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ABSTRACT

In this paper we present our new paradigm for dealing with
the inference problem which arises from downgrading. Our
new paradigm has two main parts: the application of deci-
sion tree analysis to the inference problem, and the concept
of parsimonious downgrading. We also include a new ther-
modynamically motivated way of dealing with the deduction
of inference rules from partial data.
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1. A NEW PARADIGM

Our new paradigm is a combination of decision tree anal-
ysis and parsimonious downgrading. Decision tree analysis
has existed in the �eld of AI since the 1980's [3]. In brief,
decision trees are graphs associated to data, with the goal
of deducing rules from the data. Our new paradigm ap-
plies decision trees to the inference problem. In this paper
we introduce the new concept of parsimonious downgrad-
ing. When High wishes to downgrade a set of data to Low,
it may be necessary, because of inference channels, to trim
the set. Parsimonious downgrading is a framework for for-
malizing this phenomenon. In parsimonious downgrading,
we assign a cost measure to the potential downgraded infor-
mation that is not sent to Low. We wish to see if the loss
of functionality associated with not downgrading this data
is worth the extra con�dentiality. Decision trees assist us in
analyzing the potential inference channels in the data that
we wish to downgrade. We consider the con�dence in rules
produced by decision tree analysis. We analyze changes in
con�dence caused by missing data with a new theory we call
the thermodynamic approach (which measures the changes
in entropy). Our analysis is still at a preliminary stage and
we wish to 
esh it out with the participants of this workshop.
In [6] rules are gleaned from rough set analysis of data, and
the concept of not downgrading information, based upon in-
ferences brought forth by these rules, is brie
y introduced.
We view [6] as motivation for some of our work on parsi-

monious downgrading. Since we prefer single-valued belief
representations we do not use rough sets.

Our objectives in developing our new paradigm are:
1| Use decision trees (instead of rough set analysis) for the
inference problem.
2| Make a study of not downgrading certain information.
3| Assign penalty functions to this parsimonious down-
grading in order to minimize the amount of information that
is not downgraded, and compare the penalty costs to the ex-
tra con�dentiality that is obtained.
4|Take a thermodynamic approach to decreasing the con-
�dence in rules that Low may infer from High data.

We believe that the current state of the art in the MLS
community does not take advantage of statistical AI tech-
niques. However, database researchers certainly do (there
has also been some related work in intrusion detection). We
want to change this by siphoning o� valuable techniques
from our sister sub-�elds in computer science. Further, we
feel that downgrading should be viewed as a 
exible, rather
than a static, process. We believe that our new paradigm
is an attempt to change the status quo both in the use of
statistical AI techniques (decision trees) and parsimonious
downgrading.

1.1 Controversial?

We realize that the idea of changing the set of data that
High wishes to downgrade might trouble some readers. If
High has sanitized high-data into low-data, what is the prob-
lem? The problem is that the relations within this set of
data might still be high. Of course, this has been noted
in many papers. The paradigm that we wish to call into
question is being \stuck" with the data that has been san-
itized (and thus, is ready for downgrading). We hold that
this data's value to Low must be weighed against the possi-
ble high-inferences that Low can deduce. If the information
is of grave importance to Low, then it is downgraded. If
some of it is of a lesser import and is outweighed by its
loss of con�dentiality, then perhaps some of the data can be
trimmed from the set intended for downgrading. Downgrad-
ing should not be a static process | the trade-o�s should
always be measured. If functionality overrides con�dential-
ity, then at least High is making an informed decision and
is aware of the risk. Also, our techniques may be useful
for machine-aided downgrading. Our concerns are not with
whether Low and High are cooperating; rather, our concerns
are with obtaining bounds for information leakage.
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2. A TOY EXAMPLE

For reasons of performance and functionality, it is sometimes
necessary for High to downgrade information to Low. In
this paper we will not get involved in the debate on whether
this assumption is appropriate. (We accept it as a neces-
sary evil, especially when dealing with databases [5].) Our
example will be a database as given in Table 1. It is nec-
essary for High to downgrade to Low the �rst eight rows
in their entirety, and the ninth row with the result missing.
If downgrading such a large amount of information bothers
the reader, then just view the database as a small part of a
larger set that High does not downgrade to Low. Note that
we have modi�ed an example from [15].

Table 1: High Database
Name Hair Height Weight Lotion Result

Hillary blonde average light no burned
Janet blonde tall average yes no
Bill brown short average yes no
Tipper blonde short average no burned
Newt red average heavy no burned
Ken brown tall heavy no no
Al brown average heavy no no
Paula blonde short light yes no
Tony blonde average heavy no burned

High has decided that the result for Tony should not be
downgraded. Therefore, it sends Low the entire database
with Tony's result left blank (we represent this with a ques-
tion mark), see Table 2.

Low uses only the �rst eight rows of its database to form
its rules. This is because these are the only complete rows
(tuples). We refer to rows that are downgraded in their
entirety as the base set, see Table 3.

Can High assume that the information it tried to keep
hidden from Low is still hidden? If Low is stupid, this is true.
However, say that Low analyzes the base set. Low will see
that every blonde who did not use lotion got burned. Since
Tony is a blonde who did not use lotion, Low now knows
that Tony got burned. We formalize this rule as (hair =
blonde)^(lotion=no) ) (result = burned), (read: IF ***
THEN ***).

Why should we be concerned about some fancy AI way of
deducing the rules? The reason is that this is a toy example.
We could have cooked up a much more complicated exam-
ple where the rule that we would need in order to determine
the result would require an extensive search and correlation
of the various database attributes. This falls into the area
of datamining [6]. Unlike other knowledge-based work on
the inference problem (e.g. [6,16]) we do not use a rough
sets approach [9]. We propose using decision trees. Decision
trees can handle large and noisy amounts of data and pro-
duce inference rules. It is not clear to us how e�ective rough

Table 2: Low Database = Downgrade
Name Hair Height Weight Lotion Result

Hillary blonde average light no burned
Janet blonde tall average yes no
Bill brown short average yes no
Tipper blonde short average no burned
Newt red average heavy no burned
Ken brown tall heavy no no
Al brown average heavy no no
Paula blonde short light yes no

Tony blonde average heavy no ?

Table 3: Base Set
Name Hair Height Weight Lotion Result

Hillary blonde average light no burned
Janet blonde tall average yes no
Bill brown short average yes no
Tipper blonde short average no burned
Newt red average heavy no burned
Ken brown tall heavy no no
Al brown average heavy no no
Paula blonde short light yes no

sets are with respect to large and noisy data. Furthermore,
when dealing with inconsistent data, rough sets give upper
and lower approximations whereas decision trees give a prob-
ability. We feel more comfortable with probabilities because
they are an e�ective representation of complex patterns of
reasoning. (The purpose of this paper is not to contrast
the two approaches; rather, it is to introduce decision tree
analysis, in conjunction with parsimonious downgrading, as
a new paradigm. We will return to decision trees in a later
section.)

The second part of our new paradigm is parsimonious
downgrading. (Again, for the sake of integrity, we note that
[6] contains a brief mention of this idea.) We see that in
our example, Low will be able to deduce the rule (hair =
blonde)^(lotion=no) ) (result = burned) and thus deter-
mine that Tony gets burned. How can High prevent this?
High can prevent this by not downgrading any information,
but this is a bit of overkill. Instead, we feel that an approach
that we call parsimonious downgrading should be used. In
parsimonious downgrading, High decides what not to down-
grade based upon the rules that it thinks Low can infer, and
upon the importance of the information that Low should re-
ceive. If the information is of trivial value, it might also send
incorrect data to Low (only for some attribute values) to
impinge upon Low's ability to infer rules and therefore infer
High information. High could decide not to downgrade both
Hillary-Lotion = no and Tipper-Lotion = no. Then Low
could not determine the rule (hair = blonde)^(lotion=no)
) (result = burned) and the result concerning Tony would
not be apparent to Low. What is the impact of not down-
grading the information about Hillary's and Tipper's lotion?
If, for functionality and performance reasons, Lowmust have
this information, then there is a problem. If the impor-
tance of the information about Hillary's and Tipper's lotion
is so great perhaps it is worth compromising the informa-
tion about Tony's lotion use. This is worth thinking about.
Security, as has been noted [4] need not be a yes/no world.
Fuzziness might be appropriate in some cases. Perhaps it is
extremely important for Low to know that Hillary did not
use lotion but it is not really important for Low to know
about Tipper's lotion use. Then High could downgrade ev-
erything as in Table 2 with the exception of Tipper-Lotion.
This would result in what we call a reduced downgrade, as
given in Table 4, for the Low database. How does this im-
pact Low's rule making process?

Now we form the reduced base set, see Table 5. Unlike the
original base set given in Table 3 we still include a row even
though there is a unknown attribute value. This is because
the result is still visible to Low. It is possible, though, that
High, by parsimonious downgrading, decided to keep the re-
sult unknown to Low (not downgrade it to Low). Then we
would not include that row in the reduced base set because
it would not assist Low in forming a rule. Again, under par-
simonious downgrading, deciding what to downgrade and
what not to downgrade involves the functionality value of



Table 4: Low Database = Reduced Downgrade
Name Hair Height Weight Lotion Result

Hillary blonde average light no burned
Janet blonde tall average yes no
Bill brown short average yes no

Tipper blonde short average ? burned
Newt red average heavy no burned
Ken brown tall heavy no no
Al brown average heavy no no
Paula blonde short light yes no

Tony blonde average heavy no ?

Table 5: Reduced Base Set
Name Hair Height Weight Lotion Result

Hillary blonde average light no burned
Janet blonde tall average yes no
Bill brown short average yes no

Tipper blonde short average ? burned
Newt red average heavy no burned
Ken brown tall heavy no no
Al brown average heavy no no
Paula blonde short light yes no

the information. Note that using the reduced base set in
Table 5 and deleting the Tipper row, will still produce the
same rules as before. However, our con�dence in the rules
concerning blondes has decreased, because the data back-
ing our rule has decreased. The data, both in quality and
quantity, should in
uence which rules are generated and the
con�dence we have in these rules. We note that we do not
make the notion of con�dence precise in this paper; however,
it is part of our current research agenda. We will readdress
this in the subsection on our thermodynamic approach.

3. DECISION TREE ANALYSIS

We continue with our toy example and attempt to formally
determine the rules for what causes a sunburn. Consider the
base set as given in table 3. What are the rules? (We have
modi�ed the example from [15] which is based on the work
on ID3 [10,11].) This brings us to the more general discus-
sion of what we mean by \the rules." From a given amount
of data we need a way to generate inference rules. How can
we be sure that no exception to the rule exists? We can't!
The method we use for generating rules is statistical in na-
ture. In fact, we will show two possible decision trees (which
we use to read o� the rules) for the same data. We use an in-
formation theoretical approach [10] to generate our decision
trees. We believe this is be a realistic approach. Note that
we are presently working on allowing this information the-
oretical approach to incorporate Bayesian techniques. We
feel that this will allow us to adjust our given data against
our preconceived notions of the appropriate prior probabil-
ities. Here, we will not use Bayesian techniques for reasons
of (1)|simplicity, and (2)|we have yet to formalize the
application.

Shannon �rst put information theory on a �rm foun-
dation [12]. We use his concepts of entropy and mutual
information. The columns Hair, Height, Weight, and Lo-
tion make up the attributes. We wish to see which has the
greatest in
uence upon the result. To determine this we
use the conditional entropy. Let A be the random variable
representing an attribute (we have four choices for this ran-
dom variable) which takes on the values ai and let R be the
random variable representing the result which takes on the

values r1 = burned, and r2 = no burned. We need to de-
termine the mutual information I(R;A) between the result
and the attribute (use base two for the logs):

I(R;A) = H(R)�H(RjA)

where
H(R) = �

X
j

p(rj) log p(rj)

and,

H(RjA) = �
X
i

p(ai)
X
j

p(rj jai) log p(rjjai)

The probabilities are determined by a frequency count based
on the data. The attribute that has the most e�ect upon
the result is the attribute that has the greatest mutual infor-
mation. Since H(R) is constant and H(R) � H(RjA), the
optimization condition is equivalent to �nding the attribute
that minimizes the conditional entropy H(RjA). Thus we
have the following:
Gain Condition[Quinlan]: Find A such that H(RjA) is
minimized.

Let us take the �rst attribute A = Hair, a1 = blonde, a2
= brown, and a3 = red. This gives us
H(RjA) = � 4
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Similarly, we see that H(RjHeight) = .69, H(RjWeight) =
.94, and H(RjLotion) = .61. Thus we see that the attribute
that has the most in
uence upon Result is Hair.

HAIR

Brown
Blonde Red

Figure 1. The First Branching

Now we must repeat the process for each node, until
there are no more decisions to be made. Since every Red
is Burn, and every Brown is no, those decisions are done.
However, blonde is still not decided upon so we must �nd
another attribute that \maximally" in
uences result.

HAIR

Brown
Blonde Red

Newt (Burn)
Bill (No)  

Ken (No) 

Al (No) 

Figure 2. The First Branching with Partial Decisions

Now we must repeat the gain condition but we restrict
ourselves to the blondes. So we must minimize H(RjA),
where A = Height, Weight, or Lotion. Let us try Lotion,
a1 = no, and a2 = yes. So, H(RjLotion, Hair = Blonde) =
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not calculate any other conditional entropies. All they can
do is tie (but they do not). So the next attribute we put
down as a node is Lotion.

HAIR

Brown
Blonde Red

Newt (Burn)
Bill (No) 

Ken (No)

Al (No)

LOTION

No Yes

Hillary (Burn)

Tipper (Burn) 

Janet (No) 

Paula (No) 

Figure 3. Decision Tree

Now we can read o� the following four rules:
(hair = blonde)^(lotion=no)) (result = burned)
(hair = blonde)^(lotion=yes)) (result = no)
(hair = brown) ) (result = no)
(hair = red) ) (result = burn).
We see that the �rst rule is the obvious one that we discussed
before. At this stage we can actually reduce the rules down
to smaller set. There are several ways of accomplishing this.
One uses Fisher's exact test [15] to determine more �nely
the sensitivity of the various attributes. Another approach
is to prune and rebuild the tree [11], where the pruning is
accomplished by analyzing the predictive power of the origi-
nal tree. It is not the purpose of this paper to go into this in
detail. Rather, it is our intention to show the new paradigm
of decision trees applied to parsimonious downgrading.

Note if we did not use the gain condition, but simply
built a decision tree based on logical inferences we could
end up with a tree [15] that gives \strange" rules.1

The rules that we produce must be tempered with a con-
�dence level. We do not go into details here but consider
the rule (hair = red) ) (result = burn). This is based on a
single tuple. How much con�dence can we place in this rule?
The more data that supports a rule, the more con�dence we
have in its predictive powers.

What if we did not use the gain condition to propagate
our rules? Consider Figure 3.5, a perfectly valid tree of in-
ferences. However, how useful are the rules that Low could
derive from it? Consider the rule
(height=tall)^(weight=heavy)^(hair=red) )(result = no).
This is a valid but pretty useless rule, because it has too
many antecedents. The gain condition minimizes the num-
ber of antecedents because of the minimal entropy condition.
We also see that our knowledge about sunburns is not ex-
pressed in Figure 3.5. We know that hair color and the use
of lotion (SPF � 15) a�ects hair color. This is why we are
advocates of Bayesian estimation. We are allowed to express
this knowledge by the use of priors, along with the data on
hand.

1Again, we feel that Bayesian techniques should be used in con-
junction with the gain condition so our prior belief in certain condi-
tions can in
uence the rule-making process.

Height

Hair Weight

Hair

Weight

Short

Tall

Average

Heavy

Blonde

Red

Brown

Light

Average

Heavy

 Blonde

Red Brown

Average
Light

Janet (No)

Ken (No)

Hillary (Burn)

Newt (Burn) Al (No)

Bill (No)

Tipper (Burn)

Paula (No)

Figure 3.5.

Now that we have what we believe to be a statistically
valid way of determining rules, we wish to use these rules to
see how downgrading is a�ected.

As time goes on, further data may be downgraded from
High to Low. Our rules can be re�ned to take this new data
into account. Decision trees can be regenerated from the
new data. However, this might be computationally unfeasi-
ble. (Should we keep a record of all of this old data?) In
that case, we could use our new data, and statistical updat-
ing procedures [1], to re�ne the con�dence that we have in
our rules.

3.1 Recap

We use decision rules because they have proven to be fruitful
and accurate predictors in the AI world [11, 15]. They are
computationally feasible and they have a �rm information
theoretical foundation. If Low uses other methods, Low can
certainly produce rules but we feel that these rules will not
be stronger predictors than the rules produced via decision
trees. Therefore, security arguments based on decision trees
will be conservative. To further strengthen our analysis, we
are at present comparing how our rules generalize to other
methods.

4. PARSIMONIOUS DOWNGRADING

Our concern is the following: High and Low exist in separate
worlds.



Low

High D

Figure 4.

High wishes to downgrade the set D to Low for reason
of system functionality.

Low

High D

Downgrade

D

Figure 5.

Low, by using decision tree analysis (or, if preferred,
some other method, e.g. Pawlak's rough set approach [6,16]),
is able to determine rules that will enable Low to infer high-
data outside of the set D.

Low

High D

Downgrade

D  Inferred high-data

Figure 6.

High also knows what rules Low can determine and de-
cides not to downgrade D but rather D0 � D, D0 = D� d
. Pictorially, we view D0 as the set D with the black spot
(which is d) in it.

Low

High D

D

Downgrade

d

’

Figure 7.

We must determine the trade-o�s between Low not re-
ceiving d and the insecurity caused by Low obtaining the
inferred high-data.

What is the importance to functionality of Low obtaining
d? Is it enough to cause system failure, or is it something
that just slows down systems performance? Is the set d

of a milk/wine-nature (it is important now but not in the
future/it is important in the future but not now). Does the
importance of d oscillate throughout time? Which set d do
we choose? How should one measure the impact of d upon
the inferred high-data? What are the security concerns if
Low receives inferred high-data? Are they extremely grave
or are they just a minor security leak? Is the threat constant
throughout time? | Or is the threat dynamic in nature?
These ideas are a starting point for this part of our new
paradigm.

The elements of D should not be viewed in isolation for
either their functionality purposes or their security purposes.
We see that in databases an attribute value alone is not as
important as a tuple of attribute values. Also, we have dis-
cussed the dynamic nature of both system functionality and
insecurity/security. At this meeting last year, the notion
of insecurity 
ow and the e�ects of time upon insecurity
were noted [7]. Let � denote the insecurity that may occur.
Let F denote the system functionality of Low. We realize
that these concepts are not well-de�ned. However, we feel
that they are su�ciently well-de�ned to continue with our
trade-o� discussion. Since the elements of D should not be
considered in isolation and time is a�ecting both function-
ality and insecurity, we de�ne the following two functions
(possibly relations?):

L : 2D � T �M ! �

where 2D is the power set of D, T is time, and

U : 2D � T �M ! F

U is acting as a utility function and L is representing security
leaks. The setM takes into account factors we are not aware
of|this could be system load, changes in computers com-
posing a distributed system, extra security measures that
vary in time, etc. It is possible that the factors constituting
M are actually taken into account via T but we wished to
include M to give us some wiggle room for unknown fac-
tors. We assume that both � and F are have some sort of
measure (such as the volume of a set) or metric (such as the
magnitude of an element) (distinct for each set) on them so
we can judge what has more insecurity or functionality.2 As
an example, � could be the node insecurity as in [7].

L and U should both have the properties of being non-
decreasing with respect to inclusion on their domain sets,
e.g., if A � B 2 2D then L(A) � L(B) and U(A) � U(B).3

We wish to make trade-o�s between L and U . Specif-
ically, we wish to compare to the images L(D) � � and
U(D) � F with those of L(D0) and U(D0). Our goal is
to determine if the insecurity di�erence between L(D) and
L(D0) is worth the loss of functionality between U(D) and
U(D0). How do we measure the di�erences between U(D)
and U(D0)? In our toy example, perhaps the Lotion use is
extremely important to Low's functionality, but the Weight

2We realize that this is controversial. We would like to discuss
this at the workshop and re�ne these sets in future versions of this
paper/work.

3When we write L or U as a function of just the �rst variable,
it is understood that the values for T and M are �xed and are not
germane to the discussion at this point.



is much less important to Low's functionality. Also, as we
have discussed and shown in our notation, these di�erences
may vary in time. How do we measure the added insecu-
rity obtained by downgrading D0 instead of D? In our toy
example, we know that Tony is a blond but do not know
the result. Therefore, when we form the set d it should be
made up of blondes. However, this type of problem assumes
that we are concerned about Low inferring information at
the present time from the set of data that High has down-
graded. What if our concern is the very fact that Low can
propagate rules from downgraded information and possibly
use those rules in the future to infer data? We draw this dis-
tinction because in our toy example we are concerned with
a blonde, but in this new way of thinking, perhaps High in
the future will downgrade some partial information about a
red head, and we do not want Low to infer the result about
that future red head. Therefore we wish to make the rules
opaque that Low may infer, and thus mislead Low. This
should be re
ected in the mapping given by L. One possi-
ble way to do this is to again invoke entropy and maximize
the amount of confusion. This leads us to the next section.

5. A THERMODYNAMIC APPROACH

Our concern (as noted above) is to mitigate the con�dence
in the various rules that Low can infer. Our concern is with
the predictive powers of the rules in general without regard
to any speci�c question that Low may attempt to answer.
In this subsection, we present our own (not completely for-
malized) theory and invite feedback from the workshop par-
ticipants. Given a set D0, as before, what is the best that
Low can do with this set? We present our new approach, the
thermodynamic approach, as a way for Low to deduce rules
from the diminished data with high levels of con�dence. In
other words, we feel that our approach maximizes the leak-
age function L.

In our method, one forms the decision tree as in section 3,
by using the gain condition, and minimizing the conditional
entropy at each stage. When �nished, one will have a deci-
sion tree with only certain attributes as nodes. Call these
attributes A1; � � � ;An. Consider the entropy (R is still the
result you are interested in) H(RjA1; � � � ;An). The value
of the term H(RjA1; � � � ;An) is called the initial tempera-
ture, �0, of the data (At this point we are still investigating
which attributes to condition on. For the sake of simplicity
we condition on all n in this section. However, this analysis
requires further work and this section should be viewed as
work in progress.). We wish to perturb the data in order
to raise the temperature. This will lower the con�dence of
the various rules that are generated from the decision tree.
Our perturbation is not done by introducing erroneous data
(this could be done and we will explore this in future work).
Instead, the perturbation is done by deleting data so that
Low (as before) is missing data. Of course, this deletion of
data must be done in a value added way keeping the utility
function U in mind. The method propagates a probabilis-
tic decision tree by Low using parameters for the missing
data. We calculate the new value of H(RjA1; � � � ;An) and
call it the present temperature, �p. We are interested in
�� = �p � �0.

Our approach is motivated by the thinking behind be-
hind Quinlan's gain condition and the third law of ther-
modynamics [14] (� as thermal motion decreases, so does
entropy decrease).

Before, when we discussed the reduced base set in Table
5, we said that by deleting the Tipper tuple, we could still

form a decision tree and produce rules. The rules would be
the same as what we originally had but the con�dence in the
\blonde" rules would be lessened. We do not put a metric on
the rules (work like this has been done in [11]). However, we
do point out that this (undescribed) decrease in con�dence
must be compared to �� . This will give Low a probabilistic
way of dealing with the missing data and producing the
\best" rule set possible under those conditions. This will
also give High guidance in how to delete data from the set
to be downgraded.

Ideally, High does not want to downgrade large amounts
of data. With this in mind, if High then performs parsi-
monious downgrading and sends both small and noisy data
down to Low, Low would want to take advantage of as much
data as possible. Therefore, Low would not want to delete
tuples with missing data but would instead use an approach,
such as our thermodynamic approach, to use the already
sparse data that it has.

Delete the tuple with the missing value Use the partial tuple with an estimator

Compare confidence levels---make choice

Produce Rules Produce Rules

Rules

Themodynamic ApproachReduced Base Set Approach

Low has data with a missing vlaue

Low deciding which approach to use

Note that both branches use decision trees! Con�dence
levels for the left branch can be taken from standard statis-
tical non-parametric methods [2]. However, we do not have
a theory for the right hand branch and are looking at the
problem. Also, we assume that High is as good a statisti-
cian, information theorist, AI engineer, etc., as Low. But
High has the dual job of attempting to mitigate Low's rule
producing and trying to give Low as much functionality as
possible.

EXAMPLE: For the sake of brevity and clarity, we de�ne
our method by example. Consider that Table 5 has the re-
duced base set. Now, instead of deleting the Tipper row we
will use it by putting a parameter into the Lotion column.
We call the parameter �, 0 � � � 1. The parameter repre-
sents a probability for one of the possible attribute values.
We are assuming that it represents No Lotion. However, it
is really a second order probability. By this we mean that
� itself is given by a distribution. This is done so Low can
attempt to use as much given information as possible. Now
we have a parametric base set.

As stated above, the � in the Lotion column is to be
read as P (No = �) and P (Y es = 1��). As before, we must



Table 6: Parametric Base Set
Name Hair Height Weight Lotion Result

Hillary blonde average light no burned
Janet blonde tall average yes no
Bill brown short average yes no
Tipper blonde short average � burned
Newt red average heavy no burned
Ken brown tall heavy no no
Al brown average heavy no no
Paula blonde short light yes no

apply the gain condition and minimize H(RjA), where A is
Lotion, Weight, or Height. Let us calculate H(RjLotion).
There are 4 + � no's in the Lotion column and 3 + (1 � �)
yes's. The probability of a No Lotion not being burned is
2+�
4+�

; the other probabilities follow similarly. Thus we have
that

H(RjLotion) = �
4 + �
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�
2 + �

4 + �
log

2 + �

4 + �
+

2

4 + �
log

2

4 + �

�

�
4� �
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�
1� �

4� �
log

1� �

4� �
+

3

4� �
log

3

4� �

�

The minimum of this function occurs when � = 1, and
it is .61. Since .61 is still greater than :5 = H(RjHair),
the �rst node is still Hair. What about the second node?
For this we have that H(RjLotion, Hair = Blonde) reduces

to � 2+�
4

�
�

2+�
log �

2+�
+ 2

2+�
log 2

2+�

�
. This function ranges

from 0 to about .7. Unfortunately, it is not always less than
H(RjHeight, Hair = Blonde) = :5. It depends on the value
of �. For � values such that it is less than .5, Lotion would
be our secondary node. For the other values it would be
Height, and we see that we get a di�erent rule set. With
either decision tree, we calculate the new temperature for
the rules and weight the rules by �� . We do not have the
weighting �gured out yet. However, we feel that this is the
correct approach based upon the known statistical results.

We have not discussed how to pick values for �. One way
is by using Bayesian estimators (e.g., [1]). This is a valid sta-
tistical method that incorporates the given data along with
some prior belief in the probabilities to avoid over-�tting
of the data. The Bayesian approach lets one assign prob-
abilities in a manner that minimizes the risk of error. For
example, for our missing Lotion use of Tipper, assuming a
non-informative (uniform) prior we would have a probability
of 2/5 for no Lotion use. Bayesian techniques can also be
used to give a realistic range of probabilities, and thus give
further guidance towards the con�dance levels associated to
Low's rules.

One might argue that the very fact that High is hiding
information from Low can, in fact, be sending information
to Low. This seems to be more of a psychological than
statistical attack. We invite comments from the workshop
participants upon this. Note that preconceived notions can
be accounted for in the assignment of the prior distribution.

6. TRADE-OFFS

After parsimonious downgrading has been performed, Low
can produce rules and those rules have a con�dence level
associated with them. That con�dence level goes into the
calculation of L, the leakage formula. On the other hand
parsimonious downgrading a�ects U the utility function of
the data that is downgraded. We must see if the increased
security is worth, in High's mind, the functionality hit that
Low will take.

In essence, we have a dynamic programming constraint-
based problem. The loss of security (increases in �) must be
balanced against the decreases in functionality. In Figure 8
we see the image of the function U � L, where

U � L : 2D � T �M � 2D � T �M ! F � � :

We are interested in the pre-image from the lower right hand
region (the feasible region) of F � � space. For D0 to meet
both the minimum functionality and minimum security re-
quirements it is necessary that
D0 2 �1

�
(U � L)�1 (feasible region)

�
\ �4

�
(U � L)�1 (feasible region)

�
;

where �i is projection into the ith factor.4 Keep in mind
that D0 produced in this manner is a re�nement over our
original concept of D0. At the start of this paper we were
just concerned with diminishing the set D in order to lessen
Low's inferencing capabilities. Now we also want to include
functionality requirements in our production of D0. It is
possible for the image of the function U �L to not intersect
the feasible region. In this case we would not have any can-
didate for D0 that met both our security and functionality
requirements. The D0 produced in this manner are the ones
that we attempt to balance security against functionality.
D0 not produced in the above manner have either (or both)
intolerable insecurity or intolerable lack of functionality.

F

ι

feasible region

acceptable functionalityunacceptable
functionality

acceptable insecurity

unacceptable insecurity

 image of 
   U x L

Figure 8. Heuristic Representation of Feasibility Region

Considering the temporal nature of the downgrading, a
stochastic game theoretic [13] approach might be called for.
Consider a two-person game where the gains are the increase
in security (�L) and the losses (�U) are the decrease in
functionality. From this, one should be able to produce a
pay-o� function. We feel that it will be a very complicated
game and we will most likely not have a zero-sum game
because the gains might not equal the losses.

4As in Footnote 3 we are implicitly assuming (for simplicity) that
T and M are �xed at (t;m). The inverse image and projection of
feasible regions should really be done for each choice of (t;m).



As noted, there are other methods for generating rules
aside from decision trees. It is possible that Low can use
a smorgasbord of techniques. Then how High performs its
parsimonious downgrading must be reviewed in this light.
We are con�dent that decision trees give a conservative view
(which is what we want). However, we want to compare
non-decision tree based techniques also. We plan to study
this issue to see if our decision tree approach is really as
strong as we feel it is, or if other methods must be considered
in conjunction with decision trees when considering leakage
versus utility of downgraded data.

Other ideas are welcomed from the workshop partici-
pants.

7. SUMMARY

We have presented our new paradigm, which consists of sev-
eral parts. Some of these parts are well-grounded in other
areas (decision tree analysis), but have never been applied by
our community. Some are totally new ideas (parsimonious
downgrading) but it is not clear how to formalize the as-
sociated utility and leakage functions. The thermodynamic
approach to dealing with base sets after High has deleted
data is the most controversial part of this paper. We be-
lieve in it, but have not yet proved it. Discussion with the
participants will help us to re�ne the details, or cause us to
go another way. Either way we feel that this paper is a new
approach to dealing with the inference problems caused by
downgrading. We also feel that our new paradigm will be
useful in the more general (and recently very active) �eld of
datamining in general.

In future work we want to investigate OR techniques and
the use of utility functions in analyzing trade-o�s. Also,
when analyzing trade-o�s we wish to study how measure-
ments of bits of correct vs. incorrect data, and standard
correlation analysis may come into play. Instead of just
deleting data we might want to corrupt some of the data,
but this comes at the cost of integrity and must also be stud-
ied. Also changes in strategies can be taken into account by
varying the Bayesian parameters.

Note that this paper is part of a project, which we have
recently started, on Knowledge Discovery and Datamining
(KDD) applied to secure systems. Our other papers of inter-
est are, as of this date, [1] which we have already mentioned,
and [8] which takes an approach similar to perfect secrecy
in order to analyze the database inference problem.
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