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Abstract

A system of ordinary differential equations is formulated to describe the pathogenesis of HIV
infection, wherein certain important features that have been shown important by recent ex-
perimental research are incorporated in the model. These include the role of CD4+ memory
cells that serve as a major reservoir of latently infected cells, a critical role for T-helper cells
in the generation of CD8 memory cells capable of efficient recall response, and stimulation
by antigens other than HIV. A stability analysis illustrates the capability of this model in
admitting multiple locally asymptotically stable (locally a.s.) off-treatment equilibria. The
phenomenon of “viral blips” experienced by some patients on therapy with viral load levels
suppressed below the detection limit is also investigated. Censored clinical data is used to
demonstrate that this model provides reasonable fits to all the patient data available for this
study and, moreover, that it exhibits impressive predictive capability.
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1 Introduction

Since the seminal work of Ho, et al., [18] demonstrated the promise for elucidating HIV
disease mechanisms through mathematical modeling, a wide variety of models have been
proposed to describe various aspects of in-host HIV infection dynamics (e.g., [1, 2, 3, 12, 16,
25, 26]). The most basic of these models typically include two or three of the key dynamic
compartments: virus, uninfected target cells, and infected cells. These compartmental de-
pictions lead to systems of linear or nonlinear ordinary differential equations in terms of state
variables representing the concentrations in each compartment and parameters describing vi-
ral production and clearance, cell infection and death rate, treatment efficacy, etc. Solutions
for the model states yield the time course of viral load and CD4+ counts, for example.

Although such models can be expected only to approximate the myriad processes underlying
HIV pathogenesis, when used in conjunction with data as part of designed experiments, these
models can be powerful tools in answering questions about the pathogenesis of HIV infection
or similar biological processes. Mathematical models can also stimulate further clinical and
laboratory research [26]. For example, early applications of linear systems to short-term
data on patients undergoing ARV therapy suggested the now widely-held theory of very
rapid and constant turnover of viral and infected cell populations [18, 25], contradicting
previous assumptions that stable viral and CD4+ concentrations during the clinical latency
period of chronic HIV infection are due to absence of significant viral replication.

Some important features of HIV pathogenesis and the cellular immune response that have
emerged in recent research include a clearer delineation of the importance of memory CD4+

T-cells as a latent reservoir of HIV [17, 33] and a critical role for T-helper cells in the
generation of CD8 memory cells capable of an efficient recall response [4, 8, 19]. The authors
in [33] indicate that, even in treated patients who have had no detectable viremia for as long
as 7 years, the reservoir decays so slowly that early initiation of Highly Active Anti-Retroviral
Therapy (HAART) with the goal of virus eradication is not likely to succeed. This motivates
us to develop a model that incorporates these features. In any discussions of mathematical
modeling of complex systems it is appropriate to point out that while complex models may
be needed to provide accurate descriptions of the underlying dynamics, the models are most
useful when they can be compared to clinical and/or experimental data and can also be
used for prediction. In developing models for HIV infection and treatment or some other
biological phenomenon, this requires a balance between complexity and utility. Hence, in
this paper we do not try to formulate a model that reflects all features of cellular immune
response as well as all host and viral factors. Instead, we attempt to develop a model that
can capture the most salient features of disease progression, that can be supported and
validated based on data, one for which parameters can be plausibly estimated, one that has
predictive capabilities, and one for which control/drug therapy design is tractable. While the
model developed and analyzed here is new, it modifies and extends both conceptually and
structurally the predictive model in [3]. That model included both CD4+/viral dynamics
as in models discussed in [12] as well as immune response compartments whose importance
have been earlier established [10, 24, 39] – see the discussions in [1].
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The paper is organized as follows. In Section 2, a system of ordinary differential equations is
developed to describe the pathogenesis of HIV and the cellular immune response. In Section
3 we discuss the ability of the model to admit multiple locally a.s. off-treatment equilibria.
In Section 4 we investigate a possible mechanism for producing viral blips and elucidate the
role of latently-infected CD4+ memory cells and the effect of CD4+ help on CD8+ memory
during the ensuing immune response. The expectation maximization algorithm leading to
weighted least-squares techniques is employed in Section 5 to fit the model to clinical data
with lower limit censoring. The predictive capability of the model is also investigated by using
simulation results, with parameters estimated from only half of the longitudinal observations,
to predict the immune response in the latter half and comparing these predictions to clinical
observations and model results obtained from fitting the full longitudinal data sets. Finally
we close with summary conclusions and remarks in Section 6.

2 HIV Model

The model we develop in this paper conceptually modifies and extends the model in [3],
wherein two types of target cells (CD4+ T-cells and macrophages), along with their cor-
responding infected states, free virus, and immune effector cells (CTL) are included in the
model. Clinical data fitting results show that the preliminary model of [3] provides rea-
sonable fits to most patient data and has impressive predictive capability when comparing
model simulations, with parameters based on estimation using only half of the longitudinal
observations, to the full longitudinal data sets. However, that model does not incorporate
some important features of HIV pathogenesis and the cellular immune response, such as
CD4+ memory cells as the major reservoir of latently infected cells and a critical role for
T-helper cells in the generation of CD8 memory cells capable of an efficient recall response.
To incorporate these important features, we thus seek a model that includes some measure
of CD4+ T-helper cells, infected memory CD4+ T-cells and HIV-specific memory CD8+
T-cells. To retain the simplicity of the model, secondary target cells, such as macrophages,
are not included as a compartment in our new model. It is worth noting that omitting the
secondary target cells should not affect our clinical data fitting and predictive capabilities
since this type of cell, even though it is very important at the beginning of infection, does
not contribute significantly to the virus pool in the long run. The model compartments are
illustrated in Table 1, wherein the resting CD4+ T-cells (T2) are assumed to include naive
CD4+ T-cells and memory CD4+ T-cells. This is reasonable since these two types of cells
have similar behavior such as longer life spans and distribution in the lymphoid tissue. Once
these resting CD4+ T-cells become activated, either through antigen priming of naive cells
or reactivation of memory cells, they are more susceptible to HIV infection than resting cells
and suffer elevated mortality. Hence, we include these activated naive cells and reactivated
memory cells in the other compartment as activated CD4+ T-cells (T1). Infected resting
and activated cells are represented by the T ∗

2 and T ∗
1 states, respectively. A schematic of this

new model is depicted in Fig. 1.

The corresponding compartmental ordinary differential equation (ODE) model for in-host
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states unit description
T1 cells/µl-blood uninfected activated CD4+ T-cells
T ∗

1 cells/µl-blood infected activated CD4+ T-cells
T2 cells/µl-blood uninfected resting CD4+ T-cells
T ∗

2 cells/µl-blood infected resting CD4+ T-cells
VI RNA copies/ml-plasma infectious free virus
VNI RNA copies/ml-plasma non-infectious free virus
E1 cells/µl-blood HIV-specific effector CD8+ T-cells
E2 cells/µl-blood HIV-specific memory CD8+ T-cells

Table 1: Model States.

Figure 1: Flow chart of model (2.1), where PI and RTI denote protease inhibitor and reverse
transcriptase inhibitor, respectively.
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HIV infection dynamics is based on balance laws and is given by

Ṫ1 = −d1T1 − (1− ξ1(t))k1VIT1 − γT T1 + pT

(
aT VI

VI+KV
+ aA

)
T2,

Ṫ ∗
1 = (1− ξ1(t))k1VIT1 − δT ∗

1 −mE1T
∗
1 − γT T ∗

1 + pT

(
aT VI

VI+KV
+ aA

)
T ∗

2 ,

Ṫ2 = λT
Ks

VI+Ks
+ γT T1 − d2T2 − (1− fξ1(t))k2VIT2 −

(
aT VI

VI+KV
+ aA

)
T2,

Ṫ ∗
2 = γT T ∗

1 + (1− fξ1(t))k2VIT2 − d2T
∗
2 −

(
aT VI

VI+KV
+ aA

)
T ∗

2 ,

V̇I = (1− ξ2(t))103NT δT ∗
1 − cVI − 103[(1− ξ1(t))ρ1k1T1 + (1− fξ1(t))ρ2k2T2]VI ,

V̇NI = ξ2(t)103NT δT ∗
1 − cVNI ,

Ė1 = λE +
bE1T ∗1

T ∗1 +Kb1
E1 − dET ∗1

T ∗1 +Kd
E1 − δE1E1 − γE

T1+T ∗1
T1+T ∗1 +Kγ

E1 + pEaEVI

VI+KV
E2,

Ė2 = γE
T1+T ∗1

T1+T ∗1 +Kγ
E1 + bE2Kb2

E2+Kb2
E2 − δE2E2 − aEVI

VI+KV
E2,

(2.1)

with an initial condition vector

[T1(0), T ∗
1 (0), T2(0), T ∗

2 (0), VI(0), VNI(0), E1(0), E2(0)]T .

Here the factors 103 are introduced to convert between microliter and milliliter scales, pre-
serving the units from some of the earlier published papers [1, 10]. The treatment factors
ξ1(t) = ε1u(t) and ξ2(t) = ε2u(t) represent the effective treatment impact, consisting of effi-
cacy factors ε1 modeling the relative effectiveness of reverse transcriptase inhibitor (RTI), ε2

describing the relative effectiveness of protease inhibitor (PI), and a time-dependent treat-
ment function u(t) (0 ≤ u(t) ≤ 1) representing HAART drug level, where u(t) = 0 is fully off
and u(t) = 1 is fully on. Since HIV treatment is nearly always administered as combination
therapy, we do not consider the possibility of monotherapy, even for a limited period of time,
though this could be implemented by considering separate treatment functions.

The input term λT
Ks

VI+Ks
for the T2 compartment is used to account for the source rate of

uninfected resting CD4+ T-cells. This term depends on the viral load level since the thymus
production can be diminished if the viral load is too high [22]. To limit the introduction
of additional parameters, we assume that uninfected and infected resting CD4+ T-cells (T2

and T ∗
2 , respectively) have the same natural death rate d2. We remark that activated CD4+

T-cells have a higher natural death rate than resting memory and naive cells, and we use
d1 to denote the natural death rate of uninfected activated CD4+ T-cells T1. The immune
effector cells E1 remove infected activated cells CD4+ T-cells T ∗

1 from the system by cell lysis
with a rate m. However, immune effector cells do not remove infected resting cells T ∗

2 , since
these cells are in a quiescent state where the virus is not replicating and, thereby, escape the
detection of the immune effector cells. These infected resting cells are assumed to become
targets for lysis only after activation [9].

The infected activated cells T ∗
1 result from encounters between uninfected activated cells T1

and free infectious virus VI with infection rate k1. The resulting term k1V1T1 is modified by a
factor 1−ξ1(t) to account for RTI treatment. Infection of the resting T-cell compartment T2,
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which is comprised of both memory and naive CD4+ T-cells, can occur in a number of ways.
First, the most commonly transmitted R5 virus form of HIV-1 that utilize the chemokine
receptor CCR5 can enter a subset of resting memory cells that express sufficient levels of
CCR5 to support infection [9]. In addition, the X4 form of the virus can infect resting CD4+
T-cells, whether they belong to the naive or memory subsets. However, infection of naive
and memory cells through these routes occurs much less frequently than infection of T1, and,
once infected, these cells often do not progress to a long-term stably-infected state in which
the virus is integrated into the host DNA. In addition, it has been shown that infected naive
CD4+ T-cells do not significantly contribute to the pool of infected resting CD4+ T-cells
[11]. Hence, the term (1−fξ1(t))k2VIT2 is used to represent the infection process that results
from encounters between the uninfected resting CD4+ T-cells and free virus VI , but with an
infection rate k2 < k1 to account for a significantly lower rate of infection as compared to
activated CD4+ T-cells. The treatment factor ξ1(t) is potentially more effective in T1 than
in T2, where the efficacy is modelled by fξ1(t) with 0 ≤ f ≤ 1.

A much more stable form of latent infection arises when activated CD4+ T-cells that have
integrated HIV-1 DNA survive long enough to revert back to resting memory state, and
latently infected resting CD4+ T-cells with integrated HIV-1 DNA are present in all infected
individuals but only at low frequency [9, 14]. Hence, the terms involving γT T ∗

1 are included
in the model to account for the phenomenon of differentiation of infected activated CD4+
T-cells into infected memory or resting CD4+ T-cells T ∗

2 at rate γT . For simplicity, the rate
at which uninfected activated CD4+ T-cells T1 differentiate into uninfected resting CD4+
T-cells T2 is also assumed to be γT ; the model could be extended easily to the case with
different differentiation rates.

As the authors of [9]concluded, there is turnover in the latent reservoir when patients are
viremic, but the degree of turnover depends on the level of viremia. We thus assume that
the activation of infected HIV-specific resting CD4+ T-cells T ∗

2 depends on the virus con-
centration with a half-saturation constant KV . Hence, the terms involving aT VI

VI+KV
T ∗

2 are
used to represent the activation of infected HIV-specific resting CD4+ T-cells with maxi-
mum activation rate of aT . Again to preserve the simplicity of this model, we assume that
activation of uninfected HIV-specific resting CD4+ T-cells T2 also depends on the virus con-
centration, with a half saturation constant KV , and that the maximum activation rate is also
aT . Thus, the terms involving aT VI

VI+KV
T2 represent the activation of uninfected HIV-specific

resting CD4+ T-cells. In order to incorporate the activation of resting CD4+ T-cells by
some non-HIV antigen and preserve the simplicity of the model, we include the simple terms
aAT2 and aAT ∗

2 into our model to describe this phenomenon, with aA being the activation
rate by non-HIV antigen. The parameter aA here can be utilized as a constant to represent
a chronic level of infection or as a function of time t to describe infections that are cleared
by the body. These activation terms represent losses to the T2 and T ∗

2 compartments, with
corresponding gain terms for the T1 and T ∗

1 compartments. However, the gain terms for T1

and T ∗
1 include a multiplicative factor pT to account for the net proliferation due to clonal

expansion and programmed contraction. For simplicity, we assume that uninfected and in-
fected CD4+ T-cells have the same expansion factor pT ; again this can be readily extended
to include processes with different expansion factors.
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Virus in the reservoir T ∗
2 of infected resting CD4+ T-cells is latent and no virus can be

produced by these cells unless they are activated [9]. Hence, free virus particles VI are
produced only by activated infected CD4+ T-cells during viral budding leading up to viral
produced lysis δT ∗

1 of the CD4+ T-cells. The parameter NT accounts for the number of
RNA copies produced during this process in the viral source term (1 − ξ2(t))103NT δT ∗

1 .
In addition to a natural clearance rate c, we also include terms 103[(1 − ξ1(t))ρ1k1T1 and
(1−fξ1(t))ρ2k2T2]VI in the free virus compartment VI to account for the removal of free virus
that takes place when free virus infects T1 and T2. We make the simplifying assumption that

ρi = 1
copies ml-blood

cells ml-plasma
, i.e., one free virus particle is responsible for each new infection. This

could be adapted easily for multiple virus particles being responsible for each new infection
by choosing ρi > 1. Since clinical measurements of viral load do not differentiate between
infectious and non-infectious virus, we include a compartment in the model for tracking the
amount of non-infectious virus VNI . The action of a protease inhibitor, resulting in the
production of non-infectious virus VNI by infected cells is modeled by ξ2. It should be noted
that the inclusion of this additional state does not affect the dynamics of the other state
variables.

The source term λE, the constant death term δE1, and the nonlinear infected cell-dependent
birth

bE1T ∗1
T ∗1 +Kb1

E1 and death
dET ∗1

T ∗1 +Kd
E1 terms in the E1 compartment are adopted from the

model in [2, 3], where the authors suggested that, by including such terms in the immune
effector compartment, the model can admit multiple stable off-treatment steady states and
exhibit transfer between “healthy” and “unhealthy” locally stable steady states via optimal
or suboptimal structure treatment interruptions (STI) therapies. This makes it a good
candidate for our investigation. Memory CD8+ T-cells are also subject to strict homeostatic
control [34]; background expansion of memory cells through intermittent cell division being
countered by an equivalent level of cell death. Hence, we include the term bE2Kb2

E2+Kb2
E2− δE2E2

for homeostatic regulation in the E2 compartment, similar to that used in [37]. In the
homeostatic regulation, bE2 represents the maximum proliferation rate and δE2 corresponds
to the death rate, where the proliferation signal decreases linearly with population size.

The term γE
T1+T ∗1

T1+T ∗1 +Kγ
E1 in the model is used to include the essential role that activated

CD4+ T-cells play in the generation of memory CD8+ T-cells during the priming phase,
where parameter Kγ is a half-saturation constant and γE is the maximum rate at which
E1 differentiates into E2. Since depletion of CD4+ cells has a minimal effect during the
recall response [32, 38], the term aEVI

VI+KV
E2 for reactivation of memory CD8+ T-cells is

independent of CD4+ T-cell help. Similar to the activation of HIV-specific resting CD4+
T-cells, we assume that activation of HIV-specific memory CD8+ T-cells also depends on
the virus concentration. For simplicity, we use the same half-saturation constant KV for
the activation of memory CD8+ T-cells. Since CD8+ T-cells tend to divide sooner and to
have a faster rate of cell division than CD4+ T-cells [31], we use a different parameter pE

to account for the net proliferation due to clonal expansion and programmed contraction of
activated CD8+ T-cells in the E1 compartment.
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3 Off-treatment Stability Analysis

Our model choice is partly motivated by its admission of multiple locally a.s. off-treatment
equilibria (corresponding to ε1 = 0 and ε2 = 0), which is important in the sense that we seek
to investigate the possibility of improvement of long-term health by using STI during acute
infection to affect a change from an “unhealthy” equilibrium to a “healthy” one. A general
analysis of the equilibria of the model (2.1) and their stability properties is challenging
due to the complexity of the system and is generally not solvable in analytic form. Hence,
in this section we illustrate the existence of multiple locally a.s. equilibria through specific
examples and numerically investigate the behavior of these equilibria with respect to changes
in parameters and initial conditions.

Uninfected equilibrium in a healthy person (aA = 0). In the absence of non-HIV
antigen (aA = 0), it is easy to see that model (2.1) has the following off-treatment uninfected
equilibrium:

(0, 0, λT /d2, 0, 0, 0, λE/δE1, 0). (3.1)

Substituting the above equilibrium into the Jacobian matrix of model (2.1), we find that the
eigenvalues of this matrix are given by −(δδE1 + mλE + γT δE1)/δE1, −c, −d2, −d2, −(cd2 +
1000k2λT )/d2, −δE1, bE2 − δE2 and −d1 − γT . Hence, if bE2 < δE2 then all the eigenvalues
of this Jacobian matrix are negative, which implies that under this case equilibrium (3.1) is
locally a.s. On the other hand, if bE2 > δE2, then we obtain a different uninfected equilibrium:

(0, 0, λT /d2, 0, 0, 0, λE/δE1, (bE2/δE2 − 1)Kb2). (3.2)

In this case, we find that the eigenvalues of Jacobian matrix are given by −(δδE1 + mλE +
γT δE1)/δE1, −c, −d1− γT , −(cd2 +1000k2λT )/d2, −δE1, −δE2(bE2− δE2)/bE2, −d2 and −d2.
Hence, equilibrium (3.2) is also locally a.s. Therefore, for the case aA = 0, model (2.1)
always has a locally a.s. off-treatment uninfected equilibrium. The existence of a locally
a.s. uninfected equilibrium is biologically reasonable in light of research documenting the
existence of some sex workers who, though regularly exposed to HIV-contaminated body
fluids, remain HIV-negative [28, 29]. We note that this feature of our new model is not
present in the earlier model investigated in [3].

Multiple equilibria in a healthy person (aA = 0). We next illustrate the existence
of multiple equilibria with specific examples when aA = 0 and the values of all the other
parameters as specified in Table 2, unless otherwise stated. Since values for most of the
parameters in this model can not be found in the literature, the values listed in Table 2
are chosen for model illustration purposes. When determining equilibria for this complex
model there are usually many unstable or physically-meaningless (eg., negative state values)
equilibria. In the discussion that follows, unless otherwise stated, we focus our attention on
the locally a.s., physically-meaningful equilibria only.

In particular, we wish to explore the effect that CD4+ memory cell activation plays on
the equilibrium states available to the system. Since, for economy, we have included both
naive and memory cells in a single resting CD4+ T-cell compartment T2 (or T ∗

2 for the
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parameter value parameter value parameter value

d1 0.02
1

day
ε1 ∈ [0, 1] k1 10−5 ml-plasma

copies · day

δ 0.7
1

day
m 0.01

µl-blood
cells · day

λT 7
cells

µl-blood · day

d2 0.005
1

day
KV 100

copies
ml-plasma

Ks 105 copies
ml-plasma

f 0.34 γT 0.005
1

day
NT 100

copies ·ml-blood
cells ·ml-plasma

ε2 ∈ [0, 1] c 13
1

day
λE 0.001

cells
µl-blood · day

bE1 0.3
1

day
dE 0.25

1
day

Kb1 0.1
cells

µl-blood

aA [0, 1]
1

day
δE1 0.1

1
day

Kd 0.5
cells

µl-blood

aT 0.008
1

day
pT 1.2 k2 10−9 ml-plasma

copies · day

aE 0.1
1

day
pE 3 Kγ 10

cells
µl-blood

γE 0.01
1

day
bE2 0.001

1
day

Kb2 100
cells

µl-blood

δE2 0.005
1

day

Table 2: Parameter values used in model (2.1) to illustrate the existence of multiple equilib-
ria. Note that for this parameter set bE2 < δE2.

aT

8× 10−3 8× 10−2 1× 10−3

state EQ1 EQ2 EQ3 EQ2 EQ3 EQ2

T1 0 184.3 13.13 352.1 13.12 40.27

T ∗
1 0 0.05621 5.330 0.05582 7.659 0.05935

T2 1400 731.2 424.4 142.8 59.36 1247

T ∗
2 0 0.04393 2.984 0.005110 0.4801 0.1187

VI 0 265.1 28410 236.5 40830 310.0

VNI 0 0 0 0 0 0

E1 0.01 799.2 0.04574 1422 0.03872 140.0

E2 0 98.32 0.002863 184.5 0.002520 14.07

Table 3: Off-treatment steady states for model (2.1) with aA = 0 day−1, aT = 8 × 10−3,
8×10−2, and 1×10−3 day−1, and the values of all the other parameters as specified in Table
2. Non-physical and unstable steady states are omitted.
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infected case), the activation factor aT VI

VI+KV
represents both activation of naive cells and the

reactivation of memory cells. In the limit of large VI the maximum activation rate is aT .
In the treatment that follows, we examine the role of aT on the equilibrium states available
to the system. We first examine the off-treatment equilibria (listed in Table 3) for the case
aT = 8 × 10−3 day−1. We can see that in this and each of the other two cases we consider,
there is an uninfected equilibrium similar to the one in (3.1), which we designate as EQ1.
In addition to the uninfected equilibrium, we have two infected equilibria, designated EQ2

and EQ3, where EQ2 represents a “healthy” steady state with immune control of the viral
infection, restoration of CD4+ T-cell counts (915.6 cells/µl-blood), and a strong CD8+
immune response (897.5 cells/µl-blood). Equilibrium EQ3 represents an “unhealthy” steady
state corresponding to a dangerously high viral load set point, lower CD4+ T-cell counts
(445.8 cells/µl-blood), and a much lower CD8+ immune response (0.04860 cells/µl-blood).

If we begin simulations with the initial conditions (0, 0, 1400, 0, ν, 0, 0.01, 0), i.e., a nontrival
amount ν of infectious free virus, then the solution of model (2.1) converges to either the
uninfected equilibrium EQ1 or the “unhealthy” infected equilibrium EQ3 (see Fig. 2).
The particular steady state that the model converges to depends on the viral load level ν.
Simulation results reveal that the solution will not converge to EQ3 until the value of ν is
close to 6576 copies/ml-plasma.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
−4

10
−3

10
−2

10
−1

ν   (copies RNA/mL)

a T

EQ
3

EQ
1

EQ
2

Figure 2: Phase diagram showing equilibrium attained as a function of the initial viral load
ν and the parameter aT . It should be emphasized that this plot is only applicable for the
particular initial condition (0, 0, 1400, 0, ν, 0, 0.01, 0).

If we set the value of aT larger, such as 8 × 10−2 day−1, and keep the values of all the
other parameters the same, then we still have three locally a.s. off-treatment equilibria:
uninfected, “healthy” infected and “unhealthy” infected, where the uninfected equilibrium
is the same as before (Table 3). However, the “unhealthy” infected equilibrium (EQ3) in this
case has a much higher viral load, a much lower CD4+ T-cell count (80.62 cells/µl-blood),
and a lower immune response (0.04124 cells/µl-blood) than the EQ3 when aT = 8 × 10−3

day−1. Even though the “healthy” infected equilibrium EQ2 has a slightly lower viral load
level and a much higher CD8+ immune response (1607 cells/µl-blood) than the EQ2 when
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aT = 8×10−3 day−1, it has degraded with respect to the CD4+ T-cell count (495.0 vs. 915.6
cells/µl-blood).

If we now start simulations with aT = 8×10−2 day−1 and the initial conditions (0, 0, 1400, 0,
ν, 0, 0.01, 0), then the solution of model (2.1) also converges to either uninfected equilibrium
or “unhealthy” infected equilibrium depending on ν. But in this case, the solution converges
to its corresponding “unhealthy” infected equilibrium with ν around 100.3 copies/ml-plasma
(see Fig. 2). Hence, the viral load necessary for infection depends on the maximum activation
rate aT ; low values of aT require a larger viral load to reach an infected state. Furthermore,
when infected, smaller values of aT produce “healthier” infections than infections with larger
aT values, in terms of CD4+ T-cell counts and viral load level.

If we set the maximum activation rate of resting CD4+ T-cells lower, such as aT = 1× 10−3

day−1, and keep the values of all the other parameters to be the same as those illustrated
in Table 2, then we find that we have only two locally a.s. off-treatment equilibria: the
uninfected steady state (EQ1) and “healthy” infected steady state (EQ2), where again the
uninfected steady state is the same as with aT = 8 × 10−3 day−1 (Table 3). Even though
the “healthy” infected steady state has a higher viral load level (310 copies/ml-plasma) and
lower immune response (154 cells/µl-blood) than it does when aT = 8 × 10−3 day−1, the
immune response still controls the viral load to maintain it below a detection limit of 400
copies/ml-plasma. This equilibrium also has much higher CD4+ T-cell counts (1290 cells/µl-
blood) than the case when aT = 8× 10−3 day−1. If we start the simulation with the initial
conditions (0, 0, 1400, 0, ν, 0, 0.01, 0), then the solution of model (2.1) converges either to its
uninfected equilibrium or “healthy” infected equilibrium based on the value of ν, and it
converges to this “healthy” infected equilibrium with ν around 1.527×107 copies/ml-plasma
(Fig. 2).

The examples above demonstrate the existence of multiple off-treatment equilibria and il-
lustrate that changing the value of a parameter, such as the maximum activation rate aT ,
has an effect on both the number and “health” characterization of the equilibria. In ad-
dition, the initial conditions of the system determine which equilibrium is attained after
initial infection. Across a population, the parameter values can be expected to vary to rep-
resent different host factors and host-virus interaction rates. In the analysis of parameter
aT , we find that a person with a lower aT value requires a larger viral load in order to get
infected and, once infected, attains a “healthier” set point outcome, in terms of their CD4+
T-cell counts and viral load level, than those with higher values of aT . Analysis with other
parameters, such as the expansion factor pT , reveals similar behavior.

Multiple equilibria in an unhealthy person (aA 6= 0). In order to investigate whether
the activation due to a non-HIV antigen can affect the number of physical equilibria and
their local asymptotic stability, we performed simulation with aA = 10−5 day−1 and the
values of all the other parameters as specified in Table 2. All the locally a.s., physical, off-
treatment equilibria are tabulated in Table 4, which indicates that we still have three locally
a.s. equilibria: an uninfected steady state EQ1, a “healthy” infected steady state EQ2 and
an “unhealthy” infected steady state EQ3. We also observe that EQ1 has a nonzero E2 even
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though bE2 < δE2 and a nonzero T1, which is not observed for equilibrium EQ1 when aA = 0
(Table 3). Otherwise, the equilibria for the two cases (aT = 8 × 10−3 day−1 and aA = 0 or
1× 10−5 day−1) are very similar.

aA

1× 10−5 1× 10−2

state EQ1 EQ2 EQ3 EQ1 EQ2 EQ3

T1 0.6710 184.5 13.13 266.7 277.2 13.12

T ∗
1 0 0.05621 5.332 0 0.05592 6.567

T2 1398 730.6 424.0 555.6 404.2 228.2

T ∗
2 0 0.04388 2.982 0 0.01835 1.777

VI 0 265.0 28420 0 248.2 35010

VNI 0 0 0 0 0 0

E1 0.009938 799.9 0.04573 0.009121 1160 0.04113

E2 0.001562 98.41 0.002862 0.02198 147.6 0.002630

local stability a.s. a.s. a.s. unstable a.s. a.s.

Table 4: Off-treatment steady states for model (2.1) with aA = 1× 10−5 and 1× 10−2 day−1

and the values of all the other parameters as specified in Table 2. Non-physical and unstable
steady states are omitted, except in the case of EQ1 when aA = 1 × 10−2 day−1, which is
unstable. Note that aT = 8× 10−3 day−1 for this analysis.

If we start simulations with the initial conditions (0.6710, 0, 1398, 0, ν, 0, 0.009938, 0.001562),
then the solution of model (2.1) converges either to its uninfected equilibrium EQ1 or “un-
healthy” infected equilibrium EQ3 based on the value of ν, and it will not converge to EQ3

until ν is close to 4000 (Fig. 3), as compared to 6576 copies/ml-plasma when aA = 0. Hence,
a person infected with a non-HIV virus becomes HIV-infected at lower viral loads than when
no other infection is present.

If we take the value of aA larger, such as aA = 1×10−2 day−1, then the uninfected equilibrium
is no longer stable, but we still have the locally a.s. “healthy” and “unhealthy” steady states
designated as EQ2 and EQ3 in Table 4, respectively. If we start simulations with the
initial conditions (266.7, 0, 555.6, 0, ν, 0, 0.009121, 0.02198), then the solution of model (2.1)
converges to EQ3, regardless of the initial viral load ν (Fig. 3). This means that when the
system is in the state EQ1, introduction of even the smallest amount of virus will cause the
system to converge to the “unhealthy” equilibrium EQ3.

Furthermore, Table 4 indicates that as the activation rate by non-HIV antigen aA becomes
larger, the locally a.s. “healthy” steady state has degraded, in terms of the total CD4+
T-cells counts (915.1 vs. 681.1 cells/µl-blood), while the viral load has improved (265.0 vs.
248.2 copies/ml-plasma), as well as the immune response (898.4 vs. 1307 cells/µl-blood). In
addition, the locally stable “unhealthy” steady state has worsened, in terms of a much lower
CD4+ T-cell count (445.4 vs. 249.4 cells/µl-blood), much higher viral load set point (28420

12



10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

ν   (copies RNA/mL)

aA

EQ
3

EQ
1

Figure 3: Phase diagram showing equilibrium attained as a function of the initial viral load
ν and the parameter aA. Initial conditions for simulations, corresponding to the uninfected
equilibrium EQ1, are calculated for each value of aA. Note that aT = 8 × 10−3 day−1 for
these simulations.

vs. 35010 copies/ml-blood), and much lower immune response (0.04859 vs. 0.04376 cells/µl-
blood). Therefore, at this point increasing aA leads to similar behavior as does increasing
aT when aA = 0.

The examples above summarize an investigation as to the effect of a non-HIV infection
(aA 6= 0) on the outcome of an HIV-infection. We find that an unhealthy person (aA 6= 0)
requires a smaller initial viral load ν to sustain an HIV infection and, once infected, attains a
worse outcome, in terms of CD4+ T-cell counts and viral load levels, than a healthy person
(aA = 0). We find that multiple equilibria, including an uninfected equilibrium, exist in the
presence of a small non-HIV infection (aA = 1 × 10−5 day−1). However, for larger levels of
non-HIV infection (aA = 1 × 10−2 day−1), the uninfected equilibrium is unstable and even
the smallest initial viral load will lead to an “unhealthy” equilibrium state (Fig. 3).

4 Viral Blips

Adherence to a regimen of HAART suppresses the viral loads of most infected HIV patients
below the level of detection (<400 or <50 copies/ml-plasma depending on the assay used)
by standard assays . However, a number of these well-suppressed patients experience unex-
plained “viral blips” while on therapy [15, 20]. In a study [15] of 123 patients, these viral
blips are estimated to have a duration of approximately two to three weeks with a mean blip
amplitude of 158±132 copies/ml-plasma. Furthermore, it is observed that the blip frequency
inversely correlates with CD4+ T-cell counts. In this section, we investigate how infection
with a non-HIV antigen can lead to viral blips for those patients who are on treatment and
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have successfully suppressed their viral loads to undetectable levels. To do so, we use the
states of a locally a.s. “healthy” infected equilibrium (201, 0.056, 730, 0.040, 288, 0, 240, 29.2),
corresponding to ε1 = 0.7, ε2 = 0, aA = 0, and the values of all the other parameters as
specified in Table 2, as the initial conditions for simulations in which we allow parameter
aA to be a function of time t, while keeping all other parameter values to be the same. As
we drive the system (2.1) with the non-HIV infection aA(t) we monitor the states of the
system, particularly the viral load. While the cause of viral blips has not yet been resolved,
one proposed mechanism [20] posits that viral blips could be due to an increase in activated
CD4+ cells as a result of secondary infection or vaccination. Our approach, introducing
a time-dependent non-HIV infection aA(t) is consistent with this proposed mechanism and
demonstrates that our model supports such a scenario.

Viral blip caused by a single non-HIV infection. Figure 4(a) illustrates the case
of a one-time non-HIV infection occurring on days 20 through 50, with a peak value of
0.003 day−1 (days 30 to 40). Figure 4(b) depicts the HIV viral progression VI(t) resulting
from this infection. In Fig. 4(b) we see that there is a small delay before the viral load
begins to increase. This delay is reasonable since there is no activation term (aA) in the VI

compartment of model (2.1) and the viral load can only increase after T ∗
1 increases. About

10 days after the start of the infection (day 30), the viral load rises above the detection limit
(400 copies/ml-plasma), reaching its peak value 15 days post-infection (day 35). This viral
blip drops below the detection limit 20 days post-infection (day 40), before the infection has
completely cleared.
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Figure 4: (a) Activation rate aA(t) by a non-HIV antigen. The duration of the infection is
30 days; (b) Viral load VI(t) (solid line), censored data level (horizontal dashed line), and
infection start and stop times (vertical dash-dot lines).

To further investigate the dynamics of the viral blip, we plot the other model compartments
for the example shown in Fig. 4 (we omit compartment VNI , since, with ε2 = 0 and VNI(0) =
0, VNI ≡ 0). In Fig. 5, it can be seen that the T-cell compartments (T1, T ∗

1 , T2, and T ∗
2 )
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respond at the start of the infection (day 20). This is not surprising because the non-HIV
antigen activation term aA appears in the dynamical equations for these compartments in
model (2.1). It is also reasonable that the resting (naive and memory) T-cell compartments
(T2 and T ∗

2 ) initially decrease, while the activated T-cell compartments (T1 and T ∗
1 ) increase,

since, at the start of the infection, resting cells are reactivated (memory) to fight the infection
or activated through infection (naive). There is also a short delay between the peak value
of T ∗

2 and the peak value of T ∗
1 which is likely due to the time delay in the differentiation of

T ∗
1 into T ∗

2 . Comparing compartment T ∗
1 of Fig. 5 with compartment VI in Fig. 4, we find

that these two compartments exhibit very similar time-dependent behavior. Again, this is
to be expected because the only compartment that produces virus is T ∗

1 .

If we focus our attention on the uninfected T-cell compartments (T1 and T2 in Fig. 5),
we see that the peak of T1 corresponds to the valley of T2. The fact that T1 increases
and T2 decreases for most of the infection implies that the effects of the activation terms
pT (aT VI/(VI + KV ) + aA) T2 and (aT VI/(VI + KV ) + aA) T2 dominate over the differentia-
tion terms γT T1 and other loss terms in model (2.1) during the infection. That is, the T2

compartment is losing more through activation then it is gaining through differentiation of
T1, and vice versa for T1. The situation is reversed as the infection clears (day 50), where
there is a slow decay of T1 and corresponding rise in T2 back toward the equilibrium values,
as the decay of T1 contributes to the rise of T2 through differentiation.
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Figure 5: Model dynamics with ε1 = 0.7, ε2 = 0, and the values of all the other parameters
as specified in Table 2. Activation rate by a non-HIV antigen aA(t) is as depicted in Fig.
4(a). Vertical dashed lines indicate the start and stop times of the non-HIV infection.
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It is interesting to contrast the above behavior of T1 and T2 with the behavior of their infected
counterparts (T ∗

1 and T ∗
2 ). Unlike the T2 compartment, which decreases throughout most of

the infection, the latently-infected T ∗
2 compartment only decreases for a brief period, then

rises and peaks near the midpoint of the infection (Fig. 5). In behavior similar to that in
the T2 compartment, the initial drop in T ∗

2 is due to activation of naive cells and reactivation
of memory cells, although, in fact, the T ∗

2 compartment mostly represents infected memory
cells, since the rate of infection of naive cells is very low. This activation is a source term
for the T ∗

1 compartment and a loss term for the T ∗
2 compartment, but there is also an

important source term for T ∗
2 that begins to dominate over the loss due to activation. As

the T1 compartment increases, there is an increased number of T1 cells becoming infected
and adding to the T ∗

1 compartment, which, in turn, leads to increased differentiation to the
T ∗

2 compartment. The net result is, that after a short decrease, the T ∗
2 cells increase, even as

T ∗
1 continues to increase, as the differentiation (source) term γT T ∗

1 in the T ∗
2 compartment

dominates over the activation (loss) term (aT VI/(VI + KV ) + aA) T ∗
2 in model (2.1). The net

result is that the latently-infected T ∗
2 compartment is supplemented, not depleted during the

secondary infection. However, as aA drops, the loss terms begin to dominate in the T ∗
1 and

T ∗
2 compartments and both drop below their equilibrium values before slowly rising back to

the equilibrium values. Indeed, 150 days after the end of the infection only T ∗
1 has returned

to its equilibrium value (Fig.’s 4 and 5).

We now focus on the CD8+ compartments (E1 and E2), which are responsible for suppressing
the viral blip. In Fig. 5 we can see that E1 and E2 respond to the infection with longer delays
than the other compartments. This is reasonable since the activation of the CD8+ memory
cells (E2) does not depend on the non-HIV antigen aA (these are HIV-specific memory cells)
and activation will occur in response to a change in VI . The CD8+ compartments also have
a more complicated relationship to T1 and T ∗

1 . In Fig. 5, we see that both compartments
increase through most of the infection, although E2 has a short period in which it decreases
at the beginning of the infection. This decrease is probably due to the loss of cells due to
the activation term aEVIE2/(VI + KV ) in model (2.1). The subsequent increase in both
CD8+ compartments indicates that the additional source term bE1T

∗
1 E1/(T

∗
1 + Kb1) in the

E1 compartment and the resulting differentiation (γEE1(T1 + T ∗
1 )/(T1 + T ∗

1 + Kγ)) to E2

dominate over the activation (loss) term aEVIE2/(VI + KV ) in the E2 compartment. It is
interesting to note that the peak value of E2 occurs after the infection has cleared (around
day 60). As the viral load drops, the loss in E2 due to activation decreases, while the higher
levels of E1 continue to provide a source for E2 through differentiation.

The viral blips produced with this model last about 10 days, not 2-3 weeks as estimated in
the literature [15]. Some of this discrepancy may be due to the fact that we are using a higher
detection limit (400 RNA copies/ml-plasma) than the experimental studies. Also, as we have
seen, the dynamics of the VI compartment closely follow those of the T ∗

1 compartment, which
is the only source for VI . This may explain why the the sharply rising viral load in Fig. 4
is not followed by a slower, two-phase decay as observed in [20], where there is another
compartment of less-rapidly changing “chronic” cells that also produce virus. Also, in an
effort to facilitate fitting to clinical data, we have combined naive, memory, activated, and
helper (uninfected) T-cells in two compartments (T1, T2). Perhaps further subdividing the
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CD4+ T-cell compartments or adding more compartments, such as a chronically infected
T-cells pool or antigen-specific cells and non-antigen specific cells [20], would remedy this
discrepancy.

Viral blips caused by sequential non-HIV infections. We next investigate the effect
of sequential non-HIV infections by simulating two such back-to-back infections. The first
infection occurs from days 20 through 50 and stays at its peak value (0.003 day−1) from days
30 through 40, while the second infection occurs from days 80 through 110 and stays at its
peak value (0.003 day−1) from days 90 through 100 (Fig. 6(a)). As seen in Fig. 6(b), the
first infection leads to a viral blip at exactly the same time as that in Fig. 4 and the second
infection leads to a viral blip (starting at day 95) with the same duration as the first, but
with a smaller amplitude.
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Figure 6: (a) Activation rate by non-HIV antigens aA(t). The duration of each infection is
30 days, with the first beginning on day 20 and the second on day 80; (b) Viral load VI(t)
(solid line) and censor data level (horizontal dashed line).

To investigate whether the short time interval between these two infections leads to the
suppressed amplitude of the second viral blip, we also considered a case where the first
infection is the same as that in Fig. 6 (days 20 through 50) but the second infection occurs
much later (days 200 through 230). The simulation results are illustrated in Fig. 7, which
indicates that the amplitude of the second viral blip now is slightly larger than the first viral
blip.
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Figure 7: (a) Activation rate by non-HIV antigens aA(t). The duration of each infection is
30 days, with the first beginning on day 20 and the second on day 200; (b) Viral load VI(t)
(solid line) and censor data level (horizontal dashed line).

Based on these examples, we see that the frequency of non-HIV infections affects the fre-
quency of the viral blips and that the time interval between the two infections can affect
the amplitude of the second viral blip. In particular, the shorter the time interval between
two infections, the smaller the amplitude of the second viral blip. This suggests that it is
possible that there may be only one viral blip detected if the time interval between the two
infections is short enough.

To further investigate the dynamics of two sequential infections, we plot the other model
compartments for the example shown in Fig. 7. In Fig. 8 we observe that the E1 and
E2 compartments are still below their equilibrium values when the second infection occurs.
This may explain the increased amplitude of the second viral blip. In the case of the more
closely-spaced second infection of Fig. 6(a), the start of which is indicated with the dotted
vertical line in Fig. 8, we can see that E1 and E2 are above their equilibrium levels. This
may explain the decreased amplitude of the second viral blip in Fig. 6(b).
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Figure 8: Model dynamics with ε1 = 0.7, ε2 = 0, and the values of all the other parameters as
specified in Table 2. Activation rate by a non-HIV antigen aA(t) is as depicted in Fig. 7(a).
Vertical dashed lines indicate the start and stop times of the non-HIV infections for this
example. The vertical dotted line indicates the start time (80 days) of the second infection
in Fig. 6.

19



The effect of the form of the non-HIV infection on the viral blip. As one might
expect, both the shape and the peak value of aA(t) affect the amplitude and duration of the
viral blip. As depicted in Fig. 9, we find that with the same shape aA(t) but with different

amplitude (a
(1)
A and a

(3)
A ), the viral blip tends to have higher amplitude and a little bit wider

duration as peak value of aA(t) gets higher (see V
(1)
I and V

(3)
I in Fig. 9(b)). Furthermore,

we see that amplitude of the viral blip is lower as the non-HIV infection becomes longer and
the peak value of the viral blip also occurs earlier (V

(1)
I and V

(2)
I in Fig. 9(b)).
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Figure 9: (a) Activation rate by non-HIV antigen aA(t); (b)Viral load VI(t).

CD4+ help during a viral blip. In model (2.1), the differentiation of E1 cells to E2 mem-

ory cells occurs through the term γE
T1+T ∗1

T1+T ∗1 +Kγ
E1, which is dependent on the help of activated

CD4+ cells (T1 and T ∗
1 ). In the case that T1 and T ∗

1 are zero, there is no differentiation of
the effector E1 cells into memory E2 cells. On the other hand, in the limit of large T1 + T ∗

1 ,
the maximum rate of differentiation γEE1 is attained. In this section we explore what effect
the CD4+ help has on the CD8+ immune response and we do so in the context of a viral
blip induced by a non-HIV infection aA(t). We use the parameter Kγ to modify the effects of
the CD4+ help. The case of Kγ = 0 simulates a condition where CD4+ help is not required
for differentiation to CD8+ memory, while the case of Kγ very large simulates a condition
where differentiation to CD8+ memory is impaired due to lack of CD4+ help. Thus, we use
the states of locally a.s. “healthy” infected equilibria, corresponding to ε1 = 0.7, ε2 = 0,
aA = 0, various values of Kγ, and the values of all other parameters as specified in Table 2,
as the initial conditions for simulations in which we allow the parameter aA to be a function
of time t. As we drive the system (2.1) with the non-HIV infection aA(t) we monitor the
states of the system.

In Fig. 10(a) we plot the “healthy” infected (EQ2) equilibrium values of the VI , E1, and
E2 compartments as a function of Kγ. As expected, as Kγ increases, corresponding to
increasing impairment of CD8+ differentiation to memory, the equilibrium value of the E2
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compartment decreases. However, the overall effect on E1 is negligible with only a slight
rise as Kγ increases. Despite the fact that E1 stays relatively constant, we see that, as Kγ

increases, the equilibrium value of the viral load increases until reaching a plateau value at
Kγ ≈ 1× 105 cells/µl-blood. Thus, even though the number of effector cells, which directly
participate in the removal of infected T-cells, does not decrease as the CD8+ differentiation
to memory is impaired, the overall viral load increases.
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Figure 10: (a) The effect of Kγ on the “healthy” infected (EQ2) values of the VI (circles),
E1 (crosses), and E2 (asterisks) compartments. Equilibrium values correspond to the case
ε1 = 0.7, ε2 = 0, aA = 0, and the values of all other parameters as specified in Table 5; (b)
Relative change of VI (circles), E1 (crosses), and E2 (asterisks) compartments as a function
of Kγ.

In Fig. 10(b) we plot the relative changes of the various compartments as a function of Kγ.
Relative change is defined as (peak value minus initial value)/(initial value). In this figure
we can see that, as Kγ increases the relative change of the peak viral load increases. The
relative change of the E2 memory compartment also increases (Fig. 10(b)), but the infected
equilibrium value was quite small to begin with (Fig. 10(a)). The relative change in the
effector E1 compartment decreases as Kγ increases. The results of this analysis demonstrates
that in our model, impaired differentiation to CD8+ memory results in a degraded “healthy”
equilibrium and leads to a larger viral blip following a secondary infection.
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5 Fitting the Model to Clinical Data

When proposing a new model, a necessary but often difficult requirement is validation of
the model with clinical data. One way to do this is to use the first part of the available
longitudinal data for a given patient to estimate patient specific parameters. One then uses
these parameters in model simulations to accurately predict the subsequent progression of
the disease as represented in the remainder of the longitudinal data for that patient. In this
section we test the capability of model (2.1) to fit the clinical data of patients and to predict
the viral progression. Of course, the dynamics of HIV progression may totally change as time
evolves ( e.g., such as transfer from “unhealthy” steady state region of attraction to one for
a “healthy” state). In this section, we test the predictive capabilities of the model with
parameters that have been estimated from only half of the longitudinal data by comparing
simulations to the full set of clinical observations.

To obtain patient specific-parameter estimates for the model, we used individual patient
data (either partial or full longitudinal data) and carried out an inverse problem. The
data for our investigations come from Massachusetts General Hospital (MGH), where all
the patients enrolled in the study are symptomatic with acute or early HIV-infection (for
more detailed information of these data, the interested reader is referred to [3, 21, 27]). In
summary, nearly all subjects in the study undergo combination therapy and many have at
least one treatment interruption. The available clinical data include total CD4+ T-cell count
and total RNA copies, where for model (2.1) the total CD4+ T-cell counts are represented
by z̄1(t; q) = T1(t; q) + T ∗

1 (t; q) + T2(t; q) + T ∗
2 (t; q) and total RNA copies are represented

by z̄2(t; q) = VI(t; q) + VNI(t; q). If the measurements of RNA copies are below the limit
of quantification for the assay used (400 copies/ml-plasma for a standard assay and 50
copies/ml-plasma for an ultra-sensitive assay), then the observed viral load value is censored
to be at its detection limit; that is, in these cases the observed values do not represent the true
data values anymore. Furthermore, observations of viral load and CD4+ may not be at the
same time points and the observation times and intervals vary substantially among patients.
So, in general, for patient number j we have CD4+ T-cell data pairs (tij1 , ȳij

1 ), i = 1, · · · , N j
1 ,

and potentially different time point viral RNA data pairs (tij2 , ȳij
2 ), i = 1, · · · , N j

2 . Hence, the
clinical data for carrying out the inverse problem involves partial observations, measurements
from combined compartments, and highly censored viral load measurements.

As one might expect, if a patient does not have a sufficient number of observations or does
not undergo a therapy interruption during the observation period used to fit the model, then
it is difficult to obtain dynamically dependent parameters to use to predict a later disease
progression involving both therapy and treatment interruption. Hence, for our purposes
we focused on 14 patients wherein each patient has ten or more each of CD4+ and viral
load measurements, and have at least one on/off treatment schedule in the first half of their
longitudinal data. Moreover, for each of these patients, N j

1 is not substantially different
than N j

2 . The technique we use in this paper is adapted from the one in [3], where the
authors developed a statistically-based censored data method (an expectation maximization
algorithm) combined with an ordinary nonlinear least-squares technique. We note that
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the variance σ2
1 in CD4 measurements and the variance σ2

2 in viral load measurements are
likely to be different due to assay differences. Hence, in this paper we use the expectation
maximization algorithm based on Maximum Likelihood Estimation for (q, σ2

1, σ
2
2) which,

under normality assumptions on the errors, results in a weighted least-squares technique
(see [30]) with solution given by

q̂j = arg min
q∈Q


 1

σ̂2
1

Nj
1∑

i=1

|yij
1 − z1(t

ij
1 ; q)|2 +

1

σ̂2
2

Nj
2∑

i=1

|yij
2 − z2(t

ij
2 ; q)|2




σ̂2
k =

1

N j
k

Nj
k∑

i=1

|yij
k − zk(t

ij
k ; q̂j)|2, k = 1, 2,

(5.1)

for the log10-transformed system of model (2.1) for patient j, where yij
1 = log10 ȳij

1 and
z1(t

ij
1 ; q) = log10(z̄1(t

ij
1 ; q)), i = 1, · · · , N j

1 , and yij
2 = log10 ȳij

2 , z2(t
ij
2 ; q) = log10(z̄2(t

ij
2 ; q)),

i = 1, · · · , N j
2 . As noted in [3], by using a log-transformed system one can resolve a problem

of states becoming unrealistically negative due to round-off error: nonnegative solutions
of this model should stay so throughout numerical simulation. This approach also enables
efficient handling of unrealistic cases where states get infinitesimally small during integration
due to parameters selected by optimization algorithms. From a statistical point of view, log
transformation is a standard technique to render the observations more nearly normally
distributed, which also supports use of the weighted least squares criterion as an equivalent
to maximum likelihood estimation.

The expectation maximization (EM) algorithm is outlined below. To simplify the notation,
we drop the patient index j in this algorithm description. The following notation will be used
in the algorithm: the relevant censoring point at time ti is represented by Li and χi is the
indicator function for the set {yi

2 > Li}, φ denotes the standard normal probability density
function and Φ is the corresponding cumulative distribution function. For each patient, we
carried out the following parameter estimation algorithm:

• (Step 1) Create adjusted data ỹi by replacing censored yi
2 values by Li/2, and use

ordinary least squares to estimate q̂(0) using both CD4+ data yi
1 and adjusted viral

RNA data ỹi (which now includes replaced censored values).

q̂(0) = arg min
q∈Q

[
N1∑
i=1

|yi
1 − z1(t

i
1; q)|2 +

N2∑
i=1

|ỹi − z2(t
i
2; q)|2

]
.

Obtain an initial estimate for σ2
1 and σ2

2 from

(
σ̂

(0)
1

)2

=
1

N1

N1∑
i=1

|yi
1 − z1(t

i
1; q̂

(0))|2,
(
σ̂

(0)
2

)2

=
1

N2

N2∑
i=1

|ỹi − z2(t
i
2; q̂

(0))|2,

respectively. Set k = 0.
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• (Step 2) Define ẑ
i(k)
2 = z2(t

i
2; q̂

(k)) and ζ̂ i(k) =
Li−ẑ

i(k)
2

σ̂
(k)
2

. Update the data and residuals

by

ỹi(k) = χiyi
2 + (1− χi)

[
ẑ

i(k)
2 − σ̂

(k)
2

φ(ζ̂i(k))

Φ(ζ̂i(k))

]
,

r̃i(k) = χi(yi
2 − ẑ

i(k)
2 )2 + (1− χi)(σ̂

(k)
2 )2

[
1− ζ̂ i(k) φ(ζ̂i(k))

Φ(ζ̂i(k))

]
.

• (Step 3) Update the estimate of q to q̂(k+1) by performing the weighted least squares
minimization in the parameters q

q̂(k+1) = arg min
q∈Q

[
1

(σ̂
(k)
1 )2

N1∑
i=1

|yi
1 − z1(t

i
1; q)|2 +

1

(σ̂
(k)
2 )2

N2∑
i=1

|ỹi(k) − z2(t
i
2; q)|2

]
,

and computing

(
σ̂

(k+1)
1

)2

=
1

N1

N1∑
i=1

|yi
1 − z1(t

i
1; q̂

(k+1))|2,
(
σ̂

(k+1)
2

)2

=
1

N2

N2∑
i=1

r̃i(k).

If relative changes in q̂, σ̂1 and σ̂2 are small, terminate. Otherwise set k = k + 1 and
then go to Step 2.

For more details about the EM algorithm and how to carry it out, interested readers are
referred to [3, 13, 23].

Note that model (2.1) has 31 model parameters and 8 initial conditions. The total number
of measurements (sum of number of measurements of CD4+ and number of measurements
of RNA copies) in the first half of the longitudinal data varies from 42 to 154 in these 14
patients, which means it is difficult to estimate all 39 of these parameter values for some of
these patients by using half of the longitudinal data set. Hence, we first try to estimate all the
31 model parameters and 8 initial conditions for each of the 14 patients by applying the EM
algorithm to the full longitudinal data set. We then try to fix some model parameters and
initial conditions at the population averages across these patients, and attempt to estimate
all the remaining model parameters and initial conditions for each patient by applying the
EM algorithm separately to each of the first half and the full longitudinal data set. Note
that there exists biological variation in all parameters across the patients, and there also
exist high correlations among some of these parameters such as the RNA copies produced
per infected cells NT and the virus natural death rate c. We also observe that sensitivity
with respect to some of these parameters may be highly time-dependent. For example, the
dynamics of the model is much more sensitive to the treatment efficacies ε1 and ε2 in the
treatment periods than it is in the off-treatment periods. All of these considerations make
it difficult to choose a priori which parameters can be fixed. In this paper, we empirically
chose some parameters (such as the saturation parameters) to which the model appears to
be relatively insensitive to take as fixed. Table 5 specifies all the fixed parameters and their
corresponding values. After we obtain the two sets of model parameters (corresponding to
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γT 3.792e-04 d2 3.096e-03 f 5.068e-01
k2 2.005e-09 δ 2.095e-01 m 1.127e-03
c 5.818e+00 λE 9.930e-04 bE1 3.885e-02

Kb1 2.488e-02 dE 6.278e-02 Kd 1.200e-01
δE1 5.967e-02 Kb2 8.697e+01 γE 5.154e-04
Kγ 1.357e+00 KV 1.479e+01 δE2 1.450e-03
Ks 2.789e+04 T ∗0

2 7.521e-03 V 0
NI 3.571e+03

E0
1 6.821e-02 E0

2 6.909e-01

Table 5: Average model parameter values (19) and initial conditions (4) used in model fitting
with half and full longitudinal data set.

use of the first half of the data and the full set of data, respectively, in inverse problems),
we simulate the trajectory over the full time span of the patient’s observations by using the
parameter values obtained with these two data sets and compare their ability to describe
the experimental results.

Figures 11, 12, and Fig.’s 13-24 in the Appendix illustrate model fits for all 14 patients. These
figures reveal that both the fits to CD4+ T-cells and the fits to viral load are reasonable
when using either half data or full data to estimate the parameter values. However, there is a
small amount of under-prediction or over-prediction for some patients when using parameters
estimated from the half data set. For example, model fits obtained by using half and full time
series data for patient 2 are shown in Fig. 11, where it can be seen that by using parameters
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Figure 11: Model fits to data (’x’) with parameters estimated from half longitudinal data
(solid line) or full data (dash-dot line). Circles denote the predicated values of the censored
data and the vertical line delineates between the two halves of the longitudinal data.

estimated from the first half data set, the predicted values for viral load data are slightly
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higher and the predicated values for CD4+ T-cell are slightly lower than the observed data
values and the fitted values from using parameters estimated from the full data, even though
there are two off-treatment periods in the first half of the data set. This discrepancy may be
due to the fact that both off-treatment periods are short and, therefore, provide very little
information about the off-treatment behavior. Note that the values of most observations of
viral loads in the off-treatment periods during the first half data set are higher than those
observed in the second half data set and this makes it difficult to correctly predict future
off-treatment trends. Hence, it is not just the number of off-treatment periods in the first
half data set but also the length of each off-treatment period and the number of observations
in these periods that determines the accuracy of the predictions of off-treatment viral load
levels.

Figure 12 compares the model fit and prediction obtained by using the half data set to the fit
obtained from parameter estimation with full data set for patient 10. Even though there is
only one off-treatment period in the first half data set, the period is sufficiently long and the
data set sufficiently rich that the full data fit and half data predictions of both CD4+ T-cell
and viral load agree quite well in the second half data set. Hence, the results demonstrated
in Fig.’s 11 and 12 suggest that in order to have accurate predictive capability we need to
obtain a sufficient number of representative data points in the time period providing the
information about the dynamics (the time period used to estimate parameters). Finally, we
note that the model developed and validated here retains the predictive capabilities present
in the earlier model of [3] in that the ability to predict subsequent data after fitting the model
with half of the data is at least as good as that exhibited in [3] for the various patients in
our data sets.
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Figure 12: Model fits to data (’x’) with parameters estimated from half longitudinal data
(solid line) or full data (dash-dot line). Circles denote the predicated values of the censored
data and the vertical line delineates between the two halves of the longitudinal data.
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In Section 3 we demonstrated that model (2.1) with a specific example set of parameters
exhibited multiple equilibria. Similarly, after fitting the full set of patient clinical data we
used the parameter sets thus obtained to determine the off-treatment locally a.s. equilibria
for each patient, and we find that, for all but two of the patients, there is only one lo-
cally a.s. equilibrium available for each patient. Obviously, these equilibria are all infected
equilibria, with equilibrium viral loads ranging from 450.2 to 51623 copies/ml-plasma. In
contrast, patients 25 and 26 each have one locally a.s. uninfected equilibrium and one locally
a.s. infected equilibrium, although the uninfected equilibrium for both these cases exhibit
physiologically unreasonable levels of HIV-specific CD8+ cells as compared to the infected
equilibrium values. This behavior is not unusual since we do not, at this point, have any
clinical data for HIV-specific CD8+ cell counts to help constrain these compartments. In
future efforts with data from clinical trials currently being designed, we plan to explore the
use of an additional cost term in the optimization algorithm that constrains the CD8+ values
to fit observations.

6 Conclusion and Remarks

One of the challenges in our clinical data fitting is that we do not have sufficiently luxurious
data sets to fit all the model parameters and initial conditions. Due to the high correlations
between the model parameters, biological variations in all parameters across population and
the sensitivity with respect to parameters varying over time (especially during the transition
time between the off-treatment period and on-treatment period), we intuitively chose some
parameters in this paper to be fixed. Even though the simulation results indicate reasonable
fits to all the patients, we need to develop a scientific methodology to deal with this situation
in order to obtain more reliable parameter values to be fixed a priori and thereby sharpen our
estimation results. As outlined above we reduced the number of parameters to be estimated
by fixing some of the model parameters at population averages. In clinical cases where large,
long term individual patient longitudinal data sets are not available as in our study here,
one could use population averages accrued in prior patient trials to reduce the number of
free parameters. Another possible method to reduce the dimension of parameter space and
the associated high correlation between these parameters is principal component analysis,
which is currently under investigation.

The clinical data fitting results in Section 5 indicate that if one does not have a sufficient
number of observations during the periods where the dynamics are changing, then it is
difficult to obtain parameter estimates useful in predicting corresponding future trends in
disease progression. Hence, the goodness of fit results are affected by not only the number
of observations but also the sampling times for data collection. This general principle was
also observed and explained conceptually in [6] where the general “information content” in
data and its relation to sensitivity is explored. These considerations suggest that parameter
sensitivity with respect to data is important in experimental design, assisting in reducing
effort and resources required to collect necessary data. One potential approach for this is the
generalized sensitivity function methodology as proposed in [36] and explored in [5, 7]. This
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approach combines the sensitivities of model output with respect to model parameters with
the sensitivities of parameters estimates with respect to changes in model outputs. Obtaining
results using this methodology is challenging even for simple examples and our initial efforts
have not yet proved fruitful for our complex HIV models which feature high correlations
between some parameters and dynamics that dramatically change during the transition time
between off-treatment and on-treatment. Hence, one of our future efforts involves develop-
ment of a methodology to determine improved sampling times for data collection. We are
optimistic that ideas contained in principal component analysis and generalized sensitivity
functions can be combined to provide new guidance in this regard.
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Appendix: Section 5 Results for Other Patients
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Figure 13: Model fits to data (’x’) with parameters estimated from half longitudinal data
(solid line) or full data (dash-dot line). Circles denote the predicated values of the censored
data and the vertical line delineates between the two halves of the longitudinal data.
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Figure 14: Model fits to data (’x’) with parameters estimated from half longitudinal data
(solid line) or full data (dash-dot line). Circles denote the predicated values of the censored
data and the vertical line delineates between the two halves of the longitudinal data.
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Figure 15: Model fits to data (’x’) with parameters estimated from half longitudinal data
(solid line) or full data (dash-dot line). Circles denote the predicated values of the censored
data and the vertical line delineates between the two halves of the longitudinal data.
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Figure 16: Model fits to data (’x’) with parameters estimated from half longitudinal data
(solid line) or full data (dash-dot line). Circles denote the predicated values of the censored
data and the vertical line delineates between the two halves of the longitudinal data.
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Figure 17: Model fits to data (’x’) with parameters estimated from half longitudinal data
(solid line) or full data (dash-dot line). Circles denote the predicated values of the censored
data and the vertical line delineates between the two halves of the longitudinal data.
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Figure 18: Model fits to data (’x’) with parameters estimated from half longitudinal data
(solid line) or full data (dash-dot line). Circles denote the predicated values of the censored
data and the vertical line delineates between the two halves of the longitudinal data.
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Figure 19: Model fits to data (’x’) with parameters estimated from half longitudinal data
(solid line) or full data (dash-dot line). Circles denote the predicated values of the censored
data and the vertical line delineates between the two halves of the longitudinal data.
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Figure 20: Model fits to data (’x’) with parameters estimated from half longitudinal data
(solid line) or full data (dash-dot line). Circles denote the predicated values of the censored
data and the vertical line delineates between the two halves of the longitudinal data.
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Figure 21: Model fits to data (’x’) with parameters estimated from half longitudinal data
(solid line) or full data (dash-dot line). Circles denote the predicated values of the censored
data and the vertical line delineates between the two halves of the longitudinal data.
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Figure 22: Model fits to data (’x’) with parameters estimated from half longitudinal data
(solid line) or full data (dash-dot line). Circles denote the predicated values of the censored
data and the vertical line delineates between the two halves of the longitudinal data.
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Figure 23: Model fits to data (’x’) with parameters estimated from half longitudinal data
(solid line) or full data (dash-dot line). Circles denote the predicated values of the censored
data and the vertical line delineates between the two halves of the longitudinal data.
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Figure 24: Model fits to data (’x’) with parameters estimated from half longitudinal data
(solid line) or full data (dash-dot line). Circles denote the predicated values of the censored
data and the vertical line delineates between the two halves of the longitudinal data.
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