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Abstract 

The problem of synthesizing a controller for plants subject to arbitrary, finite en- 
ergy disturbances and white noise disturbances via Linear Matrix Inequalities (LMIs) is 
presented. This is achieved by considering white noise disturbances as belonging to a 
constrained set in 12. In the case of where only white noise hsturbances are present, 
the procedure reduces to standard 312 synthesis. When arbitrary, finite energy dis- 
turbances are also present, the procedure may be used to synthesize general mixed 
performance objective controllers, and for certain cases, Robust 3 f 2  controllers. 

2. Introduction 

In the standard robust control paradigm, the signal space which characterizes perfor- 
mance is equivalent to that which captures a system's uncertainty. For example, 31, 
tools are used when dealing with bounded energy (or power) gain uncertainty (see [12], 
[lo], [18]), while when working with 1, disturbances, the uncertainty is assumed to be 
of finite amplitude gain (see 191). Wlxle it is often the case that the particular charac- 
terization of the uncertainty is not critical to the design process, the signal space used 
to characterize the performance often is. In particular, one of the common complaints 
among control design engineers which use H, methods is that the resulting designs 
tend to be sluggish and overly conservative. As an alternative, 3 1 2  designs are often em- 
ployed, but they lack the robustness properties of H, designs (see [S]) which can readily 
be extended to encompass a system's uncertainty. The attractive feature of H2 designs 
is their gain interpretation; they minimize the power output when the disturbances are 
assumed to be white noise or impulses. This is in contrast to 31, designs, which mini- 
mize the energy to energy (or power to power) gain; in many applications, modeling the 



disturbances as arbitrary signals is a poor modeling choice, and thus Hm designs lead 
to low performance controllers. 

A desirable control design strategy would be one whch has the input-output gain 
interpretation of the Hz norm, but can readily accommodate Hw bounds on the uncer- 
tainty. 

In [IS], a framework is developed whereby white noise signals are captured in a de- 
terministic setting. The main motivation behind this approach was the reconciling of 
the worst case setting, natural when considering robustness issues, with the stochastic 
setting. This framework proved very natural when addressing the so-called Robust H 2  

Analysis problem, which was solved in 1131 and [14]. 
This approach will be used in this paper to tackle the problem of Robust 312 Synthe- 

sis for a restricted class of problems; in particular, rank one synthesis problems with 
time varying uncertainty. This will be achieved by solving an auxiliary problem, that of 
synthesizing a controller for plants subject to arbitrary, finite energy disturbances and 
white noise disturbances. 

Other work in this area includes [2], [6], [19] and [17]. Also worth noting is research 
on the so called mixed .9& /3fm problem, where only nominal stability and nominal H2 
performance are considered (see [I], [8]). 

The paper is organized as follows: we begin with some mathematical preliminaries, 
followed by a review of the notions introduced in [IS] with regards to capturing noise 
signals as elements of a set. The problem is then posed and solved, followed by a dis- 
cussion on computational issues. The problem of robust disturbance rejection is then 
addressed, and it is shown how these types of problems can be re-formulated in the gen- 
eral problem setup previously solved. We conclude with an example which illustrates 
the tools developed and their numerical properties. 

2 Preliminaries 

Most of the notation in this paper is standard. We restrict ourselves to discrete time sys- 
tems. The space of square summable sequences is denoted 12; when the spatial structure 
is relevant, it is referred to as 1;. The 2-norm of a signal d in 12 is denoted Ildll. The 
unit ball of 12 signals is denoted B12, and consists of all 12 signals whose norm is less 
than or equal to one. The discrete time, unit delay operator is denoted A. The truncation 
operator PT is defined as 

(PTx)  ( t ) : =  
fo r t  > T 

Causal, firute dimensional, linear time invariant systems will be denoted FDLTI. A causal 
linear map G over 12 is bounded if the restriction of G to 12 is a bounded operator, with 
induced 12 norm denoted I I  G 1 1 .  The transfer function representation of FDLTI system G 



is denoted G^(A) .  The linear fractional transformation (LFT) between two systems G and 
K is denoted G * K, and is defined as: 

where 

when the inverse of (I - GZ2K) is well defined. BA is the set of linear, but otherwise 
arbitrary, operators whose induced 2-norm is less than or equal to 1. For two subsets of 
L2 , S1 and S2, the approximation error of S1 with S2 is defined as 

D(Sl,S2):= sup inf llsl -s211 
sl  ES132 ES2 

D (S1, S2) is a measure of how well S2 captures the elements of S1. For a constant matrix 
A, its maxirnal element is denoted 

3 Deterministic Noise Sets 

We begin by reviewing the notions introduced in [15] to capture white noise in sets. Given 
a signal n E Ly, its autocorrelation function is defined as 

Note that there is no time averaging in the definition above, as would be used for power 
signals, since we are dealing with finite energy signals. Given positive integer N and 
positive number y, we define the following set of autocorrelation functions: 

and corresponding signal set 

In particular, when y = 0, we have 

It is shown in [I51 how the worst case gain from WF to L2 approaches the 3 C 2  norm 
in the limit as N goes to b t y ,  the rate of convergence being exponential. 



4 Problem Formulation 

Figure 1: Problem Formulation 

The problem formulation is as follows; given positive integer N and FDLTI system Go 

find internally stabilizing (see [21]) FDLTI system K such that 

sup II (Go *  doll' < 1 
l ~ B l ~ , n ~ w ~  

The performance objective is absorbed into plant Go; in general, the performance 
objective will be decreased until a controller no longer exists which satisfies (10). We 
will later show how the solution to the above problem may be used to solve a variety 
of robustness problems. The above problem formulation is interesting in its own right, 
however; it may be the case that some of the disturbance signals may be arbitrary, in 
this case 2, whde the others are white noise, such as n. For example, this may be the 
case when tracking a reference signal 1 (which may be weighted to restrict tracking over 
a certain frequency range), in the presence of sensor noise or other random disturbance 
n. 

5 Solution 

We will provide a solution to the above problem in a series of steps. The first consists 
of recalling the solution of controller synthesis when the disturbances are subject to 
implicit constraints, presented in [3]. The next step consists of parametrizing sets ?N,m 
in image form. The final step is to combine these image representations with the solution 
provided in the first step to solve (10). 



5.1 Synthesis with implicit constraints 

The following is a review of the main results in [3]. Consider the following subset of 12,  

where the Hi, L j  and J j  are constant matrices. Consider the following constrained fea- 
sibility problem: let system G and set 3-1 be given. Find a stabilizing controller K such 
that 

sup II(G * K)d112 < 1 
d€3 f  

It is shown in [3] that such a controller K exists if and only if there exist symmetric 
matrices S, T, W, Z (of a given spatial structure) such that 

where U, V, R and C are constant matrices whch depend on the state space represen- 
tation for G and the constraint set 3-1. A state space representation for K may then be 
constructed from R, S and T (the details may be found in [3] and [Ill). The above is a 
convex feasibility problem, and may be solved using numerical packages such as LMI Lab  
[71. 



5.2 Image Representation for w$ 
The solution provided in the previous section cannot be utilized to directly solve (10); in 
order to directly specify W;, Hi, L j  and Jj need to be systems, not constant matrices 
(see [2]). What we would like to do is construct an alternate representation for W; which 
is consistent with the solution provided in the previous section. 

Let N and m be given. Define 

u := [ul ul ... u~ uN] 
V := diag [U, U, . . . , U] 

where V E R H ~ ~ ( ~ ~ ~ ) ,  ie., V consists of m copies of U along the "diagonal". Then it 
may be verified that 

A A 1 ie., V and U are co-inner, and llPllm = lll?llm = m. 
Define G E 1ZmN as follows: 

G .- .- (GI, ..., Em) 
i := (ni,l1 n i , ~ ,  . . . n i , ~ ,  n i , N )  

and the following set of constraints: 

c1 :  ( n i , k ,  n i , k )  5 1, ('%,kg ni,k) 5 1 l l i l m ,  l l k l N  

C2 : ( n i , k ,  n j , k )  - ( n i p k g  nj,k) = 0 r i m ,  l i k s N  

c3 : ( n i , k ,  n j , k )  - ( n i , k ,  n j , k )  = 0 i 1 l k l N  

c4 : ( n i , k ,  n j , k )  + ( n i , k ,  n j , k )  = 0 I s i < j r m ,  k = l  

The constraint set N is then defined as: 

N : =  (E E I:mN 1 ~ 1 ,  C2, C3, C4 are satisfied) (17) 

The image set %zY may now be defined: 

%&:={n E 1yln = vG,G t N, /lniII 2 1 - y for 1 r i r m )  (18) 

For y = 1, we define 

which corresponds to no explicit norm constraint on ni. The following theorem outlines 
how Wp and %gY are related, and is crucial to the synthesis results which follow: 



Theorem 1 

3. D ( % F ~ ,  Wr) is upper semi-continuous as a function of y at y = 0.  

Before proving Theorem 1, we will need the following two Lemmas: 

Lemma 1 

S : = ( n  E lTI2NV*n E IN, JJniJ12 = 1  for 1  i i s m) = %F~ (20)  

Proof of Lemma 1: 
It is clear by setting % = 2 N V * n  that S c %T~; we wd1 thus show that %zo c S.  Let 

n E %E0, with corresponding %. For each component, by constraints C1, IEi l l  r 2N,  
which implies llni112 r 1. Thus llni112 = 1, l l % i J 1 2  = 2N. 

Since i? is co-inner, 38, E R H E ~ - ~ ) ~ ~ ~  such that JZV 1 1 is unitary. ~ h u s  for 
L 2 

each i, Gi can be uniquely decomposed as 

Ei = U*vi + U;wi (21)  
2N-1 wherevi E 1 2 ,  Wi  . Furthermore, llGi1J2 = I lU*v i l l 2+I lU;~ iJJ2 .  Fromthiswe 

may conclude that vi = 2Nni ,  and that JJviJJ = IJU*viJJ2 = J J E i J J 2  = 2N; thus Wi = 0, and 
%i = 2NU*ni.  This gives % = 2NV*n ,  as required. 

Lemma 2 Given R E RE,,, where y < &, there exists a signal x E 1; such that 
R, ( T )  = R ( T )  for T E [ -N ,  N ] .  

The proof of Lemma 2  may be found in the Appendix. We are now in a position to 
prove Theorem 1: 
Proof of Theorem 1: 
We begin by showing how n is constrained when 2NV* n E N. Let % = ZNV* n. Thus 

(22)  
f o r l s i i m ,  1 s k r N  

For the above, it can be verified that constraints C1 to C4 are equivalent to : 

C1 : llniJJ2 + (ni, Akni) r 1  l i i s m ,  l s k s N  

llniJ)* - (ni, Akni) r 1  I s i s m ,  l s k ~ N  

C2 : ( n i , A k n j ) + ( n i , A - k n j )  =O 1  s i <  j i m ,  1  r k s N  

C3 : ( n i , h k n j ) - ( n i , A - k n j ) = O  l i m  1 r k s N  

C4 : (ni,nj) = 0 l s i < j s m  



Proof of 1: Let n E W r .  The above constraints are then trivially satisfied, proving 
n E S;  thus by Lemma 1, n E %E0. NOW let n E WEo, or equivalently, n t S.  It is then 
straightforward to show that the above constraints imply that n t Wr, as required. 

Proof of 2: This follows from 1. and %cY c %cYO for 0 c y r yo. 

Proof of 3: Let E > 0 be given. It will be shown that there exists a yo > 0 such that for 
all 0 r y a yo, D ( % K ~ ,  WP)  < E.  Let yo > 0 be fixed. For any 0 r y a y ~ ,  n t %Ey and 
corresponding E ,  we may decompose i? as in equation (21) yielding: 

Since Ilfiill I and llnill 2 1 - yo, it follows that Ilwill I 2 N J 7 5 .  Applying con- 
straints C1 through C4 to (23) results in 

C 1 :  llni1I2 + (nil Akni) 5 1 + o(IIwiII>; l r i r m ,  1 r k r N  

llni112 - (n i ,Akn i>  5 1 + O(IIwiII) l r i r m ,  1 r k r N  

Cz : I (ni, h k n j )  + (ni, k k n . , )  I r 0 (lJwi\l) 1 5 i < j , 1 5 k 5 N 

C3 : I ( n i , h k n j )  - (ni,Pknj)) r O(llwiIl) 1 r i < j r m, 1 r k I N  

Cq : l(ni,nj)l 2 o(IIwiII) l r i < j r m  

We may thus conclude that there exists a constant C, independent of yo, such that n E 
WN,C-z. Since n E 1 2 ,  there exists a T E I+  such that Ini - 2; 1 1  1 r 2y0. Define 

It can be shorn that for yo r $, 6 E ?NN,ZCfi.  Furthermore, Iln - 611 r 2 + 2 f i y 0 .  Let 

Then it can be verified that R t R ~ 2 C f i C c 1 .  c2 
BY Lemma 2, for YO 5 ic,m, tN+ , )4 ,  there 

exists signal x E 1; such that R x ( ~ )  = R ( T )  for T E [I-N, N ] .  
Define 

Then 



Thus d E WF. Furthermore, 

Choosing 

gives the required results. 

5.3 Image Representations and Implicit Constraints 

We are now in a position to provide a solution to (10) by combining the results of Sections 
5.1 and 5.2. The following theorem outlines how we may replace set WF with %F. The 
idea is to penalize disturbance n E %F in such a way that the worst case error will occur 
when n is as large as possible; this in effect will force n to be in WF: 

Theorem 2 Given Ml and Mn E RH,, then 

sup I I M ~ ~ + M ~ ~ I I ~ < ~  
k B 1 2 , n € ? y $  

i f  and only i f  there exists ko such that V k  r ko, 

2 
k n  

sup I < m k 2 + i  
I E B ~ ~ , ~ E % ~  MlL+ Mnn 

Proof: 
(31) - (30): Since ?NF c %r, it is clear that 

Furthermore, V n  E W?, l l  kon1I2 = mk; .  Thus (30) is implied, as required. 
(30) = (31): Assume (30) is satisfied. Then, by continuity of D(%?'T~,WF) at y = 0, 
3yo > 0 such that 

sup sup I I M ~ L + M ~ ~ I ~ ~  r Co < 1 
LEBlz n ~ % z ~ ~  

for some constant CO. Furthermore, 



Suppose (31) is not satisfied. Then, Vk, 3n E %F and 1 E B12 such that 

In particular, let k = e. Then it follows that n E Furthermore, since InI2 5 m, 

which contradicts our assumption, as required. 

The following corollary may be applied to controller synthesis: 

Corollary 1 Let Go be given. For any controner K ,  let 

Then there exists a K such that 

if and only if there exist K and ko such that V k r ko, 

The proof of the above follows from Theorem 2 and %? = {nln = VG, E E N). Next, 
note that constraints C1 to C4, which characterize N, are equivalent to the following 
constraints: 

Ci : l ln i , k I l2  5 1 ,  llfii,k112 5 1 l s i s m ,  l s k r N  

C Z :  Ilni,k+nj,kII2+IIni,kII2+IIfij,kII2=IIfii,k+fij,k(12+IIni,kII2+IInj,k112 l s i < j ~ m ,  ~ S ~ I N  

C3: Ilni,kffij,k/12+IIni,k112+IInj,k112=IIni,k+nj,k1)2+IIni,k112+IIfij,k112 l s i < j ~ m ,  I ~ ~ I N  
C4: I l n i , k f  n j , k I 1 2 + I I n i , k + n j , k I 1 2  = IIni ,kI12+IInj ,kI1211+ IIni ,kI12+ IInj,kI12 1 ~ i <  j s m ,  k =  1 

Furthermore, 1 E Blz is equivalent to 1 1  L 1 I 2  I 1. Thus E N and L E B12 can be captured 
in a form consistent with 3C in (11). Finally, let a = .A. Then by setting 

(34) may be solved by the method presented in Section 5.1. 



6 Computation 

A controller K may be found which verifies (34) using the methods of Section 5.1 for 
a given k; thus one would choose k, and synthesize a controller. In order to solve the 
original problem of (33) and (lo), however, we need to ensure that k > ko. It is possible 
to find a lower bound for ko given the open loop system G, N, and how closely we want to 
approximate the optimal solution. Tlvs bound, however, will more likely than not be too 
conservative to be of any use. In practice, k should be chosen as large as the numerical 
algorithm allows. This is a topic for future research. 

For a given N and m, it is also worth noting how much constraints C1 through C4 
cost, in terms of the number of constraints (which is linearly related to the number of 
decision variables required): 

Table 1: Cost of Constraints 

Thus the growth is linear in N and quadratic in m. In order to keep the computational 
complexity down, constraints C2 through C4 may be omitted, with the result being that 
each component of n ulll tend to be a white noise signal, but may be correlated to other 
components. The particular nature of the problem will dictate how conservative this 
omission d l  be. 

In addition, G consists of an augmented version of Go. In particular, V results in an 
extra m N  number of states. Since the number of decision variables grows as the square 
of the number of states of the plant, quadratic growth is unavoidable, both in N and in 
m. 

7 Application to Robust H2 Synthesis: Robust Disturbance Rejec- 
tion 

We will show the types of robustness problems that may be solved using the machinery 
developed in this paper. Consider the setup of Figure 2. Given P, it is required to design 
K such that disturbances n d ,  along with measurement errors n,, have a small effect 
on plant output e. The plant is subject to multiplicative, unstructured uncertainty A, 
with associated weight Wt. Since nd and n, are disturbances, one may know more about 



Figure 2: Robust Disturbance Rejection 

their spectral content than that they are filtered, but otherwise arbitrary, 12 signals. In 
many cases, a good model for disturbances is colored white noise, or filtered whte noise. 
One may therefore want to model nd and ne as white noise signals, filtered by Wnd and 
W,, , respectively. An example where this may arise is n, being sensor noise and nd an 
impulsive (or known) disturbance (it is also straightforward to consider the case where 
nd is an arbitrary disturbance in B12, etc.). 

The relevant equation describing the system is 

where 

The Robust Disturbance Rejection problem is as follows: 

Robust Disturbance Rejection 

For a given N ,  find an internally stabilizing K such that 

The above may be converted to a condition which does not involve A: 

Theorem 3 K solves the Robust Disturbance Rejection problem i f f  K is an internally sta- 
bilizing controller and 

SUP sup llSPWtl+SPW,,nd+TW,,n,ll<l 
l€Blz (nd,n,)~WF 

(39) 



The proof of the above is equivalent to the one in [3], where n d  and n, are assumed to 
be arbitrary 12 disturbances (the idea is that since A is an arbitrary contractive map, Ae 
may be replaced by I). The above can now be cast into the framework of Section 4. In 
general, many robust synthesis problems may be solved using this technique (see [3]); 
the only restriction is that the uncertainty (possibly more than one block) have e as their 
input. 

8 Example 

We present a simple example for which the solution is known. In particular, we will use 
the machinery developed thus far to synthesize an optimal 3f2 controller for a given 
plant. We are not proposing this method for synthesizing optimal 3 1 2  controllers, since 
exact solutions exist, but rather wish to explore the properties of our algorithm on a 
simple example. 

Consider the following unstable, non-minimum phase, SISO plant: 

The goal is to minimize the 3 1 2  norm of the sensitivity function, S = (1 t- P K ) - ~ .  The 
generalized plant Go for this problem is 

The following table summarizes the results obtained using standard synthesis methods 
(see [4]): 

Table 2: Exact synthesis results 

r 

We then repeated the synthesis for k = 0,1,3,10,100 with N fixed at 4, and for 
N = 0,1,2,3,4 with k fixed at 100. The resulting closed loop responses are depicted in 
Figure 3, along with the optimal 3 1 2  and 31, results for comparison purposes. 

For the first plot, the flat response is that of the optimal 31, closed loop, while the 
response with the highest peak is that of the optimal 3 1 2  closed loop. The five values 
in between correspond to different values of k, ascending values of k corresponding to 
ascending values of the 31, norm. 

31, Synthesis 

3 1 2  Synthesis 

31, Analysis 

1.1429 

1.7143 

3 1 2  Analysis 

1.1429 

0.9897 

Optimal Controller 
K = -  A 5 

1 2  

i? = 1 4 0.3889h 



Closed Loop Responses, N=4 Closed Loop Responses, k=100 

Frequency (rad/s) Frequency (rad/s) 

Figure 3: Synthesis with constraints 

In the second plot, the 31, and 31; designs are also included for comparison pur- 
poses. Ascending values of N correspond to ascending values of the 31, norm. Note 
that only six curves seem to be present in the second plot, since the N = 0, k = 100 
design is virtually identical to the 31, design, as expected. 

The N = 4, k = 100 controller was 

which is very close to the optimal Hz controller. Furthermore, the closed loop 3& norm 
for this design was 0.9899, and the 3€, norm was 1.690, again extremely close to the 
optimal 3 1 2  design. Note, however, that the N = 4 design isn't necessarily the best one. 
For example, the N = 1 design has a closed loop norm of 1.021 and H, norm of 
1.377; As a percentage, the N = 1 design has 3 1 2  norm which is approximately 3% larger 
than the N = 4 design, but 31, norm whch is 23% smaller. The point is that most of the 
reduction in the 31' norm occurred with only one constraint; pushing harder to reduce 
the Hz norm only serves to increase the 31, norm. 

There is an interesting connection between the tools developed in this paper when 
applied to standard 3 1 2  optimization and known results on 3 1 2  synthesis. In particular, it 
is known that synthesizing the optimal 3 1 2  controller for a given system is equivalent to 
synthesizing the optimal 31, controller for the same systemmultiplied by an appropriate 
weight. Thus our method can be thought of as searching for a feasible controller and 
the correct weighting function simultaneously. This interpretation is also valid for the 
general case, ie., when there is also a signal I .  



9 Conclusions 

The tools presented in this paper allow for controller synthesis when the disturbances are 
a combination of arbitrary, norm bounded 12 signals, and signals in set w?. For a fixed 
N, the solution takes the form of an LMI, for whch good numerical packages exist. To 
solve the problem where noise signal n is perfectly white (ie., satisfies an arbitrarily large 
number of correlation constraints), N will have to be arbitrarily large; this seems to be 
unavoidable, however, since the optimal controller will probably be infinite dimensional. 
The strength of this approach, however, is that designing for a fixed N gives us both 
sufficient and necessary conditions for the existence of a controller. By inspecting the 
nature of W$ and the resulting closed loop system, the design engineer may then decide 
whether the solution is acceptable, or a larger value of N is required; this is the case in 
the example presented, where it isn't clear whether the N = 4 design is better than the 
N = 1 design. 

This relates to the view that optimization techniques should only be used as design 
tools, and should be flexible enough to allow the design engineer to customize the results 
to the particular problem at hand; for real problems, the objective is almost never to 
minimize the closed loop or norms (or anything in between, for that matter). 
The best one can do is to provide flexible enough tools to automate some of the design 
process, and let the engineer do the rest. This is the case with standard 3-L theory, where 
the problem of optimal control design is reduced to that of finding appropriate weights; 
the design becomes iterative, where weight selection is determined by the previous closed 
loop system. The tools provided in this paper can thus be thought of as a method to 
automate some of the weight selection process, and as a result, allow for more complex 
designs to be performed. 
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Appendix 

Proof of Lemma 2 (see [16]): Let 



By Gergorshm's Circle Theorem (see [20]), we may bound each eigenvalue of Q from 
below by 

Since y < A, Q > 0. Thus there exists P > 0 such that p z  = Q. Let 

i.e., we have added m ( N  + 1) rows of zeros to P. Now define x ( t )  as follows 

i.e., formed by stacking the columns of P into one long vector. We claim that R,(T) = 

R (T) for I T I  I N. Partition P as 

which implies 

Further partitioning each Pik as 

and using the fact that Pkj = PTk, we have 



It thus follows from the definition of x ( t )  in (46), for 0 r T I N, 

A slrmlar argument holds for negative T 

References 

[ l ]  Bernstein D.S., Haddad W.H., "LQG Control with an Hffi Performance Bound: A Ricatti Equa- 
tion ApproachJ', IEEE Trans. A.C., Vol34, 3, pp. 293-305, 1989. 

[2] D'Andrea R., Paganini F., "Controller Synthesis for Implicitly Defined Uncertain SystemsJ', 
Proceedmgs 1994 CDC, Orlando, FL., pp 3679-3684. 

[3] D'Andrea R., "Convex Conditions for Controller Synthesis via Implicit Constraints", Submitted 
1995 CDC, New Orleans. 

[4] Dahleh, M.A., Diaz-Bobillo 1. J., Control of Uncertain Systems, Prentice Hall, 199 5. 

[5] Doyle J.C., "Guaranteed margins for LQG regulatorsJ', IEEE Trans. A.C., vol23(4), pp. 756-75 7, 
1978. 

[6] Doyle J.C. et. al., Mixed Hz and gffi Performance Objectives LI: Optimal Control IEEE Trans. 
A.C., Vol 39, 8, pp. 1575-1587. 

[7] Gahinet P. et. al., The LMI Control Toolbox, Beta-Release, Nov. 1994, The MathWorks Inc. 

[8] Khargonekar P., Rotea M., "Mixed Hz 1/31, Control: A Convex Optimization ApproachJJ, IEEE 
Trans. C.C., Vol 36, 7,pp. 824-837, 1991. 

[9] Khammash M., Pearson J.B., "Performance Robustness of Discrete-Time Systems with Struc- 
tured Uncertainty'', IEEE Trans. A.C., vol AC-36,4, pp 398-412, 1991. 

[lo] Megretski A., Treil S., 'Tower Distribution Inequalities in Optimization and Robustness of 
Uncertain SystemsJ', Journal of Mathematical Systems, Estimation and Control, Vol 3, No.3, 
pp 301-319, 1993. 

[ l l ]  Packard A., "Gain Scheduling via Linear Fractional TransformationsJJ, System and Control 
Letters, Vol:22 (2), 1994, pp. 79-92. 

[12] Packard A., Doyle J.C., "The Complex Structured Singular ValueJ', Autornatica, Vol. 29, No. 1, 
pp. 71-109 

[13] Paganini F., D'Andrea R., and Doyle J.C., "Behavioral Approach to Robustness AnalysisJ', Pro- 
ceedings 1994 ACC, Baltimore, MD., pp. 2782-2786. 



[14] Paganini F., "Necessary and Sufficient Conditions for Robust Hz Performance", Submitted 
1995 CDC, New Orleans. 

[15] Paganini F., Set "Descriptions of White Noise and Worst Case Induced Norms", Proceedings 
1993 CDC, San Antonio, Texas, pp. 3658-3663. 

[16] Paganini F., personal comn3.unication. 

[17] Petersen I., McFarlane D., Rotea M., "Optimal guaranteed cost control o f  discrete-time uncer- 
tain linear systems" 12th IFAC World Congress, Sydney, Australia, pp. 407-410. 

[ la]  Sharnrna J., "Robust Stability with Time Varying Structured Uncertainty", IEEE Trans. A.C., 
V O ~  39, 4,pp 714-724, 1994. 

[19] Stoorvogel A.A., "The Robust 5% Control Problem: A Worst-Case Design", IEEE Trans. A.C.,Vol 
38,9, pp. 1358-1370, 1993. 

[20] Strang G., Linear Algebra and its Applications Harcourt Brace Jovanovich, Publishers, 1988. 

[21] Zhou K., Doyle J.C., Glover K., Optimal and Robust Control, to appear 1995. 


