
REPORT DOCUMENTATION PAGE 0MB...o. 7.4-0.188I
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection

of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 13. DATES COVERED (From - To)

Final Technical Report 11 April 2003 - 30 June 2006
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Structural Health Monitoring for Heterogeneous Systems

5b. GRANT NUMBER

F49620-03-1-0174
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Dr. Aditi Chattopadhyay

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Arizona State University REPORT NUMBER

Department of Mechanical and Aerospace Engineering
Tempe AZ 85287-6106

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

AFOSR
Air Force Office of Scientific Research (AFOSR)
875 N. Arlington St., Rm. 3112 11. SPONSORING/MONITORING

Arlington VA 22203 AGENCY RFPflRT NI IMRFP

12. DISTRIBUTION AVAILABILITY SIATEMENT - ' AFRL-SR-AR-TR-07-01 21

DISTRIBUTION A: Approved for public release. Distribution is unlimited.

13. SUPPLEMENTARY NOTES

A hierarchical framework has been developed for damage characterization, detection and
quantification in composite laminates. The procedure includes accurate analysis, optimal sensor
placement algorithm and advanced signal processing technique. A refined global/local laminate
analysis technique, including fully coupled electro-mechanical constitutive relations, has been used
for predicting the dynamic response of composite laminates in the presence of delaminations. The
methodology accounts for the nonlinear "breathing phenomenon" or sublaminate contacts during
vibration. Damage identification is conducted using elastic waves and miniaturized piezoelectric
sensors. A new design methodology for optimal sensor placement has been developed based on
the requirements of sensing certainty and sensor density. An analytical method has been developed
to model the material attenuation of the composite medium to formulate a relationship between
sensing region, sensor observation angle, fiber orientation, and damage size. A signal processing
technique based on the matching pursuit decomposition has been further extended to extract newly
generated spectral components due to the nonlinearity in the received signal. Time-of-flight analysis
has been performed on decomposed components of transient datasets to quantify defect. An
advanced machine-learning based classifier, known as Support Vector Machines, has also been
developed to detect and classify the signature characteristics due to the presence of various types of
defects like delaminations, drilled holes, notches, saw-cut, etc., such that the state of the structure
can be assessed. Experiments have been conducted using a variety of nondestructive evaluation
(NDE) techniques, including pulse echo thermography, to validate the developed methodolo ies.

Standard Form 292 (Rev. 8-98'
15 S•JECT A f. 7' 4T

15. SUBJECT TERMS



STRUCTURAL HEALTH MONITORING FOR HETEROGENEOUS
SYSTEMS

Final Report

Period Covered: April 11, 2003 -June 30, 2006

AFOSR Grant Number: F496200310174

Technical Monitor: Dr., Clark Allred

Principal Investigator: Aditi Chattopadhyay

Department of Mechanical and Aerospace Engineering

Arizona State University

Tempe, Arizona 85287-6106

20070417192



STRUCTURAL HEALTH MONITORING FOR HETEROGENEOUS SYSTEMS

Final Report

Period Covered: March 1, 2003 - June 30, 2006

AFOSR Grant Number: F496200310174

Technical Monitor: Dr. Clark Allred

Principal Investigator: Aditi Chattopadhyay

Graduate Research Associates: Santanu Das and David Miller

A hierarchical framework has been developed for damage characterization, detection and

quantification in composite laminates. The procedure includes accurate analysis, optimal sensor

placement algorithm and advanced signal processing technique. A refined global/local laminate

analysis technique, including fully coupled electro-mechanical constitutive relations, has been

used for predicting the dynamic response of composite laminates in the presence of

delaminations. The methodology accounts for the nonlinear "breathing phenomenon" or

sublaminate contacts during vibration. Damage identification is conducted using elastic waves

and miniaturized piezoelectric sensors. A new design methodology for optimal sensor placement

has been developed based on the requirements of sensing certainty and sensor density. An

analytical method has been developed to model the material attenuation of the composite

medium to formulate a relationship between sensing region, sensor observation angle, fiber

orientation, and damage size. A signal processing technique based on the matching pursuit

decomposition has been further extended to extract newly generated spectral components due to

the nonlinearity in the received signal. Time-of-flight analysis has been performed on

decomposed components of transient datasets to quantify defect. An advanced machine-learning

based classifier, known as Support Vector Machines, has also been developed to detect and

classify the signature characteristics due to the presence of various types of defects like

delaminations, drilled holes, notches, saw-cut, etc., such that the state of the structure can be



assessed. Experiments have been conducted using a variety of nondestructive evaluation (NDE)

techniques, including pulse echo thermography, to validate the developed methodologies.



Objectives

A comprehensive research on characterization, detection and estimation of seeded

delaminations in composites has been conducted. A hierarchical sensor integrated framework

has been developed, combining simulation, wave propagation bascd detection, signal processing

and classification techni.ques. Following are the principle objectives of this research.

1. Wave propagation in heterogeneous media and optimal sensor placement based on the

concept of sensing region and delection crileria, A two-dimensional design methodology

associated with optimal placement of sensor sets has bccn developed based on the

characterization of sensor sensing region and pcrformanec. Convergence of sensing regions

with the required level of inspection accuracy leads to the certainty region of detectability,

implying that perturbations caused by damage in that rcgion with severity greater than the

threshold value can be detected.

2, Hierarchical Inspection Mekthod, A "local energy based" inspection method has been

devclopd taking into account both the "local" and "global" effects on the structural response

of composite structures.

3. Material attenuation and its effeet on damage detection and sensor placement. A model for

predicting the influcncc of the combined effects of fiber angle and observation angle on

attenuation coefficient of composite Jaminate has. been. developed. The goal is to achieve a

thorough tuderstanding on the relationship between sensing region. observation angle, fiber

orientation, and damage size.

4. Time-frequenqv based damage detection techniques. A methodology for localized analysis of

waveforms obtained -from damaged structures has been developed using the Matching Pursuit

Decomposition (MPD) technique and time-frequency representations (TFRs) with a broader

view of damage quantification.

5. Signal processing techniques. Suitable signal processing techniques, based on the MPD, has

been developed to investigate the vibration attributes of delaminations in composites, The
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present work concentrates on the applicability of the MPD teclmnique to extract some feature

components of "multiple-harmonic" vibration of elastic bodies.

6. Danage. classificWion. An automated mcthod for classifying sensor signals, collected from

different types of damaged coupons, has been developed to enable the detection and

diagnosis of various forms of damagc on composite structures using Support Vector

Machines (SVMs), which are ai advanced form of classification method from the field of

machine learning.

Summary of Research Efforts

A comprehensive firamework has been developed including damage characterization in

composites, advanced signal processing for damage dctcction, and optimal sensor placement. A

methodology has been developed to achieve optimal sensor placement and convergent

descriptions of possible damages in the presence of noise through characterization of sensor/host

structure coupling, sensing capability and se.sor sensitivity. A local energy based inspection

method has also been developed by formulating a damage indicator based on local energy

perturbations due to possible presence of damage. Through the integration of the developed

sensor network and identification tecluhique, damage can be detected through local energy effects

of individual sensors to that of the overall responses of the distributed sensors. The present

procedure also incorporates the effects of the transducer-structure bonding and the

characterization of the sensors sensing region in the presence of system noise (both structural and

electronic). The optimal placement of the transducers is subjected to the rninimumn overlap

criteria such that the sensing regions of the sensor set provide sufficient spatial coverage, and

relevant damage information leads to convergence even in the presence of noise, based on the

state of excitation and concurrent signal-to-noise ratio. Damage identification has been

conducted using elastic waves and miniaturized piezoelectric sensors. A refined global/local

3



laminate analysis technique has been used for the charactcrization of damage in composites. The

efficient and accurate structural analysis uses both higher order and layerwise displacement field

formulations and fully coupled electro-mechanical constitutive relations. Results indicate that the

presence of dclamination in composites significantly affects the energy contribution of individual

sensors, depending on their relative positions with respect to damage zones. Characterization

studies have been conducted to obtain the sensor parameters which arc then used in the

identification procedure to detect structural damage. A fundamental investigation into

fibcr/matrix wave propagation and scattering has been conducted. An analytical method has been

developed to model the material attenuation of the composite medium to formulate a relationship

between sensing region, sensor observation angle, fiber orientation, and damage size. A

hierarchical approach has been adopted to improve the monitoring technique for further

quantification of delaminations patterns. In the current effort, a Matching Pursuit Decomposition

(MPD) algorithm has been developed for detection and localization of seeded delamination in

composite structures. A characterization of sensor signals has been conducted to interpret the

influence of delamination in composite plates using the MPD technique. This has been

accomplished by decomposing the signal in ternis of Wave-based dictionary elements and finally

utilizing the time-of-flight information of these individUal decomposed components of transient

datasets to determine the location and size of the dclamination. The developed signal processing

technique based on the M.PD has been further extended to extract newly generated spectral

components due to the nonlinearity in the received signal. An advanced machine-learning based

classifier, known as Support Vector Machincs, has also been developed to detect and classify the

signature characteristics due to the presence of various types of defects like delmuninations, drilled

holes, notches, saw-cut etc. in composite structures so that the status of the structure can be

ascertained. Experiments have been conducted using a variety of nondestructive evaluation



(NDE) techniques, including pulse echo technique, thermography, to visualize the presence of

damage.

Accomplishments

1. Optimal Transducer Placement Technique

A design methodology for optimal sensor sets is developed based on the characterization

of sensors' sensing regions and performance. Convergence of sensing regions with the required

level of inspection accuracy leads to the certainty region of detectability, inplying that

perturbations caused by the damage in the corresponding region with severity greater than the

threshold value can be detected. To quantify such sensing regions, an experimental

cbhaacterization is first conducted and then the sensing region is determined using the

corresponding sensor response. For a surface mounted sensor-actuator pair, the transfer function

can be expressed as follows.

=, W nz~~ m],xp(-aG')R,,)()

where VA(t) and Vs(z) are the excitation and the sensing response, respcetivcly and T,, and Tin are

the actuator and sensor transfer finctions, rcspectivcly. The parameter CaI) is thc attenuation

coefficieint at excitation frequency (Q and RAS is the distance between the actuator and the sensor.

When PZT-1 acts as ai actuator (Fig. 1), the energy ratio of the sensor signals over the time

interval can be related as follows.

N-I
P7 xlZ1 2

n=|
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wh1re PZ711 M= PZ" rpesent the energy of Sensor-I signal and Senisor-2 signal,

respectively. If PZT-2 acts as an actuator, RA4sI (R,4s2) being the distance between PZT-2 uid

Sensor-"i (Sensor-2), the signal attenuation coefficient is then given by

N-1

_____(f__ In n 1 $IPZT2~ n=1 ~s2pzT1
'~2bsRAl RA 2 ) N- ti

n PZT2 ,I '~P7TI

(3)

Fig. 1 Experimental setup for sensor characterization

The detection performance of the sensor is evaluatcd based on the generalized likclihood

ratio test (GLRT1). bi GLRT process, the maximlum li~kelihood estimates (MEE) of the unknown

paramecters are first determined and thcrcaftfr thet m-axim-um likelihood ratio is calcu~lated

corresponding to the MLE of the parameters in the test statistics (L('x)). In general, the GLRT.

decides 1- when,

L~)DI lax >Y (4
Prx;-1 = 0 p~x;HO)

where y is the threshold parameter. The significance of Eq. (4) is that the developed test

statistics maximizes the likelihood ratio over the estimated parameter 0 and hypothesis is

assumed to be true only when the likelihood ratio is greater than the threshold)'. Assuming that
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the noise variance o-2 and fo is known, the present analysis boils down to a nan-owband

detection process that decides on the presence of the sinusoid with amplitude and phase as

unknown parameters. Hence Eq. (4) can be rewritten as,

(2 70,2 r 2 I~
L -x)= >7 (5)1N-12

A A

where A and 0 aie the MfLE of the amplitude and phase, Following some mathematical

manipulations, the decision criteria of the modified test statistics (T(x)) can be expressed as,

S -1. I _ ,.- 2 0 1,2
T(-x)-=-" Z, x n fo. >'V2 (6)

where V,, is the new threshold value, N denotes the total, number of observed data points and.] is

imaginary unit. Eq. (6) states that a signal can be present if the peak value of the periodogram

exceeds a specific threshold, evaluated at the frequency of excitation (f,). The threshold value

physically means the power corresponding to certain frequency, for a given sensor signal (x(n)).

The detection performance of the sensor is evaluated hased on the generalized likelihood ratio

test (GLRT) approach, mad can be expressed as follows.

Pf )I; (7)

where A and o denote the probability of false alarm and known variance for a specific

probability value obtained from the noise data, respectively..
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1.1. Effective Sensitivity Region

It is worthwhile mentioning that the perturbation caused by the presence of the defects in

a certain region that results in an effect with severity greater than the specified threshold valuc, at

the receiver end, is detectable. Such perturbation is then characterized by the following relation,

V expl- Rxy)=V (8)

and to satisfy the detection criteria, the followbig must hold good.

VS Vt, (9)

where V,, is the intensity of the source of the perturbation at any surface point (x, y), V, is the

intensity at the receiver node, V,, is the threshold value, and R 5.v is the absolute distance between

the point (x,y) and the sensor node. The sensing region can be further derived using Eq. (8) and

Eq, (9).

The sensing region is defined as the distance corresponding to the generated perturbation

that would result in a sensor response greater than or equal to the threshold voltage. The

distribution of such possible perturbed sources is shown in Fig. 2. Based on the analysis of the

experimental data, the sensing radius (R,) is calculated to be 0.052 m (Fig. 3), with D=O.1 nI,

Rail==0.05 m, R-,, 2=0.15 m (Fig. 2) and a threshold voltage of 1.1364x 10-2 v for a P r, of l104. The

optimal placement of sensors is then determined by satisfying the minimum overlap criteria (Fig.

4), for the specified plate structure as shown in Fig. 5. The surface area is divided into small grids

and the shadcd region (indicated "I". Fig. 5) shows the detectable region, A simple geometric

relation can find the centers of the circles forming an cquilatcral triangle with a spacing of v0- R,

and thc angles (t',B6,Y) equal ton'/ 3 .
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Fig. 2: Sensor voltage distribution. Fig. 3: Estimated sensing radius for required
inspection and threshold values.
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Fig.4: Jihistrution of sensing intersections. Fig. 5: Optimal sensor plaeement for a square
plate.

The developed "local energy based inspection" mcthod uses local quantification of the

energy. Thc datmage indicator, based on the change in energy contribution (A•) as in Eq.. (12),

takes into account the local physical effects (E-q. (10)). compared to the overall perforniance (Eq.

(11)) of all the sensors, spatialliy distributed over tlhe entire structure. 1-ere E111 (EiD) and E~ivg(I.)

(Ea.vg~r)) represents the energy of the im sensor signal and average encrgy over all the sensors for

the healthy (delamninated) structure.

EIcaI =E (10)
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rgloal- Ezavg(D) (11)

(E E.,'g(II)

SEi , Eav~g(JJ) (12)

Residts are presented for a [00/90'] 4s Graphite/Epoxy laminated plate with surface

mounted actuator and sensors. The length of the square plate is 0.3 rn, and the total thickness

h-2.81x10"3 m. The plate is clamped at two edges and the other edges are kept free. The

locations of the transducers arc showni in Fig. 6. The same transducers are used as

actuator/sensor. The damages are a pair of seeded delamination with a dimension of 0.04x0.045

mn at the 4 "' or 7'h ply interfaces (with respect to the mid plane) and located at a distance of 0.02

m from the edges (Fig 6).

--___ [ Chlmped edge

7fDelaniination
E Transducer

7 f7--7 --7
-- I -- * •-I- - I-- *- --- I - -

Fig. 6: Illustration of surface mounted transducers and delaminations.
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Fig.7: Local cffcct,ý (hecalthyand 4th ply delaimination). Fig.8: Local cffects (healthy and 7th pl
delamnination).

The first set of results (Figs. 7 and 8) show that thc local effects of Sensors 1 arnd 9 are

significantly abovc the global energy contribution [EP&14,bn1l4)=1 .1532 Egio.1~i(17)Y 1.0333]. Such

cffccts arc more dominant when the positions of Sensors 7 and 8 are relatively closer to the

damaged prone region and are more pronounced for delaminations located closer to the mid-

plane. When the delamninations are closer to the free surfacc of thc plate (such as 70' ply

delamnination), the stiffn~ess of thc dclaminatcd plate is comparable to the healthy plate. Therefore

the difference in strains bctwcen a healthy and delamninated plate is small.

4~
201

I 1 4 5 6 1 i

SncwI

Fig. 9: Ch~tnge.In0 nrycnrhtog(1 i 0 hnei nrycnrbnlos(t l
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2. Attenuation Behavior/Elastic Wave Propagation

To estimate energy scattering of wave propagation in fiber-reinforccd composite

laminates, a plane time-hanionic elastic wave is considered. For a given frequencyco, the plane

wave propagating in the r direction can be expressed as (Fig. 11),

Incident wave: u~,
i1 1(xcosO+ys:nO) p Fiber. scattering X

Figure II Illustration of wavc scattcring due to a fiber.

oftr - wt)
uk(r, t,) = u4 (0)e-a C(o) (13)

where uk is the displacement component in the k direction, and Uk (w) is the corresponding

amplitude factor, typically dependent on the operating frequency and the boundary condition,

The quantityK is the complex wave number, a the attenuation factor (a(ao) >_ 0), and c(Co) is

the effective wave velocity. Note that i is the imaginary trit.

The presence of the fiber-matrix interface in the volume element gives rise to wave

scattering which diminishes the intensity of the incident wave, which can be expressed in the

following form,

(i(r, in) = (1o (r, w))e-e ar (14)
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where (1(r,,o)) denotes the incident wave intensity, and (1o(r, wz)) is the corresponding

amplitude which is proportional to the square of the displacement amplitude per unit area.

Therefore, the variation of the wave intensity in the r direction is,

Or) = -2((r, c))5)
Or

To quantify wave scattering in fiber-reinforced composites, a representativc control volume

element has been defined in Fig. 13. Considering the conservation of energy in the control

vohlme element, the total energy dissipated by the scattering wave can be expressed as,

(ltSc) = (I(r, o))S - [(I(r, ao)) + l') dr S (16)
ar I

where S is the surface of the control volume element, and (,sc) represents the total time

averaged energy of the scattered waves induced by the fiber-matrix interfacial interaction in the

control volume. Note that a dilute interaction is assumed, which implies that only primary

scattering is considered. It is important to mentioli that in most practical problems, dilute

solutions are considered adequate.

2.1 Single Fiber Scattering Formulation

It has been shown that the piezoelectric shear transducers will mainly excite shear waves.

Therefore, an anti-plane shear wave from a single fiber is considered, The total energy flow per

unit area for the scattered field is the time average of the effective flux over any surface assigned

to be the area enclosing the cylinder (fiber) of unit length (Fig. 12). Then the scattered energy for

a single fiber of unit length can be expressed as
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W.I.

/x1 .. ,' ..,. ,,

o, ,. .-

-Control voluw,

0

Fig. 12. Single fiber cross Fig. 13. Fiber-reinforced composite and representative volume
Section, element.

eI 0 f a, (2; dO)

\~~ -Ti fr 2 " & (7

whcrc usc is the scattered wave,/, 1 be the shear modulus of the matrix, rf the fiber radius and

PSc) is the energy flow per unit area of a single fiber (Fig. 12) for the scattered field. Note
f /UA

that this quantity describes the energy scattcrcd in all dircctions and thus the amount of the

energy lost by the incident wave at the cost of it's inteiaction with the unit area of the fiber.

Therefore the total scattered energy ((PsC)), for a single fiber with the effective length

(Left ), can be expressed as,

f ) = f ( UA) ef(

Let o-0 (a)) be the total scattering cross-section for perfectly bonded fiber. Then- 0 (o)) can be

dcfined as the total scattered energy divided by the incident wave intensity. That is,

14



(pe)(19)

2.2 Multiple-Fiber Scattering Formulation

Since the mutual interaction or multiple effects among individual fibers have bcen

neglected in the present study, the individual fibers can be regarded as independent of each

other. Jn the control volume element it is assumed that all identical fibers are aligned in the

matrix such that there are N ,f fibers per unit area in the plane perpendicular to the fiber axis

and hence the total scattering energy,

usc) NffPf) Lf (20)teft\( f L ALeff

When the wave travels along the O-X1 direction that makes an angle/# with the O-X, the

respective volume element is exactly identical with that shown in Fig. 13. For convenience each

variable is identified with a suffix '0' for this specific case. Hence the effective fiber length and

the attenuation coefficient (a'fl) computed respectively fOr this certain angle as,

L -L ) (21)

1 ( Nef ý, S

S\f c - (22)
13 c ~l os(fg a)

where Ls is the distance between the two measuring points (the distance between the sensors in

the present case), a denotes the angle of ply orientation, and V, is the control volume. This
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relation shows that, the effective attenuation coefficient is influenced by the cumulative effect or

the resultant scattered energy from all laycrs and the diffcrent angle (13 - rx).

To obtain the loss due to the wave scattering for composite laminates, by eonsidering a.

total k layers, the total scattered energy ca be expressed as follows,

r N eft f /(23)

k

where PS kis the energy scattering of the layer k, and can be obtained from Eqs. (20) and

(21),

= L 3 1  7 JP ) Cos 13- c (24)

.t is important to mention that the current approach to sum over the scattering cliergy over

individual layers would be entirely adcquate because the final expression is determined using

sample equations which stcm from energy considerations. Eq. (12), can be rewritten in terms of

individual layer contribution,

(Pf'C " ýPC)11.4k )/+/l -. UA cos(P-a) 'i+.K. + cos(P a

)ZS
(25)

To simplify the analysis, the energy flow in a control volume element with three layers has been

considered (Fig. 14). Considering that no energy can be created or destroyed within the confol

16



volume, the input energy of the jh layer must bc equal to the input energy of the 6j+l)th layer plus

the energy carried away by the scattercd wave in the j"h layer. This can be exprcsscd as,

.ILs(i). .- •-

S,.(I),+,(j)1 layer 00II

I jt I )"' h Iy •'+ I-- o

F 0+ 2 y)lhayer cr

(~sc)1  = 1 (27

7P-2 7

lF ig .14. L ayerw ifie energy flow in i u e 1 .Ex ei nt l s up a d l teg o tt ,
coinpo.qite lamninates.Fiue1. xeiina etpndltrgoery

Combination of Eqs. (26) and (19), would result in,

(2J

(27



It is possible to estimate these parameters (Ck, C2 ,k ,...) through numerical calculations

for a specific composite with somc known parameters like elastic constant, fiber radius and

incident wave.

1 1 A+

++n -n

A
0.4 0.4

I +
02 02

0 0

-0 2 .0.2

-40 .30 .20 .10 0 io 20 30 40 ,(1 -00 -2 A .1n 0 10 20 30 40

(a) (b)
Fig. 16. Normalized attenuation with varying observation angle (-34/0/34 deg.) (a) 0/0 (b) 0/90 stacking
sequence (Comparison of simulation (+), experimental (*) and theoretical (A) results for healthy case)

The dependency of the normalized attenuation coefficient on observation angle (p3) is shown in

Fig.16a-16b. It is seen from Fig.16a-16b that the variation of the normalized attenuation is almost

symmetrical about 13 = 0 deg. Similar patterns are observed for both 0/0 and 0/90 stacking

sequences. For normal incidence, the pattern shows that the maximum value of the attenuation

coefficient always occurs at j3 = 0 for a given stacking sequence. However for a fixed observation

angle, the value of the normalized attenuation coefficient is a maximum for a 0/90 stacking

sequence. In this context, it is important to note that Fig.16a-1.6b has some relevance to wave

based quantitative nondestructive evaluation, for optimally locating the sensor in order to

efficiently intercept the scattered signal.

3. Time Frequency Based Damage Detection and Quantification

A distinct feature of nonlinear systems is the frcquency component from the generated

harmonic response that is different from the harmonic excitation frequency. When a localized

18



damage is induced in the structure, these distinct feature components are sensed by the

neighboring transducers. Extracting the featured components with suitable signal processing

techniques is a major task in SLIM. In this research, the Matching Pursuit Decomposition (MUD)

is used to characterize the influcnce of dclamination on the structural response.

3.1 Matching Pursuit Decomposition

The MPD is an iterative nonlinear algorithm that decomposes any signal into a linear

expansion of waveforms that belong to a redundant dictionary. The signal must he expanded into

waveforms whose TFR properties are adapted to its local structures. Thus, a modified version of

the MPD uses a dictionary that is formed using TFR atoms matched to the analysis signal. Ifd(t)

is the basic TFR atom, a is the dilation or scaling factor, 68 is the translation factor and K is the

modulation factor, then n'h dictionary element d•(t), (t =. .... N, is formed by changing a, 13, K

from the following as:

d" (t) = I • 3 ai s le'" " (29)
-Ca. - am )

where n is the total numnber of dictionary elements. The redundant dictionary covers the entire .'F

plane, spanned by these time-scaled, time-shifted and fiequency-shifted atoms. The objective of

the MPD is to decompose a signal x(t) as a linear expansion of waveforms, selected from the

dictionary, that best match the TF structure of the signal. This decomposition is done by

successive approximations of x(t)with orthogonal projections on dictionary elements and is thus

iterative in nature, The signal x(t)is first decomposed as x(t) =a'd,,, (t)+ r'(1), where /(i0 is the

residual signal after approximating the signal x(r) with the dictionary element d', (t),

(x,dh,,)= Jx(t)dt,.,(t)dt is the projection of x(t) onto the dictionary element d,',,(t)and bm
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r.epresents the best matched dictionary element. This dictionary clement corresponds to the signal

component with the highest energy. Specifically, I(xd)' )) = raxl(x, d. )I. After the kt' iteration,

rk (t)(=rdd,(W+ r-() a -/rak\) (30)

where d,',, (t)is the chosen dictionary element that best matches the residual r k (t) which is given

byrk t)= r-t )_- a0 A0I (t) - In practice, a maximum number of iterations and an acceptable

small residue energy compared to the data energy are used as stopping criteria to the algorithm.

After K iterations, the decomposed signal is given by
K

x(t) = Fakdm /)+ r (+ ) (31)
k=1

For damage quantification, both simulations and experiments were conducted to obtain the

response of a 16 ply 0/90 Gr/Ep composite plate With surface bonded actuators subjected to

forced excitation. The investigated damages arc 1.5cmy5cm, 3cm×xScm and 4.5cmxScm

delaminations, introduced at different interfaces from the mi.dplane (Fig. 17).

9.S m 9 m
2.5 em

Actuator Sorlor I Dclaniinqtion S',rnor 2

'2

Fixed .
eold 29 em

Fig. 17. Experimental Setup with Structural Dimensions and Interfaces

In the first set of experiments, a 4.5 cycle tone burst signal with a central frequency of 8 K.-Hz,

was used as the excitation signal, sampled at 1MHz. The objective is to quantify the

delamnination, by decomposing the disturbed signal in terms of wave-based dictionary elements
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and time-of-flight analysis of these individual components to determine the location and size of

delamination, The basic atom of the M'PD is a Gaussian cnveloped chirped sinusoid and the

dictionary consists of elements which are the time-scaled, time-shifted and amplitude modulated

version of the basic atom. This atom was chosen because it satisfies the Lanilb Wave modes.

Figure 19 shows a typical example of a disturbed signal overlapped with the modeled signal and

also the extracted components after decomposition. The sum of the individual components would

represent the modclcd data, Figure 20 shows a good correlation in the spectrogram TFR of the

original and modeled data. of sensor- I (,Pig. 17).
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Fig. 18. Wave Reflections for Sensor-I (Lcft) and Sensor-2 (Right)
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Fig. 19. Original & Modeled Data Fig.20. TFR of Original & Modeled Data
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The time-of-flight in formation, of thcsc individual components is used to determine the location

and size of the delamination. The triangulation algorithm is based on the expected wave

reflections from the damage and plate edgcs as demonstrated in Fig.18. Triangulation of

rectangular delamination means the detection of the edges (.13 & C; Fig. 17) of the inclusion.

Figure 21(a) shows the trend of the error to predict the edges when a same size delamination is

moved from midpla.ne to near surface. Figm-e 21 (b) shows the error to estimate the size
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Vig.21. (a); Error in 'Delamination FAgc Detection (%)
Vs. Viri�tion of delamination Interraces (Z-Iocntion)
(h): Error in Delarniriation size' Detection (%) Vs.
Variation of Delamination Interfacca (Z-location)

-� ':. i�L Y�axis:Error(%),X-axis: 2"", 4th and 7th Interfaces15%)
.10 (c): Erz�or in 1)elOrrIinlltiOn Edge' Detection (%)

% """� Vs.Variation in delamination size (Delamination fixed cL
2 nd Intcrfaccs)

(h) Y-axis: Error, X-axis� Delamination size (%)
delamination based on the fact that delamination is moved from inidplane to near surface. Figure

21(c) shows a similar trend when dift'crent sized damagcs are detected in the 2 nd interface.

The second set of experiments was to demonstrate the applicability of the MPD to

analyze the vibration attributes of delamination and the influence of 'through-thickness' location

and size of the delamination on the structural response under forced excitation. A S KI-Iz

sinusoidal wave packet has been used as the excitation si�al. The basic atom is chosen, to be a

sinusoidal signal with time duration O.6jts. The MiPD was formed by frequency shifting this basic

sinusoid from 2 KT{z to 40 KHz, with a resolution of 200 Hz. The dictionary elements were also

aflowed to be seated and shifted in time. The comparison of the pcrccntage energy contribution



for the extracted frequency componcnts with the dclamninations located at the 2 "d intcrfacc is

shown in Fig.22. In this context, it is important to note that the larger delamination has

significant superharmonic components whercas the smaller delamnination has subbharmonic

components with a dominant contribution. A comparative study of the extracted energy

comnponcnts for different delamnination sizes, plotted for the nomialized frequency scale, is shown

in Fig. 22. The normalized frequency scale is obtained by dividing the total frequency range by

the cxcitation frequency (f). As seen from Fig.22., under the influence of sinusoidal pulses,

larger delamination toward the midplane acts as a "closing crack" thus giving rise to

superharmonic components whereas when the delainination size gets smaller it acts more like a

"partially closed crack" giving rise to dominant subliarmonic components at the output. These

nonlinear effects are more prominent if the delamination is closer to the midplane. This is

probably because in such cases the delaminatioD acts more like a perfect "breathing"

discontinuity, as it interacts with the excitation signal. Figure 23 shows a simi lar comparison for

a 4,5cmx5cm delamination located at different ply interfaces. As the same size delamination

moves closer to the surface, the energy contribution of the principle excitation frequency

decreases when compared to delarninations closer to midplanc. Near surface delaminations also

do not encourage the breathing phenomena, Mlorcover in the wave based technique, using

piezoelectric transducers, local changes are realized while propagating through the structure.

Hence the energy dissipation is much higher for neat suiface delaminations compared to other

cases. These phenomena can be well-demonstrated from the extracted frequency components and

their corresponding energy contributions, using the MIPD technique.
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(a) (b) (C)
Fig.22. Extracted frequency components for damaged data, X-axis: Normalized frequency scale, Y-
axis: Contribution in extracted energy (%). Frequency of" excitation: 8000 I-Hz., Damage details, Fig.6
(a) 5% Delamination, Fig.6 (b) 10% Delamination. Fig.6 (c) 15% Delamination, at 2"d interface.

(a) (b) (c)
Fig.23. Comparison of cxtracted frequency components for damaged data, X-axis: Normalizcd
frequency scale, Y-axis: Contribution in extracted energy (%). Frequency of excitation: 8000 Hz,
Damage details: 15% Dclarnination at Fig.7 (a) 2"'", Fig.7'(b) 40', Fig.7(c) 7V' interface.

3.2 Matching Pursuit with Adaptive Dictionary

As illustrated earlier, the matching pursuit decomposition is a method for the accurate

decomposition of wavcfornis into linear expansions of elementary functions (or atoms). The

resulting decomposition reveals the waveform's structure. This information is used to distinguish

signals from healthy and damaged structures. However, if the waveform structure is not well

known, there is a need for the MPD to use a comprehensive dictionary to guarantee an accurate

decomposition of the waveform. The drawback of the~matching pursuit decomposition is that, in

the decomposition process, it performs an exhaustive search over a large dictionary of elementary

functions. This search is necessary since in most cases the structure of the waveform is not

known. For real applications, this results in a large computational burden and a necd of large

processing power.
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A mcthod to avoid the exhaustive search ovcr a largc dictionary is to identify the atoms

that are suitable for the decomposition of a waveform using Monte Carlo sampling. The Monte

Carlo Sampling Matching Pursuit Decomposition (MCSMTPD) produccs a smaller dictionary that

is repeatedly adapted to the signal structure and that of its residues, before and during the

decomposition process. The MPD is then used to decompose the waveform faster, since it makes

use of the smaller dictionary. Furthermore, the dictionary produced by the MCSMPD can contain

atoms that are not restricted in a grid in the time, frequency and scale plane, as the MPD

dictioriary is. This can result to higher decomposition accuracy.

For the decomposition of a given waveform:, a dictionary of thne-shifted, frequency-

shifted and scaled Gaussian enveloped chirped sinusoid atoms are chosen so as to satisfy the

Lamb Wave modes generated in the structure. Therefore, the state vector to be estimated has

three partitions, cach representing the aforementioned atom components. Each of the partitions

S= 1,..L evolves according to

Yi= + V (32)

with i,i -1...-I, being the iteration step of the particle filter and v being a uniformly distributed

noise term that takes values in a relatively small range, that differs for each of the partitions. In

the initialization subroutine i = I and the term i is set to zero. Moreover, the noise term

ranges from the minimum to the maximum values for: each of the partitions that are the same as

the ones used for the three respective components of the dictionary used in the regular MP

algorithm. This method propagates partitions independently according to a uniform distribution

q(vyjj yi i_l)for each partition l. Where possible, it evaluates their cffcctiveness in

characterizing wavcform components individually uising a partition weight function that is

described in this section. This method is the independent partition method of propagating
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partitions that removes the limitations imposed by the increase in the dimensionality of the state

vector. The multitarget state vector is expressed in terms of the state vectors of each target as

[T= T . TiT (33)i V V]2,i" ,,i

where xT denotes the transpose of x.

Note that, as each of the particles of the particle filtcr corresponds to an atom in the

dictionary, particles are referred as atoms. If applicable, each proposed partition I of atom "?IWk

is wcighcd with a partition weighing function, b/1 ~ g The fuuction g,(l l) is chosen

such that it bears intbrmation on the specific signal structure that is represented by the specific

partition. In this application the time shifts may be weighed with a function that is proportional to

the instantaneous energy of the signal at each proposed time. For the frequency shift a weight

ftunction is used that is proportional to the Welch periodogram. T'he partition weight distribution

of each partition 7 nornalized and an index jn is sampled from the resulting distribution

with replacement. The resulting selected partition has the value Yli = and bi as, b ib
f I ,

For the partitions that are not weighed and sampled, We setb 4i = 1. The partitions are combined

to form atoms in I y J.il In the particle weight calculation the inner product

f(Y')= (x, d k) is included that is a measure of the similarity of the atom to the waveform.

The weight function also takes into account the przposal. densities q(Yl,iYld -I) and the

biasesbnj. The proposal densities are uniform and: with the same -variance for each atom.
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Moreover, each of the partitions is proposed independently. Therefore, the resulting proposal

density is equal to I-IIq (I yY il) and when evaluated at each of the atoms it produces equal

valucs for at] atoms. Therefore, this factor may be omitted friom the weight function that is

evaluated up to proportionality. The resulting ,yeights are calculated as: n fnli__.,,_

The distribution. of ýwi }- is normalized and parti:cles are resembled from this distribution.

The steps of this algoritlim are described in Table 1.

Table 1 PFMPD algorithm

• Initialization Subroutine

* Update Subroutine. Repeat M times

• MNYD iteration

9 IfRp. RpA-1 < .05 And Rpk-Rpk.2 >.05

- Update Subroutine-Repeat l times

0 J Iýpk- pk- >.0

- Initialization Subroutine

- Update Subroutine-Repent M tinics

"• GOTO MPD iteration
" If Rp4 < 0.1 Of k ->500 END
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Fig 24. Modeled signal with MPD for Sensor-1 (top) Fig.25. TrR of original and MPD gcncrated
and residual (bottom). modeled signal.

-. 09 . .. ......

0 0 0' -log ý00 .00 am0 7.0 $00 we I00 A T 2 4, 0 1 .0 0

Fig 26- Modceld signal with P"F.P'D for Sensor- I (top) Fig.27. TFR of original and PFMPD
generated and residual (bottom). modeled sigmal.

In this analysis Gaussian enveloped chirped sinusoid has been choscn as the basic atom and the

dictionary consists of elements which are the time-scaled, time-shifted and amplitude modulated

version of thc basic atom. For damage quantification,: experiments were conducted to obtain the

response of a 16 ply 0/90 Gr/Ep composite plate with surface bonded actuators subjcctcd to

forced excitation (Fig. 17). The investigated damages lare notches, saw-cut, drillcd holcs, impact
and delamination of 4.5cmxScm introduced at the 4th interfaces from the midplanc. In this

expernment, a 4.5 cycle tone burst signal with a cent ral frequency of 8 Kfiz, was used as the

excitation signal, and sampled at 1MHz. The ability of the PFMPD algorithm to decompose the

samc signals with less computational time and without compromising accuracy is demonstratcd
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in this section. The estimated dictionary is composed of 100 atoms whose range is same as those

of the regular MPD dictionary. The dictionary is estimated at every particle filter iteration and

adapts to thc original wavefonn mid the residues resulting from the MPD. Specifically, the

initialization subroutine is used in the beginning of the PFMP algoritlun, followed by M= 2

applications of the update subroutine. The MP is used until the fraction of residue Rpi at iteration

i does not decrease further than 0.05 over one iteration step, when M = 2 update subroutines are

used. Moreover, if the fraction of residue does not drop more than 0.05 over two successive

MPD iteration steps, the initialization subroutine is used, followed again by M = 2 applications

of the update subroutine. The iterations are terminated when either the fraction of residue drops

below 0.1 or the maximum time of itcrations I = 500 is reached. Figure 24 and 26 shows the

same waveform overlapped with the modeled data and also the residue components tiller

dccomposition resulting from the MPD and PFMP'D respectively. Figure 27 also shows a good

correlation in the spectrogram TFR of the original and modeled data of sensor-1.
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Figurc 28 Fraction of residual Vs Computational expense

In Figure 28, it is shown using 50 Monte Carlo simulations, that the PFMPD algorithm

with a reduced size dictionary decomposes the given waveform with a fiaction of residue

comparable to the MWPD with a non-adaptive dictionary, but with less computational time. This is

due to the fact that the PFMPD, although uniformnly proposing atom locations within the time-

frequency domain, it appropriately weighs the atoms using the structural information of the
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wavcform to cventually select those atoms that better match the waveform chiaracteristics,

Therefore, the PFM'PD is especially uscfil in locating time-frequency locations of the waveform

even if those are found sparsely in the timc-frequency domain. In Table 2, the damage locations

are predicted from experimental data of individual sensors using both M.PD and also PFMPD

algorithms.

Table 2 Predicted damage information

Damage Type Original location (m) Matching Pursuit MPD with Particle
Of damage Dccoinpo stion Filter

in meter From free endE m atd s itd Estimated Egjafatei

location location location location
(m) (M) (W) (M)
Sensor- i senfor-2 Sensor- I Sensor-2
Reading Reading Reading Reading

Drilled holes 0.075-0.085 0.147144 0.13565 0,151757 0.061842
(0.001 dlia) 0.101014 0,149489 0.137918 0.071068

Delamination 0.055-0.10 0.119466 0.094133 0.151757 0.06184.2

(0.045x0.05) 0.087175 0.098746 0.147144 0.066455
0.112585 0.124079 0.095681

Notch 0.07-0.09 0.124079 0.112585 0.137918 0.061842
(0.02) 0.117198 0.133305 0.066455

0.144876 0.071068

0.114853 0.080294 0,114853 0.075681
Saw-cut 0.085 0.101014 0.084907 0,101014 0.080294
(0.02) 0.087175 0.082562 0,080294

The reason that sensor-2 provides a better information on the damage location for both MPD and

PFMPD, is due to the fhct that it experiences a morc significant change in the received waveform

for damaged and healthy cases when compared to the other sensor. Moreover it is important to

note that for certain damages there are multiple entries of predicted damage locationms undcr each

sensor depending on reflection components. From the results, it can be observed that the

locations of the damages estimated by the PFM1D are closer to the true values that those
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obtained by the MPD. This is because the PFMPD is able to propose atoms in continuous

locations on the time frequency plane, in contrast to the MPD that is confined only on discrete

points. This enables the atoms to more closely represent the waveformn at hand.

4. *Detection and Classification of Damage Signatures using Support Vectors Machines

The basic idea of classification is to assign any previously unseen pattern of a now point

to the predcfined class with a closer pattern. There are several technfiques to characterize the

similarity measures of any given pattern. One way to achieve this is to construct a decision

boundary based on the training dataset or the predefined classes and thereafter check the

orientation of the given test point with respect to the reference boundary.

An automated method of classifying scnsor signals collected from different types of

damage coupons to enable the detection and diagnosis of damage on composite structures has

been described using Support Vector Machines (SVMs), which arc an advanced classification

method from the field of machine learning. Figure 29 reprcsents a typical architecture of Support

Vector Machines, The use of a special type of support vector machine known as the one-class

SVMs has been demonstrated as a pattern recognition tool for automatic anomaly detection and

diagnosis on structures made from Carbon Flibcr Reinforced Composite (CFRC) materials.
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Figurc 29 Basic architcctuie of Support Voct.or Machines (SVMs)

4.1 Onc-Class SVMs based Classifier

The Support Vector Machine (SVM) provides -i-on-lincar approximations by mapping the

input vectors into high dimensional featurc spaccs wh~ere a separating hyperplarie is constructed.

The idea bchind this method is to map tho n- dimensional vectors x of the input space X into a

high- dimensional (possibly infinitc dimensional) feature space. In this research, the input data is

mapped into an infinite-dimensional fbature S-pace us~ing a Radial Basis Function (RI3F) kernel

(Eq. 34). The dot product ini the fcature map (0) is' implicitly computed by evaluating the simple

kernel (A'), thus avoiding the explicit calculation of the. feature map.

One class SVM, proposed by Sch6lkopf et a], belongs to a unique group of the SVM family

where the training input vectors belong to one-class, i.e., the class representative of normal or

nominal system behavior. The objective is to map theý data into the feature space cozresponding
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to the kernel and thereafter constructing the optimal hyperplane to separate the featured vectors

from the origin with, maximum margin. All nominal points lie 'above' the optimal hyperplane,

and it is assumcd that all future nominal behavior will lie in the same region. The algorithm

returns a decision function fix,) that evaluates for every new data point (x) to determine which

side of the hyperplane it falls on in feature space. Figure 2 represents the schematic overview of

the one-class SVM" and its parameters. The maximum separation between the origin and the data

point is obtained by solving thc quadratic problem (Eq. 35). When this algorithm is applied to

new data, the decision function is used to determine .vhether or not the data points lie above or

below the hyperplane. Points that fall above the plane (away from the origin) arc called, nominal,

and other points are called anomalous.
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Figure 30 lustra*ion of higher dimensional rmpping for Figure 31 Geometric interpretation of optial
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where v represents the upper bound on the fraction of the training error, ý is the non-zero slack

variable and p being the offset (Fig. 31). The target function in tbe dual problem can be written

as,

.1in, 1 z ctjK(xtxj) (36)
a 2to'

subject to 0 5 o, __1 ,_ , xi =1

where xi reprcsents the Lagrange's multiplier. The parameter p can be recovered for values of

'xj that satisfies the given constraints with equality sign in Eq. (38) and the values of O(xi) for

the corresponding non-zero Lagrange's multipliers (a,) are tcrmncd as support vectors. The

obtained (i and O(x,) must satisfy the equation for the offset, expressed as,

p = •aK (x,, x ) (37)

The decision function for a given test vector 0(y) can be expressed in tern-s of the kernel as,

fl) sgn x jK (xI, ,x-) -' (38)

For the training data, the decision function takes the value of + 1 capturing most of the data

points and -1 clsewhere. Once the dual problem (Eq. 36) is solved to obtain the support vectors,

the optimal hyperplane is constructed in the feature space. For a new test point, the decision

function evaluates which side of the hyperplane the given test point falls into, using Eq. 38.
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4.2 One-Class SVMs: Detecting Unusual Patterns

Iln structural health monitoring sensor signals are analyzed to locate and estimate the

severity of defect, It is an established fact that thc prcscnce of damage introduces additional

nonlincarities in the medium. Presence of damage introduces these attributes in terms of

undesired attenuation, reflection components, multiple harmonics and high frequency burst

signals. In this section, the applicability or One-Class SVM.s to detect unusual patterns in signals

has been illustrated using two test cases. Figure 32 represents a simulated sensor signal for a

healthy structure. The presence of the damage has been represented by introducing additional

attenuation, reflections, multiple harmonic components and high frequency burst, superimposed

on the rcsultant wave. In addition a random noise (w(n)) has been introduced to take into account

environmental and experimental uncertainties. Here w(n)= x* random(Nl) is a random

variable of N realizations and variance X.

I ok

Figure 32 Sensor signal (healthy). Figure 33 Signal with reflhctions. Figure 34 Signal with high Frequency burst,

In Fig. (33) and (34), the signal represents the seuisor response of two damage cases with

additional reflection components and high Frequency burst wave respectively. In both the cases

two additional components are introduced at 3 54th and:5 8 5tb sample points. The preprocessing of

the simulated signal has been done using time-embedded method. In the current analysis, for

each time domain data (of 2000 sample points), an 1 I:dimensional state vector is obtained using

time delay r = 1 and cmnbcdding dimension N = 11.. The One-Class SVMs has been trained with

the 11 dimensional input vectors from healthy samples and based on the training parameters; the
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algoritlun constructs the optimal hyperplane. Thereafter the 11 dimensional input vectors

corresponding to each damaged case have been tested and tile corresponding labels of each data

points are checked. It has been observcd that majority of the unusual patterns in the signal from

the defective cases has been labeled as unseen data or outliers.

Figure (35) represents the plot corresponding to the analysis for the damaged case with

additional reflections. The plots corresponding to Fig- (35-a) and (35-b) represents the resultant

sensor signa.l from damaged state and the reflected components from the damage respectively.

The predicted outliers are shown as peaks in Fig. 35(c). Figure (36) represents a similar analysis

for the damage case with high frequency burst signals. In this context it is important to note that

apart from the true predictions, the outcome shows the presence of some false peaks which is

basically results due to the presence of the random noise and the nature of the input features

provided to the detection algorithnm. The performance of the detection system to predict the

presence of the additional reflections components has been evaluated with different levels of

noise. The confusion matrix has been constructed based on the outcome of the One Class SVMs

algorithm. Figure (37) shows the trend of probability of false alarm with different noise level.

i . . - .X k

Figure 35 ....... o ( nFtI,0igure 36-Predict ed.ll tll( gr.

Figure 35 Predicted outliers (additional reflections). Figure 36 Predicted outliers (high fr'equency

burst components).
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Figure 37 Probability of False Alarm Vs. Noise level Figurc 38 Probability of Detection Vs Noise level.

Figure (38) shows a similar plot showing the trend of probability of detection with different noise

level. A. careful observation reveals that with increasing noise level, the probability of false alarm

tends to increase whereas the probability of detections maintains a steady decay as expected.

Howcvcr the sharp fall in Fig. (38) indicates that the probability of detection gets heavily

influenced with increasing noise level and thus deteriorates the accuracy of the detection system.

4.3 Classifying Damage Patterns in Integrated Diagnostics

In this section, the use of SVMs to investigate the vibration signatures of damages in composites

has been demonstrated under various test applications. The nornal (zero-state) and abnormal

attributes arc extracted from the measured data of a structure and are further analyzed to

characterize various states of the system. Once the diagnostic procedure is trained, subsequent

test data can be examined to see if the features deviated from the normal behavior have

significant similarity with certain abnormal attributes' of the system. The goal is to extract and

classify the signature characteristics due to the presence of various types of dcfcots in composite

structures so that the status of the structure can be ascertained.

For damage quantification, experiments were conducted to obtain the response of a 16 ply

0/90 Graphite/Epoxy composite plate with surface bonded actuators subjected to forced

excitation as shown in Fig. 17. The investigated darhages (4 categories) are notches, saw-cut,
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drilled holes and dclamination of 4.5cmx5cm introduced at the 4 th interfaces from the midplane.

The fifth set of data belongs to the healthy group which is used as a reference data for

comparison. In the first set Of cxpcriments, a 4.5 cycle tone burst signal with a central frequency

of 8 KT-iz, was used as the excitation signal, and sampled at 100 KHz. To take into account the

material variability, sensor signals were collected from 2 identical coupons of each group, for

example 4 sets of measurements conducted on healthy specimen. A minimum of 10 observations

were fetched firom each transducer across each test bed under the same operating condition to

take into account the experimental uncertainties associated with data acquisition. For

classification data, the dataset consists of 20 vectors from each sensor for each category of

defects. The objcctive is to classify the sensor signals collected from different test beds to assist

in the diagnosis of composite structures be based on the information from the neighboring

sensors (sensor- 1 and sensor-2 as shown in Fig. 62).

4.4 Time Embedding Appronch

"IThe preprocessing has been done using One-class SVMs along with time-embedded

method. The applicability of the time-enmbedding method along with the One-class SVMs to

detect the presence of surprising features, in structural data has been demonstrated in the previous

sections. Here the classification analysis was conducted for a dataset collected from 2 identical

coupons of each group to take into account the experimental and material uncertainties associated

with data acquisition and manufacture respectively. Th this research, for each time domain data

(of 800 sample points), a I I dimensional state vector is obtained using r = 1 and N = 1. 1. A.

mmuinium of 20 vectors from each sensor for each category of defects were selected from a pool

of 40 vectors and the selection was based on the two datasets having the closest distribution. In

this cffort, a total of total 790 X 4400 dimensional matrices (S) corresponding to 5 defect

38



conditions has been used using time-embedded technique. As mcntioned, 50% of the

observations related to each condition are used as the training samples and the others as the

testing samples.

Table 3 and 4 presents the outcomes (R) using SVMs on the damage classification for

sensor-I and sensor-2 respectively, using a RBF kernel. HereR.. represents the correct

classification rate of a dataset from any J A category (represents each column) when trained with

a dataset from i'h category (represents each row). In the current analysis, the v is set to 0.05 and

the optimal or is being calculated for each training set. Once the matrix (RI) is calculated, the

selection criteria that two groups of signals belong to the same class is tnhe when R. and RPi

closely matches with higher classification rate i.e. Ru = R1t. When One-Class SVMs is trained

withliJT category dataset, most of the j~A category feature points lie on one side of the hyperplane

but majority of the i'" category feature points (from test dataset) may or may not lie on the same

side of the hyperplane. In casc thc category feature points don't lie on the same side, then they

are from different classes. However if they do, then it would be necessary to cross check iF they

both lie on the same side of the hyperplane, when the SVM is trained with category dataset

instead. The geometrical interpretation for the selection criteria means that the two hyperplancs

constructed individually by i"' category and j~h category dataset has to be very similar such that

majority feature points from both the categories lie on the same side irrespective of the

hyperplane constructed. In the present analysis, the selection criteria is set as

IIR. - R1jjI I 0.05(1 - y), which means that to belong to the same class the absolute difference of

the correct classification rate obtained from two sets of data must be less than or equal to 5% of

the maximum classification rate. Once the R matrix is obtained, a new matrix V is formed for
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the k' sensor, such that the following criteria hold,

ij= k =1

Else (39)

k ke=0

For each sensor-1 (sl) and sensor-2 (s2), the Q, is evaluated and finally compared to obtainM,

whei'c

M = Q" I QX2  (40)

The matrix (MA) represents the final outcome of the classifier based on the mutual

information of thc scnsor pairs and can infer that i'h category and j'i category dataset belong to

the same group, if If = M = 1. The One-class SVMs classifiers successfully classified all the

defect states, and are sbown in Table 5. The proposed technique provides a One-Class based

classification tcchnique using feature vectors extracted applying the time-embedding method

directly to the sensor response but not the difference: output. It has been demonstrated that the

deveJoped analysis based on mutual infonniation from multiple sensor is an effective way of

minimizing the possibility of false classification, when coupled with a selection criterion.
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Table 3: Classification rate (R, matrix) for sensor-

v-0.05 T -C1TTRC2 R¢TRCR34--- TRC5 TC 1-C-2 T"C--3 TEC4 TEC5-
(test) (_cst_ tsj te (test) (test) •9. s (test.[ )

0-055 TRCI 0.954410.6873 0.8683 0.6227 0.8101 0.7620 0.6 2 7 8 10.8 07 5 0-.4949 0.72021
_Strain) 0861022097

0. 16 IRC2 0.9594 o.9506 0I8 0.7860 0.8202 10.768310.869610.7911 0.820tran_9 ____ ____ _____ ____

0.105 TRC3 0.9164 0.7189 0.950610.6519 0.8278 0.879710.701210.8594 10.644310.8240
-..... .(train) _ I I _ I

0-08 T.IRC4 0.8468 0.8075 0.8632 11.9531 10.8215 50.9025 0.7025 10.8455 0-6734 0.8139,

0.09 TRC5 0.879710.6974 0.905010.6607 0.955-7-f-0.8822 j-6.70251.0'J3Y1190.596210.9M

0.06 TEC1 0.8012 0.6506 0.8506 10.5379 0.756910.954410.69240.867O0.6468l0.8278"0655(train) 0.9544 1 0 * , 1 0

0.(.55 TEC2 0.9126 0,7620 0.867010.7924 0.8189 0.9594 0.9531 0,8455 0.7860 0.821510.115 TC3n) I ___ __ __

0.115 TEC3 0-9038 0.7202 0.835 10.6835 0.8379 0.940 0.9 06658 0.8303

0.075 TEC4 0.8822 0.6974 0.8405 0.0.6645 0.8025 0,851910.806310.8519 0954410.8050
(train) _ _I_ _____1

0.085 TECS 0.8278 0.6873 0.9025 10.5784 0.8 679710.893 0.617710.9544
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Table 4: Classification ratc (R� matrix.) for sensor-2
-.---.. T -

v=0.05� TRC1 TRC2 TRC3 TRC4 TRC5 [TEdjTEC2 I 'TEC4ITEC5,
(tc�� (Test) - te 4) _ �Qest) I Qcst) tcst) (test) I (1e59j (test)

0.115 TRC1 0.9519 0.9291 0.89491 f -1
(train) 10.9506 0.71510,6683 10.9113 0.8949 0.8012 C).9240

0.08 TRC2 0.6658 0.6215 '0 6379 0 8620 0.6924

(train) 1 0.673410.8506I I ___ I ___ ___ ___ 1�1 __ t ___ ___

(train) � _____- 0.7164 4 _____ ___ ___ 0.658210.606310.1 TRC3I 0.8392 0.8645 0.9531 0,85691 0.834110.8860{O.8392 t0.1 TRC4 0.8835' 0.912610.8075 0.9544 0.8848 0.7987 }�0.9075 f0.794.9�0.73791 0.8557

0.12 TRC5 0.8493 0.887310.867010.7367 f 0.9506 0.8873 I0.8873f0.8746 '0.72150.8911

'rI�Ci 0.917710.9063 0.8962j0.8139 0.9240 f 0.953110.9227 0.8949 ,0,7974r0� 9202
i�h9. I____ ____ -� - ____I iW�L.

0.08 TEC2 0.6353 0.8594 0.6886 0.6557 0.6088 0.6594 0.95571 0.6139J0.7126 0.6645

j0.8670;�9506' 0.7101 t0.8493
0.095 TEC3 0.8240j0.8746 08341106582'08544085191(
-� (train) _______ I ________ ________ I _______ ________ I
0.11 TEC4 0.8139j0.9088 0.7962{0.7582 10,8721 0.9202j0.8215 �0.9557 0,8848

(train) ______ _____ f0.8987 I I
0.12 TEC5 0.8417j0.8873I08734�0.7265 10.891110.8683 O.8873�O.8645I0.7341 �0.9531j

�train) � _______ ,. _______ L.�± ______ ______
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Table 5: Outcome of the classiicr

(case-3)

Nu=0.95 TRCI•TRC2 TRC3 j'I'RC4 TRC5 TECI TEC2 3-TEC4 TEC5
-e- _(test) (et (tcs t s) , .(tst) ( t). (test.)__ ( p tes _t

07 TRCI 1 0 0 0 0 1 0 0 0 0
tQrainl1_ __O 0 0

0.06 TRC2 0 1 0 .0 .. 01 0 0
(train) --'__ _.01 0

0.085 - TRC3 0 0 0 0 0 . 0
--(train)__ _. __ _ _ ___ _ _ _

-.0 TRC4 00 01 0 0 1 0
(Train) ___ ___IH -0.085 TC. 0 0 0 C 1 0 0 <"a.'0ITC__ ..... __- __o I__I _.__r . _t

0.075 fEC2 1 0 1 01 0 0 10 0 0
(train) - I_ _ _ _I_ _ _ _ _ _

0.045 'CEC3 0 0 1 0 0 1 010

0.075 TEC4Of 0 Vmo 1 1 0 0 0

(...... ..1•+: _____ __ _ ___ _______ .... __-o-_-_-_-l I-- -

0.08 TECS 0 7i 0 1 0t0 i 0 1
,- rai l "______ 1 _ ° I o ...... _ -- ,--_ o ............._o

44



Publications

I . Ch IattOPadfhyay, A., Zhoiu, X., and 'Dag, S., "'8chavior of Elastic Wave Pro parini FiberReinforced Composite Matcrial, Jora of Thtllion Matria SItm n Src
(accepted), 2004. f'n~lg1tMaeilSsei n

2. Chatlopadhyay, A,, Zhou, X., and Das., S., "Acoustic 'Based Structural 1i'Tealth Monitoig oCOrnposites Using Optimal Sensor Placen-jent: Analysis and 'Experinients," Journa for
Reinforced Plastics and Composites (accepted), 2004.3. Chattopadhyay, A., Zhou, X., Miller D.K., and Das, S,, "Elastic wave attenuation) illcompositc. laminates with crack,-,, 12th SPTl. Annual Tnternational symnposium on SmiartStructures and Materials, San Diego, California, 2005,4. Chattopadhyay, A., Zhou, X., apandreou-Su4.pappo~a, A., and Das, S., "On the Use of theMatching Pursuit Decom~position Signal Processing Techniquc for Structural HeIalth.Monitoring," 12th SPTIE Annual Wnernational symposium on Smnart Structures and Materials,San Diego, California, 200$.5. Chattopadhyay, A., Papandreou..Suppappola, A., and Das, S., "A Novel Signal ProcessingTechnique for Damage Detection in Comuposites," International Conference onColnputatiolnal & ExperirnenW1 Engineering & Sciences, C 'hennai, india, 2005.6. Cbattopadhyay, A,, Papandreol1-Stq)Pappoia, A., and Das, S., "Structuiral IFiea~lth Monitoringof Com~posites using Wave Based Technique and Novel Signal Procesing," Condition)Moni!toring, King's College., Cambridge, United Kingdom, 2005.7. Chattopadhyay, A.., Miller DX.., and Das, S,, 4'Wavc scattering analysis of bolted joints,"Norideshazotive Evaluation and H1calth Monitoring of Aerospace Materials, Comiposites, andCivil Infrastructure, Proceedings of the SPIE, San Diego., California, 2006.8. Chattopadhyay, A., Papandrcou..Stppappola, A " Kyri1akides, L, and Das, S., "Particle FilterBased Matching Pu~rSuit Decomposition for Darnage Quantirication iin CompositeStructuries," 47th ALAA/ASM.E/ASCE/AT-S/ASC~ Structures, Structural Dynamics, andMaterials* Conference, Newport, Rhode Island, 2006.9. Chattopadliyay, A.., Srivastava, N. A-, and Das, S., "Ciassificatiol) of Damage Signatures inComposite Plates using One-Class S VM's," IEEE Aerospace Conferenice, Big Sky, Montana,2006. (Accepted)

Iolflors/'Awards

Aditi ChaIttopadbyay - Electcd AJAA FcIIow, November 2005

45



Structural Health Monitoring of Heterogeneous

Systems Using Non-contact Pulse Echo Thermography

Principal Investigator: Aditi Chattopadhyay

Department of Mechanical and Aerospace Engineering
Arizona State University
Tempe, AZ 85287-6106

Grant Number: F49620-03-1-0174
Technical Monitor: Dr. Clark AlIred



Description of Research Conducted

The tbermal wave imaging system (EcoTherm) has been used in the ongoing research

activities related to Structural Health Monitoring (SHM) of heterogeneous structural

systems. The equipment has been used as a module integrated with the existing

generalized framework for the characterization, detection and quantification of damage

such as delamination in composite structures. The existing framework comprises

experimental proecdures, along with developed numerical techniques to characterize

damage in laminated composites, using surface bonded and embedded piezoelectric

sensors. Experimental techniques comprise the use of non-contact air coupled

ultrasonics, laser vibrometry and thermography. The EchoTherm system uses a pulse

echo thermal wave to capture 3-1) images in real time. A heat pulse is generated by a set

of flash lamps -ad launched ol tdie surface of the composite laminated coupons with

embedded delaminations. Once the thermal waves start propagating through the interior

plies of the laminated strtucture, the presence of defects such as delaminations would

cause the propagating thermal wave to reflect back because of the difference in the media

properties- The system consists of an infra-red camnera and associated electronics, which

is used to Irorm and store the images of the subsurface defects. In the ongoing research,

the themnography system has been used to investigate seeded delamination in composite

beams and plates.

A hierarchical wave based approach has been developed for further quantification of

and classification of delaminations patterns. In the current effort, a Matching Pursuit

Decomposition (MPD) algorithm has been developed for detection and localization of



seeded delamination in composite structures. This has been accomplished by

decomposing the signal in tenrs of wave-based dictionary elements and finally utilizing

the time-of-flight information of these individual decomposed components of tvansient

datasets to deteimine tie location and size of the delamination. The performance of the

developed diagnostic system with embedded sensing architecture for health monitoring of

laminated composite structures has been. evaluated against the predictions of the thermal

wave imaging system by validating the detection and localization of the delamlinations.

Status of Effort

Experiments have been conducted to obtain the response of a composite plate with

surface bonded actuators subjected to sinusoid~al loading. A 16 ply graphite/epoxy

cantilever plate with 0/90 stacking sequence is used. The plate dimensions are: 30.5cm

long, 5.1rcm widc, 0.00218 cm ply thickncss. Thunder PZTs, bonded to the upper surface

or the plate, are Used as sensors and actuators. Figure I demonstrates the placement of

sensors and the actuator.
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Figure 1 Experimental Setup with Structural I)imensiokns and Interfaces ofcomposite beam.

The damage is represented by delamination of various sizes, introduced at different

interfaces from the midplane as shown in Fig. 1. The investigated damages are of 1.5cm x



5cm., 3cm x 5cm and 4.5cm. x 5cm clelaminations as shown in Fig. 2. In thc current set of

exper-imentls, a 4.5 cycle tone burst signal with a central frequency of 8 KHz, was used as

the excitation signal, sani~plcd at 1 MHz. The objective is to quantify the delamination, by

decomposing the disturbed signal in terms of wave-based dictionary elements and tim-e-

of-flight analysis of these individual components to determine the location and size of

delamination.

the loationand sie of hedeaminllation ath tringlaihation algrth isbedote

expected wave rcflections from the damnagc and platc edges as demonstrated in Fig- 3 and

Fig, 4 for sensor-l and sensor-2 respectively-
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Figure 3 'Wave Reflections for Sensor-1. Figure 4 Wave Reflections for Sensor-2.

Triangulation of through-width rectangular delamination implies the detection of the

edges (B & C; Fig. 3-4) of the inclusion. The above figure represents the c-scan of the

sample plate with a seeded delamination introduced at 4 th interface from the mid-plane.

Table 1 represents the estimated values, based on the first 5 reflections, for the

delamination edges when ditfcrent sizes of dclaminations are moved from midplane to

near surface. The values are obtained by applying the triangulation algorithmn on the

.decomposed components obtained from the MPD model.

Table I MPD output based on 5 reflections

Delamnination Delamination Actual Actual Predicted Predicted
Size Location (M) (C) (B) (C)

4.5Cern×5cm T1 0.065 0.116 0.063 0.116

4.5emx5cm 14 0.065 0.116 0.065 0.118

4.5cmx5cm 12 0.065 0.116 0.067 0.123

3.0cmx5cm 12 0.073 0.103 0.081 0.127

1.5cm×5cm 1.- 0.080 0-097 .)100 0.121

Figure 5-6 represents the C-scan images of some of the test samples used for

quantification purpose (Fig.2). The existing ultrasonic testing equipment (SONDA 007

CX) has been used to automatically scan the test samples for the detection and

measurement in the attenuation domain to characterize the defect and to analyze the

interfaces for possible existing damage. Figure (7!8) represents the therniographic images



of some of the same test samples used for quantification purpose as shown in Fig. 5-6.

The existing EcoTherni system has been used to capture the thcrnal images using a pulse

of heat, generated by a set of flash lamps and launched on the surfacc of the tcst sample

that is being investigated. The c-scan image and threnographic image has been used for

validating the existencc of dcfccts, including the damage severity and finally compared

with these results with those obtained using wave based techniques (table I).
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Figure 5 C-scan of composite coupons with delamination (4th interface).
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Figure 6 C-scan of composite coupons with delamination (7th intcrfacc).

Figure 7 Thermogruphic image of composite coupons with delarnination (4th interface).



Figure 8 Therrncugriphic image of composite. coupons with delamination (4th interface).


