
CAPSL Interface for the NRL Protocol Analyzer

Stephen Brackin

Arca Systems

Ithaca, NY

brackin@arca.com

Catherine Meadows

Code 5543

Naval Research Laboratory

Washington, DC 20375

meadows@itd.nrl.navy.mil

Jonathan Millen

SRI International

Menlo Park, CA 94025

millen@csl.sri.com

Abstract

The Common Authentication Protocol Speci�cation
Language (CAPSL) is a high-level language for apply-
ing formal methods to the security analysis of crypto-
graphic protocols. Its goal is to permit a protocol to
be speci�ed once in a form that is usable as an inter-
face to any type of analysis tool or technique, given
appropriate translation software. This paper describes
the �rst operational CAPSL translator to the language
used by the NRL Protocol Analyzer (NPA), a software
tool developed speci�cally for the analysis of crypto-
graphic protocols.

1 Introduction

The past few years have seen an increasing interest
in the application of formal methods to the analysis
of cryptographic protocols. Here are the reasons for
this interest, and the response of the formal methods
community.

1.1 Background

It is well known that protocols for exchanging cryp-
tographic keys over data networks can be vulnerable
to a class of attacks in which an intruder can intercept
and alter messages in transit. In many cases, the secu-
rity objective of a protocol can be subverted without
\cracking" the cryptosystem, and the vulnerability is
referred to as a protocol failure.

The abundance of failures discovered in published
protocols led to the development of formal techniques
for their security analysis. These techniques include
the use of goal-directed state search tools implemented
in Prolog, the application of general purpose speci�-
cation and veri�cation tools, and a specially-designed

logic of belief, An outline of the history of the sub-
ject and some of the tools used can be found in [9].
Recently, search tools designed for hardware model-
checking have been successfully applied in this area as
well, such as [16] and related work mentioned in that
paper. Recent work in inductive techniques was stim-
ulated largely by Paulson [20]. A current survey of the
area may be found in [8].

It became evident that it was di�cult for analysts
other than the developers of the various techniques to
apply them. One reason for this di�culty is that the
protocols had to be re-speci�ed formally for each tech-
nique, and it was not easy to transform the published
description of the protocol into the required formal
system. Some tool developers began work on trans-
lators or compilers that would perform the transfor-
mation automatically. The input to any such trans-
lator still requires a formally-de�ned language, but it
can be made similar to the message-oriented protocol
descriptions that are typically published in articles,
books, and protocol standards documents. A transla-
tor can also supply certain \boilerplate" material that
changes little, if at all, from one analysis to the next,
such as the speci�cation of intruder capabilities.

This kind of thinking led to several languages: an
early version of CAPSL [15]; ISL, from which CAPSL
borrowed much of its style, supporting an application
of HOL to an extension of the GNY logic [2]; CASPER
[10], for the application of a model-checker FDR based
on CSP as an input language; and Carlsen's \Standard
Notation," from which per-process CKT5 speci�ca-
tions were generated [6]. The idea of making CAPSL
into a common language that could be used as the
input format for any formal analysis technique was
�rst presented at the 1996 Isaac Newton Institute Pro-
gramme on Computer Security, Cryptology, and Cod-
ing Theory at Cambridge University.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1999 2. REPORT TYPE

3. DATES COVERED
 00-00-1999 to 00-00-1999

4. TITLE AND SUBTITLE
CAPSL Interface for the NRL Protocol Analyzer

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Code 5543,4555 Overlook Avenue,
SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1.2 Implementation Plan

At this stage in the implementation of CAPSL, the
language has a draft speci�cation in the form of a tech-
nical report and a more recent description at a project
web site [5]. The long-range plan for CAPSL includes
developing an intermediate language (CIL, for CAPSL
intermediate language), so that a single compiler from
CAPSL to CIL can be shared by all users. Each tool
will then need a translator from CIL to its own input
language.

At present, CIL and associated tools are still under
development. However, it was felt to be important to
test the idea that an independently designed speci�ca-
tion language could be used to support a pre-existing
security analysis tool. This could be done by imple-
menting an interim translator directly from CAPSL to
the language of such a tool.

The �rst experiment along these lines is reported
here: to develop an interface for CAPSL to the Pro-
tocol Analyzer developed at the U.S. Naval Research
Laboratory (NRL).

1.3 The NRL Protocol Analyzer

The NRL Protocol Analyzer (NPA) is an interac-
tive program, written in Prolog, that can be used to
assist either in the veri�cation of security properties
or in the detection of security
aws. It has been used
successfully on a number of protocols and has found
unexpected
aws in several. It is currently being used
to analyze the Internet Key Exchange Protocol [12, 13]
and the Secure Electronics Transactions Protocol [14].
A more detailed description of a slightly earlier version
of the Analyzer than the one discussed in this paper,
that uses a somewhat di�erent speci�cation language,
may be found in [11]. The current speci�cation lan-
guage is somewhat more high-level, but is still seman-
tically consistent with the earlier one.

The analyzer requires protocols to be speci�ed as
a collection of rules expressing protocol state changes
and symbolic reduction axioms characterizing encryp-
tion operators. These rules have a conditional stat-
ment form and use Prolog syntax for individual terms.

In order to provide a CAPSL interface for the an-
alyzer, it was necessary to write a translator from
CAPSL to the analyzer rule language. The translation
process is divided into stages: (1) parsing the CAPSL
into an abstract syntax tree and symbol table; (2) gen-
erating an internal semantic representation, including
programs for each party in the protocol; and (3) gener-
ating the analyzer rules. The translator also generates
other output representations.

The CAPSL translator for the NPA foreshadows
the future universal CAPSL compiler in part, since the
parsing stage and the internal semantic representation
stage have essentially the same structure as the trans-
portable compiler, and only the last stage is NPA-
speci�c.

1.4 Summary of This Paper

In this paper, we give a brief taste of the CAPSL
language, followed by a description of the analyzer and
its speci�cation language, with some observations on
how the latter di�ers from CAPSL. We then describe
the design and implementation of the translator, and
�nally present some conclusions and lessons learned.

2 The CAPSL Language

A CAPSL speci�cation has three kinds of speci-
�cation units: protocols, types, and environments.
A protocol speci�cation describes a protocol or sub-
protocol. A type speci�cation introduces new en-
cryption operators, if necessary. (Type speci�cations
for standard encryption operators are provided au-
tomatically.) An environment speci�cation provides
scenario-speci�c details to set up an analysis session
for model checkers or other tools that need them.

A protocol speci�cation has three principal parts:
declarations, messages and goals. Rather than at-
tempt to cover the language in full here, we will just
convey the
avor of CAPSL with an example.

The Otway-Rees protocol involves two communi-
cating parties (initiator and responder) and a key
server. The initiator sends a request to the respon-
der, who forwards it to the key server. The key server
sends two copies of the key (one encrypted with the
initiator's master key, and one encrypted with the re-
sponder's master key) to the responder. The respon-
der forwards the initiator's copy to the initiator.

The Otway-Rees protocol is fairly well known [19];
it has some subtle
aws that do not concern us here.
We give the informal speci�cation of the Otway-Rees
Protocol �rst below. It has four messages.

1. A! B :M;A;B; fNA;M;A;BgKAS

A initiates the protocol with B. It sends a session
identi�er M along with a certi�cate encrypted
with a master key it shares with the server S.
The certi�cate contains a nonce, the session iden-
ti�er, and the names of A and B. In this protocol,
a nonce is a key-sized randomly-generated value.

2. B ! S : M;A;B; fNA;M;A;BgKAS ;
fNB;M;A;BgKBS

B forwards the certi�cate to S, but also concocts a
similar certi�cate of its own, in which it includes
its own nonce. It encrypts this certi�cate with
the master key KBS that it shares with S.

3. S ! B : M; fNA;KABgKAS ; fNB ;KABgKBS

S decrypts the certi�cates and checks that they
have the same identi�er. It then generates a ses-
sion key. It encrypts the key together with A's
nonce NA with A's key, and the key together with
B's nonce with B's key. Both results are sent to
B together with M.

4. B ! A :M; fNA;KABgKAS

B decrypts its certi�cate and checks for its nonce.
It forwards the remaining parts of the message
to A. A decrypts its certi�cate and checks for its
nonce.

We next give the CAPSL speci�cation. As one
can see, this is very close to the informal speci�ca-
tion, the main di�erence being that the information
given between the lines in the informal text is sup-
plied formally in the declaration part of the speci�-
cation. CAPSL also requires a formal statement of
the security goals. Functional notation is used here
for concatenation (con) and encryption (se), although
CAPSL allows the use of the bracket notation as an
option.

PROTOCOL Otway_Rees;

VARIABLES

A, B, S: Principal;

M: Field, FRESH;

Na, Nb: Field, FRESH, CRYPTO;

Kass, Kbs: Skey, CRYPTO;

Kab: Skey, CRYPTO, FRESH;

KeyTable(Principal): Skey;

DENOTES

Kass = KeyTable(A);

Kbs = KeyTable(B);

ASSUMPTIONS

HOLDS A: A, B, S, M, Na, Kass;

HOLDS B: B, S, Nb, Kbs;

HOLDS S: S, KeyTable, Kab;

MESSAGES

1. A -> B: M, A, B,

se(Kass,con(Na, M, A, B));

2. B -> S: M, A, B,

se(Kass,con(Na, M, A, B)),

se(Kbs,con(Nb, M, A, B));

Kass = KeyTable(A);

Kbs = KeyTable(B);

3. S -> B: M,

se(Kass,con(Na, Kab)),

se(Kbs,con(Nb, Kab));

4. B -> A: M, se(Kass,con(Na, Kab));

GOALS

SECRET Kass: A, S;

SECRET Kbs: B, S;

SECRET Kab: A, B, S;

END;

Some of the declarations are just type declarations,
and others re
ect concepts peculiar to authentication
protocol design. The nonces, for example, are declared
with quali�cations of FRESH and CRYPTO, meaning, re-
spectively, that they have not been used before and
that they are unguessable. These two properties are
separable, since some protocols use nonces that are
fresh but not unguessable (like TCP sequence num-
bers), and long-term keys are unguessable but not
fresh.

The variable KeyTable and the DENOTES equations
indicate how each party looks up the public key of
other parties. The HOLDS assumptions show which
variables are known initially by each party. The secu-
rity objectives stated here are that the keys are shared
secrets between A and B. One could also state other
objectives, such as a belief by B that A holds KAB
at the conclusion of the protocol run, which would be
expressed as BELIEVES B: HOLDS A: KAB.

The use of Kass instead of Kas is due to a naming
con
ict with a built-in use of kas as a key agreement
operator. This problem is avoidable and will be �xed.

Note that in the MESSAGES section it is possible to
interleave equations indicating tests or assignments
between messages. It is also possible to put in as-
sertions indicating message idealizations or intermedi-
ate goals. Furthermore, one may write conditional
statements that invoke named subprotocols, using
IF-THEN-ELSE and INCLUDE constructs.

3 The NRL Protocol Analyzer

The NRL Protocol Analyzer (NPA) is a tool for
proving security properties of protocols and for �nding
attacks on protocols if the security properties do not
hold. It works by having the user specify an insecure
state: the translator works backwards from that state
in an attempt to �nd a path starting in an initial state.
Originally, the search space is in�nite: the user reduces
the search space to a �nite one by proving a set of

lemmas. The formulation and proof of these lemmas
is not completely automatic, but a large amount of
automatic assistance is provided, and we expect to
provide more.

The model behind NPA is an extension of the
Dolev-Yao model [7]. We assume that the participants
in the protocol are communicating in a network under
the control of a hostile intruder. The intruder has the
ability to read all message tra�c, destroy and alter
messages, and create its own messages. Since all mes-
sages pass through the intruder's domain, any mes-
sage that an honest participant sees can be assumed
to originate from the intruder. Thus a protocol rule
describes, not how one participant sends a message
in response to another, but how the intruder manip-
ulates the system to produce messages by inserting
other messages.

Principals participate in a protocol by exchanging
words. Words are the analyzer's alebraic term repre-
sentations of message �elds. They are created out of
variables (denoted by strings beginning with a capi-
tal letter), atoms (denoted by strings beginning with
a lower-case letter), and function symbols that take
words as arguments. The result of applying a func-
tion symbol to a word or set of words is represented
by the function symbol together with those words as
arguments. Thus, if e denotes the encryption opera-
tor, the word e(K;X) denotes the result of encrypting
message X with key K.

We can now describe what an NPA speci�cation
looks like. A speci�cation consists of several parts,
the most important of which is a list of rules (called
protocol rules) describing how participants send, re-
ceive, and process messages. A protocol rule involves
four things: words that are input or learned by an
intruder, local state variables, local counters that are
incremented each time a protocol rule is �red, and
event statements that are used to describe the action
that occurred when a protocol rule was �red.

Each protocol participant possesses a counter rep-
resenting its local time. It is initially set to zero, and
is incremented by one every time a protocol rule in
which it is involved is �red.

If A is an honest participant in a protocol, a run
of the protocol local to A is de�ned to be a sequence
of state changes local to A de�ned by the protocol
designer. Each such state change de�nes a set of words
produced by A and a set of changes to A's internal
state variables. A run local to A is identi�ed by the
value of A's counter at the time the run begins. Any
state variable local to that run is identi�ed by the run's
identi�er. We note that a participant may participate

in two or more runs concurrently. Since they will be
identi�ed by di�erent local run values, they can be
kept distinct.

All values of state variables are initially empty. The
value of a state variable is computed as follows. Sup-
pose that at time T , as recorded in the participant's
counter, the value of a state variable S is Y . If a rule
�res at time T making the value of S equal to Z, then
the value of S at time T +1 is Z. If no such rule �res,
then the value of S at time T + 1 remains Y .

Besides describing the words and state variable val-
ues produced, each protocol rule also includes an op-
tional event statement. The event statement gives
a description of the event that occurred when that
rule �red. Each event statement has �ve arguments.
The �rst is the name of the principal to which the
rule applies (this user can be the intruder), the sec-
ond is a (possibly empty) list of other principals
who may be involved in the event, the third is the
name of the rule that produced the event, the fourth
is a list of words involved in the event, and the
�fth is the round number. Thus, for example, if
we have a rule describing a server sending a key K
to a principal U who has requested it, we might
attach an event statement such as event(server,

[U], server sendkey, [K], N). Event statements
are used in de�ning queries that the user will present
to NPA.

Note that it is up to the writer of the speci�cation
to decide what words are to be included in the event
statement. There is no �xed algorithm for doing this;
instead, it depends on what types of queries the user
thinks he or she will be likely to make.

To give an example of an NPA protocol rule, con-
sider the following hand-generated rule, which de-
scribes the �rst step in the Otway-Rees protocol:

Subroutine

init_start(prin(A,honest),N,T):

init_self := prin(A,honest),

init_who := prin(B,H),

init_server := server(S,honest),

init_sessid :=

rand(ts(prin(A,honest),N,T),sessid),

init_nonce :=

rand(ts(prin(A,honest),N,T),nonce),

init_masterkey :=

keytable(prin(A,honest)):

send msg ({init_self},{init_who},

[{init_sessid},{init_self},

{init_who},

e({init_masterkey},

({init_nonce},{init_sessid},

init_self},{init_who}))],N):

event(prin(A,honest),[{init_who}],

init_start,

[{init_nonce},{init_sessid}],N).

NPA protocol rules can also call other rules as sub-
routines. This is done by listing the names of the
subroutines called in the order which they are called.
Thus, for example, the sequence of actions performed
by the server in the Otway-Rees protocol is speci�ed
by a rule that calls three actions as subroutines, as
follows:

Session init_main(prin(A,honest),N,N):

init_start,

init_accept,

init_compromisekey.

Besides rules describing protocol transitions, an
NPA protocol speci�cation also contains sections de-
scribing which words are known initially by the in-
truder, what rewrite rules hold, what operations (such
as encryption or decryption) are performed on words,
and which of these operations may be performed by
an intruder. These last are used by NPA to build a
state machine model of the intruder.

The user is given a fair amount of freedom in de�n-
ing words. However, there is one construct that MUST
be used when words such as keys, nonces, etc., which
must be random or pseudo-random, are de�ned. This
is the name-round-time-stamp: ts(A,N,T), whereA is
the name of the originator of the word, N is the round
during which it was generated, and T is the time at
which it was generated. If a name-round-time-stamp
appears in a word, it is guaranteed to be di�erent from
any word generated by any other party, or during any
other round, or at any other time.

Another construct that is not required, but is rec-
ommended, is the use of the honesty variable. A
participant in a protocol can have an honesty vari-
able attached to its name that can be set either to
honest or dishonest. For example, we can identify a
principal by principal(A,H), where A is the princi-
pal ID, and H is set equal to \honest" or \dishon-
est". Honest principals, identi�ed as principal(A,

honest), are assumed to follow the rules of the pro-
tocol and not to reveal their secrets unless the pro-
tocol requires it. Dishonest principals, identi�ed
as principal(A,dishonest), are assumed to be in
league with the intruder and to share all informa-
tion with it. Thus, for example, if master keys are
identi�ed as mskey(U), where U is a principal name,
the intruder may be assumed to know all keys of the

form mskey(principal(A, dishonest)). Finally, if
an honest principal receives a message from another
principal, it will not know whether the other principal
is honest or dishonest; when an honest principal re-
ceives a message from another principal B, that prin-
cipal will be represented by the name principal(B,

H), where H is an uninstantiated variable.
There are some important di�erences between

CAPSL and the NPA language. In CAPSL, actions
of parties upon receiving messages are usually left im-
plicit. In the NPA language, they must be made ex-
plicit. Moreover, in CAPSL, properties such as fresh-
ness, uniqueness, randomness, etc. are declared ini-
tially. In the NPA language, they must be guaranteed
by the use of name-round-time stamps. In CAPSL,
intruder actions and knowledge are left unspeci�ed.
In the NPA language, they are de�ned, if only implic-
itly. Finally, CAPSL has nothing resembling the event
statement used in the NPA language. Thus, a CAPSL-
to-NPA translator has a large amount of information
to generate.

4 The Translator

The CAPSL translator inputs CAPSL speci�ca-
tions and outputs speci�cations in di�erent, user-
selected, forms suitable for di�erent types of use. This
section describes the overall structure of the CAPSL
translator and how it produces its outputs.

The current version of the translator produces out-
puts in the following three forms, of which only the
�rst is used in the current e�ort:

� speci�cations for NPA;

� speci�cations for a preliminary version of the Pro-
tocol Description Logic (PDL), a Higher Order
Logic (HOL) theory of authentication protocols
and protocol failure; and

� human-readable descriptions of the algorithms
followed by the processes implementing a proto-
col's roles.

See [3] for the preliminary version of PDL used by the
translator and [4] for a later version of PDL intended
to formalize new CAPSL capabilities.

The remainder of this section describes the CAPSL
translator's structure and algorithms, particularly its
algorithms for producing NPA speci�cations.

4.1 Translator Structure

The CAPSL translator is a flex/bison applica-
tion; flex and bison are standard compiler-writing

tools, available from the Free Software Foundation, for
generating lexical analyzers and parsers, respectively.
The translator operates in three stages:

� Stage 1: Parse the CAPSL speci�cation, along
with de�nitions of default CAPSL Abstract Data
Types, and create corresponding internal data
structures.

� Stage 2: Compute the algorithms, expressed in
further internal data structures, carried out by
processes performing each of the speci�ed proto-
col's roles.

� Stage 3: Produce output of the user-selected type
from the data structures computed in Stage 2.

Detailed descriptions of each of these stages follow.

4.2 Stage 1

Stage 1 �rst internally prepends the standard
TYPESPEC speci�cations for built-in encryption op-
erators to an input CAPSL speci�cation �le, then
parses the augmented �le. The translator produces
internal data structures, most notably a symbol table,
that describe the contents of the augmented �le.

The entry for a symbol in the translator's symbol
table completely de�nes the object that this symbol
names. In particular, the entry for a protocol identi�er
contains lists of actions that describe all the actions
taken in following the protocol, treating these actions
as if they were always sequential.

In addition to producing the symbol table, Stage 1
identi�es syntactic errors and some semantic errors in
the CAPSL speci�cation �le, particularly type incom-
patibilities and symbols that are used before they are
de�ned. Stage 1 also implements syntactic CAPSL ca-
pabilities that allow symbols to rename other symbols,
abbreviate expressions, and represent subprotocols.

4.3 Stage 2

Stage 2 expresses the algorithms followed by the
processes performing a speci�ed protocol's roles as
lists of statements in a simple, unnamed, C-like, im-
perative programming language. Stage 2 expresses
these statement lists as internal data structures; Stage
3 produces text output of the user-selected form from
these data structures. Informal descriptions of the dif-
ferent statement types in this unnamed internal lan-
guage, and their meanings, follow.

In these descriptions, a slot is an abstract storage
location capable of holding any �nite amount of data

of any type, corresponding roughly to a CAPSL vari-
able. An expression is either a slot name or a term
consisting of an algorithm name applied to a tuple
of expressions. Distinct processes' slots are distinct,
though di�erent processes' slots can have the same
names.

� ASSIGN <slot name> <expression>. The state-
ment replaces the current contents of the slot with
the value of the expression. When used on the
right-hand side of an assignment statement, a slot
name denotes the contents of this slot.

� IF <expression> THEN <statement list 1>

ELSE <statement list 2>. If the expression is
true, the statement does the �rst statement list,
and otherwise it does the second statement list.

� RECEIVE. The process executing a RECEIVE hangs
until a message addressed to this process arrives,
then stores this message in a special slot named
temp. The CAPSL translator assumes that ev-
ery message's �rst two �elds are the names of its
purported intended recipient and its purported
sender.

� SEND <expression 1> <expression 2>. The
statement sends the process named by the �rst
expression the message consisting of the receiv-
ing process' name, the sending process' name, and
the value of the second expression.

� TEST <expression>. This statement evaluates
the expression, and if it is true does nothing. Oth-
erwise, it raises an alarm and aborts the protocol.

Although this unnamed intermediate language exists
only internally to the CAPSL translator, the prelim-
inary version of PDL gives a HOL formalization of
it, and the translator's \human-readable description"
output is essentially a textual form of it.

Stage 2 determines the initial contents of each pro-
cesses' slots and the subsequent computations that
each process performs. The essential problems it
solves are interpreting CAPSL equalities and making
CAPSL default actions explicit.

CAPSL equalities are problematic because they are
sometimes assignments and sometimes equality tests;
further, if they occur between concatenations, they
can mean multiple assignments or equality tests, or
mixtures of assignments and equality tests. CAPSL
interprets an equality as a test if both the values set
equal are de�ned, and interprets it as an assignment
if only one of these values is de�ned.

Stage 2 enforces that all distinct computed expres-
sions are stored in distinct slots, maintains lists of
slots that de�nitely, possibly, and de�nitely do not
have assigned values, and uses these lists to interpret
CAPSL equalities. It takes intersections and unions
of these lists to bound the e�ects of IF-THEN-ELSE
statements. Stage 2 also uses these lists to determine
if a slot's contents might be used before they are de-
�ned, and if so raises a CAPSL semantic exception.
Stage 2 also raises a CAPSL semantic exception if an
assignment might change a CONSTANT value, change a
non-temporary slot value, or invalidate a relationship
given by a DENOTES statement.

A process can perform CAPSL default actions
whenever it receives a message or performs an as-
signment to a slot whose contents it had not yet de-
termined. Stage 2 assumes that a process performs
equality tests on any values it receives that the pro-
cess already holds. Stage 2 further assumes that a
process decrypts any encrypted values it holds that
it is able to decrypt, applies the inverses of functions
to any values it holds that are computed with these
functions, and performs equality tests on any values it
obtains that the process already holds.

4.4 Stage 3

This subsection describes the portion of the CAPSL
translator's Stage 3 code that produces output for
the NPA. The remainder of this subsection will use
\Stage 3" to mean \the portion of the translator's
Stage 3 code that produces NPA output". As the
previous subsection indicated, the translator's human-
readable and PDL outputs are straightforward vari-
ants of the translator's internal imperative program-
ming language, so producing them is much simpler.
The essential problem solved by Stage 3 is translating
algorithms in a C-like imperative programming lan-
guage into the Prolog-based speci�cation language of
NPA.

Stage 3 �rst checks that all the protocol's algo-
rithms are ones that the NPA can analyze. It raises
a semantic error if an algorithm uses any associative
operation or any commutative operation that is not
speci�cally handled by NPA rules.

As a convenience to users, Stage 3 checks that each
function symbol or operation used in a protocol is at
least mentioned in an AXIOM or DENOTES statement for
the protocol, and prints a warning that there will be
no way for NPA to make inferences about the function
symbol or operation if not.

After �nding all the identi�ers that must be de-
clared in the NPA translation of a protocol's algo-

rithms | a complicated process that involves parti-
tioning the protocol's algorithms into fragments that
are expressible as NPA subroutines | Stage 3 begins
outputting the text of the NPA translation. It declares
the following identi�ers speci�c to the protocol, along
with other, protocol-independent, declarations needed
by NPA:

� event names naming the translation's Session

and Subroutine elements;

� state variable names giving the protocol's slots;

� variables used to represent the possible honesty
values of the processes performing the protocol's
roles;

� two time variables for each processe playing one
of the protocol's roles | the NPA uses one time
to identify sessions, and another time to identify
sequential events within a session;

� Prolog variables used to temporarily store ele-
ments of received or assigned lists before these
elements are stored in state variables;

� function and operation symbols speci�c to the
protocol;

� RandID atoms speci�c to the protocol.

Stage 3 then outputs NPA rewrite and commutativ-
ity rules, rules that essentially just reformulate de�ni-
tions in the CAPSL default type speci�cations giving
properties of standard functions used in the protocol.

Stage 3 next outputs a list of values assumed to be
known to an attacker trying to defeat the protocol. It
generates this list by examining each term denoting
a value used in the protocol and computing the most
general form of this term that will be known to an
attacker, assuming that the attacker knows all names,
all times, all public keys, and all information known
to any dishonest protocol process.

Finally, Stage 3 outputs the Session and
Subroutine de�nitions for each of the protocol's algo-
rithms. It de�nes each Session to contain assignment
statements that compute the values in the algorithm's
initialized slots, followed by calls to NPA subroutines
that carry out the various NPA-expressible parts of
the algorithm. It expresses each if-then-else statement
as an NPA subroutine call of the form S1: Or: S2

where S1 is a subroutine that executes only if the con-
dition in the if-then-else statement is true and S2 is a
subroutine that executes only if the condition in the
if-then-else statement is false.

5 Results of Using the CAPSL-to-

NPA Translator

We tried out the translator on a number of dif-
ferent protocols, but wound up concentrating on
six: Kerberos[18], the two Needham-Schroeder proto-
cols [17], Otway-Rees[19], Bellovin and Merritt's En-
crypted Key Exchange (EKE)[1], and a fragment of
the Secure Socket Layer Protocol[21]. We had al-
ready developed hand-generated NPA speci�cations
of Needham-Schroeder public key and the Otway-Rees
protocol (two rules of which are given in Section 4), so
we found these useful for doing comparisons between
translator and hand-generated output.

Somewhat to our surprise, we found the translator
output very similar in appearance to that generated
by humans. The main di�erence was that state vari-
able names, which were generated automatically, were
not that helpful in identifying to the reader that part
of the protocol to which they applied. Also, the event
statements, which contained all state variables used
in a round, were considerably more bulky. But other
than that, there was not much di�erence between the
look of a translator- and a human-generated speci�ca-
tion.

For example, consider the following two rules in the
translation of the CAPSL speci�cation of the Otway-
Rees protocol. The �rst rule, a main, describes the
order in which the initiator's rules are executed, and
also de�nes the terms that are generated by the ini-
tiator. The second, a sub 1 describes the initiator
sending the �rst message. Thus a main and a sub 1

correspond, respectively, to the hand-generated rules
init main and init start in Section 3.

Session a_main(prin(Ua,honest),Ta1,Ta1):

Session a_main(prin(Ua,honest),Ta1,Ta1):

a_A := prin(Ua,honest),

a_B := prin(Ub,Hb),

a_KeA := keytable(prin(Ua,honest)),

a_M := freshfield(ts(prin(Ua,honest),

Ta1,Ta1),am),

a_Na := newcryptofield(ts(prin(Ua,honest),

Ta1,Ta1),ana):

a_sub_1,

a_sub_2.

Subroutine a_sub_1(prin(Ua,honest),Ta1,Ta2):

a_Kass := {a_KeA}:

send msg({a_A},{a_B},

[{a_M},{a_A},{a_B},

se({a_Kass},

({a_Na},{a_M},{a_A},{a_B}))],Ta1):

event(prin(Ua,honest),[{a_B}],a_sub_1,

[{a_A},{a_B},{a_Kab},{a_KeA},

{a_M},{a_Na},{a_seKacoNaKa}],Ta1).

E�ciency was another concern. There were two
main ways that a translator-generated protocol dif-
fered from a human-generated one. One was that the
translator often broke a simple state transition into
several subtransitions. The other was that words used
in a protocol were always created at the beginning of
a protocol run by the translator, while human speci-
�cation writer could specify parties as creating words
any time before they were used. Thus, for exam-
ple, in the above speci�cation, the nonce denoted by
freshfield(ts(prin(Ua,honest), Ta1,Ta1),am)

is generated in a main, while in the hand-generated
rules given in Section 3 the same nonce, denoted by
rand(ts(prin(A,honest),N,T),nonce) is generated
in the second rule, init start. This di�erence tends
to make the hand-generated speci�cation more e�-
cient, for the following reason: the Analyzer includes
a mechanism for discarding states that contain name-
time-stamp words that are used be before they were
created. Since the Analyzer works by searching back-
wards, these types of unreachable states are detected
earlier when the the name-time-stamp words are cre-
ated later in a speci�cation.

We expected both of the above described di�erences
to a�ect e�ciency. Actually, only the second seems
to. When we used the NPA to process queries on
the translated Needham-Schroeder protocol, we found
very little di�erence in e�ciency between it and the
human-generated one. However, when we ran the
translated Otway-Rees protocol, we found it consid-
erably slower than the human-generated one. When
we altered the speci�cation so that words involving
name-round-time stamps were generated immediately
before use, though, this di�erence in e�ciency went
away, and the translated speci�cation became as ef-
�cient as the hand-generated one. It is not quite as
straightforward for the translator to generate words
right before use as it is to put them at the beginning
of the protocol, but, given the dramatic improvement
in e�cency it brings, we think that this change is well
worth implementing.

Finally, we were concerned about expressiveness.
In this, we had mixed results. However, the problems
we have encountered have shown us ways in which
both the translator and CAPSL can be improved. The
six speci�cations we used introduced various features.
Kerberos is based on timestamps. The Otway-Rees,
the Needham-Schroeder protocols, and Kerberos make
use of key servers. EKE uses the Di�e-Hellman pro-

tocol, a protocol with commutativity properties that
allowed us to try out an experimental implementation
of commutativity for NPA. SSL is a complex proto-
col with several options; we used it to test our use of
IF-THEN-ELSE.

The �rst problem we encountered was that the
translator did not allow for comparisons between vari-
ables and constants, which are used for IF-conditions.
A mechanism to do this is being implemented.

The next problem we encountered was that we
could not specify any assumptions about honesty. In
most of our hand-generated speci�cation of server-
assisted protocols, we have assumed that the key
server is always honest; clearly, if the key server is not
honest the protocol will fail. CAPSL allowed us to
make no such distinction, and so the translator gener-
ated both honest and dishonest key servers. However,
this does not appear to cause a serious problem in ei-
ther e�ciency or expressiveness: the user can simply
specify that actions must involve an honest key server
when presenting his or her query.

Another problem we found was in the expression of
key compromise. At the beginning, we had no stan-
dard way of representing key compromise in Analyzer
speci�cations, and no way of recognizing what words
should be vulnerable to compromise. Since then, we
have worked out a standard representation of com-
promise and a standard way of recognizing vulnera-
ble words in a CAPSL speci�cation. The vulnerable
words are those declared to be SECRET in the goals sec-
tion (so we know which parties are supposed to possess
them as secrets), and FRESH (so they are relevant only
to a single session). It should then be simple to gen-
erate compromise transitions for the parties who are
intended to possess the secrets. We do not anticipate
any problem in having the translator recognize these
words and append compromise transitions to the end
of a speci�cation.

6 Conclusions and Lessons

We made a number of changes to CAPSL as a
result of this experience of building an interface to
NPA. Some changes were made immediately to help
us through the translator project, and others had their
impact in the form of more radical language revisions
that are still in progress. The deeper changes con-
cern the design and use of the speci�cation units we
have not discussed here, type speci�cations and envi-
ronments.

The immediate changes included the introduction
of the LONGTERM property for a variable, meaning that

it has the same value in several sessions. Also, we
added a security goal SESSION SECRET, which di�ers
from SECRET in that the secret item is no longer con-
sidered sensitive after a session has terminated.

Many needs for specifying a protocol's environment,
including di�erent styles for giving principals' roles,
were worked out during design discussions for future
versions of CAPSL. We found, for example, that some-
times it is desirable to consider \what-if" scenarios in
which the intruder is assumed to possess secret keys or
other speci�c items that would normally not be avail-
able. An ATTACKER HOLDS section was added for this
purpose.

Some aspects of the language were found to be awk-
ward or inadequate, and while no changes in them
were made immediately, these discoveries had an e�ect
on the new design in progress. One problem is how to
indicate whether functions declared in type speci�ca-
tions are available for use by the intruder: Encryption
functions are usually assumed to be known to the in-
truder, but a function that produces the secret key of
a principal is also declared in a type speci�cation, and
the intruder cannot evaluate it to obtain secret keys.
A property PRIVATE for these functions was planned.

The choice of keywords and other details of the syn-
tax can probably be improved. It has been pointed out
that certain keywords are overloaded. The true mean-
ing of VARIABLES and CONSTANTS in a protocol de�ni-
tion, for example, is di�erent enough from both pro-
gramming language concepts and abstract datatype
concepts that other keywords might be more appropri-
ate; and the DENOTES section is used for two or three
conceptually di�erent purposes.

The language is still evolving, with the help of con-
tributions from the community of researchers. The
current version, documented on the web site [5], re-

ects the needs and insights that were manifested dur-
ing this e�ort.

References

[1] Steven Bellovin and Michael Merritt. Encrypted
key exchange: Password-based protocols secure
against dictionary attack. In Proceedings of the
IEEE Computer Society Symposium on Research
on Security and Privacy, pages 72{84. IEEE
Computer Society Press, 1992.

[2] S. Brackin. An interface speci�cation language
for automatically analyzing cryptographic proto-
cols. In Symposium on Network and Distributed
System Security, 1997.

[3] S. Brackin. A state-based HOL theory of protocol
failure. Technical Report 98007, Arca Systems,
Inc., Ithaca, NY, October 1997.

[4] S. Brackin. A HOL formalization of CAPSL se-
mantics. In Proceedings of the 21st National Con-
ference on Information Systems Security. IEEE,
October 1998.

[5] CAPSL: Common Authentication Protocol Spec-
i�cation Language. http://www.csl.sri.com
/~millen/capsl.

[6] U. Carlsen. Generating formal cryptographic pro-
tocol speci�cations. In 1994 Symposium on Re-
search in Security and Privacy, pages 137{146.
IEEE Computer Society, 1994.

[7] D. Dolev and A. Yao. On the Security of Public
Key Protocols. IEEE Transactions on Informa-
tion Theory, 29(2):198{208, March 1983.

[8] S. Gritzalis, D. Spinellis, and P. Georgiadis. Secu-
rity Protocols over open networks and distributed
systems: Formal methods for their analysis, de-
sign and veri�cation, Computer Communica-
tions, 1999, to appear. Currently available at
http://kerkis.math.aegean.gr/~dspin/pubs/jrnl/
1997-CompComm-Formal/html/formal.htm.

[9] Richard Kemmerer, Catherine Meadows, and
Jonathan Millen. Three systems for crypto-
graphic protocol analysis. Journal of Cryptology,
3(2), 1994.

[10] G. Lowe. Casper: a compiler for the analysis of
security protocols. In 10th IEEE Computer Se-
curity Foundations Workshop, pages 18{30, IEEE
Computer Society, June 1997.

[11] Catherine Meadows. The NRL Protocol Ana-
lyzer: An overview. Journal of Logic Program-
ming, 26(2):113{131, February 1996.

[12] Catherine Meadows. Using the NRL Protocol An-
alyzer to examine protocol suites. In Electronic
Proceedings of LICS Workshop on Formal Meth-
ods and Security Protocols. http://www.cs.bell-
labs.com/who/nch/fmsp/program.html, 1998.

[13] Catherine Meadows Analysis of the Internet Key
Exchange Protocol Using the NRL Protocol An-
alyzer In Proceedings of the 1999 Symposium on
Security and Privacy, to appear.

[14] Catherine Meadows and Paul Syverson. A for-
mal speci�cation of requirements for payment
transactions in the SET protocol. In Proceed-
ings of Financial Cryptography '98, pages 122-
140. Springer-Verlag Lecture Notes in Computer
Science, 1998

[15] J. Millen. CAPSL: Common Authentication Pro-
tocol Speci�cation Language. Technical Report
MP 97B48, The MITRE Corporation, 1997.

[16] J. Mitchell, M. Mitchell, and U. Stern. Auto-
mated analysis of cryptographic protocols. In
1997 IEEE Symposium on Security and Privacy.
IEEE Computer Society, 1997.

[17] R. Needham and M. Schroeder. Using encryption
for authentication in large networks of computers.
Communications of the ACM, 21(12), December
1978.

[18] B. Cli�ord Newman and Theodore Ts'o. Ker-
beros: An authentication service for computer
networks. IEEE Communications, 32(9):33{38,
September 1994.

[19] David Otway and Owen Rees. E�cient and
timely authentication. Operating Systems Re-
view, 21(1):8{10, 1987.

[20] L. Paulson. The inductive approach to verifying
cryptographic protocols. J. Computer Security,
6(1):85{128, 1998.

[21] The SSL protocol. http://home.netscape.com
/newsref/std/SSL.html, March 1996.

