
A General Theory of Composition for Trace Sets

Closed Under Selective Interleaving Functions�

John McLean

Center for High Assurance Computer Systems

Naval Research Laboratory

Washington D.C. 20375

Abstract

This paper presents a general theory of system com-
position for \possibilistic" security properties. We
see that these properties fall outside of the Alpern-
Schneider safety/liveness domain and hence, are not
subject to the Abadi-Lamport Composition Princi-
ple. We then introduce a set of trace constructors
called selective interleaving functions and show that
possibilistic security properties are closure properties
with respect to di�erent classes of selective interleav-
ing functions. This provides a uniform framework for
analyzing these properties and allows us to construct
a partial ordering for them. We present a number of
composition constructs, show the extent to which each
preserves closure with respect to di�erent classes of se-
lective interleaving functions, and show that they are
su�cient for forming the general hook-up construc-
tion. We see that although closure under a class of
selective interleaving functions is generally preserved
by product and cascading, it is not generally preserved
by feedback, internal system composition constructs,
or re�nement. We examine the reason for this.

1 Introduction

The ability to build systems that satisfy a given prop-
erty from a selected set of speci�ed components is
a requisite for the production of networks, the pro-
duction of systems using o�-the-shelf products, and
the production of systems from veri�ed components.
However, a general ability to build composite high-
assurance systems presupposes a general theory of sys-
tem composition. Such a theory provides insight into
why certain properties are preserved or not preserved
by certain forms of composition. More importantly,
for a large class of properties and a variety of com-
position constructs, it answers questions of the form:
\If a system satisfying property X is composed with a
system satisfying property Y using composition con-
struct Z, what properties will the composite system
satisfy?".

A general theory of system composition is clearly
lacking for con�dentiality properties. We know that

�Forthcoming in Proceedings of the 1994 IEEE Symposium

on Research in Security and Privacy.

Restrictiveness [8] and Noninference [14, 16] are pre-
served by general composition or hookup1, that Nond-
educibility on Strategies [17] is preserved by asyn-
chronous composition [15], and that many properties
are not preserved by general composition. However,
we know nothing about the composability of Restric-
tiveness, Noninference, or Nondeducibility on Strate-
gies with properties besides themselves, and we know
nothing about the composability of other properties
beyond the fact that they are not preserved by gen-
eral composition with themselves. For example, we
do not know what properties would be satis�ed by a
system in which a component satisfying Deducibility
Security [19] was cascaded with a component satisfy-
ing Restrictiveness. As a result, we use Restrictive-
ness or Noninference in cases where better properties
(either simpler and just as secure in the case of Re-
strictiveness, or just as simple yet more secure in the
case of Noninference) may work. As new properties
are developed, the situation will deteriorate further.

For this reason general theories of system compo-
sition, such as the one developed by Abadi and Lam-
port [1], are extremely appealing. A number of re-
searchers in the security community are attempting
to use the Abadi-Lamport Composition Principle to
develop a general theory of composition for con�den-
tiality properties. However, the Abadi-Lamport Com-
position Principle is restricted to the class of proper-
ties that are de�nable within the safety/liveness prop-
erty framework originally presented by Alpern and
Schneider in [2]. Since \possibilistic" security proper-
ties (a class of properties which includes Generalized
Noninterference, Restrictiveness, Noninference, Nond-
educibility on Strategies, and Deducibility Security)
fall outside this domain, the Abadi-Lamport Compo-
sition Principle is not directly applicable.

This paper presents a general theory of system com-
position for a class of \possibilistic" properties. In
Section 2 we introduce a system model and a set of
trace constructors called selective interleaving func-
tions. The model space, an instantiation of the Alpern
and Schneider framework, is extendible to probabilis-

1Given two systems, their hookup is the composite system
where each component system can communicate (receive input
fromand send output to) with both the other component system
and the outside world.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1994 2. REPORT TYPE

3. DATES COVERED
 00-00-1994 to 00-00-1994

4. TITLE AND SUBTITLE
A General Theory of Composition for Trace Sets Closed Under Selective
Interleaving Functions

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Center for High Assurance Computer
Systems,4555 Overlook Avenue, SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

15

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

tic model spaces, e.g., as found in [5]. We consider
the standard possibilistic security properties and two
new ones: Generalized Noninference, which is an ex-
tension of Noninference, and Separability, which has
a�nities both to Rushby's Separation Kernel [18] and
to Nondeducibility on Strategies. We show that all of
these properties are closure properties with respect to
classes of selective interleaving functions. This pro-
vides a uniform framework for analyzing such proper-
ties and allows us to construct a partial ordering for
them.

In Section 3.1 we present three external composi-
tion constructs: product, cascade, and feedback. We
show the extent to which each of these preserves clo-
sure with respect to di�erent classes of selective inter-
leaving functions and show that product and feedback
are su�cient for forming the general hook-up con-
struction. We see that Separability provides a compos-
able alternative to Restrictiveness and Noninference,
which is simpler than the former and more secure than
the latter.

In particular we shall see that the product of two
systems behaves quite well with respect to security
properties. Further, when two systems are cascaded:

� Separability is preserved when composed with it-
self;

� Noninference is preserved when composed with
itself and with Separability;

� Generalized Noninterference is preserved when
composed with itself and with Separability; and

� Generalized Noninference is preserved when com-
posed with itself, with Noninference, with Gener-
alized Noninterference, and with Separability.

We shall also see that when two systems are composed
with a feedback construction:

� Separability is preserved when composed with it-
self; and

� Noninference is preserved when composed with
itself and with Separability.

The extent to which other properties are preserved
when composed with the feedback construction de-
pends on the particulars of the system. In Section 3.2
we see that this is also true for internal composition
(union, intersection, and set di�erence) and for re�ne-
ment. In Section 4 we shall shall gain some insight into
why feedback and internal composition causes prob-
lems for possibilistic security properties.

This paper is not meant to be an argument for using
possibilistic security models. I have discussed the lim-
itations of such models elsewhere [10, 13] and shall not
re-visit these issues here. However, when compared to
their probabilistic counterparts, such as [5, 10], pos-
sibilistic security models provide us with a relatively
simple model for building systems and have, for this
reason, enjoyed a great deal of popularity. This paper
is an attempt to understand these models and their

composition more thoroughly and to provide better
alternatives to the models than are currently avail-
able.

2 System Model and System Proper-

ties

In Section 2.1 we de�ne the notion of a system state
and use this de�nition to present the Alpern-Schneider
concepts of a property, of a system, and of a prop-
erty holding for a system. We also see how these con-
cepts are embedded in the Abadi-Lamport concepts of
a speci�cation and of a system satisfying a speci�ca-
tion. We then examine the limitations of the Alpern-
Schneider framework for analyzing possibilistic secu-
rity properties and their composition. In Section 2.2
we extend the Alpern-Schneider concept of a property
by introducing the trace set property of being closed
under a class of selective interleaving functions. This
provides a framework for examining possibilistic secu-
rity properties. We go on to establish some elementary
facts about such properties and their relationships.

2.1 The Alpern-Schneider Framework

and Its Limitations

The Alpern-Schneider framework is transparent with
respect to any particular notion of system state. To
make things more concrete, we introduce the following
characterization:

De�nition 2.1 (State Space) For nonnegative inte-
gers m and n, let hin1; :::; inmi be a tuple of m distinct
input variables and hout1; :::; outni be a tuple of n dis-
tinct output variables such that the ith input variable
ranges over some alphabet Ii and the ith output vari-
able ranges over some alphabet Oi. A state space is the
set fhhin1; :::; inmi; hout1; :::; outniij ini 2 Ii ^ outi 2
Oig. An element of a state space is called a system
state. 2

As an example, consider the state space whose
states are of the form hhin1; :::; inmi; hout1; :::; outmii
where for all 1 � i � m: Ii = Oi = f0; 1; �g. As-
sume that for some 1 � n < m: in1; :::; inn and
inn+1; :::; inm are input channels that contain the in-
puts of H = n distinct high-level users and L =
m � n distinct low level users, respectively, and that
out1; :::; outn and outn+1; :::; outm are output channels
that contain the outputs to these same users. Of
course, some of the high-level users may be Trojan
Horses operating on behalf of some of the low-level
users. If there is no current input or output on a par-
ticular channel, the channel takes on the value �. In
the future we shall refer to this state space with H

high-level users and L low-level users as the two level

security state space, which we denote by �̂. We shall
denote hin1; :::; inni, hinn+1; :::; inmi, hout1; :::; outni,
and houtn+1; :::; outmi by highin, lowin, highout, and
lowout, respectively.

2

Notation for Tuples: Given a set �, we shall use
the notation �

n to denote �'s nth-iterated Cartesian
product ��:::��, and given the symbol�, we shall use
�
n to denote the n-tuple h�; :::; �i. Given tuples x =

hx1; :::; xmi and y = hy1; :::; yni, we shall use x[i] to
denote xi and hx : yi to denote hx1; :::; xm; y1; :::; yni.
2

De�nition 2.2 (Trace Set) Given a state space,
�, �'s trace space, written trace(�), is the set
fhs1; s2; :::ijsi 2 �g. An element of a trace space is
called a trace. A subset of a trace space is called a
trace set. A trace set �1 is a re�nement of a trace set
�2 if and only if �1 � �2. 2

As an example, consider �̂ introduced above. The
trace space trace(�̂) is the set of traces of the form

t = hhhhighin1 : lowin1i; hhighout1 : lowout1ii;

hhhighin2 : lowin2i; hhighout2 : lowout2ii; :::i;

where highini, lowini, highouti, and lowouti repre-
sent the high-level and low-level input to and output
from the system at time i.

By eliminating traces, re�nements of trace(�̂) can
reduce nondeterminism and limit the input domain.
However, since re�nements cannot introduce new be-
haviors, any property that is satis�ed by every trace
of a subset of trace(�̂) is preserved by every trace of
any re�nement of that subset. So, for example, if every
trace in some trace set � � trace(�̂) has the proprety
that highouti = highini + lowini, then every trace in
any re�nement of � also has this property.

As another example of a trace set we shall �nd
useful, consider the state space fhhini; houtiij in 2
I ^ out 2 Og where I = O. We shall call the trace set

Î = fhhhin1i; hout1ii; hhin2i; hout2ii; :::ij ini = outig
the identity system.

Notation for Traces: Given a trace

t = hhhin11; :::; in
1
j
i; hout11; :::; out

1
k
ii;

hhin21; :::; in
2
j
i; hout21; :::; out

2
k
ii; :::i;

we shall use the following notational conventions:

t[i] = hhini1; :::; in
i

j
i; houti1; :::; out

i

k
ii;

t[i:::n] = hhhini1; :::; in
i

j
i; houti1; :::; out

i

k
ii; :::;

hhinn1 ; :::; in
n

j
i; houtn1 ; :::; out

n

k
iii;

in(t) = hhin11; :::; in
1

j
i; hin21; :::; in

2

j
i; :::i;

out(t) = hhout11; :::; out
1
k
i; hout21; :::; out

2
k
i; :::i;

in(t)[l:::m] = hhinl1; :::; in
l

j
i; :::; hinm1 ; :::; in

m

j
ii;

out(t)[l:::m] = hhoutl1; :::; out
l

k
i; :::; houtm1 ; :::; out

m

k
ii;

in[l:::m](t) = hhin1
l
; :::; in

1
m
i; hin2

l
; :::; in

2
m
i; :::i;

out[l:::m](t) = hhout1
l
; :::; out

1

m
i; hout2

l
; :::; out

2

m
i; :::i;

In the case of trace(�̂), we shall use highin(t),
lowin(t), highout(t), and lowout(t) to refer to
in[1:::n](t), in[(m � n):::m](t), out[1:::n](t), and
out[(m� n):::m](t), respectively. 2

Following Alpern and Schneider, a property and a
system are both trace sets, and a property holds for a
system if and only if the system is a re�nement of the
property [2]. Intuitively, a property trace set consists
of those traces that satisfy the property and a system
trace set consist of those traces that the system can ex-
hibit. Abadi and Lamport add to this framework the
concept of a speci�cation, which is a property formed
by taking the union of the set of traces that conform
to a system's desired behavior and the set of traces
that contain violations of a system's input restrictions
[1]. The latter set re
ects assumptions about the envi-
ronment in which the system is to be run. The former
set re
ects requirements about how a system can react
when placed in an environment that satis�es its input
restrictions. A program satis�es a speci�cation if the
speci�cation holds for the program.

The Alpern-Schneider framework is very appealing.
The conception of property as a set of traces has the
theoretical consequence of making every property the
intersection of a safety property and a liveness prop-
erty [2], and the conception of an implementation as
re�nement seems very natural given the fact, noted
above, that re�nement preserves properties of traces.
Further, the ability to specify input restrictions makes
it unnecessary to reason about a system's reaction to
an environment that fails to satisfy its restrictions.
This is in contrast to the assumption of input totality
usually made in the security community, for example,
in [8, 19]. Finally, the Abadi-Lamport Composition
Principle makes it possible to determine from compo-
nent speci�cations whether or not a composite com-
prising those components satis�es its speci�cation.

A limitation of the Alpern-Schneider framework is
that not every system property of interest is a property
of traces. For example, Abadi and Lamport note that
average response time over all possible executions is
not a property of traces. They do not seem to regard
this as a serious limitation of the Alpern-Schneider
framework, however, since there is a trace property
that approximates it (viz., average response time over
long sequences of events within a single trace) [1].

However, there are system properties for which it
is unclear that such \nice" trace-level approximations
exist. For example, consider a multi-level system that
takes a set of integers as input ini and returns some
permutation of the set as output outi. Con�dentiality
considerations may lead to the requirement that the
permutation a low-level user sees cannot be a�ected
by high-level input (i.e., any legal low-level permu-
tation is co-possible with any legal high-level input).
Integrity considerations may lead to the requirement
that the permutation that a high-level user sees cannot
be a�ected by low-level input (i.e., any legal high-level
permutation is co-possible with any legal low-level in-
put). Availability considerations may lead to the re-
quirement that if a system's high-level response time
slows down, the delay cannot have been caused by low-

3

level behavior (i.e, any legal high-level delay must be
co-possible with any legal low-level input).

The fact that possibilistic properties are not prop-
erties of traces follows immediately from the fact that
they are not preserved by trace subsetting [12].2 For

example, consider the two user security state space, �̂,
and the con�dentiality property P that any legal low-
level behavior must be co-possible with all legal high-
level behaviors. If P were a property of traces, there
would be a set � consisting of those traces of trace(�̂)
that satisfy P and systems would satisfy P only in the
sense that they were subsets of �. Since a system �1
consisting of all traces trivially satis�es P , �1 would be
a subset of �. However, a system �2 consisting of those
traces t of �1 in which high-level input highin(t)[i] is
echoed as low-level output lowout(t)[i + 1] does not
satisfy P and, therefore, would not be a subset of
�. Hence, if P were a property of traces, we would
be faced with the contradiction that �1 would be a
subset of �, yet �2 would not be a subset of � even
though �2 � �1. Similar arguments apply for each of
the properties listed above since each requires that a
system must exhibit certain behaviors (not in the live-
ness sense of saying that the behavior must eventually
happen, but in the possibilistic sense that the system
could have done otherwise).

Nor do these properties seem to have \nice" trace-
level properties that approximate them. For example,
it may be possible to form a trace-level approxima-
tion by borrowing techniques from the theory of Kol-
mogorov complexity and say that a trace is secure if
knowledge of its low-level events does not help us to
determine its high-level input [7]. However, such an
approach would clearly sacri�ce the relative simplic-
ity possibilistic security models enjoy over their prob-
abilistic counterparts [5, 10].

Although the fact that these security properties
are not preserved by re�nement implies the fact that
these properties are not properties of traces, the two
points are distinct and deserve to be separated. Re-
turning to property P , the former point shows that
functionally correct implementations of speci�cations
that satisfy P do not necessarily preserve P .3 The
latter point is more fundamental. It shows that P

is not de�nable within the Alpern-Schneider frame-
work to begin with. Hence, we may be able to write
speci�cations that satisfy P , but we cannot reason
about them or their composition within the Alpern-
Schneider framework. Nor can we apply composition
principles, such as Abadi and Lamport's [1], that are
limited to Alpern-Schneider properties.

2The fact that many con�dentiality properties are not pre-
served by the standard notion of re�nement has been noted by

McCullough [8] and addressed, to some extent, in [4], [6], [11],
and Section 3.2 of this paper. The fact that these properties

are not trace sets is a distinct point, �rst pointed out to me by
Jim Gray, although Gray's original argument di�ers from the
one presented here.

3This is not simply because lower level implementationdetail

may introducenew channels, but because eliminationof possible
system output may turn zero capacity channels into positive
capacity channels.

2.2 Security Models and Selective Inter-

leaving Functions

If possibilistic security properties are not properties of
traces, i.e., trace sets, what are they? The answer is
that they are properties of trace sets, i.e., sets of trace
sets. For example, consider the purge function that
sets all high-level input and output in a trace t to �,
i.e., the function purge : trace(�̂) ! trace(�̂), such
that

purge(t)=hhh�H : lowin(t)[1]i; h�H : lowout(t)[1]ii;

hh�H : lowin(t)[2]i; h�H : lowout(t)[2]ii; :::i:

Noninference, originally due to O'Halloran [16], is the
property that is satis�ed by a trace set � if and only
if � is closed under purge.4

For deterministic systems, Noninference is equiva-
lent to Goguen and Meseguer's Noninterference [3] if
we assume that high-level output cannot be generated
when there is no high-level input. Hence, for determin-
istic systems satisfying this assumption, Noninference
shares Noninterference's property of being practically
perfect [10]. Further, Noninference is more general
than Noninterference in that the latter fails to be di-
rectly applicable to nondeterministic systems. How-
ever, as noted in [13], Noninference is too strong for
systems in which high-level output can exist without
high-level input and too weak, in general, since it al-
lows low-level output to be in
uenced by the insertion
of high-level input.

By generalizing the notion of purge, we obtain a
nondeterministic formulation of Noninterference that
does not contain the assumption that high-level out-
put can be generated only when there is high-level
input. Say that f : trace(�̂) ! trace(�̂) is an
input purge if and only if f(s) = t implies that
highin(t) = h�H ; �H ; �H ; :::i, lowin(t) = lowin(s),
and lowout(t) = lowout(s). In other words, a func-
tion f is an input purge if it sets all high-level inputs
to � and does not alter low-level inputs or outputs.
Two input purges may di�er in what they assign to
high-level outputs, however. For example, the func-
tion purge de�ned above is the input purge that sets
all high-level outputs to �, but there are other input
purges. Say that a system satis�es Generalized Nonin-
ference if and only if the system is closed under some
input purge.

A formulation of Noninterference that does not
employ purge functions but, instead, a more gen-
eral concept of trace interleaving is derivative of
Sutherland's notion of Deducibility Security [19].

Consider the function interleave : trace(�̂) �

4A set � is closed under a function f if and only if s 2 �

implies that f(s) 2 �. By analogy, we shall extend the notion
to multi-argument functions. For example, � is closed under
f : � � � ! � if and only if s1 2 � and s2 2 � implies that
f(s1; s2) 2 �.

4

trace(�̂) ! trace(�̂) such that interleave(t1; t2) =
t implies that highin(t) = highin(t1), lowin(t) =
lowin(t2), highout(t) = highout(t1), and lowout(t) =
lowout(t2). Say that a system satis�es Separability
if and only if it is closed under interleave. Separa-
bility is preferable to Sutherland's Deducibility Se-
curity, which requires only that a high-level history
can be inserted somewhere in a low-level history,
since Deducibility Security is extremely weak [13]. In
fact, in many ways Separability more closely resem-
bles Rushby's notion of a Separation Kernel [18] and
Wittbold and Johnson's Nondeducibility on Strategies
[17]. Separability is also stronger than Noninference
and Generalized Noninference. In fact, its combina-
tion of strength and simplicity make it close to being
an ideal security property for nondeterministic sys-
tems, although it is limited to systems where low-level
events cannot a�ect high-level events.5

A property that allows low-level events to in
uence
high level events can be obtained by generalizing the
function interleave in the same way that the class
of input purges generalizes the function purge. Say
that f : trace(�̂) � trace(�̂) ! trace(�̂) is an input
interleaving if and only if f(t1; t2) = t implies that
highin(t) = highin(t1), lowin(t) = lowin(t2), and
lowout(t) = lowout(t2). Generalized Noninterference,
originally due to McCullough [8], is the property that
a system possesses if it is closed under some input
interleaving.6

What all of these security properties have in com-
mon is that each is a closure property with respect
to some function that takes two traces and interleaves
them to form a third trace. This observation moti-
vates the following de�nition:

De�nition 2.3 (Selective
Interleaving Functions) Let � be the state space
fhhin1; :::; inmi; hout1; :::; outniij ini 2 Ii ^ outi 2 Oig,
let i 2 f0; 1; 2gm, and let j 2 f0; 1; 2gn. A func-
tion f : trace(�) � trace(�) ! trace(�) is a se-
lective interleaving function of type Fi;j if and only
if f(t1; t2) = t implies that for all x such that
i[x] = 1 : in[x](t) = in[x](t1), for all x such that
i[x] = 2 : in[x](t) = in[x](t2), for all x such that
j[x] = 1 : out[x](t) = out[x](t1), and for all x such
that j[x] = 2 : out[x](t) = out[x](t2). 2

Intuitively, a selective interleaving function of type
Fi;j takes its two argument traces and forms a new
trace that agrees with the �rst argument trace with
respect to input (output) channels such that i[x] (j[x])
is equal to 1 and with the second argument trace with

5This limitation is not as stringent as it may �rst appear

since high-level users can be allowed to read low-level input
and output channels. However, it prevents a system, e.g., from

recording low-level events in an audit �le that is to be sent out
on a high-level channel.

6This version of Generalized Noninterference is weaker than
McCullough's by not requiring that high-level output can be

altered only at a point after which high-level input has been
altered. However, this di�erence does not a�ect any of the com-
position results that follow, and it simpli�es the presentation.

GENERALIZED
NONINFERENCE

NONINTERFERENCE
NONINFERENCEGENERALIZED

SEPARABILITY

Figure 1: Partial Ordering of Possibilistic Security
Models.

respect to input (output) channels such that i[x] (j[x])
is equal to 2. Distinct selective interleaving functions
of type Fi;j di�er on what they assign to input chan-
nels such that i[x] = 0 and output channels such that
j[x] = 0. Hence, given i and j such that for no x does
i[x] = 0 or j[x] = 0, Fi;j contains exactly one member.

For example, Separability's function interleave

is the single selective interleaving function of type
Fh1H :2Li;h1H :2Li : trace(�̂) � trace(�̂) ! trace(�̂),
and Noninference's purge is the one argument
function one obtains by restricting Separability's
interleave to the domain fhh�H+L

; �
H+Li; :::ig �

trace(�̂). Generalized Noninterference's input in-
terleavings are the class of selective interleaving
functions of type Fh1H :2Li;h0H :2Li : trace(�̂) �

trace(�̂) ! trace(�̂), and Generalized Noninfer-
ence's input purges are Generalized Noninterfer-
ence's input interleavings restricted to the domain
fhh�H+L

; �
H+Li; :::ig � trace(�̂).

From this it is clear that for any system that
contains hh�H+L

; �
H+Li; :::i, Separability is strictly

stronger than Noninference and Generalized Noninter-
ference is strictly stronger than Generalized Noninfer-
ence. Further, since any selective interleaving function
of type Fh1H :2Li;h1H :2Li is also of type Fh1H :2Li;h0H :2Li,
we see that Separability is strictly stronger than
Generalized Noninterference and that Noninference
is strictly stronger than Generalized Noninference.
Hence, Separability is the strongest of our properties,
and Generalized Noninference is the weakest. General-
ized Noninterference and Noninference fall in between
these two, but are not comparable with each other.
(See Figure 1 .)

It is obvious that closure under a class of selec-
tive interleaving functions is not generally preserved
by re�nement. However, we shall see some conditions
under which it is preserved in Section 3.2. It is also ob-
vious that every system is closed under the selective
interleaving function of type Fh1;:::;1i;h1;:::;1i and the
selective interleaving function of type Fh2;:::;2i;h2;:::;2i

and that given a trace space �, only the trace sets fg
and trace(�) are closed under all selective interleaving
functions of type Fh0;:::;0i;h0;:::;0i. The following theo-
rems are also worth noting. The �rst shows that if
a trace set is closed under one selective interleaving
function, then it is closed under, at least, one other.
The second shows that the identity system, Î, is closed
under a variety of selective interleaving functions.

5

Theorem 2.4 Given s = hs1; :::; sni 2 f0; 1; 2gn, let
s
0 denote hs1

0
; :::; sn

0i where 00 = 0, 10 = 2, and
20 = 1. Given any state space � and any trace set
� � trace(�), if � is closed under some selective inter-
leaving function f of type Fi;j then it is closed under
some selective interleaving function f

0 of type Fi0;j0 .

Proof: For all x such that i[x] = 0: let
in(f 0(s1; s2))[x] = in(f(s2; s1))[x] and for all x

such that j[x] = 0: let out(f 0(s1; s2))[x] =
out(f(s2; s1))[x]. Note that f

0(s1; s2) = f(s2; s1).
Hence f 0 is obviously a selective interleaving function
of type Fi0;j0. Since � is closed under f , it is also closed
under f 0. 2

Theorem 2.5 (Identity Theorem) For each x 2

f1; 2g, the identity system, Î, is closed under the se-
lective interleaving function of type Fhxi;hxi. It is also
closed under, at least, one selective interleaving func-
tion of type Fhxi;h0i, at least, one selective interleaving
function of type Fh0i;hxi, and at least, two selective in-
terleaving functions of type Fh0i;h0i.

Proof: The case for Fhxi;hxi is obvious. For a se-
lective interleaving function f of type Fhxi;h0i or of
type Fh0i;hxi, consider the selective interleaving func-
tion f(s1; s2) = sx. For a selective interleaving func-
tion of type Fh0i;h0i, consider the selective interleaving
function f1 such that f1(s1; s2) = s1 and the selective
interleaving function f

2 such that f2(s1; s2) = s2. 2

3 System Composition

In this section we consider the composition of systems.
We �rst consider external composition constructs, i.e.
constructs used to compose a network of systems from
individual systems. We then consider internal compo-
sition constructs, i.e., constructs used to compose and
re�ne policies within one system.

3.1 External Composition Constructs

In this section we de�ne three external composition
constructs: product, cascade, and feedback. We ex-
amine the extent to which a system's closure prop-
erties with respect to classes of selective interleaving
functions are preserved by each construct and show
that product and feedback are su�cient for perform-
ing general composition.7. Our reason for separating
cascade from feedback is to examine the behavior of
con�dentiality properties under di�erent composition
constructs. Feedback is not always necessary, and as
we shall see in Section 4, it should be avoided whenever
possible. Hence, it is useful to know how con�dential-
ity properties behave in compositions where feedback

7This has also been noted by Millen, who attributes it to
Rushby, although Millen's construction di�ers from ours [15]

σ2

σ1

Figure 2: Product of �1 and �2

is not used.

3.1.1 Product

We begin by considering the product of two systems,
i.e., the composition where two systems �1 � �1 and
�2 � �2 are simply regarded as a single system � � �.
(See Figure 2 .)

De�nition 3.1 (Product)
Let �1 and �2 be any two state spaces of the form
fhhin11; :::; in

1
j
i; hout11; :::; out

1
k
iij in1

i
2 I

1
i
^ out

1
i
2 O

1
i
g

and fhhin21; :::; in
2
m
i; hout21; :::; out

2
n
iij in2

i
2 I

2
i
^out2

i
2

O
2
i
g, respectively. Given any two trace sets �1 � �1

and �2 � �2, �1� �2 is the trace set

� = fsj (9s1 2 �1)(9s2 2 �2)

(in[1:::j](s) = in(s1) ^

in[(j + 1):::(j +m)](s) = in(s2) ^

out[1:::k](s) = out(s1) ^

out[(k+ 1):::(k+ n)](s) = out(s2)g:

� is called the product of �1 and �2. 2

Theorem 3.2 (Composition Theorem for Prod-
ucts) Let � = �1��2. Then �1 is closed under some
selective interleaving function f

1of type Fi1;j1 and �2
is closed under some selective interleaving function f

2

of type Fi2;j2 if and only if � is closed under some
selective interleaving function f of type Fhi1:i2i;hj1 :j2i.

Proof: For any s 2 � and t 2 �, let s�1 be that
part of s that is in �1 and s�2 be that part of s that
is in �2, and let t�1 be that part of t that is in �1 and
t�2 be that part of t that is in �2. Going from left to
right assume f1(s�1; t�1) = u1 and f

2(s�2; t�2) = u2.
We can then let

f(s; t) = hhhin(u1)[1] : in(u2)[1]i;

hout(u1)[1] : out(u2)[1]ii;

hhin(u1)[2] : in(u2)[2]i;

hout(u1)[2] : out(u2)[2]ii; :::i;

and we are done. Going from right to left, assume
s 2 �1 and t 2 �1. Pick some arbitrary trace r 2 �2,
and let

6

σ2σ1

Figure 3: Cascade of �1 and �2

u = hhhin(s)[1] : in(r)[1]i;

hout(s)[1] : out(r)[1]ii;

hhin(s)[2] : in(r)[2]i;

hout(s)[2] : out(r)[2]ii; :::i;

and

v = hhhin(t)[1] : in(r)[1]i;

hout(t)[1] : out(r)[1]ii;

hhin(t)[2] : in(r)[2]i;

hout(t)[2] : out(r)[2]ii; :::i:

Letting w = f(u; v), we can then let

f
1(s; t) = hhin[1:::j](w)[1]; out[1:::k](w)[1]i;

hin[1:::j](w)[2]; out[1:::k](w)[2]i; :::i:

The proof for s 2 �2 and t 2 �2 is analogous, and we
are done. 2

Corollary 3.3 Let � be closed under some selective
interleaving function of type Fi;j, and let x 2 f0; 1; 2g
and y 2 f0; 1; 2g be such that either x = 0, y = 0 or

x = y. Then � � Î is closed under, at least, one se-
lective interleaving function of type Fhi:hxii;hj:hyii , and

Î�� is closed under, at least, one selective interleaving
function if type Fhhxi:ii;hhyi:ji . 2

Proof: Use the Identity Theorem with the Com-
position Theorem for Products. 2

3.1.2 Cascade

A more interesting type of system composition is cas-
cading. (See Figure 3 .) Cascades are formed by tak-
ing two systems �1 and �2 and passing �1's output
as input to �2. Although we assume that �1's output
meets any environment restrictions assumed by �2's
input, i.e., that �1's output is acceptable input for
�2, this assumption is used only in Corollary 3.7. Its
purpose is to guarantee that if we the place the cas-
cade of �1 and �2 into an environment that satis�es
the input restrictions of �1, the resulting system will
be well-behaved.

De�nition 3.4 (Cascade) Let �1 and �2 be state
spaces of the form

I

I

σ1

σ2

Figure 4: Using Î and the cascade construction to form
a general cascade of �1 and �2

fhhin1; :::; inki; hout1; :::; outmiij ini 2 I
1
i
^outi 2 O

1
i
g

and fhhin1; :::; inmi; hout1; :::; outniij ini 2 I
2
i
^ outi 2

O
2
i
g, respectively, such that O

1
i
� I

2
i
. Given two

trace sets �1 � �1 and �2 � �2 where for every
trace s1 2 �1 there is a trace s2 2 �2 such that
out(s1) = in(s2), � = �1 � �2 is the trace set

� = fsj (9s1 2 �1)(9s2 2 �2)(in(s) = in(s1) ^

out(s1) = in(s2) ^ out(s2) = out(s)g:

� is called the cascade of �1 and �2. 2

Our de�nition of cascade assumes that �1 has the
same number of output channels as �2 has input chan-
nels with all of �1's output going into �2 as input
and all of �2's input coming from �1. However, this
assumption is not necessary. We can use the Com-
position Theorem for Products to append the identity
system, Î, to �1 so that the environment can provide
input to �2 (via Î) and to append �2 to Î so that �1

can provide output to the environment (also via Î).

We call (�1 � Î) � (̂I � �2) the general cascade of �1
and �2. (See Figure 4 .) By Corollary 3.3 if �1 � �2
is closed under some selective interleaving function of
type Fi;j then the general cascade of �1 and �2 is
closed under an analogous selective interleaving func-
tion, unless i = h1; :::; 1i and j = h2; :::; 2i or vice
versa.

Theorem 3.5 (Composition Theorem for Cas-
cades) Consider any two trace sets �1 and �2 as
described in De�nition 3.4, closed under selective in-
terleaving functions f1 of type Fi1;j1 and f

2 of type
Fi2;j2 respectively. For any trace � 2 �, let ��1 be
a trace in �1 and ��2 be a trace in �2 such that
in(�) = in(��1), out(��1) = in(��2), and out(��2) =
out(�). (Note that ��1 and ��2 exist by the de�ni-
tion of cascade.) Assume that for every s and t in �,
f
1(s�1; t�1) = u1 implies that there is a trace u2 2 �2

such that (1) out(u1) = in(u2) and (2) for all x such
that j2[x] 6= 0 : out[x](u2) = out[x](f2(s�2; t�2)).
Then the function f , such that in(f(s; t)) = in(u1)
and out(f(s; t)) = out(u2), is a selective interleaving
function of type Fi1;j2 and � is closed under f .

Proof: For any s and t in �, let s�1, s�2, t�1,
t�2, u1, u2, and f be as described in the statement of
the theorem. Also, let v be that sequence such that

7

in(v) = u1 and out(v) = u2. Since by the assump-
tions of the theorem out(u1) = in(u2), we know that
v 2 �. Hence, � is closed under f . We shall show that
f is a selective interleaving function of type Fi1;j2 .
To this end, note that for all x such that i1[x] = 1:
in[x](v) = in[x](u1) = in[x](s�1) = in[x](s) and that
for all x such that i1[x] = 2: in[x](v) = in[x](u1) =
in[x](t�1) = in[x](t). Similarly, note that for all x such
that j2[x] = 1: out[x](v) = out[x](u2) = out[x](s�2) =
out[x](s) and that for all x such that j2[x] = 2:
out[x](v) = out[x](u2) = out[x](t�2) = out[x](t).
Hence, f meets all the conditions necessary to be a
selective interleaving function of type Fi1;j2 , and we
are done. 2

As an application of the Composition Theorem for

Cascades, consider two systems �1 � trace(�̂) and

�2 � trace(�̂) such that

�1 = fsj lowout(s) = lowin(s) ^

(i)(highout(s)[i] = highin(s)[i] + lowin(s)[i])g

and

�2 = fsj lowout(s) = lowin(s) ^

(i)(highout(s)[i] = highin(s)[i] � lowin(s)[i])g:

Note that �1 is closed under f
1 of type Fh1;2i;h0;2i

where

f
1(s; t)[i] = hhhighin(s)[i]; lowin(t)[i]i;

hhighin(s)[i] + lowin(t)[i]; lowout(t)[i]ii

and �2 is closed under f2 of type Fh1;2i;h0;2i where

f
2(s; t)[i] = hhhighin(s)[i]; lowin(t)[i]i;

hhighin(s)[i] � lowin(t)[i]; lowout(t)[i]ii:

Hence, both �1 and �2 satisfy Generalized Noninter-
ference. By the Composition Theorem for Cascades,
� is closed under f of type Fh1;2i;h0;2i, where

f(s; t)[i] = hhhighin(s)[i]; lowin(t)[i]i;

h(highin(s)[i] + lowin(t)[i]) � lowin(t)[i];

lowout(t)[i]ii:

Hence, � satis�es Generalized Noninterference as well.

Although the Composition Theorem for Cascades is
very general, it is sometimes di�cult to apply since its
application depends upon knowledge of system func-
tionality to determine whether u2 exists in �2. A sim-
pler tool, which depends solely on the types of the
relevant selective interleaving functions, is the follow-
ing:

Corollary 3.6 Let �, �1, �2, f1, f2, Fi1;j1 , and Fi2;j2
be as described in the Composition Theorem for Cas-
cades. Given any s and t in �, let s�1, s�2, t�1, t�2,
and u1 also be as described in that theorem. If for
all 1 � x � m: j1[x] = i2[x] 6= 0, then there is a se-
lective interleaving function f of type Fi1;j2 such that
in(f(s; t)) = in(u1), out(f(s; t)) = out(f2(s�2; t�2)),
and � is closed under f . 2

Proof: Note that the restrictions on j1 and i2 im-
ply that f

2(s�2; t�2) meets the conditions on u2 re-
quired by the Composition Theorem for Cascades. 2

As an application of Corollary 3.6, consider any
trace sets � � trace(�̂) and �2 � trace(�̂) such that
� = �1 � �2 is de�ned. Our corollary tells us the
following facts:

� If �1 and �2 satisfy Separability, then so does �.

� If �1 and �2 satisfy Noninference, then so does �.

� If one of f�1; �2g satis�es Noninference and the
other satis�es Separability, then � satis�es Non-
inference if hh�H+L

; �
H+Li; :::i 2 �.

� If �1 satis�es Separability and �2 satis�es Gen-
eralized Noninterference, then � satis�es Gener-
alized Noninterference.

� If �1 satis�es Noninference and �2 satis�es Gener-
alized Noninference, then � satis�es Generalized
Noninference.

� If �1 satis�es Separability and �2 satis�es Gener-
alized Noninference, then � satis�es Generalized
Noninference if hh�H+L

; �
H+Li; :::i 2 �.

Corollary 3.6 requires that f1 and f
2 must agree

and be fully speci�ed with respect to interface chan-
nels, i.e., that for all x : i2[x] = j1[x] 6= 0.8 As
a consequence, although the corollary tells us about
compositions where �1 satis�es Separability or Nonin-
ference, it tells us nothing about compositions where
�1 satis�es Generalized Noninference or Generalized
Noninterference. For such compositions we need the
following:

Corollary 3.7 Let �, �1, �2, f1, f2, Fi1;j1 , and Fi2;j2
be as described in the Composition Theorem for Cas-
cades and assume that for no x does i2[x] = 0. If
either

(1) ((1 � x � m ^ j1[x] 6= i2[x])! i2[x] = 1) ^

(1 � x � n! j2[x] 6= 1)

or

(2) ((1 � x � m ^ j1[x] 6= i2[x])! i2[x] = 2) ^

(1 � x � n! j2[x] 6= 2);

8Although byTheorem 2.4, the corollary also applies to cases
where i2[x] = j1

0[x]. A similar observation applies to all our
theorems and corollaries.

8

then there is a selective interleaving function f of type
Fi1;j2 , such that � is closed under f . 2

Proof: For any s and t in �, let s�1, s�2, t�1, t�2,
and u1 be as in the proof of the Composition The-
orem for Cascades. Note that although u1 satis�es
the conditions necessary for it to serve as the input
part of f(s; t), this case di�ers from the case of the
Corollary 3.6 in that we cannot use f

2(s�2; t�2) as
the output part of the trace since we cannot guar-
antee that out(u1) = in(f2(s�2; t�2)). However, by
the interface requirement in the de�nition of cascade
we know that there is some trace u

� 2 �2 such that
out(u1) = in(u�). Assume condition (1) of the theo-
rem holds and let u2 = f

2(u�
; t�2). Note that for all

1 � x � m : if i2[x] = 1 then in[x](u2) = in[x](u�) =
out[x](u1) by construction of u

�, and if i2[x] = 2
then in[x](u2) = in[x](t�2) = out[x](u1) by the re-
lationship between t�1 and t�2. Also, note that for
all 1 � x � n such that j[x] = 2 : out[x](u2) =
out[x](t�2) = out[x](t). Since j2 has no 1's, u2 ful�lls
all the conditions required by the Composition Theo-
rem for Cascades. Condition (2) follows by an anal-
ogous argument where u2 = f

2(s�2; u�), and we are
done. 2

As an application of our new corollary consider any
trace sets � � trace(�̂) and �2 � trace(�̂) such that
� = �1 � �2 is de�ned. Our theorem tells us the fol-
lowing new facts:

� If �1 and �2 satisfy Generalized Noninterference,
then so does �.

� If �1 and �2 satisfy Generalized Noninference,
then so does �.

� If one of f�1; �2g satis�es Generalized Noninfer-
ence and the other satis�es Generalized Noninter-
ference, then � satis�es Generalized Noninference
if hh�H+L

; �
H+Li; :::i 2 �.

These two facts support the following, rather interest-
ing, observation about cascades: a possiblistic security
property seems to be preserved by being cascaded with
itself or with any property that is stronger than it.

3.1.3 Feedback

Another type of composition consists of a system �1
serving as a front end to a system �2 or, equivalently,
�2 serving as a back end to �1. The essential element
of this connection is that �2 provides feedback to �1.
(See Figure 5 .) In this case when a user provides input
to �1 (for example, at time 1 according to the user's
and �1's local clocks), the output generated by this
input is taken as input by �2 (also at time 1 by �2's
local clock). This input to �2 generates output which
is read as new input by �1 (at time 1 of �2's local
clock, but now time 2 of �1's local clock). The user
then receives from �1 the output that is generated in

σ2

σ1

σ

out2in2out1in1

out4in4out3in3out2in2out1in1

out2in2out1in1

Figure 5: � as the Feedback of �1 and �2

response to the input from �2 (at time 2 of �1's local
clock, but still time 1 of the user's local clock). The
user then provides the next input to �1 (time 2 by the
user's clock, but now time 3 by �1's local clock). The
process continues with the user providing �1 with its
odd inputs at �1 local time � (where � is odd) and user
local time (�+1)=2 and receiving �1's even outputs at
�1 local time � (where � is even) and user local time
�=2. In the meantime, �1 sends its odd outputs to �2
at �1 local time � (where � is odd) and �2 local time
(� + 1)=2 and receives its even inputs from �2 at �1
local time � (where � is even) and �2 local time �=2.

As in cascading, we assume that �1's (odd) output
meets any environment restrictions assumed by �2's
input. We also assume that the output of those traces
of �2 that take input from �1 meet any environment
restrictions assumed by �1's (even) input. Although
these assumptions are not necessary for the proofs pre-
sented in this section, they will reappear in Section 4
when we discuss the possibility of a feedback analogue
for Corollary 3.7. As in the de�nition of cascade, their
purpose is to guarantee that the feedback of �1 and
�2 will be well-behaved if placed in an environment
that satis�es �1's (odd) input restrictions.

To formalize these interface assumptions, we can-
not simply require that for every s1 2 �1 there is a
trace s2 2 �2 such that for all odd � : out(s1)[�] =
in(s2)[(� + 1)=2] and for all even � : in(s1)[�] =
out(s2)[�=2] since, in general, such a requirement is
too strong. For example, although it is reasonable
to require that for every trace s1 2 �1 there is some
trace s2 2 �2 such that out(s1)[1] = in(s2)[1] and to
require that there is some trace s1� 2 �1 such that
s1�[1] = s1[1] ^ in(s1�)[2] = out(s2)[1], we cannot
guarantee that s1� = s1 since in(s1)[2] may not be a
possible output for �2. What we need to say is that
if two traces s1 2 �1 and s2 2 �2 have interfaced
correctly up to �2 local time � , then each trace has a
\continuation" that will interface correctly at �2 local
time � .

De�nition 3.8 (Interface Condition for Feed-
back) Let �1 and �2 be state spaces of the form
fhhin1; :::; inni; hout1; :::; outmiij ini 2 I

1
i
^outi 2 O

1
i
g

and fhhin1; :::; inmi; hout1; :::; outniij ini 2 I
2
i
^ outi 2

O
2
i
g, respectively, such that for all 1 � i � m :

O
1
i
� I

2
i
and for all 1 � i � n : O

2
i
� I

1
i
. For

any trace s1 2 �1 � trace(�1) and s2 2 �2 �
trace(�2) let the relation downconnect(1; s1; s2) =d

9

out(s1)[1] = in(s2)[1]. For all � > 0 : let the rela-
tion upconnect(�; s1; s2) =d (downconnect(�; s1; s2)^
out(s2)[�] = in(s1)[2�]), and for all � > 1 : let
the relation downconnect(�; s1; s2) =d (upconnect(��
1; s1; s2) ^ in(s2)[�] = out(s1)[2� � 1]). We say that
�1 and �2meet the interface requirements for feedback
if and only if

� (s1 2 �1)(9s2 2 �2)downconnect(1; s1; s2);

� (� � 1)(s1 2 �1)(s2 2 �2)(9s� 2 �1)

(downconnect(�; s1; s2)!

(s�[1:::(2� � 1)] = s1[1:::(2� � 1)] ^

upconnect(�; s�; s2)));

and

� (� � 1)(s1 2 �1)(s2 2 �2)(9s� 2 �2)

(upconnect(�; s1; s2)!

downconnect(� + 1; s1; s�)):

2

De�nition 3.9 (Feedback) Let �1 and �2 be as de-
scribed in De�nition 3.8 so that they meet the inter-
face condition for feedback. � = �1

(

+ �2 is the trace
set

� = fsj (9s1 2 S1)(9s2 2 S2)

(in(s)[�] = in(s1)[2� � 1] ^

out(s)[�] = out(s1)[2�] ^

in(s2)[�] = out(s1)[2� � 1]^

out(s2)[�] = in(s1)[2�])g:

� is called the feedback of �1 and �2. 2

As in cascading, although we assume that the in-
terface channels of �1 and �2 can be placed in one-
to-one correspondence, this assumption is not nec-
essary. Using Î and the feedback construction, one
can form a general hook-up. (See �gure 6.) We call

(�1 � Î)
(

+ (̂I � �2) the general composition of �1
and �2. As in the case of general cascades, the gen-
eral composition of �1 and �2 preserves all interesting
closure properties that are preserved by �1

(

+ �2.
Our composition theorem for feedback considers the

case where �1 and �2 are intimately connected.

Theorem 3.10 (Composition
Theorem for Feedback) Let �, �1 and �2 be as
described in De�nition 3.9, and for any trace � 2 �,
let ��1 be a trace in �1 such that for all � : in(�)[�] =
in(��1)[2��1]^out(�)[�] = out(��1)[2�], and let ��2
be a trace in �2 such that for all � : in(��2)[�] =
out(��1)[2� � 1] ^ out(��2)[�] = in(��1)[2�]. (Note
that ��1 and ��2 exist by the de�nition of feedback.)

I

I

σ1

σ2

Figure 6: Using Î and the Feedback Construction to
form a General Hook-up

Assume that �1 is closed under some selective inter-
leaving function f

1 of type Fi1;j1 . If for every trace
s and t in �, f1(s�1; t�1) = u1 implies that there is
a trace u2 2 �2 such that for all � : in(u2)[�] =
out(u1)[2� � 1] and out(u2)[�] = in(u1)[2�], then � is
closed under some selective interleaving function f of
type Fi1;j1 such that

f(s; t) = hhin(u1)[1]; out(u1)[2]i;

hin(u1)[3]; out(u1)[4]i;

hin(u1)[5]; out(u1)[6]i; :::i:

Proof: For any traces s and t in �, let s�1, s�2, t�1,
t�2, and u1 be as in the theorem. Note that for all x
such that i1[x] = 1 : in[x](s)[�] = in[x](s�1)[2� � 1] =
in[x](u1)[2��1] and that for all x such that i1[x] = 2 :
in[x](t)[�] = in[x](t�1)[2� � 1] = in[x](u1)[2� � 1].
Also note that for all x such that j1[x] = 1 :
out[x](s)[�] = out[x](s�1)[2�] = out[x](u1)[2�] and
that for all x such that j1[x] = 2 : out[x](t)[�] =
out[x](t�1)[2�] = out[x](u1)[2�]. Hence, f as de�ned
in the theorem is a selective interleaving function of
type Fi1;j1 . All that is left is to show that f(s; t) 2 �.
To do this we must show that there is a trace u2 2 �2
that correctly interfaces with u1. However, the exis-
tence of u2 is guaranteed by the assumptions of our
theorem, and we are done. 2

As an example of the Composition Theorem for

Feedback, consider the system � � traces(�̂) such
that lowouti = lowini and for any high-level in-
put, highouti randomly ranges over every value in
its domain. In other words, � echoes low-level in-
put and produces random high-level output given any
high-level input. � satis�es Generalized Noninterfer-
ence. By the First Composition Theorem for Feedback,
�

(

+ � does as well.
As in the case of the Composition Theorem for Cas-

cades, the Composition Theorem for Feedback is gen-
eral, but hard to apply since it requires knowledge of
system functionality to determine whether u2 exists in
�2. The following corollary provides a simpler tool:

Corollary 3.11 Let �, �1, �2, f1, and Fi1;j1 be as
described in the Composition Theorem for Feedback,
and given any s and t in �, let s�1, s�2, t�1, t�2, and
u1 also be as described in that theorem. Assume that
�2 is closed under a selective interleaving function f

2

10

of type Fi2;j2 . If i1 = j2, i2 = j1, and there is no x such
that i1[x] = 0 or i2[x] = 0, then there is a selective
interleaving function f of type Fi1;j1 , such that � is
closed under f and

f(s; t) = hhin(u1)[1]; out(u1)[2]i;

hin(u1)[3]; out(u1)[4]i;

hin(u1)[5]; out(u1)[6]i; :::i:

2

Proof: The corollary follows from the Composition
Theorem for Feedback if we can show that there is some
u2 2 �2 that interfaces correctly with u1. To see that
there is such a trace in �2, consider u2 = f

2(s�2; t�2).
Since i1 = j2 and i2 = j1, the fact that neither i1 nor i2
contain any 0's implies that u2 satis�es the conditions
required by the Composition Theorem for Feedback,
and we are done. 2

Consider any trace sets � � trace(�̂) and �2 �

trace(�̂) such that � = �1
(

+ �2 is de�ned. The
following facts are consequences of our corollary:

� If �1 and �2 satisfy Separability then so does �.

� If �1 and �2 satisfy Noninference, then so does �.

� If one of f�1; �2g satis�es Separability and the
other satis�es Noninference, then � satis�es Non-
inference if hh�H+L

; �
H+Li; :::i 2 �.

Note that Corollary 3.11 for feedback is the ana-
logue of Corollary 3.6 for cascade. There is no feed-
back analogue of Corollary 3.7. We shall examine the
reason for this in Section 4.

3.2 Internal Composition Constructs

We now consider three elementary types of internal
composition: �1 [�2, �1 \ �2, and �1 � �2. The set
consisting of these three composition constructions,
which we shall call the set of regular composition con-
structions, is analogous to the set of constructions de-
�ned for access control policies in [9]. The �rst con-
struction corresponds to a system that accepts any
input acceptable to �1 or �2 and behaves as the rele-
vant system would behave. If the input is acceptable
to both systems, then output could be the output of
either system. The second construction accepts as in-
put only input that is acceptable to both systems and
gives as output only output that both systems could
generate. The �nal construction accepts as input only
input �2 would not accept. Since the latter two con-
structions can obviously be used to re�ne a property,
their composition properties also tell us about secure
re�nements. In general, the conditions for preserving
closure properties with such constructs are very re-
strictive. We shall gain some insight into why this is
the case in the next section.

Theorem 3.12 (Composition Theorem for Set
Union) Assume that for some state space �, trace
sets �1 � � and �2 � � are closed under selective
interleaving functions f1 of type Fi1;j1 and f

2 of type
Fi2;j2 , respectively, such that for all x : i1[x] 6= i2[x]!
i2[x] = 0 and j1[x] 6= j2[x]! j2[x] = 0. Also assume
that for each pair of traces s1 2 �1 and s2 2 �2 there
is (1) either a trace t 2 �1 such that for all x such
that i1[x] = 2: in[x](t) = in[x](s2) and for all x such
that j1[x] = 2: out[x](t) = out[x](s2) or a trace t 2 �2
such that for all x such that i2[x] = 1: in[x](t) =
in[x](s1) and for all x such that j2[x] = 1: out[x](t) =
out[x](s1) and (2) either a trace t 2 �1 such that for
all x such that i1[x] = 1: in[x](t) = in[x](s2) and for
all x such that j1[x] = 1: out[x](t) = out[x](s2) or a
trace t 2 �2 such that for all x such that i2[x] = 2:
in[x](t) = in[x](s1) and for all x such that j2[x] = 2:
out[x](t) = out[x](s1). Then �1 [�2 is closed under
some selective interleaving function f of type Fi2;j2 .

Proof: We shall de�ne a value of f(s1; s2) for each
s1 and s2 in �1[�2. If s1 and and s2 are both in �1,
then f(s1; s2) = f

1(s1; s2). If s1 and and s2 are both
in �2��1, then f(s1; s2) = f

2(s1; s2). If s1 2 �1 and
s2 2 �2, then note that by the �rst assumption in the
theorem there is either a trace t 2 �1 such that for
all x such that i1[x] = 2: in[x](t) = in[x](s2) and for
all x such that j1[x] = 2: out[x](t) = out[x](s2) or a
trace t 2 �2 such that for all x such that i2[x] = 1:
in[x](t) = in[x](s1) and for all x such that j2[x] = 1:
out[x](t) = out[x](s1). Assume that the �rst possibil-
ity is the case. Then let f(s1; s2) = f

1(s1; t). If the
�rst possibility does not hold, then the second possi-
bility must hold and we can let f(s1; s2) = f

2(t; s2).
Since by the assumptions on i1, j1, i2, and j2 any func-
tion of type Fi1;j1 is also of type Fi2;j2 , f as de�ned
is of type Fi2;j2 . If s1 2 �2 and s2 2 �1 then an anal-
ogous argument applies using the second assumption
of the theorem, and we are done. 2

Theorem 3.13 (Composition Theorem for Set
Intersection) Assume that for some state space �,
trace sets �1 � � and �2 � � are closed under selec-
tive interleaving functions f1 of type Fi1;j1 and f

2 of
type Fi2;j2, respectively, such that for all x : i1[x] 6=
i2[x]! i2[x] = 0 and j1[x] 6= j2[x]! j2[x] = 0. If for
all s1 2 �1 \ �2 and s2 2 �1 \ �2: f

1(s1; s2) 2 �2
or f2(s1; s2) 2 �1, then � = �1 \ �2 is closed under
some selective interleaving function f of type Fi2;j2 .

Proof: As in the proof of the Composition Theo-
rem for Set Union any function of type Fi1;j1 is also
of type Fi2;j2. Consider any s1 and s2 in �1 \ �2.
By assumption f

2(s1; s2) 2 �2. If f2(s1; s2) 2 �1 as
well, then we can simply let f(s1; s2) = f

2(s1; s2).
Otherwise, we know that f1(s1; s2) 2 �1 \ �2 by the
assumptions of the theorem. In this case we can let
f(s1; s2) = f

1(s1; s2), and we are done. 2

Theorem 3.14 (Composition Theorem for Set
Subtraction)Assume trace sets �1 and �2 such that

11

�1 is closed under some selective interleaving function
f of type Fi;j. Assume also that for each trace s 2
�1 \ �2 such that there are traces s1 2 �1 � �2 and
s2 2 �1 � �2 where f(s1; s2) = s, there is a trace
s
� 2 �1 � �2 such that for all x such that i[x] 6= 0:
in[x](s�) = in[x](s), and for all x such that j[x] 6=
0: out[x](s�) = out[x](s). Then there is a selective
interleaving function f

� of type Fi;j such that �1��2
is closed under f�.

Proof: We can let f
� = f for all arguments

(s1; s2) except for the case where s1 2 �1 � �2
and s2 2 �1 � �2, but f(s1; s2) 2 �1 \ �2, i.e.,
�1 � �2 contains s1 and s2, but not f(s1; s2). How-
ever, by assumption we know that in this case there
is a trace s

� 2 �1 � �2 such that for all x such that
i[x] 6= 0: in[x](s�) = in[x](f(s1; s2)), and for all x
such that j[x] 6= 0: out[x](s�) = out[x]((f(s1; s2)).
Let f�(s1; s2) = s

�, and we are done. 2

Corollary 3.15 (Secure Re�nement) Let trace
set � be closed under selective interleaving function
f of type Fi;j and let �� be a re�nement of �. Then
�
� is closed under a selective interleaving function f

�

of type Fi;j if either (1) there is some �̂ such that
�
� = � \ �̂, and �̂ and � meet the condition stated in

Theorem 3.13 for �1 and �2, respectively, or (2) � and
���

� meet the conditions stated in Theorem 3.14 for
�1 and �2, respectively. 2

Proof: Condition (1) follows directly from Theo-
rem 3.13. Condition (2) follows from Theorem 3.14
since �� � � implies that � � (� � �

�) = �
�. 2

4 Discussion

Although we have considered only 2-level security poli-
cies, it should be noted that 2-argument selective in-
terleaving functions can capture multi-level policies as
well. For example, a 3-level Separability policy on
a state space where level i is assigned input chan-
nel ini and output channel outi is the requirement
that a trace set be closed under selective interleav-
ing functions of type Fh1;2;2i;h1;2;2i, Fh2;1;2i;h2;1;2i, and
Fh2;2;1i;h2;2;1i.

One bene�t of our approach is the new results it
has generated. We have seen several theorems about
selective interleavings and about the composability of
closure properties with respect to selective interleav-
ings, which we have applied to several security prop-
erties. This has given us new facts about the relation-
ships among these properties and about their com-
posability with each other and with themselves. One
observation we have made is that a property seems to
be preserved by being cascaded with itself or with a
stronger property. Another is that Separability seems
to be just as composable as both Noninference, which
is less secure than Separability, and Restrictiveness,
which is more complicated than Separability. We have

also shown that even for systems not suitable for Sepa-
rability (i.e., systems where low-level users a�ect high-
level output), we do not have to resort to Restrictive-
ness if we limit ourselves to certain the composition
constructs of product and cascade.

Another bene�t is that our approach sheds new
light on familiar results. For example, although Mc-
Cullough showed that Generalized Noninterference is
not preserved when a system � is composed by gen-
eral composition from component systems �1 and �2,
his example gives no indication whether the problem
with general composition is the fact that �1 provides
input to �2, the fact that �2 provides feedback to �1,
or the fact that �2 can provide direct output to the
environment. (His example does not require that the
environment provide direct input to �2). Given our
results about cascaded systems, we can see that feed-
back is the culprit.

To understand why, consider McCullough's exam-
ple in more detail. To construct �, McCullough con-
sidered a system �1 which receives arbitrary high-level
input and responds with a high-level output for each
input. It may also receive a low-level input of cancel,
to which it will eventually respond by sending a low-
level output of cancel. If when the low-level output
is sent the number of high-level inputs is equal to
the number of high-level outputs, the low-level out-
put nothing-to-cancel may be sent as well (but it does
not have to be). System �2 is the same as �1 but a
low-level output of cancel is not sent. If when the low-
level input is received the number of high-level inputs
is equal to the number of high-level outputs, the low-
level output nothing� to� cancel may be sent as well
(but it does not have to be). The system � is composed
from �1 and �2 by sending �1's high-level output and
low-level output of cancel to �2 as input and sending
�2's high-level output to �1 as input. System �2 can
receive no input from the user. The output of � is the
Cartesian product of the low-level outputs of �1 and
�2.

The problem with � is that there is no corollary
of the Composition Theorem for Feedback that corre-
sponds to Corollary 3.7 of the Composition Theorem
for Cascade. The conditions a trace must meet to be
in � are too strong to support such a corollary since
they require, not only that the output of some trace
in �1 be acceptable as input to some trace in �2 (a
condition also required by cascade), but also that the
output of the latter trace be acceptable as input to the
former. This second requirement severely cuts back on
the number of traces a system composed via feedback
can exhibit. Given any two legal traces s and t, pos-
sibilistic security properties require the existence of a
third trace f(s; t) that combines the �rst two. Hence,
it is understandable why not many such properties
are preserved by constructions that make it hard for
f(s; t) to exist.9

9This also explains why security does not do well under in-
ternal composition. The union construct tends to increase the
number of legal traces s and t more quickly than it increases
the number of traces f(s; t), and both the intersection and set
di�erence constructions decrease the number of traces f(s; t).

12

It might seem that we could prove the necessary
corollary by applying the Interface Condition for Feed-
back and the same trick used to prove Corollary 3.7.
For example, let �, �1, �2, f1, f2, Fi1;j1 , and Fi2;j2 be
as described in the Corollary 3.11, and given any s and
t in �, let s�1, s�2, t�1, and t�2 also be as described
in that corollary with u1 = f

1(s�1; t�1). Assume that
for no x does i2[x] = 0 and that the �rst condition of
Corollary 3.7 holds, i.e.,

((1 � x � m ^ j1[x] 6= i2[x])! i2[x] = 1) ^

(1 � x � n! j2[x] 6= 1):

Now, even if i2 6= j1, we know that there is a
trace v

� 2 �2 such that in(v�)[1] = out(u1)[1].
Hence, we could let v1 be f

2(v�; t�2) and know
that in(v1)[1] = out(u1)[1]. However, to know that
in(u1)[2] = out(v1)[1], we would have to assume that
for all 1 � y � n : i1[y] = j2[y] = 2. This would
yield the result that � is closed under a selective inter-
leaving function of type Fh2;:::;2i;h2;:::;2i, but this result
trivially holds for all trace sets. Another approach
would be to construct a trace in �1 from u1 to in-
terface with v1. Assuming that i1, j2, and j1 meet
the same conditions as i2, j1, and j2, respectively, we
could use the fact that there is some trace w

� 2 �1
such that w�[1] = u1[1] and in(w�)[2] = out(v1)[1] to
form w1 = f

1(w�
; u1) to interface with v2. We could

continue in this fashion constructing two sequence of
traces vi and wi that interface with each other at times
1; ::; i. This would prove:

(1) (i)(9w 2 �1)(9v 2 �2)(x)

(1 � x � i!

(in(v)[x] = out(w)[2x� 1]^

out(v)[x] = in(w)[2x])):

However, to show that � is closed under a selective
interleaving function of the form Fi1;j1 , we would have
to prove:

(2) (9w 2 �1)(9v 2 �2)(i)

(in(v)[i] = out(w)[2i� 1] ^

out(v)[i] = in(w)[2i])):

The �rst statement says that for every time i we can
�nd two traces that interface correctly together up
through i. The second statement says that we can �nd
two traces that interface together correctly at every
time i. Although the second implies the �rst, the �rst
does not imply the second.

Returning to the McCullough example, note that
there is a large set of traces in both �1 and �2 that
accept high-level input and produce nothing � to �
cancel. Further, for any time i, there is a pair of traces
s1 2 �1 and s2 2 �2, each containing both high-level
input and nothing � to� cancel, such that s1 and s2
interface correctly through i. However, none of these
trace pairs interface correctly for all times i. Hence, a
high-level input to � rules out an otherwise acceptable
low-level output of hnothing � to � cancel; nothing �
to� canceli.

From an information-theoretic viewpoint, the feed-
back might simply be exacerbating a high-to-low chan-
nel that is already present in the two component sys-
tems since it is possible that a Trojan Horse can
use �1 or �2 to pass information by altering the
probability that a low-level user will see the output
nothing � to � cancel. For example, assume that (1)
if there is nothing to cancel, then the system under
consideration gives the output nothing � to � cancel

50% of the time, (2) the Trojan Horse can block high-
level input from the user, and (3) the Trojan Horse
can submit high-level inputs at such a rate that there
is a nonzero probability that the system will still be
processing high-level inputs when the cancel output
is given (in the case of �1) or when the cancel input
is received (in the case of �2). A Trojan Horse can
send a 1 to the low-level user by
ooding the system
with high-level inputs, thereby lowering the probabil-
ity that nothing� to� cancel will appear as low-level
output to under 50%, and it can send a 0 to the low-
level user by blocking all high-level inputs, thereby as-
suring that the probability that nothing� to� cancel

will appear as low-level output is 50%.
However, the feedback might also be creating a

channel where none existed before. Since the Trojan
Horse can transmit information only if we assume that
it can lower the probability that nothing� to� cancel

will appear as low-level output, we can e�ectively shut
down the Trojan Horse in each component by speed-
ing up the component's speed relative to the Trojan
Horse's (i.e., so the component can process the Trojan
Horse's high level inputs and send them on their way
as high-level outputs faster than the Trojan Horse can
produce them). If we can make each component very
fast relative to the Trojan Horse, there will never be
any high-level input that will be cancelled. In such a
system, nothing� to� cancel will appear as low-level
output 50% of the time, independently of what the
Trojan Horse does.

However, although each component system may
have a high-to-low capacity of 0, � still has a posi-
tive capacity. If the Trojan Horse blocks all high-level
input, each component system has a 50% chance of
producing nothing � to � cancel and there is a 25%
chance that both components will produce nothing �
to � cancel. However, if the Trojan Horse
oods the
system, there is a 0% chance of both systems produc-
ing nothing�to�cancel.10 Hence, we have connected
two systems with 0 high-to-low capacity to form a
composite system with positive high-to-low capacity.
For example, assume that we have no control over
which system will be performing high-level process-
ing at the time high-level processing is killed. In this
case the composite system's low-level output when the
Trojan Horse blocks high-level input will be h�; �i 25%
of the time, hhnothing � to � canceli; �i 25% of the
time, h�; hnothing � to � cancelii 25% of the time,

10I am assuming that communication between �1 and �2 is
instantaneous so that there is no chance of the high-level input
being \between" systems when high-level processing stops. Mc-
Culloughmust make the same assumption for � to fail to satisfy
Generalized Noninterference.

13

and hhnothing� to� canceli; hnothing� to� cancelii
25% of the time. When the Trojan Horse submits a
high-level input, low-level output will be h�; �i 50%
of the time, hhnothing � to � canceli; �i 25% of the
time, h�; hnothing � to � cancelii 25% of the time,
and hhnothing� to� canceli; hnothing� to� cancelii
0% of the time. The resulting channel has a capacity
of about :17 bits per symbol. In fact, even if we limit
ourselves to looking at a single low-level channel (e.g.,
the output from �1 or the output from �2), there is
a high-to-low channel of positive capacity in the com-
posed system.

5 Conclusion

We have constructed a general framework for speci-
fying and reasoning about compositions of a class of
properties that fall outside of the safety/liveness do-
main of [2], and we have shown the framework's appli-
cability to possibilistic security properties. The frame-
work we have developed has allowed us to partially
order several possibilistic security properties and to
examine their composability. We have seen that prop-
erties do quite well when composed with themselves or
with stronger properties via the product and cascade
construction. However, survival under feedback and
internal constructions (including re�nement) is con-
tingent upon particulars of system functionality. We
have looked at the reason for this.

Along the way we have presented a new model, Sep-
arability, and we have shown that if we can live with
its limitation that it can be applied only to systems
where low-level events cannot a�ect high-level events,
it provides a composable formulation of secrecy that
is simpler than, yet just as secure as, Restrictiveness
and more secure, though no more complicated than,
Noninference.

The framework and theorems presented in this pa-
per form the building blocks of a general theory of
system properties and their composition, one of whose
applications is security. The framework has the advan-
tage that it �ts in well with other computer science
modeling frameworks, e.g., [2] and with frameworks
for modeling probabilistic systems, e.g., [5]. This al-
lows us to bring in results from general computer sci-
ence and extend our results to probabilistic models in
the future. By jettisoning the requirement of input
totality, our framework allows us to use assumptions
about system environments to simplify the analysis of
embedded systems.

Acknowledgements

I wish to thank James Gray for calling my attention
to the framework presented in [2, 1] and the limita-
tions such frameworks posses when dealing with se-
curity properties. I also wish to thank Gray, Sue
Landauer, Fr�ed�eric Cuppens, Judy Hemenway, Dale
Johnson, Catherine Meadows, and John Rushby for
their written comments on previous drafts of this pa-
per. Useful conversations with George Dinolt and Paul

Syverson increased the paper's clarity.

References

[1] Martin Abadi and Leslie Lamport, Composing
Speci�cations, Technical Report 66, Digital Equip-
ment Corporation Systems Research Center, Palo
Alto, CA, 1990.

[2] Bowen Alpern and Fred Schneider, \De�ning Live-
ness," Information Processing Letters, 21(4):181-
185, October 1985.

[3] Joseph Goguen and Jose Meseguer, \Security Poli-
cies and Security Models," Proceedings of the 1982
IEEE Symposium on Research in Security and Pri-
vacy, IEEE Press, 1982.

[4] John Graham-Cumming and J. W. Sanders, \On
the Re�nement of Non-interference," Proceedings
of the Computer Security Foundations Workshop
IV, IEEE Press, 1991.

[5] James Gray, \Toward a Mathematical Foundation
for Information Flow Security," Journal of Com-
puter Security, 1(3-4):255-294, 1992.

[6] Jeremy Jacob, \On the Derivation of Secure Com-
ponents," Proceedings of the 1989 IEEE Sympo-
sium on Research in Security and Privacy, IEEE
Press, 1989.

[7] Ming Li and Paul Vit�anyi, \Kolmogorov Com-
plexity and its Applications," in Handbook of
Theoretical Computer Science, vol. A: Algorithms
and Complexity (ed. J. van Leeuwen), MIT
Press/Elsevier, 1990.

[8] Daryl McCullough, \Speci�cations for Multi-Level
Security and a Hook-Up Property," Proceedings of
the 1987 IEEE Symposium on Research in Security
and Privacy, IEEE Press, 1987.

[9] John McLean, \The Speci�cation and Modeling of
Computer Security," Computer, 23(1):9-16, 1990.

[10] John McLean, \Security Models and Information
Flow," Proceedings of the 1990 IEEE Symposium
on Research in Security and Privacy, IEEE Press,
1990.

[11] John McLean, \Proving Noninterference and
Functional Correctness Using Traces," Journal of
Computer Security, 1(1):37-57, 1992.

[12] John McLean, \Models of Con�dentiality: Past,
Present, and Future," Proceedings of the Computer
Security Foundations Workshop VI, IEEE Press,
1993.

[13] John McLean, \Security Models," in the Ency-
clopedia of Software Engineering, Wiley, in press.

14

[14] Catherine Meadows, \Using Traces Based on
Procedure Calls to Reason about Composability,"
Proceedings of the 1992 IEEE Symposium on Re-
search in Security and Privacy, IEEE Press, 1992.

[15] Jonathan Millen, \Hookup Security for Syn-
chronous Machines," Proceedings of the Computer
Security Foundations Workshop III, IEEE Press,
1990.

[16] Colin O'Halloran, \A Calculus of Information
Flow," Proceedings of the European Symposium on
Research in Computer Security, Toulouse, France,
1990.

[17] J. Todd Wittbold and Dale Johnson, \Informa-
tion Flow in Nondeterministic Systems," Proceed-
ings of the 1990 IEEE Symposium on Research in
Security and Privacy, IEEE Press, 1990.

[18] John Rushby, \Design and Veri�cation of Secure
Systems," Proceedings of the Eighth Symposium on
Operating System Principles, ACM, 1981.

[19] Ian Sutherland, \A Model of Information," Pro-
ceedings of the Ninth National Computer Security
Conference, Gaithersburg, MD, 1986.

15

