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Abstract

Although formal methods for devel oping computer sys-
tems have been available for more than a decade, few have
had significant impact in practice. A major barrier to their
use is that software developers find formal methods diffi-
cult to understand and apply. One exception is a formal
method called SCR for specifying computer system require-
ments which, dueto its easy to use tabular notation and its
demonstrated scalability, has already achieved some suc-
cessinindustry. Recently, a set of software tools, including
aspecification editor, aconsi stency checker, asimulator, and
a verifier, has been developed to support the SCR method
[9, 11, 5]. This paper describes recent enhancementsto the
SCRtools: anew dependency graph browser whichdisplays
the dependencies among the variables in the specification,
an improved consistency checker which produces detailed
feedback about detected errors, and an assertion checker
which checks application properties during simulation. To
illustratethetool enhancements, a simpleautomobilecruise
control systemis presented and analyzed.

1. Introduction

Although formal methods for devel oping computer sys-
tems have been available for more than a decade, few of
these methods have had significant impact in the devel op-
ment of practical systems. A major impediment to the use
of formal methodsin industrial software development isthe
widespread view that the methods are impractical. Not only
do developers regard most formal methods as difficult to
understand and apply. In addition, they have serious doubts
about the scalability and cost-effectiveness of the methods.

A promising approach to overcoming these problemsisto
hide the logic languages associated with most forma meth-
ods and to adopt a notation, such as a graphica or tabular
notation, that devel opers find easier to user. Specifications
in the more “user-friendly" notation can be trandated au-
tomatically to a form more amenable to formal analysis.
Moreover, to scae effectively, a formal method must be

*Thiswork was supported by ONR and SPAWAR.

supported by powerful, easy to use tools. To the extent fea-
sible, the tools should detect software errors automatically
and provide easy to understand feedback useful in tracing
the cause of an error.

By providing a “user-friendly” tabular notation with
demonstrated scalability, a forma method caled SCR for
specifying the requirements of computer systems has a-
ready achieved some success in practice. Since SCR’sin-
troduction more than a decade ago [13, 1], many industrial
organizations, including Lockheed, Grumman, and Ontario
Hydro, have used the SCR method to specify requirements.
To support the SCR method, we have recently developed a
set of integrated software tools[9, 11, 5] to specify and an-
alyze system and software requirements. The toolsinclude
a specification editor for creating and modifying a require-
ments specification, a simulator for symbolically executing
the specification, a consistency checker which checks the
specification for well-formedness (e.g., syntax and typecor-
rectness, no missing cases, no circular definitions, and no
unwanted nondeterminism), and a verifier for analyzing the
specification for critical application properties.

To place SCR specifications in perspective, this paper
first compares an SCR requirements specification with two
other specifications, an abstract model useful in verification
and a specification using the commercially available prod-
uct STATEMATE. It then describes the current status of the
SCRtools, including three maj or enhancements added since
the publication of [10, 9]. These are a new dependency
graph browser which displays the dependencies among the
different variablesin the specification, an improved consis-
tency checker which produces examples of missing cases
and nondeterminism when either acoverage or digointness
error is detected, and an assertion checker which tests vari-
ous application propertiesduring simulation. We also show
how our toolssupport DURATION, alanguagefeature orig-
inally proposed by van Schouwen [25] to represent timein
SCR specifications. To illustrate the SCR method and our
tools, a requirements specification of a simple automobile
cruise control system is presented and analyzed. Finaly,
we present some lessons learned in experimental use of our
toolsin industrial applications.
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2. SCR Method: An Overview

2.1. SCR Specifications

A recent article by Shaw [22] presents and discusses a
number of different specifications of an automobile cruise
control system. Each of these specificationsisconstructed to
satisfy different objectives. For example, Atleeand Gannon
use alogic language to specify the different “modes’ of the
cruisecontrol system[4]. Their logiclanguage specification
isthen fed toamodel checker that analyzes the specification
for violations of selected properties. Another specification
of the cruise control system by Smith and Gerhart is rep-
resented using the graphical notation of STATEMATE and
is described by the authors as a“ design exercise" [23]. We
refer to the former specification as an abstract model and
thelatter as the STATEMATE specification.

One difference between the abstract moddl, the STATE-
MATE specification, and an SCR specification of the cruise
control system liesin thenotation. The abstract model isex-
pressed in alogic language, the STATEMATE specification
in agraphical notation, and the SCR specification in a tab-
ular format. Another differenceisthe target audience. The
abstract model is designed to be processed by a computer,
whereas both the SCR specification and the STATEMATE
specification are engineering documents, designed to beread
by software developers. The three specifications also differ
in athird respect—namely, in the specific information each
contains about the required system behavior.

The objective of the SCR specification is to describe the
externally visible behavior of the Cruise Control System.
To achieve this, the specification must describe the required
relation REQ between themonitored variables, which repre-
sent quantitiesin the environment that the system monitors,
and the controlled variables, which represent environmen-
tal quantitiesthat the system controls. In the cruise control
system, the position of the cruise control lever is an exam-
ple of a monitored variable; the position of the throttleis
an example of a controlled variable. The REQ relation be-
tween the monitored and controlled variables is one of the
four relations of the Parnas-Madey Four Variable Model, a
formal framework for describing the required behavior of a
computer system [20].

Atleeand Gannon’sabstract model isusedin verification
and, as a result, omits many details of the required system
behavior. For example, it does not describe the behavior
of the throttle. Because the properties anayzed in [4] are
independent of the throttle behavior and because a model
used in verification should only include information needed
to reason about selected properties, omitting information
about the throttleis appropriate. In fact, eliminatingirrele-
vantinformationisespecially important for model checking:
without dramatic reductionsin the size of the state space to
be analyzed, model checking isinfeasible,

The STATEMATE specification isin some respects more
detailed and in other respects less detailed than the SCR
specification. For example, it presents two views of the
required behavior, the functional view and the behavioral
view, and distinguishes control flows, data flows, and data
stores. The SCR requirements specification omitsthisdetail
(as doestheabstract model) because such detail isunneeded
for describing externally visible behavior. It presents asin-
gle*view" of therequired behavior and makesno distinction
between control flow and data flow nor between data flows
and data stores.

The SCR environmenta variables (the monitored and
controlled variables) are often more abstract than the vari-
ablessel ected when other methodsareapplied. For example,
the SCR specification of cruise control uses the monitored
variable Speed to denote the speed of the automaobile. In
contrast, the STATEMATE specification uses calculations
based on rotations of the automobil€’s drive shaft to rep-
resent the automobile's speed. In other cases, the SCR
environmental variables are less abstract than the variables
selected using other methods. The SCR specification of
cruise control isexplicit about the rel ationship between the
value of the monitored variable Lever and the positionin
which the driver holds the cruise control lever. In contrast,
the STATEMATE specification abstracts from much that is
directly observable by the driver.

In contrast to the abstract model, the SCR requirements
specification is a repository for al of the information that
developerswill need to construct the software for the cruise
control system. Hence, it is necessarily more detailed and
less abstract than amodel useful in verification. At thesame
time, an SCR specification contains less information than,
say, asoftware design document, sinceitsgoal isto describe
the blackbox behavior of the system only.

The SCR requirements method provides detailed guid-
ance on exactly what information belongsin a requirements
document, a conceptual model of the system to be devel-
oped, and specia language constructs to represent the sys-
tem requirements. This detailed guidance, system model,
and language constructs specialized for requirements spec-
ification are lacking in an approach based on STATEMATE
because STATEMATE, a genera -purpose method that can
be applied throughout software development, is not cus-
tomized for requirements specification.

Although the requirements specification for the Cruise
Control System presented in this paper is closeto a “red"
requirements specification useful to software developers,
three classes of information must be added for the specifi-
cation to be complete: a description of the I/0O devices the
system usesto measure and computethe monitored and con-
trolled quantities, the required timing and accuracy, and the
constraintsimposed on the system by physical laws and the
environment (therelation NAT in the Four Variable Modd!).



2.2. SCR Reguirements Modd

To provide a precise and detailed semantics for the SCR
method, we have devel oped the SCR requirements model,
which represents a system as a finite state automaton and
describes the monitored and controlled variables and other
constructs that make up an SCR specification in terms of
that automaton [12, 11]. To concisaly describe the required
relation between the monitored and controlled variables,
our model uses four constructs—modes, terms, conditions,
and events. A mode class is a partitioning of the system
states. Each equivalence class in the partition is called a
system mode (or simply mode). A term is any function of
monitored variables, modes, or other terms. A condition
is a predicate defined on a system state. An event occurs
when the value of any system variable changes (a system
variableisamonitored or controlled variable, amode class,
or a term). The notation “@(c) WHEN d” denotes a
conditioned event, which is defined by

@(c) WHEN d % —cA ¢ Ad,

wherethe unprimed condition ¢ isevaluated in the* current”
state, and the primed condition ¢’ is evaluated in the “new”
state. The environment may change a monitored quantity,
causing an input event. In response, the system updates
terms and mode classes and changes controlled quantities.

2.3. Cruise Control System

To illustrate the SCR constructs, this paper contains a
specification of areal automobilecruise control systemorig-
inaly specified by Kirby [16]. To make the specification
more understandabl e, our specification describesonly asub-
set of the behavior in the origind. A specia feature of the
CruiseControl Systemisthat timeisan important monitored
guantity. For example, to cause thethrottleto accelerate the
automobile, the driver must hold the cruise control lever in
the const positon for more than 1/2 second. Below, we
show how the DURATION construct can be used to repre-
sent this and other timing behavior in the specification of
the Cruise Control System.

The Cruise Control System monitorsseveral quantitiesin
the automobil€'s environment, such as the ignition switch,
the position of the cruise control lever, the automobile's
speed, and a service reset switch, and uses this informa
tion to control a throttle and to determine when a service
light illuminating the message, “Major Service Reguired"
is off, on, or flashing (i.e., intermittent). For example, if
the ignition is on, the engine running, and the brake off,
the driver can invoke cruise control by moving the cruise
control lever to the const position. Once cruise control
has been invoked, the system uses the automobile's actual
speed to determinewhether to set thethrottleto accelerate or
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Figure 1. Cruise Control Specification.

decelerate the automobile, or to maintain the current speed.
The driver overrides cruise control by engaging the brake,
resumes cruise control by moving the lever to r esune,
and exits cruise control by moving the lever to of f. To
determine when to illuminate the service light, the system
computes the number of milestraveled since the last main-
tenance and illuminates the light intermittently when one
threshold isreached and continuously when a higher thresh-
oldisreached.

Figure 1 shows how SCR constructs can be used to spec-
ify theregquirementsof theCruiseControl System. Themon-
itored variables, | gnOn, EngRunni ng, Act ual M | es,
Act ual Speed, Br ake, Lever, and SvcReset , repre-
sent the state of the automobil€ signition and engine (each
is off or on), the readings of the odometer and speedome-
ter, and the positions of the brake, cruise control lever, and
service reset switch. Althoughit is not shown in Figure 1,
the distinguished monitored variable Ti me isalso required
in this specification. The controlled variables, Thrott | e
and SvclLi ght, represent the state of the throttle and the
service light.

The specification contains one mode class and three
terms. The mode class Cr ui seCont r ol contains four
modes, O f, | nacti ve, Crui se, and Overri de. At
any given time, the system must be in one of these modes.
Turningtheignitionon causesthesystemtoleave Of f mode
andenter | nact i ve mode, whileturningthecruisecontrol
level to const when the brake is off and the engine run-
ning causes the system to enter Cr ui se mode. To override
cruise control (i.e., enter Over ri de), the driver turns the
lever to of f or appliesthe brake. The term Desi r edSpd
is set to the automobile's actua speed under certain condi-
tions, e.g., if the driver turns the lever to const when the
ignition is on, the engine running, and the brake off. The
term SvcM | es containsthe number of milesdriven since
the last maintenance; theterm M | esSvcReset is used
to compute SvcM | es.

The specification also includes severa conditions and
events. An example of a condition in the specification is
“Desi redSpd > Actual Speed". Two examples of
input events are “@T(Lever =of f)" (the driver moves
Lever from a position, such asr el ease, to of f) and
“@F(1 gnOn)" (the driver turns the ignition off), where



i 5 Carrd | Sei Lt e | O Coa lrad

Nawie - | Druissleirel Table Type: | e frawiktio:
Clanm: | Feds (s
Fernin
i urrw Ml = s Liparlln Mide
Ali [erdii gt jum
1 Wil grdr r
[EES e Wil e Ll R gl il -
Lralirs B M Bl
B | de =
B Ermbm -+
i k] O AT [} T |
= - - ¥
] W iDegh I =
e Ll il & romael WHER n
Ergh 3 B MO sk OF
T el & BEH e sk
Lrigh g B M Brals

Table 2. Condition Table for Thrott| e.

“@T(A)" denotes the event of A becoming true, “ @F(A)"
denotestheevent of A becoming false. Anexampleof acon-
ditioned event is “@T(Lever =r esune) WHEN | gnOn
A EngRunni ng A —Br ake" (thedriver movesLever to
r esumre when the ignition is on, the engine running, and
the brake off).

2.4. SCR Tables

Among the tables in SCR specifications are condition,
event, and modetransitiontables. Each table definesamath-
ematical function. A condition table describes a controlled
variable or term as a function of a mode and a condition;
an event table describes a controlled variable or term as a
function of a mode and an event. A mode transition table
describes amode as a function of amode and an event.

Tables 14, each constructed with our toolset, are part
of the system requirements specification for the Cruise
Control System. Table 1 is a mode transition table de-
scribing the mode class Cr ui seCont r ol as a function
of the current mode and the monitored variables Lever,
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Table 3. Event Table for Desi r edSpd.

I gnOn, EngRunni ng, and Br ake. The table defines all
events that change the value of Crui seControl . For
example, the third row states, “If Crui seControl is
I nactive, 1 gnOn and EngRunni ng are true, Br ake
isfalse (i.e, off), and the driver moves Lever toconst,
then Cr ui seCont r ol entersthemode Cr ui se." Events
that do not change the vaue of the mode class are omitted
from thetable.

Table 2 is a condition table describing the controlled
variable Thr ot t | e as a function of the current mode and
thevariablesAct ual Speed, Desi r edSpd,andLever .
It uses a new language feature supported by our tool called
DURATION. This feature alows the specifier to define a
predicate onthelength of timethesystem hasbeeninagiven
state. To illustrate how DURATION is used, we consider
the condition, “DURATION(Lever = const) > 500" in the
first row of Table 2. This condition is true if the cruise
control lever has been in const for more than 500 ms.
Thus, if the lever enters the const position at time ¢ and
remains there for 600 ms, a time ¢ + 400, the condition
“DURATION(Lever = const) > 500" isfal se; at timet +550,
the conditionistrue.

Table 3 is an event table describing the term
Desi r edSpd as a function of the current mode and the
variables 1 gnOn, EngRunni ng, Brake, and Lever.
Like mode transition tables, event tables make explicit only
those events that cause the variable defined by the table to
change. Table 4 is dso an event table. It describes the
controlled variable SvcLi ght asafunction of the current
mode and the variables SvcReset and SvcM | es.

To illustrate how SCR tables can be transformed into
functions, we present below the function that can be derived
from Table 1 using our model [11]. Thisfunction describes
therequired behavior of themodeclass Cr ui seCont r ol .
(To save space, weabbreviateCr ui seCont r ol asCCand
EngRunni ng asEngR)
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CC/

Of if [CC=I nactive A @(lgnOn)]v
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[CC=Override A @(lgnOn)]

if [CC=Cff A @(1gnOn)]vVv
[CC=Cr ui se A @(EngR) v
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if [CC=I nactive A @(Lever=const)
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[CC=Override A [@(Lever=resune)
Vv @(Lever=const)] A
I gnOn A EngR A —Br ake]

if CC=Cr ui se A
[@(Brake) v @(Lever=0ff)]

cCc otherwise

I nactive
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The dependencies set D, of a variable r is the set of
variables that determine the value of the variable. Because
variables in SCR specifications can depend on varigblesin
both the current state and the new state, both the unprimed
and primed versions of avariable can appear in adependen-
cies set. From Table 1, we can derive the dependencies set
D¢ fortheCrui seCont r ol mode class:

{CC, 1gnOn, I gnOn’ , Brake, Brake' , Lever, Lever’' , EngR, EngR }

The value Cr ui seControl isin the dependencies set
D¢ ¢ because thenew valueof Cr ui seCont r ol depends
onitscurrent value. Each dependencies set D, isthe union
of two sets D?2'¢ and D%, where D2'¢ (the old dependen-
cies set) isthe set of variables on which variable » depends
in the current state and D" (the new dependencies set) is
the set of variables on which » dependsin the new state.

To avoid circular definitions, we require that the new de-
pendencies sets define a partial order on the variablesin an
SCR specification [11, 12]. The monitored variables occur
firstinthepartial order becausethey only depend on changes
that occur in the environment (i.e., their dependencies sets
areempty). The controlled variablesoccur last because they
can depend on any of the other variablesin the specification.
The mode classes and terms appear in the partial order be-
tween the monitored variables and the controlled variables.
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Figure 2. Contents of the Specification.

3. Current Statusof the SCR Tools

Thissection describesthe current status of thefivetoolsin
our toolset: the specification editor, the dependency graph
browser, the consistency checker, the simulator, and the
verifier. The dependency graph browser and the verification
capability are new. The specification editor, the consis-
tency checker, and the simulator have recently undergone
substantial improvements.

3.1. Specification Editor

To create, modify, or display a given requirements spec-
ification, the user invokes the specification editor. Asiil-
lustrated in Figure 2, the editor lists the dictionaries and
tables which make up the specification. The dictionaries
define the static information in the specification, such asthe
names, values, and types of the variables; the user-defined
types, etc. The tables are organized into three groups. ta-
bles defining terms, tables defining controlled variabl es, and
mode transition tables.

Each specification contains five dictionaries: the con-
stant, type, mode class, variable, and assertion dictionaries.
Figures 3-5 show the variable, type, and assertion dictio-
nariesfor the cruise control system. Time, which appearsin
both the variable dictionary in Figure 3 and the type dictio-
nary in Figure 4, is represented as an non-negative integer
with initia value zero. In each new state, time either stays
the same or increases. In the Cruise Control specification,
timeis measured in milliseconds.

The assertion dictionary, arecent addition to thetool set,
listsaset of application propertiesthat the specifier can test
viasimulation, or verify using amodel checker or mechan-
ical theorem prover.  The assertion dictionary shown in
Figure 5 shows two kinds of properties: those that hold in



Crdns Cpprskpwees : iwissl birissey
Tam {1 Traisal vl an e Tl =
LT
=ik Sl |- (5] | M et e e bt e L
| e 1w bl
1 1 | I
. e | Leaed | . T it ol e bt
Frus B e | bl e |s= (5 Brir o THE i#0 iim drroe om opd gy
| | | 12 Erars
b B | el o BT |s® = Togfrrasy = TLE 0fF she ey 10
| | | reirge
— - { 4 4
| s B | el | |ww Ea | Vinlie = THNE Y b g g o
| | 1e o O it
= Fam i A 1 = |w =
|
T [Tt bood ss | P | % 5
| |
= 4 4
1 ] i :_ ] L]
[———— Tas Lited | li s
| |
T 1=
e I . 1 i P
| |
| 4 |
= T=a it | It L]
] 1
| | 4 2
i g Lo i il Bl |= e
_ . . I ,
a1 Lawirsilnd | dreii i | it | Tem
| |
i

Figure 3. Variable Dictionary.

| CruHS M pIrm  1pRF Do

| - Vg i Lagal Nlusa
Pa
L [y | Wit | 1o, e
e e L] |u ey, rubor o
e ama
wlinh | S——r | b &, -
| i
PP — 1 | I
e Tt | B L Vo | Do, a1
i |5 S [ ], s
dcul. o
WTims g | BT ek | T, o]
L=
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every reachable state and those that holdin any pair of adja
cent reachable states. To makeit easy for usersto formulate
the properties, the propertiesare expressed in standard logic
rather than some special logic, such astemporal logic. The
first property aBr akeOver ri de, which states “Br ake =
Throt t| e=of f," isone that must hold in every reachable
state. The assertion al nact i ve refers to variablesin two
adjacent states. In the column labeled “D/E?" in Figure 5,
“E" and “D" indicate whether checking of the associated
assertion is enabled or disabled.
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Figure 5. Assertion Dictionary.
3.2. Dependency Graph Browser

Onecriticism of SCR requirements specificationsisthat,
while they give detailed information about specific aspects
of the required system behavior, devel oping intuition about
how thedifferent partsof the specification arerelated isdiffi-
cult, especially for large specifications. To addressthisprob-
lem, we have developed a dependency graph browser that
displays the dependencies among the variables in a given
specification. Figure 6 contains a graph showing the depen-
dencies among the variablesin the Cruise Control specifica-
tion. Our tool constructed the graph automatically from the
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requirements specification. The monitored variables appear
as the leftmost nodes in the graph, the controlled variables
appear on theright, and the nodesrepresenting mode classes
and terms appear in the middle.

The dependency graph in Figure 6 provides important
information about the Cruise Control specification. For
example, it shows that the mode class Cr ui seCont r ol
is defined in terms of the monitored variables | gnOn,
EngRunni ng, Br ake, and Lever as well as its previ-
ous value. Review of the graph aso shows that the two
controlled variables Thr ot t | e and SvcLi ght both de-
pend on the mode class Cr ui seControl .

The dependency graph can revea the presence of errors
in the dependencies relation. Two kinds of errors are pos-
sible: circular dependencies and variables with incomplete
definitions. Circular dependencies can only occur among
variables in the new state. (The SCR semantics alow a
variableto depend on any variablein the current state [11].)
A variable has an incomplete definition when it does not
lie on some path in the graph that includes both a con-
trolled variable and a monitored variable. Two kinds of
incompleteness can occur: a variable is not connected to
a controlled variable (called a right orphan) or a variable
which is not a monitored variable has a null dependencies
set (called a left orphan). Figure 7 shows a graph with a
cyclic dependency, and Figure 8 shows a dependency graph
with aright orphan. In Figure 7, the thick arrow (between
M | esSvcReset toSvclLi ght)indicatesacircular defi-
nitioninvolvingthe controlled variable SvcLi ght andthe
termsSvcM | es,andM | esSvcReset . InFigure8, the
nodelabeled Desi r edSpd isaright orphan becauseitisa
term on which no controlled variable depends.

Given a set of variables RF', the set of monitored vari-
ables/R C RF',theset of controlled variablesOR C RF,
and the dependencies sets D, for each » in RF', we can
construct the dependency graph for the variables in RF'.

Figure 7. Graph with a Cycle.
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Figure 8. Graph with a Right Orphan.

Assuming that there are n levels in the dependency graph
with the monitored variables at level 1 and the controlled
variables a level n, then the sets of variables at each level,
Bi, Bo, ..., By, can be computed recursively as follows:

Step 1.
o Lt B=RF—-IRand B, = OR.

ForStep b,k =2,3,...,n— 1, compute B,,_1, Bn_2, - . .,
B, asfollows:

¢ Removeal elements of B,,_ 4, from B.

o If B =0,thengoto Stepn.

e Otherwise, B,_ry1={r€ B|Vr' € B:r ¢ D, }.
Step n:

e B =1IR.

By using the dependenciessets 1D, which describeal | depen-
dencies, the above algorithm producesthe B,’sfor the graph
showing all dependencies. By using the new dependencies
sets D, the above agorithm produces the B;’s for the
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Figure 9. Dependency Graph of Complete
Cruise Control.

graph showing the variable dependencies in the new state.
A dlight modification of the above algorithm is required in
the presence of cycles.

For large specifications, the complete dependency graph
is too big to fit on the user’s display. Fortunately, a user
typically wants to study only a small subset of the depen-
dency graph. To display a subgraph, the user first finds the
portion of the graph of interest and uses the mouse to select
thevariables of interest. Then, the user can display the sub-
graph containing all variables that each of the selected vari-
ables depends on, or alternatively all variables that depend
on the selected variables. Figure 9 shows the dependency
graph of the larger Cruise Control System originaly spec-
ified by Kirby. Figure 6 shows the simple version of this
system specified in this paper, which has fewer variables.
To display this subset, the user selected the two controlled
variables Throt t | e and SvcLi ght and then extracted
the subgraph containing al variables on which these two
variables depend.

3.3. Consistency Checker

Our consistency checker [11] verifies application-
independent properties derived from our requirements
model. These checks determine whether the specifications
are well-formed. Among the errorsthe consistency checker
detects are syntax and type errors, instances of incomplete-
ness in the variable definitions and dictionaries, missing
initial values, unreachable modes, and circular definitions
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Figure 10. Disjointness Error.

(such as the one shown in Figure 7). The tool also checks
for missing cases (called Coverage errors) and nondeter-
minism (called Digointness errors).

To check for Digointnessand Coverage, the consistency
checker determines whether a given logical expressionisa
tautology [11]. For example, to check two conditions ¢;
and ¢, in arow of a condition table for Digjointness, the
consistency checker evaluates the logical expression ¢; A
¢, = false. To check conditionscy, ca, .. ., ¢, inarow of a
condition table for Coverage, the tool evaluates the logical
expression —fex V ea V ...V ¢,] = false To determine
whether these logica expressions are tautologies, our tool
applies a tableaux-based decision procedure that encodes
theagorithmin [24].

When our consistency checker detects Coverageand Dis-
jointness errors, it provides detailed feedback. The tool
identifies the location of the error (e.g., the specific table
entry or entries) and also provides an example of a system
state or two adjacent system states containingtheerror. This
detailed feedback significantly facilitates user correction of
errors.

Toillustratethetool’ shandling of adig ocintnesserror, we
have modified Table 1 toinclude between rows3 and 4 anew
row stating, “If in Cr ui se mode the driver moves Lever
to of f when Br ake is off, then the system enters mode
O f." (See Figure 10.) To check the modified tablefor dis-
jointness, we invoked the consistency checker. The Results
Box in Figure 11 reveals adigjointness error. Double click-
ingonthelineDi sj oi nt ness ERROR. . . displaysthe
modified table with the pair of entries that overlap high-
lighted. (See Figure 10.) Thisalso causes a specific case of
overlap to appear in the Messages Box of the Consistency
Checker (see the bottom of Figure 11). This message states
that any pair of adjacent states satisfying Lever #of f A
Lever’ =off A —Brake A CruiseControl = O uise
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Figure 11. Feedback for Disjointness Error.

al so satisfies both highlighted entries.

To check the two entries for Digointness, the tautol-
ogy checker evaluated the expression, [@T(Lever =of f ) A
—-Brake] A [@T(Brake) v @T(Lever =of f )] = false. The
firstdigunctinthisexpression, @T(Lever =of f ) A —~Br ake
A @T(Br ake) evaluatesto falsedueto theassumptionin our
requirements model that only one monitored variable can
change at each state transition [11]. The second disjunct,
@T(Lever =of f) A —Brake A @T(Lever=off), can be
simplified to @T(Lever =of f) A —Brake. Because this
expression does not equd false, the statement is not a tau-
tology. Thisexpression providesthe counterexample shown
inthe ResultsBox in Figure 11.

To illustrate the tool’s handling of a coverage error, we
modified the first row of Table 2 (see Figure 12). We then
applied the consistency checker, which detected a coverage
error. DoubleclickingonthelineCover age ERROR. ..
displays the modified table with the row containing the rel-
evant entries highlighted. This also causes an example of
amissing case to appear in the Messages Box of the Con-
sistency Checker (see the bottom of Figure 13): the ta-
ble does not define the required behavior of Throttle for a
system state satisfying Act ual Speed > DesiredSpd A
Dur ati onConst > 500.

A Coverage error occurs when the tautology checker
processes aformulathat doesnot evaluatetofalse. Tofind a
counterexample, we can express the formulain Digunctive

Figure 12. Coverage Error.
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Figure 13. Feedback for Coverage Error.

Normal Form and then search for thefirst conjunct that does
not evaluate to false. The tool presents this conjunct to the
user as a counterexample.

To evauate the first row of the table in Figure 12 for
coverage, the tautology checker evaluated the expression'
[DesiredSpd < Actual Spd] A [(DesiredSpd #
Actual Spd) v  (DurationConst > 500)] A
[(DesiredSpd > Actual Spd) v (DurationConst >
500)] A true. The first conjunct of the expression in Dis-
junctive Normal Formis[(Desi redSpd < Act ual Spd) A
(Desiredspd # Actual Spd) A (DesiredSpd >
Actual Spd) A true), which reduces to false. The
second conjunct is [(DesiredSpd < Actual Spd) A
(DesiredsSpd # Actual Spd) A (DurationConst >
500) A true], which simplifies to (Durati onConst >
500) A (DesiredSpd < Actual Spd). The tool presents
this simple form to the user as a counterexample (see Fig-
ure 13).

3.4. Assertion Checking during Simulation

The user can validate the specification by executing the
simulator and analyzing the result to ensure that the speci-
fication captures the intended behavior. In the new version
of the simulator, the user can also define several properties
believed to be true of the required system behavior and, us-

1Although our tool represents the condition
DURATION(Level =const) > 500 as -DUR_Lever_.EQ_co > 500, in
the formulas we represent this expression as Dur at i onConst > 500.
We represent other conditions containing DURATION similarly.
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Figure 14. Simulator Display.

ing simulation, execute a series of scenarios to determine
whether any violate the properties.

The user begins by invoking the simulator and then step-
ping through a scenario, a sequence of input events. To
compute each new state from an input event and the current
gtate, the simulator applies the transform (i.e., next-state)
function of our requirements model. As each new state is
computed, the Simulator window is updated to reflect the
new state. The simulator also supports a second window,
caled the Log. The Log, which shows the state history,
displaystheinitial state in full. For each subsequent state,
it lists the input event that caused the transition along with
each dependent variable (mode class, term, or controlled
variable) whose va ue has changed.

The scenario in Figure 15 demonstrates the behavior of
the Throt t | e as defined by Table 2. When the ignition
isturned on, the engine running, and the brake off, moving
the cruise control lever to const causes the throttle to
maintain the current speed of 60 mph (State 6). Once the
driver releases the lever and the actual speed drops to 55
mph, the throttle accel erates the automobile (State 9).

To display the rule that caused a given dependent vari-
able to change value, the user double clicks on the variable
and its value in the Log. The simulator then displays the
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Figure 15. Log with a Violated Assertion.
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Figure 16. Table with Rule Highlighted.

table that defines the variable, highlighting the rule that
caused the change. For example, double clicking on the
expression “Thrott | e = mai nt ai n" in State 6 of the
Log in Figure 15 causes the simulator to display the ta
ble, shownin Figure 16, that caused Thr ot t | e to change
from of f to mai ntai n. As shown in Figure 16, the
simulator has highlighted the rule that caused the change:
“If the mode is Cr ui seCont r ol , Desi r edSpd equas
Act ual Speed, and Dur ati onConst is no more than
500 ms, then Throt t| eismai ntai n."

The bottom line of Figure 15 demonstrates the detection
by the simulator of a violated assertion. The user simply
clicksonthelineintheLog reportingtheviolationtodisplay
the violated assertion. The tool then displays the assertion
dictionary with the viol ated assertion highlighted (Figure 5,
which omitsthehighlightingto improvereadability). Inthis
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case, theviolated assertion, aBr akeQver ri de, statesthat
when the brake is applied, the throttle, which is controlled
by the cruise control, should be off. Inspection of the Log
(Figure 15) raises the question: Why didn't the throttle go
off? Clickingon Throttlein State 10 of the Log (thelast time
Throttle changed) displays the table defining Throttle (see
Figure 16). Thetable showsthat Throttl e = of f only
when the mode class Cr ui seCont r ol # Crui se. This
raisesthe question: Why isCr ui seCont rol = Crui se
whenthedriver ispressing thebrake(Br ake = truein State
11)?

Clicking on Cr ui seCont r ol in State 6 (the last time
it changed) displays the mode transition table (Figure 17).
We see that the system is still in mode Cr ui se while the
brake is pressed because there is no transition out of mode
Cr ui se when the driver presses the brake (denoted by
the event @T(Br ake)). The event in the sixth row of the
modetransitiontableis @T(Lever = of f). It should read
@T(Lever = of f) OR @T(Br ake).

Assertion checking during simulation differs in impor-
tant ways from model checking, aform of verification that
checks al system states (or al pairs of adjacent system
states) for violations. In contrast, assertion checking during
simulation isaform of testing which only analyzes a small
number of the possible states.

Assertion checking during simulation has an important
advantage: it is much less expensive computationally than
model checking. Although the complexity of model check-
ing simplepropertiesislinear with respect to the state space,
the state space of SCR specifications, even small ones, is
usualy huge. For example, a simple analysis of the vari-
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able values and type information in the variable and type
dictionaries (see Figures 3 and 4) shows that the simple
cruise control system has over 10%° states. Because check-
ing SCR specifications requires checking both the current
state and the new state, the number of states to be analyzed
exceeds 10%! Hence, it makes sense to check assertions
viasimulation early in the devel opment of the requirements
specification to weed out errors; model checking is more
cost-effective when the requirements specification is more
mature. Assertion checking also requires much less effort.
Before model checking can proceed, an abstract model with
fewer states must be extracted from the specification. Gen-
erating such amodel can be nontrivial.

3.5. Verifier

We recently integrated Spin [14], a tool that uses state
exploration to verify properties of finite state machine mod-
els, intoour toolset [5]. Our state-based requirements model
provides a formal basis for using such atool to verify re-
quirements specifications. To do modd checking, the user
enters the property to be analyzed into the assertion dic-
tionary and then invokes Spin from within the toolset to
check the specification for the property. Because the large
state space associated with most SCR specifications makes
model checking infeasible, the user must provide Spin with
an abstract model of the SCR specification. Reference [5]
describes how our tool trandates SCR specifications into
Promela, the language of Spin, and the techniques we de-
vel oped to generate abstract model s from an SCR specifica-
tion. To date, we have used Spinto verify two requirements
specifications, one a small safety injection system [10] and
the second a simple autopilot [6], for state invariant prop-
erties. These properties can involve any variables in the
specifications—terms and controlled variables as well as
mode classes and monitored variables.

4. Applying the Tools in Practice

Our tools, including two of the enhancements described
above, haveal ready proven valuablein ongoing experiments
in which our group and colleagues in industry have applied
the SCR method to practical applications. Recently, the SCR
tools have been used extensively by engineers at Rockwell
CollinsAvionics & Communicationsto develop and to ana
lyze an SCR specification of areasonably large and complex
avionics application. In developing the SCR specification,
theengineers detected numerouserrors, somein creating the
SCR specification, others by running the simulator, and till
others by applying consistency checking [18]. A software
engineer at NORTEL has also used our toolsto develop and
analyze an SCR specification of a Steamer Boiler Controller
Problem and also reportsthat the toolswere helpful [26].



Our experience and the experience of colleagues at both
Rockwell and NORTEL isthat software tools are not only
useful but essential for detecting errors in large specifica-
tions [18, 26]. Although manual inspections detect some
errors, our toolsfind errors that manual inspections miss no
matter how careful the devel opersare in preparing the spec-
ification. Thisisevidenced by the experience of an engineer
at Rockwell, who reports that

...even preliminary execution of the specifica-
tion and completeness and consistency checking
has found severa errors in a specification that
represented our best effort at producing a correct
specification manually [18].

In the case of large specifications, detecting the cause of
an error can be very difficult and time-consuming without
counterexamples such as those described in Section 3.4. To
determine the cause of an error, the devel oper could analyze
the events and conditions highlighted by the tool, but such
analysis is tedious and error-prone. Most often, the tool
can find a counterexampl e much more quickly than a person
can. Oncethedevel oper understandsthe error, he or she can
look for a solution.

The dependency graph browser has been especialy use-
ful during the early stages in the development of an SCR
requirements specification of a safety-critical Navy applica
tion. The basis for this effort is the specification produced
by the Navy contractor. This specification, a combination
of prose, diagrams, and formal statements of the required
system properties, contains over 300 variables. Our un-
derstanding and that of the Navy manager of the depen-
dencies among the many system variables has been aided
enormously by the dependency graph generated by our tool.
Without understanding how the variables are related, speci-
fying the system behavior in SCR would be very hard.

Applying our techniquesto practical systems has led us
to improve the tools in other ways as well. For example,
occasionally our consistency checker cannot determine in
a short time whether a complex expression is a tautol ogy.
To prevent the tool from becoming mired in lengthy and
complex analysis, wehaveinstalled anew tool featurewhich
permits the user to set a maximum time for anadysis of a
givenlogica expression. Thisallowsthechecker toperform
the easy analyses first. The more complex analyses can be
postponed, or alternatively the user can study the expression
that is causing a problem to determine why the analysis
requires so much time,

Although assertion checking during simulation is avail-
able, our industrial colleagues have not yet used thisfeature.
Once a more complete SCR specification of the Navy ap-
plication is ready, we plan to use assertion checking during
simulation to analyze the specification for the safety prop-
erties presented in the original contractor specification.
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5. Related Work

Thetwo techniquesmost closely related to oursare Table-
wise [15] and the Requirements State Machine Language
(RSML) and associated tools [17, 8]. Tablewise, a tech-
nique for processing decision tables, checks atable for both
Digointness (called “consistency”) and Coverage (called
“completeness’). It improves on earlier techniques based
on decision tables by supporting nonbool ean variables.

The primary goa in the RSML research is to develop
techniques for producing safe systems. RSML, which was
designed to describe real-time process control systems, uses
a combination of the graphical Statecharts notation [7] and
tables. A prototype tool has been developed for checking
RSML specifications for “completeness’ (i.e., every possi-
bleinput event and the system’s response to the event must
be stated explicitly) and “consistency” (i.e., no input event
can cause atransition to two different system states). The
tool, which has been applied to large portions of the re-
quirements specification of TCAS I1, a collision avoidance
system for commercial aircraft, detected errors not caught
by an extensive manua review. Other tools are also being
developed to analyze RSML specifications.

Another related system isthe Prototype Verification Sys-
tem (PVS) [19], aspecification and verification environment
developed by SRI. PV S consists of a specification language,
atype checker, and an interactive proof checker. The PVS
specification languageisbased on atyped higher-order logic.
The PV Sprover performsaseries of inference stepsthat can
reduce aproof goa to simpler subgoals. These subgoa scan
be discharged automatically by the primitive proof steps of
the prover. The primitive proof steps incorporate decision
procedures for doing arithmetic, automatic rewriting, and
BDD-based boolean simplification. Although some are at-
tempting to use the language of PVS to produce require-
ments specifications, PVSis primarily designed to specify
mathematical models and to prove theorems about those
models using deductive reasoning supported by powerful
decision procedures.

6. Conclusions

While the enhancements described in this paper are rel-
atively straightforward, they have helped to make our tools
significantly more useful for industrial-strength applica
tions. Further enhancements to the tools are planned:

o Although the number of cases the consistency checker
can handle has increased substantially in the period
sinceitsintroduction, occasionally thechecker encoun-
terslogical expressionsthat aretoo complex to analyze
efficiently. We are investigating tools such as Omega
[21] and PVS that can rewrite and simplify these ex-
pressions so they may be analyzed more efficiently.



¢ Inanother project, we have built an environment called
TAME for specifying and proving properties about
real-time systems on top of PVS[2, 3]. We are cur-
rently exploring theintegration of TAME into our SCR
toolset. Integration of TAME will allow the user of our
toolsto verify SCR specifications using a mechanical
theorem prover.

Our hope isthat our enhanced toolswill be used to pro-
duce high-quality requirements specifications. These spec-
ifications should lead to systems that are more likely to
perform as required and less likely to lead to accidents.
The existence of high-quality reguirements specifications
should also lead to significant savings in software devel op-
ment costs.
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