
Anonymous Connections and Onion Routing

Paul F. Syverson, David M. Goldschlag, and Michael G. Reed �

Naval Research Laboratory

Abstract

Onion Routing provides anonymous connections

that are strongly resistant to both eavesdropping and

tra�c analysis. Unmodi�ed Internet applications can

use these anonymous connections by means of prox-

ies. The proxies may also make communication anony-

mous by removing identifying information from the

data stream. Onion routing has been implemented on

Sun Solaris 2.X with proxies for Web browsing, remote

logins, and e-mail. This paper's contribution is a de-

tailed speci�cation of the implemented onion routing

system, a vulnerability analysis based on this speci�ca-

tion, and performance results.

1 Introduction

Private electronic communication is becoming an in-

creasingly important public issue. Encryption can ef-

fectively hide the content of a conversation from eaves-

droppers, and this protection is being integrated into

many systems. But, hiding the identities of communi-

cating parties from eavesdroppers, or from each other,

is usually not considered.

Who is communicating with whom, however, may

be sensitive too. E-mail users may wish to hide their

addresses. Anonymous cash is not anonymous if the

communications channel identi�es the purchaser. The

amount of information revealed through Web brows-

ing should be deliberate. Inter-company collaboration

may be con�dential. Revealing identities in a cellular

phone system reveals a user's location, since the cellu-

lar phone network must track handsets' locations.

A purpose of tra�c analysis is to reveal who is talk-

ing to whom. The anonymous connections described

here are designed to be resistant to tra�c analysis, i.e.,

to make it di�cult for observers to learn identifying in-

�Address: Naval Research Laboratory, Center For High As-

suranceComputer Systems,Washington,D.C. 20375-5337, USA,

phone: +1 202.767.2389, fax: +1 202.404.7942, e-mail: flast

nameg@itd.nrl.navy.mil.

formation from the connection (e.g., by reading packet

headers, tracking encrypted payloads, etc.). Any iden-

tifying information must be passed as data through

the anonymous connections. Our implementation of

anonymous connections, onion routing , provides pro-

tection against eavesdropping as a side e�ect. Onion

routing provides bidirectional and near real-time com-

munication similar to TCP/IP socket connections [6].

The anonymous connections can substitute for sockets

in a wide variety of unmodi�ed Internet applications

by means of proxies. The proxies may also remove

identifying information from the data stream, to make

communication anonymous too.

Although onion routing may be used for anony-

mous communication, it di�ers from anonymous re-

mailers [7, 11] in two ways: Communication is real-

time and bidirectional, and the anonymous connections

are application independent. Onion routing's anony-

mous connections can support anonymous mail as well

as other applications. For example, onion routing may

be used for anonymous Web browsing. A user may

wish to browse public Web sites without revealing his

identity to those Web sites. That requires removing

information that identi�es him from his requests to

Web servers, and removing information from the con-

nection itself that may identify him. Hence, anony-

mous Web browsing uses anonymized communication

over anonymous connections. The Anonymizer [1] only

anonymizes the data stream, not the connection itself.

So it does not prevent tra�c analysis attacks like track-

ing data as it moves through the network.

A preliminary description of onion routing is found

in [10, 13]. Those papers mainly present the goals of

onion routing, and some of the basic structure of our

solution. However, they do not give enough detail to

properly evaluate the security of onion routing. The

original content of this paper includes: a detailed spec-

i�cation of the onion routing system; a description of

implementation choices that were inuenced by con-

siderations not apparent at a more abstract level; a

vulnerability analysis based on the speci�cation; and

performance results for our prototype. The speci�-

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1997 2. REPORT TYPE

3. DATES COVERED
 00-00-1997 to 00-00-1997

4. TITLE AND SUBTITLE
Anonymous Connections and Onion Routing

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Center for High Assurance Computer
Systems,4555 Overlook Avenue, SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

cation presented here is su�cient to guide both re-

implementations and new applications of onion rout-

ing.

This paper is organized in the following way. Sec-

tion 2 presents an overview of onion routing. Section

3 presents empirical data about our prototype. Sec-

tion 4 de�nes our threat model. Section 5 describes

onion routing and the application speci�c proxies in

more detail. Section 6 describes the system's vulner-

abilities, and section 7 describes the implementation

choices that were made for security reasons. Section 8

presents related work, and section 9 presents conclud-

ing remarks.

2 Onion Routing Overview

In onion routing, instead of making socket connec-

tions directly to a responding machine, initiating ap-

plications make connections through a sequence of ma-

chines called onion routers. The onion routing network

allows the connection between the initiator and respon-

der to remain anonymous. We call this an anonymous

socket connection or anonymous connection. Anony-

mous connections hide who is connected to whom, and

for what purpose, from both outside eavesdroppers and

compromised onion routers. If anonymity is also de-

sired, then all identifying informationmust be removed

from the data stream before being sent over the anony-

mous connection.

We call the onion routing network topology that we

use in this paper the basic con�guration. This is illus-

trated in �gure 1.

W is a
Proxy/Routing

Node controlled by
Secure Site

InternetSecure Site

Proxy/Onion Router

W X U

Y ZInitiator
Machine

Responder
Machine

Onion Router

Link Encrypted Connection Between Onion Routers
Anonymous Connection from W to Z

Figure 1. Routing Topology.

In the basic con�guration, an onion router sits on

the �rewall of a sensitive site. This onion router serves

as an interface between machines behind the �rewall

and the external network. Connections from machines

behind the �rewall to the onion router are protected

by other means (e.g., physical security). To complicate

tracking of tra�c originating or terminating within the

sensitive site, this onion router should also route data

between other onion routers. This is the basic topology

that we will use for the rest of this paper.

The use of anonymous connections by two sensitive

sites that both control onion routers e�ectively hides

their communication from outsiders. However, if the

responder is not in a sensitive site (e.g., the responder

is some arbitrary Web server) the data stream from

the sensitive initiator must also be anonymized. Oth-

erwise, even rudimentary analysis of the unprotected

communication between the last onion router in the

anonymous connection and the responder may reveal

the initiator's identity.

Onion routers in the network are connected by long-

standing (permanent) socket connections. Anonymous

connections through the network are multiplexed over

the longstanding connections. For any anonymous con-

nection, the sequence of onion routers in a route is

strictly de�ned at connection setup. However, each

onion router can only identify the previous and next

hops along a route. Data passed along the anony-

mous connection appears di�erent at each onion router,

so data cannot be tracked en route and compromised

onion routers cannot cooperate by correlating the data

stream each sees.

The onion routing network is accessed via proxies.

An initiating application makes a socket connection to

an application speci�c proxy on some onion router.

That proxy de�nes a route through the onion rout-

ing network by constructing a layered data structure

called an onion and sending that onion through the

network. Each layer of the onion de�nes the next hop

in a route. An onion router that receives an onion

peels o� its layer, identi�es the next hop, and sends

the embedded onion to that onion router. After send-

ing the onion, the initiator's proxy sends data through

the anonymous connection.

The last onion router forwards data to another type

of proxy on the same machine, called the responder's

proxy, whose job is to pass data between the onion

network and the responder. An example onion rout-

ing network and anonymous socket connection is also

illustrated in �gure 1.

In addition to carrying next hop information, each

onion layer contains key seed material from which keys

are generated for crypting1 data sent forward or back-

1We de�ne the verb crypt to mean the application of a cryp-

tographic operation, be it encryption or decryption.

ward along the anonymous connection. (We de�ne for-

ward to be the direction in which the onion travels and

backward as the opposite direction.)

Once the anonymous connection is established, it

can carry data. Before sending data over an anony-

mous connection, the initiator's onion router adds a

layer of encryption for each onion router in the route.

As data moves through the anonymous connection,

each onion router removes one layer of encryption, so

it arrives at the receiver as plaintext. This layering oc-

curs in the reverse order for data moving back to the

initiator. So data that has passed backward through

the anonymous connection must be repeatedly post-

crypted to obtain the plaintext.

By layering cryptographic operations in this way,

we gain an advantage over link encryption. As data

moves through the network it appears di�erent to each

onion router. Therefore, an anonymous connection is

as strong as its strongest link, and even one honest node

is enough to maintain the privacy of the route. In link

encrypted systems, compromised nodes can cooperate

to uncover route information.

Although we call this system onion routing, the

routing that occurs here does so at the application

layer of the protocol stack and not at the IP layer.

More speci�cally, we rely upon IP routing to route data

passed through longstanding socket connections. An

anonymous connection is comprised of several linked

longstanding socket connections. Therefore, although

the series of onion routers in an anonymous connection

is �xed for the lifetime of that anonymous connection,

the route that data actually travels between individual

onion routers is determined by the underlying IP net-

work. Thus, onion routing may be compared to loose

source routing.

Onion routing depends upon connection based ser-

vices that deliver data uncorrupted and in-order. This

simpli�es the speci�cation of the system. TCP socket

connections, which are layered on top of a connection-

less service like IP, provide these guarantees. Similarly,

onion routing could easily be layered on top of other

connection based services, like ATM.

Our current prototype of onion routing considers the

network topology to be static and does not have mecha-

nisms to automatically distribute or update public keys

or network topology. These issues, though important,

are not the key parts of onion routing and will be ad-

dressed in a later prototype.

3 Empirical Data

We invite readers to experiment with our pro-

totype of onion routing by using it to anony-

mously surf the Web, send anonymous e-mail, and

do remote logins. For instructions please see

http://www.itd.nrl.navy.mil/ITD/5540/

projects/onion-routing.

Be aware that accessing a remote onion router does

not really preserve anonymity, because the connection

between your machine and the �rst onion router is not

protected. Even if that connection were protected, you

have no reason to trust the remote onion router. If you

had a secured connection to an onion router you trust,

it could use our onion router as one of several inter-

mediate routers to further complicate tra�c analysis.

Remote use of our site provides no greater anonymity

than is provided by the Anonymizer [1].

In our experimental onion routing network, �ve

onion routers run on a single Sun UltraSparc 2270.

This machine has two processors, and 256MB of mem-

ory. Anonymous connections are routed through a ran-

dom sequence of �ve onion routers.2 Connection setup

time should be comparable to a more distributed topol-

ogy. Data latency, however, is more di�cult to judge.

Clearly, data will travel faster over socket connections

between onion routers on the same machine than over

socket connections between di�erent machines. How-

ever, the removal or addition of layers of encryption is

not pipelined, so data latency may be worse on a single

machine.

Onion routing's overhead is mainly due to public

key cryptography and is incurred while setting up an

anonymous connection. On an UltraSparc running a

fast implementation of RSA [2], a single public key de-

cryption of a 1024 bit plaintext block using a 1024 bit

private key and a 1024 bit modulus takes 90 millisec-

onds. Encryption is much faster, because the public

keys are only 16 bits long. (This is why RSA signature

veri�cation is cheaper than signing). So, the public key

cryptographic overhead for routes spanning �ve onion

routers is just under 0.5 seconds. This overhead can

be further reduced, either with specialized hardware,

or even on PCs (a 200 Mhz Pentium would be twice as

fast).

Relatively large connection setup overhead may be

tolerable in some applications. For example, socket

connection setup may be slow anyway. If a connection

is long lived, setup overhead may be reasonable. For

example, in WWW requests, a single document may

require several requests to the same host to retrieve

di�erent components of the same document. Although

each individual request and response pair may be short,

the combination of all request/response pairs may be

lengthy. There is no reason that the same anonymous

2Five onion routing hops per connection provides reasonable

security at reasonable cost. See section 6.

connection could not be used to carry the tra�c for

each of the real socket connections, either sequentially

or multiplexed. In fact, the preliminary speci�cation

for HTTP 1.1 de�nes pipelined connections to amor-

tize the cost of socket setup, and pipelined connections

would also transparently amortize the increased cost of

anonymous connection setup. Our Web proxy will be

made HTTP 1.1 compliant when HTTP 1.1 is adopted.

4 Threat Model

We assume that the network is subject to both pas-

sive and active eavesdropping. That is:

� All tra�c is visible.

� All tra�c can be modi�ed.

� Onion routers may be compromised.

� Compromised onion routers may cooperate.

In addition, a sophisticated adversary may be able

to detect timing coincidences such as the near simul-

taneous opening of connections. Timing coincidences

are very di�cult to overcome without wasting network

capacity, especially when real-time communication is

important.

The initiator's proxy and the �rst onion router are

the most trusted elements of the onion routing system.

That is one reason why, in our basic con�guration, both

the proxy and onion router are placed under the control

of the sensitive site.

This threat model directly motivates certain design

decisions in onion routing. Because tra�c is visible,

the headers and payload of all tra�c are essentially

link encrypted between onion routers so the same data

looks di�erent when traveling between onion routers.

Because tra�c can be modi�ed, stream ciphers [14]

are used for encryption. Inserting, deleting, modify-

ing, or replaying tra�c anywhere en route will disrupt

the stream and will result in persistent unrecogniz-

able changes downstream; thus, data cannot be tracked

moving through the system. However, the plaintext

will be unreadable by the responder, causing a denial-

of-service attack. Because onion routers may be com-

promised, anonymous connections span several onion

routers. Because compromised onion routers may co-

operate, data is encrypted in a layered fashion so it ap-

pears di�erent to each onion router, not only between

onion routers.

In general, our design chooses denial-of-service over

the compromise of private information. For example,

we assume that data moves through sockets in order

and uncorrupted. A compromised onion router can

easily violate this assumption; however, the result is

unpredictable and unreadable data emerging from the

system rather than the direct release of any informa-

tion. Since replay of an onion will cause the same

embedded onions to appear downstream, onion replay

may reveal connection information. However, onions

themselves cannot be replayed through an honest node.

Onion routers remember onions they have passed by

storing a hash of previously passed onions. If a replay is

detected, the onion is simply dropped. To control stor-

age requirements, onions are equipped with expiration

times. Here too, denial-of-service supersedes compro-

mise. If clocks are far enough out of synchronization

one way, the only possible result is for a fresh onion

to be viewed as expired and ignored. If they are far

enough out of synchronization the other way, the only

possible result is for a passed onion to be stored beyond

its expiration.

5 Onion Routing

5.1 Onion Routing Proxies

A proxy is a transparent service between two appli-

cations that would usually make a direct socket con-

nection to each other but cannot. For example, a �re-

wall might prevent direct socket connections between

internal and external machines. A proxy running on

the �rewall may enable such connections. Proxy aware

applications are becoming quite common.

Our goal has been to design an architecture for pri-

vate communication that would interface with unmodi-

�ed applications, so we chose to use proxies as the inter-

face between applications and onion routing's anony-

mous connections. For applications that are designed

to be proxy aware, (e.g., WWW browsers), we sim-

ply design appropriate interface proxies. Surprisingly,

for certain applications that are not proxy aware (e.g.,

RLOGIN), we have also been able to design interface

proxies. In this paper, we will focus on the HTTP

proxy for Web browsing.

In the basic con�guration where a �rewall lives be-

tween a trusted and untrusted network, the onion

router and its proxies live on the �rewall. There are

two classes of proxies: one that bridges connections

from initiating applications into the onion routing net-

work (the application proxy), and another that com-

pletes the connection from the onion routing network

to responders (the responder proxy).

Because the application proxy bridges between ap-

plications and the onion routing network, it must un-

derstand both application protocols and onion rout-

ing protocols. Therefore, to simplify the design of ap-

plication speci�c proxies, we partition the proxy into

two components: the client proxy and the core proxy .

The client proxy bridges between a socket connection

from an application and a socket connection to the core

proxy. It is the obligation of the client proxy to massage

the data stream so both the core proxy and the respon-

der proxy can be application independent. Speci�cally,

the client proxy must prepend to the data stream a

standard structure that identi�es the ultimate destina-

tion by either hostname/port or IP address/port. Ad-

ditionally, it must process a one byte return code from

the responder proxy and either continue if no error is

reported or report the onion routing error code in some

application speci�c meaningful way.

Upon receiving a new request, the core proxy uses

the prepended standard structure as a hint in build-

ing an onion de�ning the route of an anonymous con-

nection to that destination. It then passes the onion

to the onion routing network building the anonymous

connection to the responder proxy, and then passes the

prepended standard structure to the responder proxy

specifying the ultimate destination. From this point

on, the core proxy blindly relays data back and forth

between the client proxy and the onion routing network

(and thus the responder proxy at the other end of the

anonymous connection).

For the services we have considered to date, a nearly

generic responder proxy is adequate. Its function is

to read the data stream from the terminating onion

router. The �rst datum received will be the stan-

dard structure specifying the ultimate destination. The

responder proxy makes a socket connection to that

IP/port, reports a one byte status message back to the

onion routing network (and thus back to the core proxy

which in turn forwards it back to the client proxy),

and subsequently moves data between the onion rout-

ing network and the new socket. (For certain services,

like RLOGIN, the responder proxy also infers that the

new socket must originate from a trusted port.)

As an example, consider the client proxy for HTTP.

The user con�gures his browser to use the onion rout-

ing proxy. His browser may send the proxy a re-

quests like GET http://www.domino.com/showcase/

HTTP/1.0 followed by optional �elds.

The client proxy is listening for new requests. Once

it obtains the GET request, it creates the standard

structure and sends it (along a new socket connec-

tion) to the core proxy, to inform the core proxy of the

service and destination of the anonymous connection.

The client proxy then modi�es the GET request to GET

/showcase/ HTTP/1.0 and sends it directly (through

the anonymous connection) to the HTTP server, fol-

lowed by the optional �elds. Notice that the server

name and http:// are eliminated because the connec-

tion is made directly to the HTTP server.

The client proxy essentially makes a connection to

www.domino.com, and issues a request as if it were a

client. Once this request is transmitted to the server,

all proxies blindly forward data in both directions be-

tween the client and the server until the socket is bro-

ken by either side.

For the anonymizing onion routing HTTP proxy,

the client proxy proceeds as outlined above with one

change: it is now necessary to sanitize the optional

�elds that follow the GET command because they may

contain identity information. Furthermore, the data

stream during a connection must be monitored, to san-

itize additional headers that might occur during the

connection. For our anonymizing HTTP proxy, opera-

tions that store cookies on the user's browser (to track

a user, for example) are removed. This reduces func-

tion, so applications that depend upon cookies (like

online shopping baskets) may not work properly.

The core proxy's function is to pass data between

multiple socket connections from client proxies and the

�rst onion router. Therefore, the core proxy is not ap-

plication speci�c but must understand the onion rout-

ing protocol, which de�nes how multiplexed connec-

tions are handled. The core proxy must repeatedly

pre-crypt the data stream before passing it along the

onion routing network. The repeated pre-cryptions are

the inverses of the cryptographic functions that will be

applied by the onion routers as the data moves along

the anonymous connection. Similarly, the core proxy

must repeatedly post-crypt data from the anonymous

connection with the inverses of the cryptographic func-

tions that were applied by the onion routers, before

passing the plaintext to the client proxy.

5.2 Implementation

This section presents the interface speci�cation be-

tween the components in an onion routing system. To

provide some structure to this speci�cation, we will

discuss components in the order that data would move

from an initiating client to a responding server.

There are four phases in an onion routing sys-

tem: network setup, which establishes the longstanding

connections between onion routers; connection setup,

which establishes anonymous connections through the

onion router network; data movement over a anony-

mous connection; and the destruction and cleanup of

anonymous connections. We will commingle the dis-

cussion of these below.

5.3 Client Proxy

The interface between an application and the client

proxy is application speci�c. The interface between the

client proxy and the core proxy is de�ned as follows.

For each new proxy request, the client proxy �rst deter-

mines if it will handle or deny the request. If rejected, it

reports an application speci�c error message and then

closes the socket and waits for the next request. If

accepted, it creates a socket to the core proxy's well

known port. The client proxy then sends a standard

structure to the core proxy of the form:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Version | Protocol | Retry Count | Addr Format |

+-+

Version is currently de�ned to be 1. Protocol is

either 1 for RLOGIN, 2 for HTTP, or 3 for SMTP.

Retry Count speci�es how many times the responder

proxy should attempt to retry connecting to the ulti-

mate destination. Finally, the Addr Format �eld spec-

i�es the form of the ultimate destination address: 1

for a NULL terminated ASCII string with the host-

name immediately followed by another NULL termi-

nated ASCII string with the destination port number,

or a 2 for sockaddr in data structure specifying both

the internet address and the destination port. The ul-

timate destination address is sent after this standard

structure, and the client proxy waits for a one byte

error code before sending data.

5.4 Core Proxy

Upon receiving the standard structure, the core

proxy can decide whether to accept or reject the re-

quest based on the protocol, anonymity, destination

host, destination port, or the identity of the client

proxy. If rejected, it sends an appropriate error code

back to the client proxy, closes the socket, and waits for

the next request. If accepted, it proceeds to build the

anonymous connection to the responder proxy using

the standard structure, sends the standard structure

to the responder proxy over the anonymous connec-

tion, and then passes all future data to and from the

client proxy and anonymous connection. The repeated

pre and post cryptions and packaging of the data is

discussed later in section 5.6.

5.5 Onions

To build the anonymous connection to the respon-

der proxy, the core proxy creates an onion. An onion

is a multi-layered data structure that encapsulates the

route of the anonymous connection starting from the

responder proxy and working backward to the core

proxy.

Each layer has the following structure:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|0| Version |Back F|Forw F| Destination Port |

+-+

| Destination Address |

+-+

| Expiration Time (GMT) |

+-+

| |

+ +

| |

+ Key Seed Material +

| |

+ +

| |

+-+

As we will see below, the �rst bit must be zero for

RSA public key cryptography to succeed. Following

the zero bit is the Version Number of the onion routing

system, currently de�ned to be 1.

The Back F �eld denotes the cryptographic function

to be applied to data moving in the backward direc-

tion (de�ned as data moving in the opposite direction

that the onion traveled, usually toward the initiator's

end of the anonymous socket connection) using key2
de�ned below. The Forw F �eld denotes the crypto-

graphic function to be applied to data moving in the

forward direction (de�ned as data moving in the same

direction that the onion traveled, usually toward the

responder's end of the anonymous socket connection)

using key3 de�ned below. Currently de�ned crypto-

graphic functions are: 0 for Identity (no encryption), 1

for DES OFB (output feedback mode) (56 bit key), and

2 for RC4 (128 bit key). The Destination Address and

Destination Port indicate the next onion router in net-

work order and are both 0 for the responder proxy. The

Expiration Time is given in network order in seconds

relative to 00:00:00 UTC January 1, 1970 (i.e. stan-

dard UNIX time(2) format) and speci�es how long the

onion router at this hop in the anonymous connection

must track the onion against replays before it expires.

Key Seed Material is 128 bits long and is hashed three

times with SHA to produce three cryptographic keys

(key1, key2, and key3) of 128-bits each (the �rst eight

bytes of each SHA output are used for DES and the

�rst 16 bytes for RC4 keys).3

Since we use RSA public key cryptography with a

modulus size of 1024-bits, the plaintext block size is

1024 bits and must be strictly less than the modulus

3Details on the cryptographic operations used in this paper

can be found in [14].

numerically. To avoid problems, we force this relation

by putting the most-signi�cant bit �rst and setting it

to 0 (the leading 0 above). Furthermore, the inner-

most layer of the onion is padded on the end with an

additional 100 bytes prior to RSA encryption being

performed.

In version 1, an onion has �ve layers. An onion

is formed iteratively, innermost layer �rst. At each

iteration, the �rst 128 bytes of the onion are encrypted

with the public key of the onion router that is intended

to decrypt that layer. The remainder of the onion is

encrypted, using DES OFB with an IV (initialization

vector) of 0 and key1 (derived from Key Seed Material

in that layer as de�ned above).4

Before discussing how onions and data are sent be-

tween onion routers, we will de�ne onion router inter-

connection.

5.6 Onion Router Interconnection

During onion network setup (not to be confused

with anonymous connection setup), longstanding con-

nections between neighboring onion routers are estab-

lished and keyed. The network topology is prede�ned

and each onion router knows its neighbors and the RSA

public keys of all nodes in the network.

To remain connected to each of its neighbors, onion

routers must both listen for connections from neigh-

bors and attempt to initiate connections to neighbors.

To avoid deadlock and collision issues between pairs

of neighbors, an onion router listens for connections

from neighbors with \higher" IP/port addresses and

initiates connections to neighbors with \lower" IP/port

addresses. \Higher" and \Lower" are de�ned with re-

spect to network byte ordering.

The protocol has two phases: connection setup and

keying. The initiating onion router opens a socket to

a well known port of its neighboring onion router, and

sends its IP address and well known port (the port is

included to allow multiple onion routers to run on a

single machine) in network order to identify itself. The

keying phase ensues, using STS [8] which will gener-

ate two DES 56-bit keys. The link encryption over the

longstanding connections is done by DES OFB with

IVs of 0 and these two keys (one for data in each di-

rection).

Once keyed, communication between onion routers

is packaged into �xed sized cells, which allows for the

multiplexing of both anonymous connections and con-

trol information over the longstanding connections. In

4We use DES to encrypt the onion, and for link encryption

between onion routers, because it has no licensing fees and can be

used as a pseudorandom number generator. We would be happy

to use a stronger pseudorandom number generator, however.

version 1 of the onion routing system, there are four

types of cells: PADDING (0), CREATE (1), DATA

(2), and DESTROY (3).

Cells have the following structure:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| ACI | Command | Length |

+-+

| |

.......................Payload (44 bytes).......................

| |

+-+

The ACI (anonymous connection identi�er) and

Command �elds are always encrypted using the link

encryption between neighboring nodes. Additionally,

the Length and Payload �elds are encrypted using the

link encryption between neighboring nodes if the com-

mand is either PADDING (0) or DESTROY (3). For

CREATE (1) commands, the length is link encrypted,

but the payload is already encrypted because it car-

ries the onion. For DATA (2) commands, the length

and entire payload are encrypted using the anonymous

connection's forward or backward cryptographic oper-

ations.

Each anonymous connection is assigned an ACI at

each onion router, which labels an anonymous connec-

tion when it is multiplexed over the longstanding con-

nection to the next onion router. ACIs must be unique

on their longstanding connection but need not be glob-

ally unique. To move an onion through the system,

an onion router peels o� the outermost layer, identify-

ing the next hop. It checks the freshness (not expired

and not replayed) of the onion, computes the neces-

sary cryptographic keys, seeds the forward and back-

ward cryptographic engines, chooses a new ACI for the

next hop in the new connection, and then builds a data

structure associated with that connection which maps

incoming to outgoing ACIs and the cryptographic en-

gines associated with forward and backward data.

The rest of the onion is padded randomly to its orig-

inal length, placed into CREATE cells, and then sent

out in order to the appropriate neighbor. The payload

of the last cell is padded with random bits to �ll the

cell if necessary (to avoid traceability).

Data moves through an anonymous connection in

DATA cells. At each onion router, except for the ini-

tiator's, both the length and payload �elds of a cell are

crypted using the appropriate cryptographic engine.

The new cell is sent out to the appropriate neighbor.

The initiator's onion router must repeatedly crypt data

to either add the appropriate layers of cryption on out-

going data, or remove layers of cryption from incoming

data. When constructing a DATA cell from a plaintext

data stream, the cell is (partially) �lled, its true length

is set, and all 45 bytes of the length and payload �elds

are repeatedly crypted using the stream ciphers de�ned

by the onion. Therefore, when the cell arrives at the

responder proxy, the length �eld reects the length of

the actual data carried in the payload.

If a connection is broken, a DESTROY command

is sent to clean up state information. The ACI �eld

of the DESTROY command carries the ACI of the

broken connection. The length and payload must be

random. Upon receipt of a DESTROY command, it

is the responsibility of an onion router to forward the

DESTROY appropriately and to acknowledge receipt

by sending another DESTROY command back to the

previous sender. After sending a DESTROY command

about a particular ACI, an onion router may not send

any more cells along that anonymous connection. Once

an acknowledgment DESTROYmessage is received, an

onion routing node considers the anonymous connec-

tion destroyed and the ACI can be used as a label for

a new anonymous connection.

The PADDING command is used to inject data into

a longstanding socket to further confuse tra�c analysis.

PADDING cells are discarded upon receipt.

Each onion router also reorders cells moving through

it, according to a scheme that we call layered reordering

(see section 6) that both preserves the order of cells in

each anonymous connection and caps how long cells

may be delayed by an onion router.

5.7 Responder Proxy

When a routing node receives an onion with Desti-

nation Address and Destination Port of 0, it knows it

is to act as a responder proxy. It proceeds to read the

standard structure that will be the �rst data across the

anonymous socket connection, establishes a connection

to the ultimate destination as indicated, and returns

the status code. After this, it will blindly forward data

between the anonymous connection and the connection

to the responder's machine.

6 Vulnerabilities

Onion routing is not invulnerable to tra�c analysis

attacks. We now de�ne an attack approach based on

several simplifying assumptions. We characterize the

complexity of an attack based on these assumptions,

and note that real attacks will be more expensive. We

also note that any scheme resistant to tra�c analysis

cannot increase the space of potential recipients of a

message to more than the number of possible recipients

on the network. So, expecting the complexity of tra�c

analysis to be similar to the cost of brute force attack

on cryptographic algorithms (e.g., 256) is unreasonable.

Furthermore, the cost of tra�c analysis searches may

be higher, since a network must be monitored.

Assume that each onion router has connections to

eight (23) other onion routers, and that each onion

router has a secured connection to a sensitive site. As-

sume that all anonymous connections pass through �ve

onion routers. Assume furthermore that since all cells

moving through an onion routing network are of �xed

length (48 bytes) it is possible to identify when cells

begin and end. So we reduce the problem to track-

ing markers, where markers indicate the beginning of a

cell. Assume further, that an attacker can start mon-

itoring the system when an onion router's incoming

queues and outgoing queues are empty, so the attacker

can determine the order in which markers arrive at an

onion router.

Under these assumptions, tracking markers through

the network depends on the reordering done at each

onion router. If no reordering is done (i.e., cells move

from incoming to outgoing queues using a FIFO strat-

egy), then it appears easy to track markers. The �rst

marker to reach on onion router will be the �rst to

leave, and its route through the network can be fol-

lowed. But analysis is not that simple. Since each

onion router is both an onion routing proxy and an in-

termediate onion router, a new marker may enter the

network at any time, and it is impossible for an ob-

server to determine whether the new marker arrived

before or after the �rst marker on the incoming queues

(since a sensitive site's connection to its onion router

is protected). If the onion routing proxy is busy, the

marker could end up on one of two outgoing queues. (If

the onion routing proxy is not busy, only one outgoing

queue will be active.) Under the most complicating

conditions, a marker could ultimately end up in one of

25 outgoing queues.

To further complicate tra�c analysis, onion routers

reorder incoming markers, so data does not move

through the network in a simple FIFO manner. The

optimal goal would be to make it equally likely that an

incoming marker is output on any of an onion router's

8 outgoing queues. In that case, a single marker could

end up at one of (23)5 outgoing queues. Notice that

we cannot improve on this number, since it de�nes all

possible reachable queues.5

Since onion routing is meant for real-time communi-

cation, we use a limited amount of reordering. At any

5This does not imply that one can only reach 215 sites via

onion routing. Since the responder's proxy can make connec-

tions to any Internet site, one can anonymously browse any Web

site. If the goal is to have anonymous connections between two

sensitive sites, then any one site can communicate with at most

212 other sensitive sites.

point in time, markers on several incoming queues may

be considered to arrive at the same time. These mark-

ers may be moved to outgoing queues in any arbitrary

order that both maintains fairness of data movement

for every anonymous connection and preserves the or-

der of data on each anonymous connection.

We de�ne n-layered reordering as moving the �rst

n markers on each incoming queue to outgoing queues

in any arbitrary order subject to the order preserv-

ing restriction just described. If an incoming queue

has fewer than n markers, all markers on the queue

are moved. (In 1-layer reordering, the order preserving

restriction is trivially satis�ed.) Notice that although

markers may be delayed at any particular onion router,

on average data latency is not hurt since markers are

equally likely to be forwarded early.

Using layered reordering, tra�c analysis becomes

more complicated, since a marker could end up on one

of several output queues. However, imagine that we

know that two markers belong to the same anonymous

connection. So, if we know which outgoing queues are

possible for each of the markers, the intersection of

those sets de�nes which queues are possible for the next

hop in the anonymous connection. The goal, therefore,

is to choose a layered reordering depth that makes it

very likely that all possible outgoing queues will be

present in each set most of the time.

Since data latency is not hurt by layered reorder-

ing it is possible to predict the window during which a

marker is likely to exit the onion routing network. This

invites another kind of tra�c analysis.6 It should be

possible to identify the near simultaneous opening of

endpoint connections. More speci�cally, if an attacker

wishes to con�rm that two parties are communicating

frequently, if they happen to have many more simulta-

neous connection openings than is expected by chance,

they are probably communicating. This attack, how-

ever, is not possible if the onion routing basic con�g-

uration is only used for communication between sites

that control onion routing proxies, since the connection

between the site and its onion router is assumed to be

protected. But, the basic con�guration is not appro-

priate everywhere, so this attack may persist in certain

scenarios.

7 Implementation Vulnerabilities

An implementation of a secure design can be inse-

cure. In this section, we describe several implementa-

tion decisions that were made for security considera-

tions.

6Thanks to John Kelsey for helpful comments on this point.

Onions are packaged in a sequence of cells that must

be processed together. This onion processing involves a

public key decryption operation which is relatively ex-

pensive. Therefore, it is possible to imagine an imple-

mentation that clears outgoing queues while an onion

is being processed, and then outputs the onion. There-

fore, any period of inactivity on the out-bound queues

is likely to be followed by a sequence of onion cells be-

ing output on a single queue. Such an implementation

makes tracking easier and should be avoided.

After processing at each onion router, onions are

padded at the end to compensate for the removed layer.

This padding must be random, since onions are not

link encrypted between onion routers. Similarly, the

length and payload of a DESTROY command must be

new random content at each onion router; otherwise,

compromised onion routers could track that payload.

In a multi-threaded implementation, there is a sig-

ni�cant lure to rely upon the apparent scheduling ran-

domness to reorder events. If reordering is important

to the secure operation of the system, deliberate re-

ordering is crucial, since low level system randomness

may in fact be predictable.

There are two vulnerabilities that we do not yet

know how to address. If part of the onion routing net-

work is taken down, tra�c analysis is greatly simpli�ed.

Also, if a longstanding connection between two onion

routers is broken, it will result in many DESTROY

messages, one for each anonymous connection that was

routed through that longstanding connection. There-

fore, a compromised onion router may infer from near

simultaneous DESTROY messages that the associated

anonymous connections had some common route. De-

laying DESTROY messages hurts performance, since

we require that a DESTROYmessage propagate to the

endpoints to take down the connection that is visible

to the user. Carrying the DESTROY message through

the anonymous connection and garbage collecting dor-

mant anonymous connections later would be ideal, but

we do not know how to e�ciently insert control infor-

mation into a raw data channel, especially considering

our layered encryption.7

8 Related Work

Chaum [3] de�nes a layered object that routes data

through intermediate nodes, called mixes. These in-

7One could imagine sending control information by insert-

ing some random cell into the data stream. The application or

its proxy could detect corrupted data, and terminate at the ap-

plication level, without destroying the anonymous connection.

However, this is risky for two reasons: it may not always be pos-

sible to detect corrupted data, and a random inserted cell may

appear uncorrupted.

termediate nodes may reorder, delay, and pad tra�c

to complicate tra�c analysis. Our onion routers are

based on mixes. Some work has been done using mixes

in ATM networks [5].

Anonymous Remailers like [7, 11] use mixes to pro-

vide anonymous e-mail services. Some invent an ad-

dress through which mail can be forwarded back to the

original sender. Remailers work in a store and forward

manner at the mail application layer, by stripping o�

headers at each mix and forwarding the mail message

to the next mix. Some remailers provide con�rmation

of delivery.

In [9], a structure similar to an onion is used to

forward individual IP packets through a network. By

maintaining tracking information at each router, ICMP

error messages can be moved back along the hidden

route. Essentially, a connection is built for each packet

in a connectionless service.

In [12], mixes are used to provide untraceable com-

munication in an ISDN network. As described there, in

an ISDN system, each ISDN line is assigned to a partic-

ular local switch (i.e., local exchange), and switches are

interconnected by a (long distance) network. Anony-

mous calls in ISDN rely upon an anonymous connec-

tion within each switch between the caller and the long

distance network, which is obtained by routing calls

through a prede�ned series of mixes. The long distance

endpoints of the connection are then mated to complete

the call. (Notice that observers can tell which local

switches are connected.) This approach relies upon two

unique features of ISDN switches as described in [12].

Since each ISDN line has a subset of the switch's total

capacity pre-allocated to it, there is no (real) cost as-

sociated with keeping an ISDN line active all the time,

either by making calls to itself, to other ISDN lines

on the same switch, or to the long distance network.

Keeping ISDN lines active complicates tra�c analysis

because an observer cannot track coincidences.

Since each ISDN line has a control circuit connec-

tion to the switch, the switch can broadcast messages

to each line using these control circuits. So, within

a switch a truly anonymous connection can be estab-

lished: An ISDN line makes an anonymous connection

to some mix. That mix broadcasts a token identify-

ing itself and the connection. A recipient of that token

can make another anonymous connection to the speci-

�ed mix, which mates the two connections to complete

the circuit. In anonymous ISDN, the mixes hide com-

munication within the local switch, but connections

between switches are not hidden. This implies that

all calls between two businesses, each large enough to

use an entire switch, would reveal which businesses are

communicating. In onion routing, mixing is dispersed

throughout the Internet, which improves hiding.

9 Conclusion

Anonymous socket connections provide protection

against both eavesdropping and tra�c analysis. Al-

though our focus is on anonymous connections, and

not anonymous communication, anonymous communi-

cation is also possible by removing identifying informa-

tion from the data stream. Onion routing's anonymous

connections are application independent and can inter-

face with unmodi�ed Internet applications by means of

proxies. Our implementation of onion routing includes

proxies for Web browsing, e-mail, and remote login.

We have also implemented anonymizing versions of the

Web and e-mail proxies.

It is instructive to compare onion routing's anony-

mous e-mail service with other anonymous remailers.

All services remove identifying headers. Most remail-

ers work in a store and forward manner, either between

mixes or simply sendmail daemons. Onion routing's

service, however, makes an anonymous connection di-

rectly to the recipient's sendmail daemon. This has

both advantages and disadvantages. The disadvantage

is that mixing is not done as well, since the connection

is made in real time. The advantage is that the anony-

mous connection is separated from the application, so

anonymous e-mail systems are considerably simpli�ed

because the application speci�c part does not have to

move data through the network. Furthermore, because

the onion routing network can carry many types of

data, it has the potential to be more heavily utilized

than a network that is devoted only to e-mail. Heavy

utilization is the key to anonymity.

Anonymous remailers typically provide a mechanism

to reply to anonymous e-mail. A remailer may assign

pseudonyms through which mail is forwarded. These

pseudonyms must be stored at the remailer in order to

properly process replies. In onion routing, it is possi-

ble for a sender to build a reply onion that de�nes an

anonymous connection to him. This reply onion can

be included in mail messages. When a response is sent

to the appropriate proxy on an onion router, the re-

ply onion is �rst processed to create the anonymous

connection back to the sender. The reply is then sent

over that anonymous connection. Notice that the re-

ply onion is equivalent to a pseudonym, except that

it is not stored at any onion router. So onion routers

are stateless remailers. To identify users of anonymous

onion routed e-mail, reply onions must �rst be obtained

and all relevant onion routers must be compromised.

Anonymous connections may be used as a new prim-

itive that enables novel applications in addition to fa-

cilitating secure versions of existing services. For ex-

ample, in a cellular phone system, the location of hand-

sets must be tracked, even when the phone is waiting

for a call (in standby mode). This is because the cellu-

lar network must know through which base station to

route calls. However, it may be undesirable to let the

cellular network know the location of its subscribers.

An alternative architecture that protects such location

information,may be constructed using anonymous con-

nections. To make a call, the phone constructs an onion

which de�nes a route through the local base station

to some billing station. The phone identi�es the sub-

scriber to the billing station (for billing purposes) but

does not have to reveal its location. The billing sta-

tion completes the call. To receive a call, the handset

is paged over a large area. This paging turns on the

handset, which then makes a call to the paged num-

ber (through an anonymous connection as described

above). As an aside, the paging approach to receiv-

ing a call signi�cantly conserves battery use, since the

phone is o� unless it is involved in a call.

Alternatives to the basic con�guration exist which

move trust closer to the user. For example, an Inter-

net Services Provider (ISP) could run an onion router

that accepts onions from its subscribers. Subscribers

would generate these onions on their trusted local ma-

chines. The ISP would not know with whom the cus-

tomer is communicating. And the subscriber need not

fully trust the ISP to maintain his privacy.

Acknowledgments

We were helped by discussions with many peo-

ple including Ran Atkinson, Markus Jakobbsen, John

Kelsey, John McLean, Cathy Meadows, Andy Moore,

Moni Naor, Holger Peterson, Birgit P�tzmann, Michael

Steiner, and James Washington. We thank the anony-

mous referees for helpful suggestions. We thank the

Isaac Newton Institute, Cambridge. Some of these dis-

cussions were conducted while one of the authors was

in residence there. The fast UltraSparc implementa-

tion of RSA was done by Tolga Acar and �Cetin Kaya

Ko�c. This work was supported by ONR.

References

[1] The Anonymizer. http://www.anonymizer.com

[2] T. Acar, B. S. Kaliski, Jr., and �C. Ko�c. Analyzing

and Comparing Montgomery Multiplication Algo-

rithms, IEEE Micro, 16(3):26-33, June 1996.

[3] D. Chaum. Untraceable Electronic Mail, Return

Addresses, and Digital Pseudonyms, Communica-

tions of the ACM , v. 24, n. 2, Feb. 1981, pp. 84-88.

[4] D. Chaum, The Dining Cryptographers Problem:

Unconditional Sender and Recipient Untraceabil-

ity, Journal of Cryptology , 1/1, 1988, pp. 65-75.

[5] S. Chuang. Security Management of ATM Net-

works, Ph.D. thesis, in progress, Cambridge Uni-

versity.

[6] D. E. Comer. Internetworking with TCP/IP,

Volume 1: Principles, Protocols, and Architec-

ture, Prentice{Hall, Engelwood Cli�s, New Jersey,

1995.

[7] L. Cottrell. Mixmaster and Remailer Attacks,

http://obscura.obscura.com/~loki/remailer

/remailer-essay.html

[8] Whit�eld Di�e, Paul C. van Oorschot, and

Michael J. Wiener. Authentication and Authenti-

cated Key Exchanges. Designs, Codes, and Cryp-

tography, 2:107{125, 1992.

[9] A. Fasbender, D. Kesdogan, O. Kubitz. Variable

and Scalable Security: Protection of Location

Information in Mobile IP, 46th IEEE Vehicular

Technology Society Conference, Atlanta, March

1996.

[10] D. Goldschlag, M. Reed, P. Syverson. Hiding

Routing Information, in Information Hiding , R.

Anderson, ed., LNCS vol. 1174, Springer-Verlag,

1996, pp. 137{150.

[11] C. G�ulc�u and G. Tsudik. Mixing Email with Ba-

bel, 1996 Symposium on Network and Distributed

System Security , San Diego, February 1996.

[12] A. P�tzmann, B. P�tzmann, and M. Waidner.

ISDN-Mixes: Untraceable Communication with

Very Small Bandwidth Overhead, GI/ITG Con-

ference: Communication in Distributed Systems,

Mannheim Feb, 1991, Informatik-Fachberichte

267, Springer-Verlag, Heildelberg 1991, pp. 451-

463.

[13] M. G. Reed, P. F. Syverson, and D. M. Goldschlag.

Proxies for Anonymous Routing, Proc. 12th An-

nual Computer Security Applications Conference,

San Diego, CA, IEEE CS Press, December, 1996,

pp. 95{104.

[14] B. Schneier. Applied Cryptography: Protocols, Al-

gorithms and Source Code in C, John Wiley and

Sons, 1994.

