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Abstract

Road maintenance is one of the main problems Departments of Transportation face during
winter time. Anti-icing, i.e. applying chemicals to the road to prevent ice formation, is
often used to keep the roads free of ice. Given the preventive nature of anti-icing, accurate
predictions of road ice are needed. Currently, anti-icing decisions are usually based on
deterministic weather forecasts. However the costs of the two kinds of error are highly
asymmetric because the cost of a road closure due to ice is much greater than that of taking
anti-icing measures. As a result, probabilistic forecasts are needed to optimize decision-
making.

We propose two methods for forecasting the probability of ice formation. Starting with
deterministic numerical weather predictions, they produce a joint predictive probability dis-
tribution of temperature and precipitation. This then yields the probability of ice formation,
defined here as the occurrence of precipitation when the temperature is below freezing. In
the first method, temperature and precipitation at different spatial locations are treated as
conditionally independent given the numerical weather predictions. In the second method,
spatial dependence between forecast errors at different locations is modeled. The model
parameters are estimated using a Bayesian approach via Markov chain Monte Carlo. We
evaluated both methods by comparing their probabilistic forecasts with observations of ice
formation for Interstate Highway 90 in Washington State for the 2003–2004 and 2004–2005
winter seasons. Results showed that using probabilistic forecasts can save a considerable
amount of money compared with deterministic forecasts. The method that takes account of
spatial dependence improved the reliability of the forecast, but did not save more money.

Keywords: Numerical weather forecast; Predictive distribution; Spatial dependence; Markov
chain Monte Carlo; Latent Gaussian process; Cost-loss ratio.
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1 Introduction

Ice and snow on roads have large impacts. Failure to maintain roads in winter often leads to

road closures and hence economic losses (Sherif and Hassan 2004). The Washington State

Department of Transportation estimated that between 1992 and 2004, Snoqualmie Pass on

Interstate-90 (I-90) had been closed on average 120 hours per year, causing an annual loss

of at least $17.5 million dollars. Ice and snow also increase the risk of accidents (Norrman

et al. 2000; Eriksson and Norrman 2001). The crash rate on the I-90 Mountains to Sound

Greenway, Washington State’s primary east-west bound highway, in the presence of snow is

about five times the rate in clear conditions (Federal Highway Administration 2006).

Currently, two main strategies are used for winter road maintenance: de-icing, in which

chemicals are used to melt ice and snow, and anti-icing, a preventive measure that reduces

ice by hindering bonds between ice crystals and road pavement. Due to the use of chemicals,

both strategies hurt the environment: soil, vegetation, streams, road surface and vehicles

are damaged by the chemicals used in both de-icing and anti-acing (Shao and Lister 1996;

Ramakrishna and Viraraghavan 2005). However, anti-icing is preferred to de-icing on roads

with high traffic volumes because it reduces total chemical use and allows a higher level of

service to the public.

The costs of winter road maintenance are high, but the losses due to road closures are

much higher, so accurate ice forecasts are needed (Chapman et al. 2001a; Shao 1998). Cur-

rently, forecasts of road ice come primarily from numerical road prediction models or numer-

ical weather prediction models. Numerical road prediction models take weather forecasts

and road condition data as inputs, and forecast future road conditions using the surface

energy-balance equation, which describes the fluxes of energy between the atmosphere and

the road (Sass 1992). Numerical weather prediction models describe the atmosphere using

seven differential equations, and forecast future weather by integrating them forward in time.

Both kinds of forecast are deterministic and do not assess uncertainty, which is important in

weather-related decision making (Palmer 2000; Richardson 2000; American Meteorological

Society 2002; Gneiting and Raftery 2005; Roulston et al. 2006; National Research Council

of the National Academies 2006).

The cost of failing to take anti-icing measures when ice does form on the road is much

greater than that of anti-icing when no ice forms. As a result, it would be best to take

anti-icing measures when the predicted probability of ice is greater than some threshold that

is typically well below 50%. Thus a good estimate of the probability of ice is needed, and

deterministic forecasts do not provide it. In this paper we present methods for estimating

this, building on the work of Mass et al. (2003), who document the joint effort of the
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Department of Atmospheric Sciences at the University of Washington and of the Washington

State Department of Transportation to monitor and provide forecasts of road ice for I-90 by

postprocessing numerical weather forecasts.

The physical process that produces ice on roads is complex and involves the interaction

of weather with road surface conditions (Chapman et al. 2001a; Thornes et al. 2005). Here

we simplify it, and we assume that ice will form at a point on the road if precipitation

occurs and the air temperature is at or below freezing. Starting from numerical weather

forecasts, we develop a model for the joint predictive probability distribution of temperature

and precipitation, which yields the probability of ice formation.

The problem of winter road maintenance is intrinsically spatial. We examine whether

spatial dependence should be modeled explicitly, by comparing two models, one that does

not take account of spatial correlation and one that does. The latter produces joint predictive

probability distributions of future temperature and precipitation over space that account for

the spatial correlation of the forecast errors.

In Section 2, we describe the data and introduce the statistical models and the estimation

methods that we use. In Section 3, we give verification results, and in Section 4 we discuss

other approaches that have been developed for this problem, and possible limitations of our

methodology.

2 Data and methods

2.1 Road maintenance problem

The I-90 Mountains to Sound Greenway is one of the main arteries of the State of Washington,

with a traffic volume of 20 million vehicles per year. The highway crosses the Cascade

Mountains with large changes in altitude and connects the urban centers of Puget Sound

with farmlands in Eastern Washington; it is an important route for the economy of the

region. During the winter months from October to March, I-90 is often congested because

of poor driving conditions due to snow accumulation and ice. To provide a safe transit to

travelers, the Washington State Department of Transportation employs preventive anti-icing

measures on I-90 during the winter season. In this study, we use data from ten meteorological

stations along the section of I-90 that includes Snoqualmie Pass. Figure 1 shows the altitude

profile for the portion of I-90 considered in this study.

The data span the three winter seasons of 2002–2003, 2003–2004, and 2004–2005, and

include minimum temperature and precipitation during the three-hour time interval 1:00am–

4:00am. Precipitation occurrence was recorded if there was at least 0.01 inch of precipitation.

Geographical information (latitude, longitude and elevation) for the observation sites was

2
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Figure 1: (a) Section of I-90 and stations along it. (b) Altitude profile of I-90 and stations
along it.
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also available. From now on, we will use the term “temperature” to refer to minimum

temperature between 1:00am and 4:00am.

The data comprise 438 days of observations: 131 during the 2002–2003 winter season,

159 during the following winter season and 148 during the 2004–2005 season. The number

of observations per station ranges from a minimum of 169 to a maximum of 363, with an

average of 307 and a median of 323.

We use 12-hour-ahead forecasts of temperature and precipitation produced by MM5, the

fifth-generation Pennsylvania State University—National Center for Atmospheric Research

Mesoscale Model (Grell et al. 2004). The model was run by the University of Washington

Department of Atmospheric Sciences with initial and boundary conditions supplied by the

United Kingdom Meteorological Office (Grimit and Mass 2002; Eckel and Mass 2005). The

forecasts were generated on a 12 km grid and then bilinearly interpolated to the observation

sites. These forecasts are based on the information available at 4:00pm the preceding day,

which is typically the most recent available to managers deciding whether to take anti-

icing measures overnight. Figure 2 shows the weather data at the Alpental weather station.

This is close to Snoqualmie Pass and is one of the highest stations on I-90. The MM5 model

forecasted temperature quite accurately: the mean absolute error for the forecast at Alpental

during the winter season 2002–2003 was 1.6◦C. The forecast of precipitation occurrence at

Alpental was reasonably good during the 2002–2003 winter season. For example, in 59 of

the 64 cases in which more than 0.01 inch of rain was predicted, precipitation was indeed

observed. In 33 of the 50 cases in which the forecast was for no precipitation, the forecast

was correct and there was no precipitation.

We will say that a point along I-90 requires anti-icing if the temperature is equal or less

than 0◦C and there is precipitation. Similarly, we will say that a section of I-90 requires

anti-icing if there is at least one point in the section at which the temperature is at most

0◦C and there is precipitation. Our goal is to produce probabilistic forecasts of ice formation

along a section of I-90.

2.2 Statistical model

We now describe our statistical model for ice formation at a given time. The time is fixed,

and so is not explicitly included in our notation. We denote by Y(s) and Ỹ(s) the observed

temperature and the 12-hour forecast of temperature at a point s along the portion I of I-90

shown in Figure 1. We follow Sloughter et al. (2007) in using the cube root of the forecast

of accumulated precipitation as the basis for our model of precipitation. We let W(s) = 1 if

precipitation occurred at s and 0 if not. We denote by W̃(s) the cube root of the forecasted
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accumulated precipitation amount at s. We will say that ice forms on the road at s if

Y(s) ≤ 0◦C and W(s) = 1. (1)

Our goal is to produce probabilistic forecasts of ice formation simultaneously at all sites s

on a grid of points along I.

Given our definition of ice formation, in order to produce probabilistic forecasts of ice,

we need to specify a joint model for temperature and precipitation occurrence. We assessed

the dependence between temperature and precipitation occurrence given the forecasts by

dividing the observations into groups with similar values of the forecasts. Within each

group we found no evidence of dependence. We therefore assume that temperature and

precipitation occurrence are conditionally independent of one another given the forecasts.

We now specify two models, each of them for the joint distribution of temperature and

precipitation occurrence.

In our first model, which we call the marginal model, we assume that temperatures at

different locations are independent of one another, as are occurrences or not of precipitation,

given the forecasts of temperature and accumulated precipitation. To remove systematic

nonstationary variation, we include a regression-based adjustment of the mean temperature

field on latitude, longitude and elevation, similarly to Handcock and Wallis (1994) in their

analysis of the average U.S. winter temperature. The marginal model for temperature is

then

Y(s) = γ0 + γ1Ỹ(s) + γ2lat(s) + γ3lon(s) + γ4ht(s) + ǫ(s), (2)

where lat, lon and ht denote the centered latitude, longitude and elevation (measured in

meters), γ0, γ1, γ2, γ3 and γ4 are regression coefficients, and ǫ(s) is a mean-zero Gaussian

process with

Cov(ǫ(s), ǫ(t)) = ς2δst, (3)

where δst = 1 if s = t and 0 otherwise.

We now describe our spatial model, which takes account of spatial correlation in temper-

ature and precipitation. The mean temperature field is modeled using the same regression

adjustment as in the marginal model. The temperature field is assumed to have a stationary,

isotropic exponential covariance function with a nugget effect. The model is:

Y(s) = α0 + α1Ỹ(s) + α2lat(s) + α3lon(s) + α4ht(s) + ξT (s), (4)

where α0, α1, α2, α3 and α4 are regression coefficients, and ξT (s) is a mean-zero stationary

isotropic Gaussian process with covariance function

Cov(ξT (s), ξT (t)) = ρ2δst + τ 2 exp

(

−
|s− t|

r

)

, (5)
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where |s − t| is the distance between sites s and t. The covariance parameters are the

nugget effect, ρ2, the sill, σ2 = ρ2 + τ 2, equal to the marginal variance, and the range, r,

which specifies the rate at which the exponential correlation decays (Cressie 1993; Chilès

and Delfiner 1999).

We now describe our models for precipitation occurrence. In the marginal model we

assume conditional spatial independence for precipitation occurrence given the forecast of

precipitation, so that

W(s) =











1 with probability π(s),

0 with probability 1 − π(s),
(6)

where

log

(

π(s)

1 − π(s)

)

= λ0 + λ1W̃(s) + λ2ht(s), (7)

and W(s) and W(t) are independent given W̃(s), W̃(t), ht(s) and ht(t). In this case, the

inclusion of latitude and longitude made no difference and so they were not included in (7).

In specifying our spatial model for precipitation occurrence we follow Albert and Chib

(1993), and extend their hierarchical model for independent binary data to spatially depen-

dent binary data. We postulate a latent Gaussian process Z(s) that regulates precipitation

occurrence. If the latent variable Z(s) is greater than 0, then there is precipitation at the

site; otherwise there is no precipitation at s.

The mean of Z(s) is a linear combination of the cube root of the forecast, and elevation.

The covariance structure of Z(s) is modeled using an exponential covariance function. To

ensure identifiability, the marginal variance of Z(s) is set equal to 1, and the only covariance

parameter is the range parameter θ, which gives the rate of decay of the spatial correlation.

The complete spatial model for precipitation occurrence is thus:

W(s) =











1 if Z(s) > 0,
s ∈ I,

0 otherwise,
(8)

Z(s) = β0 + β1W̃(s) + β2ht(s) + ξP (s), (9)

where ξP (s) is a mean-zero unit variance Gaussian process with covariance function

Cov(ξP (s), ξP (t)) = exp

(

−
|s− t|

θ

)

. (10)

2.3 Model fitting

For each day, the parameters of models (2) through (10) were estimated using data from a

“sliding window” training period consisting of the previous N days. The parameters of the

7



marginal model (2) and (3) were estimated by fitting a linear regression of observed temper-

ature on the forecasted temperature, latitude, longitude and elevation. The parameters of

the marginal model (6) and (7) were estimated by fitting a logistic regression of the observed

precipitation occurrence on the cube root of the forecasted accumulated precipitation and

elevation. The data used to fit both regressions were observations and forecasts for the ten

stations located along I relative to the previous N days. The choice of N is explained in

Section 2.4.

For the spatial model, the parameters for temperature are computed in two stages: first

the regression coefficients α0, α1, α2, α3 and α4 and the marginal variance σ2 are evaluated,

then the covariance parameters, ρ2, τ 2 and r are determined. Since the training period is

a sliding window consisting of the N days preceding the verification time, only a limited

amount of data is available. This can render the ordinary least squares estimates of the

regression coefficients and of the marginal variance unstable, as Figure 3 shows. Therefore,

to estimate the model parameters for temperature, we use a Bayesian framework and we

adopt the posterior means as estimates of the regression coefficients, α0, α1, α2, α3 and α4,

and of the marginal variance, σ2.

Our estimates of α0, α1, α2, α3, α4 and σ2 are based on the following Bayesian model:

Y(s) = α0 + α1Ỹ(s) + α2lat(s) + α3lon(s) + α4ht(s) + ξ′T (s) (11)

α = (α0, α1, α2, α3, α4)
T |σ2 ∼ MVN5(η, σ

2Ω) (12)

σ2 ∼ InvGamma(ν, ψ) (13)

where ξ′T (s) is a mean-zero Gaussian process with covariance function Cov(ξ′T (s), ξ′T (t)) =

σ2δst, η is a vector with components (η0, . . . , η4) and Ω is a diagonal matrix with diagonal

elements (ω2

0
, . . . , ω2

4
). This is a simplification in that the spatial structure is not included

in this model, but the verification results in Section 3 indicate that this did not hurt the

out-of-sample predictions from the spatial model.

We based the prior distributions of α0, α1, . . . , α4 and σ2 on the data from the first winter

season available to us, that of 2002–2003. For each day in the 2002–2003 winter season, we

estimated the regression parameters by fitting a linear regression with data from the previous

N days. The prior mean and prior standard deviation of α0 were the mean and twice the

standard deviation of the resulting estimates of the α0; similarly for α1, . . . , α4. Table 1

reports the values of the prior mean and the prior standard deviation of α0, α1, . . . , α4 with

training period of length N = 20.
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Figure 3: Bayesian estimates of α0, α1, α2, α3, α4 and σ2 versus time (solid black line). In
each panel, the dashed black line shows the ordinary least squares estimates of the parameter,
and the solid grey line is the prior mean.
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Table 1: Prior mean and prior standard deviation of α0, α1, α2, α3, α4 for training period
length N = 20.

α0 α1 α2 α3 α4

Prior mean 0.164 0.672 0.366 3.578 –0.006
Prior standard deviation 0.701 0.205 0.473 1.166 0.001

To specify the hyperparameters of the inverse Gamma prior distribution of σ2, we min-

imized the sum of squared deviations between the cumulative distribution function of an

inverse Gamma distribution and the empirical distribution of the estimates of σ2. The re-

sulting 10th, 50th and 90th percentiles of the prior distribution of σ were 1.36◦C, 1.67◦C

and 2.12◦C.

The posterior means of the regression parameters are given by standard closed form

expressions (e.g. Gelman et al. 2004, Chapter 14). As can be seen from Figure 3, using a

Bayesian approach stabilized the ordinary least squares estimates when they were unstable,

but otherwise hardly changed them at all, which was our goal.

To estimate the covariance parameters ρ2 and r, which are assumed to be constant in time,

we used the data from the 2002–2003 winter season. We constructed the empirical variogram

of the residuals of the linear regression of the observed temperature on the centered latitude,

longitude and elevation, and on the forecast of temperature. We then fitted a parametric

exponential variogram with nugget effect to the empirical variogram using Weighted Least

Squares (Cressie 1993), where the weights were the numbers of times each pair of stations

had been observed simultaneously. Figure 4 shows the empirical variogram of the residuals

of temperature and the fitted parametric exponential variogram.

The marginal variance, σ2, varies with time and is re-estimated for each day. We ascribe

the variability in time of the marginal variance to the variability in time of the variance of

the continuous component of (5). We thus model ρ2, the small scale variability, as constant

in time, while we allow τ 2 to change with time and re-estimate it for each day. From (5)

it follows that, for each day, we can obtain a new estimate of τ 2 by simply subtracting the

estimate of ρ2 from the estimate of σ2.

In estimating the parameters of the spatial model for precipitation occurrence, the pa-

rameters of the model given by (8), (9), and (10), were estimated for each day in a Bayesian

way using data from a training period made up of the previous N days. We used the following

prior for β and θ:

β = (β0, β1, β2)
T ∼ MVN 3(µ,V), (14)
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θ ∝ Unif (0, 1000). (15)

As for temperature, we used spread-out prior distributions with hyperparameters based on

data from the 2002–2003 winter season. For each day in the 2002–2003 season, we fit a

logistic regression of the observed precipitation occurrence on the cube root of the forecast

of accumulated precipitation and on elevation to data from a training period made up of the

previous N days. This yielded a set of estimates of β0, β1 and β2. The prior mean µ then

consisted of the means of the estimates of β0, β1 and β2, while V was diagonal with diagonal

elements equal to four times the variances of the estimates of β0, β1 and β2.

For each day, the parameters of the spatial hierarchical model for precipitation, given by

(8), (9), (10), (14) and (15), were estimated using a Markov Chain Monte Carlo algorithm

(MCMC; Gelfand and Smith 1990). Since a closed form for the full conditional distributions

of Z(s) and β is available, we used a Metropolis-Hastings step to update the covariance

parameter θ, and a Gibbs sampler algorithm to update all other parameters.

2.4 Choice of training period

In choosing the length of the training period there is a trade-off: a shorter period allows

changes in the atmosphere to be taken into account more promptly, but on the other hand
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Figure 5: RMSE of temperature predictions versus training period length. Predictions are
made only for the 2003–2004 and 2004–2005 winter seasons. The month of October is always
excluded from the RMSE computation.

it reduces the amount of data available for estimation of the parameters.

To choose the length of the training period we used the Root Mean Square Error (RMSE)

of the temperature predictions obtained using training periods of lengths N = 5, 10, . . . , 60

days. Figure 5 shows the RMSE of the predictions as a function of the training period

length. The magnitude of the error decreased noticeably as the length N of the training

period increased up to 20 days. Beyond 20 days, there was not much gain in using a longer

training period, and the quality of the predictions worsened slightly for training periods

longer than 30 days.

We therefore used a training period of 20 days to estimate the model parameters for

both temperature and precipitation. However, different training period lengths may be

appropriate for different forecast lead times and regions.

2.5 Generating forecasts

To produce probabilistic forecasts of ice formation along the section I of I-90 in Figure 1,

we discretized the problem and simulated from the joint predictive distribution of tempera-

ture and precipitation occurrence at 104 points along the highway. The distances between

neighboring points range from 1.3 km to 2.0 km and cover a section of I-90 about 140 km

long.
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Figure 6: Probability of ice formation along I-90 on March 31, 2004, as forecast by the spatial
model (solid black line) and the marginal model method (dot-dash black line). The profile
of I-90 is shown in grey, while observations are represented with black dots.

Realizations of the temperature and precipitation occurrence fields were obtained by

simulating from the stochastic processes given by (2) and (3), and (6) and (7) for the marginal

model and from the stochastic processes given by (4) and (5), and (8), (9) and (10) for the

spatial model, using parameters estimated from the training data. We defined a realization

as forecasting ice at one of the 104 points if it gave both precipitation and temperature at or

below freezing at that point on the road. The probability of ice on the road at that location

was then the proportion of the realizations forecasting ice.

Figure 6 maps these probabilities for one day for both models. Not surprisingly, they are

similar between the two models, because the real differences between the models are for the

joint distribution of ice at different places, not for the probability of ice at one place.

To verify our probabilistic forecasts, we used the observations at the ten stations, for

which the forecast probabilities can be computed analytically. We did not observe directly

whether or not there actually was ice on the road, and instead we say that ice was observed

if the temperature was at or below freezing and there was precipitation.

Comparisons of forecasts and observations at individual sites assess the performance of

the predictive distributions only marginally. To evaluate the probabilistic forecasts of the ice

field as a whole, we forecasted ice formation simultaneously at all ten observation sites. This

was done using the procedure described at the beginning of this section, replacing the 104
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points with the ten observation sites. For a given realization, we say that ice was predicted

along the section I of I-90 if ice formation was forecasted at at least one of the ten sites.

We say that ice was observed along I if temperature was at or below freezing and there was

precipitation at at least one of the stations.

To distinguish between the two different types of verification — marginal and spatial —

we will use the expression “ice at observation sites” for verification results relative to forecasts

of ice at the individual sites, and “ice along I” to refer to forecasts of ice simultaneously at

the ten observation sites.

3 Results

We now compare the out-of-sample predictive performance of our probabilistic forecasting

methods with that of the deterministic forecast for the winter seasons 2003–2004 and 2004–

2005, for individual sites and for the entire section I of I-90. We refer to a deterministic

forecast from the numerical weather prediction model as a “raw” forecast. We define this as

predicting ice if it forecasts both freezing temperature and non-zero precipitation.

Our main measure of performance is the Brier score (Brier 1950), defined as:

Brier score =
1

M

M
∑

j=1

(oi − fi)
2, (16)

where M is the total number of predictions, oi is the ith observed event (1 if the event

occurred, 0 otherwise) and fi is the forecast probability that the ith event will occur. It is

negatively oriented, that is, lower is better. The Brier score can be decomposed into un-

certainty, reliability and resolution components, and is equal to uncertainty plus reliability

minus resolution (Murphy 1973). The uncertainty component measures the inherent un-

certainty in the observations and is independent of the forecast. The reliability component

measures the deviation of the reliability curve from the diagonal. It addresses calibration,

that is the statistical consistency between the forecasts and the observations, and is nega-

tively oriented. The resolution component measures the ability of the forecast to distinguish

between prior situations that will lead to the occurrence or nonoccurrence of the event, and

is positively oriented.

Table 2 shows that for the probability that ice forms at individual locations, both prob-

abilistic forecasting methods substantially outperformed the raw forecast. Not surprisingly,

they performed similarly to one another for individual locations. Figures 7 and 8 show re-

liability diagrams for both probabilistic forecasts of ice formation. At individual locations

along I-90, the two methods performed similarly, as expected. However, when we looked

at the forecasted probability of the spatial aggregate “ice formation along I”, the spatial
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Table 2: Brier scores for the probability of ice formation at observation locations and along
the section I of I-90. The decomposition of the Brier score into its three components (un-
certainty, reliability, resolution) is shown in parentheses. Note that the Brier score is equal
to uncertainty plus reliability minus resolution. Period: November 1, 2003–March 31, 2004
and November 1, 2004–March 31, 2005.

Observation Along
locations I

Raw forecast 0.179 (0.138; 0.070; 0.030) 0.280 (0.234; 0.085; 0.040)
Marginal model 0.103 (0.138; 0.043; 0.078) 0.167 (0.234; 0.103; 0.171)
Spatial model 0.115 (0.138; 0.045; 0.069) 0.163 (0.234; 0.080; 0.151)

model was clearly more reliable: the marginal model method tended to overestimate the

probability of ice formation.

We now compare the economic value of the different forecasting methods. In the case

of the probabilistic forecasts, we assume that anti-icing measures, costing C, are taken

whenever the probability of road ice is greater than a given threshold. A loss L is incurred

when no anti-icing measures are taken but ice does form on the road. Various estimates

of the economic loss L associated with closure of I-90 have been reported, ranging from

$1, 000, 000 to $18, 000, 000 per day (Paulson 2001), while the cost C of anti-icing measures

has been estimated at about $100, 000 per day.

The threshold probability used to decide whether to take anti-icing measures is then

equal to the cost-loss ratio, R = C/L. Table 3 shows contingency tables cross-classifying

action (anti-icing measures or not) against outcome (road ice or not) for each of four different

forecasting methods when R = 0.1. We have already discussed three of the four forecasts:

the raw forecast and the two probabilistic forecasts. The fourth forecast we consider, the

naive forecast, is the same in every instance. If the marginal probability of occurrence of

road ice is above the threshold probability R, then the naive forecast always predicts road

ice; otherwise it always forecasts no road ice. The marginal probability of ice formation over

the 2002–2003 winter season was 0.07 (9 instances out of 131 forecast events), and so the

naive forecast always predicted ice if R < 0.07, and never predicted ice if R ≥ 0.07.

The contingency tables in Table 3 enable us to estimate what the loss associated with

winter road maintenance decisions would have been using each of the four forecasts during the

two-year period. We denote by n00, n01, n10 and n11 the entries in contingency tables such as

those in Table 3 where, for example, n01 is the number of times that ice was forecast but no ice

formed. Then the total loss over the period considered would have been Ln10 +C(n01 +n11).

Figure 9 shows the economic loss associated with each of the four forecasting methods
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Figure 7: Reliability diagram for the probability of ice formation at observation locations
as provided by the marginal model and the spatial model method, respectively, during the
2003–2004 and 2004–2005 winter seasons. Probabilities have been binned into ten bins, each
of width 0.1. Histograms of the forecast probability of ice formation at observation locations
from both methods are also shown.

Table 3: Forecasts and observations of ice formation for the naive forecast, the raw forecast,
the marginal model and the spatial model with threshold probability R = 0.1. Period:
November 1, 2003–March 31, 2004 and November 1, 2004–March 31, 2005. The raw forecast
is deterministic, so the entries for it do not depend on R.

Ice Ice Ice
Forecast Forecast? Observed Not observed

Naive Yes 103 172
forecast No 0 0

Raw Yes 68 42
forecast No 35 130
Marginal Yes 101 111
model No 2 61
Spatial Yes 102 123
model No 1 49
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Figure 8: Reliability diagram for the probability of ice formation along the section I of I-90
from the spatial and marginal models during the 2003–2004 and 2004–2005 winter seasons.
The probabilities have been binned into ten bins, each of width 0.1. The figure also shows
histograms of the forecast probability of road maintenance along I provided by the two
methods.
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Figure 9: Economic loss associated with each of the four forecasts of ice formation plotted
against the cost-loss ratio R, for the 2003–2004 and 2004–2005 winter seasons.

as a function of the cost-loss ratio R. The probabilistic forecasts led to a considerably lower

economic loss than the raw forecast over all thresholds.

To get an idea of what these numbers mean in practice, consider the case where C =

$100,000 and L = $1,000,000, so that R = 0.1, which is realistic for I-90. In that case,

acting on the basis of the raw forecast would have yielded a loss of $46M over the two-year

period, while the spatial model would have yielded a loss of $23.5M and the marginal model

a loss of $23.2M. Thus using probabilistic forecasts rather than deterministic ones would

have lowered the overall economic loss by 49%, or by $11.25M per year on just one mountain

pass. Taking account of spatial dependence would have prevented one additional closure of

I-90, but would have also led to anti-icing measures being taken unnecessarily 12 times more

than if the marginal model method had been used.

Our test dataset consisted of 275 cases, so in our example with C = $100,000, taking

anti-icing measures every day would have cost $27.5M. Basing decisions on the raw forecasts

would have led to a loss considerably greater than this, showing the danger of relying on

deterministic guidance when the costs and losses are as asymmetric as in this case. Using

probabilistic forecasts of ice provided by the marginal model would have yielded a reduction

in economic loss of about 15%, or $2M per year compared with the strategy of always

anti-icing.

4 Discussion

We have developed two ways of estimating the probability of ice forming on a roadway. The

simpler one ignores spatial dependence, and the more complex one models spatial dependence
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explicitly. In our experiments, both probabilistic methods considerably outperformed the

raw forecast we considered, and would have almost halved the total economic cost relative

to relying on deterministic guidance. The two methods gave similar results because much of

the spatial dependence in ice formation was accounted for by the numerical weather forecasts.

Our approach to the problem of predicting road ice goes beyond previous approaches by

providing probabilistic forecasts rather than deterministic predictions. Commonly, road ice

is forecast using mathematical models that reproduce the physical interactions between the

road and the atmosphere (Best 1998; Sass 1992; Shao and Lister 1995; Crevier and Delage

2001; Chapman et al. 2001b; Korotenko 2002). Such models take into account meteorological

parameters, such as air temperature, precipitation, wind direction, wind speed, humidity and

dew point, and predict both road surface temperature and road conditions (Chapman et al.

2001b). However, despite the high level of detail, predictions are not always accurate (Shao

1998). For example, three numerical road models used in the UK were found to be negatively

biased (Chapman et al. 2001b).

Statistical methods have been used to correct prediction errors, with a stress on choosing

the weather and other variables that best predict road surface temperature (Shao and Lister

1995, 1996; Chapman et al. 2001a; Thornes et al. 2005). Unlike ours, these methods are all

deterministic.

Some statistical postprocessing methods for forecasting road ice from numerical weather

predictions or the outputs of road prediction models have been proposed. Shao (1998)

used a back-propagation neural network to postprocess short-range forecasts of road surface

temperature. Sherif and Hassan (2004) used stepwise regression to identify the more useful

weather variables to predict pavement temperature. Once the meteorological parameters

were selected, Sherif and Hassan (2004) generated predictions of road surface temperature

by linear regression of the observed pavement temperature on the numerical forecasts of the

selected meteorological variables. These methods are all deterministic in the sense that they

yield point forecasts rather than predictive distributions.

Our marginal and spatial models are fairly simple, yet they provide big improvements over

the raw forecast, both in terms of accuracy and economic value. The method for computing

the predictive mean in our marginal model can be viewed as an instance of Model Output

Statistics (MOS; Glahn and Lowry 1972; Wilks 2006). However, MOS was not previously

applied to road ice forecasting, and MOS does not yield probabilistic forecasts. Our spatial

model can be viewed as a generalization of the model of Gel et al. (2004) for probabilistic

forecasting of temperature fields to simultaneous forecasting of temperature and precipitation

fields.

In our spatial model, precipitation occurrence is modeled by a latent Gaussian random
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field with spatial dependence between sites. Similar models for modeling precipitation have

been used by others (Bardossy and Plate 1992; Hughes and Guttorp 1994; Hutchinson 1995;

Hughes et al. 1999; Guillot 1999; Sansò and Guenni 1999, 2000; Allcroft and Glasbey 2003;

Sansò and Guenni 2004; Rappold et al. 2007). Our main contribution here is modeling

temperature and precipitation jointly to generate forecasts of ice.

One limitation of our method is that it uses only a single deterministic forecast. Many

probabilistic weather forecasts are based on an ensemble of such forecasts from different initial

conditions, different numerical weather prediction models or different weather centers. Such

ensembles can capture uncertainties due to the nonlinear dynamics of the atmosphere. One

direction in which our approach could be expanded is the extension of the marginal and

spatial models to a forecast ensemble, perhaps using a Bayesian model averaging approach

(Raftery et al. 2005; Berrocal et al. 2007; Sloughter et al. 2007).

We developed our model using numerical weather forecasts of air temperature and rain-

fall amount, and we defined ice as the joint occurrence of air temperature below freezing

and precipitation. A more accurate definition of road ice would be the joint occurrence of

pavement temperature at or below freezing and precipitation. Numerical forecasts of pave-

ment temperature and observations of road surface temperature were not available to us.

However, both the marginal model and the spatial model method can be easily adapted and

applied to forecasts and observations of pavement temperature rather than air temperature.
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