesirable result. Suppose that the

Analyzer was looking for two or more terms involv-

ing unique terms identi�ed with name-time stamps

that were generated during the same round. The

Analyzer would have no way of knowing this simply

by looking at the terms alone, and it would often

generate a new round for each such term, whether

or not that was appropriate. Thus, if the Ana-

lyzer was trying to �nd rand(ts(Name,Time1)) and

rand(ts(Name,Time2)), it would often assume that

rand(ts(Name,Time1)) was generated during Round

R1, and rand(ts(Name,Time2)) was generated during

Round R2. Searching backwards through these two

rounds doubled the e�ort required by the Analyzer.

This could be wasteful if at the end the Analyzer dis-

covered that the two terms could only have been gener-

ated during the same round. We managed to eliminate

much of this waste by including the round number in

the name-time stamp. Now, the Analyzer could tell

that it was only necessary to look through one round

to produce both terms.

The redesigned speci�cation language helped

greatly in the writing of understandable protocol spec-

i�cations. However, it was still necessary to provide

some assistance to the speci�cation writer in deter-

mining whether or not the protocol speci�ed was the

protocol intended. This was provided by the imple-

mentation of a \sanity checker." To use the sanity

checker, the user speci�es a set of sequences of tran-

sitions that should occur in a legal execution of the

protocol (that is, an execution in which the intruder

is absent). The sanity checker then determines if these

sequences can be executed. This can be used to catch

a number of protocol speci�cation errors.

We are also investigating the integration of the NRL

Protocol Analyzer with Millen's Common Authentica-

tion Protocol Speci�cation Language (CAPSL) [21].

In particular, a translator from CAPSL to the NRL

speci�cation language has been developed [3]. Al-

though we found some discrepancies between the NRL

model and the version of CAPSL that we used (dis-

cussed in [3]) that made it impractical for us to use

the translator to assist us in producing the entire

IKE speci�cation, we did �nd it very helpful when we

needed to perform a rapid speci�cation and analysis of

a subprotocol that we had left out of the original sub-

set of IKE that we had decided to examine. We hope

to continue this integration work, and, if so, we expect

it to simplify the speci�cation process even more.

4.2 Improvements to the Theorem Prover

4.2.1 Strategy for Improvement

The theorem prover in the Analyzer works in two

stages. In the �rst stage, it is used to generate lem-

mas that describe under what conditions states are

reachable. In the second stage it generates states, and

applies the lemmas to determine which states are un-

reachable and should be discarded, which states are

reachable only under certain conditions and should

have those conditions included, and which can be kept

as is.

There are two ways in which this process can be

improved. One is to increase the automated assis-

tance o�ered during the lemma generation process.

The other is to speed up the \generate-and-test" pro-

cess, which can be slow for large protocols, since tests

are expensive and many more states fail the test than

pass it.

The improvements to the lemma generation process

came �rst, so we begin by describing them.

4.2.2 Improvements to the Lemma Genera-

tion Process

Very few improvements needed to be made to the lan-

guage generator, since this was already almost com-

pletely automated. Most changes involved changing



the way languages were stored, in order to make it

easier for the Protocol Analyzer to store more com-

plex languages of the sort that were generated in the

IKE analysis.

The State Uni�er was another case altogether. In

its earlier form, the State Uni�er was used by looking

at states generated by the Analyzer and manually con-

structing input based on the information contained in

the states. This was a tedious and tricky process at

best, and one that was also di�cult to teach. When

applied to a protocol suite like IKE, it became impos-

sible.

The solution was to look closely at the techniques

used to generate input for the State Uni�er, and to

�nd large subclasses which could be automated. As

it turned out, there were two which could be handled

this way.

The �rst mechanism we call the Input Evaluator.

The Input Evaluator takes the state variables that

are input to each rule, and works backwards to the

initial state for the principal executing the rule. It

keeps track of any assignments that are made to the

variables during this backwards search, and gives this

information to the State Uni�er.

To see how this works, suppose that a rule requires

as part of its input that the value of the state variable

init nonce be Y for some variable Y. Suppose further-

more that the Input Evaluator searches backwards and

�nds that, along all paths, the state variable init nonce

is assigned the value rand(ts(Name,Round,Time)) for

some variables Name, Round, and Time. It hands

this information to the State Uni�er, which puts it

in its database. Now, whenever the Analyzer en-

counters the state variable init nonce, it will attempt

to see if its value can be made to take the form

rand(ts(Name,Round,Time)). If it can't it will record

the state as unreachable.

The second mechanism we call the Forwarding

Lemma Generator. This makes use of an idea of Paul-

son's [23, 25]. In his work, a forwarding lemma is

used to handle the situation in which a party receives

a term in a message, and then passes it along in a lat-

ter message. In such a case the intruder does not learn

anything new from seeing that term, since it already

saw the earlier message.

The older version of the Analyzer also dealt with

this problem. Suppose that the Analyzer is trying to

�nd out how the intruder can �nd a term or list of

terms. It remembers the list of terms that is being

searched for, and whenever it produces a state in its

search, it examines the terms input. If any of the input

terms is also in the list of searched for terms, that state

is discarded. This works in a way similar to Paulson's

forwarding lemmas, but has the disadvantage that it

must be recalculated every time the situation is en-

countered. If we could prove lemmas stating that the

state is unreachable in the �rst place, this would save

the Analyzer a lot of unnecessary work.

The Forwarding Lemma Generator implements this

strategy. It is used in two phases. In the �rst phase,

the user uses the Analyzer to �nd a generic term rep-

resented by a variable X. In the second stage, the Ana-

lyzer examines the search tree and �nds all states that

required X as input. Whenever it �nds such a state,

it generates the appropriate lemma.

4.2.3 Improvements to the Generate-and-

Test Strategy

When one is using a rule-based system in which the

rules are subject to a large number of tests, it is

helpful to have metatests that can be used to tell

us which rules can be discarded immediately. In the

case of the NRL Protocol Analyzer, these would be

metatests that tell us which speci�cation rules can be

used to produce a given state. The Protocol Ana-

lyzer works by attempting to match output of protocol

rules against state descriptions. The time necessary to

match up each protocol rule against a state descrip-

tion and then to decide whether to accept or reject it

is signi�cant.

A state description in the NRL Protocol Analyzer

consists of three things: a list of values of internal state

variables, a list of event statements describing transi-

tions that have occurred, and a list of terms known

by the intruder (that have either been passed as part

of messages or produced by the intruder itself). In

general, a given internal state variable can only have

been produced by a handful of rules. A given event

statement can only have been produced by the rule

it describes. A given intruder-known term, however,

could possibly have been produced by a number of

protocol rules which included that term as part of a

message. Thus we concentrated on determining which

rules could produce which intruder-known terms.

The strategy we developed, which we encoded in

a procedure called genpossiblerules, is simple. First,

genpossiblerules looks for intruder-known terms that

the Analyzer would be likely to look for. These in-

cludes all intruder-known terms that could be ac-

cepted as input to rules, and all terms that could

be generated using available intruder operations. For

each such term, it tries each protocol rule to see if that

rule could produce that term. If it can, it records that

information in the record possiblerules(W;R), where



W is the term and R is the rule.

Later, when the Analyzer is attempting to �nd

out how a term X appearing in as a term known

by the intruder in a state description could be pro-

duced, it checks the possiblerules database. For each

term W appearing in a possiblerules record such that

W subsumes X , it tries only those rules R appear-

ing in some possiblerules(W;R) to determine if R

could have produced X . If X is subsumed by more

than one such term W , say W and W 0, it tests

only those rules R such that possiblerules(W;R) and

possiblerules(W 0; R) appear. If X is subsumed by no

term appearing in the possiblerules database (a rare

event), the Analyzer tries all rules.

The genpossiblerules procedure works best when

applied after the lemma generation, so it does not

speed up the lemma generation process itself. How-

ever, it provides signi�cant speedups during the path

generation phase of the analysis. Moreover, it ap-

pears to provide better assistance the more complex a

protocol becomes; for example, when we tried it out

on a speci�cation of the Needham-Schroeder public-

key protocol, its use speeded up the analysis only by

about 10 per cent; however, when we applied it IKE,

the speed of the analysis was increased by a factor of

about three. We expect that its use on more complex

protocols would provide even greater speedup.

4.3 Improvements to the Query Structure

The user presents a query to the Analyzer by spec-

ifying a state and a search strategy. A search strat-

egy tells the Analyzer how to behave when querying a

state in the search path. The Analyzer views a state as

a collection of state variables and of terms known by

the intruder. It can either attempt to �nd all of these

state variables and intruder-known terms, or it can

regard some as \trivial," that is, not worth searching

for because they could clearly be found. Examples of

\trivial" terms would be terms known initially by the

intruder, or terms represented by variables (for which

the intruder could substitute any term it knows). Re-

fusing to search for trivial terms greatly increases the

e�ciency of the search and does not a�ect the sound-

ness of a result, since an unreachability result holds

whether or not some terms were not searched for.

The worst that could happen is that we might judge

wrongly about the \triviality" of a term, that is, it

might really be impossible for the intruder to �nd. In

that case, the Analyzer would generate a false attack.

However, false attacks are easy to recognize, and we

when we �nd one we can always redo the search with

the term mistakenly judged as \trivial" included back

in the search.

The insight obtained here was that, for the pur-

pose of e�ciency, it was sometimes possible to treat

terms that were clearly not trivial as if they were. This

would generate a fast search, possibly with some at-

tacks. One could then determine whether or not the

attacks were valid. If they were, then we were done,

and in much less time than it would have taken to per-

form a complete search. It the attacks were not valid,

we would merely have to redo the search, but this time

treating the previously \trivial" terms as non-trivial.

For example, for a protocol using digital signatures,

an attack might depend on the intruder's ability to

produce signed messages. Terms that were not signed

messages might or might not be as useful to intruder.

Thus, when analyzing such a protocol, it might make

sense to ask the Analyzer to treat as trivial all terms

that the intruder is required to know except those rep-

resenting signed messages. Thus, in a protocol mak-

ing use of concatenation, digital signatures, and hash

functions, we might begin by asking the Analyzer to

treat as trivial all terms encountered of the form (X,Y)

(for concatenation) and hash(X) (for hash functions),

thus having it query only intruder-known terms of

the form pke(privkey(U),X) (for signed messages) and

state variable values. This could greatly simplify the

search.

As a result, we decided to give the user the option

of specifying which types of terms the Analyzer treats

as trivial. The user can now give the Analyze a list

of intruder-known terms to be treated as trivial; the

Analyzer will do so for any term subsumed by one of

the terms in the list. This simple addition to the Pro-

tocol Analyzer turned out to be invaluable. It greatly

reduced the time required to analyze simple proto-

cols of the type that usually appear in the protocol

analysis literature. In the case of more complex pro-

tocols suites such as IKE, it together with the use of

genpossiblerules were the changes that made protocol

analysis possible. Queries that had formerly resulted

in unmanageable state explosions could now be pro-

cessed easily. Even when discarding certain intruder-

known words as trivial produced invalid attacks, we

were sometimes able to use another feature in the Ana-

lyzer to produce useful information. This was a \back-

tracking" function that would delete all children of a

node but keep all substitutions that were made to vari-

ables in a search. (If di�erent substitutions were made

along di�erent paths, then the node would be replace

by several nodes). The substitutions thus made would

often narrow the scope of the search so that it became



feasible to include more types of intruder-known terms

as nontrivial.

5 Speci�cation of the IKE Protocol

In specifying the IKE protocol, we had to perform

a certain amount of abstraction and simpli�cation.

Some of this was in order to deal with the then lim-

itations of the Protocol Analyzer, and some of this

was because certain features of the protocol (such as

the contents of the security associations and the tech-

niques for negotiating them) were outside the scope of

our analysis. We describe our speci�cation below.

First of all, we speci�ed most of the subprotocols.

New group mode posed some technical di�culties,

which, given the other challenges posed by this pro-

tocol, we decided to avoid dealing with at this point.

This was a result of the fact that the old group was

used in the protocol that de�ned the new group. Anal-

ysis of this would introduce a possible in�nite regres-

sion. The Analyzer can handle other types of in�-

nite regressions, and it is very likely that, with a little

thought, it could be made to handle this type. How-

ever, we decided that we had enough on our hands

without trying to confront this now. Also, the sec-

ond form of public key authentication for main and

aggressive mode did not appear until relatively late

in the IKE protocol design, after we had written our

initial speci�cation. Thus it was not included either.

However, all of the remaining subprotocols were spec-

i�ed, giving a system with ten subprotocols. This we

decided was more than enough to give a challenge to

the Protocol Analyzer.

The commutative properties of the Di�e-Hellman

algorithm also proposed a problem. As we have men-

tioned earlier, an Analyzer speci�cation must specify

explicitly the cryptographic identities assumed, and

all such identities must be expressible as rewrite rules.

However, the Di�e-Hellman algorithm relies explic-

itly on the commutivity of exponentiation to achieve

its goals; there is really no way to abstract it away.

Originally, we experimented with an extension that

introduces commutivity in a limited way, enough to

include the Di�e-Hellman protocol as a special case.

However, although we were able to use this to analyze

a speci�cation of the Station to Station protocol, we

found it too slow to analyze IKE. We thus decided

on the following compromise. We developed two sets

of operations and rewrite rules, one for initiator and

one for responder. In other words, computation of the

Di�e-Hellman key was assumed to involve di�erent

operations for initiator and responder, even though in

fact they are both the same.

For both initiator and responder, we had the oper-

ator exp(G;X), where G represents a choice of group

and generator, X is the exponent, and exp is the ex-

ponentiation function. Thus exp(G;X) represents ZX

mod group(G), where Z = generator(G). For the ini-

tiator, we then used the operation h(G;W; Y ) to rep-

resent W Y mod group(G). where W is the value re-

ceived from the responder, and Y is the initiator's

exponent. For the responder, we used g(G;W; Y ) to

represent W Y mod group(G), where W is the value

received from the initiator and Y is the responder's

exponent. We then use the two rewrite rules:

h(G,exp(G,A),B) ! dhkey(G,A,B)

g(G,exp(G,B),A) ! dhkey(G,A,B)

The reader can verify that, if initiator and responder

exchange their information correctly, then the rewrite

rules will guarantee that they agree on the same key.

Thus, the functions we use obey some of the rules

algebraic rules associated with Di�e-Hellman, includ-

ing the ones necessary for the computation of a Di�e-

Hellman key, but not all of them. Hence any attack

we �nd will remain valid under the full set of alge-

braic identities, but it is possible that an unreachabil-

ity proof will not.

This compromise allows us to use the Analyzer in

its current state to analyze the IKE protocol, but it

does have one disadvantage: it prevents the Analyzer

from �nding certain classes of attacks, namely those

in which a key generated by two principals is confused

with the same key generated by the same principals,

but with their roles reversed. Such an situation could

arise, for example, if two parties agreed to share a key

with each believing that it was acting in the role of the

initiator. We note that such attacks on IKE appear to

be unlikely, as a considerable amount of care appears

to have gone into assuring that di�erent types of mes-

sages (in particular, initiator and responder messages)

are always distinguishable from each other. In partic-

ular, negotiated keys are computed using a hash in

which a nonce generated by the initiator precedes the

nonce generated by the responder, so two responders

would compute di�erent keys. Since the negotiated

keys are used to authenticate the last messages in a

Phase One Exchange, this should prevent against this

kind of attack in Phase One. Also, the keyed hashes

used for authentication in the Phase Two protocols are

computed di�erently for initiator and responder, and

so such a confusion attack is probably not very likely

for Phase Two either. However, our use of a noncom-



mutative representation of Di�e-Hellman does repre-

sent a limitation in our analysis, and should be noted.

Also, about halfway through the analysis we di-

vided the speci�cation into two parts which we ana-

lyzed independently. The �rst part contained all the

Phase One protocols, and the second part contained

all the Phase Two protocols. This was done because

we found that the analysis was taking too long other-

wise. However, it was also done before we introduced

the genpossiblerules operator. We expect that if we

analyzed the original protocol using that operator, we

would have much better results, and would be able to

analyze it in its entirety. However, given the lack of

negative interaction that we found between the much

more closely related protocols within Phase One and

Phase Two, we do not expect that such an analysis

would produce any new information.

The security association negotiation was also

greatly abstracted and simpli�ed, as we did not want

to get involved in the details of the contents of the

security associations and their negotiation. In par-

ticular, we assume that, although the initiator can

propose a number of security associations, the re-

sponder can only pick one. We thus were faced

with the problem of specifying indeterminate terms,

and indeterminate choices made from indeterminate

terms. We solved this problem by using free vari-

ables to represent nondeterministic choice of terms.

For example, a list of security associations was rep-

resented by the term plist(PROPOSALLIST ) where

PROPOSALLIST was a free variable. Thus the fact

that two lists were the same could be expressed by

unifying the two free variables used to de�ne them.

Similarly, a member of a security association could

be expressed as choice(N ,plist(PROPOSALLIST ))

(or more compactly, choice(N ,PROPOSALLIST ))

where N was another free variable representing the

number of the security association in the list. Fi-

nally, the choice of a particular element of a se-

curity association in a list could be expressed as

choice(N ,TY PE,PROPOSALLIST ). The choice of

TY PE was usually deterministic, and would be rep-

resented by a constant rather than a free variable.

This allowed us to represent a list of proposals with-

out having to specify its contents completely. We also

assumed that a responder always accepts one of the

security associations proposed.

We also did not try to include much information

about what exactly a peer and an identity was, other

than that a peer was a party taking part in the pro-

tocol, and an identity identi�ed some party on whose

behalf the peer was negotiating, possibly but not nec-

essarily the peer itself. That is because the meaning of

these terms was purposely left vague in the ISAKMP

speci�cation itself, since ISAKMP is intended to have

a wide range of applications. For example, the proto-

col could be used for communication within a virtual

private network, to protect the communications be-

tween a virtual private network and the rest of the

world, to protect traveling employees who want to log

in to their home system while on the road, or to help

small groups of users set up \webs of trust" [14]. Each

of these applications may require di�erent de�nitions

of what a peer is and what an identity is. As it turned

out, this underspeci�cation of identities in ISAKMP

led to an ambiguity in the IKE documentation which

our analysis caught.

Finally, we did not include a mechanism that IKE

uses to protect against interleaving and re
ection at-

tacks when cipher block chaining is used. This is to

use the last cipher block of an encrypted message as

the initialization vector of the next message in the ex-

change. We omitted this because including it would

require a speci�cation of cipher block chaining, and we

did not want to include this level of detail. However,

whenever we did �nd an anomaly or undesirable be-

havior, we checked to see if the use of this mechanism

would have prevented it.

We end with a note about key compromise. We

note that key exchange protocols are designed to be se-

cure against attacks involving compromise of old keys.

Thus we needed to introduce the possibility of key

compromise into the speci�cation. Hence, whenever

an event in which a party accepted a key occurred, we

included an event occurring immediately afterword in

which that key either was or was not compromised,

using nondeterministic choice. In the Phase Two Pro-

tocol, both master and session keys could be compro-

mised.

6 The Analysis of the IKE Protocol

6.1 Overview of IKE Analysis

One of the goals of our IKE analysis was to deter-

mine if their were any harmful interactions between

the IKE subprotocols. We found none. IKE appears

to be very well-designed from this point of view. How-

ever, we did �nd a few problems that arose from omis-

sions and inconsistencies in the IKE speci�cation. We

describe these and our other �ndings below.

There are a number of types of questions one can

ask about a key agreement protocol, but there are

three in particular that are common to all such proto-



cols. The �rst is secrecy: can an intruder learn a secret

key that is shared between two honest principals with-

out a compromise event having occurred? The second

is authentication, namely the requirement that if a key

is accepted for some purpose, it should have been gen-

erated for that purpose: if the principalB who receives

the �nal message in the protocol accepts key K (or in

this case, the entire security association SA) as good

for communication with A, then A should have also

have accepted SA as good for communication with B.

The third we may call relevance; if a key is accepted by

an honest initiator (resp. responder) A who receives

the �nal message in the protocol as good for commu-

nication with an honest responder (resp. initiator)

B using security association SA, then the only party

who could have accepted it previously is B acting as

responder (resp. initiator) as good for communication

with initiator (resp. responder) A using SA.

We use the following lemma to make the work of

verifying relevance easier once we have veri�ed authen-

tication.

Lemma: Assume that a protocol satis�es authenti-

cation and secrecy. Then, if we can show that a key is

never accepted by two parties acting in the same role

(who may or may not be the same party accepting the

key twice, e.g. a replay attack), then the protocol also

satis�es relevance.

Proof. We may assume without loss of generality

that the responder is the last party to accept the key

in the protocol speci�cation. Suppose that relevance is

not satis�ed. Let B be a responder who has accepted

a key K as good for communication with a responder

A, using security association SA. By authentication,

A as initiator must have also accepted K as good for

B and SA. For relevance to fail to hold, another event

in which some party accepted the key must have oc-

curred. Since that party must be either initiator or

responder, the key must have been accepted by two

initiators or two responders.

We also veri�ed that the version of the Phase Two

protocol that used Di�e-Hellman key exchange satis-

�ed perfect forward secrecy, since this was one of the

stated goals of that protocol. Perfect forward secrecy

is the property that, if a master key is compromised,

the intruder does not learn any session keys estab-

lished before the compromise, assuming that the ses-

sion keys themselves are not separately compromised.

All of our analyses were performed in the same

manner. For each speci�cation, we proved a number

of initial lemmas describing conditions under which

di�erent terms and state variables could be produced.

This followed a standard procedure that we use in the

analysis of all protocols. First, we used the evalnewin-

put command to produce conditions on the reacha-

bility of internal state variables. Then we used the

Forwarding Lemma Generator command to produce

forwarding lemmas. Next we used the Language Gen-

erator to produce languages, using the standard seed

terms. Finally, we used the genpossrules command

to determine what protocol rules could produce what

terms.

Once this was done, we were ready to begin the

analysis itself. We formulated each security goal in

terms of conditions on sequences of events, and then

took the negation of that goal to present to the Ana-

lyzer. Thus, for example, if we wanted to show that

in order for an initiator A to accept a key as good to

communicate with a responder B, then B must have

accepted a key as good for communication with A, we

would ask the Analyzer if it was possible for A to have

accepted the key without B having accepted it.

Once we had formulated the goal and presented it

to the Analyzer, the rest of the search was almost com-

pletely automatic. The Analyzer would search back-

wards from the goal in a breadth-�rst fashion, ter-

minating any path in which it encountered an initial

state or a state previously shown to be unreachable

by one of the lemmas we had proved earlier. Usually,

the only further input that was required was to tell

the Analyzer which types of intruder-known terms in

a subgoal should be discarded as trivial. In general,

we always told the Analyzer to discard certain types

of nonces, (e.g. cookies) as trivial, since they could

be easily learned by the intruder. In several cases,

we also told the Analyzer to discard everything but

signed and encrypted messages as trivial when we felt

that the search space was getting too large otherwise.

Occasionally, we would �nd that discarding so many

types of intruder-known terms produced false attacks,

in which case we would use the backtracking function

and try again. Sometimes we would �nd that the same

unreachable state kept on cropping up in our analysis;

we would reduce the search space by proving that state

unreachable and adding the result to our database of

lemmas using the State Uni�er. In general, though,

we avoided using the State Uni�er, since searching for

the appropriate input was time-consuming.

6.2 Analysis of Phase One

6.2.1 Questions Put to the Analyzer

In the case of the Phase One exchange, we asked

whether the protocol satis�ed secrecy, authentication



and relevance. We also asked about a property re-

lated to authentication: under what conditions would

the sender (as opposed to the receiver) of the �nal

message in the protocol accept a security association

SA. For relevance, we used our authentication results

and the Lemma to show that we only needed to show

that two initiator accept events or two responder ac-

cept events could not occur.

6.2.2 Ambiguous Speci�cation of Identities

Before our analysis was fully underway, we found the

following anomaly. The phase one protocol is de�ned

as a communication between two peers that exchange

identities. Before the identities are exchanged, the

peers can only be identi�ed by their IP addresses.

Thus the question remains: what should the authen-

tication keys be bound to, the identity or the IP ad-

dress? In most modes of IKE, it appeared possible to

do either, but in the case of main mode with shared

key, ID's are exchanged only after the keys are used.

Thus in that case, keys must be bound to the IP ad-

dress. Initially, in order to simplify our analysis, we

assumed that keys were bound to the IP address in all

cases.

As we proceeded in our analysis, we found that the

Analyzer generated a number of attacks, all of which

could be thought of as variants of the following. Alice

lives on secure host X , and Bob lives on secure host

Y . Eve from compromised host Z manages somehow

to convince Alice that Bob lives on Z. Alice initiates

a key exchange with Bob on Z. Since Eve has com-

promised Z, she is easily able to impersonate Bob to

Alice. Similarly, Eve initiates a key exchange with

Bob as Alice from Z. Now Eve is able to initiate a

man-in-the-middle attack in which she receives traf-

�c from Alice, decrypts it, re-encrypts it with the key

Eve shares with Bob, and so forth.

When we pointed this out to the IKE and Oakley

designers, we found the problem rested on a misunder-

standing of the intent of the IKE speci�cation. Keys

are intended to always be bound to identities. If keys

are to bound to IP addresses, then the identities must

be based on the IP address. However, this was not

made clear in the IKE speci�cation. As a result of

our comments, the designers of IKE decided to put a

clari�cation into the IKE speci�cation.

We continued our analysis using the assumption

that keys are bound to IP addresses, and that identi-

ties are IP-based. This did not capture all possibilities,

but it did allow us to go on and attempt to analyze

the security of the rest of the system without worrying

about this particular issue.

6.2.3 Penultimate Authentication

From this point on our analysis proceeded fairly

smoothly. In the case of our �rst question, about the

conditions under which the receiver of a �nal mes-

sage would accept a security association, the Ana-

lyzer found that indeed there was no case in which

the receiver A of the �nal message accepted a secu-

rity association SA as good for communication with

B without B having itself accepted SA. Likewise, we

were able to show relevance, that the only two ac-

cept events involving the key generated for SA were

A and B accepting SA. The case of what happens

when the sender B of the �nal message accepts a se-

curity association as good for communication with A

was a di�erent matter, however. What we wanted to

show was that, if B accepted an SA as coming from A,

then A had also accepted that SA (minus the keying

material contributed by B if that had not been sent

yet). We will refer to this property as \penultimate

authentication," since it describes desirable behavior

at the penultimate stage of the protocol. The Ana-

lyzer found that penultimate authentication was not

always guaranteed; all of the attacks against it that

it found involved the intruder confusing the two com-

municating parties about the nature of the identities

being exchanged.

That penultimate authentication was not guaran-

teed was not surprising; as a matter of fact it had

already been shown that the Station to Station pro-

tocol, which was one of the protocols that in
uenced

IKE, did not satisfy penultimate authentication either,

and for similar reasons [11]. Nor is the lack of penul-

timate authentication necessarily a serious concern: if

B accepts an SA as coming from A which A did not

in fact initiate, then it will send a message to A which

A will reject. Since the intruder does not in fact learn

the corresponding key, that means that the worst that

can happen is that B accepts an SA for communica-

tion with A that will never be accepted by A. Since

the same thing can happen if the intruder simply pre-

vents B's �nal message from reaching A, the threat

posed by any lack of penultimate authentication de-

pends on whether or not it is believed to be easier to

fake a penultimate message than it is to prevent a �nal

message from reaching its destination.

On the other hand, penultimate authentication is

of some interest because of its close relation to the

fail-stop property of Gong and Syverson [5] which can

be roughly de�ned as a property that requires that,

if a principal receives an incorrect message, then it

should be able to to detect it and refuse to process

it. Fail-stop protocols are desirable because of their



composability properties, and because of the greater

ease with which it is possible to reason about them.

A protocol that lacks penultimate authentication is

probably as far as it can be from being fail-stop while

still satisfying its security goals.

It was also the case that whether or not penultimate

authentication failed to hold and the degree to which

it failed to hold depended upon the type of authenti-

cation and mode used. For shared key in both main

and aggressive mode, penultimate authentication al-

ways holds. For digital signatures in both main and

aggressive modes and public keys in aggressive mode,

the property never holds. For public keys, it fails to

hold in main mode when the sender of the penultimate

message also initiates a conversation with a dishonest

principal.

We also conjectured that the revised public key pro-

tocol o�ered in IKE would satisfy penultimate authen-

tication, since it binds identities to the keying mate-

rial by encrypting them both with the same key. Al-

though we did not have time to include this protocol

in our IKE speci�cation, we used the Analyzer to per-

form separate quick and dirty evaluations of simpli-

�ed versions of both the aggressive and main modes

of the protocol that omitted such features as the nego-

tiation of security associations and the details of key

derivation2. We also used our commutative de�nition

of Di�e-Hellman key exchange, instead of the non-

commutative version that we used for the larger spec-

i�cation. The Analyzer proved both that both speci�-

cations satis�ed penultimate authentication. Thus we

can conclude that, if penultimate authentication is de-

sired, it should be possible to achieve it within the IKE

framework by choosing the appropriate Phase One key

agreement protocol.

Lack of space prevents us from presenting all the

penultimate authentication failures that we found.

However, we will give one example. using digital signa-

tures in aggressive mode, to give an idea of the 
avor.

The protocol itself proceeds is follows

1. A! B : HDR1; SAA;KEA; NA; IDA

where HDR1 is the message header, SAA is the

security association proposed by A, KEA is A's

Di�e-Hellman key material, NA is a nonce, and

IDA is A's identity.

2. B ! A : HDR2; SAB ;KEB ; NB ; IDB ,

KB
�1[prf(KAB ; (KEB ;KEA; CKYB ,

CKYA; IDB)]

2These were the two speci�cations produced with the assis-

tance of the CAPSL-to-NRL translator.

where prf is a pseudo-random function, KAB is

the Di�e-Hellman key generated from KEA and

KEB , and CKYA and CKYB are a pair randomly

generated cookies generated by A and B respec-

tively and included in the headers.

3. A! B : HDR3,

KA�1[prf(KAB ; (KEA;KEB; CKYA,

CKYB ; IDA)]

The \attack" proceeds as follows:

1 A! B : HDR1; SA;KEA; NA; IDA

The intruder intercepts this message and substi-

tutes IDK for IDA, forwarding the result to B.

1' IK ! B : HDR1; SA;KEA; NA; IDK

where IK stands for intruder I impersonating K.

2' B ! K : HDR2; SA;KEB ; NB; IDB ,

KB
�1[prf(KAB ; (KEB ;KEA; CKYB ,

CKYA; IDB)]

This is also intercepted by the intruder and for-

warded to A.

2 IB ! A : HDR2; SA;KEB ; NB ,

IDB ;KB
�1[prf(KAB ; (KEB ;KEA; CKYB ,

CKYA; IDB)]

A takes this as a message from B in response to

its initial message. But B thinks that it is K who

initiated a response with it, and when it receives

a signed message from A it will reject it.

6.3 Analysis of Phase Two

Finally, we performed an analysis of IKE Quick

Mode, which comprises the protocols used for a Phase

Two Exchange. Here we asked only three questions:

did the protocol satisfy secrecy, did it satisfy authen-

tication, and did it satisfy perfect forward secrecy. We

did not ask about relevance, because, as it turned out,

we found an attack authentication attack on our spec-

i�cation that was also a relevance attack.

Both master and session key compromise were spec-

i�ed in our speci�cation of the Phase Two protocol;

this meant that we had to formulate our secrecy ques-

tion slightly di�erently than in Phase One: could the

intruder discover a negotiated key given that the key

had not been compromised and that the key negoti-

ated in Phase One to protect that key exchange had

not been compromised either? We formulated the per-

fect forward secrecy question as follows: could the in-

truder �nd a key K that had been accepted by an



honest responder (the receiver of the �nal message in

the protocol) for use with an honest initiator using

master key M , assuming that no compromise event

involving K occurred, and no compromise event in-

volvingM occurred before the acceptance event? The

answer to both these questions was in the negative:

our speci�cation satis�ed both secrecy and perfect for-

ward secrecy.

But it was in the analysis of the authentication

question that the Analyzer found our most interesting

result: a potential attack in which B thinks it is shar-

ing an SA with A, when actually it is sharing it with

itself. This attack turned out to be foiled by some im-

plicit implementation assumptions in IKE, but these

were not stated clearly in the speci�cation. Once we

found this attack, we did not bother asking questions

about relevance, because the attack was a violation of

relevance as well.

To understand the attack, we must recall that the

inclusion of identi�cation information in a Quick Mode

exchange is optional when the identities correspond to

IP addresses. In that case, the receiver B of the mes-

sage can use the IP address of the sender A of the mes-

sage as an index to the encryption key. But this gives

B no way of telling messages from A from messages

from B. All the intruder needs to do is substitute A's

IP address for B's.

We describe IKE Quick Mode (without the iden-

tities) and the attack below. B begins by creating

a unique message ID MB using a random or pseudo-

random number generator. MB is used to identify

all further messages exchanged in an single execution

of the protocol, and is included unencrypted in the

header of each message. The key KAB is the encryp-

tion key generated during Phase One.

1. B ! A : HDR1 ,

EKAB [prf(AKAB ; (MB ; SAB ; NB ;KEB)),

SAB ; NB ;KEB ]

whereHDR1 is the header of the message, (which

contains MB, among other information), EKAB
is the encryption key shared between A and B as

the result of the Phase One exchange, AKAB is

the authentication key shared between A and B

as a result of the Phase One exchange, SAB is

the security association proposed by B, NB is a

nonce generated by B, and KEB is the optional

Di�e-Hellman key material sent by B.

2. A! B : HDR2,

EKAB [prf(AKAB ; (MB ; NB ; SAA; NA;KEA)),

SAA; NA;KEA]

where SAA is the security association proposed

by A, NA is the nonce generated by A, and KEA
is the optional Di�e-Hellman key material gener-

ated by A. Note that the second message is syn-

tactically identical to the �rst, except that the prf

is computed over two nonces instead of one.

When B receives the above message, it can now

compute the shared key, which is generated using

NB , NA, KEA and KEB , if included, and keying

and other material generated during the Phase

One Exchange.

3. B ! A : HDR3; prf(AKAB ; (MB ; NB ; NA))

At this point A also computes the shared key.

The attack proceeds as follows:

1 B ! A : HDR1,

EKAB[prf(AKAB ; (MB ; SAB ; NB;KEB)),

SAB ; NB ;KEB ]

This message is intercepted by the intruder.

1' IA ! B : HDR1,

EKAB[prf(AKAB ; (MB ; SAB ; NB;KEB)),

SAB ; NB ;KEB ]

where IA denotes the intruder I impersonating A.

2' B ! A : HDR2,

EKAB[prf(AKAB ; (MB ; NB; SA
0

B
; N 0

B
;KE0

B
)),

SA0

B
; N 0

B
;KE0

B
]

This message is also intercepted by the intruder.

2 IA ! B : HDR2,

EKAB[prf(AKAB ; (MB ; NB; SA
0

B
; N 0

B
;KE0

B
)),

SA0

B
; N 0

B
;KE0

B
]

At this point B generates a key K and accepts it

as a good key for communicating with A.

3 B ! A : HDR3,

EKAB[prf(AKAB ; (MB ; NB; N
0

B
))]

This message is intercepted by the intruder.

3' IA ! B : HDR3,

EKAB[prf(AKAB ; (MB ; NB; N
0

B
))]

B generates key K again and accepts it as a good

key for communicating with A.

The end result of this is that B winds up thinking

that it shares two keys with A, when actually it does

not share any keys at all. As a matter of fact, A does

not send or receive a single message! Thus B has been

denied a service (a shared key with A) without even

being aware that the service has been denied.



Once we found this attack, we took a closer look

at the IKE speci�cation to see if there were any im-

plementation details that we had overlooked. First of

all, we looked at the protection IKE o�ered against re-


ection attacks in general. We found that IKE's tech-

nique of using the last ciphertext block of each mes-

sage as the initialization vector of the next message

in an exchange does not help us here. This technique

is intended to provide protection against attacks in

which a re
ected message is inserted into an ongoing

exchange, but does not provide any protection against

an the re
ection of an entire message sequence, which

is what happened in the attack described above.

We also considered the possibility that the protocol

encoding scheme used might require authentication of

the IP addresses, or that separate inbound and out-

bound keys might be used. Either or these would foil

this attack. However, we could �nd no place in the

IKE speci�cation where either of these were recom-

mended for Phase Two exchanges, and our discussions

with others lead us to believe that no such requirement

was intended.

We �nally found the way IKE protects against our

attack after some discussion with several people con-

nected with IKE, and another look at the ISAKMP

documentation. ISAKMP �rst requires that the mes-

sage ID be random, so that the probability of two

message ID's being the same is remote. Secondly,

the ISAKMP header contains no other indication of

whether a message is an initial message or a response

to another message. Thus, when a principal receives a

Quick Mode message, there are only two ways in which

it can determine whether or not it is an initial mes-

sage. One is to decrypt the message and examine its

contents. Note that, since the �rst two messages of a

Quick Mode exchange are syntactically identical, this

examination must also include verifying the hashes.

The other is to check if there are any other ongoing

exchanges with the same message ID. If there are, the

messages is assumed to be a response. If there are

none, it is assumed to be an initial message.

Clearly, the second way of determining the prove-

nance of a message would prevent the attack we dis-

covered. When B received the re
ected message, it

would check for the message ID and conclude that

it was a response to its original message instead of

another initial message. When it decrypted the mes-

sage, it would realize that it was the wrong message

and reject it. Moreover, if cipher block chaining was

used, it would use the last cipher block of the message

as the initialization vector, thus producing gibberish

from the �rst cipher block when it tried to decrypt it.

However, there were two problems. First of all,

although the ISAKMP documentation clearly states

that message IDs should be randomly generated, there

is no such language in IKE. This omission had al-

ready led to several implementations in which message

IDs were generated by simple counters. Secondly, al-

though the IKE documentation does say that message

IDs are to be used to keep track of Quick Mode ex-

changes, it does not say explicitly how they must be

used. Thus, it could be possible to implement check-

ing message provenance in another way, especially if

the ISAKMP header is ever modi�ed to include more

information about the place of a message in the ex-

change. As a result we made two recommendations.

Once was to include in IKE the requirement that mes-

sage IDs be randomly generated. The other was to in-

clude an explicit description of the way provenance of

quick mode messages must be checked. We have been

informed that these issues will be addressed in future

iterations of the IKE document.

7 Conclusion and Lessons Learned

It is interesting to note that almost all of the prob-

lems we found in IKE came from a single source: the

omission of identities in various parts of the protocol.

These omissions were no accident; IKE is deliberately

designed so that the user has the option of not giving

out identi�cation information until it is absolutely nec-

essary. This feature, which is designed to protect the

privacy of negotiations while a protocol is completing,

is somewhat at odds with the requirements of authen-

tication, and it is not surprising that it is tricky to

design and specify a protocol that must satisfy such

con
icting goals. Thus our formal analysis of IKE

was mainly useful in establishing that the con
icting

requirements were handled correctly, and in pointing

out ambiguities in the speci�cation that could lead to

the requirements being violated. Problems involving

con
icting requirements have often been a fruitful area

of application for formal methods; we should not be

surprised that the same turned out to be the case here.

The analysis gave us valuable information, not only

about IKE, but about possible new directions for the

NRL Protocol Analyzer. Some of these were relatively

minor. For example, we found that we were unable to

specify the correct implementation of the use of Mes-

sage IDs in Quick Mode, because of limitations on the

way conditions on states can be expressed in Analyzer

speci�cations. In order to specify the determination

that a Quick Mode message is initial, it is necessary

to be able to specify that there should be no local



state variable in a current exchange with the same

message ID. But, although it is possible to put con-

ditions on state variables belonging to the speci�ed

round in an Analyzer speci�cation, it is not possible

to put conditions on all possible state variables be-

longing to a principal. We are investigating ways in

which the speci�cation language could be extended to

include this in a sound and e�cient way.

Other possible directions are more far-ranging. One

of these is extension to denial of service. In our anal-

ysis of IKE, we did not attempt to �nd denial of ser-

vice attacks, although denial of service was a concern

of the IKE designers. Indeed, in the current state of

the Analyzer it is impossible to model denial of service

directly. This is because, in the Analyzer model, de-

nial of service is trivially possible: the intruder could

simple block all messages and prevent a protocol from

completing. However, we have recently developed a

model of denial of service [19] that incorporates some

of the ideas used in the design of the Photuris proto-

col [7] and further developed by Kent et al. [9]. This

model involves trading o� di�erent protocol proper-

ties against each other, and protection against intrud-

ers of various levels of strength at di�erent points in

the protocol, so it is beyond the scope of existing pro-

tocol analysis tools at the moment. However, we be-

lieve that it should be straightforward to modify them

so that they can evaluate protocols according to the

model, and in [19] we outline a strategy for doing so.

Finally, there is the central problem we attempted

to deal with in this work: the analysis of protocols that

include multiple subprotocols. We have shown that

this is possible at least on a relatively small scale; but

this is only a beginning. Previously, concern about re-

lated protocol attacks were generally relevant to sub-

protocols of a protocol de�ned in a given standard.

However, with the increased use of open standards

(such as ISAKMP) and common cryptographic APIs,

the potential size of sets of possibly related protocols

is unlimited. Thus, in order to analyze related proto-

cols it is necessary to have some way of proving results

about their possible interaction whose di�culty grows

at worst relatively slowly with the size of the set.

Unfortunately, general results about the compos-

ability of cryptographic protocols are scarce, and what

does exist, such as the work of Gong and Syverson [5]

and of Heintze and Tygar [6], puts very strong con-

ditions on the protocol, such as requiring that every

message be authenticated for freshness and origin, and

not allowing the possibility of key compromise. More-

over, there are some strong negative results, such as

Kelsey and Schneier's proof [8] that for any given pro-

tocol it is possible to develop another protocol with

which it interacts insecurely.

However, it is possible that some of the existing

results could be extended to give us something more

useful. For example, it appears that we should be able

to use something like the message independence prop-

erty of Heintze and Tygar [6]. Brie
y, two protocols

are message independent if no message sent during a

secure execution of one protocol may appear during

an execution of the other. In order for their results

to hold Heintze and Tygar must introduce further re-

strictions on protocols that are probably not satis�ed

by many of the protocols we wish to examine, so we

cannot use them directly. However, our use of the gen-

possiblerules function provides something very much

like a means for testing for message independence, and

it was seen to be very e�ective in reducing the amount

of work required for protocol analysis. We plan to see

how much further we wish to push this in order to

provide more e�ective means for testing for noninter-

action between protocols.

In summary, we found our analysis of IKE valuable

for a number of reasons. First, it showed us that,

after some modi�cations to the Analyzer, analysis of a

collection of related protocols was possible, even when

potential interactions were considered. Secondly, it

motivated us to make changes to the Analyzer that

not only made analysis of large protocols possible, but

made the Analyzer faster and easier to use for small

protocols. Thirdly, it has pointed out some promising

future directions for research we plan to pursue. And

last but not least, it has provided some useful feedback

on and insight into IKE itself, and, we hope, a greater

degree of con�dence in IKE's correctness.
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