
This paper will appear in the proceedings of the 1996 ACSAC Conference.

A Case Study of Two NRL Pump Prototypes

Myong H. Kang

Ira S. Moskowitz

Bruce E. Montrose

James J. Parsonese

Information Technology Division, Mail Code 5540

Center for High Assurance Computer Systems

Naval Research Laboratory,

Washington, D.C. 20375

Abstract

As computer systems become more open and intercon-

nected, the need for reliable and secure communication

also increases. The NRL Pump was introduced to bal-

ance the requirements of reliability, congestion control,

fairness, and good performance against those of threats

from covert channels and denial of service attacks.

In this paper, we describe two prototype e�orts. One

implements the Pump at the process (top) layer in

terms of a 4-layer network reference model and the

other implements the Pump at the transport layer. We

then discuss lessons learned and how these lessons will

be used in deciding upon the �nal hardware implemen-

tation of the Pump.

1 Introduction

In 1993, Kang and Moskowitz �rst developed the NRL

Pump. Since then the Pump theory has been re�ned

and extended in a series of theoretical papers [4, 5,

6] and applications [8, 2]. This paper discusses the

various issues that arose when two implementations of

the Pump were developed. These are referred to as

the Event Driven Pump (E-Pump), implemented by

Montrose [8], and a version of the Pump running on the

DOS operating system, implemented by Parsonese, (D-

Pump) [11]. The D-Pump and the E-Pump are based

on very di�erent philosophies, and both have their pros

and cons. We will analyze the design decisions and the

performance trade-o�s between the two philosophies,

and will make use of the lessons learned in our decisions

for a �nal, production level Pump.

The �rst exposition of the Pump [4, 5] was designed

for one, and only one, user/process (Low), sending mes-

sages to one, and only one, user/process (High) at a

higher security level. This problem grew out of the

need for secure and reliable data replication, see [3].

When we wish to be speci�c, we will refer to this as

the \basic Pump." The E-Pump is an implementation

of the basic Pump. To ensure security one must not al-

low any back-tra�c from High to Low. Unfortunately,

this prevents High from sending back to Low an ac-

knowledgement (ACK) that a message was successfully

received. ACKs are necessary to make Low-to-High

communication both reliable and recoverable. Com-

munication without ACKs is unreliable because Low

does not know if the message arrives at High. Commu-

nication without ACKs is unrecoverable because Low

may remove the message before High actually receives

it. The security problem with ACKs is that the tim-

ing of the ACKs can be used to covertly send infor-

mation from High to Low. For example, if High can

force the ACKs to arrive at Low at either 1 or 2 ms,

with the choice made by High, then this communica-

tion is a covert channel which has a capacity [7, 9] of

log2
1+
p
5

2
� :69 bits per ms. An obvious solution to

this problem would be to remove High's ability to in-

terfere with the timing of ACKs to Low. However, this

solution impedes performance because one would have

to adopt a worse-case approach and send the ACKs at

�xed time intervals.

Kang, Moskowitz, and Lee [6] have extended the

Pump to the network environment to handle the situ-

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1996 2. REPORT TYPE

3. DATES COVERED
 00-00-1996 to 00-00-1996

4. TITLE AND SUBTITLE
A Case Study of Two NRL Pump Prototypes

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Code 5540,4555 Overlook Avenue,
SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ation of multiple (non-communicating amongst them-

selves) users/processes at the low level (Lowi) sending

a message to one of the multiple (non-communicating

amongst themselves) users/processes at a �xed higher

level (Highj). When we wish to be speci�c we will

refer to this as the \network Pump." The network

Pump deals with the added element of fair allocation

of resources. The D-Pump is an implementation of the

network Pump.

When we discuss something that applies to either the

D-Pump or the E-Pump, we will use the term \Pump,"

and the terms \Low" and \High" will refer to client

applications at di�erent security levels.

. . .

n
messages messages

ACK

Pump

Low High
ACK

MA

buffer

Figure 1. The simpli�ed Pump architecture

The Pump (see �gure 1) has several key ideas as fol-

lows:

(Intermediate bu�er) The Pump, for security rea-

sons mentioned previously, disconnects any

direct communication from High to Low by

acting as an intermediary between Low and

High. Low sends its message to the Pump,

not to High. The Pump receives the mes-

sage from Low and retains it in stable bu�er

until it is accepted by High. The Pump,

then sends an ACK to Low, thus replac-

ing direct communication between Low and

High by a mediated indirect communica-

tion while preserving reliability, and recov-

erability. Furthermore, the Pump uses his-

torical knowledge of past High behavior to

ensure good performance.

(Handshake protocol) The Pump uses a handshake

protocol to guarantee reliability. Low waits

to send a new message until it has received

an ACK of its last message, from the Pump.

The Pump can also be used with a slid-

ing window scheme that will allow a cer-

tain number of un-ACKed messages to be

outstanding.

(Stochastic behavior) The Pump uses a secure (in-

direct) High to Low
ow control mecha-

nism. The Pump keeps track of the rate

at which High takes messages out of the

Pump and sends ACKs to Low based upon

a moving average of the High rate. We ac-

complish this by having the Low ACK time

be a draw of a random variable with mean

equal to the High moving average (MA).

Thus, by using a stochastic approach to di-

lute the High in
uence on the Pump's ACK

to Low, we minimize the covert channel

threat. However, the average behavior still

re
ects High's long term behavior, which

ensures good performance. In fact the basic

Pump performs as well as the (non-secure)

store and forward protocol (SAFP) [5] and

the network Pump performs as well as any

other protocol under round-robin schedul-

ing [6].

The timeline of ACKs are shown in �gure 2.

stochastic
time

message

Low Pump

tim
e

Ack

High

message

Ack

Pump

asynchronous

Figure 2. Time diagram of message passing

from Low to High

Note that we are not being speci�c about what a

\message" is. This is because it depends on which

Pump implementation is used. The E-Pump uses \ac-

tual" messages and their ACKs, whereas the D-Pump

uses a TCP packet as a message and modulates the

TCP ACKs. We will explain this in detail later on in

the paper.

2 4-layer model connecting two

systems

We restrict our attention to the following (see �gure 3)

network architecture1 (similar to [10]) to explain dif-

ferent Pump implementations.

1. Process layer | P.L. This is the top-most

layer, and the layer that application processes

(e.g,. FTP, mail, etc.) use for communication.

2. TCP layer | T.L. The communication protocol

called transmission control protocol (TCP) is used

to provide reliable services to the above P.L. TCP

reliably sends packets between the sender and the

receiver.

3. IP layer | I.L. The internet protocol (IP) pro-

vides the basic packet delivery service to TCP.

4. Ethernet layer | E.L. This layer handles the

protocols needed to manage a speci�c physical

medium, such as Ethernet.

Ethernet layer (E.L.)

IP layer (I.P.)

TCP layer (T.L.)

Process layer (P.L)

Ethernet layer

TCP layer

IP layer

Process layer

physical
connection

Figure 3. Reference model of network layers

Both the E-Pump and the D-Pump use TCP to send

packets. An important distinction between the two

Pump implementations is that the E-Pump modulates

P.L. ACKs (the true process ACK), whereas the D-

Pump modulates T.L. ACKs (TCP ACKs).

2.1 Ethernet

An Ethernet cable can be used for the communication

between Ethernet cards on di�erent computers. Ether-

net is a \broadcast medium." When a packet2 is sent

out on the Ethernet, every machine on the network

1Our description is not a standard network description. How-

ever, it is the description most relevant to understanding the

current prototypes of the Pump.
2Packet is a unit of message at the Ethernet layer.

sees the packet. Every Ethernet packet has a header

that includes the source and destination Ethernet ad-

dress. Each machine is designed to pay attention only

to packets with its own Ethernet address in the destina-

tion �eld. Most networks use Ethernet. Unfortunately,

Ethernet has its own addresses. The designers of Ether-

net wanted to make sure that no two machines would

have the same Ethernet address. Furthermore, they

did not want the user to have to worry about assigning

Ethernet addresses (in comparison to assigning IP ad-

dresses). So each Ethernet card comes with a unique

Ethernet address built-in from the factory.

2.2 TCP/IP

Our concern is computers that use internet protocol

(IP) to communicate. Each individual computer has a

unique IP address (e.g., 192.6.16.23). The IP network

software generally needs a 32-bit IP address in order

to open a connection or send a datagram3. The IP ad-

dress has two parts: the network address and the host

address. If source and destination have the same net-

work addresses, we say they are on the same network;

otherwise, they are on a di�erent network.

IP assumes that a system is attached to some local

network. It assumes that the system can send data-

grams to any other system on the same network. Since

we are assuming that Ethernet is handling the physi-

cal layer communication, IP simply �nds the Ethernet

address of the destination system, and puts the data-

gram (packet) out on the Ethernet. If the destination

is on a di�erent network, the datagram is sent to a

gateway4 using a routing protocol. When the gateway

receives the datagram, it will forward the datagram to

the destination that is on a di�erent network than the

originating network.

Note that there is no relationship between the Eth-

ernet address and the IP address. There is a separate

protocol for associating an Ethernet address to an IP

address, called \address resolution protocol (ARP)."

That association is stored in the ARP table. Suppose

a process on system 192.6.16.9 (class C IP address)

wants to connect to a process on system 192.6.16.7.

The originating system will �rst verify that 192.6.16.7

3Datagram is a unit of message at the IP or TCP layers.
4A gateway (or router) is a system that connects a network

with one or more other networks. Gateways are often normal

computers that happen to have more than one network interface.

is on the same network, so it can talk directly via Ether-

net. Then it will look up 192.6.16.7 in its ARP table, to

see if it already knows the Ethernet address. If the sys-

tem is not in the ARP table, it uses the ARP protocol

to broadcast an ARP request. When the destination

system sees an ARP request for itself, it is required to

respond. So 192.6.16.7 will see the request, and will

respond with an ARP reply saying in e�ect \192.6.16.7

(IP address) is 8:0:20:1:55:33 (Ethernet address)." Now

the communication can proceed.

TCP, which handles communication at the T.L., is

responsible for making sure that messages get through

to the other end. It keeps track of what is sent, and

retransmits anything that did not get through. If any

message is too large for one datagram, e.g. the text of

a mail message, TCP will split it up into several data-

grams, and make sure that they all arrive correctly.

Since these functions are needed for many applications,

they are put together into a separate protocol, rather

than being part of the speci�cations for sending mail.

One can think of TCP as forming a library of rou-

tines that applications can use when they need reliable

network communications with another computer. Sim-

ilarly, TCP calls on the services of IP. Although the

services that TCP supplies are needed by many appli-

cations, there are still some kinds of applications that

do not need them (i.e., some applications may use User

Datagram Protocol (UDP) instead of TCP). Note [1]

has implemented one-way links at the T.L.

2.3 Processes

There are many P.L. protocols (e.g., mail, FTP). The

applications of interest with respect to the Pump are

those that pass messages from one host to another (e.g.,

data replication, mail, FTP). The job of the Pump is

to act as an intermediary in the action of Low sending

a message to High, and mimicking the ACK of this

message from High back down to Low. The E-Pump

implements the Pump protocol at the P.L. (i.e., the

E-Pump modulates P.L. ACKs). In contrast, the D-

Pump modulates the TCP layer ACKs. Of course, we

must have high-assurance that our implementations do

not allow the high side to a�ect ACKs at any of the

other layers.

3 The E-Pump

The E-Pump is software that resides on Wang's

(HFSI's) XTS-300 platform. The XTS-300 was cho-

sen because of (1) its availability, and (2) its B3 rated

operating system (STOP 4.1). We use an evaluated op-

erating system in order to avoid evaluating the system

services that are used by the E-Pump (e.g., interpro-

cess communication, �le-system, etc.). STOP can be

described by rings of privileges as shown in �gure 4 and

discussed below.

r i ng- 3
r i ng- 2

r i ng- 1
r i ng- 0

Secur i t y Ker nelTCB
Syst em Ser v i cesTr

u
s

t
e

d
S

o
f

t
w

a
r e

COMMODI
T
Y

A
P

P
L

I
C

A
T

I
O

N
S

Y
S

T
E

M
S
E
R
VICES

Appl i cat i on Sof t war e

Figure 4. STOP security ring structure

The security kernel provides basic system operating

services (e.g., resource management, process schedul-

ing, interrupt, trap handling) and enforcement of sys-

tem security (e.g., security and integrity rules). Privi-

leged software known as Trusted Software provides ad-

ditional security services outside the kernel. Commod-

ity Application System Service (CASS) provides un-

trusted operating system services to application pro-

grams on the XTS-300.

The XTS-300 supports trusted processes. A process

is trusted if the process has privileges that exempt it

from speci�c access control rules (e.g., no read-up or no

write-down rule). Since the basic Pump sends ACKs

back to Low, a portion of the basic Pump must have

trusted processes.

Ideally, the entire E-Pump should be implemented

as trusted ring-2 processes. Since ring-2 processes on

the XTS-300 currently cannot access TCP/IP, it was

necessary to implement the portions of the Pump re-

quiring access to TCP/IP in ring-3. The �le-system is

the only mechanism available for communication be-

tween ring-3 to ring-2 processes on the XTS-300. We

used special �les, called FIFOs, with a �rst-in-�rst-out

protocol, as the communication channel between the

ring-2 and ring-3 components of the E-Pump.

We refer to each component of the Event Driven

Pump as an Object. Each Object was implemented

as a separate process designed to accomplish a speci�c

task when certain events occurred. An event is either a

message sent by another Object or the completion of an

I/O operation. Inter-Object message passing was ac-

complished via the Interprocess Communication (IPC)

interface provided by the operating system.

Two store and forward bu�ers (SAFB) were used;

one in volatile shared memory and the other in non-

volatile disk storage. The two bu�ers together make

up the \Pump bu�er" for performance and recover-

ability reasons. High reads out of volatile memory but

ACKs are not sent to Low until the message is writ-

ten to disk. All ring-2 Objects have access to both

SAFBs. The non-volatile SAFB was required for re-

covery purposes in the event the XTS-300 should halt

during operation. The volatile SAFB serves as the I/O

bu�er for data transferred to the non-volatile SAFB,

the Output FIFO, and the Input FIFO.

A brief description of each Object follows.

S2F It delivers data from the low ap-

plication to the Input Data FIFO

and relays the Pump's ACK from

the Low ACK FIFO to the low

application.

Memory Writer It reads data from the Input Data

FIFO, stores the data into Shared

Memory, and sends IPC messages

to the Disk Writer and Memory

Reader Objects, informing them

that there is data to be processed.

It also sends an IPC message to

the ACK Object so that it can

keep track of timing (e.g., time-

out (NAK), disk writing over-

head).

Memory Reader It reads data from Shared Mem-

ory and writes the data to the

Output Data FIFO. It also sends

an IPC message to the Moving

Average Object to trigger the

moving average computation.

ACK It computes the randomized de-

lay based on the moving average

and sends an ACK to the Low

ACK FIFO after data is safely

stored in the non-volatile SAFB.

Lo Timer It is the timer for the ACK Ob-

ject.

Moving Average It computes the moving average

and sends the updated moving

average to the ACK Object.

Hi Timer It is the timer for the Moving Av-

erage Object.

Disk Writer It writes data to the disk and

sends an IPC message to the

ACK Object which indicates that

the data is safely stored in

the non-volatile SAFB. Unfortu-

nately, this is a costly time oper-

ation.

Free Record It reads an ACK from the High

ACK FIFO, sends an IPC mes-

sage to the Moving Average Ob-

ject so that the new moving av-

erage can be computed, and re-

moves the data from the disk

(Zap Hdr). Then it sends an IPC

message to the Memory Writer

Object to indicate the space is

now available.

F2S It delivers data from the Output

Data FIFO to the high applica-

tion and sends ACKs to the High

ACK FIFO upon successful deliv-

ery of the data to the high appli-

cation.

T
IM

E
R

_
A

L
A

R
M

T
IM

E
R

_
A

L
A

R
M

T
IM

E
R

_
S

T
A

R
T

T
IM

E
R

_
S

T
O

P

T
IM

E
R

_
P

E
E

K

T
IM

E
R

_
P

E
E

K

DATA_SYNC

T
IM

E
R

_
A

L
A

R
M

T
IM

E
R

_
A

L
A

R
M

T
IM

E
R

_
S

T
A

R
T

T
IM

E
R

_
S

T
O

P

T
IM

E
R

_
P

E
E

K

T
IM

E
R

_
P

E
E

K

DATA_READY

Moving
Average

Hi
Timer

DATA_R
EADY

PUMP_READY

PUMP_READY

DATA_S
YNC

Memory
Reader

Memory
Writer

Free
Record

Disk
Writer

Lo
Timer

S2F

F2S

S
H
A
R
E
D

M
E
M
O
R
Y

D

I

S

K

High
ACK

Output
Data

Input
Data

Low
ACK

ACK

D
A

T
A

_
R

E
A

D
Y

PUMP_TIMEOUT

M
O

V
_

A
V

G

RECORD_AVAILABLE

A
ck

A
ck

A
ck

 o
r N

ac
k

Ack or Nack

Legend

IPC msg

FIFO msg

Data msg

Process Object

FIFO Object

SAFB

RECORD_AVAILABLE

Zap

Hdr

Figure 5: The Event Driven Pump

Not shown in �gure 5 are two additional processes

called the Recovery Object and the Create Pump Ob-

ject. The Recovery Object is responsible for the or-

derly recovery from system failure. The Create Pump

Object sets up all data structures and creates all the

other Objects described above including the Recovery

Object. Unlike the other Objects described above, the

Recovery Object and Create Pump Object will termi-

nate after their tasks have been completed.

The E-Pump uses a customized Pump protocol (e.g.,

[8]) which is a P.L. protocol, in contrast, the D-Pump

uses TCP protocol to communicate. The E-Pump

modulates P.L. ACKs according to the basic Pump al-

gorithm [8] as shown in �gure 6.

buffer

E-Pump

T.L.

I.L.

E.L.

T.L.

I.L.

E.L.

T.L.

I.L.

E.L.

T.L.

I.L.

E.L.

P.L. P.L. P.L. P.L.

Figure 6: Communication path of E-Pump

4 The D-Pump

TCP is used by many applications (e.g., FTP) to ensure

reliability at the T.L. Due to this we thought that the

Pump could be implemented at the T.L. by means of

adjusting the TCP ACK stream. This implementation

of the Pump is called the D-Pump. This modi�ed TCP

should be transparent to the application. In section 5

we discuss problems that arise from implementing the

Pump at the T.L.

The D-Pump exists as software on a single board

486 class PC with one low Ethernet card and one high

Ethernet card. It implements the network Pump algo-

rithm [6]. This algorithm is a modi�cation of the basic

Pump algorithm designed to deal with the added issue

of multiple low senders at the same security level, and

multiple high receivers at the same security level. It is

further assumed that the Lows (Highs) do not commu-

nicate among themselves. The modi�cation does not

a�ect our comparisons in this paper. The D-Pump uses

customized TCP software that modulates the ACKs in

the T.L. Recall that the E-Pump modulates ACKs in

the P.L.

DOS was chosen as a prototyping environment for

the D-Pump in order to host a TCP/IP protocol stack

that could easily be ported to any other host or em-

bedded system. Furthermore, the use of DOS, which

is one of the simplest operating systems, facilitates the

development of custom hardware that would provide a

high-level of assurance that the D-Pump code reliably

performs the functionality of the (network) Pump.

The following steps describe the D-Pump:

1. The Pump listens to ARP requests.

2. If an ARP request contains an IP address of any

high systems to which the Pump is con�gured to

deliver messages, then the Pump replies to the

ARP request by sending its low Ethernet address.

3. The low sender establishes the TCP connection to

the Pump.

4. The Pump establishes the TCP connection to the

high receiver on behalf of the low sender (the

Pump uses IP addresses and port numbers that

are available to the Pump5).

5. Activities at the low side of the Pump:

(a) The low portion of the Pump receives mes-

sages and puts them in the Pump's bu�er.

(b) Send TCP ACKs to the low sender according

to the Pump algorithm.

(c) Continue step (a) and (b) until the low sender

discontinues the connection.

6. Activities at the high side of the Pump:

(a) The Pump delivers messages from its bu�er

to the high receiver.

(b) The Pump receives ACKs from the high re-

ceiver and updates the moving average.

(c) Continue step (a) and (b) until the low sender

discontinues its connection and there are no

more messages destined for the high receiver

in the bu�er.

7. The low sender discontinues the connection to the

Pump.

5We modi�ed the IP layer so that address information is avail-

able to the T.L. We also modi�ed the Ethernet layer to time-

stamp packets.

8. The Pump discontinues the connection to the high

receiver.

buffer

T.L.

I.L.

E.L.

T.L.

I.L.

E.L.

D-Pump

T.L.

I.L.

E.L.

T.L.

I.L.

E.L.

P.L. P.L.

Figure 7: Communication path of D-Pump

5 Comparison of the E-Pump

and the D-Pump

In this section, we compare the two approaches of our

prototypes. The major di�erence of interest to us in

this paper is that the E-Pump implements the Pump

at the P.L., while the D-Pump implements the Pump

at the T.L.

5.1 Performance

With respect to overhead, the D-Pump is a much more

e�cient implementation than the E-Pump. Some of

the additional overhead of the E-Pump is as follows:

� Since ring-2 processes on the XTS-300 cannot ac-

cess TCP/IP, the portions of the E-Pump that

are needed to access TCP/IP were implemented

in ring-3. Hence, four extra FIFOs (Output data,

Input data, High ACK, and Low ACK in �gure 5)

and two extra processes (F2S and S2F) are used

in the E-Pump which are unnecessary in other im-

plementations.

� The E-Pump writes every message from Low to

disk, for recovery reasons, before it sends an ACK.

However, if the D-Pump wrote every message to

disk (which is the most desirable recoverability op-

tion) then the same additional overhead would be

incurred.

� The message does not have to go up to the P.L. in

the D-Pump (i.e., it stops at T.L.), thus it requires

less processing time.

� Since the D-Pump's trusted code includes TCP/IP

code, it can access IP addresses and port numbers.

Hence, the D-Pump does not need any customized

address scheme because it uses the TCP protocol.

However, since the E-Pump cannot access this ad-

dress information at the P.L., the address scheme

must be added to the Pump protocol, thus increas-

ing overhead.

The above reasons seem to imply that implement-

ing the Pump at the T.L. is a good design decision.

However, as we will discuss in the following sections,

problems exist with our T.L. implementation.

5.2 The Pump and its wrappers

The Pump is designed to be an application indepen-

dent device, receiving messages from Low (sender) and

delivering them to High (receiver). We emphasize that

the Low to High communication is actually a commu-

nication between application programs running on Low

and High computers. Also, note that application pro-

grams that expect some data values coming back as a

result of computation cannot be used with the Pump

because the Pump does not allow data values to pass

through itself. Therefore, the only application pro-

grams that can utilize the Pump are those which can

function with only simple ACKs (or no ACKs) from

the receiver program.

In general, an application program that functions

with (simple) ACKs is able to ensure reliability at

the application level. Thus, when the sender program

sends a message, it expects the receiver program to re-

turn an ACK in the speci�c format determined by the

application protocol. If the sender program directly

sends a message to the Pump, the Pump, which is an

application independent device, cannot return an ACK

in the format speci�ed by the application protocol.

Therefore, wrappers, which are application-speci�c,

are needed to ensure the correct formatting of appli-

cation ACKs. In other words, wrappers satisfy both

the application-speci�c protocol and the Pump proto-

col. Even though the D-Pump can satisfy the ACK re-

quirement at the T.L., it cannot satisfy the application-

speci�c ACK requirements at the application layer.

Hence, both Pumps require wrappers to correctly in-

terface with the speci�c application program. We em-

phasize that for most applications that utilize TCP,

satisfying TCP's requirements are not enough to sat-

isfy the application-speci�c protocol requirements.

P
u
m
p

 low
application
 program

 high
application
 program

 low
wrapper

 high
wrapper

 application
independent
 device

application
 specific

application
 specific

 play a role as a
high application

 play a role as a
low application

1 2

34

(1) (2)

(3)(4)

Figure 8. The Pump and wrappers

A brief description of wrappers6 and their interactions

with the Pump and application programs, as illustrated

in �gure 8, is as follows:

1. The low application program sends (if available)

an application message to the low wrapper. The

low wrapper reformats the application message

into the format that the Pump understands, and

produces a Pump message(s). Sometimes one ap-

plication message may be transformed into several

Pump messages. Note that in the E-Pump, mes-

sages are created at the P.L. and ACKs are in the

P.L., whereas in the D-Pump, messages and ACKs

are at the T.L.

2. The low wrapper then sends a Pump message to

the Pump.

3. The low wrapper receives an ACK from the Pump.

� Repeat 2 and 3 until the Pump message(s)

corresponding to the original application

message have been passed to and ACKed by

the Pump.

4. The low wrapper sends an application speci�c

ACK to the sender program. Go to 1.

Hence, the low wrapper is a proxy of the high appli-

cation program that receives a message from the low

application program.

Similarly, the high wrapper is a proxy of the low

application program that receives a message from the

Pump and deliver it to the high application program.

(1) The Pump sends (if available) a Pump message to

the high wrapper.

6A detailed example of wrappers can be found in [2].

� The high wrapper receives a Pump message.

If more Pump messages are required to con-

struct a complete application message, then

go to (4).

(2) The high wrapper sends an application message to

the high application program.

(3) The high wrapper receives an ACK from the high

application program.

(4) The high wrapper sends an ACK to the Pump. The

Pump message is now removed from the Pump's

bu�er upon receiving the ACK. Go to (1).

As we discussed earlier, in general, both Pumps need

application-speci�c wrappers at the P.L. The major dif-

ferences between the two Pump implementations are:

� Since the E-Pump has been implemented at the

P.L., the lower layer protocols are transparent to

the E-Pump.

� Since the D-Pump has been implemented at the

T.L., TCP requirements must also be satis�ed.

5.3 Reliability & Recoverability

We wish to have reliable communication between the

sender and the receiver. The Pump should guarantee

reliability from the sender to the Pump, and from the

Pump to the receiver. However, reliability is not com-

posable. For example, after the Pump receives a mes-

sage and the sender receives an ACK, the sender may

perform garbage collection. If, at this time, the com-

munication from the Pump to the receiver breaks and

later it is re-established, then orderly recovery from

system failure between the Pump and the receiver is

needed to guarantee reliable7 and secure sender to re-

ceiver communication.

The D-Pump does not wait for ACKs from the high

application (or wrapper if the use of wrappers is re-

quired) but rather it uses TCP ACKs for computing

the moving average and garbage collection. In general,

TCP ACKs from High to the Pump are controllable

neither by the application program nor by the wrap-

pers. Hence, there is a possibility the packet will be

7If the sender and receiver applications are recoverable

(e.g., database replication) then the Pump also preserves the

recoverability.

removed from the D-Pump before the high application

receives it and stores it in a safe place. Therefore, the

D-Pump is not recoverable and cannot guarantee reli-

able Low to High communication. This is an example

of \using a reliable underlying communication proto-

col at a layer below that of the applications, does not

guarantee reliable application to application communi-

cation."

On the other hand, the E-Pump waits for ACKs from

the high wrapper before it removes messages from its

bu�er. Therefore, the E-Pump has a recoverable pro-

tocol (i.e., the ACK from the high wrapper is a P.L.

ACK and guarantees the delivery of the message to

the application program or stores it in a recoverable

place).

5.4 Routing between two di�erent net-

works

The Pump resides between low and high systems (en-

claves) and relay messages from a low to high system.

Generally, low and high systems (enclaves) reside in

di�erent networks.

As explained earlier, the D-Pump responds to ARP

requests. However, it does not understand routing pro-

tocols. Hence, the D-Pump works �ne if the high net-

work and the low network share the same network ad-

dress as shown in �gure 9.

Pump

High Network

Low Network

P

Figure 9. D-Pump between the same

logical network

If however, the high system and the low system have

di�erent network addresses (referred to as the High and

Low networks, respectively) then a router is required

to send messages from low to high systems as shown in

�gure 10.

R

High Network

Low Network

P Pump

Router

Figure 10. D-Pump between the two di�erent

logical networks

Since, the destination address is in a di�erent network,

messages are sent to the router. The router sends out

ARP requests to the high network to �nd the correct

system to relay the message to. The D-Pump responds

to the ARP request (see section 4 steps 1, 2, and 3)

and hence the D-Pump receives messages. Note that

the router can also be located after the Pump.

On the other hand, the E-Pump does not require a

router even if low and high systems are located in dif-

ferent networks. Since the E-Pump is implemented at

the P.L., the routing can be done by the E-Pump. The

E-Pump looks at the destination address and deter-

mines whether the address is a legitimate destination

address or not.

6 Lessons Learned & Future

Plans

In this section, we describe the major lessons learned

from two prototype e�orts and discuss our future plans.

6.1 Lessons Learned

� (Learned from the D-Pump) The T.L. is the wrong

layer at which to implement the Pump. The rea-

sons are:

1. In general, high side processes do not have

control over T.L. ACKs. Thus a T.L. layer

implementation results in reliability and re-

coverability problems.

2. Usually, high side and low side systems are in

separate networks. Hence, the Pumpmust be

able to perform simple routing tasks. There-

fore a T.L. implementation would either have

to have much additional code to handle the

routing, or we would be forced to use an ex-

ternal router.

� (Learned from the E-Pump) Using an underlying

high assurance secure OS for the Pump causes a

large overhead due to the lack of networking sup-

port. Furthermore, the development process was

too \painful" due to the lack of development tools.

� (Learned from the E-Pump and D-Pump) Using

a hard disk as stable storage a�ects performance

too much. Writing to disk is just too slow if High

is acting as a fast server. An alternative being

investigated is static RAM.

6.2 Future Plans

� Build the Pump at the P.L.8

� Implement the Pump on customized hardware to

reduce the amount of trusted code, instead of using

a secure OS for building the Pump.

� Develop a better recovery strategy/strategies.

One idea is to use an uninterrupted power sup-

ply/backup power source for power failure and

write to the hard disk only when a power failure

occurs. This is still not as recoverable as writing

to disk each time but it is much more e�cient.

� Implement the Pump on top of an unreliable but

e�cient T. L. protocol (e.g., UDP). Reliability

problems can be handled by the Pump protocol.

A personal lesson learned by the �rst two authors

is that going from theory to working device is a hard

road, full of many potholes.

8If high systems are in multiple networks, the Pump would

require either additional Ethernet cards or extra routers.

Acknowledgement

We thank Ruth Heilizer, John McLean, and the anony-

mous referees for their helpful comments and sugges-

tions. The second author acknowledges the hospitality

of the Issac Newton Institute for Mathematical Sci-

ences, University of Cambridge.

References

[1] J. Davidson, \Asymmetric Isolation," To ap-

pear 12th Annual Computer Security Applications

Conference, 1996.

[2] J.N. Froscher, D. M. Goldschlag, M. H. Kang, C.

E. Landwehr, A. P. Moore, I. S. Moskowitz, and C.

N. Payne, \Improving Inter-Enclave Information

Flow for a Secure Strike Planning Application,"

Proceedings of the 11th Annual Computer Secu-

rity Applications Conference, New Orleans, pp. 89

- 98, December 1995.

[3] M. H. Kang, J. N. Froscher, and O. Costich, \A

practical transaction model and untrusted trans-

action manager for multilevel-secure database sys-

tems," The Eighth IFIP Workshop on Database

Security (1992).

[4] M. H. Kang and I. S. Moskowitz, \A Pump for

rapid, reliable, secure communication," Proceed-

ings ACM Conf. Computer & Commun. Security

'93, pp. 119 - 129, Fairfax, VA, 1993.

[5] M. H. Kang and I. S. Moskowitz, \A data

Pump for communication," Submitted for pub-

lication, also available as NRL Memo. Re-

port 5540-95-7771, 1995 (http://www.itd.nrl.mil/

ITD/5540/publications/CHACS/index1995.html).

[6] M. H. Kang, I. S. Moskowitz, and D. C. Lee, \A

Network Pump," IEEE Transaction on Software

Engineering, vol. 22, no. 5, pp. 329 - 338, May,

1996

[7] J. K. Millen. \Finite-state noiseless covert chan-

nels." Proceedings of the Computer Security Foun-

dations Workshop II, pp. 81 - 86, Franconia, NH,

1989.

[8] B. E. Montrose and M. H. Kang, \An Implemen-

tation of the Pump: Event Driven Pump," NRL

Memo. Report 5540-96-7850, 1996.

[9] I. S. Moskowitz and A. R. Miller, \Simple tim-

ing channels," Proceedings 1994 IEEE Computer

Society Symposium on Research in Security and

Privacy, pp. 56 - 64, Oakland, CA, 1994.

[10] W. R. Stevens, \UNIX Network programming,"

Prentice Hall, 1990.

[11] J. J. Parsonese, \The basics in networking the

data Pump," Working paper.

