
An Approach for Semantic Query Processing with UDDI

Jim Luo, Bruce Montrose and Myong Kang

Center for High Assurance Computer Systems

Naval Research Laboratory

Washington, DC 20375

{luo, montrose, mkang}@itd.nrl.navy.mil

Abstract. UDDI is not suitable for handling semantic markups for Web

services due to its flat data model and limited search capabilities. In this paper,

we introduce an approach to allow for support of semantic service descriptions

and queries using registries that conforms to UDDI V3 specification.

Specifically, we discuss how to store complex semantic markups in the UDDI

data model and use that information to perform semantic query processing. Our

approach does not require any modification to the existing UDDI registries.

The add-on modules reside only on clients who wish to take advantage of

semantic capabilities. This approach is completely backward compatible and

can integrate seamlessly into existing infrastructure.

1. Introduction

Automatic discovery of Web services is an important capability for the Service-

Oriented Architecture (SOA). The first step in providing this capability is to mark up

Web services with metadata in a well-understood and consistent manner. The W3C

community developed the Web ontology language (OWL) to address this problem [1].

It is a machine understandable description language that is capable of describing

resources in a manner much richer than the traditional flat taxonomies and

classification systems. OWL-S is a set of ontology developed specifically to describe

web services [2]. After the semantic service descriptions are created, the next step is

to advertise them in a registry capable of fine-grained semantic matchmaking.

Universal Description, Discovery and Integration (UDDI) is a Web-based distributed

registry for the SOA [3]. It is one of the central elements of the interoperable

framework and an OASIS standard with major backers including IBM and Microsoft.

However, UDDI is limited to using flat syntax-based identification and classification

system. It is not capable of storing and processing semantic service descriptions

written in OWL.

It is clear that semantic annotation and matchmaking for Web services will

produce much more refined search results than UDDI-style syntactic matching [4, 5].

It is also clear that UDDI is fast becoming widely accepted as a Web infrastructure

standard already with widespread deployment by companies, government agencies,

and the military. The goal of this ongoing work is to add OWL based semantic

markups and query capabilities to existing registry implementations that conforms to

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
An Approach for Semantic Query Processing with UDDI

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Center for High Assurance Computer
Systems,4555 Overlook Avenue, SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

the UDDI V3 specification. Service descriptions can be expressed using the OWL-S

ontology, however, our approach provides support for the OWL language as a whole

and any ontology can be used. This approach does not require any modification to the

existing UDDI infrastructure. Users that wish to take advantage of semantic

annotation and query capabilities can simply install modules in their own client

machines and use UDDI registries as semantic registries. This will not be the ideal

solution in the long term. Registries specifically developed for semantic service

description and query processing will be much more effective and efficient. However,

this approach will provide a short-term solution that will allow organizations to start

using OWL service descriptions without having to make significant additional

investments in SOA infrastructure.

2. Semantic Annotation and Queries

This section describes the kinds of semantic annotations and queries we plan to

support. We will use the following three example ontologies in figure 1 and the

service description concept in figure 2 throughout the rest of the paper.

Service Ontology

Service

PurchasingService SellerService

isaisa

supportsEncryption

operatedBy

RareBookService BookSellerService

isaisa

Encryption Ontology

Encryption

SymEnc AsymEnc

isaisa

keyGeneratedBy

AES

DES

RSA

Identity Ontology

Identity

Bruce

Jim

Myong

Organization Individual

VeriSign

isa
isa

NIST

Fig. 1. Ontology examples. Ovals represent classes, solid lines represent instances, dotted lines

represent properties, and arrows represent subclass relationships

Semantic annotations describe Web services using concepts from ontologies. For

example, a Web service may advertise itself as a BookSellerService from the Service

Ontology. The service description can further annotate the ontology concept by

defining additional properties on BookSellerService such as in figure 2.

Service: BookSellerService

Encryption: AES

supportsEncryption

keyGeneratedBy

Identity: Jim

operatedBy

Identity: Myong

One layer

One layer

Fig. 2. An example of Web service semantic annotation

Semantic annotations can have multiple layers of annotations. However, the UDDI

data model is only capable of storing one layer of annotations because it was designed

to deal with flat identification and categorization systems. Thus the first challenge is

to correctly express complex semantic service descriptions in the UDDI data model

without losing any details.

The second challenge is to provide support for semantic query. Two types of queries

must be supported by the system.

Exact Match Queries: the first type of queries uses the same concepts as those

specified in the service description. Query processing does not require ontology

awareness.

• Find a BookSeller service

• Find a BookSeller service operated by Myong

• Find a BookSeller service that supports AES encryption

• Find a BookSeller service that supports AES encryption with the key

generated by Jim

Semantic Match Queries: The second type of queries uses semantically related

concepts as those specified in the service description. Query processing requires

ontology awareness.

• Find a BookSeller service that supports SymEnc

• Find a BookSeller service that supports Encryption

• Find a BookSeller that supports SymEnc with the key generated by Jim

The classes and instances specified in these queries are not the same as those in the

service description. However, they should all match to the concept in figure 2 because

they are related due to the class hierarchy and inferences established by the

ontologies. This semantic information must be captured and processed by the UDDI

registry in order to support semantic matchmaking.

3. Mapping Strategy

UDDI is intended to serve as a repository for Web services. The UDDI specification

defines a set of core data models for storing Web service descriptions and an API for

interacting with the registry. The core data model consists of objects describing the

Web service (businessService), the service provider (businessEntity), and the service

binding (bindingTemplate). In addition to the static text-based data fields, these data

objects can incorporate metadata into the description by making references to

tModels. TModels, or technical models, provide extensibility to the overall UDDI

framework because they can be used to represent any concept or construct. The

versatility of the tModel comes from the fact that it only serves as a place holder.

Information is not actually imported into the registry. UDDI core data model objects

reference tModels with keyedReferences and keyedReferenceGroups.

KeyedReferenceGroups can be used to group logically related concepts.

The tModel framework is very powerful and provides the UDDI system with a

great deal of extensibility and flexibility. They can be used for a variety of different

purposes including for the storage of ontology information.

In this mapping scheme, each individual concept within the ontology including all

instances, classes and properties will be incorporated into the UDDI registry as

tModel objects that can be referenced individually. This use of tModels is much more

complex than what is envisioned by the UDDI specification. Each distinct ontology

concept will be represented by a separate tModel. Additional tModels will be created

to represent anonymous composite concepts defined in service descriptions such as

the one in figure 2. Figure 3 shows the UDDI representation of that concept using

tModels and keyedReferences.

tModel compositeConcept1

Base class keyedReference

Property keyedReferenceGroup

Property keyedReferenceGroup

tModel

BookSeller

tModel compositeConcept2

Base class keyedReference

Property keyedReferenceGroup

tModel

supportsEncryption

tModel

operatedBy

tModel

Myong

tModel

AES
tModel

keyGeneratedBy

tModel

Jim

tModel

serviceCategory

businessService

keyedReferenceGroup

Fig. 3. UDDI tModel representation of the complex service description in figure 2

The overall composite concept is represented by the tModel “compositeConcept1.” In

addition, the component composite concept, AES with key generated by Jim, is

represented by its own tModel “compositeConcept2.” Composite concept tModels

will hold a reference to designate its base class. Annotations are captured as

keyedReferenceGroups what will reference the property type and property value

tModels as children keyedReference elements. This way, each tModel can hold one

layer of annotations and chaining multiple tModels together will allow for

representation of composite concepts with multiple layers of annotation. The entire

composite concept can be referred to by referencing the top layer concept tModel.

4. Semantic Support

The UDDI search engine is only capable of performing syntax matching. However,

OWL requires a semantic matchmaker capable of taking into account relationships

between concepts established by the ontology. Our approach fully resolves and

indexes ontology relationships at publishing time of the ontology. This way, queries

can be processed syntactically by the UDDI search engine and yield results equivalent

to those of a semantic matchmaker.

The first type of ontology relationships that must be resolved involves the

property and class hierarchy defined using the subClassOf, equivalentClass,

subPropertyOf, and equivalentProperty constructs. Identity concepts are defined as

the set of related concepts for which queries should yield the original concept based

on the class and property hierarchy established in the ontology. If query for

Encryption should return class RSA, then Encryption would be an identity class of

RSA. An ontology reasoner can resolve the list of identity concepts for all the base

concepts at the publishing time of the ontology. When service descriptions are

published, any references made to ontology concepts need to also include the identity

concepts. For example, if a service is capable of RSA, it also needs to indicate that it

is capable of Encryption. This way, queries for both RSA and Encryption will yield

the service.

The second type of relationships that must be resolved involves property

characteristics. Object properties can be defined with the characteristics of

TransitiveProperty and SymmetricProperty. Inferred properties are properties not

explicitly defined in the ontology or service description but could be inferred based on

property characteristics and other property definitions. Inferred properties will be

resolved for all the base ontology concepts by the reasoner at the publishing time of

the ontology. For symmetric properties, the reverse of the explicit property definition

must also be defined as an inferred property. For transitive properties, the entire chain

of transitivity must be resolved and referenced as inferred properties. When service

descriptions are published, it must make appropriate references to inferred properties

in addition to the explicit property definitions.

True ontology awareness is only necessary during publication of the ontology.

Publication and query of service description can be done syntactically using identity

concepts and inferred properties captured during ontology publication. The UDDI

search engine, however, is not capable of all the syntax matching operations necessary

due to its lack of supporting Boolean queries. Therefore, our system will use an

additional matchmaker component on the client side. The part of the query processed

by the UDDI search engine will only deal with base ontology class of composite

concepts and return a coarse list of possible matching services. The matchmaker on

the client side will refine the list by matching composite concepts in their entirety. For

example, if the query is for the composite concept presented in figure 2, the query

passed on to UDDI will simply be for BookSeller. The matchmaker on the client side

will match the service descriptions returned by UDDI against the full composite

concept.

Our prototype implementation will not fully support all aspects of the OWL

language [1]. This is governed by the functional limitations of UDDI as well as the

desire to keep the prototype relatively simple. The system will not enforce validation

of ontologies and service descriptions. It will be up to the user to validate their own

OWL documents. Complex class expressions involving intersectionOf and

complementOf will not be supported. This is the lack of Boolean query support in the

current version of UDDI specification. Class expressions involving only unionOf will

be supported because the identity concept approach treats sets of classes and

properties as unions by default. More advanced inferences based on cardinality,

complex class expressions and other property characteristics and will not be

supported. These types of inferences are generally intended for reasoning about the

ontology and are not directly relevant to matchmaking. It is important to note that the

actual mapping is lossless and all information will be captured inside UDDI data

structures. The limitations are on the query side in that some constructs will not be

taken into consideration during query processing.

5. System Architecture and Query Processing

Details of our prototype implementation can be found in [6]. Figure 4 shows the

overall system architecture. The shaded boxes are the four add-on modules that will

reside in client sides. Only clients wishing to use UDDI registries as semantic

registries will need to add these modules to their machines.

Ontology

Mapping

UDDI

Registry

Ontology

(OWL)

Semantic

Query

(OWL)
Ontology publisher

Query

Client-side

Matchmaker

UDDI

API
Service

Description

Mapping

Service
Description

(OWL)

Service description publisher

Query

Mapping

UDDI

API

Fig. 4. A system architecture for semantic processing with UDDI

Ontology mapping and service description mapping modules are implemented in

XSLT and Java. XSLT translates OWL documents into the UDDI data model and

Java code publishes them into the registry using the UDDI client-side API. Identity

concepts and inferred properties are resolved in the ontology mapping module which

includes a simple ontology reasoner implemented in XSLT. The service description

mapping module will syntactically propagate semantic information captured in the

ontology tModels to the service descriptions.

The query mapping module is also implemented in XSLT and Java. The XSLT

component will strip annotations from composite concepts and translate the OWL

queries into the UDDI queries. The Java component will then query the registry

through the UDDI client-side API. The results returned by the registry will be the

businessServices objects with references that match only the base ontology concepts.

The client-side matchmaker is a Java module that will refine the query results by

performing matchmaking that takes into account all the annotations of composite

concepts. It will query the registry for concept tModels referenced by the

businessService object to fully reconstruct the service description. Then it will match

the service description with the query by examining the concepts at each layer of

annotation. This component is only necessary because the UDDI specification lacks

support for Boolean queries. Its task can be folded into the registry if future versions

of UDDI provide that support.

6. Mapping Specification for Publication

This section summarizes the mapping specification from OWL ontology and service

descriptions to the UDDI data model.

6. 1. Ontology Mapping

Ontology tModel: the ontology tModel that will serve as a place holder and

namespace for the ontology as a whole. It will hold overview information including

the ontology name, description, and URL of external descriptions. This tModel will

be referenced by all instance, class and property tModels associated with the ontology

using the KeyValue of “ontologyReference.”

Property Type tModel: the property type tModel will store ObjectProperty

information defined in the ontology. The name of the tModel will be set to the name

of the class defined in the ontology. Information not used for query processing such as

domain, range, and property characteristics will also be captured.

<owl:ObjectProperty rdf:ID="operatedBy">

<rdfs:domain rdf:resource=“#Service"/>

<rdfs:range rdf:resource=“&identity;Identity"/>

<rdfs:type rdf:resource=“&owl:TransitiveProperty”>

</owl:ObjectProperty>

<tModel tModelKey="uuid:operatedBy">

<name>operatedBy</name>

<categoryBag>

<KeyedReference keyValue=”ontologyReference” tModelKey=”uuid:service”/>

<KeyedReference keyValue=”true” tModelKey=”uuid:IsOntologyCore”/>

<keyedReference keyValue="domain" tModelKey="uddi:service:Service" />

<keyedReference keyValue="range" tModelKey="uddi:idnetity:Identity" />
<keyedReference keyValue=“TransitiveProperty" tModelKey="uddi:owl:type" />

</categoryBag>

</tModel>
Fig. 5. tModel that maps an object property

Class and Instance tModel: the name of the tModel will be set to the name of the

concept defined in the ontology. It will hold keyedReferences to the tModels

representing its identity concepts. The list of identity relationships will be derived by

the ontology reasoner based on the class hierarchy. The types of the identity concepts

are stored in the keyValue field of keyedReferences. All classes will have an identity

relationship to itself with the relationship type of “exactRelationship.” The other

possible relationship types are “equivalentRelationship” for equivalent concepts,

“generalizationRelationship” for parent concepts, and “specializationRelationship.”

for children concepts. Classes defined as union of other classes will hold identity

concepts to those other classes as well as their identity concepts.

<owl:Class rdf:ID="SellerService">

<rdfs:subClassOf rdf:resource="#Service"/>

</owl:Class>

<tModel tModelKey="uuid:SellerService ">

<name>SellerService</name>

<categoryBag>
<KeyedReference keyValue=”ontologyReference” tModelKey=”uuid:Service”/>

<KeyedReference keyValue=”exactRelationship” tModelKey=”uuid:SellerService”/>

<KeyedReference keyValue=”generalizationRelationship” tModelKey=”uuid:Service”/>

<KeyedReference keyValue=”specializationRelationship” tModelKey=”uuid:BookSeller”/>

</categoryBag>

</tModel>

Identity

concepts

Fig 6. tModel that maps the SellerService class from figure 1

Composite Concept tModel: composite concepts are classes and instances with

property definitions. They can be defined in the ontology as restriction classes or in

service descriptions as anonymous instances. For restriction classes, the tModel name

will be set to the name of the class defined in the ontology. Anonymous instances are

not named and the name of the tModel will be left blank. Composite concepts can

have multiple layers of annotations. If the annotations are composite concepts

themselves, new tModels need to be created for them as well. Property definitions are

captured as keyedReferenceGroups. The property type and property value tModels as

well as the tModels of their identity concepts are captured as keyedReferences under

the keyedReferenceGroup. Both explicit and inferred properties are captured the same

way and no distinction is made between them.

<owl:Class rdf:ID="SecureSellerService">

<rdfs:subClassOf rdf:resource="#SellerService"/>

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="supportsEncryption"/>

<owl:hasValue>encryption:AES</owl:hasValue>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<tModel tModelKey="uuid:SecureSellerService ">

<name>SecureSellerService</name>

<categoryBag>

<KeyedReference keyValue=”ontologyReference” tModelKey=”uuid:service”/>

<KeyedReference keyValue=”true” tModelKey=”uuid:IsOntologyCore”/>

<KeyedReference keyValue=”exactRelationship” tModelKey=”uuid:SellerService”/>

<KeyedReference keyValue=”generalizationRelationship” tModelKey=”uuid:Service”/>
<KeyedReference keyValue=”specializationRelationship” tModelKey=”uuid:BookSeller”/>

<KeyedReferenceGroup tModelKey=”uuid:propertyDefinition”>

<KeyedReference keyValue=”exactProperty” tModelKey= uuid:supportsEncryption”>

<KeyedReference keyValue=”exactRelationship” tModelKey=”uuid:AES”/>

<KeyedReference keyValue=”generalizationRelationship” tModelKey=”uuid:SymEnc”/>

<KeyedReference keyValue=”specializationRelationship” tModelKey=”uuid:Encryption”/>

</KeyedReferenceGroup>
</categoryBag>

</tModel>

Identity

concepts

base class

Identity

concepts

property type

property value

Fig. 7. tModel that maps a restriction class

6.2. Service Description Mapping

Translation of service description involves two steps. First, tModels for any

anonymous composite concept defined in the service description must be published

into the registry unless they already exist. Second, the service description must be

translated into a corresponding UDDI businessEntity and businessService objects.

Service Description: Information that maps to the UDDI businessEntity and

businessService data model objects can be translated directly. Ontology references in

the service description are stored as keyedReferenceGroup the same way as properties

in the tModels for composite concepts. In addition, the base class of composite

property value concepts is also referenced.

<BusinessService>

<name>ServiceProfile1</name>
<categoryBag>

<KeyedReferenceGroup tModelKey=”uuid:profile:serviceCategory>

<KeyedReference keyValue=”specificRelationship” tModelKey=”uuid:AnonInst2”/>

<KeyedReference keyValue=”exactRelationship” tModelKey=”uuid:BookSeller”/>

<KeyedReference keyValue=”generalizationRelationship” tModelKey=”uuid:SellerService”/>

<KeyedReference keyValue=”generalizationRelationship” tModelKey=”uuid:Service”/>

</KeyedReferenceGroup>
</categoryBag>

</tModel>

<profile:Profile rdf:ID="ServiceProfile1">

<profile:serviceCategory rdf:resource="&service:BookSeller”>

<service:supportsEncryption rdf:resource="&encryption:AES">
<encryption:KeyGeneratedBy rdf:resource="&identity;Jim"/>

</service:supportsEncryption>

</profile:Profile>

Identity
concepts

Anonymous

Instance 1

Anonymous

Instance 2

base class

Fig. 8. BusinessService referencing the concept in figure 2

7. Related Work

Srinivasan [7] added semantic support to UDDI by placing add-on modules on the

registry side. This means the existing registry infrastructure needs to be modified

extensively to provide semantic support. Furthermore, the add-on modules create

special interfaces for processing semantic publications and queries separate from the

UDDI interface. In effect, these modules act as separate semantic registries that

happen to be on the same server as opposed to integrated with the UDDI registry.

Sivashanmugam [4] developed a scheme to store ontology-based semantic

markups using the native UDDI data model. However, their solutions do not support

composite concepts with multiple layers of annotations. Ontology concepts can be

referenced as is, but they cannot be further annotated by service descriptions.

Furthermore, class hierarchy between concepts in the ontology is not captured by the

translation. It is not clear if semantic queries can be supported using this approach.

The Web Service Modeling Ontology (WSMO) based Web Service Modeling

Language (WSML) is an alternative to OWL-S and OWL for semantically describing

web services [8]. Since a direct mapping exists between WSML and OWL [9],

WSMO will be supported indirectly in our system.

8. Conclusion

We presented an approach for supporting semantic markups of Web services and

semantic queries using existing registries conforming to the UDDI V3 specification.

Support is provided for the OWL language as a whole and the system will operated

with any OWL ontology including OWL-S. A special lossless translation scheme that

fully supports composite concepts was developed to store ontologies and semantic

service descriptions inside UDDI registries. Once all the semantic information is

captured, semantic query processing can be performed using a combination of the

UDDI search engine and syntax based client-side matchmaker.

This approach does not require any modification to the existing registry or

infrastructure. The advantage is that it is completely backward compatible. The add-

on modules only need to be installed on the clients of users who wish to take

advantage of semantic markups. They can be integrated seamlessly into existing

systems and operations without any modification of the infrastructure.

References

1. W3C, "OWL Web Ontology Language Overview." 2004 <http://www.w3.org/TR/owl-

features/ >.

2. Web Ontology Working Group, "OWL-S: Semantic Markup for Web Services," W3C.

<http://www.daml.org/services/owl-s/1.1/overview/>.

3. UDDI Spec Technical Committee, "UDDI Version 3.0.2," OASIS. 2004

<http://uddi.org/pubs/uddi_v3.htm>.

4. K. V. K. Sivashanmugam, A. Sheth, and J. Miller, "Adding Semantics to Web Services

Standards," presented at International Conference on Web Services, 2003.

5. A. Dogac, G. Laleci, Y. Kabak, and I. Cingil, "Expoliting Web Service Semantics:

Taxonomies vs. Ontologies," IEEE Data Engineering Bulletin, vol. 25, 2002.

6. J. Luo, B. Montrose, and M. Kang, "Adding Semantic Support to Existing UDDI

Infrastructure," Naval Research Lab, Washington, D.C., NRL Memorandum Report

NRL/MR/5540-05-650, 2005.

7. M. P. N. Srinivasan, and K. Sycara, "Adding OWL-S to UDDI, implementation and

throughput," presented at First International Workshop on Semantic Web Services and

Web Process Composition (SWSWPC 2004), San Diego, California, USA, 2004.

8. W3C, "Web Service Modeling Ontology (WSMO)." 2005

<http://www.w3.org/Submission/WSMO/>.

9. W3C, "Web Service Modeling Language (WSML)." 2005

<http://www.w3.org/Submission/WSML/>.

