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1. Summary

This is the final report for our AFOSR sponsored project: Information Fusion for High Level
Situation Assessment and Prediction. Through this project, we developed a probabilistic
framework for performing high level information fusion. In addition, we developed algorithms for
performing active information fusion to improve both fusion accuracy and efficiency so that
decision making and situation assessment can be made in a timely and efficient manner. Finally,
we applied the framework and the algorithms to a military application to demonstrate its feasibility
and validity for high level information fusion.

In this report, we first summarize our technical accomplishments, followed by a discussion
of transitions related to this project. The related paper reprints are attached with this report. In
addition, the latest paper reprints, publications, and software demos from this project may also be
found at http://www.ecse.rpi.edu/~cvrl/lwh/ .

2. Introduction

There are several challenges facing information fusion for situation awareness and decision
making for military applications. First, sensory data generally involves multiple data types such as
various sensory signals (radars either at the same or different frequencies as well as EO/IR sensors),
circumstantial evidence, geographical information, subjective knowledge, and various constraints.
They provide information at different levels of abstraction. They are often uncertain, ambiguous,
and local. Second, for many military domains, the world situation is often dynamic and unfolds
over time. The sensory observations also evolve over time to reflect changes in the world. To
correctly assess and interpret the world situation, an adaptive system is needed that can reason over
time since it is often the temporal changes that provide crucial information about what we try to
infer and understand. Third, many military applications are also often constrained by limited time,
resources, and complex environments. Given a vast amount of sensory data, it is important that
fusion be carried out in an efficient and economical manner to avoid unnecessary or unproductive
sensor actions and computations so that decision about the situation and threat can be made in a
timely and efficient manner. A high level fusion system that is dynamically selective, purposive
and sufficing is therefore more suitable. This can be achieved through active fusion, which
involves deliberate sensor management to achieve efficient, timely, and often more accurate
information fusion. Specifically, active fusion answers the following questions: what information
to acquire next to minimize the uncertainty of situation assessment and to maximize the overall
expected utility of decision making, what sensors can be used to acquire the information efficiently,
timely, and safely, when to activate the sensors, and how to fuse the acquired sensory data
efficiently. The goal of this research is to develop a high level multi-sensory fusion system to
address all these challenges.

Figure 1 illustrates an active fusion framework. The framework consists of a set of
information sources (sensors) monitoring the world, a sensor selection mechanism, a fusion
methodology, the results of fusion (e.g., situation understanding), and a decision-making
mechanism for identifying a set of actions that respond to the fusion results. A complete active
fusion procedure includes deciding a sensor set that achieves the optimal trade-off between its cost
and benefit, activating the identified sensors, integrating the acquired sensory data, and making
decisions based on the fusion results.
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Figure 1: An active fusion framework

The work for this project consists of three parts: The first part focuses on developing and
implementing a probabilistic framework for representing and integrating sensory data of different
modalities at different levels of abstraction. One component of this part of the work is the
development of a machine learning method for automatic parameterization of the framework for a
particular application. The second part is to develop the theories and algorithms for performing
active information fusion. This requires first defining a sensor selection criterion, developing
computational methods to efficiently compute the criterion, developing algorithms to perform
efficient sensor selection using the criterion, and finally developing methods to efficiently fuse the
acquire the sensory data. The third part of this research is to demonstrate the proposed framework
and algorithms for a military application with a prototype software. We have made significant
progress in each of these three areas as detailed below.

3. An Unified Probabilistic Framework for High Level Information Fusion

Knowledge in a military domain is complex, uncertain, and dynamic. We need a framework
that can accurately model the incomplete/uncertain world knowledge and that provides a
mechanism for systematically and actively integrating dynamic information from disparate sources.

The Dynamic Bayesian Networks (DBNs) appear ideal for meeting these requirements. DBNs are
probabilistic graphs with nodes representing random variables and links representing the casual
relationships among the connected nodes. Rooted firmly in the long-established field of probability
theory, DBNs can systematically and actively combine corrupted sensory inputs of different
modalities occurring over different time frames to produce a consistent, coherent, and accurate
global picture of the underlying events and to generate appropriate response recommendations.
Knowledge modeling using DBNs involves identification and representation of the sensory
information, contextual information, hypotheses (what we want to infer), and their dependencies as
well as their uncertainties and dynamics.

Specifically, DBNs provide a coherent and unified hierarchical probabilistic framework for
representing and integrating information from diverse and correlated sources, including sonar,
radar, images, tactical information, and knowledge expressed by domain experts or synthesized
through discovery techniques. Furthermore, DBNs dynamically evolve and grow to accommodate
the new happenings and to assess the current situation not only based on the current information but
also utilize information produced during previous time frames, as alternative scenarios are
reinforced or ruled out dynamically. Figure 2 shows an example of using DBN to integrate various
sensory data to infer enemy intent. Details about this work may be found in
[Zhang&Ji06a,Liao&Ji07b].
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The benefit with DBN for knowledge representation is that the representation is in a
hierarchical structure. The hierarchical knowledge representation corresponds nicely to different
levels of fusion according to the Joint Directors of Laboratories (JDL) Data Fusion Model
classification [SteinbergBowman01]. For example, the target node at the top stores the results of
level-3 fusion while the content of the leaf nodes corresponds to the level-1 fusion. The
intermediate hidden nodes correspond to results of level-2 fusion. Specifically, the level-1 nodes in
the bottom are used to extract sensory measurements/features from objects of interest. The level-2
nodes in the middle fuse the spatial and temporal relationships between entities to recognize
objects, their relationships, and their movement tracks.  Finally, the level-3 nodes at the top
perform situation assessment, enemy intent prediction, or threat assessment. Level-3 fuses the
combined activity and capability of enemy forces to infer their intention and to assess the threat
they pose.

While excellent in knowledge and uncertainty representation, DBNs do not have the
decision making capability. Decision such as what sensory actions to take next and what course of
actions to choose need be made outside the DBN framework, usually in a heuristic manner and
independent of the fusion process. To overcome this limitation, we extend the framework from the
DBNs to Dynamic Influence Diagrams (DIDs). Like Bayesian networks, DIDs can represent both
static and dynamic uncertain knowledge in a hierarchical graphical structure, with nodes
representing the random variables and directed links between nodes representing the casual
relationships. Unlike DBNSs, a DID also includes decision nodes that may be used to explicitly
represent various actions to take in response to the results of information fusion.  Decision and
utility theories can then be used within the DID framework to determine the optimal actions to take.
This feature is especially attractive for active sensing since DID provides a mechanism to




systematically connect decision-making with sensor management, i.e.,, allowing sensory
management in response to decision making.

In summary, DIDs provide a unified mathematical framework for simultaneously modeling
and integrating sensory data selection, sensory data fusion, situation assessment, and decision
making. Such a model yields several advantages. First, it provides a coherent and fully unified
hierarchical probabilistic framework for representation and integration of sensory data of different
modalities at different levels of abstraction, and for decision making via inference under
uncertainty. Second, it embeds both the sensors' contribution to decision-making and their
operating cost in one framework to allow systematic determination of an optimal sensor subset
based on utility theory, probability theory and information theory. Third, it systematically
incorporates the evolution of the situation and sensory data as well as accounts for the temporal
aspect of decision making with a dynamic structure. Under the framework, timely and effective
decision can be made by dynamic inference based on selecting a subset of sensors with the optimal
trade-off between their cost and benefit. ~ Figure 3 shows an example of DID framework for
modeling space situation awareness and space threat mitigation. Additional examples about DIDs
may be found in [Liao&Ji07a, Liao&Ji06b]
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Figure 3: An example influence diagram for modeling space threat assessment and mitigation,
where the circular nodes represent the random variables (like the nodes in DBN), the rectangular
nodes represent the action/decision nodes (e.g. sensory action and course of action), and the
diamond nodes represent the utility of the actions/decisions.




4 . Model Construction and Learning with both Quantitative and Qualitative Knowledge

Given the generic DBN/DID as discussed in the previous section, a key problem with
graphical modeling is to determine the model topology (the model structure) and its parameters for
a particular application. Model topology determination requires identifying the appropriate random
variables and their relationships. Model parameterization involves quantifying each root node (the
topmost node) with a prior probability and each link with a conditional probability table (CPT)
describing the conditional probability of the node given all possible outcomes for its parent(s). For
a dynamic ID, we also need to specify relationships between two neighboring static slices with a
transitional probability matrix.

So far, we have been using domain expert to help construct the model and to provide some
initial estimation of the model parameters. To further improve the model parameters, we developed
a new machine learning method [Liao&etal07] that refines the initial model parameters by
combining the subjective knowledge with some training data. Study [Johansson&Falkman06]
shows for many military applications training data are hard to acquire due to various reasons
including security or lack of data. On the other hand, it is shown that for a given application, a
number of general parameters can often be extracted from the interview with the officers and from
the discussion with the military experts. This subjective knowledge may often present qualitatively
instead of quantitatively in the form of relationships among some parameters of the model instead
of all parameters. Two types of domain specific knowledge we use in our method are the range of
some parameters and the qualitative relationships among some parameters. This kind of subjective
and prior knowledge is very different from the conventionally used quantitative knowledge such as
prior probability distribution on all parameters. The latter is often hard to quantify or requires
strong assumptions to quantify. The qualitative knowledge, on the other hand, is often ignored due
to the difficulty in incorporating them into the model. To utilize the qualitative knowledge, we
developed a method that estimates the parameters of a Bayesian network under incomplete/sparse
training data but with some subjective constraints. Specifically, we introduce a modified
expectation maximization (EM) method that performs parameter estimation in two steps: the E-step
and the M-step. The E-step allows to estimate the missing data based on the available data while
the M-step allows to estimate the model parameters. The EM algorithm is modified as follows. For
the M step, it is modified to incorporate qualitative prior knowledge about the parameters of the
model. For example, the domain knowledge about the range of the parameters and the qualitative
relationships among the parameters may be incorporated in the M step to modify the objective
function and to constrain the estimated parameters within a scope.

Experiments with both synthetic and real data demonstrate significant improvement of the
proposed method for estimating parameters of the Bayesian network under incomplete or sparse
training data. Specifically, Figure 4 gives an example of a Bayesian Network, where the shaded
nodes represent variables that do not have training data. Instead, some quantitative constraints are
available for those nodes.




Figure 4: An example Bayesian network, with insufficient training data. Data are not available for
the shaded nodes. Some qualitative subjective knowledge is available on those and other nodes.

We apply the modified EM method to estimate the parameters of the BN using the incomplete data
and the qualitative constraints. The results are shown in Figure 5, where our modified EM method
is compared with the results of the conventional EM method. @ We can see a significant
improvement in the estimation accuracy in terms of the KL divergence.
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Figure 5: Results of parameter estimation using the proposed constrained EM (CEM) v.s. the
conventional EM.

Additional details about the CEM method may be found in [Liao&etal07].

S. Active Information Fusion

Given the probabilistic frameworks discussed above, information fusion can be carried out
through a probabilistic inference by systematically propagating the impacts of the received sensory
data through the model. Belief propagation in a DID framework is usually time-consuming. Given




often a vast amount of sensory data as well as the constraints on resource and time, it is important
to perform information fusion in a selective and purposive manner so that decision can be made
quickly and economically. This can be achieved through active information fusion, which involves
deliberate sensor management to achieve efficient, timely, and often more accurate information
fusion.

As shown in Figure 6, the two main tasks for active fusion are sensor selection and sensory
data fusion through belief propagation. Specifically, sensor selection is to decide which subset of
sensory observations should be acquired next. Given the identified sensory observations, the
corresponding sensors are activated to acquire the data, and the acquired data are subsequently
integrated. Sensor selection includes two steps. The first step is achieved by designing a sensor
selection criterion that represents the trade-off between the sensor benefit and sensor cost. This is
then followed by the second step, which searches the sensor space using the criterion to identify the
optimal sensor subset. There are significant computational difficulties associated with computing
sensor selection criterion and searching for the optimal sensor subset using the criterion. In the
following sections, we will discuss methods to address the two computational difficulties.
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Figure 6: the steps of active fusion for decision making

5.1 Efficient Sensor Selection Criterion Computation
We have studied two sensor selection criteria: mutual information (MI) and value of
information (VOI). MI defines the potential of a set of sensors in reducing the uncertainty of the
current hypothesis about the situation. VOI, on the other hand, is defined as the difference of the
maximum expected utilities with and without the selected information source (s) with respect to
decision making. As a decision-theoretic criterion, VOI is generally different from the information-
theoretic measures such as mutual information since VOI directly relates sensor/resource allocation
(e.g. assignment of a reconnaissance operation) to decision-making (e.g, taking defensive/offensive
actions), while information theoretic criterion relates sensor management to situation awareness.
- MI is therefore more suitable for situation awareness while VOI is more suitable for decision
making in response to situation awareness. For this research, both MI and VOI can be used to rate
the usefulness of various sensory sources with respect to the decision making, and to decide
whether pieces of evidences are worth acquisition before actually activating the sensors.




Exact computation of either MI or VOI for a set of sensors is expensive and is often NP-
hard, which is practically infeasible. One common solution to this problem is to use myopic
approach, i.e., selecting one optimal sensor at a time. Obviously, such selection is not always
reasonable since a decision maker will often not act after acquiring data from only one information
source. Instead, a decision maker often needs to collect multiple pieces of evidence from multiple
sources before making a decision. Therefore, it is necessary to compute non-myopic MI and VOI.
Hence, an approximate computation of non-myopic VOI and MI is necessary to make its
computation feasible for practical applications.

In [Zhang&Ji05], we introduce a graph-theoretic approach for efficiently approximating the
mutual information for a set of sensors. Specifically, we propose a new quantitative measure for
sensor synergy, based on which a sensor synergy graph is constructed. Using the sensor synergy
graph, we introduce an alternative measure (the least upper bound of mutual information) to
approximate multi-sensor mutual information for characterizing sensor information gain. Studies
show that the new measure is very close to mutual information in value yet can be very efficiently
computed. Figure 7 shows the closeness between the least (greatest) upper bound of mutual
information and the exact mutual information for sensor subsets of different sizes. It is clear that
the proposed criterion based on the least upper bound of mutual information closely follows the

values of the exact mutual information.
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Figure 7: the closeness between the least (greatest) upper bound of mutual information and the
exact mutual information for sensor subsets of different sizes.

Computationwise, since the substitute measure can be written simply as the sum of the mutual
information of only pairwise sensors and singleton sensors, its computation cost is relatively very
low. Therefore, the computational difficulty in computing exactly higher order mutual information
can be circumvented by computing only the least upper bounds of mutual information. An
extensive simulation study demonstrates both the optimality and efficiency of the sensor selection
criterion. Details may be found in [Zhang&Ji05, Zhang&Ji07]

In [Liao&Ji06], we introduced an algorithm to approximately compute non-myopic VOI
efficiently by exploiting the central-limit theorem as well as by exploiting the statistical




dependencies among the sensors.  Specifically, computing VOI requires a sum over all possible
combinations of sensory observations, which is time consuming for a large number of sensors or for
sensors with many states.  In our method, we treat each term in the summation as a random
variable, whose mean and standard deviation can be individually estimated. The central limit
theorem can then be used to approximate the mean and standard deviation of the sum, based on
which VOI can be efficiently approximated. Additional computational saving is achieved by
exploiting the statistical dependencies among sensors when computing mutual information. Studies
with both synthetic and real data show that the approximated method for computing VOI produces
significant improvement in computation speed with minimum loss in estimation accuracy. Figure
8 shows results from a simulation study, where it shows the comparison of the proposed
approximated method for computing VOI against the exact VOI computation method in terms of
accuracy and speed for sensor subsets of different sizes. It quantitatively demonstrates the
significant improvement in computational efficiency with minimum loss in accuracy, especially for
sensor sets with many sensors.
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Figure 8: Comparison of the exact computation of VOI v.s. the proposed approximation method for
sensor subset of different sizes in terms of accuracy (a) and time (b).

5.2 Efficient Sensor Selection

Given the criterion for sensor selection, the selection of a sensor subset from several sensor
candidates can be regarded as a search problem in a combinatorial space. The goal is to find the
most appropriate solution among all possible sensor combinations. Since the number of sensor
combinations 2* increases exponentially with the number of sensors k, it is infeasible for an
exhaustive search with even a moderate k. Various methods have been proposed to perform search
efficiently but often with suboptimal solution. These methods include the greedy approach (select
the top K sensors), the myopic approach (select one sensor at a time), and the heuristic methods.

We have attacked the sensor selection problems from two different aspects. First, we study the
properties of sensor selection criteria under different conditions so that a greedy approach can
produce performance guarantee. Specifically, our recent research proves that information-theoretic
sensor selection criterion such as mutual information has the submodular property under certain
conditions and given such a property, the greedy sensor selection method guarantees the near-
optimal sensor selection accuracy in polynomial time [Liao&Ji07]. Using this special property, we
developed a greedy sensor selection method based on mutual information that can efficiently
identify the near optimal subset of sensors. Table 1 shows results of the proposed sensor selection
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methods (algla, alglb, and alg2) against the conventional greedy approach in terms of accuracy
and speed.

Table 1: Comparison of the proposed sensor selection methods v.s. the conventional greedy
sensor selection method

Alg. la | Alg. 1b | Alg. 2 | Greedy
Error Rate 0.06 0.06 0.10 0.22
Information gain rate 0.99 0.99 0.97 0.91
Running time rate 0.35 0.10 0.06 0.03

In table 1, the error rate is the ratio between the number of mis-selection cases and the overall
number of cases, where a mis-selection case is defined as the case that the selected sensor set has
more than one sensor different from the ground-truth. The information gain rate is the ratio
between the mutual information of the selected sensor set and that of the optimal sensor set. The
running time rate is the ratio between the running time of the proposed methods and that of the
brute-force, averaged over 500 testing cases. It is apparent that the proposed sensor selection
methods can produce more accurate results with little loss in computational speed. Additional
information about this work may be found in [Liao&Ji07b].

Second, we also introduced a graphic-theoretic approach [Zhang&Ji05] to efficiently find the
near optimal subset of sensors. The method first defines a sensor synergy measure, based on which
a synergy graph is constructed to represent synergy among sensors. The graph is subsequently used
to prune the sensor space so that a large set of less synergetic sensor combinations can be
eliminated, significantly reducing sensor space and as a result, the optimal subset can be more
efficiently identified in the reduced sensor space. Table 2 summarizes the results of comparison of
the proposed sensor selection method with the random selection method and with the brute force
method in both accuracy and time for sensor subsets of different sizes.

Table 2 Comparison of the proposed method, with the random method and the brute force method.

Number Our Approach Random Method Brute-Force
of Relative utthty difference Run tme Relutive utiity difference Run time
Sensors | of our method to brutal force methods | (Seconds) | of random method to brutal force methods | (Seconds)
7 1.56% 1.020 2015% 03.87
8 1.77% 1.099 28.32% 355.08
9 2.75% 1209 36.54% 2967.36
10 1.89% 1.430 30 19% 13560.54

It is clear from the table that compared with the random sensor selection, the proposed sensor
selection method improves accuracy significantly.

improvement is several orders of magnitude with minimum loss in accuracy.

work may be found in [Zhang&Ji07].
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6. Efficient Sensory Data Fusion

To fuse the information collected from the sensors for timely decision-making, an efficient
belief propagation algorithm is needed since typical belief propagation based on ID/BN is NP-hard.
We developed a factorization tree inference (FTI) algorithm [Liao&Ji04, Zhang&JiO6b] to
efficiently integrate the acquired sensory data and to update the hypothesis belief. The algorithm
factors out the computations that are common for sequential inference so that they can be computed
~ only once, and can be applied to the subsequent inference without re-computing them, therefore
significantly reducing the sensory fusion time. Details about these algorithms may be found in
[Liao&Ji04, Zhang&Ji06b]. Figure 9 compares the inference efficiency of the factor tree approach
with other popular inference methods. It is clear that the proposed factor free is better for
sequential inference. '
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Figure 9: Comparison of factor tree approach with other inference methods (Variable
Elimination (VE) and Clique Tree Propagation (CTP)) for sequential inference

7. An Application Example

The proposed framework may be used for modeling complex dynamic events, which requires
efficient interpretation of data from different sources to achieve high level understanding of the
causes that lead to the observed data as well as to take appropriate course of actions to alleviate the
threat the situation may pose.  Here, we briefly demonstrate the application of the proposed
framework for a multi-stage battlefield situation assessment.

The scenario develops during a period of growing hostility between the nation A (Blue
force) and the nation C (Red force). The island Mz locates between the two nations and it was
occupied by the Blue force since the World War II. The Red force wants to seize the island back.
As the situation worsens, the Blue force designates an area covering land and sea as a restricted
zone, and declares any activities in the restricted area as hostile. ‘

To monitor the situation, the Blue force surveillance facilities include a number of shore
sensors, unmanned aerial vehicles (UAVs), surveillance helicopters (RAH66 Comanche), etc.. As
hostilities break out openly, the Red force may want to destroy the surveillance facilities used by
the Blue force. Further, the Red force may also pursue air strike or surface attack of the Blue force
if necessary.
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Using its assets, the Blue force monitors the activities of the Red force, infers its intent, and
takes appropriate actions to mitigate any threat the Red force may pose. A dynamic influence
diagram as shown in Figure 10 is constructed to help the Blue force to assess the intent of the Red
force and to determine the best course of actions. A set of hypotheses representing possible Red
force intentions include: 1) Passive: monitor the Blue forces in the restricted zone; 2) Defensive:
conduct active reconnaissance and maintain a defensive presence; 3) Offensive: mount naval attack
or infantry artillery engagement (surface-to-air or surface-to-surface attack) on the Blue forces with
the intention of destroying the Blue forces as well as their offshore surveillance facilities.
Corresponding to each enemy intent, the Blue force may take different actions.
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Figure 10: A dynamic influence diagram model for the battlefield scenario. S1-Siorepresent the
surveillance facilities the Blue force uses to collect sensory data on Red force activities.

Given the model, at each time instant, we then apply the active fusion algorithms to efficiently
identify the optimal sensors to use in order to timely and efficiently identify enemy intent, based on
which we then decide the optimal action the Blue force can take in order to minimize any threat
from the Red force. Figure 11 provides the results of inference over time about the intent of the
Blue force, the sensors used by the Red force, and the actions taken to counter any threat from the
Red force.
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Figure 11 Step by step inference results for the example
Details about this example may be found in [Zhang & Ji05,Liao&Ji07b] .

8. Active Information Fusion Demo Software

Besides the application, we have also developed a real-time prototype software to
demonstrate the proposed methods. In the demo software, several sensor selection algorithms
discussed in section 5.2 are implemented including the greedy approach, the graph-theoretic
approach, the myopic approach, the random approach, and the brutal force approach. User can
change the model parameters, the reliability and cost for each sensor. Then, based on the inputs, the
system returns the selected sensors by using different sensor selection algorithms. The returned
results are displayed so that the user can compare the efficiency and accuracy of different
algorithms. We have two versions of the demo software: one is based on the graph-theoretic
approach that uses only mutual information as the selection criterion and the other is based on the
greedy sensor selection approach that uses either mutual information or value of information as the
selection criteria. Figure 12 shows the interface for the software based on the graph-theoretic
approach. Figure 13 shows the interface for the software based on the greedy approach.
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Figure 12: The active fusion demo software interface that uses mutual information as sensor
selection criterion and uses the graph-theoretic approach for sensor selection.
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Figure 13: The active fusion demo software interface that uses either mutual information or value
of information as sensor selection criteria and uses the greedy approach for sensor selection.
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Both software are available to the government upon request.

9, Interaction/Transitions

Over the past few years, the PI actively interacted with the AFRL-Rome lab to identify new
applications for the proposed theories and algorithms. Specifically, the proposed active fusion
strategy has been applied to addressing the computational complexity problem plaguing AFRL-
Rome’s Causal Analysis Tool (CAT) for military plan assessment, leading to a significant
computational saving for military plan evaluation [Zhang&Ji06b].

Finally, through this project, we have provided complete financial support for one Ph.D
student, partial support for another Ph.D student, and financial support for two postdoctoral
associates. In particular, one Ph.D student (Ms. Wenhui Liao) received her Ph.D in December,
2006 with complete financial support from this grant. Her dissertation is on high level active
information fusion.

10. Conclusion

In summary, through this research we made several contributions as summarized below:

1) Developed and implemented a unified probabilistic framework for simultaneously modeling
sensory data, sensor selection, situation assessment, and decision making. Specifically, we
studied and implemented two frameworks: Dynamic Bayesian Networks and Dynamic
Influence Diagrams.

2) Developed and implemented a learning algorithm to estimate model parameters when
data are incomplete using domain specific qualitative knowledge. Specifically, we
developed a constrained Expectation-Maximization learning algorithm for learning the
parameters of the Bayesian network under incomplete/sparse training data with qualitative
constraints.

3) Introduced sensor selection criteria and develop computational methods to efficiently
compute the criterion. We studied two sensor selection criteria (mutual information and
value of information) and developed methods to efficiently compute them

4) Developed active sensor selection methods to efficiently identify a subset of optimal sensors
a. a greedy approach based on submodular property of mutual information with
performance guarantee
b. a graph-theoretic approach to systematically estimate synergy among sensors and to
significantly reduce the sensor search space by eliminating a large number of
unpromising sensor combination through a synergy graph.

5) Developed a belief propagation method to efficiently integrate the acquired sensory data
and update the belief to current hypothesis. Specifically, we introduced a factorization
method for efficient sequential inference in both BN and ID.

6) Demonstrated the feasibility of the framework and algorithms with realistic military
applications. Developed user-friendly prototype software for this purpose.

7) Worked with AFRL/Rome lab to apply the proposed active fusion methods to address the
military plan assessment problem.

8) Produced one Ph.D dissertation and 10 publications in the referred journals and
conferences.

16



References

[Liao&Ji04] Wenhui Liao, Weihong Zhang, and Qiang Ji, A Factor Tree Inference Algorithm for
Bayesian Networks and its Applications, the 16th IEEE International Conference on Tools with
Artificial Intelligence, Nov., 2004.

[Liao&Ji06] Wenhui Liao and Qiang Ji, Efficient Active Fusion for Decision-making via VOI
Approximation, the Twenty-First National Conference on Artificial Intelligence (AAAI-06),
Boston, July 2006.

[Liao&Ji06b] Wenhui Liao, Weihong Zhang, Zhiwei Zhu, Qiang Ji, and Wayne Gray, Toward a
Decision-Theoretic Framework for Affect Recognition and User Assistance, International
Journal of Human Computer Studies, vol.64, no.9, pp.847-873, 2006.

[Liao&Ji07a] Wenhui Liao and Qiang Ji, Efficient Non-myopic Value-of-Information for Influence
Diagrams, submitted to International Journal on Approximate Reasoning.

[Liao&Ji07b] Wenhui Liao and Qiang Ji, Approximate Nonmyopic Sensor Selection Via
Submodularity and Petitioning, submitted to IEEE Transactions on Systems, Man, and
Cybernetics, Part A.

[Liao&etal07] Exploiting Domain Knowledge for Learning Bayesian Network Parameters with
Incomplete Data, submitted to IEEE Conference on Computer Vision and Pattern Recognition,
2007.

[Johansson&Falkman06] Fredrik Johansson and Géran Falkman, Implementation and
integration of a Bayesian Network for prediction of tactical intention into a ground target
simulator, the 9'" International Conference on Information Fusion, July, 2006.

[Zhangé&Ji07] Yongmian Zhang and Qiang Ji, An Approximation to Nonmyopic Sensor Selection
for Active Information Fusion, submitted to IEEE Transactions on Systems, Man, and
Cybernetics, Part B.

[Zhang & Ji06a] Yongmian Zhang and Qiang Ji, Active and Dynamic Information Fusion for
Multisensor Systems under Dynamic Bayesian Networks, IEEE Transactions on Systems,
Man, and Cybernetics B, 36(2), April 2006.

[Zhang&Ji06b] Weihong Zhang and Qiang Ji, A Factorization Approach To Evaluating
Simultaneous Influence Diagrams, IEEE Transcations on Systems, Man, and Cybernetics A,
p746-754, Vol. 36, No. 4, July,2006.

[Zhangé&Ji05] Yongmian Zhang and Qiang Ji, Sensor Selection for Active Information Fusion, the
20th National Conference on Artificial Intelligence (AAAI-05), July 2005, Pittsburgh,
Pennsylvania.

[SteinbergBowman01] A. N. Steinberg and C. L. Bowman, Revisions to the JDL Data
Fusion Model, in D. L. Hall and J. Llinas (ed), Handbook of Multisensor Fusion, CRC Press,
2001

17




