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Abstract

Previous work at NRL demonstrated the benefits of
a security modeling approach for building high as-
surance systems for particular application domains.
This paper1 introduces an application domain called
selective bypass that is prominent in certain network
security solutions. We present a parameterized mod-
eling framework for the domain and then instantiate
a confidentiality model for a particular application,
called the External COMSEC Adaptor (ECA), within
the framework. We conclude with lessons we learned
from modeling, implementing and verifying the ECA.
Our experience supports the use of the application-
based security modeling approach for high assurance
systems.

Introduction

Conventional security modeling approaches (c.f., [1])
usually express a system’s confidentiality require-
ments independently of the application that the sys-
tem must support. Previous work at NRL [10, 11]
argued that users understand a system’s critical re-
quirements (i.e., the assertions that the system must
enforce and the assumptions about the system’s en-
vironment) better if the model is expressed in terms
of the application. Improved user understanding can
reduce unintentional compromises in system security,
making the application-specific model a better foun-
dation for building operationally secure systems. The
proponents of the approach applied it to the security
requirements for a family of military message systems
(MMS) [10]. Unfortunately, a trustworthy implemen-
tation was never built, leaving unresolved questions
about the practical utility of the approach.

Our motivation is to develop a series of increas-
ingly sophisticated systems for a particular applica-
tion domain. In [14], McLean demonstrated a model-
ing framework that includes parameters for construct-

1Published in Proc. COMPASS 94, Gaithersburg, MD, IEEE
Press, IEEE Cat. 94CH3415-7, ISBN 0-7803-1855-2, June 1994, pp.
245–256.

ing models whose critical requirements range from
intuitively weak to intuitively strong. The parame-
ters’ values reflect the degree of risk that the system’s
environment will accept. In this paper, we describe
an application domain called selective bypass, and we
present a parameterized framework for constructing
application-specific models in that domain. Then we
identify a particular application within the domain
called the External COMSEC Adaptor (ECA) and in-
stantiate a model for it.2 Finally, based on our ex-
perience implementing the ECA and verifying that
the implementation satisfies the model assertions, we
present some lessons about the modeling activity and
its impact on the verification effort.

Our experience with the ECA supports the
application-based modeling framework. We believe
that the framework for the Selective Bypass Domain
provides a good starting point for developers of appli-
cations in that domain. We expect that the lessons pre-
sented will be helpful for developers that wish to use
the application-based modeling framework for build-
ing trustworthy systems in this and other application
domains.

The Selective Bypass Domain

The Selective Bypass Domain contains applications
responsible for providing cryptographic protection of
information based on the rules that determine the
sensitivity of the information. We refer to a partic-
ular member of the domain as a Selective Bypass Device
(SBD). The primary use of an SBD is to provide some
degree of security for the network in which it is em-
bedded.

The SBD must separate two security levels of infor-
mation: sensitive and non-sensitive. Sensitive infor-
mation is made non-sensitive through its encryption
using a secret key. The determination that informa-
tion is sensitive—and thus in need of encryption—is a
policy decision of the application system that contains
the SBD. The decision is encoded as a set of rules in
the SBD. These rules may, due to the complexity of the

2An earlier version of this model can be found in [24].
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Figure 1: The Network

task, only coarsely determine the actual sensitivity of
information (e.g., a “dirty word” check).

The Environment

The SBD resides in a network that supports se-
cure communications. The network consists of sub-
scribers, SBDs and transmission media. Anyone that
can access the network is considered a user. Although
legal access is primarily through a subscriber, other
legal access might include the secure network man-
agement function and the cryptographic key load-
ing function. Subscribers range from simple PCs to
multilevel-secure systems and are accredited to pro-
cess messages up to a particular classification level.
Figure 1 illustrates a very important characteristic of
the network: every subscriber, i.e., S1, S2, : : :, Sn+m,
is connected to a unique SBD, and all communica-
tions between subscribers must pass through the sub-
scribers’ SBDs.

The network enforces a simple security policy of
data confidentiality: users shall not receive sensitive
information for which they are not authorized. Con-
fidentiality is achieved by partitioning the network
into a domain for processing possibly sensitive plain-
text data, called the Red Domain, and a domain for
processing nonsensitive and encrypted sensitive data,
called the Black Domain. Since each subscriber can be
accredited to a different sensitivity level, there may be
multiple Red Domains in the network. Users residing
in a Red Domain are trusted to protect the information
they process to a degree appropriate for the security
classification of the data. Users residing in the Black
Domain are assumed to be malicious and should not
have access to the plaintext sensitive data. A com-
munications plan determines which subscribers (and
consequently, users) may communicate, and the net-
work relies on cryptographic key distribution to im-
plement the plan. The SBD contains the cryptographic
function.

The SBD Security Policy

Figure 1 illustrates the SBD’s role for partitioning the
Red Domain and the Black Domain. The sensitive
information of a message must be made non-sensitive
by the SBD before the message may be transmitted
over the transmission media. The SBD must enforce
the following security policy:

Restricted Red-To-Black Flow. Sensitive in-
formation shall not be transmitted through
the SBD to the Black Domain.

Restricted Red-To-Black Flow is best characterized
as a very simple information flow policy. Unfortu-
nately, the cost of constructing a rigorous assurance
argument that the SBD satisfies this policy outweighs
the benefits derived from the effort, because the exis-
tence of any bypassed data imposes a risk on the use
of the SBD. However, many operational environments
are willing to accept this risk in order to improve the
function and connectivity of their information sys-
tems, so we consider Restricted Red-To-Black Flow
to be an ideal—rather than a strict—requirement.

To reduce the cost of the assurance argument, we
identify a set of safety properties that together support
Restricted Red-To-Black Flow. These safety proper-
ties, stated as assertions and assumptions, are pre-
served using conventional refinement techniques and
are simpler to interpret for a particular environment.
We use Restricted Red-To-Black Flow to assess the
sufficiency of the assertions and assumptions and to
identify covert channels that might arise during re-
finement.

Obviously cryptography will play a major role in
supporting Restricted Red-To-Black Flow; however,
messages must be routed properly, and the routing
functions are part of the transmission media in the
Black Domain. Therefore, a message’s routing infor-
mation, or message header, must be transmitted as
plaintext. The SBD must ensure that the routing in-
formation is not sensitive. The SBD must also ensure
that sensitive information is not encoded in less overt
ways in the message stream transmitted to the Black
Domain (e.g., rate/length modulation).

Because of the broad range of security provided
by members of the Selective Bypass Domain, we con-
structed a parameterized modeling framework for the
domain. This permits us to delay the definition of
security-critical parameters until details of the oper-
ating environment are known and until a realistic risk
assessment can be made. The parameters allow us
to construct SBDs that lie between the following ex-
tremes:

Most Secure: SBDs that ensure that no sensitive data
is encoded in the message stream transmitted to



the Black Domain (this implies that all data is
encrypted),

Least Secure: SBDs that do not protect the message
stream transmitted to the Black Domain (this im-
plies that all data bypasses the cryptographic
function).

Assuming that the SBD encryption function prop-
erly transforms information from sensitive to non-
sensitive, a Most Secure SBD satisfies Restricted Red-
To-Black Flow. Achieving security in this way is most
closely related to Sutherland’s definition of multi-level
security based on non-deducibility [25]. Although the
low level user may be able to read the encrypted data,
he will not be able to deduce its higher level meaning.

The SBD Modeling Framework

In this section, we describe briefly the SBD’s external
interface and user-visible behavior. We identify the
parameters upon which the framework is based and
express assertions for the SBD in terms of those pa-
rameters. We will also identify the assumptions that
underlie the assertions.

User’s View

The SBD is an embedded system. It has no direct hu-
man users, so a “user’s” view of its operation must be
interpreted for the devices to which it connects. Fig-
ure 2 illustrates this view for the devices that connect
directly to the message interfaces of the SBD. Devices
communicate with the SBD over the message inter-
faces only. A device in the Red Domain engaged in
transmitting and receiving messages communicates
only over the message interface in the Red Domain. A
device in the Black Domain engaged in transmitting
and receiving messages communicates only over the
message interface in the Black Domain. Devices com-
municate with the SBD under an established protocol.
Progress of a transmitted message can be relayed to
the originating device if the notification does not vio-
late the critical requirements.

In general, the SBD may receive cryptographic keys
via its cryptographic interface (illustrated in Figure 2)
or over the network from an authorized source. A
communications plan defines how to maintain a set
of keys, and based on the message, the SBD chooses
the proper key from this set. Cryptographic keys may
expire, so the SBD must select the most current key
for a message.

A message may be partitioned into a crypto data
portion that contains sensitive text supplied by the

user, and a bypass data portion that contains the trans-
mission protocol information. The bypass data por-
tion can be divided into distinct fields. Each field con-
tains information, such as the source and destination
address, needed to route the message and to choose
the appropriate cryptographic key. While most mes-
sages processed by the SBD originate externally, the
SBD can also generate certain control-oriented mes-
sages. The SBD uses these internally generated mes-
sages to synchronize with the subscriber and trans-
mission media and to report problems in message
processing.

In a typical scenario, a message is transmitted from
a user (not shown in Figure 2) accessing subscriber
S to some remote user. The SBD that is local to S

receives the message from S over the message inter-
face in the Red Domain, splits the message into the
bypass data and crypto data portions, encrypts the
crypto data with the cryptographic function E using
the appropriate key k, diverts the bypass data around
E, recombines the message and transmits the result
over the message interface to the Black Domain. The
intended recipient’s SBD must reverse this procedure
using the corresponding decryption function and key
to restore the original message.

The SBD Parameters

The following parameters are used to instantiate the
SBD framework for a particular application. The pur-
pose for each will be clarified when we present the
assertions. Henceforth, the parameter names appear
in SMALL CAPS.

1. KEY DISTRIBUTION AND SELECTION POLICY: deter-
mines how to maintain a valid (i.e., current) set of
keys and how to select a key for encrypting and
decrypting a particular message,

2. FORMAT RESTRICTION: determines the sensitivity
of data according to a set of rules,

3. CONTEXT CONSTRAINT: determines the contexts
appropriate for transmitting a given message,

4. MESSAGE LENGTH SET: the set of lengths appro-
priate for a message,

5. BYPASS DATA LENGTH SET: the set of lengths ap-
propriate for bypass data,

6. TRANSMISSION RATE SET: the set of acceptable
rates for message transmission,

7. BYPASS RATE CONSTRAINT: determines the maxi-
mum limit on the rate of data bypassed around
the cryptographic function, and
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8. PRIORITY MESSAGE-ORDERING SCHEME: assigns a
processing priority to messages.

Assumptions

The assertions for the SBD are requirements on its
externally-visible, security-relevant behavior. How-
ever, this behavior is not generated in a vacuum. The
SBD relies heavily on its environment for its correct
operation. This dependency on the environment is
expressed in terms of assumptions. If we can demon-
strate that the SBD satisfies its assertions, and if we
can validate the following assumptions, then we can
assert that the SBD behaves securely.

A1. (Physically Secure) The SBD operates in a phys-
ical environment appropriate for the data it pro-
cesses, i.e., it is physically secure.

A2. (Valid Parameters) The parameter values are ap-
propriate for the messageset being processed and
for the network’s security policy.

A3. (Valid Crypto Algorithm) The SBD is loaded with
a cryptographic algorithm that is appropriate for
the message set it processes and for the network’s
security policy.

One may think of these assumptions as assertions
for the SBD’s environment. They may be satisfied by a
variety of countermeasures, including the use of con-
trolled physical spaces (A1) and through carefully fol-
lowed administrative procedures (A2 and A3). How-
ever, if these assumptions are not validated, a security
vulnerability exists for the SBD and its environment
[23].

Assertions

Below are the security assertions that the SBD must
enforce. These assertions are safety properties that
support Restricted Red-To-Black Flow.

P1. (Encryption) The crypto data of every message
transmitted to the Black Domain shall be en-
crypted according to the KEY DISTRIBUTION AND
SELECTION POLICY.

P2. (Bypass Format) The bypass data of every mes-
sage transmitted to the Black Domain shall satisfy
its FORMAT RESTRICTION.

P3. (Message Context) The context of every message
within the sequence transmitted to the Black Do-
main shall satisfy the CONTEXT CONSTRAINT.

P4. (Message Length Modulation) The length of ev-
ery message transmitted to the Black Domain
shall be in the MESSAGE LENGTH SET, e.g., by
padding messages as necessary.

P5. (Bypass Data Length Modulation) The length of
the bypass data of every message transmitted to
the Black Domain shall be in the BYPASS DATA
LENGTH SET, e.g., by padding bypass data as nec-
essary.

P6. (Transmission Rate Modulation) The transmis-
sion rate of messages to the Black Domain shall be
in the TRANSMISSION RATE SET, e.g., by transmit-
ting dummy messages when no legitimate mes-
sage is available.

P7. (Bypass Rate Limitation) The rate of data by-
passed around the cryptographic function shall
be limited according to the BYPASS RATE CON-
STRAINT.

P8. (Message Order) Messages shall be transmitted
to the Black Domain according to the PRIORITY
MESSAGE-ORDERING SCHEME, and each message
shall be transmitted only once.

To show that these safety properties are sufficient
to support Restricted Red-To-Black Flow, we instan-
tiate a Most Secure SBD and argue informally that it



satisfies Restricted Red-To-Black Flow.3 A Most Se-
cure SBD ensures that no sensitive data is encoded in
the message stream transmitted to the Black Domain.
One response is to state the FORMAT RESTRICTION such
that the entire message must be encrypted before it
is transmitted to the Black Domain. Since there is
no bypass data, assertions P5 and P7 can be satisfied
trivially with any non-null instantiation of the BYPASS
DATA LENGTH SET and the BYPASS RATE CONSTRAINT.
In addition, P3 and P8 were orginally specified to close
signaling channels that exist only in the presence of
bypass data, so these assertions are irrelevant. Con-
sequently, the only assertions that are significant for
a Most Secure SBD are P1, P2, P4 and P6. Given
the stringent FORMAT RESTRICTION described above,
we must demonstrate that we can instantiate the KEY
DISTRIBUTION AND SELECTION POLICY, the MESSAGE
LENGTH SET and the TRANSMISSION RATE SET with val-
ues that make the four assertions sufficient to satisfy
Restricted Red-To-Black Flow.

As long as a legitimate KEY DISTRIBUTION AND SE-
LECTION POLICY is chosen (and enforced by the ECA)
and as long as all messages are encrypted completely,
there are only two ways to signal information: by
modulating a message’s length or by modulating the
rate of message transmission. To address these at-
tacks, we can instantiate the MESSAGE LENGTH SET
and the TRANSMISSION RATE SET as singleton sets, i.e.,
all messages transmitted to the Black Domain must be
the same length and all messages are transmitted to
the Black Domain at a constant rate. This effectively
prevents any signaling to the Black Domain, so a Most
Secure SBD satisfies Restricted Red-To-Black Flow.

The ECA Model

In this section, we instantiate the SBD model for the
ECA application by assigning parameter values that
are appropriate for the ECA’s environment. We de-
scribe the ECA in its environment, present the instan-
tiation and describe the values chosen.

Environmental Constraints on the ECA

The ECA is an SBD that is embedded in a network that
must satisfy real-time operational constraints with
relatively low bandwidth/high noise communication
links. Depending on the values of its parameters, an
SBD can provide a variety of security services to a
network. However, as we will discuss below, some
of these services were neither required nor desired for
the ECA.

3While we have not done so, we believe this argument can be
formalized.

The biggest environmental constraint on the ECA
was the decision at the network level to use a par-
ticular off-the-shelf cryptographic device in the ECA.
While this decision made the ECA easier to imple-
ment, it also decreased its functionality. For example,
the cryptographic device does not support over-the-
network re-key, so the key for processing messages is
fixed while the ECA is attached to the network, i.e.,
the ECA has to be taken off-line to perform the re-key
function.

The network’s rigid performance requirements pre-
cluded any measures to reduce signaling channels
through modulation of the message length, bypass
data length and message transmission rate. We as-
signed values to the MESSAGE LENGTH SET, the BYPASS
DATA LENGTH SET and the TRANSMISSION RATE SET
that would make assertions stated in terms of these
parameters (P4, P5 and P6, respectively) irrelevant for
the ECA. Similarly, because we knew little about the
network’s traffic flow—the network itself was still un-
der development—or about its user community, we
hesitated to speculate on an appropriate instantiation
of the CONTEXT CONSTRAINT, so we assigned it a value
that made P3 irrelevant for the ECA also.

As a result, the ECA implements only a core of the
SBD’s security services. The ECA’s network compen-
sates for the missing services by encrypting all mes-
sages received from the ECA (i.e., doubly encrypting
the crypto data) before they are forwarded to the trans-
mission media. As Figure 3 illustrates, once a mes-
sage exits the ECA’s message interface in the Black
Domain, it is transmitted via a somewhat protected
routing function to a link encryptor (LE). This subsys-
tem, composed of the ECA, protected routing func-
tion and LE, guards against common traffic analysis
threats [27].

Assigning Parameter Values for the ECA

The SBD parameter values assigned to the ECA are
identified in Table 1. In this section, we expound on
each choice and identify any new assumptions that
arise as a result. The assumptions identified earlier
for the SBD framework also hold for the ECA.

KEY DISTRIBUTION AND SELECTION POLICY. Given the
tight development schedule for the ECA, using an off-
the-shelf cryptographic device with fixed key and off-
line re-keying made sense. However because of these
limitations, the following assumptions must be valid
in the ECA’s environment.

A2.1 Subscribers must be accredited to process data
up to the sensitivity level appropriate for the in-
stalled key.
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Figure 3: The ECA in the Network

Parameter Value

KEY DISTRIBUTION AND SELECTION POLICY Fixed key
FORMAT RESTRICTION Definition of FormatOK
CONTEXT CONSTRAINT None
MESSAGE LENGTH SET Set of Natural Numbers
BYPASS DATA LENGTH SET Set of Natural Numbers
TRANSMISSION RATE SET Set of positive Rational Numbers
BYPASS RATE CONSTRAINT Definition of BypassOK
PRIORITY MESSAGE-ORDERING SCHEME First in, first out

Table 1: SBD Parameter Instantiation for the ECA

A2.2 The ECA is disconnected from the network dur-
ing the re-key operation.

FORMAT RESTRICTION. A FORMAT RESTRICTION is de-
fined for each message type, and the demonstration
that a message satisfies that restriction is embodied in
the following definition:

FormatOK: The value of each field of the bypass data
must be within a predetermined range; the length
of each field must match a predetermined length
for that field; and the overall length of the bypass
data, as specified by a field within the bypass
data, must equal the sum of the lengths of the
fields of the bypass data.

A message is dynamic, and the length and number of
any field in the bypass data can depend on the values
of previous fields. To limit the memory needed to
store complex FORMAT RESTRICTION tables, each field
of the bypass data is checked against a range, rather
than a set, of values.

BYPASS RATE CONSTRAINT. The ECA relies on two
types of checks to limit the flow of bypass data to the
Black Domain. An “absolute” check, i.e., restricting
the maximum number of bits bypassed per second,
is performed in hardware, while an “average” check,

i.e., restricting the number of bits bypassed given the
time elapsed, is handled redundantly in both hard-
ware and software. After power is initially applied to
the ECA and to the other system components, a rela-
tively large number of bits must be bypassed for sys-
tem initialization. To avoid a time delay (imposed by
the average rate restriction), an initial bypass “credit”
is provided using a system initialization constant.

BypassOK: The actual rate at which bypass data are
transmitted to the Black Domain shall not exceed
the allowed rate.

The actual rate is calculated by

B

T
;

where B represents the number of bits actually by-
passed and T > 0 represents the time elapsed. The
allowed rate is given by

I + (B0 � T )

T
;

whereB0 represents the maximum number of bits that
can be bypassed per second, and I is the system initial-
ization constant. Another way of stating this assertion
is that for time T > 0, B � I + (B0 � T ). Figure 4 il-
lustrates this interpretation. Any continuous function
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Figure 4: Constraining the bypass rate

in the shaded area could represent the actual bypass
rate.

PRIORITY MESSAGE-ORDERING SCHEME. We decided
to use a first in, first out scheme. This permits other
ordering schemes to be enforced by the network if
necessary while simplifying the design of the ECA.

Our Experience

Landwehr presented the following lessons learned
from using the application-based modeling approach
to formalize the MMS model [12].

� Stating even a carefully developed security model
in a mathematical notation can be a substantial
undertaking.

� It is important to keep not only the informal de-
scription of the model but also the application
itself in mind when writing the formal descrip-
tion.

� Some properties that seem easy to assure in an
implementation can be difficult to specify in a
model.

� Be ready to adapt when hidden assumptions be-
come apparent.

We considered this guidance when we specified the
ECA model formally.

Additional lessons from our modeling effort are
presented in this section. We first summarize the
formalization of the ECA model and outline our ap-
proach for verifying that the ECA’s implementation
satisfies the formal model assertions. Henceforth, we
use the term assurance argument to refer to the body of
evidence that the implementation satisfies the model
assertions.

ECA Model Formalization and Refinement

We chose the Communicating Sequential Processes
(CSP) language [7] to formalize the ECA model. CSP
permits the description of systems composed of net-
works of communicating processes. A CSP process
communicates with its environment through named
communication channels. Olderog and Hoare [20]
describe a family of increasingly sophisticated mod-
els for CSP; less sophisticated members of the family
enable specification and proof of a subset of prop-
erties that the more sophisticated members enable.
We chose a particular model of CSP, called the Trace
Model, because of its comparative simplicity and its
ability to prove safety properties of networks of pro-
cesses.

The Trace Model maps a process to an alphabet and
a set of traces. The alphabet of a process specifies
all communication events, i.e., channel-value pairs, in
which it is permitted to engage. A trace of a process
is an observation of its execution. It consists of a
finite sequence of all communication events in which
the process has engaged at some moment in time.
Properties specified about systems described in CSP
take the form of restrictions on the traces in which a
process representing the system may engage. If the set
of traces associated with the process actually conform
to these restrictions, the process is said to satisfy the
properties.

Figure 5 illustrates our process for constructing the
assurance argument for the ECA’s software.4 Be-
cause of limited development resources, analysis of
the hardware was beyond the scope of the formal
assurance argument. The Software Cost Reduction
(SCR) methodology [3, 22, 26]—which supports the
exposition of the requirements, design, and imple-
mentation of software—provided a framework for ex-
pressing the assurance argument. The methodology’s
primary components are listed along the left side of
Figure 5. Along the right side of the figure are the
specification languages and tools (e.g., Statemate [6],
mEVES and mVerdi [5], Verdixr Ada Development
System (VADSr) [4]) that contributed to the imple-
mentation and verification of the ECA. The result of
this collaboration between the SCR methodology and
the specification languages and tools is the ECA’s as-
surance argument, illustrated in the center of Figure 5.

The ECA assurance argument is not a simple re-
finement from the network security policy to the Ada
implementation. A variety of formal and informal
techniques were used to allow reasoning across four
semantic domains, where each domain was chosen
for its expressibility at a particular specification level.
The network security policy was expressed in English,

4Details of the ECA software development process are described
in [18].
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the critical requirements model was specified and re-
fined in CSP, the ECA’s components were specified
and verified in mVerdi and then implemented in Ada.
Slanted arrows indicate a refinement of a specification
to a more detailed specification or implementation;
vertical arrows indicate a translation of a specification
from one semantic domain to another semantic do-
main at a comparable specification level. Dashed ar-
rows indicate a refinement/translation that is informal;
solid arrows indicate a refinement/translation that is
formal. The increase in width of the argument as we
move from top to bottom illustrates additional detail
that is specified at the lower levels.

The ECA was implemented as three communi-
cating components: a Red Processor for processing
sensitive data, a Black Processor for processing non-
sensitive data, and the off-the-shelf cryptographic de-
vice. Twenty information-hiding modules make up
the Red Processor and the Black Processor. The mod-
ules were proven formally to satisfy all but one of the
ECA model’s assertions (the Correct Order assertion
was demonstrated using informal techniques). Com-
plementary assurance techniques such as inspection,
testing and simulation were also used.

Lessons Learned

1. Consider the application when choosing the modeling
language.

One must consider the complexity of the applica-
tion domain and requirements being modeled and
the depth and rigor of the verification desired when
choosing a modeling language. Our choice of the CSP
Trace Model to specify the ECA requirements was
based on a need to implement physical Red/Black
(hardware) separation to facilitate certification, and a
desire to allow (future) reasoning about the ECA and
the network in which it is embedded.

While CSP served the assurance argument fairly
well, it may not be appropriate for more complex
applications or more complex critical requirements.
The method of refinement in CSP is strictly procedu-
ral. There has been relatively little progress incorpo-
rating data or event refinement into CSP. This con-
straint forced us to use very similar data structures at
the model and implementation levels and prevented
us from rigorously verifying lower-level properties
about the software and application-specific hardware
that reside below the Trace Model abstraction, e.g., im-
plementations of calls to send and receive messages
over particular channels.

CSP also forced early decisions about the sys-
tem’sprocess structure, communication behavior, and
method of data sharing (i.e., through message passing
only). Other languages, e.g., [2], should be considered
for applications in which the critical requirements are
not naturally viewed as restrictions on communica-
tion behavior, the process structure and method of
data sharing are not evident early on, or data refine-



ment is necessary.

2. Postpone assigning parameter values that may differ
among family members.

One motivation for defining the SBD domain and
its associated modeling framework was the need to
develop a series of increasingly sophisticated SBDs
without knowing much about the operational charac-
teristics of the environment in which they are to be
embedded. To simplify ease of change/re-use of soft-
ware specifications and code, the program family ap-
proach [21] encourages making design decisions that
are shared by family members before making design
decisions that differentiate family members. Since the
family of SBDs to be built forms a subset of the SBD
domain, this approach suggests delaying the instanti-
ation of any parameter values that may differ between
family members. As new family members are gener-
ated, we can reuse any part of the assurance argument
that relies only on the shared decisions.

Unfortunately, this approach increases the complex-
ity of the assurance argument development and cer-
tification for the first build. As a result, the approach
was impractical for the ECA development. The ECA’s
tight development schedule forced us to assign the
model parameters according to the specifics of the
ECA’s environment (e.g., fixed key, FIFO priority)
and to simplify the corresponding assertions. If fu-
ture maintenance of the ECA (or a subsequent build)
demands a capability inconsistent with a parameter
value, a complete re-implementation and re-analysis
may be necessary. In fact, this limitation was realized
in a subsequent build of the ECA by a developer con-
sidering over-the-network re-key. Our effort suggests
that when planning for the development of a family
of systems, managers and developers need to allocate
sufficient time up-front for constructing an assurance
argument that can be easily modified to apply to dif-
ferent family members.

3. Expect unforeseen security-relevant flows during
refinement.

The confidentiality assertions of the ECA (and SBD)
Model are defined in terms of the primitives of the ex-
ternal interface that are visible at the model level of
abstraction. Although the CSP Trace Model guaran-
tees that any proper refinement of these assertions
to a lower level specification or implementation also
satisfies these assertions, it does not guarantee that
any information flows introduced as a result of the
refinement satisfy the intent of the assertions, i.e., to
enforce Restricted Red-To-Black Flow. Thus, the re-
finement may be less secure with respect to Restricted
Red-To-Black Flow than the system description at the
model level of abstraction. Other work [13, 16, 17]

describes in more detail the problems associated with
preserving information flow security properties using
conventional system refinement techniques.

We understood the limitations of conventional sys-
tem refinement techniques at the start of the ECA
development project, but we believed that we could
specify the ECA external interface abstractly and with-
out omitting information that was critical to analyz-
ing the security of the system. Our approach was to
model all information flow with external processes,
including both message traffic and system control, as
communications over CSP channels. The critical re-
quirements were then formulated in terms of these
information flows. We believed that if all informa-
tion flows were in fact modeled, any refinement of the
model should be as secure as the model with respect
to Restricted Red-To-Black Flow. The external inter-
face was implemented in a hardware hiding module
as calls to put and get messages over channels. It be-
came clear, as the details of the external interface were
negotiated with the end users of the ECA, that infor-
mation flows beyond those that were modeled were
needed to implement the communication protocol be-
tween the ECA and its external environment.

In hindsight, it was unreasonable to assume that
there would not be additional security-relevant flows
introduced in the implementation of the hardware
hiding module. Recent work on the nature of pos-
sibilistic security properties [17] discredits our initial
belief that if all security-relevant information flows are
explicit in the model then any refinement is as secure
as the model. The ideal solution to the problem is to
use security-preserving refinement techniques, e.g.,
[8, 15], combined with an information flow security
model. Unfortunately, these techniques are not yet
practical for real system development. Until practi-
cal security-preserving refinement techniques become
available, conventional refinement techniques, such
as those for CSP, can be used to develop secure sys-
tems. These techniques must be augmented with an
analysis of information flows introduced during re-
finement, similar to to the covert channel analysis re-
quired by the TCSEC [19]. This analysis has yet to be
performed for the ECA.

4. The choice of abstractions is critical to the coherence of
the assurance argument.

One of the biggest lessons that we learned about the
overall ECA development process is that, with respect
to independent system certification, coherence of pre-
sentation is at least as important as rigor in specifica-
tion and verification. We have started investigating
the use of literate programming techniques [9] as a
means to present and manage specifications and veri-
fications in a more coherent and intuitive manner, but



this, by itself, is not sufficient. The abstractions chosen
to represent system primitives in the top-level spec-
ifications need to be clear enough for a third party
to understand (and agree on their use), yet precise
enough to permit formal verification.

Determining whether the abstractionsare appropri-
ate is a difficult process. The developer and the users
need to agree early on the primitives of the user inter-
face and on the critical requirements, but the model
should not be fixed until all relevant issues are re-
solved. For example, the ECA model was baselined
prematurely and then significant progress was made
implementing and formally verifying the module that
implements the format check associated with Correct
Format. Unexpected changes to the primitives of the
ECA’s external interface decreased the efficiency of the
module and the understandability of its formal verifi-
cation. An independent inspection of the module lead
to its rejection even though it had been formally veri-
fied! The current formulation supports a more precise
and intuitive refinement.
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