Towards Formalizing the Java Security
Architecture of JDK 1.2

Lora L. Kassab! and Steven J. Greenwald?

! Naval Research Laboratory
Center for High Assurance Computer Systems

Washington, D.C. 20375, USA

kassab@itd.nrl.navy.mil
2 Independent Consultant
2521 NE 135th Street
North Miami, Florida 33181, USA
sjgb6@gate.net

Abstract. The Java security architecture in the Java Development Kit
1.2 expands the current Java sandbox model, allowing finer-grained, con-
figurable access control for Java code. This new security architecture per-
mits more precise, yet flexible, protection for both remote code (loaded
across a network connection) and local code (residing on the same ma-
chine running the Java Virtual Machine) developed using the Java pro-
gramming language. Our formal model and analysis is intended to: (1)
allow designers and implementors to understand and correctly use the
protection provided by these security controls, and (2) provide guidance
to a JVM implementor wishing to support these security controls. Access
control decisions in Java are made based on the current execution con-
text using stack introspection. To model this, we employ a state-based
model that uses multiple access control matrices to model the security
controls in JDK 1.2. We also present a safety analysis and discuss the
effects of static and dynamic security policies for a given Java Virtual
Machine.

1 Introduction

The rise of Java as a programming language has important implications if em-
ployed for high assurance systems. Java can be used to implement systems that
have high assurance requirements and must perform critical functions correctly.
The security controls supported by the Java programming language and the
Java Virtual Machine (JVM) can be a significant benefit in developing high as-
surance systems in Java, but only if: (1) designers and implementors understand
the protection those controls can provide and develop a system that uses the
controls appropriately to meet system requirements, and (2) the JVM on which
the system runs implements the controls correctly, without providing loopholes
or bypasses.

This paper addresses the first of these two concerns by providing a model
for the security controls implemented in the Java Developer’s Kit (JDK) 1.2.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1998 2. REPORT TYPE 00-00-1998 to 00-00-1998
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Towards Formalizing the Java Security Architecture of JDK 1.2 £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Resear ch Laboratory,Center for High Assurance Computer REPORT NUMBER
Systems, 4555 Overlook Avenue, SW,Washington,DC,20375

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 17
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

The purpose of this model is to provide: (1) designers and implementors with a
precise understanding of how these controls work so that they can design sys-
tems that use the controls correctly, and (2) guidance to a Java virtual machine
implementor wishing to support these security controls. The need for a precise
understanding of the security controls is highlighted by the fact that the new
controls require complex changes to the functionality of the virtual machine. As
noted before in [18], changes to the JVM can destabilize the entire system.

The issue of whether a given implementation of the JVM on a given platform
implements the controls correctly is important but beyond the scope of this pa-
per. One interesting opportunity created from having many JVMs on different
platforms is that the same application could be executed on a variety of un-
derlying hardware and software platforms and their results compared as a way
of reducing vulnerability to hardware flaws, software flaws, and perhaps even
malicious attacks or misuse [14].

Even with such security concerns, Java’s still-growing popularity has several
roots. Language features such as type-safety, automatic memory management,
and range checking on strings and arrays are examples of how Java reduces the
chance of some common kinds of programming errors, e.g., buffer overflow. (This
is very important for safety-critical software as well.) Further, the availability
of JVMs for a wide variety of platforms brings the possibility of “write once
run anywhere” to application developers. The inclusion of applet tags in HTML
together with the incorporation of the JVM into web browsers permits web
servers to provide downloadable executable content (Java applets) transparently,
moving appropriate computing tasks from the server to the client domain.

Java’s developers recognized the concerns that users might have about per-
mitting arbitrary applets to execute on their machines and initially provided a
simple “security model” for applet execution [20]. In this model, downloaded ap-
plets would be confined by the JVM to executing within a “sandbox” that would
prevent them from, for example, altering the client’s file system, or communicat-
ing with any network sites other than the site from which they were downloaded.
Java applications (local programs not downloaded via a web browser) would ex-
ecute as “trusted”, without sandbox constraints.

Predictably, some initial JVM implementations didn’t implement the “sand-
box” correctly [4, 6], and when they did, developers sometimes found the sandbox
model too restrictive. Further, although the notion of a sandbox is simple, its
detailed implications for security enforcement are not. Java applications, on the
other hand, were (like typical programs run on clients) subject only to the user’s
constraints, and the idea that some additional constraints (perhaps less stringent
than those imposed on applets) might be imposed on applications has appeal to
users and developers alike.

Consequently, Javasoft has developed more flexible security controls in JDK
1.2 [8]. With this new architecture, the earlier constraints on applets can be
relaxed (depending on the source of the applet and any digital signatures that
have been used to sign it) and local code can now be subjected to the same
security controls as applets. Users can configure policies that their JVM must

enforce on applications as well as applets [9]. Thus, the security controls now
allow finer-grained access controls for applets as well as applications. This results
in a security architecture that allows multiple sandboxes with varying access
permissions to co-exist.

But with flexibility comes complexity and thus error-proneness. The reason
for developing this formal security model is to answer precise, detailed questions
about how the security controls are intended to behave and the implications of
how each JVM implements the security controls. These questions often reveal
subtle, undocumented, and sometimes unexpected behaviors that surface in an
implementation of the JVM. As we describe the formal model, we will identify
such aspects of JDK 1.2’s current security controls and we will discuss the effects
of static and dynamic security policies for a given JVM.

2 Overview of JDK 1.2 Security Controls

The security architecture in JDK 1.2 is based on protection domains that rep-
resent, units of protection within the Java runtime environment. Protection do-
mains are defined according to: (1) the location of where the Java code originated
(the URL codebase), and (2) a set of cryptographic keys corresponding to the
private keys that signed the code. Every .class file* belongs to a single protection
domain and is granted permissions according to its domain. Thus, a protection
domain is scoped by the set of classes and objects (in the object-oriented sense)
that are currently directly accessible by a principal, where a principal is an entity
in the computer system to which permissions are granted [8].

Security policy files are used to specify the overall system security policy.
These files contain a sequence of permission entries specifying which protection
domains should be created and what permissions to grant to each protection
domain. For each user running a JVM, there is a system security policy file and
optionally a user security policy file that can be added to it. Since there are
no negative permissions, the composition of the system and user policy file is
simply the union of the two files to specify the policy “in-effect” for a user’s
JVM.* If neither policy file is present, then the default security policy is the
original sandbox policy.

An example of a permission entry in a security policy file is:

grant codeBase “http://www.itd.nrl.navy.mil” SignedBy “abcdefg” {
permission java.io.FilePermission “/home/foo/bar”, “read”, “write”;
};

The above example indicates that code originating from the URL
http://www.itd.nrl.navy.mil/ signed with the key “abcdefg” has the permission
to read and write to the system resource (in this case a file) “/home/foo/bar.”

% A .class file is the bytecode corresponding to the source code for a Java object-
oriented class.
* To date, a JVM is implicitly owned by one user only.

Access control decisions are not based solely on the contents of the policy
file(s). Thus, an entry in the security policy file does not necessarily warrant
access to a system resource, because access control decisions are also made de-
pending on the execution context. The execution context includes checking all
protection domains and their associated permissions “involved” in the request
before granting any permissions. This design prevents more restricted protec-
tion domains from acquiring permissions not indicated in the security policy
files. This mechanism is known as ezxtended stack introspection and has been
implemented by JavaSoft, Netscape, Microsoft and other vendors. Each imple-
mentation varies [18, 16, 15, 8], but the core design is similar and is the basis of
our model.

Before describing the components of our model, figure 1 illustrates how the
JDK 1.2 security architecture maps into our model (defined in Sections 3 and 4).
On the left-hand side of the figure, we show four protection domains that may
co-exist, which have varying permission boundaries. We represent the security
policy for this JVM with a VM policy matrix as indicated on the right-hand
side of this figure. This VM policy matrix specifies the security policy, which is
constructed from the system policy file (and possibly a user policy file based on
the user starting the JVM) for the four protection domains currently executing
on this JVM. Using this VM Policy Matrix, we define a domain matrix for each
thread of execution on a JVM. These domain matrices correspond to the multiple
sandboxes with varying permissions that may co-exist in JDK 1.2.5

Threads
(1)
Sandbox Local
code
(2)
—_— VM Policy
Applet Matrix
Applet (n-1)
JVM (n)
Resources

Fig. 1. JDK 1.2 Security Architecture Mapping

In the following sections, we define our Java Access Model (JAM), a state-
based model that uses access control matrices to model protection states. There
are a few noteworthy distinctions between JAM and other access matrix mod-
els. First, even though JAM relies heavily on the use of matrices, it does not

® The permissions will vary based on the protection domains (and their associated
permissions) that are present in a domain matrix.

have any individual matrix cell operations per se, which eliminates the ability to
add, remove or transfer access rights between principles. Second, access is not
accomplished by a lookup of a single matrix cell, as in many of the traditional
techniques [13]. Instead, a special columnar operator is used to determine ac-
cess. Finally, more than one matrix (VM Policy Matrix and domain matrices) is
necessary to model the security controls for a JVM. These differences rule out
many of the characteristics of other access control matrix models such as Bell-
LaPadula (BLP) [2], Harrison, Ruzzo, and Ullman (HRU) [11], and Sandhu’s
TAM model [17]. The next section defines our formal representation of the JDK
1.2 security architecture.

3 The Virtual Machine Policy Matrix

The virtual machine policy matrix is a (source by target) matrix of allowable
actions. We also show how a given virtual machine policy matrix defines any
possible domain matrix that may exist for a JVM. Every component in the
model is finite. The definitions of the virtual machine policy matrix follow.

Definition 1. R is a set of resources. Elements of R model anything available
through the operating system, e.g., files, devices or network connections.

Definition 2. A is a set of actions. A includes the permissions provided by the
underlying operating system (e.g., read, write, execute).

Definition 3. S is a set of sources. A source, is a pair (n, k), where n is a URL
that names the location of a collection of classes and k is a set of public keys that
are associated with the signers of the classes in n. If nn is the wildcard *, this repre-
sents any URL. Likewise, if & is the string “*”, then this means the corresponding
collection of classes are not signed. Similar to subjects in traditional access con-
trol matrix models, sources denote the rows in an access control matrix. The ele-
ments of S are not necessarily disjoint. That is, there may be sources in S, where
the collection of classes and the corresponding keys (if any) overlap. When this
happens we say, one source is a prefiz of another. Source s; = (ny, k1) is a prefix
of source sy = (no, k2) if n1 < ny and ky = ko, where < denotes the URL prefix
operator. For example, the source (http://www.itd.nrl.navy.mil/, “abcdefg”) is a
prefix of source, (http://www.itd.nrl.navy.mil/people/, “abcdefg”), because the
keys match and the URL that names a collection of classes in the first source is
a prefix of the URL http://www.itd.nrl.navy.mil/people/.

Definition4. T is a set of targets. Targets are strings that name sets of re-
sources. Similar to targets in traditional access control matrix models, targets
denote the columns in an access control matrix. However, in a VM policy ma-
trix, it is not always the case that every source is also a target as in other access
control matrix models. In a VM policy matrix, it is possible that more than one
target refers to the same set of resources. For example, the use of symbolic links
in UNIX causes more that one path name to refer to the same physical file.

Definition 5. The virtual machine policy matrix PM is an |S| x |T| matrix,
where PM|s,t] C A gives the allowable actions for target ¢, using the collection
of classes loaded from source s. The policy matrix PM is a static representation
of the system security policy file (with the possible addition of a user security
policy file), where each row represents a source and every column is a target. The
virtual machine policy matrix is defined at Java runtime start-up, thus defining
the security policy for a given JVM until the JVM terminates.

Figure 2 is a simple example of a policy matrix. Recall that sources are
composed of a URL (or * for any URL) and the set of associated public keys
(or the wildcard string, “*”, if not signed). An empty cell in the matrix implies
that the source has no permissions for the corresponding target. In figure 2, the
last entry has a wildcard, * to specify code loaded by the JVM from any URL
receives the following permissions. Thus, all code may read files in the directory
“/tmp”, so this expands the boundary of the original sandbox.

SOURCES TARGETS

URL \KEY "*.com:80" t "tmp" "*.mil"
http://www.ivy.com/ e C%%Crfgctt’
http://lwww.ivy.com/english/ ~ "*" execute | write | accept
http://www.topiaries.ivy/ "abcdef12345" connect | execute | read | accept
http://www.rhubrumd.lilies/ Bl execute | write
http://www.hibiscus.flowers/ "qwertyasdf456"
* e read

(where target t is java.lang.RuntimePermission.createClassLoader)

Fig. 2. Virtual Machine Policy Matrix

Definition 6. DM is a set of domain matrices. Each element dm € DM is an
|Sam| % |T'| matrix corresponding to a thread of execution on a JVM, where
Sam C S and T is the set of targets. Each row in the domain matrix is similar to
a capabilities list, which for Java is called a “protection domain”. The actions in
dm|s, t] are the union of all actions in virtual machine matrix element PM|s', t]
for every source s’ € S that is a prefix of s. Thus, for every source s’ € S that
is a prefix of s € Sy, the permissions granted to s’ for each target ¢ € T are
granted to s for ¢.

Figure 3 is an example of a domain matrix (with a single row) which is based
on the policy matrix in Figure 2. To illustrate how the domain matrix was cre-
ated, suppose the class http://www.ivy.com/english/green/foo.class were loaded
by a JVM with the policy depicted in Figure 2 in effect. Based on the protection
domain of this class, its set of permissions would be the union of the two sources
in the policy matrix that are prefixes of this class, namely (http://www.ivy.com/,
) (http://www.ivy.com/english/, “*”), and the last entry in the matrix which
applies to any URL. Note that the code loaded from this source was not required
to be signed (as indicated by “*7”).

"*.com:80" t "/tmp" " omil"”
. . accept, read,
http://www.ivy.com/english/ il PL | execute) accept
connect write

Fig. 3. Domain Matrix

A domain matrix (with multiple rows) can be viewed as stack (LIFO order),
where the last row added is at the bottom of the matrix. We decided, however, to
use a matrix representation for consistency with the PM representation. With
the matrix form we do not lose any generality as we can manipulate it in a stack-
like way when necessary. Also, the matrix allows us to determine permissions
(defined later) with greater ease than a stack.

4 Java Access Model

The virtual machine policy matrix defined above applies to a single JVM. In
this section, we define the Java Access Model (JAM), which is the state-based
model for a single virtual machine policy matrix.5 Our Java Access Model is
defined as JAM = (PS,C, f,U), where PS is the set of protection states, C is
the set of commands (inputs) that cause JAM to transition from one protection
state to another, f : PS x C' — PS is the transition function, and U is a set
of principals. We use the sequence of input commands ¢ € C* to distinguish
the various entities that are found in a protection state. Each entity is given
the subscript of the command that created it. For example, if command 4 in the
input sequence creates a domain matrix, then the domain matrix is labeled dm;.
The following four definitions define the components of JAM.

Definition 7. U is a set of principals. It models the entities to which authoriza-
tions are granted (and as a result, accountability). Today, a JVM is implicitly

6 JAM can be modified to allow more than one JVM to concurrently execute on a single
computer. However, the focus of this paper is on modeling the security controls of a
single JVM.

owned by a single user causing U to be a singleton set.”

Definition 8. A protection state ps is a sextet (V,II,S, R, T, A), where

e V is a triple u, PM, DM, where u is a principal, PM is a virtual machine
policy matrix, and DM is a set of domain matrices.

e [T :u — PM is the policy function that represents the effect of Java policy
files; it maps a principal u to a virtual machine access matrix PM . Thus,
this function returns the matrix based on the system policy file. (If a user
policy file exists, the union of system and user policy file is used. This is
easily accomplished since there are no negative permission entries in either
file.)

e S R, T, A are the sets that are used to define the policy and domain matrices
inV.

Definition 9. The protection state ps € PS of JAM changes by one of the
following commands in C.

e init(u): The command init(u) creates a new triple, V. = (u, PM, DM;),
where w is a principal in U, PM = II(u) and DM; is an empty set of
domain matrices (no threads of execution). This command models a principal
starting a JVM.

e destroy(PM): Remove the triple V' = (u, PM, DM;) from the current pro-
tection state ps. This command models the termination of a JVM.

e start(dm,s): Add a new domain matrix dm to the set of domain matrices
DM; for the triple (v, PM, DM;). This command models the creation of a
new thread executing the class(es) from source s, where the domain matrix
dm consists of all targets in T and the set of sources Sy, for this domain
matrix is the singleton set s. If start(dm, s) is the i'* command in the input
sequence ¢, then the new domain matrix is dm;, where ¢ > j. The actions
in dm/[s,t] for each t € T are obtained by the union of PM[s',t] for every
s’ € S that is a prefix of s.

e stop(dm): Remove the domain matrix dm from the set of domain matrices
DM. This command is less interesting as it simply removes permissions for
a thread. This command, however, must also remove any privileges that may
have been associated with dm (the “privileged” mechanism is discussed in
Section 4.1).

e enter(s,dm): Add the source s € S to the set Sgm for domain matrix
dm € DM. This command adds a new row to the domain matrix dm. This
models a thread of execution entering the protection domain s. As in the
command start, the actions in dm/[s,t] for each t € T are obtained by the
union of PM[s',t] for every s’ € S that is a prefix of s.

" This set would not be a singleton if multiple JVMs are modeled or if protection
domains are extended to include the notion of “running-on-behalf” of a principal as
presented in [1, 8]. Thus, we maintain this set for clarity and extensibility.

e exit(s,dm): Remove source s from the set Sgy, of domain matrix dm. This
command removes a row from the domain matrix dm. This command models
a thread of execution exiting the protection domain s. This command is most
interesting as the removal of a row in a domain matrix has the potential to
increase the permissions granted to a thread, which is atypical of commands
in traditional access control models. That is, the removal of a row will never
decrease the permissions granted to a thread of execution on a JVM.

Definition 10. PERMIT : dm,t — a is the permit function which returns the
allowable set of actions a € A that a thread may perform on a target ¢. For
every s € Sqm, the permit function takes the intersection of dmf[s,t] for target ¢
as follows.
PERMIT(dm,t) = (] dm]s,t]
SESam

The resulting set is the effective set of actions that a thread may perform. It is
possible that a given s does not have any actions for a target ¢;, which is denoted
by an empty cell in the matrix. In this situation, the intersection would return
the empty set, since there exists at least one source s € Sy, where dmls,t;] is
an empty cell.

"*.com:80" t; "ltmp" "*.mil"
http://www.topiaries.ivy/ "abcdef12345" | connect |execute | read | accept
http:/iwww.rhubrum.lilies/ ™" execute ﬁﬁger
http://www.ivy.com/english/ wxn szcr:-‘g’ct{ execute xﬁfé accept

Fig. 4. Domain Matrix

Given the domain matrix illustrated in Figure 4 and a target ¢;, the PERMIT
function would take the intersection of the permissions for that target for every
source in the domain matrix. In Figure 5, the intersection of the permissions for
all targets has been calculated. For example, using the dm in Figure 4 and the
target “/tmp”, the PERMIT function would return the permission read.

4.1 The “Privileged”

As stated previously, Java access control decisions are made based on the cur-
rent execution context via stack introspection. This is not always a “complete”
introspection, as blocks of Java code may declare that they are “privileged”
by using the beginPrivileged() and endPrivileged() methods of the JDK class
java.security. Access Controller. The term privileged is not equated with the usual
security notion of trusted code. Rather, “privileged” in this context means that

A

‘(9 @am81,] ur moire o1y A PaYesIPUI SB) XLIJeU Y} JO WO))0(q dY) e ST MOl
POPPR A[JUS9I JSOTL O} SIOYM ‘YORYS S© POMOIA 9(WD XIIJRU UTRWOP © Jey) [[RI0Y

poppe 1ey) ndul puewwiod 9y} 03 fenbs 10 UeY) I199e0I3 ST JeY) INdUI pUBTUWOD
' £ poppe § 92IN0S AI9AD I9AO [‘S|wLp JO UOTIDVSINIT oY) s | PoSoialid, Iopun
uonouny 7.7 IWHHJd 9Y) ougep A\ 'S00Inoso1 Aue 0} uoissturiod Sunueid o10joq
o1n3y o) Jo uoniiod papeys oY) AQ POYRIIPUL S POYISYD (| 01 PodU SUTRWOop
u01300301d U201 910w oY) ATU0 ‘MON ‘()pabopariJuibaq POYIOW oY) POINIOXD
(wser /5208 Wn QYL MmN/ /2 d397) ©2INOS 9} WOIJ POUTRICO OPOI ‘g 9INSI] U

urewop uotoaj0xd paSeriatid e YIm X1Ijewr urewo(] °9 “Si.q

IM 103Uu0d . . .
1daooe ool 83N29xa e v JUSHIBUB/WIOD AN M/ d1aYy
CERERIVNIEER S peoa | oexe wew SN WNIGNYL MMAWY/d1IY
1deooe | peas | 8Indaxa | 108UU0d | ,GEZTIOPITE, JAAI"sa1e1doy mamwy/:d1ay
AWy, dwy, h08:woo,
‘(x11yRT1

UTRWOP 91} Ul £19U0 PoSeTIalid o1} MO[eq SOLIUL dY)}) 90IN0S Poderialid, o1} 1o9je
PoI9IUL 9I9M JeT[} S9OINOS |1} SUINILYD ATUO A X1I9eW UTRWOP oY} Ul S92INos [[e
JOOUD 0} POOU 9 SIUSAWINII ,PISOIALIA, JO oSN Y, "XLIJRW UIRWOP 9Y) UO
SpuRwWWO) JO 90USNDIS 9} UT POIIOPOI ST YOTYM ‘XIIJeW S} UI T MO S9IINOS
9y} Uy} IOPJO ST XYW UIRWIOP OY) UL 92IN0S js0w-do) 9} dI0JOIOY], o IOPIO0
OJAIT Ul SMOI SOAOWI 279 PUR XIIJeW UTRWOp ® 0} smol spuadde puewruiod
423U 9Y) ‘ST Je], "UOTINIOXS JO Pealy} B A PosioArI) SUTRWIOP UOI309301d o1} JO
BULIOPIO UOIINIVXS UR SosOdWI SPURTIIOD 9593 JO 90RI) oY) aIoym ‘(wip ‘5)2102
pue (wp ‘s).423Ua SPURIIWOD 91 YSNOIYI 1ONIISU0D PoFo[IALId 91} [9POUL DA
"YOR)S UOTINIVXS) UO 9 0} A[ONI[oIR JAISSTULIOA SS9 IOYI0 USYM
‘SOLIRICI] IO SIUOJ S YONS ‘S9[Y W0ISAS FUISSOI0R USYM JONIISU0d podoriatid s1y)
osn Aewl opod Jo Yoo[q © ‘Djdurexs 104 *(s1s1X0 oUO J1 o[Ad1[0d Josn pue) o[y A1
-tod wesAs 8} UT PaeITPUI URY) SUOISSTULIOd 9IOW UTRS I9ASU URD 9P0I JO YI0[q
9] JN(‘S90INOSAI S)T 07 ssedoe Sursenbal 10] a[qisuodsel ST 9pod JO YD0[q |1}

ojdurexe uonouny [WY Ad *S "S1d

(aury,) (peas ,duny,) (@ndaxa T1) (.08:w02y,)
(1dadoe 1wy,) (o1am ‘peas ,dwyy,) (e1ndexa T1) (198uu0d ‘1dedde ,08:W0Y Y.,)
(wr,,) (ewmpess dun,) (ewnoexa T1) (.08:wo,) U

(1daooe 1wy,) (peas ,dwyy,) (e1ndexe T1) (108UU0d ,08:WO0Y',)

« O[qRIDRIIUL, 8 0} PAIEPISU0) A[[eIouad are sure[qold ajejduod-JN JO SSe[d
oY) 90UIS ‘g1 Ml Y Sunjiom smodofessp 01 soueliodwr jea1d Jo oq pPnoys 91
‘0S[V "INV JO ssousArssordxo o) Surjerisuowop sny) ‘fopour 9y) jo uoryendiu
-ew o[dWIs ® WO} PaUTRI(O 8¢ URD JINSaI SUTISAI0JUI ATOA B MOY S9JRIISUOWLP 1]
"STUOS®eal SUIMOT[O] 1]} 10J JUedyIudIs s joe] sty], "we[qoid aja[dwod-JN ue Afeny
-0v STINJV 1RY) pue N Ul sT NJV 18y} MOUS MO[[O] JRY[} SWLI0sT} 0M] YT,

‘s1sATeue Ino
99e11[10%] 07 We[qo1d UOISIOP & s 91 9ye[nuLIo] pue (NJV) welqoxd 2w py fiorjoq
fiavarquy oyy werqord Ajoyes Siy) Wil op\ “JUJ Te[nonied ® UoAI3 PojeIdusl
9q ued wp remorred e Ioyjeym Jo we[qold ay) UO Sasnoo] sIsATeur A9Jes Ino
oI0J0I0Y T, "(UonpUNy L] WY T U} ©la) suoisstuiiod Auop 10 jueid o) pesn ole
YOIYM ‘(S Wp) SOOLIJRU UTRWOP ULIO] O Posn usy) ole soouryewr Aorjod osayJ,
"91RIS [RIIUI 9INDSS € JUTUPopP INO sopnooid Yyorym ‘so[g Ao10d JO UOIIONIISUOD
(ALremiqre, oyl uo peseq perendod axe (s jyg) seorrew Adrjod ‘Ajauenboasuo))
‘so[y Ao1j0d 09UT PaILjUL ST JRYM UT PIJTUII] JOU 8IR SI9SN JeT[) Paje)s A[snotaaxd ap\

INV [JO sisA[euy Ajojes g

‘[6 ‘8T] wstureyoowr paderiatid o1y Jo woryRUSTISIdUIT
I107[) Ul ATeA JJOGRAR[PUR ‘)JOSOIITA ‘odrosiaN 1Y) UOTjUaw [[Im om ‘IToded s1y)
ut uostredwod sy} op1aoid J0u op om YINOYIY "SIXe pabojaiiJurboq pofres eyl
9p0d o1 9ouo d3o1AtId 9y} soAowRI A[[edT)RIOINR UoT)eIUSR[dWI 9y} I9YOYM
uo spuodop OLIRUSIS SIY) Ul IoFuep [e1yuslod oy J, Pabouiigpua 1[ed 01 198105,
07 10dofesop ' 10} o[qIssod [[19S ST J1 ‘W) PONWI] € 10] AUO PO[qrRUS oIe $939]
-1a11d Jet) AJII0A 0} 9pOd WoISAS Jo JumIpne plemiojydrerss smore yoeoidde
SIY} YSNOYIY "opod ,PoIsnijun, o} e[jouued sodofiatid ‘snyJ, "pesiy) o[3uls
' urgym padoos st wstueyoew podefiatid oy ey oj0u 03 jueliodwil st 9]

urewop uor}oajoxd paderianid e Yiim pojueIsd SUOISSTWLIO] * 2 *Srq

(uwrs,) (eum‘pess duy,) (enoexe T3) (.08:W02'y,)
(1daooe wry,,) (omum ‘peas ,dwyy,,) (enoexa T1) (199uu0d ‘1dedde ,08:W09'y,)
(uwry,) (e1um‘peas dwyy,) (@noaxe T1) (.08:Wo0d',,) U

‘(¢ oInS1q u1 sk poas gsnl oy pesoddo se) agwum pue pva. Yjoq oIe Pajuresd
suotssturiod o1} ‘¢ 9INSI] UT X11pew utewop o) pue duy/, 1031e) o1y 0y porjdde
ST uoOUN} LT INYHJ 9U} JT ‘MON "UOIMNIOXS JO PRAIY) ® JO JXIU0D 9Y) UDALS
poremored a1e pamorre suorssturiod oY) ‘), 9INGI Ul PIJRIIPUI Sy "owes 9y} 9(
j0u Aewt L7 INYHJ JO SHNsox oY) ‘podofiatid se Suiinioxe SI opPod oY) 90Ul

(pabaparuad) ol (s)*o
[1s]up U = (1'wp) IINY A

1SMOT[0] e 20IN0s paderiatid a1y}

5.1 The Arbitrary Policy Matrix Problem

APM can be formulated quite simply: given an initial protection state psy and
a final protection state ps¢, is it possible for a particular domain matrix dm to
appear in any future state ps; such that 1 < ¢ < f? We would like to be able
to answer this question because there might be dm’s that are undesirable and it
would be beneficial to be able to determine if such dm’s would be possible for
an arbitrary policy matrix PM.

Theorem 1. APM € NP.

Proof. For each row in the dm, the worst case requires checking all possible
combinations of the unions of all the rows in PM. There is an exponential
number of possible rows, bounded by 25 — ¢, where S is a set of sources as
defined in Section 3 and 4. Therefore, the problem can be posed as a decision
problem, where an instance of a dm is guessed by a nondeterministic algorithm,
and then compared to the dm in question. Note that the actual comparison is
done in polynomial time mn where m is the number of rows and n is the number
of columns, being a simple comparison of two matrices.’

In order to solve this problem, a nondeterministic algorithm need only guess
a particular dm from the exponential number of possible dm’s that may be
created (from any particular PM) in the states of the machine. We then need
to compare the guessed dm with the particular dm of interest. As mentioned
above, the comparison of the two matrices takes place in polynomial time, and
the number of states is linear (and therefore also polynomial). Therefore, the
problem is in NP. O

Theorem 2. APM is NP-complete.

Proof. We polynomially reduce the well-known NP-complete Satisfiability (SAT)
problem [3] used in Cook’s theorem to APM.

We briefly review SAT. We have a set B of Boolean variables, and a collection
C of clauses over B. The decision problem being: is there a satisfying truth as-
signment for C'? The following example is paraphrased from Garey and Johnson
[7] (we have changed some of the set names to conform to our notation).

Let B be a set of Boolean wvariables. A truth assignment for B is a
function t : B — {T, F}. If b is a variable in B, then b and b are literals
over B. A clause is a set of literals over B representing the disjunction
of those literals and is satisfied by a truth assignment iff at least one
of its members is true under that assignment. A collection C' of clauses
over B is satisfiable iff there exists some truth assignment for B that
simultaneously satisfies all the clauses in C.

9 If multiple source prefixes exist in the rows of the policy matrix, then we can collapse
the policy matrix by replacing the prefix sources with a single row that is the union
of the prefixes. This will yield the most permissive set of possible dm’s without loss
of generality.

For example, B = {by, by} and C' = {{by, b2}, {b1, b2}} provide an
instance of SAT for which the answer is “yes.” A satisfying truth as-
signment is given by ¢(b;) = t(b2) = T. Alternatively, replacing C by
C' = {{b1, b2}, {b1, b2}, {b1}} yields an instance for which the answer
is “no.” C' is not satisfiable.

We need to reduce, in polynomial time, an arbitrary instance of a SAT prob-
lem to APM.

We restrict ourselves to two actions in JAM, such that A = {T', F'} corre-
sponding to Boolean TRUE and FALSE respectively. Let m = |C| and n = |B|.
We then construct a PM that has m’ = 2™ rows, and n columns such that each
column corresponds to a unique variable in B. This gives us a PM of size m/n.
The cells of the PM are constructed in such a way that we can generate dm’s
with m rows and n columns where each dm cell contains only one action, 7" or
F (this means that the PM will contain every possible combination of unique
rows with cells composed of T’s and F’s).

We are now ready to begin the reduction of the problem instance. The par-
ticular dm that we want to compare against is termed dm'. dm' has m rows and
n columns. Each row in dm’ corresponds to a particular clause in our instance
of SAT, and each column corresponds to a particular variable in B. We use the
function g : C' — dm’ to fill in some of the cells of dm'. Function g works the
following way. If a particular literal in a clause in C' is not negated (i.e., there is
no bar over the literal), then we change the corresponding cell in dm’ to T'. If a
particular literal in a clause in C' is negated (i.e., there is a bar over the literal),
then we change the corresponding cell in dm’ to F' (note that it is likely that
some of the cells of dm' will be empty). It takes polynomial time mn to generate
dm’. At this point the reduction of the problem instance is finished.

We now use a nondeterministic algorithm to generate possible solutions to
APM by generating one dm out of a possible 2™" unique dm’s that are the
same size as dm', where each cell contains either the action T or the action F
(henceforth a dm guessed by our nondeterministic algorithm will be referred to
as just “dm”). At this point, each row in the constructed dm is analogous to
applying the SAT truth function ¢ to the Boolean variables in B, and placing the
results in each cell, where T is equivalent to a Boolean true and F' is equivalent
to a Boolean false. For example if B = {by, b2, b3, b4, bs, bg} then we would
have a dm that might contain T',T, F, F,T, F respectively in each of the 6 cells
in one of its rows (this being a particular guess we are checking). It takes time
mn to “guess” a solution dm giving a total time of 2mn at this point.

We now do the actual comparison of dm against dm' to check for a satisfy-
ing truth assignment. We decompose the guessed dm into m one-row matrices
dm}, 1 <i < m, taking time mn for a total time of 3mn at this point. We then
construct a temporary matrix, dmy, that is the same size as dm' by applying a
new function h : dm'[s, t], dm}[t] = dmy]s, t] to each cell in dmy,. Function h
works as follows. If cell dm/[s, t] is empty, then h inserts F' into dmp[s, t]. If the
cell contains T', h copies the action from dm;} [t] to dmy[s, t]. If the cell contains
F, then h places the compliment of dm}[t] into dmy[s, t]. This takes time mn

giving a total time of 4mn at this point. To solve, we do a Boolean OR, operation
on each of the m rows in dmy, (taking time mn for a total time of 5mn), followed
by a Boolean AND operation of the m results taking time m for a total time
of 5m?>n. To finish the comparison we do the above for each dm} (since there
are a total of m one-row matrices, this takes time m for a total time of 5m3n),
and do a Boolean AND operation on the m results!? taking time m. Therefore,
the total comparison time of dm against dm’ is the polynomial 5m*n. To solve
SAT, if our final result is true then dm matches dm', and we have an instance
of SAT that is a satisfying truth assignment. If all of the exponential number of
dm’s do not satisfy, then our instance of SAT does not have a satisfying truth
assignment.

Any instance of SAT which satisfies, will also satisfy our reduction. Any
instance of SAT that does not satisfy, will not satisfy our reduction. Therefore,
APM is NP-complete. O

6 Implications of Dynamically Changing Security Policies

Currently, a JVM enforces a single static security policy based on the system
security policy file(s) read during initialization. Our safety analysis in section 5
proved that the problem of whether a particular dm can appear given a particular
PM is an NP-complete problem. The fact that APM is NP-complete shows
that the consequences of a given policy are quite difficult for users to evaluate.
Even so, JavaSoft is presently working on a mechanism that allows changes to
a JVM security policy after initialization (i.e., dynamically changing PM’s)
via a secure mechanism [8]. The improved flexibility of dynamically changing
security policies is not without penalty due to the increase in complexity of
JVM implementations. Flawed implementations, regardless of how they became
erroneous, are far more detrimental to security than the benefits provided by
this flexibility. Using our model, we can explore the implications for currently
executing Java programs with dynamically changing security policies.

One possible way to dynamically change the policy may require certain pre-
conditions to be satisfied before the policy change may occur.!’ The simplest
requirement would be that all executing threads are executing within the con-
fines of the original sandbox before the new security policy becomes effective. If
domain matrices are utilizing resources “outside” of the original sandbox and the
change in the security policy must be effective immediately, then there are a few
alternatives. The easiest and most secure implementation would require that all
of these threads be terminated (via the stop(dm) command in our model) before
the update occurs. Although this may seem rigid, co-existing security policies
(multiple PMs) for the same principal will complicate the implementation of

10 Technically, the final Boolean AND could be a Boolean OR and still find satisfying
truth assignments. However, the AND is necessary in order to retain the structure
of the matrix comparison between dm and dm’.

' This is a common object-oriented technique known as design by contract.

security controls in a JVM and is subject to luring attacks by allowing more
permissive threads to linger through changes to the security policy for a JVM.

A less rigid implementation for dynamically changing the security policy for
a JVM may depend on the specific changes to the policy files. If a modifica-
tion to the policy files makes any protection domain(s) more permissive (only
adds actions for one or more targets), then each dm that traversed any of these
protection domain(s) can simply be granted these new permissions. If imple-
mented correctly, this does not pose a problem. If a modification to the policy
files makes any protection domain(s) less permissive (removes actions for any
target), then the update is more complicated. For each thread of execution (dm)
that traverses an affected protection domain, either the update does not occur
until the protection domain is no longer accessible by the thread, or the thread
of execution is simply terminated.

A naive implementation that allows a dm to be updated with fewer (or less
permissive) actions may result in the executing applet/application not complet-
ing its computation. For instance, suppose a currently executing thread has
received permission to write to a given file and the new policy disallows this
permission (while the thread is writing to the file). Then, subsequent resource
access by that thread will either throw a java.lang.SecurityException or incor-
rectly allow the thread to continue writing to the file.

The design for supporting dynamically changing policies has not been defined
yet, but this mechanism is intended to be included in future implementations.
Using JAM, we can more easily analyze how this mechanism is best implemented
and how threads that persist over changing policies may be dangerous if not
handled properly. Clearly, the implementation of this capability to dynamically
change a security policy for a JVM is complex (and thus error-prone), and as we
have seen in the past, this is typically an avenue for discovering loopholes and
bypasses to the security controls.

7 Conclusion

The security controls in JDK 1.2 have many desirable features. Stack introspec-
tion is not vulnerable to tampering or direct program access even though stack
introspection can have high runtime costs.'? Further, extended stack introspec-
tion also offers good backward compatibility with existing Java applets [18] by
defaulting to the original sandbox policy if no other security policy is specified.

Extended stack introspection is not a panacea, however. It requires complex
changes to the virtual machine. More specifically, each class needing protection
must explicitly consult the security system to see whether the class was invoked
by an authorized party. This check adds at least one line of code to each class.
As we previously noted, changes to the JVM could destabilize the whole system.
This adds risks because the major commercial browser vendors (Microsoft and
Netscape) have diverged in their implementation of the JVM.

2 Tn the worst case, the depth of the stack is traversed before permissions are granted
as modeled by the PERMIT function.

Inevitably the flexibility afforded by the JDK 1.2 security controls introduces
complexity and more opportunity for error-prone JVM implementations. Our
formal security model provides a more rigorous and unambiguous specification
of the intended behavior of the security control design of JDK 1.2. By formalizing
definitions of the security controls, we were able to: (1) identify potential points
of variance in JVM implementations (different stack introspection algorithms
and the privileged mechanism), and (2) provide a means to compare the actual
behavior of the security controls in different JVM implementations.

Our safety analysis focused on whether a particular dm can appear in future
states because it is not possible to limit what can appear in a policy file. Our
safety analysis showed that APM is NP-complete (¢f. [10, 11, 17]). Therefore,
if expressing security by APM is of interest to designers and implementors,
then any particular policy file configuration can be inspected (not necessarily
efficiently) using methods appropriate for NP-complete problems.

In response to the complexity of static policy files, we used our model to
explore the impact of dynamically changing policy files. As additional features
of the Java security architecture in JDK are announced, we plan to reuse our
model to analyze the ramifications of those features.

Acknowledgements

The authors would like to thank John McDermott, Carl Landwehr, Catherine
Meadows, and Richard E. Newman for their contributions to this paper.

References

1. Balfanz, D. and Gong, L.: FEzperience with Secure Multi-Processing in Java, In
Proceedings of the International Conference on Distributed Computing Systems,
Amsterdam, Netherlands, May 1998.

2. Bell, D. E., and LaPadula, L. J.: Secure Computer System: Unified Ezposition
and Multics Interpretation, Technical Report MTR-2997, MITRE, Bedford, Mass.,
March 1976.

3. Cook, S. A.: The Complezity of Theorem-Proving Procedures, In Proceedings of the
Third Annual ACM Symposium on the Theory of Computing, ACM, Pages 151-158,
1971.

4. Dean, D., Felton, E. W., and Wallach, D. S.: Java Security: From HotJava to
Netscape and Beyond, In Proceedings of the 1996 IEEE Symposium on Security
and Privacy, pages 190-200, May 1996.

5. Denning, D.: Cryptography and Data Security. Addison-Wesley, 1982.

6. McGraw, G. and Felton, E. W.: Java Security: Hostile Applets, Holes, and Anti-
dotes. John Wiley & Sons, 1997.

7. Garey, M. R., and Johnson, D. S.: Computers and Intractability, Bell Telephone
Laboratories, Inc., Murray Hill, New Jersey, Page 259, 1979.

8. Gong, L.: JDK 1.2 Security Architecture. Sun Microsystems, Inc., Palo Alto, Cali-
fornia, March 1998.

9. Gong, L., Mueller, M., Prafullchandra, H., and Schemers, R.: Going Beyond the
Sandboz: An Overview of the New Security Architecture in the Java Development
Kit 1.2., In Proceedings of the USENIX Symposium on Internet Technologies and
Systems, Monterey, California, December 1997.

10. Harrison, M. H. and Ruzzo, W. L.: Monotonic Protection Systems, Foundations
of Secure Computation, Academic Press, New York, 1978, 337-365.

11. Harrison, M., Ruzzo, W., and Ullman, J.: Protection in Operating Systems, Com-
munications of the ACM, 19(8), Pages 461-471, August 1976.

12. Lindholm, T. and Yellin, F.: The Java Virtual Machine Specification. Addison-
Wesley, 1996.

13. Lampson, B. W.: Protection, In Proceedings of the 5th Princeton Symposium
on Information Sciences and Systems, Princeton, New Jersey, March 1971, Pages
437-443.

14. McDermott, J. and Gelinas, R.: Prototyping a Java-based Defense Against Storage
Spoofing, Submitted for publication.

15. Accessible from http://www.microsoft.com.

16. http://developer.netscape.com/library /documentation/signedobj.

17. Sandhu, R. S.: The Typed Access Matriz Model, In Proceedings of the IEEE
Symposium on Research in Security and Privacy, IEEE Computer Society, Oakland,
California, Pages 122-136, 1992.

18. Wallach, D. S.,; Balfanz, D., Dean, D., and Felton, E. W.: Eztensible Security
Architectures for Java, In Proceedings fo the 16" ACM Symposium on Operating
Systems Principles, October 1997.

19. Weissman, C.: Security Controls in the ADEPT-50 Time-Sharing System, In
Proceedings of the Fall Joint Computer Conference, Vol 35, Pages 119-133, 1969.
20. Yellin, F.: Low Level Security in Java, In Proceedings of the 4** International

World Wide Web Conference, Boston, Massachusetts, December 1995.

This article was processed using the BTEX macro package with LLNCS style

