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ABSTRACT

We present COMET, a system that automatically assembles a test suite for
a C program to improve line coverage, and give initial results for a prototype im-
plementation. COMET works dynamically, running the program under a variety
of instrumentations in a feedback loop that adds new inputs to an initial corpus
with each iteration. One instrumentation in particular is crucial to the success of
this approach: dynamic taint tracing. Inputs are labeled as tainted at the byte
level and all read/write pairs in the program are augmented to track the flow of
taint between memory objects. This allows COMET to determine from which bytes
of which inputs the variables in conditions derive, thereby dramatically narrowing
the search over inputs necessary to expose new code. On a test set of 13 example
programs, COMET improves upon the level of coverage reached in random testing
by an average of 23% relative, takes only about twice the time, and requires a tiny
fraction of the number of inputs to do so.
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1. INTRODUCTION

Testing remains the primary method by which the conscientious developer assures herself that
her code is correct [16]. Test suites for use in regression testing are extremely valuable, so valuable
that software companies routinely allow them to grow so large that running them takes days or
even weeks [26]. Nevertheless, these suites are typically incomplete in the sense that they cover
considerably less than 100% of the lines in the code.

Formal methods such as theorem proving and model checking might seem to offer an alter-
native, but they continue to encounter strong resistance from the workaday programmer. These
methods are tricky to employ and impractical for programs of more than a few thousand lines.
Further, it is difficult to keep models and programs synchronized, and so there is a real risk of
proving things about models that are not reflected in implementations. Random testing, in which
the program is subjected to random draws from some distribution over the inputs, is a simple and
more commonly used alternative. In a recent study, this sort of “fuzz testing” was able to crash
73% of the GUI-based applications for OS X [19]. However, while it is clear that random testing can
uncover bugs, it is unlikely that random inputs, even those generated with a context-free grammar,
will be sufficiently well-formed to exercise the deeper parts of a program.

This paper makes the following new contributions. It presents COMET (COverage Maximiza-
tion using Taint), a system for automatically obtaining a test suite for a program via a feedback
loop that maximizes line coverage directly. COMET works dynamically, running the program un-
der a number of instrumentations, including one that discovers the coverage frontier in need of
immediate exploration, another that dynamically traces taint for memory objects back to individ-
ual bytes in the labeled inputs, and yet another that automatically composes objective functions to
be used by standard nonlinear optimization techniques to find input byte settings that expose new
code. COMET maximizes coverage by adding inputs that uncover new code to a corpus. While
it can be initialized with random inputs, one of its great strengths is that COMET can be seeded
with a regression test suite. If that suite contains at least some well-formed inputs, then COMET
may be able to assemble a test suite that covers vastly more code than if it had started with a
single random input. COMET is a working prototype and we have evaluated its performance on
13 illustrative model programs. Performance is compared to a strawman random testing approach
and found to be better. Coverage improves by 23% relative, and requires only about twice as much
time. System tuning experiments indicate that even better runtimes may be possible with only
minimial decrease in final coverage. And COMET uses far fewer inputs than random testing. In
our experiments, an average of 30 inputs were equivalent to the ten million used for a random
testing baseline.

This paper is organized as follows. In Section 2, we describe COMET in detail, broken down
into its three main pieces. Next, Section 3 presents results on some initial experiments. System
tuning is discussed in Section 4 and related work in Section 5. Finally, there are some concluding
remarks in Section 6.




2. COMET SYSTEM DESCRIPTION

COMET works in a feedback loop, a very simplified version of which is depicted in Figure 1
as a flowchart. The purpose of each of the boxes in the flowchart is described in detail in its own
section below. The system is also presented, in more detail, as Algorithm 1. At a high level, in
each iteration of the feedback loop, the algorithm considers each of a set of inputs, I.. It identifies,
for each input, a set of conditionals that are both tainted (see Section 2.3) by the inputs and for
which only one branch is covered (Section 2.2). For each such conditional, the algorithm searches
for an input that exposes the other branch of the conditional (See Section 2.4.2), adding any it
discovers to a new set, I, for consideration in the next iteration.

Sec. 2.1 Sec. 2.2 Sec. 2.3 Sec. 2.4
_ . Trace taint for Search for
Initial | g, Flnt;lrgzrizl;age —P»| clues to speed [—P»| inputs to expose
inputs * the search new branches
New inputs

Figure 1. COMET flowchart

2.1 INITIAL INPUTS

For each iteration of the feedback loop, there is some set of inputs, I., to be considered. In
the first iteration, this set might be filled with draws from some probabilistic grammar, or it might
be a regression test suite. This set of initial inputs is I; in Algorithm 1. Subsequent iterations use
a set discovered by the algorithm itself, I, after discarding overlap with the final corpus of inputs
being collected, I.

2.2 THE COVERAGE FRONTIER

The first step in COMET’s feedback loop is to run the program under a novel instrumentation
that determines the coverage frontier. This is the set of conditionals for which only one of the two
possible branches was ever taken (in Algorithm 1, this is Cj,.). This coverage frontier is depicted in
Figure 2 as the dashed line separating the covered (black) and not-covered (white) elements of the
flowchart for the program. The diamonds in this picture are conditions, one of which is coloured
grey to indicate that it is a half-covered conditional (HCC). This conditional lies on the border
between covered and not-covered code, and it is where we focus effort. If we can find an input that
exposes the other branch of a HCC, we have exposed new code. The HCC instrumentation has two




input : I;, an initial set of inputs
P, the program under test

output: I, a final set of inputs that gives better coverage than I;
Ip—1;; 1. I; ;
while |I;| > 0 do
Iy — 0 5
foreach i€ I. do
Chee < GetHece(i, P) ;
TT «— GetTaintTraces(i, Chee, P) ;
foreach tt € TT do

(s,ni) « NewInputsSearch(tt, P) ;

if s=SUCCESS then

| Iy —I;Uni;

end
end
end
Io—1Iy—1If;
If I, Ul ;
end

Algorithm 1: COMET algorithm.

parts. First, a CIL [20] source-to-source transformation adds code to the start of both the TRUE
and FALSE blocks of every conditional in a C program!. The inserted code makes calls to a library
of runtime support that maintains a picture of conditional block coverage. The runtime support,
written in C, is the second part of the instrumentation, and it includes an API that permits us to
clear and inspect the coverage picture on a per-input basis if we so choose, or to collect summary
coverage information for a batch of inputs.

2.3 DYNAMIC TAINT TRACKING AND TRACING

The sccond step in the feedback loop is to determine which of the HCCs involve variables
derived from input bytes, and which bytes of which inputs control each variable. In Algorithm 1,
this information is represented as T'T', which is a set of taint traces for the half-covered conditionals
Chee- There will be at least one trace in T7T for every variable in a conditional in Cj,. that is
determined to be derived from input bytes and thus “tainted.” If the conditional is in a loop, more
than one taint trace may appear in TT (see Section 2.4.3). Each taint trace, t¢ € TT, indicates
the variable traced, the conditional containing it, and the ranges of input bytes from which it was
derived. These tainted half-covered conditionals in TT are those which guard new code that we
may exposc by varying inputs. Knowledge of input byte ranges makes the search over inputs to
expose new code tractable.

'Note that CIL reduces C to a simpler subset of itself, rewriting switch statements with nested ifs, and replacing
loops with some combination of while, if, and goto statements. Therefore, this one transformation is adequate to
handle all branches.




Figure 2. The coverage frontier

2.3.1 Taint Graph Example

A dynamic taint graph allows us to determine precisely how conditional variables depend
upon inputs. We present a pair of example taint graphs in Figure 3 before going into a more formal
description. The graph on the left is the situation before and the graph on the right is the situation
after a single byte in a buffer is written with newly tainted data. In the figure, rectangle nodes A
and B are buffers in memory. Oval nodes input; and inpute are sources of taint. These sources
are created via calls to a LabelTaint function that are currently inserted in the source by hand.
Arrows between nodes represent the transfer of taint. The ranges next to an edge give the write
(for the node at the arrow head) and read (for the node at the arrow tail) ranges for the transfer.
When the ranges are the same, only one is given. In these taint graphs, all edges are copy edges,
meaning that the write is an exact copy of the read (see Section 2.3.2). Thus, in the left-hand
graph 3(a), the first five bytes of B are a tainted, exact copy of bytes 5..9 of A. And bytes 5..9 of
A are a tainted, exact copy of bytes 5..9 of source input;. In the right-hand graph 3(b), byte 0 of
source inputy has been written to byte 7 of A. We update the graph in two steps to reflect this
fact. First, we delete taint for byte 7 of A. In order to preserve as much information as possible,
we first split in two the taint edges from input; to A and from A to B, as the Tth byte of input;
no longer taints A. Additionally, in order to properly maintain the taint relationship between the
7th byte of input; and the 2nd byte of B, a new edge is introduced directly from input, to B. The
second step is simply to add a new edge from inputs to A.




5..9

a. before

Figure 3. Taint graph example

2.3.2 The Dynamic Taint Graph

Nodes in a graph represent objects on the heap or stack, such as buffers and variables. Directed
edges represent the transfer of tainted data between objects. The tail of an arrow is labeled with
the range of bytes read, and the head with the range of bytes written. There are copy and compute
edges.

1. A copy edge corresponds to a direct copy of data, with the size of the byte range read and
written being the same. Both simple assignments (e.g., a=b) and a few common standard
library calls that copy bytes exactly create this sort of edge.

2. A compute edge corresponds to any other read/write pair. The size of the byte ranges read
and written need not be the same; all we know is that the write range is derived from the
read range. Complicated assignments (e.g., a=b+c+a) and some standard library calls result
in this sort of edge.

The reason for keeping distinct the two types of edges is that when it comes time to trace
taint back along a graph edge, we will be able to do so much more precisely for a copy than for
a compute edge. Say p is a pointer to the first byte of B in Figure 3(a). If we are asked to trace
taint for this byte, we can do so very precisely in two steps: byte 0 of B is a direct copy of byte
5 of A; byte 5 of A is a direct copy of byte 5 of input;. Conversely, if the edge from A to B had
been a compute edge, the trace widens in the first step because the best we can say is that byte 0
of B derives from bytes 5..9 of A.

Instrumentation is again via CIL, and so the range of syntactic constructs with which we
must contend is smaller than it would be for the original C source. There are only three places in
a CIL program in which taint may transfer and we instrument all three:

1. Assignment statements




2. User functions, via shadow call and return stacks

3. Library functions, via models

Maintaining the taint graph requires just two runtime support functions. The first of these is
AddTaintDependency(pl,ni,p2,n2,c) which simply adds an edge to the graph between the two
nodes representing the objects pointed to by pl and p2, labeling it with read range [pl,nl) (by
which we mean bytes pl..pl + nl — 1) and write range [p2,n2). The parameter c is a boolean set
to true iff the edge being added is a copy edge. This function is called to extend the graph by
introducing a new taint dependency.

The second function, DeleteTaint (p,n), deletes all taint from the graph on the byte range
[p,n). It is called when a previously tainted range of memory is overwritten and preserves taint that
previously flowed through these bytes to other memory objects. Deletion (alternately untainting)
is a complicated operation on the taint graph as it may necessitate re-routing edges to preserve
data-flow information. It is described briefly in Algorithm 2. Taint deletion makes use of a number
of functions. PtsTo(p) resolves a pointer p back to a node in the taint graph (see Section 2.3.7).
InEdges(o) and OutEdges(o) return the set of incoming and outgoing edges for node o in the
graph. WriteRange(e) and ReadRange(e) return the write and read byte ranges, respectively,
for edge e. The first and second steps in Algorithm 2 add new edges to represent the portions of
incoming and outgoing edges that do not overlap the deletion range. Any such edge is also added
to set DS earmarked for later deletion. Thus, for Figure 3(b), we add four new edges. We add
two copy edges from input; to A with ranges 5..6 and 8..9. And we add two new copy edges from
A to B: one from 5..6 to 0..1 and another from 8..9 to 3..4. Further, we add two edges to DS:
the two original edges connecting input;, A, and B. The third step re-routes the portion of any
incoming/outgoing edge pair that overlaps the deletion range. In Figure 3(b), this adds an edge
from byte 7 of input; to byte 2 of B. The fourth step deletes all the edges in DS, which are no
longer needed. This means, in Figure 3(b), that the edge for range 5..9 between input; and A
goes away, as does the edge for 5..9 to 0..5 between A and B. Note that considerable complexity
has been elided away here: for instance, re-routing edges has to proceed differently for copy and
compute edges.

2.3.3 Instrumenting Assignments

We use lhs to stand for the lvalue that is the left-hand side of an assignment, and rhs for the
expression that is the right-hand side. If we assume a function that recursively examines rhs and
assembles a set of Ivalues, lvalues, s, discovered therein, then we get Algorithm 3 for instrumenting
an assignment to transfer taint. Here, the action of AddCall(fn,args) is to insert a call to fn
with parameters args into the source code. Calls are inserted in sequence and immediately prior
to the current assignment under inspection. This means that an assignment will have the following
dynamic effect upon the taint graph. First, taint will be deleted for the node representing the
object that is the [hs. Second, for each lvalue contained within rhs, a new taint edge representing
the influence of that lvalue upon lhs is added to the graph. It might appear that assignments like
a=a+tb, in which (hs appears as part of rhs, demand special treatment; the algorithm would add
instrumentation in this case that erases any dependency of variable a upon its ancestors (incoming




DS @ )
/*Step 1: Add edges to represent non-overlapping parts of in-edges. */
foreach ie € InEdges(PtsTo(p)) do
if WriteRange(ie) N[p,n) # 0 then
Add taint edge(s) that excludes [p,n) on write range of ie. ;

DS «— DS Uie ;
end
end
/*Step 2: Add edges to represent non-overlapping parts of out-edges (omitted). */
/*Step 3: Reroute in-out edge pairs that overlap the deletion range. */

foreach ie € InEdges(PtsTo(p)) do
foreach oe € OutEdges(PtsTo(p)) do
if WriteRange(ie) N ReadRange(oe) N [p,n) # 0 then
| Add edge(s) to re-route intersection between write, read, and deletion ranges. ;
end
end
end
/*Step 4: Delete edges that overlapped [p, n). */
foreach e € DS do
| DeleteTaintEdge(e)

end
Algorithm 2: DeleteTaint(p,n).

edges in the taint graph) in this case, which is incorrect. To ensure that this is handled correctly,
we use a simple transformation to divide this sort of assignment in two by way of a temporary
variable, thus a=a+b becomes tmp=a+b; a=tmp. The function IsCopy(rhs) determines statically if
an assignment is a copy and thus if the new taint edge is a copy edge. This will be the case if rhs
is a single lvalue that has not been cast to change its bit width. Note that CIL makes all implicit
C casts explicit. Referring back to Figure 3, the second graph (b) results from a single assignment,
A[7]=input2[0], which is instrumented as two calls to the taint graph runtime system:

DeleteTaint (&(A[7]),1);
AddTaintDependency (& (input2[0]),1,&(A[7]),1,TRUE);

AddCall (DeleteTaint, &lhs, sizeof(lhs)) ;
¢ < IsCopy(rhs) ;
foreach r € lvalues,;; do
| AddCall (AddTaintDependency, &r, sizeof(r), &lhs, sizeof(lhs), c) ;
end
Algorithm 3: Inserting instrumentation for an assignment statement.



2.3.4 Instrumenting User Functions

We instrument functions for which we have source code to be able to transfer taint both into
and out of them. Because transferring taint into and out of a function is really just cross-scope
assignment, it is covered by Algorithm 3. Allow rhs; to refer to the ith actual (function argument),
and lhs; to correspond to the formals in the function definition. Upon entering a function, the
taint graph needs to be updated as if the assignments lhs; = rhs; have just taken place. The only
difficulty is that we cannot constitute calls to DeleteTaint and AddT aintDependency directly, as
we don’t have the addresses of lvalues,ns, and lhs; together in one place. To bring these values
together, we employ a shadow stack. At the call site, for each rhs;, we add instrumentation to
push the address, size, and position of each lvalue in lvalues,ps, to a stack. Likewise, at the head
of the function itself, we arrange to pop these pairs off the stack, associate them with formals,
and execute the appropriate calls to DeleteTaint and AddTaintDependency. Similarly, and more
simply, transferring taint out of a function is another cross-scope assignment in which taint transfers
from the return value expression rhs to the lhs of the function call itself, if any. Our implementation
does not currently handle variable length argument lists: the taint graph is only updated for those
formals explicitly listed in the function definition. We are investigating detecting and instrumenting
common va_list idioms.

2.3.5 Instrumenting Library Functions

Functions for which we do not have source code are handled, incompletely, via models of taint
transfer. We use a little language to specify how taint transfers across a few very common standard
library functions: memcpy, memmove, bcopy, strcpy, strncpy, strlen, and sprintf. When CIL
encounters one of these calls, it interpolates the actuals with the model for that library function
and inserts the correct call(s) to the runtime support to transfer taint across that function. For
instance, memcpy is augmented as follows:

DeleteTaint(dst,len);
AddTaintDependency(src,len,dst,len,TRUE);
memcpy (dst,src,len)

2.3.6 Taint Tracing

Input byte ranges for variables in conditionals are found by a depth-first search, augmented
to make use of write and read byte ranges on edges and to know the difference between copy and
compute edges. This search or taint trace is sketched in Algorithm 4, which works by examining
the incoming edges for the node corresponding to the byte range being traced, and then recursively
following the portion of each that overlaps the trace range. Three new functions make an appearance
here. SrcNode(ie) returns the node corresponding to the source of directed edge ie (the parent or
node at the tail of the arrow), and IsTaintSource(o) returns true iff node o was introduced by a
call to LabelTaint. TranslateRange(i, ie) determines the offset of byte range 7 with respect to the
write range of edge ie and then translates that into a byte range with respect to the read range of
te. Notice that this function must do its work differently for copy and compute edges, in the first
case carefully preserving the magnitude of the taint range when translating it onto the read range,




and in the second case widening the trace to correspond to the entire read range. Consider, as an
example, how the algorithm would trace taint for byte B[1] in Figure 3(b). The original call would
be TraceTaint (&(B[1]),1). Only the incoming edge from A to B with write range 0..1 overlaps
this trace range. Translating the overlap back to the read range results in a second call tracing
taint for byte A[6]: TraceTaint(&(A[6]),1). In this case, only the incoming edge from input,
to A for range 5..6 overlaps the taint range. The source node or parent for this edge, input;, is a
taint source, and so recursion terminates and we emit a message indicating that the trace leads to
byte 6 of input,. Such a precise trace, indicating that a single input byte controls a single byte in
a buffer, is only possible because all of the edges traversed in the search are copy edges. Note that
the tracing algorithm as described is vulnerable to cycles. To avoid this difficulty, we memoize the
function TraceTaint and halt recursion if called twice with the same parameters.

foreach ie € InEdges(PtsTo(p)) do

i — WriteRange(ie) N [p,n) ;

if i # () then

pl,nl « TranslateRange(i,ie) ;

if IsTaintSource(SrcNode(ie)) then
| Emit trace result: [pl,nl)

else
| TraceTaint (pl,nl)

end

end

end

Algorithm 4: TraceTaint(p,n)

2.3.7 TImplementation and Runtime Issues

The taint graph instrumentation is a 2K line Ocaml module extending CIL and is supported
by 5K lines of runtime code written in C. The ability to dynamically resolve a pointer to its referent
object (the PtsTo function assumed above) comes from Ruwase’s CRED bounds-checking extension
to gee [27] (itself a modified version of Jones and Kelly’s work [13]). CRED objects are bundled
with a number of useful pieces of information, including base address, extent, element size, and
creation location. CRED inserts code into a program to create and delete these objects as well as
providing efficient access to them via a splay tree. The runtime system periodically examines the
taint graph, looking for opportunities to compact it. For example, copy edges that are adjacent
and compute edges that subsume one another are combined, and islands are removed. In future, we
may pursue more aggressive compression strategies, such as reclaiming interior nodes corresponding
to temporary variables introduced by CIL. We will never need to trace taint for these variables.

10




2.4 THE SEARCH FOR NEW INPUTS

The third and final step in the COMET feedback loop is to search for inputs that expose new
code. That search is made much easier by the taint graph, as well as by a final new instrumentation,
condition objective functions that generate a signal indicating how close we are to exposing a branch
of a HCC for a given input. The search itself is a combination of heuristics and standard nonlinear
optimization.

2.4.1 Condition Objective Functions

The condition objective function instrumentation adds two print statements immediately prior
to every conditional, one for each branch. These functions are automatically composed (again, they
are inserted by CIL) to minimize to zero (after clipping to 0..00) when the conditional exposes the
desired branch. A sampling of these objective functions for some common conditions appears in
Table 1. These functions have much in common with those developed earlier, by others [17], even
though they were separately derived for this work. CIL replaces conditions involving the logical
connectives && and || with control flow (sequence and gotos), so there is no need to include them
in the calculus of objective functions. Thus, if we can by some automated search discover a way to
set the bytes in the input indicated by the taint trace to the right values, we minimize the condition
objective function and expose new code for future exploration.

cond 0bjtrye(cond)
(a == b) | (a—b)?

(a '=b) | 1—(a—0b)?
(a>b) |(b—a+1)
(a<=b) | (a—b)

a obj(a # 0)

TABLE 1. Condition objective functions.

2.4.2 Search Overview

The search for byte settings that will minimize a condition objective function happens, at a
high level, in two stages.

1. First, we try some reasonable guesses from two very different sources.

(a) Static hints: If the condition is something like (c==32), then a setting of 32 is an
excellent first guess. Likewise, if the condition is (c<32), then 31 would be a good
guess. We scan the condition for all integer literals and add each to the list of guesses
to try.

11



(b) Dynamic hints: Another (very simple, and therefore not described above) instrumen-
tation inserts print statements prior to every conditional to output the dynamic value
of every unique lvalue involved. COMET examines the logfile produced by the instru-
mented program for these dynamically determined lvalues, which it adds to the list of
guesses to try.

Once there is a list of guesses, COMET iterates over them and tries each, as well as its
successor and predecessor (+1), checking the condition objective function after each try to
see if the guess was correct.

2. Second, we resort to nonlinear optimization, in which the bytes are first considered as a single
value in both big and little endian encoding, and next as a vector of bytes parameterizing
the objective function. In the first case, the optimization is in one dimension and so we use
a golden section search [25]. In the second, it can be in two or more dimensions, and we use
the downhill simplex method of Nelder-Mead [21]. Both search techniques were chosen for
easec of implementation.

2.4.3 Search Refinements

A variety of details were omitted from Algorithm 1 and will be presented here. Some aim at
speeding up COMET while others are expected to improve coverage.

1. Loops and utility functions: If conditional ¢ is in a loop or a utility function for which
there is more than one call site, then COMET will be confronted with a temporal sequence
of taint traces, each providing different clues as to which bytes in which inputs control the
conditional. Some branches cannot be exposed unless we pay attention to the second, or
perhaps later, taint traces. We number the traces as we encounter them in the taint log file
with an increasing integer, ¢, and introduce a probabilistic element to Algorithm 1, whereby
the larger is ¢ the lower the probability that the algorithm will use that taint trace to try to
expose new code. More precisely, we compute an initial flip probability, p, s, for a conditional
as an exponential function of ¢, further shaped by a parameter j.

prf(c) =e P (1)

If 0 < 8 <« 1, then the initial flip probability will be close to one, regardless of ¢, meaning
that we essentially use all taint traces, individually, to try to expose new code. On the other
hand, if 8 > 1, then the algorithm mostly pays attention to the first few traces. It should
be noted that static solutions to these problems exist: we might unroll loops and make a
new uniquely named copy of a function for each call site. Our solution was vastly simpler
to implement and handles difficult cases introduced by more esoteric control-flow like gotos,
recursion, and function pointers.

2. Re-flip probability: In some cases, we need to be willing to consider the same conditional
over and over, as that will be what is required to achieve the correct state to be able to uncover

12



new code. Thus, whenever the algorithm consults the threshold p,; to determine whether or
not to consider a conditional, p,s is decayed by multiplying it by another parameter 0 < o < 1,
so that reconsideration becomes less likely the more it happens.

13




3. EXPERIMENTS

3.1 METHOD

We tested COMET against a set of 13 representative example programs of a few hundred lines
of code each?. Ten of the thirteen were models of real vulnerabilities developed for an evaluation
of static and dynamic buffer overflow detectors, and we included them here because they represent
real code with known security problems. The other three were included for comparison with prior
work. The initial corpus of inputs was taken to be 10 random inputs, of which we retained only
those that cause a change in coverage. For the models, we additionally had one well-formed test
case each from previous evaluations, and so in this case the initial corpus included that input as
well.

We compare performance with the simplest alternative technique: random testing without a
grammar, meaning a large number (10 million) of strings drawn from a uniform distribution, taking
the length of the string to be the same as for the well-formed input (or some reasonable guess when
no such input existed).

A few further notes on these experiments are in order. First, it was necessary to add code to
all of these programs in order to conform to the test harness, enable labeling of input as tainted
for the taint graph to work, and to efficiently generate random strings inside the program for
random testing. This extraneous code amounted to 20-50 lines per program, and we have carefully
excluded these lines from all calculation of percent coverage and LOC. Also, it should be noted
that we added the source for the function dn_expand to the model programs bl and b2, that of
dn_skipname to b3, and replaced the function isdigit with a macro in pintos-printf. These very
minor modifications were necessary in order for the taint graph to be able to trace taint through
these functions. Discovering these deficiencies was trivial as the taint graph runtime complains if
it encounters a function into which it cannot transfer taint.

These experiments were performed on a single Dell Precision 650 workstation with dual
2.66GHz Intel Xeon processors, 2 GB of RAM, and running Linux kernel 2.4.20-8. COMET was
made to timeout if it ran for more than 10 minutes to expedite initial experimentation. We obtained
these results by setting the free parameters of COMET to o = 0.9 and 5 = 0.01.

3.2 RESULTS

The results for all 13 example programs appear together in Table 2. The first column of
this table is the name of the program under test, and the four sections into which the rows of the
table are divided correspond to the four sub-subsections of detailed results and discussion presented
below. The second column gives the final percent of lines covered by the entire corpus of inputs
assembled by COMET. The third column gives the ratio of that final coverage to what is obtained
with random testing. Thus, for program bl, COMET reveals 65% more lines than random testing.

2Lines of code or LOC, as reported everywhere in this paper, was measured by the gcov coverage measurement
tool. These numbers are generally about half what would be reported by SLOCCOUNT [33]
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Percent coverage Time (sec)
Ratio Ratio Num

Program | COMET | wrt RT { COMET | wrt RT | inputs | LOC
bl 87.46 1.65 384 1.10 57 295
b2 85.19 1.82 396 0.92 54 378
b3 86.11 1.51 13 0.35 6 72
b4 97.94 1.28 41 0.27 4 97
sl 92.46 1.16 553 2.10 41 199
$3 87.10 1.00 139 1.38 7 62
s4 76.29 0.85 605 4.41 8 97
sb 90.67 0.99 601 10.36 16 150
s6 100.0 1.17 20 0.13 6 61
s7 72.16 1.36 9 0.65 10 194
mutt-utf8 | 94.37 0.97 24 0.69 16 71
printf 100.00 1.00 12 0.46 181 97
triangle 100.00 1.20 8 0.25 7 54
mean 89.98 1.23 215.8 1.78 30.8 140.5
median 90.67 1.17 41 0.69 10 97

TABLE 2. COMET performance.

The fourth column gives the time taken by COMET, and the fifth gives the ratio to the time taken
by random testing. The sixth column is the final number of inputs in the corpus. Lastly, the
seventh column gives the size of each example program in LOC. The last rows of this table present

the mean and median for each column.?

3.2.1 Model Programs

The ten model programs (bl-b4, s1, s3—s7) are excerpts from historical versions of bind and
sendmail known to be vulnerable to buffer overflows. They were created for a previous evaluation
of static analysis buffer overflow detectors [37,38]. These excerpts were carefully crafted to contain
the overflow plus as as much attendant control-flow complexity as possible, without including so
much code that static analysis tools would be unable to analyze them. Thus, these samples of real
open-source code are of considerable interest to the security-minded, as they contain examples of
the sort of constructions and errors that are symptomatic of real vulnerabilities.

The performance of COMET with respect to random testing on the model programs varied
dramatically, ranging from an improvement of 82% for b2, to a degradation of 15% for s4. Figure 4 is

3We were only able to test mutt-utf8 with 10,000 examples, which took 0.035 seconds. If we tried many more than
that, the program would crash, no matter what random seed we chose. If we extrapolate to how long it might take
to actually test with 10M inputs, we get 35 seconds, which makes the time ratio for this program 0.69, the number
reported herc.
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Figure 4. Coverage improvement for the b2 model program

two juxtaposed plots contrasting the temporal progress of random testing with that of COMET for
the b2 model. On the left is random testing, which requires a log scale in the x-axis to accommodate
the 10 million inputs required to obtain a final coverage level of 46.83% in 429 seconds. On the
right is COMET, which attains a coverage level of 85.19% with only 54 inputs, after working for
396 seconds. COMET, in this case, takes a little less time than random testing to achieve its best
result. However, it exposes far more LOC and requires much fewer inputs, effectively doing test-set
reduction inline with coverage maximization.

The models for which COMET appears to fail are s3, s4, and s5, and Table 3 gives a few
examples of the sort of conditions that the system cannot control. For s3, eight lines are not covered,
of which five are obviously dead. The other three lines involve variables that are tainted by implicit

model | condition

83 (++nchar > maxlen)

s4 (fbufp >= &fbuf [MAXLEN])

sH (cmnecnt <= 0 &% state 1= QST)

TABLE 8. Sample “hard” conditions from the model programs.
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loc block

(line) | size condition

68 1 (n>1 &% !'(ch >> (n*5+1)))
81 1 (ch & ~“Oxffff)

105 2 (u8len)

TABLE 4. Conditions in mutt-utf8 not controlled by COMET.

information flow (IIF) and are therefore opaque to our procedure [28]. One such variable is the
counter nchar in the first row in Table 3, the value of which is determined by the contents of the
tainted buffer being parsed, but not in a data-flow sense. For s4, 23 lines remain uncovered. Three
are dead and 19 are guarded by variables derived from inputs via IIF. One IIF-tainted condition,
which involves a pointer fbufp whose value is determined by the contents of a buffer controlling a
parsing loop, appears in the second line in Table 3. The one remaining condition in s4 can, in fact,
be controlled by COMET, if the optimization loop is allowed to run for more than the allotted 10
minutes. For s5, 14 lines remain to be covered. One of these lines is dead and one is, again, tainted
by ITF as in s3 and s4. The remaining 12 lines are guarded by a more complex ITF-tainted condition
involving a state variable that changes according to a state-transition matrix which is indexed by
the current character being parsed. An example of this sort of condition appears in row three of
Table 3. To summarize, of the 45 lines remaining uncovered in s3-s5, fully 80% are guarded by
conditions that are tainted in an IIF rather than a dataflow sense.

3.2.2 Mutt’s UTF8 Routine

Mutt is a popular email client whose UTF8 to UTF7 conversion routine was found to have
a buffer overflow in version 1.4 by Securiteam in 2003 [29]. The final coverage for this program
achicved by COMET is 94.37% of the lines. COMET misses four lines, none of which appear to
correspond to dead code. These lines are guarded by the three conditions reproduced in Table 4.
The first two involve an integer ch that is built up from successive input bytes contained in the
buffer u8 via this snippet of code:

ch = (ch << 6) | (u8[i] & 0x3f).

Correctly controlling a conditional dependent upon this value would at least require reformulating
the taint graph to work at the bit level. The third conditional (u8len) appears immediately after
a loop that parses the tainted input. Its business is to test if any of the bytes of that input remain
unconsumed after parsing is complete (u8len is decremented whenever a byte is consumed), thus
indicating that the input was ill-formed. The value u8len is thus tainted in a rather complicated
ITF sense that embodies the purpose of the whole parsing loop. It is worth noting that random
testing misses only three lines for this example, exposing the other branch of one of the first two

conditions by chance.
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3.2.3 Pintos’ Version of printf

Pintos is a tiny operating system used to teach college students about operating systems. Its
stdio implementation contains a simple version of printf missing many features of the full-blown
glibc version. We were unable to harness printf directly, as it involves building up a string using
the contents of the second, third, and so on arguments, i.e., the va_list. COMET would attempt
to process, for instance, a format string such as "%20s" but would fail when it found no matching
string argument. Instead, we arranged to test the format-processing function parse_conversion
directly. In truth, this also uses va_list, for something like printf ("%.*s", max, s), which
must obtain the value of integer max to know what width to make string s. We worked around this
difficulty by generating a random integer as this width and proceeding. In this final form, COMET
covered 100% of the lines in parse_conversion in 12 seconds and came up with 121 test cases.
For this test, we took the length of the format string to be 5 characters. It should be noted that
random testing as easily covered every line in this code, taking 26 seconds and using 10 million
examples. Once again, our result is on par with random testing, but our test cases are far fewer
and therefore each is more diagnostic.

3.2.4 The Triangle Program

We also tried COMET on the oft-cited triangle program, in which three integers are input
and subsequently it is determined whether or not they might make a valid triangle if each were
considered a length of a side [14,18]. The system achieves 100% coverage in 8 seconds, and comes
up with 7 inputs. By contrast, random testing (the three sides are random signed integers) makes
no progress in revealing the two lines corresponding to identification of isosceles and equilateral
triangles even after 10 million guesses. This is apparently considered a difficult program for coverage
improvement systems, as only a very small portion of the input space corresponds to these special
triangles. Why, then, does this program present no challenge to COMET? Consider, for instance,
a condition like (a == b), used to determine if two sides have the same length. Dynamic hints (see
Section 2.4.2) tell us the values of both a and b. Further, the taint graph tells us precisely which
bytes of which inputs determine both values, regardless of the encoding used (we encoded the three
integers as 12 continguous bytes in a file). No search is required; we simply set the value of a to
the dynamic value of b and the conditional is made true. Other hurdles in the triangle program
fall as readily.
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4. SYSTEM TUNING

COMET has two parameters, o and (3, and two features that can be enabled (or not) at the
command line. We did some experiments to explore the trade-off between coverage and runtime
resulting from various combinations of parameters and enabled features. The results are presented
in Figure 5.
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Figure 5. System tuning

It should be said that system tuning happened well after the experiments discussed in Sec-
tion 3; the system used there corresponds to the one with the best coverage and worst runtime in
the figure, i.e., “exp(O+bl+al)”. Also, it should be said that we did this tuning only on a subset
of the model programs: bl-bd4, sl, s3, sb and s6. The vertical axis in the plot is the mean (over
the eight programs in the subset) coverage ratio with respect to random testing. The horizontal
axis is the mean runtime ratio with respect to random testing, and thus any point on the dotted
vertical line running through 1 would represent COMET settings with the same runtime as random
testing. The rows in the legend of this plot are numbered and represent the different configurations
of the system tested. Those numbers appear next to the points on the plot as labels to indicate the
coverage and time ratios for each configuration. “al” corresponds to a = 0.9 and “a2” to o = 0.25.
“bl” and “b2” correspond to § = 0.01 and § = 0.2. “O” means that nonlinear optimization is
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enabled. “M” is a simple memoization scheme that remembers which blocks have been exposed
and treats any branch COMET exposes as a side effect as if it were exposed purposely. Thus, the
point labeled 9 corresponds to a configuration of “O+bl”, meaning that nonlinear optimization is
on and # = 0.01. The “baseline” system has all features effectively disabled: no optimization, no
memoization, a = 0, and 8 = 100. Regardless, it achieves coverage that is 21% better than for
random testing and takes only about one-tenth the time. The biggest gain in coverage is for turning
on nonlinear optimization (point “8:07”). Settings for @ and f that deviate from baseline (points
“5:al” and “T:b1”) offer smaller improvements. This plot indicates that the setting that gets the
best coverage (1.33 for point “2:exp(O+bl+al)”) comes at a cost of 5.62 times the runtime of
random test. Conversely, the setting for which we get the best runtime ratio (0.07 for point “3:M”)
produces the lowest coverage. A very attractive operating point appears to be “12:04+M+b2+a2”
setting, with a coverage ratio of 1.32 and runtime ratio of 0.38. This configuration gets coverage
very close to the best system and is almost three times faster than random testing.
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5. RELATED WORK

Previous researchers have used static and dynamic approaches to generating test cases, both
individually and in combination. Static approaches typically involve some variation on the theme of
examining the source code and collecting constraints along paths and then using a solver to obtain
inputs that satisfy the constraints [2,10]. In general, these static efforts are hobbled by a variety of
approximations required to render their analyses tractable. For instance, it is impossible to know
statically with any accuracy what every pointer in a complex C program refers to [12]. Further, it
is difficult to reason about arrays, traces are conflated into paths, and fixpoint solutions are often
used for loops. Thus, for a large program, the constraints on the input we can reasonably derive
can be too vague to be of much use. Static approaches to test case generation have mainly been
applied to very small programs lacking complicated and looping control flow.

By contrast, random and dynamic testing involve actually running the program, using its
responses to determine the set of sentences it accepts. Random testing has been used to test
the robustness of programs, both in a simple way, subjecting a program to random strings of
input [19], and more elegantly by taking draws from a grammar [15]. However, these techniques
are of limited use when complex, structured inputs of any length are required. Without considerable
prior knowledge and engineering of input generators, it is extremely unlikely that random inputs
will expose much past input validation and error-handling code.

Dynamic testing is the approach that most directly inspired this work. “Automated Test
Data Generation” or ATDG and its descendants employ a variety of hill-climbing techniques to
uncover new code by varying inputs [7,8,17,18]. Success is measured in terms of the fraction
of code exposed and the runtime required to do so. These measures are clearly coupled. Given
unlimited runtime, we can enumerate every possible input (up to a given length) and are likely to
cover much of the code. However, runtime is limited in practice and so ATDG innovation focuses on
guiding the search through instrumentation and ordering it via the choice of search strategy. Thus
far, the most sophisticated instrumentation employed appears to have been condition objective
functions. The best attempts at ordering the search to make it proceed faster seem to have been
using a genetic algorithm (GA) and a static dependency analysis that tries to expose code that
is likely to be required in order to expose other code (“chaining”). COMET uses four distinct
instrumentations: half-covered conditionals to tell it what part of the program to focus on next,
the taint graph to tell it from what bytes of what inputs the variables in a conditional derive,
dynamically determined lvalues for good hints about what to set those input bytes to, and finally
condition objective functions to guide nonlinear optimization. In truth, most of the time COMET
avoids search entirely, as the taint graph plus static/dynamic hints tell it exactly how to change
the input to expose the code in question. For the model programs, we found that 76.6% of the time
static and dynamic hints sufficed to control a conditional. Further, for fully half the remaining
conditionals, nonlinear optimization succeeded in exposing the other branch. Note that ATDG
requires knowledge of how the inputs are coded, e.g., in order to choose a GA representation for
which mutation and crossover operations will usefully explore the input space. For COMET to
work, we need only label the input bytes; the taint graph dynamically and precisely reveals the
relationship between any variables we query and the input.
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There has been considerable convergence between static and dynamic approaches in recent
years, so that combination approaches are beginning to constitute a new category. For example, the
DSD-crasher system employs dynamic invariant detection, followed by a static analysis that uses a
SAT-solver to find inputs likely to break each invariant, finally ending in a dynamic instantiation
to verify that the inputs truly violate the invariant [6]. The SYNERGY system (as well as other
related efforts [36]) combines testing and verification, allowing each to guide the other in a tightly
coupled loop, searching for a test case that reveals a bug whilst simultaneously seeking a proof of
its nonexistence [11]. However, SYNERGY currently only works for single-procedure C programs
with integer variables.

Directed testing systems like CUTE, DART, and EXE also fall into this combination cate-
gory [3,4,9,30]. EXE (previously called EGT) uses a mixed symbolic-concrete evaluation of the
program that attempts a bounded exploration of all possible traces, “forking” the analysis at each
branch point. It fixes its input either by making it concrete when the program requires (and at
other times, judiciously chosen) or by collecting constraints along each trace. The conjunction of
constraints for a trace is finally checked for feasibility by a specialized SAT solver that also gen-
erates real inputs as examples. Two of the example programs included in this evaluation, Mutt’s
UTFS routine and Pintos’ printf are there for comparison with EGT. The final coverage COMET
achieves is comparable to that of EGT for these programs. DART and CUTE are similar except
that they start with random testing, collecting constraint sets along traces and finally solving them
to come up with new inputs that will generate traces corresponding to branches not yet taken.
Although the approach is different from ours, there are similarities. They collect constraints and
then solve to find inputs that expose new code, whereas we make use of a dynamic taint trace to
suggest small modifications to input bytes that will expose new code. Perhaps the most funda-
mental difference between these combined static-dynamic approaches and our fully dynamic one
is the ahility to make use of a regression test suite. COMET finds small perturbations of inputs
that expose new code, given a set of inputs. If the initial input is a single random one, then it
will have difficulty exposing code that requires long and highly structured input. We imagine the
same could be said of CUTE, DART, and EXE, that they would, for instance, be slow to produce
traces for inputs that correspond to a well-formed and interestingly long pdf file. COMET can
make immediate use of a test suite of pdf files to address this difficulty, collecting them along with
a number of random inputs to assemble an initial corpus that leverages both well-formed and ill-
formed inputs, to explore the code both in depth and in breadth, and to do so faster. Conversely, it
is not apparent how the concrete/symbolic execution systems would make use of the sample traces
a test suite would provide.

Dynamic taint propagation approaches have existed at least since Perl’s taintperl, which
was introduced in version 4.0 in 1991 [32]. This interpreter labeled all inputs, propagated that label
to values computed from those inputs, and dynamically prevented system, eval, and other calls
that took those values as arguments. Other modern scripting languages such as Ruby have taint
modes that work similarly; however, all propagate taint at the variable rather than the byte level
and have no way of differentiating between sources [31]. Recently, even PHP has been given the
ability to propagate taint labels, and at the byte level [24]. Approaches for C began with Taintbochs
and Taintcheck, both of which work at the byte level by maintaining a map of the taintedness of
each byte in memory [5,23,34,35]. Taintbochs also arranges to follow taint between programs and
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into the kernel. However, both are slow as they work within Bochs and Valgrind [1,22]. Other,
more recent, research has implemented much faster taintedness maps for C and added some limited
form of IIF in order to reduce false negatives [34,35]. The chief distinction between all of these
dynamic taint systems and COMET is that none provide the ability to query variables and trace
taint back to specific input bytes. This ability is central to our approach, reducing the search over
the input space dramatically.
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6. CONCLUDING REMARKS

We have presented COMET, a new automated system for generating a test set for a program
that maximizes line coverage. COMET outperforms random testing by a substantial margin on a set
of 13 example programs of a few hundred lines each, uncovering 23% more lines for these examples,
on average, and requiring less than twice as much time to do so. System tuning experiments
indicate that similar gains might be had for as little as one-third the runtime of random testing.
Additionally, our final corpus of test cases is six orders of magnitude smaller than that required by
random testing, a dramatic reduction. Our immediate plans involve applying COMET to the name
server bind, which we have begun. Initial experiments indicate that a hybrid approach, employing
random testing selectively in the directed search will result in a system that is faster and uncovers
even more code than COMET. Additionally, we believe it will be worthwhile to introduce some
ITF (Implicit Information Flow [28]) into the taint graph in order to address the potential of false
negatives.
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