
SINS: A Middleware for Autonomous Agents and Secure
Code Mobility

In Proc. Security of Mobile Multiagent Systems (SEMAS-2002). AAMAS 2002, Bologna, Italy. July 16, 2002

[Extended Abstract]

Ramesh Bharadwaj
Center for High Assurance Computer Systems

Naval Research Laboratory
Washington, DC, 20375-5320 USA

ramesh@itd.nrl.navy.mil

1. INTRODUCTION
Building trusted applications is hard, especially in a dis-

tributed or mobile setting. Existing methods and tools are
inadequate to deal with the multitude of challenges posed by
distributed application development. The problem is exacer-
bated in a hostile environment such as the Internet where, in
addition, applications are vulnerable to malicious attacks. It
is widely acknowledged that intelligent software agents pro-
vide the right paradigm for developing agile, re-con�gurable,
and e�cient distributed applications. Distributed process-
ing in general carries with it risks such as denial of ser-
vice, Trojan horses, information leaks, and malicious code.
Agent technology, by introducing autonomy and code mobil-
ity, may exacerbate some of these problems. In particular, a
malicious agent could do serious damage to an unprotected
host, and malicious hosts could damage agents or corrupt
agent data.
Secure Infrastructure for Networked Systems (SINS) be-

ing developed at the Naval Research Laboratory is a mid-
dleware for secure agents intended to provide the required
degree of trust for mobile agents, in addition to ensuring
their compliance with a set of enforceable security policies.
An infrastructure such as SINS is central to the successful
deployment and transfer of distributed agent technology to
Industry because security is a necessary prerequisite for dis-
tributed computing.

2. SECURITY REQUIREMENTS OF MO-
BILE AGENTS

The following requirements of secure mobile agents (see
[5]) are addressed by SINS:

� The author and initiator of an agent must be authen-
ticated.

� The integrity of an agent's code must be checked.

� Interpreters must ensure that agent privacy is main-
tained during data exchange.

� Interpreters must protect themselves against malicious
agents.

� Interpreters must ensure that migrating agents are in
a safe state.

� Agents must protect themselves from malicious hosts
and interpreters.

� An initiator must be able to control an agent's 
exi-
bility; i.e., restrict or increase an agent's authorization
in speci�c situations.

� Initiators must be able to control which interpreters
are allowed to execute their agents.

3. SINS ARCHITECTURE
Figure 1 shows the architecture of SINS. Agents are cre-

ated in a special purpose synchronous programming lan-
guage called Secure Operations Language (SOL) [1]. A SOL
application comprises a set of modules, each of which runs
on an Agent Interpreter (AI). The AI executes the module
on a given host in compliance with a set of locally enforced
security policies. A SOL application may run on one or more
AIs, spanning multiple hosts across multiple administrative
domains. Agents are created using a visual language known
as visual SOL (vSOL) in an Agent Creation Environment
(ACE), and are automatically translated into SOL. Agent
Interpreters communicate among themselves using an inter-
agent protocol [7], similar to SOAP/XML [8].
Currently, protection of agents from malicious hosts is an

area of active research. Therefore, in our initial implementa-
tion of SINS, we assume a degree of trust among the hosts.
This is reasonable, especially in a large organization such as
the Department of Defense, where one may assume that ex-
tant policing methods and techniques for intrusion detection
are able to identify and isolate malicious hosts and eaves-
droppers. We plan to address the more general problem

Host

Host

Host

Agent

Interpreter

Agent

Agent

Interpreter

Interpreter

Agents

Agents

Agents

Encrypt

Encrypt

E
n
c
r
y
p
t

E
n
c
r
y
p
t

E
n
c
r
y
p
t

Figure 1: Architecture of SINS.



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2002 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2002 to 00-00-2002  

4. TITLE AND SUBTITLE 
SINS: A Middleware for Autonomous Agents and Secure Code Mobility 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Research Laboratory,Center for High Assurance Computer
Systems,4555 Overlook Avenue, SW,Washington,DC,20375 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

3 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



of survivability and agent protection in our future work.
Therefore, the current SINS implementation assumes the
following:

� A host will run an agent interpreter to completion.

� All agent interpreters will run agents correctly.

� An agent interpreter will transfer agent data as re-
quested.

� Agents' code and data cannot be kept private from
hosts.

� Agent-to-agent communication cannot be kept private
from hosts.

� Agents cannot carry secret keys.

4. TECHNICAL APPROACH
The SINS middleware and the associated Agent Creation

Environment are designed to explicitly address requirements
of security and high assurance described above, in addition
to related problems of agent creation, deployment, and inte-
gration into the host after deployment. Although security is
our primary concern, we also address problems of e�ciency,
recon�gurability, and ease of agent creation and debugging.
SINS addresses each of the security requirements as detailed
below:

4.1 Authentication and Authorization
In SINS, code distribution is distinct from agent instantia-

tion. Consequently, the issue of code tampering by possibly
compromised hosts is addressed. Agent code resides in a
SOL code repository and is digitally signed. Hosts retrieve
the code either directly from the repository or from another
host that has the most recent cached copy. The execution
of a set of agents comprising a SOL application is initiated
by a single host. SINS provides role-based access control
& management (RBAC) and trust management (TM) to
authenticate the agent initiator and to provide access to re-
sources on a given host. The initiating host has �ne-grained
control over each agent in the application. This gives the
initiator the ability to run the agents with restricted au-
thority in most cases, but with greater authority in certain
situations.

4.2 Integrity of Agent Code
All agents are programmed in SOL, a veri�able synchronous

language [1]. As opposed to agents developed in a Turing-
complete general purpose language such as Java, whose prop-
erties such as termination are undecidable, many properties
of agents programmed in SOL, a more restricted language,
are decidable. All analyzed and veri�ed SOL agents are
guaranteed to have no unbounded loops, violations of array
index bounds, bu�er over
ows, etc. Therefore, as opposed
to other agent systems where code integrity is based merely
on trusting the author of the agent's code, integrity of agent
code is ensured in SINS by proving (with mathematical cer-
tainty) the safety of SOL agents and their compliance with
a host's local security policies. SINS includes a compliance
checker (CC) [3] which establishes formally the compliance
of the behavior exhibited by a SOL agent, or a set of agents,
with the required security properties and the local security
policies.

4.3 Agent Privacy
Agent Interpreters communicate among themselves using

a secure protocol (SSL) which ensures agent privacy during
data exchange and prevents casual intruders from eavesdrop-
ping on inter-agent message exchanges. Also, SINS imple-
ments a security architecture for monitoring and coordinat-
ing agents' activities.

4.4 Protection from Malicious Agents
Since SOL agents are composable and modular, CC can

evaluate emergent behavior of agent communities, which is
generally not possible in the absence of an agent aggrega-
tion framework. This capability enables early detection and
prevention of an organized, cooperative attack in an envi-
ronment in which each agent performs some action that falls
beneath the threshold of most analysis techniques, but ef-
fects serious damage as a distributed attack. Currently these
types of vulnerabilities have de�ed formal analysis.

4.5 Safe Agent Migration
Because a migrating agent can become malicious, we equip

each agent in SINS with an appropriate state appraisal func-
tion which is used each time an interpreter activates an
agent. The state appraisal function ensures that an agent
will perform as required and that its data has not been tam-
pered with. The static analysis tool CC can guarantee that
the state appraisal function satis�es key safety properties
and is in conformance with security policies being enforced
at a given host.

4.6 Agent Protection from Malicious Hosts
As we mentioned before, SINS agents are currently not

fully protected from a malicious host. However, the likeli-
hood of agent corruption by a host is minimized by the in-
troduction of a special class of agents called security agents
[2] that police other agents such as application agents de-
veloped to support a given distributed application. Security
agents protect a system against Information Operation (IO)
attacks by implementing key security features such as en-
cryption, authorization, policy enforcement, virus checking,
and intrusion detection. Since security agents have more
privileges than application agents, we need higher assurance
during their development, deployment, and integration that
they are safe and secure. This is achieved by the three-
pronged approach of programming them in a safe language
(SOL), by applying the compliance checker to establish for-
mally their compliance with required safety properties, and
by the security architecture for monitoring and coordinating
agents' activities.

5. SECURITY AGENTS
In this section, we shall examine how enforceable safety

and security policies [6] are expressed as Security Agents
in SOL. The enforcement mechanism of SOL works by ter-
minating all instances of an agent for which the safety or
security policy being enforced no longer holds.

5.1 A Brief Introduction to SOL
Amodule is the unit of speci�cation in SOL and comprises

variable declarations, assumptions and guarantees, and de�-
nitions. The assumptions section typically includes assump-
tions about the environment of the agent. Execution aborts



nonempty

@push / depth = depth + 1 @push when (depth < max_depth) /

@pop when (depth == 1) / depth = 0

@pop when (depth > 1) /
depth = depth - 1

depth = depth + 1

/ depth = 0

empty

(depth  == 0) (depth > 0)

Figure 2: vSOL representation of safestack.

when any of these assumptions are violated by the environ-
ment. The required safety properties of an agent are spec-
i�ed in the guarantees section. The definitions section
speci�es updates to internal and controlled variables.
A variable de�nition is either a one-state or a two-state

de�nition. A one-state de�nition, of the form x = expr

(where expr is an expression), de�nes the value of vari-
able x in terms of the values of other variables in the same
state. A two-state variable de�nition, of the form x =
initially init then expr (where expr is a two-state ex-
pression), requires the initial value of x to equal expression
init; the value of x in each subsequent state is determined in
terms of the values of variables in that state as well as the
previous state (speci�ed using operator PREV or by a when
clause). A conditional expression, consisting of a sequence of
branches \[] guard! expression", is introduced by the key-
word \if" and enclosed in braces ("{" and "}"). A guard
is a boolean expression. The semantics of the conditional
expression if f []g1 ! expr

1
[]g2 ! expr

2
: : : g is de�ned

along the lines of Dijkstra's guarded commands [4] { in a
given state, its value is equivalent to expression expr

i
whose

associated guard gi is true. If more than one guard is true,
the expression is nondeterministic. It is an error if none of
the guards evaluates to true, and execution aborts. The
case expression case expr f []v1 ! expr

1
[]v2 ! expr

2
: : : g

is equivalent to the conditional expression if f [](expr ==
v1)! expr

1
[](expr == v2)! expr

2
: : : g. The conditional

expression and the case expression may optionally have an
otherwise clause with the obvious meaning.

5.2 Safety Property Enforcement
We examine how SOL Security Agents are used to enforce

safety properties. The example we shall use is a stack, which
has the associated methods push, pop, and top. Informally,
push(x) pushes the value of integer variable x on the stack
and pop() pops the topmost value o� the stack. The method
top() returns the current value at the top of the stack and
leaves the stack unchanged. The stack can accommodate
at most max depth items. The safety policies we wish to
enforce are: (i) No more than max depth items are pushed
on the stack. (ii) Invocations of methods top and pop are
disallowed on an empty stack. Figure 3 shows a SOL module
safestack which enforces these safety policies on all SOL
modules which use the stack object (implemented in the
embedding language). Figure 2 is the module safestack
rendered in the visual syntax of SOL using ACE. Note that
by deliberately omitting the otherwise clauses in the if
statements, we abort the execution of an agent when none
of the guards is true during execution. If this is too drastic,
corrective action may be speci�ed in an otherwise clause;
for example, to ignore all push actions when the stack is full.

6. CONCLUSIONS
The goal of the NRL secure agents project is to develop

enabling technology that will provide the necessary secu-

deterministic reactive module
safestack(integer max_depth) {

interfaces
void push(integer x);
void pop();
integer top();

internal variables
{empty, nonempty} status;
integer in [0:max_depth] depth;

guarantees
INV1 =
(status == empty) <=> (depth == 0);

definitions
[status, depth] = initially [empty, 0] then
case PREV(status) {
[] empty ->
if {

[] @push -> [nonempty, PREV(depth) + 1]
// other operations illegal!

}
[] nonempty ->
if {

[] @top ->
[PREV(status), PREV(depth)]

[] @pop when (depth > 1) ->
[nonempty, PREV(depth) - 1]

[] @pop when (depth == 1) ->
[empty, 0]

[] @push when (depth<max_depth) ->
[nonempty, PREV(depth) + 1]

// @push when (depth == max_depth) illegal!
}

}; // end case
} // end module safestack

Figure 3: Security agent for safestack.

rity infrastructure to deploy and protect time- and mission-
critical applications on a distributed computing platform,
especially in a hostile computing environment such as the
Internet. Our intention is to create a robust and survivable
information grid that will be capable of resisting threats and
surviving attacks. One of the criteria on which this technol-
ogy will be judged is that critical information is conveyed
to principals in a manner that is secure, safe, timely, and
reliable. No malicious agencies or other threats will be able
to compromise the integrity or timeliness of delivery of this
information.

7. REFERENCES
[1] R. Bharadwaj. SOL: A veri�able synchronous language for

reactive systems. In Proc. Synchr. Languages, Apps., and
Programming, ETAPS 2002, Grenoble, France, April 2002.

[2] R. Bharadwaj et al. An infrastructure for secure
interoperability of agents. In Proc. Sixth World
Multiconference on Systemics, Cybernetics, and Informatics,
Orlando, Florida, July 2002.

[3] R. Bharadwaj and S. Sims. Salsa: Combining constraint
solvers with BDDs for automatic invariant checking. In Proc.
6th TACAS, ETAPS 2000, Berlin, March 2000.

[4] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall,
1976.

[5] W. M. Farmer et al. Security for mobile agents: Issues and
requirements. In Proc. National Information Systems
Security Conference, October 1996.

[6] F. B. Schneider. Enforceable security policies. ACM Trans.
Infor. and System Security, 3(1):30{50, February 2000.

[7] E. Tressler. Inter-agent protocol for distributed SOL
processing. Technical Report To Appear, Naval Research
Laboratory, Washington, DC, 2002.

[8] W3C. Simple Object Access Protocol (SOAP) 1.1. Technical
Report W3C Note 08, The World Wide Web Consortium,
May 2000.


