
Merging Paradigms of Survivability and Security:

Stochastic Faults and Designed Faults ∗

J. McDermott, A. Kim, and J. Froscher
Naval Research Laboratory

Washington, DC 20375, USA
mcdermott@itd.nrl.navy.mil

18 August 2003

Abstract

Faults are examined by both the security and fault tolerance commu-
nities. These communities have strikingly different views of the types of
faults that exist, the way they are modeled, and how they are addressed.
One community can pronounce a system survivable but the other commu-
nity would not find this to be so. This leaves us with two approaches that
both fail to be comprehensive, depending on which community is looking
at the system. While intrusion-tolerance and security researchers look at
faults in terms of statistically dependent events caused by the hard in-
truder, the fault tolerance literature assumes that faults are statistically
independent and can be described as random variables with probability
distributions. When considering the survivability of a system, we cannot
assume that the system is susceptible to only one type of fault or the
other, but this is common practice in both communities. A new paradigm
is needed.

1 Introduction

When thinking of survivable systems, we expect them to perform in the face
of faults (or at least fail in the expected manner). Therefore, understanding,
modeling, and correcting these faults are very important steps in the surviv-
ability arena. While system faults are examined by both the security and fault
tolerance communities, those communities have strikingly different views of the
types of faults that exist, the way they are modeled, and how they are ad-
dressed. The different communities can look at the same system and identify
different sets of faults, thus also devising different survivability approaches. One
community can pronounce a system survivable but the other community would

∗New Security Paradigms Workshop 2003,18 August 2003, Ascona, CH. ACM 1-58113-
880-6/04/04. This work was produced by the US Government and is not subject to copyright.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
18 AUG 2003 2. REPORT TYPE

3. DATES COVERED
 00-00-2003 to 00-00-2003

4. TITLE AND SUBTITLE
Merging Paradigms of Survivability and Security: Stochastic Faults and
Designed Faults

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,4555 Overlook Avenue,
SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

not find this to be so. This leaves us with two approaches that both fail to be
comprehensive, depending on which community is looking at the system.

Security researchers and fault-tolerance researchers look at survivability from
opposing viewpoints. Security people view it in terms of trust relationships while
the fault tolerance literature focuses on redundancy and reconfiguration In sum-
mary, one community models faults as worst-case behavior of hypothetical in-
truders while the other considers faults to be stochastic. This results in solutions
from both paradigms that cannot handle faults from the other paradigm.

In this paper, we introduce some definitions and concepts that are impor-
tant in understanding the conceptual differences between the two opposing lit-
eratures, describe the different types of fault classes and intruders that the two
literatures focus on, and propose that a new paradigm shift is required in this
area if a system is to be truly survivable.

1.1 Definitions

Powell, Stroud, et al.[11] provide an insightful interpretation of general depend-
ability concepts [1, 7] for security. We follow their definition:

• attack - a malicious interaction fault aiming to intentionally violate one
or more security properties; an intrusion attempt via a vulnerability.

• vulnerability - an accidental fault, or a malicious or non-malicious inten-
tional fault, in the requirements, specification, design, implementation, or
configuration of the system or its use, that could be exploited to create
an intrusion.

• intrusion - a malicious, externally-induced fault resulting from a successful
attack.

Following conventional security practice, we qualify attack, vulnerability, or
intrusion with a general security property that may be violated: e.g. confiden-
tiality, integrity, or availability. For example, we may have a confidentiality
attack or an availability intrusion. This distinction is important because, for
example, an approach that tolerates availability intrusions may not tolerate con-
fidentiality intrusions. For example, redundant copies of a data item x allow a
system to tolerate availability intrusions that damage some but not all of copies
of x. However, a confidentiality intrusion that results in an unauthorized read
of data item x cannot be tolerated by redundant copies, since the service (con-
fidentiality of x) cannot continue, be restored, or be compensated for using the
redundancy.

1.2 Hard Intruders and Gremlins

Security not only brings the notion of attack, vulnerability, and intrusion faults
to dependability, it also brings with it the notion of an intruder. The significant
characteristics of intruders are the rate at which they occur, their objectives,

2

their capabilities, and their willingness to take risks. Of these characteristics,
only the intruder’s rate of occurrence is probabilistic and even then it is not
ergodic.

In this paper we consider two kinds of intruders. In the spectrum of intruder
characteristics these two represent extremes that make our point clear. Con-
sideration of intruders, such as script kiddies, who fall between these extremes,
obscures the point we are trying to make. One kind, hard intruders, have rel-
atively high-value objectives, low risk aversion, high skills, and high resource
levels. The other has no objective at all, low skills, low risk aversion, and the
capability to attack any component at any point in its life cycle. We call the
latter gremlins.

A hard intruder may be a team defending a world view (i.e. a very high
value objective), some of the team members may have a very low risk aversion
for this goal, the team may have many person-months to develop attack tools,
and some team members may have high security experience. Our thesis and
our experience is that hard intruders have a significant rate of occurrence for
high-consequence systems. Since hard intruders have statistically dependent
impacts on containment regions and components, Byzantine faults [10] do not
model them accurately. We use the notion of hard intruders in a way that is
analogous to Nielson and Nielson’s hardest attacker [9]: we look at what are
arguably the most difficult faults to address via fault-tolerance approaches.

In contrast to hard intruders we use the notion of spontaneous intruders
or gremlins because they are arguably the most difficult to address via trusted
approaches used to counter hard intruders. The term gremlin originated in the
RAF during the first half of the twentieth century and referred to an imaginary
gnome-like creature responsible for inexplicable failures in aircraft. Person-
ify stochastic faults as gremlins to show how trusted, unbypassable, tamper-
resistant components have difficulty in coping with stochastic faults. The most
significant fact about gremlins is that they can attack any component at any
point in its life cycle. Unlike hard intruders who are real persons, gremlins are
imaginary beings that cannot be stopped by trusted design,development, and
deployment. On the other hand, gremlins do not perpetrate very sophisticated
attacks and have no specific objective. The damage or impact on one compo-
nent is usually statistically independent of any impact on other components.
Therefore, Byzantine faults can accurately model the behavior of gremlins.

2 Problematic Faults

As aforementioned, the types of faults that are examined in the two opposing
literatures can be categorized into two different classes. In a nutshell, the fault
tolerance literature focuses on stochastic faults, and the security literature fo-
cuses on designed faults. Before we can address the different types of faults
together, we need to examine each class of fault in more detail.

3

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

application

4

host A

1

2

host B

operating
system

secure
middleware

3

Figure 1: Architecture Attack

2.1 Designed Faults

Hard intruders cause designed faults 1. According to our definition of an at-
tack or intrusion as a fault, designed faults are attacks or intrusions that are
matched to the design assumptions and assertions 2 about the system under at-
tack. A designed fault invalidates one or more of the assertions or assumptions
that intrusion-tolerance or security depends upon. Designed faults may include
common mode faults as replicated attacks on redundant components, with the
intention of defeating the redundancy. Designed faults may include architec-
ture faults, as attacks or intrusions that are directed at a part of a system that
does not directly enforce the policy being challenged. Architecture attacks or
intrusions bypass protection mechanisms. For example, an integrity attack may
be conducted via host operating systems when the applicable integrity policy is
enforced by middleware, thus bypassing the defense.

Designed faults (attacks or intrusions) are overlooked by the fault tolerance
community because they do not affect tolerance structures in statistically inde-
pendent ways. Approaches based on redundancy only work if we assume that
the attacks or intrusions are not replicated in a corresponding way. Approaches
based on reconfiguration only work if we assume that the attack or intrusion
does not reconfigure to match the new security posture. Designed attacks or
intrusions can, by definition, be expected to employ the precisely corresponding
techniques.

The limitation of fault-tolerance techniques is that they assume that random
variables with tractable distributions accurately describe all faults. On the
basis of these random variables, fault-tolerance approaches assume that some

1We mean “designed” and not “design.”
2Assumptions are conditions on the environment of a system and assertions are conditions

that the system satisfies.

4

components or configurations will not be affected by a fault. On the other hand,
because the approaches assume 3 completely random behavior, they can deal
with faults that occur in unpredictable locations with unpredictable behavior.
The behavior of a designed fault is, from a fault-tolerance point of view, so
unusual as to be practically impossible. Thus, no provision is made for dealing
with designed faults. In fact, it would be awkward at best and intractable in
most cases to try to model designed faults as random variables.

2.2 Stochastic Faults

Gremlins perpetrate stochastic faults. That is, there are no human sponsors
behind the faulty behavior. Stochastic faults can be due to software flaws, hard-
ware failures, unintentional misuse, or external damage such as fire or weather.
Whatever the cause, the effect is the same as if imaginary but relatively ignorant
persons were given unrestricted access to randomly chosen components.

Fault-tolerance approaches use redundant fault containment regions [3] to
deal with stochastic faults. There is no attempt to reason about specific traces
of behavior. Instead, some very general behavior such as fail-stop or Byzan-
tine communication is assumed for the region as a whole, and the rest of the
system is designed to operate with these kinds of faults in several of its re-
gions. Because they make no assumptions about specific fault behavior, fault
tolerance approaches are very powerful in the presence of stochastic failures.
Trusted component-based approaches used by the security community on the
other hand, find stochastic faults to be most problematic to deal with. Security
approaches are intended to resist designed attacks and are based on models of
hard intruders. A hard intruder is posed for each class of fault (e.g. confiden-
tiality) and a careful design, development, and deployment process is followed.
The goal of the process is a system comprising a (relatively) small number of
trusted components with the rest being untrusted. The meaning of trusted
is that 1) the hard intruder has no access to the trusted components and 2)
hard intruder manipulation of any combination of untrusted components will
not succeed, because of the way the trusted components interact. This trust
is established by reasoning about sets of specific system traces and no random
variables are used.

Trusted component approaches assume some components can be ruled inac-
cessible to intruders during some or all phases of their life cycle. Since gremlins
can appear in any component, it is not possible to have a component that is
trusted with respect to stochastic faults. Furthermore, since gremlins can ex-
hibit a wide range of (stochastic) behavior, reasoning about a particular gremlin
in terms of sets of traces is essentially intractable. The problem with these secu-
rity approaches is that they assume that sets of traces describing the behavior
of (possibly hard) intruders accurately models all faults.

From a trusted components point of view, gremlins (the intruders behind
stochastic faults) are imaginary and thus not considered at all. Thus, no provi-

3From a certain point of view.

5

Security Community Fault Tolerance Community
Nature of Faults Designed Stochastic
Attacker Hard Intruder Gremlin
Approaches Trusted Components Redundancy and Reconfiguration
Weakness Stochastic Faults Designed Faults

Table 1: Characteristics of Problematic Faults from the Two Paradigms

sion is made for dealing with them. No amount of logical verification can keep
them out, because they are stochastic.

3 A Paradigm Shift

The following table summarizes the major differences between the ways the two
communities approach survivability in terms of faults.

These two problematic kinds of faults have limited the practical survivability
of current and proposed survivable systems. Any survivable or intrusion-tolerant
system that is based upon redundancy or reconfiguration and that does not
consider hard intruders, is probably ineffective against designed attacks. Any
survivable or intrusion-tolerant system that is based upon trusted, unbypass-
able, tamper-resistant components and that does not consider stochastic faults,
is probably ineffective in the presence of gremlins. Current research in surviv-
ability and intrusion tolerance is proceeding in just this fashion. A paradigm
shift is needed to build truly survivable systems.

There are at least three ways to shift toward the new paradigm: 1) from
fault-tolerance approaches toward designed faults, 2) from trusted-component
approaches toward stochastic faults, and 3) increasing the expressiveness of
models such as stochastic process algebra [4] to encompass practical systems.

The first approach should be adopted when coming from the field of fault tol-
erance. Results should show the required trust relationships among redundant
components of an intrusion-tolerant architecture and show how the redundant
components can achieve the required level of trust. They should also seek to
define significant hard intruders and show how the trust relationships frustrate
these intruders.

The second approach should be the first step when coming from the secu-
rity community. Results should be based on trusted component approaches
but make provisions for dealing with stochastic faults through redundancy and
reconfiguration. For example, multilevel secure database approaches could be
adapted to make them Byzantine fault tolerant.

Both approaches 1 and 2 can be applied with incremental extensions of
known results from the appropriate community. However, both approaches 1
and 2 have the potential to merely shift the focus from one to the other without
completely addressing the problems in each. Therefore, expanded models that

6

encompass both types of faults (and intruders) are the ideal approach for deal-
ing with the issues of stochastic faults and designed faults. Stochastic process
algebra4 is a good example of an expanded approach because it can model not
only the functional behavior of concurrent systems, but probabilistic aspects as
well, which are required when considering stochastic faults. For example, the
mission of an organization (and the system that supports this mission) may be
to deliver the correct computational results (functional) for a certain fraction of
the time, given a certain rate of fault occurrence (probabilistic). Unfortunately,
stochastic process algebras per se do not appear to be sufficiently well-developed
for direct application to survivability. Further work is required by researchers
in foundation issues, toward new expanded modeling approaches (e.g. improve-
ments in stochastic process algebra).

3.1 Stochastic Process Algebra Example

A simple application of stochastic process algebra will make the preceding dis-
cussion more concrete. We want to show two things with this example: 1) what
a successful new paradigm might look like, and 2) the kinds of limitations that
we find in current candidates for this paradigm.

We will use PEPA [5] as the stochastic process algebra, with some changes in
notation that make security modeling easier. In PEPA the instantaneous action
α of a conventional process algebra is replaced by the activity (α, r) where α
is the action type and r is the rate of the activity. An activity (α, r) has a
duration which is an exponentially distributed random variable. The rate r is
the parameter for the distribution of the duration.

Our first extension is the use of compound action types for the activities of
a process P . In basic PEPA, the action type of an activity is denoted either
by a Greek letter such as α or an identifier such as send. For our purposes, we
use compound action types where the components are composed by the ordered
tuple notation, thus 〈send, a, noncea〉 represents the action type for sending a
message containing Alice’s identifier and a nonce. In PEPA a process X that
engages in activity a of action type α with activity rate r and then acts like
process P is denoted

X = (α, r).P

or, with a compound action type

X = (〈send, a, noncea〉, r).P

In addition to the change in notation we will also use renaming functions to
establish associations between activities in different processes. For example,
suppose we have two processes P1 and P2 defined as P1 = (send, r1).P1 and
P2 = (receive, r2).P2. We wish to connect these two processes by arranging for

4Stochastic Petri Nets (SPN) [8] are another possibility, but they do not model abstraction
and composition as well as process algebras. It is difficult to compose a model of good
components with an intruder model, using SPN. Another possible approach is the Box Calculus
[2], an extension of Petri nets.

7

their first activities to have a common activity type. This accomplished by a
renaming function f defined as follows

f((send, r)) = (receive, r)
f((α, r)) = (α, r) , α 6= send

When this function is applied to a process the result is a new process with the
action types renamed according to the function. Using the function f defined
above f(P1) becomes

f(P1) = (receive, r1).f(P1)

We can now combine the two processes to communicate by means of the
PEPA cooperation operator

f(P1) BC
{receive}

P2

The meaning of this construct is similar to the meaning of parallel operators in
conventional process algebras. Activities in P1 or P2 with action types other
than receive will proceed independently. Activities of type receive must com-
plete in both P1 and P2, at the rate of the slower instance of receive.

The PEPA algebra was initially defined for performance modeling but we can
apply it to model survivability in the presence of both designed and stochastic
faults. PEPA models can be used as ordinary process algebra models, to show
the effects of designed faults. To show the effects of stochastic faults we use a
basic construction that starts by defining a constant process FAIL

FAIL
def= (τ,>).FAIL (1)

Process FAIL only performs internal events with the unknown action type τ
and don’t care rate >. We use process FAIL and the PEPA choice operator +
to give every process the alternative of failing. For example, suppose we need to
include a process (α, r).P in a model. To make this process fallible, we replace
it with the process

(α,
(k − 1)r

k
).P + (α,

r

k
).FAIL (2)

This new process will perform an action of type α with rate r but then, with
probability 1/k, it may fail. (Our construction for fallible processes is remi-
niscent of transition-assigned-output state machines. Like the Mealy machine
that must perform a transition to have an output, all fallible processes must
complete at least one activity before failing.)

For our example, we will model a simple mutual authentication protocol
taken from Kaufman, Perlman, and Speciner [6]. Alice wishes to establish a
protected communications session with Bob. Alice starts the protocol run by
sending her userid and a nonce to Bob. Bob responds with a nonce of his own
and Alice’s nonce encrypted with their shared key kab. Alice then confirms the
session by responding to Bob with Bob’s nonce encrypted with their shared key
kab. The protocol steps are depicted in the sequence diagram of Figure 2.

8

nana

nb na kab
{ },

nb kab
{ }

,a
Alice Bob

Figure 2: Protocol Sequence Diagram

We model infallible Alice 5 as the process shown in Equation 3. To simplify
the exposition, we have shown each activity with the same rate r.

Alice = (〈send, a, na〉, r). +
k∈Key

n∈Nonce

(
(〈receive, nb, {na}kab

〉, r).

(〈send, {nb}kab
〉, r).Session(a, b, kab, na, nb)

) (3)

The sub-process of receiving Bob’s response, confirming Alice’s identity, and
running a session is modeled as a choice (+) indexed over all legal keys and
nonces that Alice might encounter. The term Session(a, b, kab, na, nb) denotes
a process that carries out a communication session using key kab, etc. We model
infallible Bob in a similar fashion, with indexed choice used to model the fact
that Bob is prepared to attempt a protocol run with any legal key and nonce.

Bob = +
k∈Key

n∈Nonce

(
(〈receive, a, na〉, r).(〈send, nb, {na}kab

〉, r).

(〈receive, {nb}kab
〉, r).Session(a, b, kab, na, nb)

) (4)

By using our previously defined renaming function f , we can combine processes
Alice and Bob into a complete protocol run. This gives us a model of the
protocol that is suitable for analysis wrt designed attacks.

f(Alice) BC
{receive}

f(Bob) (5)

We can adapt the model of Equation 5 to look at stochastic faults by making
Alice and Bob fallible processes, using the approach of Equation 2. To simplify
our exposition, we will assume that all activities occur at the same rate r and
that all failures have the same probability 1/k. A fallible Alice is

5That is, we don’t include failure probabilities using the method of Equation 2.

9

Alice = (〈send, a.na〉, (k − 1)r/k).
+

k∈Key
n∈Nonce

(
(〈receive, nb, {na}kab

〉, (k − 1)r/k).

(〈send, {nb}kab
〉, (k − 1)r/k).Session(a, b, kab, na, nb)

+
(〈send, {nb}kab

〉, r/k).FAIL
+

(〈receive, nb, {na}kab
〉, r/k).FAIL

)
+

(〈send, a, na〉, r/k).FAIL

(6)

We also show a fallible Bob process as

Bob = +
k∈Key

n∈Nonce

(
(〈receive, a, na〉, (k − 1)r/k).
(〈send, nb, {na}kab

〉, (k − 1)r/k).
(〈receive, {nb}kab

〉, (k − 1)r/k).Session(a, b, kab, na, nb)
+

(〈receive, {nb}kab
〉, r).FAIL

+
(〈send, nb, {na}kab

〉, r).FAIL
+

(〈receive, a, na〉, r).FAIL)

(7)

It should be clear at this point that stochastic process algebra can model
both designed faults and stochastic faults. We can add an infallible intruder
process Y ves to our system and demonstrate, via the process algebra itself,
that f(Alice) BC

{receive}
f(Bob) is susceptible to a designed attack6.

We can also derive an underlying Markov model from the same PEPA model.
We will not present this derivation because it would detract from our example.
It is sufficient to say that any finite PEPA model has a corresponding finite-state
Markov process. The problem (and one of the foundational research issues) is
that the Markov processes corresponding to PEPA models with failure have
some states that are not positive recurrent7. The states corresponding to the
process FAIL constitute absorbing boundaries of the Markov process. Because
of this, the process may not have a stationary probability distribution and if
it does, the distribution may be difficult to find. Without a stationary prob-
ability distribution, it is hard to make concise statements about survivability
wrt stochastic failures. So basic PEPA, while promising, is difficult to use as
survivability paradigm.

6Exercise for the reader: find the attack.
7A state X in a Markov process is positive recurrent if the expected number of transitions

until the process returns to state X is finite.

10

4 Conclusions

Survivable systems need to not only correctly and accurately detect the pres-
ence of attack or intrusion faults, but also function properly (i.e. complete the
mission) in face of these faults, especially in mission-critical systems. At the
same time, these mission critical systems should also be able to survive faults
that are random and unpredictable in nature.

Both intrusions and random faults are faults to the system, and should not be
thought of separately when considering survivability of mission-critical systems.
However, in reality, these two types of faults lack a common research plateau
on which to define, model, examine, and counter faults. That is because, while
both the intrusion-tolerance and fault tolerance communities examine system
faults, these communities have strikingly different views of the types of faults
that exist, the way they are modeled, and how they are addressed.

While intrusion-tolerance and security researchers look at faults in terms of
statistically dependent events caused by the hard intruder, the fault tolerance
literature assumes that faults are caused by gremlins and thus can be described
as random variables with probability distributions. However, when considering
the survivability of a system, we cannot assume that the system is susceptible
to only one type of fault or the other.

For a system to be truly survivable, we must consider the failure behaviors of
both classes of faults. In order to achieve this, we need to consider development
of models based on a combination of stochastic behavior and the ability to
reason about traces8. This kind of model can encompass both types of faults
and methods of dealing with them. For this purpose we suggest a paradigm
shift that enables research to merge these types of faults together.

This new paradigm would be much more useful since it can be used for all
stages of assessing survivable systems including fault prediction, fault tolerance,
fault recovery (removal), and validation. With these new research tools, we
can design systems and support mechanisms that are tolerant against not only
stochastic faults, but designed faults as well, creating a practical survivable
system.

The position stated in this paper may appear obvious to the reader. Unfor-
tunately, it is apparently not obvious to many of the researchers in the security
and survivability communities. Both research communities have spent much
time on complex algorithms or large prototypes that fail to address this issue.
Our approaches need to change.

References

[1] A. Avizenis, J. Laprie, and B. Randell. Fundamental concepts of depend-
ability. In Third Information Survivability Workshop, Boston, MA, October
2000.

8That is, specific detailed system behavior.

11

[2] E. Best, R. Devillers, and J.G. Hall. The Box calculus: a new causal algebra
with multi-level communication. In Advances in Petri Nets, volume 609.
LNCS, 1992.

[3] C. Davies. Recovery semantics for a db/dc system. In Proc. ACM Annual
Conference, pages 136–141. ACM Press, 1973.

[4] H. Hermanns, J.-P. Katoen, J. Mayer-Kayser, and M. Siegle. Towards
model checking stochastic process algebra. In W. Grieskamp, T. Santen,
and B. Stoddart, editors, 2nd Int. Conf. on Integrated Formal Methods
(IFM2000), 2000.

[5] J. Hillston. A Compositional Approach to Performance Modelling. Cam-
bridge University Press, 1996.

[6] C. Kaufman, R. Perlman, and M. Speciner. Network Security: Private
Communication in a Public World. Prentice Hall, 1995.

[7] J.-C. Laprie, J. Arlat, J.-P. Blanquart, A. Costes, Y. Crouzet, Y. Deswarte,
J.-C. Fabre, H. Guillermain, M. Kâniche, K. Kanoun, C. Mazet, D. Pow-
ell, C. Rabéjac, and P. Thévenod. Dependability Guidebook. Cépaduès-
Editions, Toulouse, 1995.

[8] M.K.Molloy. Performance analysis using stochastic petri nets. IEEE Trans-
actions on Computers, 31(9):913–917, September 1982.

[9] H. Nielson and F. Nielson. Hardest attackers. In Proc. Workshop on Issues
in Theoretical Security, Geneva, July 2000.

[10] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence
of faults. JACM, 27(2):228–234, April 1980.

[11] D. Powell and R. Stroud. Malicious- and accidental-fault tolerance for in-
ternet applications: Conceptual model and architecture. Technical report,
MAFTIA deliverable D2 (available as LAAS-CNRS Rep. 01426 or Univer-
sity of Newcastle upon Tyne CS-TR-749), November 2001.

12

