Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collaction of information, Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY] 2. REPORT TYPE 3. DATES COVERED (From - To)
28-02-07 Final Technical Report 01-04-01 to 31-03-05

4. TITLE AND SUBTITLE ba. CONTRACT NUMBER

DEPSCOR: Research on ARL's Intelligent Control Architecture N00014-01-1-0621

65b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Holloway, Lawrence E.

Kumar, Ratnesh
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

University of Kentucky Research Foundation REPORT NUMBER

DUNS: 939017877

Office of Grants and Contracts

Lexington, KY 40506

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

Office of Naval Research Regional Office Chicago ONR

230 South Dearborn, Room 380

Chicago, IL 60604-1595 11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
LOTRIBUTION STATEMENTA

A

wmproved for Public Pelease

13. SUPPLEMENTARY NOTES Dismoutom ontimited

14. ABSTRACT

In this research, our goal has been to develop hierarchical hybrid mission control architecture for autonomous systems illustrating its
application to autonomous underwater vehicle (AUV), verify the logical correctness of the controller designed, look into the
feasibility of simulating the operations executed by the AUV, and automate controller synthesis. The correct operation of a system
we design is a requirement. The challenge to develop a hierarchical hybrid mission controller for underwater vehicle which
facilitates modeling, verification, simulation and automated synthesis of coordinators has lead to research in this area. We have
worked and are working on these issues with Applied Research Laboratory (ARL) at Pennsylvania State University (PSU) who have
designed autonomous underwater vehicles for over 50 years primarily under the support of the U.S. Navy through the Office of
Naval Research (ONR).

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: T7. LIMITATION OF _ [18. NUMBER |19a. NAME OF RESPONSIBLE PERSON
a. REPORT |b. ABSTRACT | c. THIS PAGE ABSTRACT 3§ ces | Larry Holloway
U U U Uu 19b. TELEPHONE NUMBER (/nciude area code)
859-257-6262 ext203

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. 239.18

DEPSCOR: RESEARCH ON ARL’s INTELLIGENT CONTROL ARCHITECTURE:

HIERARCHICAL HYBRID-MODEL BASED DESIGN, VERIFICATION,
SIMULATION, AND SYNTHESIS OF MISSION CONTROL FOR AUTONOMOUS
UNDERWATER VEHICLES

Final Technical Report

ONR Project Award Number
N00014-01-1-0621
DISTRIBUTION STATEMTNT A
Approved for Public Ra—:»!ssase o
Distribution Unlimited University of Kentucky

Principal Investigators:

Ratnesh Kumar (Iowa State University)
and
Lawrence E. Holloway (University of Kentucky)

1

Best Available Copy

20070329075

2
TABLE OF CONTENTS

1. STUDENTS INVOLVED 5
2. INTRODUCTION 5
3. HIERARCHICAL ARCHITECTURE 8
A. HYBRID MISSION CONTROLLER FOR A SURVEY AUV ..ooiiiiiiiieeees ettt ccre st seteeesaasesvaeenvaees 10
4. VERIFICATION OF MISSION CONTROLLER ARCHITECTURE 14
A. VERIFICATION TECHNIQUESccieeietvririieiierrereeseeeeseirerssesseessssssrsnsessessesssssesesessnsrasssnsesasssssessassaasesesens 15
B. DEVELOPMENT TOOL VS. VERIFICATION TOOLuvvriiiiiiiiiiiiieeis e cseennrreeeceecerearenerireesesesssnssansessens 15
C. BOTTOM-UP APPROACH ...ccuiceueieteeiteeeteierteeeeteasneiesseeeteesesesesssessssansrenssstasssssssssesssssssssessnsessnssssesenses 16
D. HIERARCHICAL VERIFICATION ALGORITHMooiiiiteieeeriiiirrteeeeesineeessreesssssseeessssnsassesssesssssnnessessasenen 17
E. HYBRID SYSTEM ABSTRACTIONS ...covteiiiicvresiteeieereeseeeseensnreessesssesensseessssressssssssssssessasasesssessnseessssen 17
F. MISSION CONTROLLER SUBSYSTEM REQUIREMENTScviiivviivriereeiseeesreressseesseneerssesssessssessasessssnees 18
5. ANIMATION OF MISSIONS 21
A. OPENGL: TOOL FOR ANIMATION/SIMULATIONcoceivieininiicreernsreastireneesissessnssessnssonsessssesseasssssasssees 22
B. ALGORITHM FOR CONVERSION FROM UPPAAL TO OPENGLocoirviirieccieiniecireernrccvreeeeescneeeen s 22
C. ABSTRACT OF CONVERTER CODE FOR A MODULEcccoveeeiieieecnreeiiieenssesieeessesesssesssrsorssessssssssseenses 24
6. SYNTHESIS OF COORDINATORS 25
A. SEQUENTIAL COORDINATOR SYNTHESIS ...cveeeitririurensererressresersasssseseinsosssessssesensasesssssssssessssssssnssneens 27
B. TIMED COORDINATOR SYNTHESIScoeuiitirrereererriiiersrreessieeessnseseessuessessnssesssnsesssssnssssessssosssssrasesnsass 30
C. SAFETY COORDINATOR SYNTHESIS...e.ccuveeeirvieriiiesiesineeeiaurseeessesssessnnesissssessrsrnesesosssseesssssssssssesesoras 32
7. CONCLUSION AND FUTURE WORK 35
8. PUBLICATIONS 36
APPENDIX A: COMMANDS FOR THE UNDERWATER VEHICLE FOR SEARCH........cccccceeveeee 38
APPENDIX B : HYBRID MODELS IN TEJA 40
SeGUENLIAL COOPAINAION ...ttt e e st e st seen st s e aenes 40
Timed Action (Timed COOFAIRAION)cooouvoeeeeiotiirerereeieieieeeteeeestrasee e et st s tnanee e st esrsnasseseseasseeasen 43
Safeties (Safety COOFAINAION)...........cccvriverieiriririrentiteteecre st eseeseesas e bt ee e e s e nesre e s senes 45
REPIAYMISSION ...ttt ettt bbbt s et sr bt 47
GPSFIXOE c.oveeeeeeeeeeeeeeee et e ee et esetreees e e eeenatees ettt esssesessanteesasanesesanstsaenntessaasbaassesanseesassasessssanssnsnneanas 47
LAURICREEooeovooeeeeieeeeeeeeeeeteeeie ettt veesseasssentsssenesssasssastssssaaeae s et asessnsssasanesssssasssrasneressseassnnsnnarsessens 50
WAYPOIRINAVIGAIOLcoooueeisimienietite e steetecter e reeseca e saesats e e e st e st attesneses e st et e st s aeeaeneasesasensesaenne 53

HIERARCHICAL HYBRID-MODEL BASED DESIGN, VERIFICATION,
SIMULATION, AND SYNTHESIS OF MISSION CONTROL FOR AUTONOMOUS
UNDERWATER VEHICLES

Final Technical Report

ONR Project Award Number
N00014-01-1-0621

University of Kentucky

Principal Investigators:
R. Kumar (Iowa State University)
and
L. Holloway

2
TABLE OF CONTENTS
1. STUDENTS INVOLVED
2. INTRODUCTION 4
3. HIERARCHICAL ARCHITECTURE
A. HYBRID MISSION CONTROLLER FOR A SURVEY AUV oottt eeteeeer e eeneae e s san e ean 9
4. VERIFICATION OF MISSION CONTROLLER ARCHITECTURE 13
A. VERIFICATION TECHNIQUESooivuiiiieeetieecetreeeeeeteeaeeteseesreseesssssssssrsessessnssssssssseseevansessssensesannsrvssns 14
B. DEVELOPMENT TOOL VS. VERIFICATION TOOL ...uvvviriiiieiinrrieieeeeiisirerteeeeesisesssssessnsscesesssssmsensesesens 14
C. BOTTOM-UP APPROACH.....cuteieeoeieeccieeecereeeeeieeeseeseeseesneesssssreeeaessetessraseesesasresesssssnnssssssseesssessssnnns 15
D. HIERARCHICAL VERIFICATION ALGORITHMoiirieiiieiniirerriereeeseosiaterreerserssssassnsesesesssesssassasesssessens 16
E. HYBRID SYSTEM ABSTRACTIONS ...coiiiuriiieeteeeiietreeireesasisreesossressssssesessssntssssassessssssesserassnsssssssnness 16
F. MISSION CONTROLLER SUBSYSTEM REQUIREMENTSiioiiviiriiereerierecsinnieseeeeeesronsenseessssessesersesnens 17
5. ANIMATION OF MISSIONS 20
A. OPENGL: TOOL FOR ANIMATION/SIMULATION ...oviiiitireiiieeesinrreeeseteeesestneesssinessssinsesorannansesssneses 21
B. ALGORITHM FOR CONVERSION FROM UPPAAL TO OPENGL ..coviiiviiieriiiiie i ieeierteieeeseseesanevnneeeecanens 21
C. ABSTRACT OF CONVERTER CODE FOR A MODULEc.covviuiiirieeereiieinteeeseseseessiarerecessesssesssserssressssnnes 23
6. SYNTHESIS OF COORDINATORS 24
A. SEQUENTIAL COORDINATOR SYNTHESISuevriviiurierrererreniuraeaarosnreemsessesesssssarosnsesasssssesesinsenassesssnnses 26
B. TIMED COORDINATOR SYNTHESISoceeciiteeeruuerseeireteesnteesessssssasssssneessssessssssssseessrsnsssvsssssssssssssesssssens 29
C. SAFETY COORDINATOR SYNTHESIS. .. .vvviieetereeiireieeerrseseenuereesssresesssanesosssnseserasesssssssssesssssesssrrassonsses 31
7. CONCLUSION AND FUTURE WORK 34
8. PUBLICATIONS 35
APPENDIX A: COMMANDS FOR THE UNDERWATER VEHICLE FOR SEARCH.........cccoevuveee 37
APPENDIX B : HYBRID MODELS IN TEJA 39
SEQUENTIAL COOPAINAION ...ttt ettt st seseeeeseeee 39
Timed Action (Timed COOFAIRAIOF)ccoocueceorieieeeieeeeieeeeeee s sense et et st ss et es et saneas et e asenene 42
Safeties (SAfety COOFAIRALON)........o.ccvvciveereireiieeereeiieseteeses ettt st et assenes e be e s esne st s s esesnes 44
REPIGYMISSION ..ottt ettt e bbb bbb nen 46
GPSFIXCE «oooeeeeeceeeeeeeeeeeeeeee ettt e st te e s e e seaaes s e s s seassset et sassesasasebsereseasssesessasnaesesenssssnnnntsaesessassnntsen 46
LQUICRET <.t et e et et st s s e e ettt nt e et e e ts s st santesesaesesasaessesensnaassesesrarenes 49
WaPPOIRINAVIGAIOFoovoeeriiiieiieeiee ettt ettt ran et s te et saesaeassesasessasastsesteseassnenasaeneessasen 52
REOIAECZVOUS oottt seesstsee s e s sesssssases s s ssesssanetarassssesessa et eaasasssessssssas et eesssasanesnsensnessn 55
DEVICECOMMARAEEocoeeeeeeeeeeeeeeeeeieeee e eesettreesertes e s e esessreeseerseeesessssessesneesesssssessnssnsesasseeesssbes 57
PayloadDeliVEryocooouoieoieiiiieeeeeiect ettt ettt ettt ettt r e e et 59

APPENDIX C: ILLUSTRATION OF VERIFICATION OF LOGICAL CORRECTNESS OF THE

CONTROLLER MODULES 64
C.1 Verification of Steering module...................coevcivrmevreenieieercceeeieess st 64
c2 Verification of Loiter MOAUIeoooeveiioiiiieneiiiceeieieetceee et et se et oscesiens e snene 65
C3 Verification of GPSFixer module...............coccoioivoeceeeeiceccerciesesrennssssesinessssannes 68
CH4 Verification of Waypointnavigator modulecocceccmmiocvccninrniiiniciesieneasiennas 71
(o] Verification of Rendezvous MOdUleccicuomeceeeencincinieeeineenceseenesre e nesee s 76
C6 Verification of Launcher module...................ccuccocceneimeciciciicaieeneceneecen e enesisssesnans 78
Cc7 Verification of PayloadDelivery module...................ccoccvivcaecinvnncinccneiiicccniieninens 79
(o8] Verification of DeviceCommander modulecccooevceieevccnniiccionecreicreccesnesis 81
c9 Verification of Pause MOAUleo.coouvevenernieenieiinicnaceeeeeteeess s sesssacsessssasssnens 82
C.10 Verification of Sequential coordinator moduleccoeveeeecoricvenecnenenvienncernceniens 83
C.11 Verification of Timed Coordinator module.....................ccoccvvvcouvommiicnncsninrsenisnasessnsesnns 89
C.12 Verification of Safety Coordinator module....................coovvcucueneecrecimioneicceceseeenssens 94
APPENDIX D: OPENGL CODE FOR ANIMATION/SIMULATION 96

HIERARCHICAL HYBRID-MODEL BASED DESIGN,
VERIFICATION, SIMULATION, AND SYNTHESIS OF MISSION
CONTROL FOR AUTONOMOUS UNDERWATER VEHICLES

Principle Investigators: Ratnesh Kumar and Lawrence E. Holloway

1. Students involved

The following students were involved in research related to above ONR funded project:

1. Siddhartha Bhattacharyya, Received PhD from Univ. of KY, Currently Assistant
Professor at Kentucky State University.

2. Matt O'Connor, Received MS from Penn State Univ., Employed by ARL-PSU
after graduation, presently working for a Controls Company in Pittsburgh. (Matt
contributed to project but funded separately by ARL.)

3. Zhen Yu, Received MS from Iowa State Univ., Currently pursuing PhD at Iowa
State Univ.

The research also benefited from collaboration with the Applied Research Laboratory
(ARL) at the Pennsylvania State University. The work involved developing a hierarchical
control architecture, and modeling, design, simulation/animation, verification, and
implementation of a mission-planner and controller within this architecture. The mission
controller has been implemented by ARL researchers (under the leadership of Drs.
Sekhar Tangirala and John Dzielski) on two of its AUVs. The results of the research have
been reported in a series of papers as indicated in section 8.

The work accomplished under the above grant is briefly discussed in the following
various subsections.

2. Introduction

In this research, our goal has been to develop hierarchical hybrid mission control
architecture for autonomous systems illustrating its application to autonomous
underwater vehicle (AUV), verify the logical correctness of the controller designed, look
into the feasibility of simulating the operations executed by the AUV, and automate
controller synthesis. The correct operation of a system we design is a requirement. The
challenge to develop a hierarchical hybrid mission controller for underwater vehicle
which facilitates modeling, verification, simulation and automated synthesis of
coordinators has lead to research in this area. We have worked and are working on these
issues with Applied Research Laboratory (ARL) at Pennsylvania State University (PSU)
who have designed autonomous underwater vehicles for over 50 years primarily under
the support of the U.S. Navy through the Office of Naval Research (ONR).

The control tasks for an underwater vehicle or for an autonomous system can be divided
into lower level control, concerned with continuous dynamics and a higher-level mission
coordinator/coordinators, which is discrete, either event-driven, or time-driven. The
mission coordinators contain both sequence coordinator and timed coordinator for
sequential execution and timed execution of various operations of the mission. Thus the
overall system is a hybrid system containing both continuous and discrete states.
(Discussion on hybrid systems is in the next section.) Design and verification of hybrid
systems is highly challenging task, owing to the sophistication and complexity of design
and verification. To simplify the complexity of design, researchers at ARL worked with
us to formulate a hierarchical control architecture upon which the mission controller
design is based. Similar hierarchical architectures built earlier didn’t facilitate the
development of a model which can be easily put to verification. Our hierarchical hybrid
mission control architecture not only facilitates the design of a complex mission
controller, it also facilitates verification (done hierarchically in a bottom-up fashion),
simulation and also the automated synthesis of the highest level mission coordinators.

Our method can be used for other autonomous systems. The basic idea is to hierarchically
decompose missions into sequence of operations, and operations into sequence of
behaviors, and behaviors into sequence of vehicle maneuvers. Then we need to design a
behavior-controller for each behavior that does appropriate coordination of appropriate
vehicle-maneuver controllers, an operation-controller for each operation that does
appropriate coordination of appropriate behavior controllers, and a coordinator for each
mission specification (untimed, timed, and safety) that does appropriate coordination of
appropriate operations controllers. We have illustrated our approach through a specific
example of mission, namely, a search mission. The same philosophy can be utilized in
designing mission controller for other types of missions, such as surveillance and attack.
So although the behavior/operation/coordinator controllers that will be designed will vary
from mission type to mission type, the approach of the whole of the mission-controller
remains the same for all autonomous vehicles for all missions. The generalized approach
to automate the synthesis of mission coordinators can be used to any kind of application
for any kind of AUV.

Control of autonomous underwater vehicles (AUVs) present specific issues related to
automatic control but also classic concerns of real time and high level programming.
Several approaches to the design of controllers for AUVs have missed the classical
concerns which are a necessity because of the environment in which the AUV needs to
operate. Control systems for AUVs have several communicating subsystems/modules.
These subsystems/modules need to interact among themselves to successfully execute a
mission within satisfactory real time bounds. They constantly react with the environment
so they must react in real time to sensory information, thus the need for considering
classical issues. Our hierarchical hybrid mission control architecture takes into
consideration the real time and high level programming concerns as well. Each of the
subsystems developed is a hybrid system which takes care of real time issues by
including continuous variables which implement real time or time bounded constraints.
The subsystems have been implemented using a high level programming environment
provided by Teja.

Verification of a mission control architecture developed for an AUV or for any
autonomous system has been neglected because of the lack of such a simplified model.
Our hierarchical hybrid mission control architecture supports verification with ease
because of the simplified hybrid model on which it is based. For formal verification we
use a graphic tool called Uppaal as opposed to Esterel. This is because Esterel does
formal verification of control laws with a complicated method of verification and requires
very careful coding in Esterel whereas Uppaal, a graphical tool, models a hybrid
automaton easily and gives diagnostic traces efficiently. The verification method used
abstracts the subsystem models. This method of using abstractions might miss upon some
situations which can be caught in an environment in which all the coordinators and the
controllers work together. Such a combined approach can be developed if we can
simulate the working of the hierarchical hybrid mission control architecture as a whole.
Thus the simulation built simulated the combined working of the subsystems to execute
an operation which involves the execution of a sequence of actions.

Mission coordinators at the highest level of the hierarchical hybrid mission control
architecture pass control to the lower level controllers for the execution of mission orders.
A general design of the mission coordinators will help in using the same mission
coordinators for different kind of applications for AUVs other than that illustrated. So we
finally automated the design of the mission coordinators.

In our approach the initial mission controller modules have been developed using TEJA
NP networking software platform by the ARL researchers. TEJA supports the design of
interacting hybrid controller modules, and offers the autocode generation capability.

For verification purposes, these modules can be converted to modules of the UPPAAL
verifier. UPPAAL is hybrid system verification software which can be used to verify the
safety and correctness of mission controller. In order to proceed with the verification, the
first task is to develop an extended hybrid state machine based model of the mission
controller, which we have accomplished (see section 2). Then we formalized the notion
of correctness that demonstrated that any mission can be correctly executed by the
mission controller. Also, abstract models of the lower level vehicle controllers (and
possibly the underwater sea vehicle) were developed. This we did in consultation with
ARL researchers. Next, a bottom-up approach to verification of logical correctness was
formulated and implemented. Verification can be done for something that is already
designed, so we use our hierarchical mission controller architecture for search as the
model to verify the correctness of the existing design. We simulated the operations
executed by the hierarchical hybrid mission control architecture, and we finally
accomplished the task of automating the synthesis of a general mission coordinator. As
an example the coordinator synthesis works correctly to synthesize the current
coordinators built at ARL, by the experience gained we suggest further modifications in
the controller design approach within future work. In section 2 we discuss hierarchical
hybrid mission control architecture and the hybrid system model, in section 3 we discuss
the approach used for verification, then in section 4 we discuss the simulation of the
missions and in section 5 we discuss the automated synthesis of coordinators. In section 6

we conclude with future work.

3. Hierarchical Architecture

The hybrid mission controller is organized hierarchically as shown in Fig below. Each
of the modules that make up the mission controller hierarchy is a hybrid system, and the
entire mission controller is modeled as a set of interacting hybrid systems. Modules at
any level may command other modules at that and lower levels and send responses to that
and higher levels. All levels in the mission controller hierarchy may assign vehicle
commands directly by placing appropriate vehicle commands in the shared database. At
the lowest level of the hierarchy is the underwater vehicle (plant) along with the vehicle
controllers (VCs). The vehicle and the vehicle controllers have a hybrid state-space
(which might, in some vehicles, be a purely continuous state space), and serve as the
plant for the higher level mission controller (MC), which is also hybrid in nature. The
vehicle controller and the mission controller communicate through an interface layer
symbolically represented by MC2VC (mission controller to vehicle controller) and
VC2MC (vehicle controller to mission controller). The MC2VC block also includes a
Command Conflict Manager which is responsible for selecting a specific vehicle level
command (when more than one exists) according to a static or dynamic priority list or
using other methods (such as optimization). This module is included since all modules in
the mission controller hierarchy are allowed to assign vehicle commands directly, and so
there is a distinct possibility that multiple vehicle commands can coexist.

e Lo Jrmme o] o0
Operation
Controllers ssssnmEw

eehav‘“ sesEPpERw
Controllers
-
Command I
interface Conflict veame
Manager

Events l I
conmates []

Autonomous Underwater Vehicle

Vehide Commands
Vehicle State

Commands_
Responses

MC2ve

Fig.1. Hybrid Mission Control Architecture

As seen in Fig, the mission controller is organized in a three-tier hierarchy, and all
communication between modules is restricted to event synchronization and shared data.
Command events propagate down the mission controller hierarchy and response events
propagate up the mission controller hierarchy via event synchronization. An event is
initiated by a particular module and its recipients are controlled by an event dependency
table that may be static or dynamic. An event may also initialize parameters within

modules in the hierarchy. Command events take the general form do:l(command, params),

where m is the requesting controller module, n is the receiving controller module,
command is the task to be performed and may take on values such as initialize, abort,

etc., and params are parameters and initial states for the receiving module. Similarly,
response events are in the general formdone," (response,results), Where response is an

indication of the completion of the commanded task and may take on values such as
normal, abnormal, etc., and results are parameters returned to the requesting module on
task completion.

The lowest level of the mission controller is comprised of Behavior Controllers, where
a behavior may be thought of as a skill or ability that an autonomous system possesses
which enables it to perform specific mission tasks (thrive) while remaining safe (survive).
Behaviors directly interface with the vehicle controllers and are therefore vehicle-centric.
They require executions of sequences of vehicle maneuvers. The middle level of the
mission control hierarchy consists of Operation Controllers, where an operation
represents a mission segment or phase that is integral to the completion of the overall
AUV mission, and is user/mission-centric. These correspond directly to user supplied
mission orders and command/sequence the behavior controllers to achieve their
objectives. The highest level of the mission controller consists of the Mission
Coordinators which are responsible for sequencing and scheduling operations in order to
complete the mission while ensuring the safety of the vehicle. Mission coordinators are
typically of three types: Sequential, Interrupt-driven and Safety. The sequential
coordinator is responsible for executing a mission consisting of a sequence of operations;
the interrupt-driven coordinator is responsible for executing a time or state-based
interrupt-driven sequence of operations; and a safety coordinator ensures safe operation
of the vehicle. When an interrupt-driven operation is due, the currently executing
sequential operation is suspended, if necessary, until the interrupt-driven operation has
been executed. Sequential operation is resumed until the next (if any) interrupt-driven
order is due. Interrupts are classified and prioritized so that some may have priority over
sequential operations, while others do not and may therefore not be able to interrupt
certain classes of sequential operations. If an interrupt-driven operation is due and does
not require suspension of the currently executing sequential operation, then the two
operations occur in parallel. The safety coordinator has priority over all other
coordinators. When an unsafe operating condition is detected, the commands from the
safety coordinator supercede all other commands and seek to move the vehicle into a safe
region or abort the mission if necessary. The relative priorities between the coordinators
are implemented by event dependencies and synchronization.

A mission is therefore defined as a coordinated sequence of operations, each of which
is a sequence of behaviors, and possibly vehicle controller commands. Each behavior is,
in turn, a sequence of commands to the vehicle subsystem controllers via the MC2VC
interface. AUV state information is collected by sensors and periodically transferred by
the VC2MC interface to the shared database. This state information is made available to
all modules in all levels of the mission controller hierarchy. Similarly, vehicle
commands, assigned and manipulated by all levels in the mission controller are stored in
the shared database and sent to the AUV by the MC2VC interface. Formally, let B denote
the set of behaviors, O denote the set of operations, and V denote the set of vehicle
subsystem controllers. A mission, m is defined as me M c (O+V)*, where (O+V)* is the
set of all sequences containing elements of O and V, and M is the set of all possible
missions. Similarly, each operation o;e (B+V)*, and each behavior by € V*,

a. Hybrid Mission Controller for a Survey AUV

The details of a specific application of the general AUV mission control architecture to
a generic survey AUV are seen in Error! Reference source not found.. The primary
mission of a survey AUV is to transit to a user specified location and conduct a survey
following a specific pattern in 3D, at a specified speed and depth or altitude. In this
example, there are three vehicle controllers (VCs), the Autopilot, which accepts
commands to control the attitude, speed and depth of the AUV; the Variable Buoyancy
System (VBS) Controller, which accepts commands to control the trim and buoyancy of
the AUV; and the Device Controller, which accepts commands to control the various
sensors and other devices on board the AUV. Correspondingly, the vehicle state is
comprised of the position of the AUV in three dimensions along with the velocity vector,
the state of the buoyancy system, and the states of the various sensors and other onboard
devices.

Shared
Data

nterrupt
Coordinator:

I LaunchJ

Sudaodows{ Pause l

Coordinators

| Safeties

Sequentia!
Coordinator

Davice

Operation
Commander|

Controllers

l WPNav

[GPSFix

Commands
Responses

Behavior
Controllers

]
Command I
interface Conftict Mcave VCZMC
Manager
Events l l

vBsS
Controfler

Vehicle Commands
Vehicle State

[Steering Lotler

Device

Vehicle
Controlter

Controllers ljutopﬂol

Autonomous Underwater Vehicle

Fig.2. Survey AUV Mission Controller

The lowest level of this mission controller is comprised of four behavior controllers
which issue commands to the vehicle controllers and monitor their responses, via the
vehicle state vector, to achieve their control objectives. These are described next. The
Steering behavior controller is responsible for steering the vehicle to a specified location
in space and interacts with the Autopilot. This controller contains a model of the earth in
3D and functions that convert between Cartesian and geodetic coordinates. This
controller uses navigation data from the vehicle and the destination coordinates to
compute a heading command for the AUV which is updated periodically if necessary.
Steering may operate in one of two modes: steer-to-point where the objective is to arrive
at a point regardless of the path taken; and steer-to-line where the AUV is steered to
follow a line between a source location and destination location. In steer-to-point mode,
the range and course from the vehicle to the target location are computed periodically and
a new heading command equal to the course is assigned to the Autopilot. This algorithm
will not steer a line between the source and destination locations in the presence of a
current or other external disturbance. Steer-to-line on the other hand computes the
equation of a line connecting the source and destination locations and periodically steers

10

the AUV to ensure it is following this line, even in the presence of external disturbances.

The Loiter behavior controller controls the AUV to loiter at a specific location in space
for a specified duration and interacts with the Autopilot and VBS Controller. Loiter may
be commanded directly by a mission order is some circumstances but is usually used by
an operation controller as a means to stay near a specified location while waiting for
some event to occur such as external communications, or arrival of a support craft for
rendezvous. Loiter may be commanded in one of two modes: hover, where the AUV is
commanded to hover in the water column at zero forward speed using the variable
buoyancy system; and circle, where the AUV is steered to a series of locations
approximating a circle centered about the specified loiter location. The remaining loiter
time is monitored in both modes, so that the AUV is steered in such a way as to arrive at
the loiter point when the loiter duration expires. The Loiter behavior controller interacts
with the Steering behavior controller, in circle mode, to steer to the points defining the
circle; and at the end of both modes to arrive at the final loiter point. This is an example
of horizontal communication within a level in the mission controller hierarchy.

The Surface/Dive behavior controller commands the vehicle to go to or come-off of the
surface and interacts with the Autopilot and the VBS Controller. On a dive command,
this controller sequences the variable buoyancy system and the autopilot to bring the
AUV off of the surface and to a specified depth while running at a prescribed speed. It
also ensures, if necessary, that the AUV is suitably trimmed given the ambient
conditions. On a surface command, this controller brings the AUV to the surface and
ensures that it is at zero speed and is positively buoyant to prevent it from sinking.

The final behavior controller, Pause, is used under certain situations to let the vehicle
remain at its current state for a specified duration.

The behavior controllers are, in turn, sequenced and commanded by the operation
controllers, which correspond directly to mission orders which are specified by the user.
The operation controllers which make up the survey AUV are described next and will
demonstrate several examples of horizontal as well as vertical communications between
modules in the mission controller hierarchy. The Launch operation controller is
responsible for bringing the vehicle off of the surface and running at depth with enough
forward speed to achieve controllability. This controller interacts with the Autopilot, the
Variable Buoyancy System, the Device Commander described later, and the Surface/Dive
behavior controller. The Launch operation controller is responsible for determining if the
AUV is in a safe region for launch (e.g. enough water depth) and also that it is in a safe
state for launch (e.g. all masts retracted) before it commands the Surface/Dive behavior
controller to bring the AUV off of the surface. The Launch operation controller uses the
Device Commander to command all masts to their retracted positions and to ensure that
all required sensors such as the inertial navigation system are in proper states for launch.
If Surface/Dive is unable to bring the AUV off of the surface after some predetermined
amount of time, the Launch controller issues a mission abort on the assumption that there
1s a hardware or environmental problem. The launch controller is also responsible for
detecting and compensating for surface capture which affects large AUVs. Under certain
conditions, it is possible for large AUVs to launch in shallow water but return to the
surface due to a pitch up attitude and get captured on the surface. In this situation the
variable buoyancy system is used to compensate for the effects of surface capture and
allow the AUV to break the surface.

10

11

The GPSFix operation controller sequentially commands the AUV to shut off
propulsion, rise to the surface, raise the GPS mast, obtain a GPS-aided position fix,
retract the GPS mast, and re-launch the AUV. This controller interacts with the Autopilot,
the Surface/Dive behavior controller, the Device Commander, the Device Controller, and
the Launch operation controller. Time-outs are built into all states of the GPSFix
operation controller to ensure that it is not deadlocked in any state due the inability to
complete some action. The GPSFix controller also maintains a log of failed GPS fixes
and will disable further GPS fixes if this number crosses some critical value on the
assumption of a hardware failure.

The WaypointNavigator operation controller controls the AUV to transit to waypoints
specified by the mission specification. This controller interacts with Steering, Loiter, and
the Device Controller. The waypoint order specification includes a list of sensors and
devices and their power states. This controller ensures that required/specified devices are
turned on using the Device Controller and then uses the Steering behavior controller to
steer to the specified waypoint under the specified mode, line or point. This controller is
also capable of sequencing behaviors to arrive at the specified location at a specified
time. This arrival time is ensured by loitering if necessary and/or by adjusting AUV
speed within acceptable limits if necessary. If loitering is required the specified loiter
mode is used. This operation concludes when the AUV is within a specified distance of
the destination.

The Device Commander is used to control sensors and devices on the AUV in response
to mission orders and commands from other operation controllers; this controller interacts
with the Device Controller. Besides power states (on/off), various sensor parameters may
also be specified when required.

The Sequential and Interrupt-driven coordinators behave as described in the first
portion of this section. The Safety coordinator is use to monitor several critical
parameters which ensure safety. Violations of safety criteria lead either to modified
commands to the vehicle subsystems or in some cases, a mission abort. The safety
coordinator monitors the power source on the AUV for remaining energy. If some
predetermined (system parameter) minimum energy level is reached, the mission is
aborted. It is also possible to switch devices off to conserve energy. The safety
coordinator also monitors the height of the water column in which the AUV is operating,
if this height falls below a user-specified threshold, the mission will be aborted since the
AUV is deemed to be operating in a dangerous environment. The safety coordinator also
watches the altitude of the AUV from the bottom. Unless the AUV is commanded to sit
on the bottom, the safety coordinator will command a shallower depth command if a
user-specified minimum altitude is violated. If the violation continues for a specified
amount of time, despite the change in depth commands, the safety coordinator deems the
AUV unresponsive to depth commands and issues a mission abort.

The mission controller modules are realized using TEJA NP networking software
toolError! Reference source not found.. TEJA supports the design of interacting hybrid
state machines and includes automatic real-time code generation which allows for rapid
deployment on the target platform. Teja allows the creation of a system architecture
where all the modules required for a particular mission controller are instantiated and
initialized, and their interactions are specified via an event dependency table that may be
dynamically reset. Automatic code generation ensures that the real-time scheduling needs

11

12

are met to tolerances far exceeding the mission control application. Teja allows for
abstract class definitions and inheritance so that, when appropriate, generic controller
classes may be defined and subclasses may be used to refine and customize the generic
controllers to specific applications. Utilities are provided to handle useful functionality
such as communications and data handling and parsing. Libraries and utilities are
provided for a variety of commonly used platforms and operating systems including
Windows, Linux, and Solaris. All of these features make Teja an ideal tool for rapid
prototyping, testing, and deployment of mission controllers on target vehicle platforms.
Teja allows the creation of a system architecture where all the modules required for a
particular mission controller are instantiated and initialized, and their interactions are
specified via an event dependency table which may be dynamically reset.

Error! Reference source not found. shows the hybrid automaton representation of the
Launch operation controller modeled using Teja. Transitions between states may be
proactions, where the transition fires when the guard condition is true, or responses which
fire on event synchronization from another hybrid automaton. In Teja, the first portion of
an event label is either a local label in the case of a proaction, or a synchronization label
in the case of a response. The second portion, after the /, represents an output event label
that is used to fire enabled response transitions in other modules that are specified in a
(static or dynamic) event dependency table for that particular event label. Resets and
other initializations may be performed on transitions between states. The hybrid
automata modules that make up a particular application therefore interact through event
synchronization. Continuous state variables, restricted to clocks in the Launcher, are
specified and their flows are defined for each discrete state. An initial state is specified
and the Teja tool allows constructors and destructors to initialize and finalize the state
variables, and parameters of each automaton. Vehicle state values, on receipt from the
interface level, are used to populate Teja data structures which are available to all
modules that require access to them. Links to other automata are provided so that public
data within them may be accessed and set. These links are used to pass parameters and
initial conditions, and retrieve results on event transitions.

Time Out / Abort

RetractMast

Fig.3.The Launch operation controller

On initialization, the sequential coordinator reads in the user specified mission order

12

13

file and populates two queues, the sequential order queue, and the interrupt-driven order
queue. Mission order syntax is specified using an order specification which is first read
in by the mission controller. This order specification contains the following attributes for
each elements of each order:

e Name
Conditionality on other elements and their values
Critical or optional
Data type
Enumerated values if any and optionally a default value

e Units — enumerated list with an optional default unit
Orders in the mission order file are compared against their specification and only valid
orders are passed through. Orders deemed syntactically invalid are flagged as such, and
descriptive error messages are provided to aid the user in fixing them. The mission is not
started if there are any invalid orders.

On generation of a mission abort event by any module in the hierarchy, all controllers
are sent events which ensure that they gracefully terminate their activity and an end-of-
mission sequence is initiated. This sequence can vary from vehicle to vehicle but
typically takes the form of releasing a drop weight if one exists, or blowing ballast if the
AUV is equipped with ballast tanks. The AUV is then either driven to the surface or
allowed to float up since it is positively buoyant after releasing ballast.

Besides the modules shown in Fig. 2, there are additional modules in the Teja
implementation of the MC. These comprise of data structure definitions and modules
which communicate with the vehicle, i.e., those which make up the interface layer.
Additionally, a faster-than-real-time simulation capability is built into the MC to allow
mission to be rapidly simulated and viewed graphically. This capability is included in the
MC as a mission planning aid. It is facilitated by simplified, linearized models of
important vehicle behavior such as its hydrodynamics maneuvering characteristics, the
behavior of a variable ballast system, etc. Many sensor subsystems are not modeled since
the purpose of this simulation capability is to test the mission validity primarily from a
navigation standpoint. The mission controller in the simulation is identical to the one
which runs on the actual vehicle. Teja allows the generated code to be run as fast as
possible on any given platform in simulation mode; all relative timing is maintained but
absolute mission execution time is a fraction of the real mission time. This simulation
capability has proven valuable during field trials of several AUVs.

4. Verification of Mission Controller Architecture

Hybrid systems, those containing both continuous dynamics and discrete transitions, have
become the focus of much research in the areas of control and computer science because
of their wide range of practical use, which includes automated highway systems, high-
level embedded controllers, manufacturing process control, robotics, air traffic
~ management systems, and communication network synthesis. In each of these areas,
much emphasis must be placed on safe, reliable and correct operation. Informally, safe,
reliable and correct operation requires that the system, during all times of operation, will
never perform any unsafe tasks and will eventually complete a desired task. For the case
of an Autonomous Underwater Vehicle (AUV), a

13

14

simple example of safe and correct operation requires that the vehicle never exceeds a
certain depth and eventually completes the mission tasks. An AUV, like many
autonomous systems, contains multiple levels of control that must each satisfy a set of
requirements in order to guarantee correctness of the overall system. In this paper, we
present a methodology for the verification of hierarchical hybrid systems that is
integrated with the design process and, specifically, verification of a hierarchical AUV
mission controller, where the verification specifications (at this level) are derived from
high-level specifications.

High-level control of AUV’s, such as mission control, is often more abstract and includes
additional requirements such as re-configurability, learning, safety, failure tolerance, the
ability to manage dynamically changing mission goals, and increased autonomy. In order
to cope with such complexity, mission control is often hierarchically decomposed, and
thus a hierarchical method of hybrid system design, in which each layer of the hierarchy
is responsible for either executing or coordinating a set of tasks. In order to deal with the
complexity of verifying a hierarchical hybrid system, we present a bottom-up approach to
verification, where subsystems on all levels, other than the level currently being verified,
may be abstracted by removing all irrelevant details. Our approach to hierarchical
modeling and verification is systematic and can easily be applied to a wide range of
hybrid systems.

a. Verification Techniques

Since hybrid systems are prevalent in a variety of real world applications, verification
techniques for such systems have been extensively researched and developed. In general,
three methods of hybrid system verification are available: simulation, model checking,
and theorem proving. No single method is perfect, as simulation can never exhaustively
test every possible path in the system, model checking may not be decidable for certain
classes of hybrid systems, and theorem proving is often too complex for reasonably sized
systems. When verifying real-time systems, simulation and model checking are used
more prominently, as both methods are made available through computational tools. In
this paper, we present a methodology for the verification of hierarchical hybrid systems
that is tightly coupled with the design process and uses the automated model checking
tool Uppaal. Uppaal was chosen due to its compatibility with the modeling formalism,
GUI, ease of use, and portability.

b. Development Tool vs. Verification Tool

The survey AUV hybrid mission controller has been designed and implemented in Teja
NP. Teja NP is a graphical hybrid system design tool that contains built-in support for
automatic code generation. Following a hybrid system description, Teja facilitates
communication between hybrid subsystems via shared data and event synchronization.
Each Teja system must contain a userdefined event dependency table that specifies which
subsystems may receive events that are sent from another subsystem. When a Teja
subsystem initiates an event, it is passed to all subsystems listed within the event
dependency table, causing synchronization. Teja, however, does not contain functionality
for formal verification; thus an external tool such as Uppaal must be

14

15

used for verification. In order to facilitate rapid (re)design and verification, a converter
was created that converts a hybrid (timed) autonomous system description in Teja to an
Uppaal system description. The details of this converter are omitted here due to space
restrictions.

Although Teja and Uppaal both support timed autonomous systems, there are several
differences in the tools that must not be overlooked. As previously mentioned, event
synchronization in Teja occurs according to an event dependency table; thus, events can
only be sent to subsystems listed in the event dependency table, and any number of
subsystems, if enabled, can synchronize on any given event. Uppaal, however, does not
contain an event dependency table. Two, and only two, Uppaal subsystems may
synchronize on two enabled edges over a normal channel if one edge is commanding and
one edge is accepting. Any one Uppaal subsystem with an enabled edge may synchronize
with the commanding subsystem, and if no synchronizing edge is available, no transition
will take place; whereas in Teja, the transition will take place in the commanding
subsystem regardless of how many systems, including zero, are synchronizing on the
event. To overcome this problem, all channels in Uppaal must be declared as broadcast
channels. Zero, one, or multiple Uppaal subsystems may synchronize on a single event
over a broadcast channel. We are however restricted in that a certain subsystem, not listed
to receive an event in the Teja event dependency table, may still synchronize on that
event in Uppaal. This restriction must be overcome by examining the Teja event
dependency table during Uppaal verification.

c. Bottom-up Approach

In order to deal with the complexity of verifying multiple levels in a hierarchical hybrid
system, we propose a bottomup method of hybrid verification, in which the bottom-most
subsystems are verified first, the subsequent higher level is verified next, assuming the
bottom level has been correctly verified, and this process is continued until all levels have
been properly verified. Using this approach, the verification process is simplified in the
following ways: (1) subsystems on lower levels, once verified, may be abstracted by
removing all irrelevant details; (2) subsystems on higher levels, before being verified,
may be abstracted by removing all intrinsic details, as well as, all states not relevant to
the subsystem currently being verified; (3) changes to subsystems arising from their
verification do not necessitate re-verification of other subsystems.

In a hierarchical hybrid system, subsystems may synchronize with other subsystems on
either higher, lower, or the same level (lateral subsystems). During verification of a
particular subsystem, a conservatively abstracted subsystem, called a driver subsystem,
may be created to emulate only the relevant commands issued by either a higher level or
lateral subsystem. Similarly, a conservatively abstracted subsystem, called a stub
subsystem, may be created to emulate relevant responses issued by either lower level or
lateral subsystems. Driver and stub subsystems serve the purpose of simplifying the
complexity of verification by reducing the number of discrete states and clocks in a
composed system. Subsystems whose internal states, guard conditions, or update laws
affect the subsystem being verified should not be abstracted.

15

16

d. Hierarchical Verification Algorithm

The first step of the verification process involves determining a set of requirements that
the system must satisfy. This step can often prove to be very difficult and time-
consuming and is currently the subject of further research.
Once the high-level requirements have been identified, the verification process for a
hierarchical interacting hybrid system

Following the above bottom-up approach, the process of checking progress for a
hierarchical interacting hybrid system, H=H ', ||...H",... |[H ™, where
H'= {Q,f JELUL Y R H] 1] ED G R/ } is the hybrid automaton model of the jth module

(j=1...m;) on the ith level (i=1...n), the following algorithm describes the verification

approach.
B Fori=Iltn
u Forj =1tomi

- Select subsystem H ji for verification
- Find all subsystems H Ik, k=1 to n, I=1I to mk, that
interact with subsystem H ji
- Abstract all subsystems H Ik, for k,/ as found above, whose
internal states are not relevant to verification, as drivers or
stubs, and replace the original subsystems with the abstracted subsystems
- Compose the system as H’= H ji || H Ik for k,] as found
above
- Formulate queries using temporal logic formulas based on
the safety/progress requirements of the system, check queries on composed
system H’, and decide on progress
- correct any safety/progress problems found for module H ji
n Next j
B Next/

e. Hybrid System Abstractions

A hybrid system may be abstracted in two ways [2]: the discrete behavior of the system
may be abstracted or the continuous behavior of the system may be abstracted. In the
context of logical verification, the survey AUV mission controller does not depend on the
continuous dynamics of the underwater vehicle. At this level of verification, the
continuous dynamics are ignored, except in the case of real valued clocks.

16

How V' Dara”?

L=y

Safeties_Voltage Abonli Saferies_ Wates e pthAbon
Abart!

Che
Nov__Ahitudee

MinimwmAbhijted:
LowAlitud: Timer =0

Kalety Abort
LeowA Ttitwde Time > Low Altitude T

Nav__
LowANitude

Ahitrd>=MinimumAhiwd

Figure 4 - Safeties subsystem

A hybrid system may also be discretely abstracted. An example of discretely abstracting a
hybrid automaton is now presented. The Safeties mission coordinator, shown in Figure 4,
resides at the top level of the AUV mission control architecture and maintains safe
operation of the vehicle at all

times. If an unsafe condition is detected, Safeties may abort the mission by aborting
operation of all subsystems. Thus, if a safety abort occurs, all subsystems must properly
respond and abort operation. An abstracted version of the safeties subsystem, called the
safeties driver, was created for verification and is shown in Figure 5(a). The safeties
driver must be included in the verification of every subsystem in the mission controller.

Start Abarting

0—=—0 @

Figure 5: (a) Safeties driver (b) Generic driver susbsystem

All other drivers generally take the form shown in Figure 5(b), where the ! denotes a
commanding transition and the ? denotes an accepting transition.

f. Mission Controller Subsystem Requirements

As previously mentioned, the first step in the verification process involves identifying a
set of system requirements. For the case of the AUV mission controller presented in
Section 2, a set of requirements based on high-level specifications has been derived for
each level within the hierarchy. The behavior and operation controllers, which are
responsible for executing tasks, share the same requirementsthat are listed below.

(1-b) The composed system must never be deadlocked

(2-b) The subsystem, when in any state, must properly respond to an abort command
(3-b) The subsystem must not improperly abort commanding subsystems

(4-b) The subsystem must properly respond to a command from a higher level or lateral
subsystem

(5-b) The subsystem must properly issue commands to other subsystems, if necessary

17

18

(6-b) States in which outgoing transitions rely on the navigational or functional state of
the vehicle must contain timeout conditions

An example of verifying requirement (2-b), which may be used for every behavior or
operation subsystem, is illustrated using the Uppaal query shown below.

E<> SafetyDriver.Aborting and not Subsystem.ldle

a. Does a path exist where the safety driver has issued an abort command but the
subsystem has not correctly responded by transitioning to the Idle state?

b. If the query is satisfied, the subsystem contains a path that does not correctly respond
to an abort command; otherwise, the subsystem correctly responds to an abort command
throughout all paths in the system.

As with requirement (2-b), generic Uppaal queries have been formulated to check
requirements (1-b), (3-b), and (4-b) on every behavior and operation subsystem; however,
requirements (5-b) and (6-b) necessitate a more rigorous inspection of each individual
subsystem. Several cases are

examined in Example 1 below.

The mission coordinators are responsible for coordinating tasks (rather than executing
tasks), and thus share a different set of requirements, which are listed below.

(1-c) The composed system must never be deadlocked

(2-c) Each coordinator must always properly respond to an abort command.

(3-¢c) Each coordinator must properly respond to a done event from a lower-level
subsystem.

(4-c) Each coordinator must properly issue commands to lower-level subsystems.

(5-c) Interaction among coordinators must always occur correctly. (e.g.) The Interrupt
coordinator must properly suspend the Sequential coordinator when necessary.

(6-c) Coordinators only issue commands when appropriate. (e.g.) The Interrupt
coordinator must not start a timed order before the order is scheduled to occur.

The requirements listed above must be examined with all coordinators in the composed
system. An example of checking requirement (2-c) is illustrated using the Uppaal query
shown below.

E<> Coordinatorl.End and not Coordinator2.End

a. Does a path exist where Coordinatorl is in the End state but Coordinator2 is not?

b. If the query is satisfied, Coordinator2 may not properly end execution when
Coordinatorl ends execution; otherwise, Coordinator2 properly transitions to the End
state when Coordinatorl transitions to the End state.

c. This query must also be verified in the reverse case.

G. Example: Operation level verification

Applying the algorithm listed in Section 2 to the survey AUV, verification begins at the
behavior level, proceeds to the operation level, then finally to the coordinator level. In the
following verification example, the GPSFix subsystem, shown in Figure 4 and denoted
by H 2 2, is verified using Uppaal.

Following the algorithm for verifying a hierarchical hybrid system, the behavior
controllers, which, in this case, have already been verified, are replaced by stub
subsystems, as is illustrated for the Steering subsystem in Figure 5a. Likewise, a driver

18

19

subsystem has been created to imitate the synchronization that normally occurs between
the GPSFix subsystem and a coordinator level subsystem, as shown in Figure 7b.

Gallrsur e ok

i DeptheeSudfavcThee :dotd
teinSian «d
\ Timelnsur <0
TeSufaxTO

R ateMBsMmO
meinShy =0

Re Inrafosing_d

Skeer!
GPSCed _RemmToStan
Timel03ie o

%

Come O thwe_dx
TunefaSiae =0 DeesShiw | GPSFRStaowaDCHE
Ioctie _ds T Sk w0 Trkef i _ds

Figure 6: GPSFix subsystem

SteeringDone?

GPSFixDonc?

Figure 7: (a) Steering stub subsystem (b} GPSFix driver subsystem
The Launcher subsystem (not shown) is an operation controller that is commanded by the
GPSFixer. Since the GPSFixer (laterally) depends on the Launcher, the Launcher was
verified first and replaced by an abstracted stub subsystem and included in the
verification of the GPSFix
subsystem. Also included in the integrated system is the abstracted Safeties driver shown
in Figure 7(a).The GPSFix subsystem, GPSFix driver subsystem, Steering stub
subsystem, Launcher stub subsystem, and Safeties driver subsystem, which interact
according to (2), are synchronously composed in Uppaal, and a set of temporal logic
queries are formulated based on requirements (1-b) through (6-b), a few of which are
listed below. Note that the subsystem requirements are transformed into temporal logic
queries that specify an erroneous set of states, and Uppaal is used to check whether this
set is reachable. If the set is reachable, Uppaal generates a diagnostic trace that is used to
identify and correct the problem.
A[] not deadlock
- Requirement (1-b)
- For all paths, is the system not deadlocked?
- The query is satisfied signifying no immediate deadlocks.
E<> SafetyDriver.Aborting and not GPSFixer.Idle
- Requirement (2-b)
- Does a path exist where a safety abort has occurred but the GPSFix subsystem does not
properly abort?

19

20

- The query is satisfied suggesting that the GPSFixer may not properly abort under
certain conditions.

- The ReportTO state is missing an abort response

transition to the Idle state, which must be added.

E<> GPSdriver.Idle and not GPSFixer.Idle

- Requirement (3-b)

- Does a path exist where the GPSFix driver is in the Idle state but GPSFix is not?

- The query is satisfied indicating that the GPSFixer may improperly abort the GPSFix
driver.

- The abort output event on the transition from ReturnToStart to Decide should be
changed to a SteeringDone output event.

E<> GPSdriver.TakingFix and GPSFixer.ldle

- Requirement (4-b)

- Does a path exist where the GPSFixer does not properly respond to a TakeGPSFix
command?

- The query is not satisfied, signifying proper GPSFix subsystem response.

Once verification of the GPSFix subsystem is complete, it can be replaced with a stub
system, as shown in Figure 6, when subsequently verifying the top level of the mission
controller hierarchy. Notice that, in Figure 6, the GPSFix stub subsystem contains more
than two states. Since the GPSFix subsystem commands other subsystems (in this case
the Launcher subsystem and Steering subsystem), do/done transitions that
command/respond to the other subsystems must be included in the abstracted subsystem.

Abvopt?

Laup:hINope?

Take GPSFix?

Idie ds aunching ds

2ninglon:?

Aban? Steertng ds

Figure 8: GPSFix stub subsystem

5. Animation of missions

Animation/Simulation imitates or estimates how events might occur in a real situation.
Usage of a simulation tool offers the advantage of visually inspecting the correctness of
design without risking damage to the vehicle or equipments involved. A complex system
such as an autonomous underwater vehicle can undergo many sequences of events, which
are impossible to anticipate humanly but can be seen visually in simulation. A simulation
in addition to verification further strengthens the correctness of a designed system. This is
because the verification of a hybrid system is mostly carried out by abstracting the system
which might miss situations that might occur. No such abstraction is needed for

20

2]

simulation. Animation/Simulation involves both the continuous and discrete dynamics
combined together to successfully execute a mission. So a simulation can capture some
interactions which might be missed while carrying out verification. Also an
animation/simulation tool aids in the creation of the realistic environments to which the
autonomous system must react appropriately. A simulation tool had been developed for
the automated highway system in the PATH project at Berkeley. The use of such a
simulation tool proved to be useful for the reasons explained above.

The preliminary simulation tool we developed is a basic tool and establishes the
possibility of having an advanced simulation tool in future. The simulation tool is specific
to the survey missions for an AUV. OpenGL is used to simulate/animate the missions
executed by an AUV.

The mission controller modules are developed using TEJA software tool, which
supports the design of interacting hybrid state machines and includes automatic real-time
code generation allowing for a rapid deployment on the target platform. For verification
purposes, the Teja modules specifications are first transformed [1] into a format readable
by Uppaal, a hybrid system modeling, simulation, and verification tool. For animation,
the mission controller modules in Uppaal are further converted to animation modules of
OpenGL.

Animation in our case deals with animating the sequence of operations and behaviors the
survey AUV executes to successfully complete a mission. The graphic tool used and the
proposed method for animation follows next.

a. OpenGL: Tool for Animation/Simulation

OpenGLis a hardware independent interface that can be implemented on many different
graphics hardware platforms. OpenGL contains commands to draw geometric primitives
like points, lines, and polygons to build the desired model. OpenGL provides a set of
commands that allow the specification of geometric objects in two or three dimensions,
using the provided primitives, together with commands that control how these objects are
rendered into the frame buffer. OpenGL is like a state machine, the state being defined by
color, current viewing, projection transformation, polygon drawing mode, characteristics
of light etc. OpenGL also supports animation of graphical models drawn. Thus using
OpenGL we can move or rotate or involve translation of an object the way we want.
GLUT (OpenGL Utility Toolkit) is a library of utilities for OpenGL programs, which
primarily perform system-level I/O with the host operating system. Functions performed
include window definition, window control, and monitoring of keyboard and mouse
input. Routines for drawing a number of geometric primitives (both in solid and
wireframe mode) are also provided, including cubes, spheres.

b. Algorithm for conversion from Uppaal to OpenGL

We created a converter coded in Perl. It takes as input a controller module .xml file that
is created for performing verification using the tool, Uppaal. The conversion of Teja
modules to Uppaal-readable .xml files is also done automatically using another
Teja2Uppaal converter that has been created at ARL-PSU.

Starting from the coordinator module files the converter extracts important information
and generates a graphics file in OpenGL. The information extracted are the different
events received or sent, and the variables used. The converter searches the

21

22

sequential/timed coordinator file, and extracts the operation name which is a transition-
label within the sequential/timed coordinator. Then the converter searches the file among
the set of input files which models the named operation. In this manner the converter
keeps extracting and expanding the sequence of transition-labels from one module down
to another module. The expansions capture the sequence of actions (algorithms) executed
by the concerned controller modules and maintain the interactions of the various
controller modules. The code that is generated can then be run using the commands used
to run an OpenGL program. The parameters required for an operation can be changed
within the files which changes certain actions executed by the AUV.

We follow a bottom up approach for simulation/animation. We first simulate the actions
implemented by the lowest level controllers. Once the sequences executed by the lower
level controllers are simulated we combine the higher level controllers with the lower
ones. We used this approach because the parts of mission executed by the lower level
controllers are called for by the higher level ones. So this gives us an organized way to
build up the correct simulation of the model. In the present simulation model sensor
values are stored in common files. The modules collect the sensor information and other
parameter changes from within the common files. The modules then execute the
sequence of actions according to the inputs received. After completing the operations the
changed parameters, such as time, position, etc., are then written back to the common
files. The next operation to be executed gathers information from the common files
before starting to execute simulation.

The algorithm used for the conversion of the Uppaal modules to the OpenGL code is as
given below, which is followed by a few screen shots for the GPSFix mission (explained
in IV A): The AUV with the mast moving up to the surface of water (Figure 10), AUV
raising mast after reaching the water surface to update the navigation system (Figure 10)
and results during GPSFix operation execution (Figure 9).

Fori=nto 1 (where n is the lowest level)

For k =1 to m (where m is the number of modules in a level)
Input the hybrid automaton H at the Level; to the converter
The converter extract events o, guard g. and variables Vars
Generate OpenGL code to model the events, guards using the variables extracted
Next k
Next 1

22

23

C:NHesearchhininat ionNlJenmpX\Mics ion>Wagypoint Gen Fioal

The file "UYaypointinput _txt’

Tobhat 1 .88, Toliong !

Liat 1. .484926% . Lony M9 .

Fromlat itade value change to 5 oas depth belou that ds dangerons
Totalt ine 284 BB, T tncOfOperat jfon 183 0By

T ime has elapsed

rarchsflnination\Tenp\Micsion>Paylodbelivery Gen Final
y S teerlaput (txt” vas opened
W_LBUuHg . Tolong - 81488010
-1 .50026% . Long = -WB_.90H483

titude value change to ~1.% as depth below that ju dangerous
4

T2 25 1151515 Y rrnode LINE --8.9144%74, ~8.607487
288808010 Steeraode LIRE @.498980, 72489

CoNResearobNAninat ionSNTeap\MiLscioa>GPSPix, Final

The file "Tosition.txt’ wvas opened

Time opened

1T ime 2.8, RiseTl ine 2. By, Fronlat - 81579813, FromLong = -A_399148Y

2888004, Ri: ine < 4.80HMHHB,. FronLat - B.O83816G,. TFromlonyg = B.3929489
r ¢ 2,488, R e c 6.00BUEB,. PronLat <~ $.921880Y . Prombongy ~ @.399489
S W 51515151515 R 2 stTime = L. B0VBANE,. Mastiangle - 93408177
= 1 .00800WHA, Ra AS ro0 2.8808008, Mastingle Y
108U, Ra 5 B 3.9800808,. Mastingle
1. 80UHE at, ne - 4_PHHBRY,. Masting le
1 .80, R % : H.0BHBH,. Mascingle B
- 1 .8880084 ast’ r 0 6.0808B8 . Mastingle PP L9LILL Y
“¥._88U0UY,. Rais astTime — 6. HBBBBIHY,. MastNngle PA I Y515 H
or 5 seconds to takeGPSFix
1.8A840088 . 2 1M -BAUHBE Angle 24499977
1.8088000 ., M ;o= 2.8880084, Ang Le 59 .3993841
1 g
1
1
i

2151515151528 st Haunangy Ang le 28.9149844

. BRNANG R 14 15151515 I8 sthAngle - 3.708033
snee sfal, AUDoun = B, DeovState MastState = # MastRaised = 1H726937

:[/lk)ki(v,‘ll"ll/), é (51575151515 Ang L 1926142

ix
i - 2.008808, Lat = B.663U12, Long = ~B.399489
Time = 2.8UUHVBY, Lat = ¥.V4Y81°/, Long = ~8B.399489

<

Figure 9: Result showing mission execution

c. Abstract of Converter code for a module

This section presents the abstracted code that is used for the conversion of the steering
controller module (a part of GPSFIx execution as explained in section IV A) from the
Uppaal format to the OpenGL format. All the other conversions are performed in a
similar manner, only differing in the event names and their guards. There exists an
initialization phase in which all the variables of a module are initialized and the
initialization code for the animation is generated. Then follows the extraction-expansion
phase during which events, variables and guards are extracted from the controller
modules and expanded to incorporate the sequence of actions executed for an operation.
Finally the animation code for graphical representation and keyboard/mouse association
is generated.

As an example, the abstracted code for the steering module is as given next.
#Initialization (initializes the variables used in converter)
Generate the initialization code
{ print OUTFILE "\n#include<stdio.h>";...}
Input the steering module check for the number of lines of declaration of variables
while($input = <STEERFILE>)
{ if ($input =~ Asint\s/)

{ $numbertimesint++; # Keeps track of iterations

print"Integers = $numbertimesint\n"; }}

Generate all the variables extracted
if($in =~ /int\s\S+:=\d/)

23

24

{ $stringofdecl = $&; # Store the pattern in a string
@arrayofdecl = split(" ', $stringofdecl); # Get rid of int
$stringofvar = $arrayofdecl[1]; # Get string of vars.
@actualvar = split(',',$stringofvar); # pattern match
for ($count = 0; Scount<=$#actualvar; Scount++) #
Iterate for all the variables
{$stringid = $actualvar[$count]; # Store each variable in a string
%sepvalue = split(":',$stringid); # Split variables based on colon
print OUTFILE "static GLfloat "; print OUTFILE %sepvalue; print
OUTFILE ";"; print OUTFILE "\n"; } $getvariable++; }
#Generate the initialization modules and initialization variables
print OUTFILE "\nvoid init(void)";{...}
print OUTFILE "\nvoid display(void)"; {...}
Extract information for the Steer operation
if($in =~ />Steer\W</) {...}
Extracting event abort and expanding its sequence
if($in =~ />Abort\W</ && $abortNumber ==0) {...}
Generate the graphics of the AUV and undersea env.
print OUTFILE "\nvoid reshape (int w, int h)"; {...}
Associating mouse and keyboard related actions
print OUTFILE "\nvoid keyboard (unsigned char key, int x, int y)* {...}

Figure 10: AUV (Green) moving up and raising Mast (Yellow) to execute GPSFix

6. Synthesis of coordinators

The research involved the automation of the synthesis of coordinators (i.e. controllers at
the topmost layer) for hierarchy based intelligent control architecture for AUVs. The
interactions within the modules in hierarchical intelligent control architecture are
complex. Synthesis of a coordinator for such a system is a challenging task as it requires
careful monitoring of the inputs received and the outputs send. The controller is a hybrid
system with discrete states and continuous dynamics. The continuous dynamics are
implemented as functions. The coordinators are a special case of hybrid system which
only involves timing constraints known as timed automata.

Automated synthesis of the coordinators promises reduction in time to develop and

implement coordinators for underwater and aerial vehicles. It also improves modification
and debugging capability. Our goal in the automation of coordinators had been to

24

25

translate the higher level specifications and user inputs into sequence of actions to
successfully execute the mission. The coordinators we synthesize are timed automata
with timing constraints.

We consider the requirement of three coordinators at the topmost level. The three
coordinators are a sequential coordinator (implementing sequential control to execute a
sequence of actions for a mission), a timed coordinator (implementing time critical
missions) and a safety coordinator (implements safe execution of mission). These
coordinators are synthesized based on user input and high level specification. The
coordinators consist of a basic structure and a synthesized part. The basic structure
implements control common to any kind of mission coordinator built. For example each
and every coordinator needs to establish connection with the vehicle before requesting a
mission. The synthesized part is developed based on the specific mission to be executed.
For example a mission can be find the present location using a GPS or fire a missile.

Sequential coordinator is used to coordinate the execution of sequence of actions
involved in the successful execution of an untimed mission. The sequential coordinator is
synthesized based on the inputs received and its response. Inputs received by the
sequential coordinator can be requests made by the user i.e. the mission order or other
coordinators at the same level or responses received from lower level or same level
coordinators. The algorithm consists of two parts the first part implements the basic
structure and the second part implements the augmentation of new edges, guards, reset
values and locations to the sequential coordinator. The simplest structure of the
sequential coordinator is shown in figure 1. The basic structure is the same for all the
sequential coordinators which involves two different phases: Initialization phase, and
Communication establishment phase. The mission specific structure contains mission
phase, and response phase. The two other coordinators have the same basic structure.

25

26

l Input

Basic
Structure

A

Same level
< coordinators

Mission specific structure

Sequential coordinator

A
Do Done

A

Lower level coordinators

Figure 11: Basic structure of Sequential Coordinator

a. Sequential coordinator synthesis
Algorithm:
Create five locations /< L and name them as Idle, WaitforVCComms, Run, Suspend and
Endmission. (control for any AUV needs all these states)
e Create an edge ey from Idle to WaitforVCComms (indicating transition to a state
to wait to establish communication with the Vehicle)
o Seteventoi, =lnit
o Set guard condition G'(eq) = t>=T where T is a constant time to initialize
the system (for our case T = [)
o Setreset condition R(eg) = {t=0}
e Create an edge e, to Run state from WaitforVCComms if a connection with
vehicle is established
o Set event o;, = NewVCData
o Set guard condition G'(e)) =>=10
o Setreset condition R(e;) = {t =0, MissionTime = 0, Suspendable = 0}
e Create an edge e, from Run state to EndMission state
o Setevent o; = Endmission
o For each Controller; « Level;where i=1...n, j=1 only
» Set the guard condition on the edge G'(e;) = (v Controller,->Idle)
where k = 1,2...n, k !=1i checking the status of other controllers (0

meaning idle)

26

o Set reset condition R(e;) = {t = 0, Suspendable = 0, Idle = 0} to indicate

that all the coordinators are idle

o At EndMission state
o Draw a self loop edge e3

» Set event oi, = OnSurface
= Set guard condition G'(e3) = (Vary < = SurfaceThreshold) where
Vary is K" variable mapped to set of real numbers (indicating
sensor value of depth) SurfaceThreshold indicates a constant value

Init/-

G()= {t<1}
R() = {+=0} NewVCData/-
G()=t>=10

ndMission/-

() = Controller , -> Idle
(.) = {t=0, Suspendable =
Jdle=0}

Abort/Abort
G(.) = {True}
R()={t=0

OnSurface/-
G(.) = Vary <= SurfaceThreshold

R() = {®}

Figure 12: Basic structure for Sequential Coordinator

e Start: Get Mission order name Or,(<MissionName>, Prm).
e If mission name is obtained for the first time
o Create a location /< L and name it <MissionName> v
o Draw an edge e; from the Run state to <MissionName> state where i =
j+1... n, where j is the number for the last edge that was drawn
= Set the events as o6;,/6, = <MissionName> /Do<MissionName>
command sent to the lower order controllers
o Set the guard condition G/(e;) = {Var; = “<MissionName>"}
o Set the reset condition R(e;) ={Suspendable = (0 or 1), Idle = 0, t = 0}
o If Suspendable =1
= Create an edge e; from <Mission Name> state to Suspend state
e Setevent o, = Suspend
e Set guard condition G(e) = {True}

27

28

e Set reset condition R(e;) = {t = 0, Suspendable = 0}
= [f connecting to the Suspend state for the first time
e Create a self loop e; at the Suspend state
o Set the event 6i,/ 6,= Abort/ Abort
o Set guard condition G(e;) = {Vary = /Suspended }
o Setreset condition R(e) = {Suspended = 1}
e Create an edge ¢; from Suspend state to Run state
o Setevent 6i, = Resume
o Set guard condition G(ey) = {True}
o Set reset condition R(e) = {Suspended =
Suspendable = 0, t = 0}
o Draw an edge e; from the <Mission Name> state to EndMission State
= Set the o;,/0, = Abort / Abort
» Set guard condition G(ey) = {True}
= Set reset condition R(ey) = {t = 0}
o Create an edge e; from <Mission Name> state to Run State
= Set event 6;, = <MissionName>Done
= Set guard condition G(e;) = {True}
= Set reset condition R(e;) = {t = 0, Suspendable = ()}
Else if mission name is already there
o Go to Start to get the name of the next mission
End

28

0,

29

Abort/Abort
={Var, = /Suspended}

Init/- R pended = 1}
G()= {t1<t} Resume/-
R() = {t=0} NewVCData/- G() = {Truej

G()=1>=10 R() = {Suspendable =0

R(.)={t=0, Suspended =0-

@ issionTime = 0,
Suspendable = 0
R <MissionName;> / <DoMissidhName;>

R() = {t = 0, suspéndable =0, /G!bori/Agort
Abort/Abort R((; ; {{t :‘g}}
G(.) = {True} :
R()={t=0} E
< SR
OnSurface/- Suspend/-
G(.) = Vary < = SurfaceThrebhpld Suspendable = 0

R()={®}

Abort/Abort

G() = {True} Abori/Abort
O =G

Figure 13: Sequential coordinator

b. Timed coordinator synthesis

Timed coordinator is used to coordinate the execution of time critical mission. Timed
critical mission involves execution of sequence of actions with timing constraints. The
timed coordinator is synthesized based on the inputs received and its response. Inputs
received by the sequential coordinator can be requests made by the user i.e. the mission
order or other coordinators at the same level or responses received from lower level or
same level coordinators. The algorithm till the label Start implements the basic structure
and the remaining part implements the augmentation of new edges, guards, reset values
and locations to the sequential coordinator.

Algorithm:

e Create seven locations / ¢ L and name them as Idle, WaitForFirstTO,
CheckOrders, Wait4Suspend, Check4Resume, Decide and End.
e Draw an edge e, from Idle state to WaitForFirstTO state
o Setevent oy, = Init/-

29

30

o Set guard condition G(ey) = {t>= 1} where 1 is a constant
o Set reset condition R(ey) = { @}
Draw an edge e, from WaitForFirstTO to CheckOrders
o Setevent ¢i, = NewVCData/-
o Set guard condition G(e;) = {True}
o Set reset condition R(e;) = {MissionTime = 0, t = 0, Done = 1}
Draw an edge e, from CheckOrders state to End state
o Setevento,, = EndMission
o Set guard condition G(e;) = {True}
o Set reset condition R(e,) = {Idle = 0}
Draw an edge e; from CheckOrders state to Decide state

o Setevent 6iy = NewOrder
o Set guard condition G'(e) = stremp(this->CurrTimedOrd->Name, None")
&& TimedActions get MissionTime() >= this->CurrTimedOrd->Time
&& (!TimedActions_CheckSuspend(this)||this->SeqController->Idle||this-
>SeqController->Suspended)
o Set reset condition R(e3) = {Idle = 0}
Draw an edge e4 from CheckOrders to Wait4Suspend (indicating that the mission
requires suspension of the other coordinators)
o Set Gin = Suspend/ Suspend
o Set guard condition G(ey) = { strcmp(this->CurrTimedOrd-
>Name,"None") && TimedActions get MissionTime() >= this-
>CurrTimedOrd->Time && (TimedActions CheckSuspend(this) & &this-
>SeqController->Suspendable && !this->SeqController->Idle) &&!this-
>SeqController->Suspended)
o Set reset condition R(ey) = {t = 0, Idle = 0, Time2Suspend = 0 }
Create a loop es at Wait4Suspend state
o Setoin = Suspend/ Suspend (suspend the Sequential Coordinator)
o Set guard condition G'(es) = !this->SeqController->Suspended
o Set reset condition R(es) = {t = 0}
Draw an edge e from Wait4Suspend to Decide state
o Set o;,= NewOrder
o SetG'(eg) = this->SeqController->Suspended
o Set reset condition R(eg) = { P}
Draw an edge e; from Check4Resume to CheckOrders without Resume event

o Set oin= OrderComplete/-
o Set the G'(eq) = Ithis->SeqController->Suspended |

(TimedActions_get MissionTime() >= this->CurrTimedOrd->Time &&
stremp(this->CurrTimedOrd->Name,"None"))

o Set the reset condition R(e;) = {@}

Draw an edge eg from Check4Resume to CheckOrders

o Set oy, = OrderComplete /Resume

o Set G'(es) = this->SeqController->Suspended &&
(TimedActions_get MissionTime() < this->CurrTimedOrd->Time ||
Istrcmp(this->CurrTimedOrd->Name,"None"))

o Set the reset condition R(eg) = {D}

30

e Draw an edge ey from each of the states (excepting Idle and WaitForFirstTO) to
End state
o Setevent o,/ o, = Abort/Abort
o Set guard condition G'(eg) = {True}
o Set reset condition R(eg) = { D}
e Start: Get Mission order name Or,(<MissionName>, Prm).
¢ If mission name is obtained for the first time
o Create a location / ¢ L and name it <MissionName>
o Draw an edge e; from the Decide state to <MissionName> state where i =
j*+1...n where j is the number for the last edge drawn
» Set oj,/ 0, = <MissionName>/ Do<MissionName> sent to lower
level controllers
= Set guard condition G(e;) = {CurrentOrder = <MissionName>}
= Set reset condition R(e;) = {D}
o Draw an edge ¢; from the <MissionName> state to End State
s Set i,/ 6, = Abort
= Set guard condition G(e;) = {True}
= Set reset condition R(e) = {D}
o Create an edge ¢; from <MissionName> state to Check4Resume State
» Set 0;, = <MissionName>Done signal
* Set guard condition G(e;) = {True}
» Set reset condition R(e;) = {®}
Else if mission name is already there
o Go to Start to look for the next order
e FEnd

31

c. Safety Coordinator synthesis

Safety by definition is the freedom from danger, damage or risk. Thus the goal of a safety
coordinator is to prevent the vehicle from taking actions which might damage the vehicle.
The safety coordinator monitors the different parameters involved in the missions ordered
by mission coordinators, the proper functioning of the components of the vehicle and the
environment surrounding the vehicle. So a safety coordinator basically is an observer
which acts only when the operations lead to unsafe state. When the safety coordinator
finds that a mission prompts execution of an unsafe action it tries to correct the action and
make it safe. If the safety coordinator is not able to make the mission safe it aborts the
mission. For example if a mission commands the vehicle to go to a depth of 500ft and the
present safe depth is only 200ft the safety coordinator changes the depth to 200ft. If the
safety coordinator is able to correct it the mission is carried out or else it aborts the
mission. We here list a set of safety issues a safety coordinator should satisfy.

32

X Suspend/Suspend
; ” NewV'CData G(.) = {!this->SeqController ->Suspended}
Tnit/- G() = ({True} RO~ (tm0)
G() = {t>=1}) ={ MissionTime = (0, t = (),)

R()={D} Doneg~=1}
uspend/Suspend
O;'derComplcter/Resume ‘ 5 ' Suspend = 0 }
G'ley
RO={ D}

/ \ Mbort/Abort
<Mis g ()={True}
G() R()= (D)
R();

dbort/Abort
G(.)={True}
R()= {®}
<MissionName,>/ <PoMissionName,>

G(.) = {CurrentOrdgdr = “‘<MissionName> "}

R()={D}
Abort/Abort
G()={True}
R()={®}

urrentOrder = "“"<MissionName

P} pborybort
G()={True}
b R()= ()

<myssTonName ;Done>/-
s G()={True}
R(. = J{P

Figure 14 : Timed coordinator

The safety issues which a safety coordinator for an AUV should take care of are as listed
below.

1. Water depth safety monitoring should check the altitude of the vehicle from the bottom
of the sea and thus prevent the vehicle from hitting the bottom of the sea.

2. Obstacle avoidance safety should monitor the presence of obstacles which might be
other vehicles, or mountains under sea and prevent collision of the AUV with the
obstacle.

3. Device functioning safety should monitor the functioning of the different critical
components which constitute an AUV. Critical components are those components
malfunctioning of which might lead to damage of vehicle or undesirable situation like
AUV stuck at the bottom of the sea due to battery failure.

32

33

All these safety issues can be modeled as constraints within a hybrid system as has been
done for the survey AUV built at ARL. The constraints are the guard conditions which
prompt the transition from one state to other depending upon the situation.

The coordinators synthesized here work together to successfully execute a mission. It is
shown next. Given a mission the coordinators communicate among each other to
successfully complete a mission.

l l

Sequential Timed < Safety
coordinator |e Coordinator » Coordinator
A
MiskdonNameDone MissiogNameDone y
. .] Database
DoMissionName DoMissionName
A 4 A L 2
Lower level controller

Vehicle

Figure 15: The complete structure

Here we are concerned with the successful execution of the mission as ordered by the
highest level controllers which we have automatically synthesized.

The analysis is provided based on the interactions between the modules shown in Figure
and the detailed modules of the sequential (Figure) and timed coordinator (Figure).

Both the coordinators are initialized first. During initialization the sequential coordinator
establishes contact with the vehicle and the terminal from which mission orders are
received.

When new order is received both the coordinators transition to the state at which they
become ready to execute a mission. If it’s an untimed mission the sequential coordinator
accepts the input and sends <DoMissionName> (Figure) to the lower level controllers.
Once the mission is successfully executed the sequential coordinator receives
<MissionNameDone> (Figure) from the lower level controllers. Then the SC considers
the next order in queue and passes control to the concerned lower level controller. If due
to some malfunctioning the mission needs to be terminated an abort signal is received by
the sequential coordinator from the lower level controllers involved in the mission. The
sequential coordinator then broadcasts the abort signal (Figure 13) and terminates the

33

34

execution of all other missions. If there are no more orders in the queue the SC checks for
the status of the TC. If the TC is idle SC sends EndMission and transitions to the
EndMission state (Figure).

If a timed mission is received then the timed coordinator checks whether the execution of
the present mission needs the suspension of the sequential coordinator or not (these
constraints are guard conditions on edges). If TC needs to suspend SC, TC sends the
suspend signal to SC (Figure). If the mission which SC is executing is suspendable then
SC synchronizes with the event suspend and transitions to the Suspend state (Figure).
When SC is suspended TC sends the order as <DoMissionName> to the lower level
controllers (Figure). The lower Ilevel controllers respond back with the
<MissionNameDone> event to the TC when the mission is completed (Figure). TC then
finds the next order in queue and either resumes the SC or keeps it suspended or keeps it

unsuspended.

7. Conclusion and future work

We have proposed hierarchical hybrid mission control architecture for AUVs. The
architecture has been successfully implemented at ARL. The modular approach to
execute a mission breaks down complex missions into simple modules which aids in easy
design and implementation of the architecture. The present architecture is also not strictly
priority driven. A priority driven architecture with timed and untimed missions strictly
separated would lead to lesser missions being expired and give efficient performance. A
priority driven system with higher priority for timed missions would look into all the
timed and untimed missions in a queue and execute timed missions before the untimed
ones if there is a possibility of missing the successful completion of timed missions.

A real-life, complex, and hierarchically structured hybrid control system has been
verified using our bottom up approach. The advantage of bottom-up approach is
reduction of complexity, and also if an error is detected in a certain module, the lower
level modules do not need to be revised. The current approaches typically consider
reachability properties for verification, but through our modular bottom up approach we
are able to analyze the correctness of the entire controller. As far as logical correctness is
concerned, we verified 12 different modules against a total of 148 queries; the table
shows the number of queries and the name of the module. The verification confirms the
correctness of designed modules for progress.

S.No. | Name of the subsystem | No. Of
Queries

1 Steering 3

2 Loiter 22

3 Rendezvous 8

4 Payload 4

S Pause 2

6 Launcher 4

7 GPSFixer 12

8 DeviceCommander 4

34

35

9 WaypointNavigator 26
10 Sequential Coordinator | 34
11 Timed Coordinator 25
12 Safety Coordinator 4

The problem of complexity still exists if a modular design is not performed, and
properties to be verified are not dependent on behaviors of small sub-collection of
modules, rather the entire set of modules. In this present work we verified logical
correctness of the missions executed. The correctness of function-calls is another issue
not addressed here. Function-call verification will include the verification of the whole
hybrid system. The present architecture can be extended to multiple underwater-vehicles.

We have simulated a hierarchically organized mission controller architecture using a
bottom up approach to conversion from coordinator modules to OpenGL code. The
simulation involved all the coordinators involved in a specific operation and thus
strengthened the correctness of the model. The simulation proved the feasibility of
building a simulation tool for a mission driven AUV. The simulation tool can be further
developed and generalized to be used for any kind of mission (other than just survey) for
an AUV. The simulation tool can also be enhanced to get real time sensor information as
feedback and then take actions accordingly. The simulation tool can be further advanced
so as to implement the complex mathematical models involved and give a much more
accurate and attractive result.

Finally we have designed automated synthesis of coordinators. These synthesis
algorithms need to be implemented. The coordinators synthesized (with modification of
safety coordinator) can be used in future for hierarchical hybrid mission control
architecture for aerial vehicles as well.

8. Publications

1. S. Tangirala, R. Kumar, S. Bhattacharyya, M. O'Connor, and L. E. Holloway,
“"Hybrid-Model based Hierarchical Mission Control Architecture for Autonomous
Underwater Vehicles", IEEE Transactions on Automation Science and Eng., Submitted.

2. M. O'Connor, S. Tangirala, R. Kumar, S. Bhattacharyya, M. Sznaire, and L. E.
Holloway, A Bottom-up Approach to Verification of Hybrid Model-Based
Hierarchical ~ Controllers with application to Underwater Vehicles",
2006 American Control Conference, Minneapolis, June 2006.

3. S. Bhattacharyya, R. Kumar, S. Tangirala, M. O'Connor, and L. E. Holloway,
** Animation/Simulation of Missions for Autonomous Underwater Vehicles with Hybrid-
Model based Hierarchical Mission Control Architecture”, 2006 American Control
Conference, Minneapolis, June 2006.

4. Matt O'Connor, Sekhar Tangirala, Ratnesh Kumar, John Dzielski, and Mario

Sznaier, "A Bottom-Up Approach to Verification of Hybrid Model-Based Hierarchical
Controllers with Application to Underwater Vehicles," Proceedings of the 14th

35

36

International Symposium on Unmanned Untethered Submersible Technology (UUSTO05),
Durham, NH, 2005.

5. S. Tangirala, R. Kumar, S. Bhattacharyya, M. O'Connor, and L. E. Holloway,

""Hybrid-Model based Hierarchical Mission Control Architecture for Autonomous
Underwater Vehicles"”, 2005 American Control Conference, Portland, OR, June 2005.

36

37

Appendix A: Commands for the underwater vehicle for
search

Abort: This command is given to terminate an operation or procedure before completion,
if some other higher priority operation needs to be taken care of or the present job doesn’t
need to be done.

DeviceDone: This response is sent by the Device Commander when a device required for
an operation has been set.

GoToEndMission: This command is sent to indicate that a mission has been
accomplished so all the operations are terminated.

GoToRendezvous: This command is sent to go to the desired meeting point.
GPSFixDone: This is response sent by the GPSFixer once the global positioning system
finds the position.

Init: This command is sent by all the modules as an initializing command after which it
transitions to the Idle state from the Start state and becomes ready for operation.
Launch: This command is sent to activate the Launcher module.

LaunchDone: This is response to the command launch sent once the function of the
launcher is done with.

MastDown: This command is sent to the vehicle controller mast to lower the mast.
MastUp: This command is sent to rise the mast.

NewVCData: This is the data obtained by the Vehicle controller sensors.

OnSurface: This command is sent to indicate that the underwater sea vehicle has reached
the water surface.

PayLoadDone: This is response given by the PayLoad module to indicate that payload
has been delivered.

ProcessPayLoad: This command is sent to start the processing of the payload.
ProcessWP: This command is sent to process the direction of the vehicle based on the
way point (it gives the coordinates of a point) it needs to go to.

RendezvousDone: This is response given to indicate that the rendezvous with other
underwater vehicles has been done.

Resume: This command is given to resume operation after suspension.

SetDevice: This command is given to the Device commander to set a concerned device
for a certain operation.

SuspendBehavior: This command is given to suspend a behavior.

TakeGPSFix: This command is given to find the global position of the vehicle.

Update: This command updates the present location of the vehicle.

Wait: This command is given to wait for sometime before staring on or resuming some
operation.

WaitDone: This response is sent to indicate that waiting period is over now operation
can be resumed.

WPDone: This response indicates that way point or location has been found.
AltitudeOK: This respone says that the depth to which the vehicle needs to go to is safe.
AltitudeSafety: This command checks whether the altitude level to go to is safe or not.
DeliverPayLoad: This command tells to deliver the payload.

GoTolLoiter: This command tells the vehicle to go to start loitering.

37

38

LightOff: This command checks whether light is switched off

Loiter: This command is given to the vehicle to loiter in its surrounding area.
LoiterDone: This response indicates that loitering is done.

Steer: This command is sent to steer the vehicle to the desired location.
SurfaceCaptured: This command tells that the surface of interest has been captured.
TimeInState: This command indicates the time duration spent in a state.

TimeQut: This command indicates the time within which an event has to be conducted
otherwise it is not executed.

Trim: This command is issued to increase speed of the vehicle.

38

39

Appendix B : Hybrid models in Teja

Sequential coordinator
Superclass: TejaComponent

Variables: NumWP, SurfaceThreshold, WPNum, Suspended, StartUTCTime,
Suspendable, Idle.

Links: DevCmd (DeviceCmd), Actieq (ActionRequest), VehCmd (VehicleCmd),
AutCmd (AutopilotCmd), Nav (NavState), Logs (Files), WPNav (WaypointNavigator),
NonSeqController (TimedActions), Payload (PayloadDelivery), = Components
(ComponentList), Missionqueues (Queues), CurrOder (SeqOrder), DevCmdr
(DeviceCommander), GPSFix (GPSFixer), Devstate (DeviceState), Waiter (Pause).

Functions:

ReadParams() is a function to read the parameters needed by the steer module to get
executed successfully.

EndMission() is a function used to end a mission.

getMissionTime() is a function which returns the duration for which a mission is being
executed till the current time.

Input: No input

Constructors:

DevCmd=p_devicecmd (inititlzed to point to DeviceCmd)
ActReq=p_actionrequest (intialzed to point to ActionRequest)
VehCmd=p_vehiclecmd (initialzed to point to VehicleCmd)
AutCmd=p_autopilotcmd<{initialzed to point to AutopilotCmd)
Nav=p_navstate (initialzed to point to NavState)

Logs=p_files (initialzed to point to Files)

WPNav=p_waypoiatnavigator (initialzed to point to Waypoint Navigator)
NonSeqgController=p_timedactions (initialzed to point to TimedActions)
Payload=p payloaddelivery (initialzed to point to PayloadDelivery)
Components=p_componentlist (initialzed to point to ComponentList)
MissionQueves=p_queues (initialzed to point to Queues)
DevCmdr=p_devicecommander (initialzed to point to DeviceCommander)
GPSFix=p _gpsfixer (initialzed to point to GPSFixer)
DevState=p_devicestate {initialzed to point to DeviceState)
Waiter=p_pause (initialzed to point to Pause)

WPNum=0 (initialzed to zero)

39

40

fizsionTime

DeviceDone /- !
Wce / SetDevicel fis oy Time’ Suspend /-
date /- k€

Iy g [T Payioad
» = : =1

Abort/ Abort .- - s

Rerdezvous
=1

e, Tiyya'e
MiczionTime'=]

Figure 1: FSM for Sequential coordirator

Destructors: No destructors

Continuous states: t, MissionTime

Discrete states:

Statel { Idle,t’ MissionTime’}

State2 { DeviceOrder, t’ MissionTime’}

State3{ WaitForVCComms, t’ MissionTime’}

State4 { Suspend, t’ MissionTime’}

State5 { Pause, t’ ,MissionTime’}

State6{ GPSFixer, t’ MissionTime’}

State7{ run, t’ MissionTime’}

State8 { WaypointNavigator, t’ MissionTime’}

State9{ Launcher, t’ MissionTime’}

State10{ EndMission, t’ MissionTime’}

Statel1{ Rendezvous, t’ MissionTime’}

State12{Payload, t’ MissionTime’}

Transitions:

Transition 1 {Idle, WaitForVCComms, Init, t>=1, None, (CreateLogs(), ReadParams(),
ReadOrderSpecs(), ReadMissionOrders() (and perfoms the actions as per need))}
Transition 2 {WaitForVCComms, run, NewV(Data, True, (=0, MissionTime=0,
Suspendable=0, Idle=1), starts mission}

40

41

Transition 3 {run, DeviceOrder, SetDevice, True, (t=0, Suspendable=0, Idle=0), signal
sent to device for execution}

Transition 4 {DeviceOrder, run, DeviceDone, True, (t=0, Suspendable=0, Idle=1),
device command executed returns}

Transition 5 {run, run, update, t>=1, t=0, looks for new data or order availability}
Transition 6 {Suspend, run, Resume, True, (t=0, Suspended=0, Suspendable=0, Idle=1),
resuming sequential execution}

Transition 7 {Suspend, Suspend, Abort, Suspended=True, Suspended=1}

Transition 8 {WaypointNavigator, Suspend, Suspend, True, (t=0, Suspendable=0,
Idle=1), suspending waypoint}

Transition 9 {Payload, Suspend, Suspend, True, (t=0, Suspendable=0, Idle=1),
suspending payload}

Transition 10 {Rendezvous, Suspend, Suspend, True, (t=0, Suspendable=0, Idle=1),
suspending rendezvous}

Transition 11 {Suspend, EndMission, Abort, True, aborting from Suspend to
endmission}

Transition 12 {run, WaypointNavigator, ProcessWP, True, (t=0, Suspendable=1,
Idle=0), sending the datas to evaluate waypoint and perform actions accordingly}
Transition 13 {WaypointNavigator, run, WPDone, True, (=0, Suspendable=0, Idle=1),
mission to evaluate waypoint is executed}

Transition 14 {run, Payload, ProcessPayload, (CurrorderName=Payload), (t=0,
Suspendable=1, Idle=0), evaluates waypoint to process payload}

Transition 15 {Payload, run, PayloadDone, True, (t=0, Suspendable=0, Idle=1), it states
payload is done}

Transition 16 {run, Launcher, Launch, (CurrOrder=Launch), (Suspendable=0, Idle=0),
launching vehicle }

Transition 17 {Launcher, run, LaunchDone, True, (t=0, Suspendable=0, Idle=1), launch
has been done }

Transition 18 {run, Pause, Wait, (CurrOrder=Wait), (t=0, Suspendable=0, Idle=0),
turning SSS and waiting }

Transition 19 {Pause,run, WaitDone, True, (=0, Suspendable=0, Idle=1), sequential
orders paused to wait to complete timed orders}

Transition 20 {run, EndMission, EndMission, (CurrOrder=EndMission and
NonSeqController->Idle), end mission stopping prop and surfacing}

Transition 21 { EndMission, EndMission, OnSurface, (Depth<=SurfaceThreshold and
MastCmd!=Up), None, Comes on surface and mast is raised up}

Transition 22 { EndMission, EndMission, MastUp, (MastState=Up), None, mast up and
exiting mission}

Transition 23 {Suspend, EndMission, Abort, True, t=0, aborting from suspend }
Transition 24 {WaypointNavigator, EndMission, Abort, True, t=0, aborting from
WaypointNavigator }

Transition 25 {Payload, EndMission, Abort, True, t=0, aborting from Payload}
Transition 26 {Rendezvous, EndMission, Abort, True, t=0, aborting from Rendezvous}
Transition 27 {run, EndMission, Abort, True, t=0, aborting from run}

Transition 28 {Pause, EndMission, Abort, True, t=0, aborting from Pause}

Transition 29 {GPSFixer, EndMission, Abort, True, t=0, aborting from GPSFixer}

41

42

Transition 30 {Launcher, EndMission, Abort, True, t=0, aborting from Launcher}

Timed Action (Timed Coordinator)

fissionTime
e 2Suspend

Suspend/ Suspend

MicstanTimz" = |
Time2Swpend =|!

GPSFix
=1
MicsionTime' =1
Time Suspend” = 1

=1
MicsionTime' =]
TimeiSuzpend =}

Figure 2: FSM of Timed coordinator

Superclass: TejaComponent
Variables: Token, TimedOrderTo, Suspend, Idle

Links: CurrTimeOrd (TimedOrder), Nav (NavState), NavMemory (NavState),
SequenceController (Controller), Logs (Files), Components (ComponentList),
MissionQueues (Queues), SeqOrdMemory (SeqOrder), CurrOrder (GPSOrder), GPSFix
(GPSFixer), DevCmdr (DeviceCommander), Diver (Launcher), Waiter (Pause).

Functions:
ReadParams() is a function to read the parameters needed by the steer module to get

executed successfully.
GetEarliestOrder() is used to retrieve the timed order with the earliest time requirement

CheckOrderTimes() is used to convert UTC times to mission times and check if > 0

42

43

Constructors:

MissionQueues=p_queues (initialzed to point to order Queue)
Nav=p_navstate (initialzed to point to NavState)
SeqController=p_controller (initialzed to point to Controller)
Logs=p_files (initialzed to point to Files)

Components=p_componentlist (initialzed to point to ComponentList)
GPSFix=p_gpsfixer (initialzed to point to GPSFixer)
DevCmdr=p_devicecommander (initialzed to point to DeviceCommander)
Diver=p_launcher (initialzed to point to Launcher)

Waiter=p_pause (initialzed to point to Pause)

NavMemory=NavState new(teja_default memory space id) (initialzed memory for
NavState)

Desctructors: None
Continuous state: t, MissionTime

Discrete State:

Statel {Start,t’ MissionTime’}

State2 {FirstTime,t’ MissionTime’}
State3{Decide,t’ MissionTime’}
State4{CheckOrders,t’ MissionTime’}
State5{GPSFix,t’ MissionTime’}
State6{Device,t’ MissionTime’}
State7{Wait,t’ MissionTime’}
State8{Launch,t’ MissionTime’}
State9{Wait4Suspend, t’, MissionTime’}
State10{Check4Resume, t’, MissionTime’}
State11{End, t’, MissionTime’}

Transitions:

Transition 1 {Start, FirstTime, Init, t>=1, None, Checks for availability of data}
Transition 2 { FirstTime, CheckOrders, NewVCData, MissionQueue>0,
(MissionTime=0, Idle=0, t=0, Token=1), CheckOrderTimes and Loading Timed Order}
Transition 3 {CheckOrders, End, Abort, True, None, Aborting}

Transition 4 {Decide, End, Abort, True, None, Aborting Decide}

Transition S5 {Check4Resume, CheckOrders, OrderComplete, (Token and
TimedOrderQueue=0),(Idle=1, t=0, Token=1), No more Timed Orders so going to Idle
state waiting for more tied orders}

Transition 6 {Launch, End, Abort, True, None, Aborting Launch state}

Transition 7 {Wait, End, Abort, True, None, Aborting Wait state}

Transition 8 {Device, End, Abort, True, None, Aborting Device state}

Transition 9 {GPSFix, End, Abort, True, None, Aborting GPSFix state}

43

44

Transition 10 {Launch, Check4Resume, LaunchDone, ! (suspend and
MissionQueue)=0, (Idle=1, t=0, Token=1), (teja_get time(),
TimedActions_get MissionTime())}

Transition 11 {Wait, Check4Resume, WaitDone, ! (suspend and MissionQueue)=0,
(Idle=1, t=0, Token=1), (teja_get time(),TimedActions get MissionTime())}

Transition 12 {Device, Check4Resume, DeviceDone, ! (suspend and MissionQueue)=0,
(Idle=0, t=0, Token=1), (teja_get time(),TimedActions get MissionTime())}

Transition 13 {GPSFix, Check4Resume, GPSFixDone, ! (suspend and
MissionQueue)=0, (Idle=1, t=0, Token=0),
(teja_get time(), TimedActions get MissionTime())}

Transition 14 {WaitdSuspend, Decide, NewOrder, (TimedOrderQueue)>0, (t=0),
(teja_get time(),TimedActions _get MissionTime(),CurrTimedOrd())}

Transition 15 {CheckOrders, Wait4Suspend, Suspend,
(TimedActions_get MissionTime() >= CurrTimedOrd && Suspend), (Token=0,t=0),
Store Current Nav State and Store Current sequential order }

Safeties (Safety Coordinator)

LowAitiiudeToner

Init/- ;7o

Start

=]

LewdliwdeFimer' = [

__ Abort/ Abort

ihort SafetyAbort
T =1
AftitudeOK /- LowdlinudeTimer' = 1

LowAltitude

=1

Figure 3: FSM of Safety coordinator

Superclass: TejaComponent

Variables: WaterDepthSafety, LowBatteryVoltage, MinimumAltitude, LowAltitudeTo.
Links: Bat(BatteryState), Nav(NavState), Logs(Files), Components(ComponentList).

Functions:

44

45

VoltageAbort() is a function which checks whether the average voltage is less than a
threshold and accordingly returns a value.

WaterDepthAbort() is a function which checks whether the depth to which the vehicle
can go to is safe or not and returns a value accordingly.

ReadParams() is a function to read the parameters needed by the safety module to get
executed successfully.

Constructors:

Bat=p_batterystate; (initialzed to point to BatteryState)
Nav=p_navstate; (initialzed to point to NavState)

Logs=p_files; (initialzed to point to Files)
Components=p_componentlist; (initialzed to point to ComponentList)

Destructor: No destructors.
Continuous state: t, LowAltitudeTimer

Discrete States:

State 1 {Start, t’=1, LowAltitudeTimer’=1}

State 2 {Idle, t’=1, LowAltitudeTimer’=1}

State 3 {CheckSafeties, t’=1, LowAltitudeTimer =1}
State 4 {SafetyAbort, t’=1, LowAltitudeTimer’=1}
State 5 {LowAltitude, t’=1, LowAltitudeTimer’=1}
State 6 {Error, t’=1, LowAltitudeTimer’=1}

State 7 {Stop, none}

Transitions:

Transition 1 {Start, Idle, Init, t>=1, none, ReadParams}

Transition 2 {Idle, CheckSafeties, NewVCData, True, t=0, (prints teja_get time(),
Safeties_get t() in execlog and flushes execlog)}

Transition 3 {CheckSafeties, LowAltitude, AltitudeSafety, (Altitude< MinimumAltitude)
, LowAltitudeTimer=0, None}

Transition 4 {CheckSafeties, SafetyAbort, Abort, (VoltageAbort or WaterDepthAbort),
None, (VoltageAbort or WaterDepthAbort (print teja_get time(),Safeties get t() into
errorlog, flushes errorrlog))}

Transition 5 {LowAltitude, SafetyAbort, Abort, (Safeties VoltageAbort() or
Safeties WaterDepthAbort() or Safeties get LowAltitudeTimer() >LowAltitudeTO),
(Safeties_VoltageAbort or Safeties WaterDepthAbort or
Safeties_get LowAltitudeTimer() > LowAltitudeTO) (print teja_get time(),
Safeties_get t() to errorlog , flush errorlog finally) }

Transition 6 {LowAltitude, Checksafeties, AltitudeOk, Altitude>MinimumAltitude,
None, None}

Transition 7 {Error, Stop, Error, True, None, None}

45

46

ReplayMission
The ReplayMission module is used to write a human readable commands file. It takes in
the input commands and writes out them in formatted output file.

Superclass: TejaComponent
Variables: None
Links: Bat, Dev, Nav, Vech

Functions:
Quicklook() is a function which writes the commands in human readable form.

Constructors:
Bat=BatteryState new(teja_default memory space id, NUMBEROFBATTERYSWITC

HES); (Initializes space to Bat of type BatteryState)
Dev=DeviceState new(teja_default memory space id); (Initializes space to Dev of type

DeviceState)
Nav=NavState new(teja_default memory space id); (Initializes space to Nav of type

NavState)
Veh=VehicleState new(teja_default memory space_id); (Initializes space to Veh of type

VehicleState)
Destructor: No destructors.
Continuous state: t

Discrete States:

State 1 {Idle, taC™=1}
State 2 {Error, tA€TV=1}
State 3 {Stop, None}

Transitiens:
Transition | {Idle, Idle, Init, t>=1, None, (ReplayMission Quicklook() print "Quicklook

files created, ending Replay") }
Transition 2 {Error, Stop, Error, True, None, None}

GPSFixer

Superclass: TejaComponent

Variables: GoToSurfaceTo, RaiseMastTo, TakeMastTo, SurfaceThreshold, NumFailed,
WPThresholdDistance.

Links: Nav (NavState), DevState (DeviceState), AutCmd(AutopilotCmd), DevCmd
(DeviceCmd), VehCmd (VehicleCmd), ActReq (ActionRequest), Logs (Files),

46

47

Components (ComponentList), NavMemory (NavState), Helm (Steering), GPSOrd
(GPSOrder).

“imeInState

OnSurface /.

nchBHE -
ComeOffSurface
=1
Decide Timelnsiawe’ = 1 TakeFix
r=1 r=1
TimelnStare' = 1 TimelnState' = 1

Figure 4: FSM for GPSFixer module

Functions:
ReadParams() is a function to read the parameters needed by the GPSFixer module to

get executed successfully.

Constructor:

Nav=p_navstate; (initialzed to point to NavState)
DevState=p_devicestate; (initialzed to point to DeviceState)
AutCmd=p_autopilotcmd; (initialzed to point to AutopilotCmd)
DevCmd=p_devicecmd; (initialzed to point to DeviceCmd)
VehCmd=p_vehiclecmd; (initialzed to point to VehicleCmd)
ActReq=p_actionrequest; (initialzed to point to ActionRequest)
Logs=p _files; (initialzed to point to Files) ‘
Components=p_componentlist; (initialzed to point to ComponentList)
Helm=p_steering; (initialzed to point to Steering)
NavMemory=NavState new(teja_default memory space_id); (initialzed to point to
NavState)

NumFailed=0; (initialzed to 0)

Destructor: No destructors.

47

48

Continuous state: t, TimelInState

Discrete States:

State 1 {Start, t’=1, TimeInState’=1}

State 2 {Idle, t’=1, TimeInState’=1}

State 3 {GoToSurface, t’=1, TimelnState’=1}
State 4 {RaiseMast, t’=1, TimeInState’=1}
State 5 {ReportTo, t’=1, TimelnState’=1}
State 6 {TakeFix, t’=1, TimelnState’=1}

State 7 {ComeOffSurface, t’=1, TimelnState’=1}
State 8 {ReturnToStart, t’=1, TimelnState’=1}
State 9 {Decide, t’=1, TimeInState’=1}

State 10 {Error, t’=1, TimeInState’=1}

State 11 {Stop, t’=1, TimelnState’=1}

Tranisitions:

Transition 1 {Start, Idle, Init, t>=1, none, ReadParams}

Transition 2 {Idle, GoToSurface, TakeGPSFix, True, (t=0, TimeInState=0), (Turning off
prop and blowing tanks and performing operation according to VehCmd, DevCmd,
AutCmd, ActReq)}

Transition 3 {GoeToSurface, Idle, Abort, True, none, (Aborting and going to surface and
print to errorlog (teja_get time(),GPSFixer get t()), finally flush errorlog) }

Transition 4 {RaiseMast, Idle, Abort, True, none, (Aborting raising mast and print to
errorlog (teja_get time(),GPSFixer_get t()), finally flush errorlog) }

Transition 5 {TakeFix, Idle, Abort, True, none, (Aborting TakeFix and print to errorlog
(teja_get time(),GPSFixer get t()), finally flush errorlog) }

Transition 6 {ComeOffSurface, Idle, Abort, True, none, (Aborting ComeOffSurface and
print to errorlog (teja_get time(),GPSFixer get t()), finally flush errorlog) }

Transition 7 {Decide, Idle, Abort, True, TimeInState=0, (Aborting Decide and print to
errorlog (teja_get time(),GPSFixer get t()), finally flush errorlog) }

Transition 8 {ReturnToStart, Idle, Abort, True, none, (Aborting ReturnToStart and print
to errorlog (teja_get time(),GPSFixer get t()), finally flush errorlog) }

Transition 9 {Decide, Idle, GPSFixDone, GPSOrd=!ReturnToStart,TimeInState=0, (
GPSFixDone and print to execlog (teja_get time(),GPSFixer get t()), finally flush
execlog) }

Transition 10 {GoToSurface, ReportTo, Timeout, TimeInState> GoToSurface,
TimelnState=0, Print to file errorlog GoToSurface Timed Out teja_get time(),
GPSFixer get t()}

Transition 11 {GoToSurface, RaiseMast, OnSurface, Depth <= SurfaceThreshold,
TimelInState=0, Print to execlog teja_get time(),GPSFixer get t() and finally fflush
Execlog and excute VehCmd, DevCmd, ActReq)}

Transition 12 {RaiseMast, ReportTo, TimeOut, TimeInState>= RaiseMastTo,
TimeInState=0, Print to file errorlog RaiseMast Timed out teja_get time(),
GPSFixer_get t()) and finally fflush errorlog}

Transition 13 {RaiseMast, TakeFix, MastUp, MastState=Up, TimeInState=0, execute
VehCmd, ActReq and print to the file execlog GPSFixer - Mast up, waiting for GPS Fix,

48

49

teja_get time(),GPSFixer get t() and fflush execlog)}

Transition 14 {TakeFix, ReportTo, TimeOut, (TimeInState>= TakeFixTo),
TimelnState=0, Print TakeFix Timed Out, teja_get time(),GPSFixer get t() in file
errorlog finally fflush errorlog }

Transition 15 {TakeFix, ComeOffsurface, Launch, DevState->GPSFixState = DONE,
TimelnState=0, Print Got GPS Fix, teja_get time(),GPSFixer get t() into file execlog
and finally fflush execlog) }

Transition 16 {ReportTo, ComeOfsurface, Launch, True, None, (Print Time out, GPS
Fix Done, teja_get_time(), GPSFixer_get t() in file errorlog and finally fflush errorlog)}
Transition 17 {ComeOfSurface, Decide, LaunchDone, True, TimeInState=0, None}
Transition 18 {Decide, ReturnToStart, Steer, GPSOrd->ReturnToStart, TimelnState=0,
Print ReturningToStartPt, teja_get time(),GPSFixer get t() into file execlog and finally
fflush execlog and executes VehCmd, AutCmd,DevCmd, ActReq commands) }
Transition 19 {ReturnToStart, Decide, WPDone, DistanceToPoint<=
WPThresholdDistance, TimeInState=0, (Print at Start Point, teja_get time(),
GPSFixer_get_t() in file execlog, finally fflush execlog and GPSOrd->ReturnToStart =
FALSE)}

Transition 20 {Error, Stop, Error, True, None, None}

Launcher
neluSrare
TimeOut / Abort o
=1 ~
FimenSicre' = 1
PLININIE Launch /-
I Abort /- e Retragt Mast,
=) =y
e'=y FimelnStaze’ = |}
LaunchDohe / LaunchDone TimeOut / Aba iy e fastDawr
TimeOut / Abort
T TimeOuy Abort SurfaceCaptized /-
sonrreaXen SurfateCaptured /-
TryTrim /3 Li =
TryTrim L35 ComeOffSurface
=1 =1
e'=! StartProp TimelnSrare' = 1
=1
N T;me}nirar;= :f: errar/. A5,

Figure 5: FSM of Launcher module

Superclass: TejaComponent

Variables: RetractMastTo, ComeOffSurfaceTo, LightOfDepth, FwdLaunchMast,
AftlaunchMast.

49

50

Links: DevState (DeviceState), VehState(VehicleState), DevCmd(DeviceCmd),
VehCmd(VehicleCmd), AutCmd(AutopilotCmd), ActReq(Actionreq), Logs(Files),
Components(ComponentList), LaunchOrd(LaunchOrder), Nav(NavState).

Functions:
ReadParams() is a function to read the parameters needed by the Launcher module to

get executed successfully.

Constructors: The data structures are initialized to point to their respective data
structures.

DevState=p devicestate; (initialzed to point to DeviceState)
VehState=p_vehiclestate; (initialzed to point to VehicleState)
DevCmd=p_devicecmd; (initialzed to point to DeviceCmd)
VehCmd=p_vehiclecmd; (initialzed to point to VehicleCmd)
AutCmd=p_autopilotcmd; (initialzed to point to AutopilotCmd)
ActReq=p_actionrequest; (initialzed to point to ActionReq)

Logs=p _files; (initialzed to point to Files)

Components=p _componentlist; (initialzed to point to ComponentList)
Nav=p_navstate; (initialzed to point to NavState)

Destructor: No destructors.
Continuous state: t, TimelnState.

Discrete States:

State 1 {Start, t’=1, TimelnState’=1}

State 2 {Idle, t’=1, TimelnState’=1}

State 3 {RetractMast, t’=1, TimelnState’=1}
State 4 {ComOffSurface, t’=1, TimelnState’=1}
State 5 {StartProp, t’=1, TimeInState’=1}

State 6 {TryTrim, t’=1, TimelnState’=1}

State 7 {Error, t’=1, TimeInState’=1}

State 8 {Stop, t’=1, TimelnState’=1}

Transitions:

Transition 1 {Start, Idle, Init, t>=1, none, ReadParams}

Transition 2 {RetractMast, Idle, TimeOut, TimelnState >=RetractMastTo, none, (Print in
file errorlog Launch - Retract Mast Timed Out - Aborting Mission, teja_get time(),
Launcher get t() and finally fflush errorlog)}

Transition 3 {Idle, RetractMast, Launch, True, (t=0, Timelnstate=0), (Print in file
execlog Launch - Retracting Mast, teja_get time(), Launcher get t() and finally

fflush execlog and execute commands by VehCmd, DevCmd, DevState, ActReq)}
Transition 4 {ComeOffSurface, Idle, Abort, True, (Print in file errorlog Launch -
Aborting ComeOffSurface on signal, teja_get time(), Launcher _get t() and finally

fflush errorlog)}

50

51

Transition 5 {RetractMast, Idle, Abort, True, (Print in file errorlog Launch - Aborting
RetractMast on signal, teja_get time(), Launcher_get t() and finally fflush errorlog)}
Transition 6 {ComeOffSurface, Idle, TimeOut, TimelnState>=ComeOffSurfaceTo,
(Print in file errorlog Launch - ComeOffSurface Timed Out - Aborting Mission,
teja_get time(), Launcher get t() fflush errorlog)}

Transition 7 {TryTrim, Idle, LaunchDone, (Speed > 1.5 &&
Launcher _get TimelnState() > 60.0), None, (Print in file execlog Launch - LaunchDone,
teja_get time(),Launcher get t() and finally fflush execlog)}

Transition 8 {RetractMast, ComeOffSurface, MastDown, True, TimeInState=0, (Print
to file execlog Launch - Mast Down, coming off surface, teja _get time(),
Launcher_get t() and finally fflush execlog and (Altitude >20 LightOffdepth= 10 or
Altitude >10 LightOffDepth=5 or LightOffDepth=5) and executes VehCmd, DevCmd
and ActReq)}

Transition 9 {ComeOffSurface, StartProp, LightOff, Depth >= LightOffDepth, (Print in
file execlog Launch - Lighting-off prop, teja_get time(), Launcher get t() and finally
fflush execlog and execute commands from VehCmd, AutCmd, ActReq) }

Transition 10 {StartProp, ComeOffSurface, SurfaceCaptured, Depth<l1.5,
TimeInState=0, (Print to file execlog Launch - Surface Captured - trying to come off
surface, teja_get time(), Launcher get t() and finally fflush execlog and (Altitude >20
LightOffdepth= 10 or Altitude >10 LightOffDepth=5 or LightOffDepth=5) and executes
VehCmd, DevCmd and ActReq)}

Transition 11 {TryTrim, ComeOffSurface, SurfaceCaptured, Depth<1.5, TimeInState=0,
(Print to file execlog Launch - Surface Captured - trying to come off surface,
teja_get time(), Launcher get t() and finally fflush execlog and (Altitude >20
LightOffdepth= 10 or Altitude >10 LightOffDepth=5 or LightOffDepth=5) and executes
VehCmd, DevCmd and ActReq)}

Transition 12 {StartProp, TryTrim, TryTrim, Speed>1, TimelnState=0, (Print in file
execlog Launch - Trying VBS Trim to get fin authority, teja_get time(),
Launcher _get t() and finally fflush execlog and execute commands from VehCmd,
DevCmd, ActReq)}

Transition 13 {Error, Stop, Error, True, None, None}

51

52

WayPointnavigator

TimealuState
inor e
AbortTinzr sbort,
/ \C
b . Process\\]’l,_,?i . ProcessWP

dWP
update / -

"',m- 2
trm?yr}”

; LPDept Problem

~ SteeringDone /

SdgeringDone

WPDone/- - v

tortDimior' =]
LoiterDone AtWP
=i r=
FimeinSrate” = [FimelaSuae’ =1

cri=] timer' = 1
PR — AE e T A’ — 1

Figure 6: FSM of Waypointnavigator

Superclass: TejaComponent

Variables: WayPointPctOverrun, WayPointTo, ThresholdDistance, MinSpeed,
MaxSpeed, TimeToWayPoint, DistanceToWayPoint, LoiterDistance,
LoiterAwayDistance, Requestor.

Links: Nav (NavState), ToWP (WayPoints), AutCmd (AutopilotCmd), ActReq
(ActionReq), DevCmd (DeviceCmd), VehCmd (VehicleCmd), FromWP (Wayoints),
Logs (Files), Helm (Steering), MC (Controller), Vagabond (Loiter), Components
(ComponentList)

Functions:
ReadParams() is a function to read the parameters needed by the WayPointNavigator

module to get executed successfully.

Constructors: The data structures are initialized to point to their respective data
structures.

52

53

Nav=p_navstate; (initialzed to point to NavState)

AutCmd=p_autopilotcmd; (initialzed to point to AutopilotCmd)

ActReqg=p_actionrequest; (initialzed to point to ActionReq)

DevCmd=p_devicecmd; (initialzed to point to DevCmd)

VehCmd=p_vehiclecmd; (initialzed to point to VehicleCmd)

Helm=p_steering; (initialzed to point to Steering)

MC=p_controller; (initialzed to point to Controller)

Logs=p _files; (initialzed to point to Files)

Vagabond=p_loiter; (initialzed to point to Loiter)

Components=p_componentlist; (initialzed to point to ComponetList)
ToWP=Waypoints_new(teja_default memory space id); (initialzed to point to
WayPoint)

FromWP=Waypoints_new(teja_default memory space id); (initialzed to point to
WayPoint)

Destructor: No destructors.
Continuous state: t, TimeInState, timer

Discrete States:

State 1 {Start, t’=1, TimeInState’=1, timer’=1}

State 2 {Idle, t’=1, TimelnState’=1, timer’=1}

State 3 {Decide, t’=1, TimeInState’=1, timer’=1}
State 4 {TimedWP, t’=1, TimeInState’=1, timer’=1}
State 5 {GoToWayPoint, t’=1, TimelnState’=1, timer’=1}
State 6 {GoToWP, t'=1, TimeInState’=1, timer’=1}
State 7 {Loiter, t’=1, TimeInState’=1, timer’=1}
State 8 {AtWP, t’=1, TimelnState’=1, timer’=1}
State 9 {LoiterDone, t’=1, TimeInState’=1, timer’=1}
State 10 { ReportTo, t’=1, TimelInState’=1, timer’=1}
State 11 {Error, t’=1, TimeInState’=1, timer’=1}
State 12 {Stop, none}

Transitions: ,
Transition 1 {Start, Idle, Init, t>=1, none, (ReadParams, LoiterAwayDistance < 500.0) {
LoiterAwayDistance=500.0, Print in file errorlog WaypointNavigator -
LoiterAwayDistance too small, resetting to 500 m, teja_get time(),
WaypointNavigator get t() and finally fflush errorlog)}

Transition 2 {Idle, Decide, ProcessWP, True, t=0, Calculate the distance to cover}
Transition 3 {ReportTo, Idle, WPDone, True, TimeInState=0, None (Output)}

Transition 4 {Decide, Idle, Abort, True, None, (Print in file errorlog WaypointNavigator
- Aborting on signal, teja_get time(), WaypointNavigator get t() finally fflush
errorlog)}

53

54

Transition 5 {TimedWP, Idle, Abort, True, None, (Print in file -errorlog
WaypointNavigator - Aborting on signal, teja_get time(), WaypointNavigator get t()
finally fflush errorlog)}

Transition 6 {GoToWayPoint, Idle, Abort, True, None, (Print in file errorlog
WaypointNavigator - Aborting on signal, teja_get time(), WaypointNavigator get t()
finally fflush errorlog)}

Transition 7 {GoToWP, Idle, Abort, True, None, (Print in file errorlog
WaypointNavigator - Aborting on signal, teja_get time(), WaypointNavigator_get_t()
finally fflush errorlog)}

Transition 8 {AtWP, Idle, Abort, True, None, (Print in file errorlog WaypointNavigator -
Aborting on signal, teja_get time(), WaypointNavigator _get t() finally fflush errorlog)}
Transition 9 {Loiter, Idle, Abort, True, None, (Print in file errorlog WaypointNavigator -
Aborting on signal, teja_get time(), WaypointNavigator get t() finally fflush errorlog)}
Transition 10 {LoiterDone, Idle, Abort, True, None, (Print in file errorlog
WaypointNavigator - Aborting on signal, teja_get time(), WaypointNavigator get t()
finally fflush errorlog)}

Transition 11 {Decide, TimedWP, ProcessWP, (ToWP->Timed && TimeToWaypoint >
DistanceToWaypoint/MinSpeed), None, Loiters to desired point with desired Loiter
type}

Transition 12 {Decide, GoToWayPoint, Steer, (! ToWP->Timed || TimeToWaypoint <=
DistanceToWaypoint/MinSpeed), (TimelnState=0, timer=0), Goes to desired latitude and
longitude with desired steer mode}

Transition 13 {TimedWP, GoToWP, True, timer=0, (Goes to desired latitude and
longitude with desired SteerMode, HeadingMode, DepthMode)}

Transition 14 {GoToWP, GoToWP, Update, timer>=1, timer=0, Calculate the distance to
desired waypoint}

Transition 15 {GoToWP, AtWP, Abort, (Helm->DistanceToPoint <= LoiterDistance) ||
(TimeToWaypoint-WaypointNavigator get t() <= DistanceToWaypoint/MinSpeed),
None, Calculates by how much the vehicle loiters away from the desired waypoint }
Transition 16 {AtWP, Loiter, Loiter, ToWP->LoiterDuration>0, None, (Print in file
execlog WaypointNavigator - Going to loiter, teja_get time(),
WaypointNavigator get t() fflush execlog) }

Transition 17 {AtWP, LoiterDone, LoiterDone, ToWP->LoiterDuration<=0, None, (
Print in file errorlog WaypointNavigator - No time to loiter , teja_get time(),
WaypointNavigator get t() fflush errorlog)}

Transition 18 {Loiter, LoiterDone, LoiterDone, True, None, None}

Transition 19 {LoiterDone,GoToWayPoint, Steer, (!ToWP->LoiterAtWP &&
TimeToWaypoint >= WaypointNavigator get t()), (TimeInState=0, timer=0), Calculate
the distance to desired latitude and longitude with desired speedmode}

Transition 20 {LoiterDone, ReportTo, WPDone, (ToWP->LoiterAtWP ||
(TimeToWaypoint <= WaypointNavigator get t())), None, None}

Transition 21 {GoToWayPoint, GoToWayPoint, Update, timer>=2, timer=0, Calculates
the time to go to the desired location with the desired speedmode}

Transition 22 { GoToWayPoint, ReportTo, WPDone, ((!ToWP->Timed && Helm-
>DistanceToPoint <= ThresholdDistance) || (ToWP->Timed && Helm-

54

55

>DistanceToPoint <= 5.0)), TimelnState=0, (Print in file execlog WaypointNavigator -
WP Done, teja_get time(), WaypointNavigator _get t() and finally fflush execlog)}
Transition 23 { GoToWayPoint, ReportTo, TimeOut, TimeInState>=WayPointTo, (Print
in file errorlog WaypointNavigator - Waypoint Timed Out, teja_get time(),
WaypointNavigator get t() and finally fflush errorlog)}

Transition 24 {ReportTo, Idle, WPDone, True, Timelnstate=0, None}

Transition 25 {Error, Stop, Error, True, None, None}

Rendezvous
“imelnState /‘\ oo iisi ProcessWP / Prg’
cl GgToRerjdezvous
2} AN e
Sta ‘or;tm/’{n&’ =1 i TimeInStase' = {
r= endezvous /- /- MPDone /-
are’ = | g
it/ -
RengdezvousDone /
RendezyvousDone |
iter:{ Loiter:
Abort /- [N Ttion ¥
e AtRendeZVous
_ RendezsousDo s
¢'= RendezvousDone Abort /- ! =¥ oiter / Loiter
TimelnStaze’ = |! TimelnSare’ = {1
\ LoiterDone / ::z i
Loitesflone p— Loiter .

Figure 7: FSM of Rendezvous module

Superclass: TejaComponent

Variables: WPThreshDistMemory

Links: ActReq, Logs, Vagabond, WPNav, DevCmd, VehCmd, Components
Functions: None

Constructors:

ActRegq=p_actionrequest; (initialzed to point to Actionreq)

Logs=p_files; (initialzed to point to Files)

Vagabond=p_loiter; (initialzed to point to Loiter)
WPNav=p_waypointnavigator; (initialzed to point to WayPointNavigator)
DevCmd=p_devicecmd; (initialzed to point to DeviceCmd)
VehCmd=p_vehiclecmd; (initialzed to point to VehicleCmd)
Components=p_componentlist; (initialzed to point to ComponentList)

55

56

Destructor: No destructors.

Continuous state: t, TimelnState

Discrete States:

State 1 {Start, t’=1, TimelnState’=1}

State 2 {Idle, t’=1, TimeInState’=1}

State 3 {LeiterDone, t’=1, TimeInState’=1}
State 4 {Decide, t’=1, TimelInState’=1}

State 5 {GoToRendezvous, t’=1, TimelnState’=1}
State 6 {AtRendouzvous, t’=1, TimelnState’=1}
State 7 {Loiter, t’=1, TimeInState’=1}

State 8 {Error, t’=1, TimelnState’=1}

State 9 {Srop, none}

Transitions:

Transition 1 {Start, Idle, Init, t>=1, None, None}

Transition 2 {Decide, Idle, Abort, True, None, (Print in file errorlog Rendezvous -
Aborting, teja_get time(),Rendezvous_get t() and finally fflush errorlog)}

Transition 3 {Idle, Decide, Rendezvous, True, (t=0, TimeInState=0), Calculates the Way
point threshold distance depending upon the loiter type used for movement}

Transition 4 {GoToRendezvous, Idle, Abort, True, None, (WPNav-
>ThresholdDistance=WPThreshDistMemory, Print in file errorlog,Rendezvous -
Aborting, teja_get time(), Rendezvous_get t(), and finally fflush errorlog)}

Transition 5 {AtRendezvous, Idle, RendezvousDone, (WPNav->ToWP-
>LoiterType==NONE || WPNav->ToWP->LoiterDuration==0.0), None, (WPNav-
>ThresholdDistance= WPThreshDistMemory, Print in file execlog Rendezvous - No
loiter specified, leaving rendezvous, teja_get time(), Rendezvous get t() and finally
fflush execlog)}

Transition 6 {AtRendezvous, Idle, Abort, True, None, (WPNav->ThresholdDistance=
WPThreshDistMemory, Print to file errorlog: Rendezvous € Aborting, teja_get time(),
Rendezvous_get t() and finally fflush errorlog)}

Transition 7 {Loiter, Idle, Abort, True, None, (WPNav->ThresholdDistance=
WPThreshDistMemory, Print to file errorlog: Rendezvous 4€ Aborting, teja_get time(),
Rendezvous_get t() and finally fflush errorlog)}

Transition 8 {LoiterDone, Idle, RendezvousDone, True, TimeInState=0, (WPNav-
>ThresholdDistance= WPThreshDistMemory, Print to file execlog: Rendezvous -
Leaving rendezvous, teja_get time(), Rendezvous get t() and finally fflush execlog)}
Transition 9 {Decide, GoToRendezvous, ProcessWP, True, None, executes commands
given by VehCmd, DevCmd, ActReq}

Transition 10 {Decide, Loiter, Loiter, (WPNav->ToWP->Latitude==0 && WPNav-
>ToWP->Longitude==0 && WPNav->ToWP->Depth==0 && WPNav->ToWP-
>Speed==0), TimelnState=0, Updates various loiter variables and goes of to loiter when
specified rendezvous point is not given}

Transition 11 {GoToRendezvous, AtRendezvous, WPDone, True, None, None}

56

57

Transition 12 {AtRendezvous, Loiter, Loiter, True, TimeInState=0, (Print in file excelog
Rendezvous - Going to Loiter, teja_get time(),Rendezvous_get t(), and finally fflush
execlog and loiter to different locations)}

Transition 13 {Loiter, LoiterDone, LoiterDone, True, None, None}

Transition 14 {Error, Stop, Error, True, None, None}

DeviceCommander

menState
€T

idle ~~$stCommand

r=} 2oy =

melitStare’ = {
timor'= | timer' =}

Figure 8: FSM for DeviceCommander

Superclass: TejaComponent
Variables: CmdSet, GoSurfaceTo, RaiseMastTo, SurfaceThreshold, ComeOffSurfaceTo,
RetractMastTo, SetSwitchTo

Links: Components (ComponentList), Logs (Files), DevOrd (DeviceOrd),DevCmd
(DeviceCmd), DevState (DeviceState), ActReq (ActionReq), VehCmd (VehicleCmd),
Nav (NavState), InitDevState (DeviceState), AutCmd (AutopilotCmd), InitNav
(NavState)

Functions:

SetDeviceCmd() is a function to set the device command specified in the current device
command order.

DeviceCmdDone() is a function to check if the current device command is completed
CheckDeviceCmd() is a function which checks if it is safe to apply current device
command

ReadParams() is a function to read the parameters needed by the DeviceCommander
module to get executed successfully.

TimeOut() is a function to check if a time out for the current device has occurred

Constructors: .
Components=p_componentlist; (initialzed to point to ComponentList)
Logs=p_files; (initialzed to point to Files)

DevCmd=p_devicecmd; (initialzed to point to DeviceCmd)
DevState=p_devicestate; (initialzed to point to DeviceState)
VehCmd=p_vehiclecmd; (initialzed to point to VehicleCmd)
ActReq=p_actionrequest; (initialzed to point to ActionReq)
Nav=p_navstate; (initialzed to point to NavState)

57

58

AutCmd=p_autopilotcmd; (initialzed to point to AutopilotCmd)

SetSwitchTO=5.0;

InitDevState=DeviceState new(teja_default memory space id); (initializing memory
space for DeviceState)

InitNav=NavState new(teja_default memory space id); (initializing memory space for
NavState)

Destructor: No destructors.

Continuous state: t, TimelnState, timer

Discrete States:

State 1 {Start, t’=1, TimelnState’=1, timer’=1}

State 2 {Idle, t’=1, TimelInState’=1, timer’=1}

State 3 {SetCommand, t’=1, TimelnState’=1, timer’=1}
State 4 {Error, t’=1, timer’=1}

State 5 {Stop, nonc}

Transitions:

Transition 1 {Start, Idle, Init, t>=1, none, ReadParams}

Transition 2 {Idle, SetCommand, SetDevice, True, t=0, TimelnState=0, timer=0, (Saves
initial device states,saves initial nav state, (CmdSet=True, Device Commander - Setting
Device Commands) (CmdSet= False, Device Commander - Waiting to set Device
Commands))}

Transition 3 {SetCommand, Idle, DeviceDone, (DevicecCommander DeviceCmdDone()
&& CmdSet), TimeInState=0, (Print Commander - Device command done,
teja_get time(),DevicecCommander_get t())}

Transition 4 {SetCommand, Idle, TimeOut, DevicecCommander TimeOut(this), None,

None)
Transition 5 {SetCommand, Idle, Abort, True, None, Print to file errorlog
DeviceCommander - Aborting set device command, teja get time(),

DeviceCommander _get t() and finally fflush errorlog)

Transition 6 {SetCommand, SetCommand, SetDevice, (DeviceCommander_get timer()
>=] && !CmdSet), timer=0, (DeviceCommander CheckDeviceCmd

DeviceCommander SetDeviceCmd() CmdSet=TRUE, Print to file execlog Device
Commander - Setting Device Commands, teja_get time(), DeviceCommander get t())}
Transition 7 {Error, Stop, Error, True, None, None}

58

59

PayloadDelivery
TimelnSiate Abort/ Abort N
ProcessPayload /-
Run
T r=p.
TimelnSiag = TimelnSate' =
PayloadDone / Payloa bort/ Abort Process\WP / ProcessWP
Start

t'=} IR AR Abun!‘ FEINAET
ate'=§ ' WPDone /- N

DeliverPavlgad /Abart ox 1

Deliver GoToPoint
=] =17

Figure 9: FSM of Payload module

Superclass: TejaComponent
Variables: DeliveryDelay, PayloadDescription, WPDistThreshMemory
Links: Logs, WPNav, VehCmd, ActReq, DevCmd, AutCmd, Components

Functions:
ReadParams() is a function to read the parameters needed by the PayloadDelivery

module to get executed successfully.

Constructors:

AutCmd=p_autopilotcmd; (initialzed to point to AutopilotCmd)
WPNav=p_waypointnavigator; (initialzed to point to WayPointNavigator)
VehCmd=p_vehiclecmd; (initialzed to point to VehicleCmd)
ActReq=p_actionrequest; (initialzed to point to ActionReq)
DevCmd=p_devicecommand; (initialzed to point to DeviceCommand)
Logs=p_files; (initialzed to point to Files)

Components=p _componentlist; (initialzed to point to ComoponentList)

Destructor: No destructors.
Continuous state: t, TimeInState
Discrete states:

State 1 {Start, t’=1, TimeInState’=1}
State 2 {Idle, t’=1, TimeInState’=1}

State 3 {Run, t’=1, TimeInState’=1}
State 4 {Deliver, t'’=1, TimeInState’=1}

59

60

State 5 {GoToPoint, t’=1, TimelnState’=1}
State 6 {Error, t'=1, timer’=1}
State 7 {Stop, nonc}

Transitions:

Transition 1 {Start, Idle, Init, t>=1, none, ReadParams}

Transition 2 {Deliver, Idle, PayloadDone, TimelnState>=DeliveryDelay, TimelnState=0,
(WPNav->ThresholdDistance=WPDistThreshMemory = and executes commands
DevCmd, Acteq and prints to file execlog Payload - Payload Delivery Done,
teja_get time(), PayloadDelivery get t() and finally fflush execlog)}

Transition 3 {Idle, Run, ProcessPayload, True, (=0, TimelnState=0),
(WPDistThreshMemory=WPNav->ThresholdDistance)}

Transition 4 {Run, Idle, True, None, (Print to file errorlog PayloadDelivery - Aborting,
teja_get time(), PayloadDelivery get t(), and finally fflush errorlog)}

Transition 5 {GoToPoint, Idle, Abort, True, None, (print to errorlog PayloadDelivery -
Aborting, teja_get time(), PayloadDelivery get t() and finally fflush errorlog)}
Transition 6 {Deliver, Idle, Abort, True, (print to errorlog PayloadDelivery - Aborting,
teja_get time(), PayloadDelivery get t() and finally fflush errorlog)}

Transition 7 {Run, GoToPoint, ProcessWP, True, None, (WPNav-
>ThresholdDistance=5.0 print to file execlog Payload - Proceeding to Payload Delivery
Point, teja_get time(), PayloadDelivery get t() and finally fflush execlog and commands
in VehCmd, DevCmd, ActReq are operated)}

Transition 8 {GoToPoint, Deliver, DeliverPayload, (WPNav->TimeToWaypoint <=
DeliveryDelay), TimelnState=0, (execute commands VehCmd, DevCmd, ActReq,
PayloadDescription==PORT print to file execlog Payload - Deliver port payload,
teja_get time(),PayloadDelivery get t() or PayloadDescription==STBD print to file
execlog Payload - Deliver port payload, teja_get time(),PayloadDelivery get t() or
PayloadDescription==BOTH print to file execlog Payload - Deliver port payload,
teja_get time(),PayloadDelivery get t() and finally fflush execlog)}

Transition 9 {GoeToPoint, Deliver, WPDone, True, TimeInState=0, (execute commands
VehCmd, DevCmd, ActReq, PayloadDescription==PORT print to file execlog Payload -
Deliver port payload, teja_get time(),PayloadDelivery get t() or
PayloadDescription==STBD print to file execlog Payload - Deliver port payload,
teja_get time(),PayloadDelivery get t() or PayloadDescription==BOTH print to file
execlog Payload - Deliver port payload, teja_get time(),PayloadDelivery get t() and
finally fflush execlog)}

Transition 10 {Error, Stop, Error, True, None, None}

60

61

Loiter

.
TunenState
Timer

TimeOut s Abay\

GoTolLoiterPt StopCircle GoToCirclewpP
[. =7 =7
Time/nSiars' =} DimeimSiare = 1 TomelnSrzms' = 1

Timse'=] Tomer' = Fimov'= ¢

Figure 10: FSM of Loiter module

Superclass: TejaComponent

Variables: LoiterTo, Radius, LoiterLat, LoiterLon, LoiterDepth, LoiterSpeed, CircleLats,
CircleLons, NumPoints, CurrentWP, LoiterSpeedMode, MinSpeed, MaxSpeed,
Requestor

Links: Logs, Nav, WPNav, ActReq, VehCmd, AutCmd, DevCmd, Helm, Components

Functions:

ReadParams() is a function to read the parameters needed by the Loiter module to get
executed successfully.

PlotCircle() is the function which finds the latitudes and longitudes of points that define
a circle about the Loiter Point.

TimeToLoiterPoint() is a function that calculates time to loiter point.

Constructors:

Logs=p_files; (initialzed to point to Files)

Nav=p_navstate; (initialzed to point to NavState)
WPNav=p_waypointnavigator; (initialized to point to WayPointNavigator)
ActRegq=p_actionrequest; (initialzed to point to ActionRequest)
VehCmd=p_vehiclecmd; (initialzed to point to VehicleCmd)
AutCmd=p_autopilotcmd; (initialzed to point to AutopilotCmd)
DevCmd=p_devicecmd; (initialzed to point to DeviceCmd)
Helm=p_steering; (initialzed to point to Steering)
Components=p_componentlist; (initialzed to point to ComponentList)

61

62

LoiterSpeedMode=OPENLOOP;
CurrentWP=0;

Destructor: No destructors.

Continuous state: t, TimelnState, timer

Discrete states:

State 1 {Start, t’=1, TimeInState’=1, timer’=1}

State 2 {Idle, t’=1, TimeInState’=1, timer’=1}

State 3 {ReportTo, t’=1, TimelnState’=1, timer’=1}

State 4 {CooseLoiterMode, t'=1, TimeInState’=1, timer’=1}
State 5 {Hover, t’=1, TimelnState’=1, timer’=1}

State 6 {Circle, t’=1, TimeInState’=1, timer’=1}

State 7 {GoToCircleWP, t’=1, TimelInState’=1, timer’=1}
State 8 {StopCircle, t’=1, TimeInState’=1, timer’=1}
State 9 {GoToLoiterPt, t’=1, TimelnState’=1, timer’=1}
State 10 {Error, t'=1, TimeInState’=1, timer’=1}

State 11 {Stop, nonc}

Transitions:

Transition 1 {Start, Idle, Init, t>=1, none, ReadParams}

Transition 2 {Idle,ChooseLoiterMode, Loiter, True, t=0, None}

Transition 3 {ChooseLoiteMode, Idle, LoiterMode, (NumPoints<?2 && LoiterTO==0) ||
WPNav->ToWP->LoiterType=NONE), None, (Print to file execlog Loiter - No loiter
required....Ending Loiter, teja_get time(), Loiter_get t() and finally fflush execlog)}
Transition 4 {ChooseLoiteMode, Idle, Abort, True, None, (Print to file execlog Loiter -
Aborting from Loiter on abort signal, teja_get time(), Loiter get t() and finally

fflush execlog)}
Transition 5 {Hover, Idle, Abort, True, (t=0, TimeInState=0), (Print to file execlog Loiter

- Aborting from Loiter on abort signal, teja_get time(), Loiter_get t() and finally

ftflush execlog)}
Transition 6 {Circle, Idle, Abort, True, (t=0, TimeInState=0), (Print to file execlog Loiter

- Aborting from Loiter on abort signal, teja_get time(), Loiter_get t() and finally

fflush execlog)}

Transition 7 {GoToCircleWP, Idle, Abort, True, None, (Print to file execlog Loiter -
Aborting from Loiter on abort signal, teja_get time(), Loiter get t() and finally

fflush execlog)}
Transition 8 {StopCircle, Idle, Abort, True, (t=0, TimeInState=0), (Print to file execlog

Loiter - Aborting from Loiter on abort signal, teja_get time(), Loiter_get t() and finally

fflush execlog)}
Transition 9 {GoToLoiterPt, Idle, Abort, True, (t=0, TimeIlnState=0), (Print to file

execlog Loiter - Aborting from Loiter on abort signal, teja_get time(), Loiter_get t() and

finally fflush execlog)}
Transition 10 {ReportTo, Idle, LoiterDone, True, None, None}

62

63

Transition 11 {ChooseLoiterMode, Hover, Loiter, (NumPoints<2 && LoiterTO>0) ||
WPNav->ToWP->LoiterType==HOVER), TimelInState=0, (Print to file execlog Loiter -
Setting VBS in Hover mode, teja_get time(),Loiter_get t() and finally fflush execlog and
execute commands in VehCmd, AutCmd, DevCmd, ActReq)}

Transition 12 {ChooseLoiterMode, Circle, Loiter, (NumPoints>=2 && LoiterTO>0 &&
WPNav->ToWP->LoiterType==CIRCLE), TimelInState=0, (Print to file execlog Loiter -
Computing Loiter Circle and going to first point, teja_get time(),Loiter _get t() and
finally fflush execlog and execute commands in VehCmd, AutCmd, ActReq and
Loiter PlotCircle)

Transition 13 {Circle, GoToCircleWP, Steer, NumPoints>=2, (WPNav->ToWP-
>UseSSS) (Print to execlog Loiter - Turning On SSS, teja_get time(),Loiter_get t()
fflush execlog, DevCmd->SSSCmd=0ON) or (DevCmd->SSSCmd=OFF
DevCmd->VBSCmd=TRIM, DevCmd->VBSDepthCmd=WPNav->ToWP->Depth)}
Transition 14 {GoToCircleWP, Circle, WPDone, Helm->DistanceToPoint<=20.0, None,
Loiter - Processing loiter waypoint}

Transition 15 {Hover, GoTolLoiterpt, (TimeInState>= LoiterTO-
Loiter TimeToLoiterPt() a€* 20), Timer=0, (Loiter - Turning On SSS or Loiter 4€*
returningToLoiterPt)}

Transition 16 {GoeToCircleWP, StopCircle, TimeOut, (TimeInState >= LoiterTO-
Loiter_TimeToLoiterPt(), None, None}
Transition 17 {StopCircle, GoToLoiterpt, Steer, True, None, Loiter 4€“ Returning

63

64

Appendix C: lllustration of Verification of logical

correctness of the controller modules
We start with the lowest level (i=/), and pick the Steering module first as it receives

orders from the others, and only responds to those orders. We develop abstract models of
the commanding and commanded environment, called drivers and stubs. The steering
module is shown in Figure C.111, whereas the abstraction of commanding environment

the driver module is shown in Figure . There is no module that the steering module

commands.

C.1 Verification of Steering module

Steer?

ot -
O#er——=0)

Steeanghione!

Figure C.111: Steering module in UPPAAL

Stecringone!

Figure C.2: Driver for steering module in UPPAAL
Querics
The following queries were formulated as temporal logic formulae in order to perform
verification of logical correcteness of the steering module.

E[] Steering P.Idle ds
/*Eventually in future there always is a path, which goes to the final state (here Idle ds)*/

A[] Steering P.SteerToPoint ds imply Steering P.timer<=2

/*The steering module always updates the present location of the AUV every 2 seconds

when at state SteerToPoint_ds */

64

65

A<> Steering P.SteerToPoint_ds imply Steering P.Idle_ds

/* Always eventually the vehicle is steered to the desired point */

C.2 \Verification of Loiter module

start

Loiter?
- [.
\‘__\ .
—
\\ _ (NumPoints —%W\ TowP__LaiterType==NONE

OiferDRNENC
\ \AD\W,,H/ANH&‘ TRERBBIMISTEE3 oiterT 0>088WPNav_ToWP__LoiterType==CIRCLE

Tmeln’stde#n:{ nelnState. =0 Timg(nState =0
\
\ \ ~NumPaint, ﬁ%gh%ggsn\uwpwav TowP__LoiterType==HOVER
) —

Ym over_us ple_d
t
ottt artt!
TG o bisence ToPoint<=20
IMBMMAE =0 Time{nState~=Loiter TO-Loiter, TimeTol IFEI B&lntﬁ‘»‘ém
Vi ~ Timerko

N s -
Gopipfatedt_os Stoprircle_ts GoToCiciewr_ds
TimeinState> =L oiter TO-Loiter_TimeTolLoiterPt_FCN

Figure 12: Loiter module module in UPPAAL

The next module selected is the Loiter module at level 1, then its environment is
abstracted. The Loiter module is shown in Figure 12, the abstracted commanding
environment is shown in Figure 13 and the abstracted commanded environment is shown

in Figure 14.

Abart!

Figure 13: Driver for loiter module module in UPPAAL

Aport1?
start dle -

SteerToPoint
imer<=2

65

66

Figure 14: Stub for loiter module module in UPPAAL

Queries formulated as temporal formulas are as shown below.

A<> Loiter P.Idle_ds

/* All paths eventually lead to the final or end state (here Idle_ds), indicating progress i.e.
order is completed as final state is reached or it might be that the mission is aborted but

that too signifies progress indicating the detection of failure and no deadlock. */

A<> Loiter P.ChooseloiterMode_ds imply (Loiter P.Hover ds||Loiter P.Circle_ds)
/* All paths from the state ChooselLoiterMode eventually either leads to hovering or

circling (indicating progress as it should select a mode to loiter). */

A[] Loiter P.Circle ds imply (Loiter P.LoiterTO>0 && Loiter P.NumPoints>2)&&
WPNav__ToWP _ LoiterType==Loiter P.CIRCLE

/* For all paths if "Circling" is selected the guard conditions are LoiterTO>0 and
NumPoints>2 (this indicates that the guard conditions required for circling like number

of points are taken care of) Changes: numpoints>2 and LoiterTO>0 in global declaration

%/

A[] Loiter P.Hover ds imply (Loiter P.LoiterTO>0 && Loiter P.NumPoints>2)||
WPNav__ToWP __LoiterType==Loiter P.HOVER

/* For all paths always if "Hovering" is selected then the required guard conditions are

satisfied. Changes: NumPoints<2 and LoiterTO>0 */

A[] Loiter_P.Circle_ds imply Loiter P.NumPoints>2

/* For all paths always circling means number of points >2 Changes: NumPoints>=2 */
E<> not Loiter P.NumPoints>2 and Loiter P.Hover ds

/* This statement proves that there doesnt exist a path where eventually NumPoints>2

hold after Hover mode */

66

67

E<> (Loiter P.NumPoints<2 && WPNav__ToWP _LoiterType==Loiter P.HOVER)
imply Loiter P.Hover_ds
/* Is it possible to reach Hover mode with all parameters for HOVERING mode */

E<> (Loiter P.NumPoints>2 && WPNav__ToWP__LoiterType==Loiter P.CIRCLE)
and Loiter P.Hover ds

/* Is it possible to reach Hover mode with all parameters for Circling mode */

E<> Loiter P.NumPoints>2 imply Loiter P.GoToCircleWP _ds
/* Does there exist a path where NumPoints>2 leads to GoToCircleWP_ds (indicating

progress of Circle type order being executed correctly) */

E<> (Loiter P.NumPoints>2 && WPNav__ToWP__LoiterType==Loiter P.CIRCLE)
imply Loiter P.Circle ds
/* Is it possible to reach CIRCLE mode with circling mode type input (indicating that

logic of guards for progress of executing orders correctly)*/

E<> (Loiter P.NumPoints<2 && WPNav__ToWP__LoiterType==Loiter P.HOVER)
and Loiter _P.Circle_ds
/* Is it possible to reach CIRCLE mode with hovering mode type input (indicating that

guards for progress are given correctly)*/

E<> Loiter P.TimelnState<=Loiter P.LoiterTO-Loiter P.Loiter TimeToLoiterPt FCN
imply not Loiter_P.StopCircle_ds
/*Is it possible to reach StopCircle_ds when the guard condition leading to that state is

satisfied */

E<> (Loiter P.GoToCircleWP ds and Helm__DistanceToPoint<=20) imply
Loiter P.Circle_ds
/* Check correct execution: Is it possible to reach to Circle ds when at

GoToCircleWP_ds and guard Helm__ DistanceToPoint<=20 is satisfied */

67

68

E<> (Loiter P.Hover ds || Loiter P.Circle _ds) imply Loiter P.GoToLoiterPt ds

/*1s it possible to reach the GoToLoiterPt ds state after choosing the mode of loitering */

A<> Loiter P.ChooseLoiterMode_ds imply Loiter P.ldle_ds
/* All paths eventually lead to final state from the present state indicating either

successful completion or termination of a mission™/

A<> Loiter P.Hover _ds imply Loiter P.Idle_ds
/* All paths eventually lead to final state from the present state */

A<> Loiter P.Circle ds imply Loiter P.Idle_ds

/* All paths eventually lead to final state from the present state */

A<> Loiter P.GoToCircleWP _ds imply Loiter P.ldle_ds

/*All paths eventually lead to final state from the present state*/

A<> Loiter P.StopCircle_ds imply Loiter P.Idle ds

/*All paths eventually lead to final state from the present state*/

A<> Loiter P.GoToLoiterPt ds imply Loiter P.Idle ds
/*All paths eventually lead to final state from the present state */

A<> Loiter P.ReportTO _ds imply Loiter P.Idle ds
/*All paths eventually lead to final state from the present state*/

E<> Loiter P. GoToLoiterPt ds and Loiter P.Timer<=2

/*1s the information regarding reaching the loiter point updated every 2 seconds*/

C.3 Verification of GPSFixer module
All the subsystems at level 1 are now verified. So the value of i changes to the next level

which is 2. The next module selected is the GPSFixer subsystem at level 2. The

68

69

environment for GPSFixer susbsystem is now abstracted. The GPSFixer subsystem is
shown in Figure 15, the abstracted commanding environment is shown in Figure 16 and

the abstracted commanded environment is shown in Figure 17.

PSEk? ~
<! tg»;gaoToSurtareT\\

imeln .
TuneInStalte =0, Timel nStaE:B;(P
A - < Raifetdast_ds

reinstate =0
TimelnState> =RalseMastTO
- TimelnState =

] Abart?
e WQ;ZPSE Donel\

Ret
eingrate -1 DevState_MasiState==UP
\ " IGPSOrd__ReturAToStart JTim&lqState =0, NumFailed =N {iKimgingiate =0
/ InState = i - .
GESOr ‘e%tH %ﬂgg%g! 0 melnState> =FakeF 1O
elm__DistanceToPoi <=\/’, ThresholdDi {'
imel g&elzrbstale =0 g /

L DevState_ GPSFR e=EDONE
e %DmEOﬂ\SW@Dd\i\amchl

" TimelnState =0

Decige_ds TimelnStaterderx_os

Figure 15: GPSFixer module in UPPAAL

Stat TakeGPSFix!
©——O==0)
AN
GPSFixDone?

Figure 16: Driver for GPSFixer module in UPPAAL

Figure 17: Stub for GPSFixer module in UPPAAL

Queries:

A<> GPSFixer_P.Idle_ds

69

70

/* All paths eventually lead to the final state (All paths not always lead to final state as

ReportTO_ds doesnt connect to the final state but it eventually goes to the final state).*/

E<> (GPSFixer P.GoToSurface ds and Nav__Depth<=GPSFixer_ P.SurfaceThreshold)
imply GPSFixer P.RaiseMast ds
/*Is it possible to reach the next state (RaiseMast ds) when its at present state

GoToSurface _ds and guard condition is Nav__ Depth<=SurfaceThreshold */

E<> DevState MastState==GPSFixer P.UP and GPSFixer P.RaiseMast ds imply
GPSFixer P.TakeFix _ds
/*Is it possible to reach the next state (TakeFix ds) when its at present state

RaiseMast ds and the guard condition checking whether the mast is raised is satisfied */

E<> DevState GPSFixState==GPSFixer P.DONE and GPSFixer P.TakeFix ds imply
GPSFixer P.ComeOffSurface ds

/*1Is it possible to reach the next state (ComeOffSurface ds) when its at present state

TakeFix_ds and the guard condition checking whether the GPSFix is done is satisfied*/

A[] not deadlock

/*Does there exist a deadlock*/

E<> GPSFixer P.ComeOffSurface ds imply GPSFixer P.Decide_ds Il
GPSFixer PlIdle ds

/*1Is it possible to reach the next state (Decide ds or Idle ds) when its at present state

ComeOffSurface ds */

E<> GPSFixer P.Decide ds and GPSOrd _ReturnToStart and
GPSFixer P.ReturnToStart ds

/* 1Is it possible to reach the next state (ReturnToStart ds) when its at present state

Decide ds and the guard conditon checking whether to return to start stae is satisfied*/

70

71

E<> GPSFixer_P.Decide_ds and |GPSOrd__ReturnToStart imply GPSFixer_P.Idle_ds
/* Is it possible to reach the next state (Idle_ds) when its at present state Decide_ds and

the guard conditon checking whether not to return to start state is satisfied */

E<> GPSFixer_P.Decide_ds and GPSOrd__ReturnToStart and
Steering P.SteerToPoint_ds
/* Is it possible to reach SteerToPoint_ds in Steering when the guard condition is satisfied

when in the Decide_ds state in GPSFixer */

E<> GPSFixer_P.Decide_ds and !GPSOrd__ReturnToStart and
Steering P.SteerToPoint_ds

/* is it possible to reach from Decide_ds in GPSFixer to Steering (SteerToPoint_ds) when

the guard condition is not satisfied */

E<> GPSFixer P.Decide_ds and !GPSOrd__ReturnToStart and Steering P.Idle_ds

E<> GPSFixer_P.TakeFix_ds and DevState GPSFixState==GPSFixer P.DONE and
Launcher P.RetractMast _ds
/*is it possible to reach from TakeFix_ds in GPSFixer to Launcher (RetractMast ds)

when the guard condition is not satisfied and the synchronous event occurs */

C.4 \Verification of Waypointnavigator module
The value of level i remains 2. The next module selected is the Waypointnavigator

subsystem at level 2. The environment for Waypointnavigator susbsystem is now
abstracted. The Waypointnavigator subsystem is shown in Figure 18, the abstracted
commanding environment is shown in Figure 19 and the abstracted commanded
environment is shown in Figure 20.

Queries for the verification of Waypointnavigator is shown belo.

A[] not deadlock

/*Does there exist a deadlock*/

71

72

A<> WaypointNavigator P.Idle ds
/* All paths eventually lead to the final state (inidicating progress or diagnosis of failure

if aborted) */

O AL
X / A rawe Tmed=zoxa N\
| e TmiPTn\'V’a\'nert DIStan[ETr‘N‘Jﬁ\[lUIHI‘M nspeed
L /_',)‘f 1.=0
"‘f o PlOcess wrﬂfj\ N \?’ \)

A
Tirngut dy

Tl s I' : ‘\\"Abon’f— [)7“4*:11 L Ao
e T~ timer Il.’f(mclrutdnp = -
bortTimery=de 4 Rers = tmers=
AT o ~Df {‘—HV" vrvomt/mn Speer timer =0
WP Done! el / '
Ly TREI0 timers=1

elnState =0
W avigrator_BepthOK_FCH

A) AbortTimer =0, timer:=0
LPOepthfmotdem_ds

- AU DR P eurte PN

(t~=Time Tow aypoint-Distance ToWaypaointd

[oLl V’ ”lé

BT
Tirm (/“\tatl"‘c'\

)I =YW AVYPO) IT[

IFOWP_ Timed& pp; r@ﬁopomtq\mm {8l

} TOV\P{q'ﬁmV) 8Bl Dm\t@ht eToPgint<=

{t>= TlmE\TO\/\/a‘/lenthlStaHLPTD\NFI ypointMinSpeed)
riDﬁPWE@DmE' BteenngDone!

ITovwP Lo thP&&(t\-TrmpTo /{pomt) \\
(Hm:?lr{fjj e =y Timeins tate Aty Tls \L
\ €1)'u’u’:lrl‘ltah“*ﬂ tmer. =0 h Dltéﬂ
T Steer! DWP\ LmterDurat»omD

a/ : (B>=TIime Tow aypoint) {)=Fowr oo *ID
FepiaTo s Brovam Loter Cnne,_is AV s
ned&8Helm__ DistanceToPoint<=ThresholdDistance)

a0 O]

Figure 18: Waypointnavigator module in UPPAAL

Procpsswnt

Figure 19: Driver for Waypointnavigator module in UPPAAL

Lolter State

Abort!
s

Abart!

Figure 20: Stub for Waypointnavigator module in UPPAAL

72

73

E<> ToWP__Timed && WaypointNavigator P.TimeToWaypoint >
WaypointNavigator_P.DistanceToWaypoint / WaypointNavigator P.MinSpeed and
WaypointNavigator P.Timed WP _ds

/* Is it possible to do a timed waypoint if the guard conditions are satisfied (Yes indicates
correct implementation) Change: TimeToWaypoint DistanceToWaypoint MinSpeed to

check the various situations with the guard condition */

Ef] (WaypointNavigator P.TimeToWaypoint >
WaypointNavigator_P.DistanceToWaypoint /WaypointNavigator P.MinSpeed) imply \
WaypointNavigator P.TimedWP _ds '

/* Whenever the guard signifying time is satisfied does it do timed waypoint */

E<> IToWP__Timed f WaypointNavigator P.TimeToWaypoint <=
WaypointNavigator_P.DistanceToWaypoint/WaypointNavigator P.MinSpeed and
WaypointNavigator P.GoToWaypoint ds

/* Is it possible to do an untimed waypoint if the guard conditions are satisfied (Yes
indicates correct implementation) Change: TimeToWaypoint DistanceToWaypoint

MinSpeed to check the various situations with the guard condition */

Ef] (WaypointNavigator P.TimeToWaypoint <
WaypointNavigator P.DistanceToWaypoint / WaypointNavigator P.MinSpeed) imply
WaypointNavigator P.GoToWaypoint_ds

/*Is it possible to do untimed waypoint when time to reach the point by the vehicle is

more than desired time*/
WaypointNavigator_P.TimedWP_ds --> WaypointNavigator P.GoToLP_ds

/*1s it possible to reach go to loiter point state once timed waypoint is started (as the next

step is to go to loiter point indicating progress)*/

73

74

A<> (WaypointNavigator P.GoToWaypoint_ds and
WaypointNavigator P.WaypointNavigator DepthTrouble FCN) imply

WaypointNavigator P.WPDepthProblem_ds
/* For all paths at state GoToWaypoint_ds if depth trouble occurs it goes to rectify it.*/

E<> (WaypointNavigator P.WaypointNavigator DepthOK FCN and
WaypointNavigator P.WaypointNavigator DepthTrouble FCN) imply
WaypointNavigator P.GoToWaypoint ds

/*1s it possible to get depth rectified and move on to normal state*/

E[] WaypointNavigator P.GoToWaypoint ds imply Stub.Steer State

/*There exists a path where always steering needs to be done whenever waypoint needs

to go to a point™*/

E<> (!ToWP_Timed&&Helm__DistanceToPoint<=

WaypointNavigator P.ThresholdDistance) I (
ToWP_ Timed&&Helm DistanceToPoint <= 5) imply Stub.Run

/* The guard conditions being satisfied steering is done, the point is reached*/

E<> (WaypointNavigator P.GoToWaypoint ds [l
WaypointNavigator P.WPDepthProblem ds)&&(!ToWP_Timed&&Helm__DistanceTo
Point <= WaypointNavigator P.ThresholdDistance

MW(ToWP__Timed&&Helm__DistanceToPoint<=35) imply Stub.Run &&

WaypointNavigator P.ReportTO ds
/* Is it possible to go to the Idle state in steering and ReportTO state in Waypoint from go

to waypoint or depth problem rectifying state in waypoint when the guard conditions are

satisfied*/

E<> WaypointNavigator P.GoToLP_ds imply Stub.Steer State

/* Is it possible to steer to desired point when doing timed waypoint */

74

75

E<> (WaypointNavigator P.GoToLP_ds and
WaypointNavigator P.WaypointNavigator DepthTrouble FCN) imply
WaypointNavigator P.LPDepthProblem_ds

/* Is it possible to go to depth correction state when the guard indicating depth trouble is

TRUE (yes indicates correct performance) */

E<> WaypointNavigator P.LPDepthProblem_ds and WaypointNavigator P.timer>=2
/*Is it possible to be at state LPDepthProblem_ds with timer greater than 2 (if yes

indicating wrong model) couldnt find result as taking lot of time need to check for long */

E<> WaypointNavigator P.LPDepthProblem_ds and WaypointNavigator P.timer<=I
/* Is it possible to be at state LPDepthProblem_ds with timer less than equal to 1 (if yes
indicating correct model) couldnt find result as taking lot of time need to check for long

*/
E<> WaypointNavigator P.GoToLP_ds and WaypointNavigator P.timer>=2
/* Is it possible to be at state GoToLP_ds with timer greater than 2 (if yes indicating

wrong model) couldnt find result as taking lot of time need to check for long*/

E<> WaypointNavigator P.GoToLP_ds and WaypointNavigator P.timer<=I
/* Is it possible to be at state GoToLP_ds with timer less than equal to 1 */

E<> WaypointNavigator_P.GoToWaypoint_ds and WaypointNavigator P.timer>=3
/* Is it possible to be at state GoToWaypoint_ds with timer greater than 3 */

E<> WaypointNavigator P.GoToWaypoint_ds and WaypointNavigator P.timer<=2
/*1s it possible to be at state GoToWaypoint_ds with timer less than equal to 2 */

E<> WaypointNavigator_P.WPDepthProblem_ds and WaypointNavigator P.timer>=2
/*Is it possible to be at state GoToWaypoint_ds with timer greater than 2 */

75

76

E<> WaypointNavigator P.WPDepthProblem_ds and WaypointNavigator P.timer<=1I

/* Is it possible to be at state GoToWaypoint_ds with timer less than equal to 1 */

E<> WaypointNavigator P.TimedWP_ds imply (WaypointNavigator P.Loiter ds ||
WaypointNavigator P.LoiterDone_ds)

/*1s it possible to loiter if executing a timed waypoint */

E<> WaypointNavigator P.AtWP ds and ToWP__LoiterDuration<=0 imply
WaypointNavigator P.LoiterDone_ds

/* Is it possible to reach the desired region when no time is left for loitering while doing a

timed waypoint */

E<> WaypointNavigator PAtWP ds and ToWP__ LoiterDuration>0 imply
WaypointNavigator P.Loiter ds
/* Is it possible to loiter when time is left to reach the desired region while doing a timed

waypoint */

E<> WaypointNavigator P.LoiterDone_ds and (WaypointNavigator P.t
>=WaypointNavigator P.TimeToWaypoint) imply WaypointNavigator P.ReportTO _ds

/* Is it possible to reach the data reporting state after loitering is done */

E<> WaypointNavigator P.ReportTO ds imply WaypointNavigator P.ldle ds

/* Is it possible to reach the final state when the desired point is reached */

C.5 \Verification of Rendezvous module
The value of level i remains 2. The next module selected is the Rendezvous subsystem at

level 2. The environment for Rendezvous susbsystem is now abstracted. The Rendezvous
subsystem is shown in Figure , the abstracted commanding environment is shown in

Figure and the abstracted commanded environment is shown in Figure .

76

77

Decide_ds

Processwp!

Q SoeRendezvous_ts
N Abort?

\}“ WPEKne?
Ldiert 7~

 TOWF AAtitude==03&TolP__Longitude==0
RendeTvous? go JoiP__ Depth==088 TAWF_Speed==0
e

Start_ds

/7'/ P {GiterType=SNOM
LI TOWP__ LoiterDuration==0
z — \,
\ 0
\

(d/s\\\ Alort? AtRPritervous_ds
T TimelnStde =0

1efi
:]
RendezvpusDone! o \ -oter!
Timeingtate =0 Aol ‘\\ Tiheinstate =0
/S oiterDone?
LoterDone_ds LoiterD Loiter_ds

Figure C.12: Rendezvous module in UPPAAL

Rendezvoust

@

Figure C.13: Driver for Rendezvous module in UPPAAL

Aportt

~.
TOCesS

Ve Waypoirt_State
//

Figure C.14: Stub for Rendezvous module in UPPAAL

Queries as temporal logic formulas to verify properties for the Rendezvous susbsystem.

A[] not deadlock

/*Does there exist a deadlock*/
E<> ToWP__Latitude==0&&ToWP__Longitude == 0 && ToWP__Depth == 0 &&

ToWP__Speed == 0 imply Rendezvous_P.Loiter ds

/* Is it possible to loiter when rendezvous is not specified*/

77

78

E<> ToWP _LoiterType==Rendezvous P.NONE ||ToWP__LoiterDuration==0 imply
Rendezvous P.Idle ds

/* Is it possible to be idle when no loiter type is given and no loiter duration is specified*/

E<> Rendezvous P.GoToRendezvous ds and Stub. Waypoint_State

/*1s it possible to start waypoint navigation by the rendezvous controller */

E<> Rendezvous P.AtRendezvous ds and Stub.Run
/* 1Is it possible for rendezvous to synchronize with waypointNavigator to process way

point navigation */

E<> Rendezvous_P.Loiter_ds and Stub.Loiter State

/* ls it possible to synchronize Rendezvous with Loiter for loitering™*/

E<> Rendezvous P.LoiterDone_ds and Stub.Run

/* Is it possible to synchronize rendezvous with loiter to get loitering done */

Rendezvous P.LoiterDone_ds --> Stub.Run

/*Is it possible by the rendezvous controller to execute loiter successfully*/

E<> Rendezvous P.LoiterDone_ds and Stub.Run

/*Checking on synchronization of rendezvous with loiter*/

C.6 Verification of Launcher module
The value of level i remains 2. The next module selected is the Launcher subsystem at

level 2. The environment for Launcher susbsystem is now abstracted. The Launcher
subsystem is shown in Figure , and the abstracted commanding environment is shown in
Figurc C.16.

Queries as temporal logic formulas to verify the properties satisfied by the Launcher
subsystem.

A[] not deadlock

/*Does there exist a deadlock*/

78

79

E<> Launcher_P.Idle_ds imply Launcher P.RetractMast ds

/* Is it possible to retract mast using the launcher */

©

Styft_ds
Ahort!

/ Dmeln"‘tate RetraciviztTo™ ~

- Launch? \Vs
180 ?Tmn’«, £, TmeinState =0 o st ds
At

TT:'?;%Q"BQ =ComeO
LaunchDonel

Figure C.15: Launcher module in UPPAAL

TimpInState =0
urfaceT

ComeOffiSurface_ds

LaunchDone?

Launth!

Figure C.16: Driver for Launcher module in UPPAAL

E<> Launcher P.RetractMast_ds and Launcher P.TimelnState >=
Launcher_P.RetractMastTO imply Launcher P.Idle ds
/*1s it possible to abort launcher operation when time at that state is greater than time to

retract mast indicating some failure */

E<> Launcher_P.RetractMast_ds imply Launcher P.ComeOffSurface ds

/* Is it possible to dive down using the launcher */

E<> Launcher_P.ComeOffSurface_ds imply Launcher P.Idle ds

/*1s it possible to reach the final state once diving of the surface is done */

C.7 Verification of PayloadDelivery module
The value of level i remains 2. The next module selected is the PayloadDelivery

subsystem at level 2. The environment for PayloadDelivery susbsystem is now

79

80

abstracted. The PayloadDelivery subsystem is shown in Figure 21, the abstracted
Figure 22 and the abstracted commanded

commanding environment is shown in

environment is shown in Figure 23.

St
@’ Aport™
- o o ™ o 1
t\(FracessPayload? \‘\/"J‘lf’%'

) ‘»(t =0, TimeinState <0 N\
il N I
\
h AN
\ .
T Processwel
S AN
N
H “\\
TimelnStates =Delvend e | N
/ ™
/ WEDIE? N
R [ST N
L S |
s Sy
(j(/ Ahorts \f)
AP Nae__TimeTow amoint<=DeliveryDieiay
s TimelnState =0 CaTePomt d;

tahioo

Figure 21: PayloadDelivery module in UPPAAL

PiocessPayluad!

S N
o 0
AN e,
N

Payoanlie”

Al

Figure 22: Driver for PayloadDelivery module in UPPAAL

Wavnoint_State

RN
7

O—CQ . |
T
\Q/‘PDCHGI |
\\

J

Bipeess Wi

Figure 23: Stub for PayloadDelivery module in UPPAAL

Queries to verify properties satisfied by the PayloadDelivery subsystem

A[] not deadlock
/*Does there exist a deadlock™/

E<> PayloadDelivery P.ldle ds

80

81

/* Is it possible to reach the final state from any other state */

E<> PayloadDelivery P.GoToPoint_ds and Stub.Waypoint_State
/*1s it that Payload module passes control to waypointnavigator to go to the desired

location*/

E<> PayloadDelivery P.Deliver ds and Stub.Run

/*Synchronizes with waypointnavigator to go to the desired location successfully*/

E<> PayloadDelivery P.GoToPoint ds and WPNav__TimeToWaypoint <=
PayloadDelivery P.DeliveryDelay imply PayloadDelivery P.Deliver ds and Stub.Run
/*With the guard conditions being satisfied does the payloaddelivery synchronize with

waypointnavigator successfully */

C.8 \Verification of DeviceCommander module
The value of level i remains 2. The next module selected is the DeviceCommander

subsystem at level 2. The environment for DeviceCommander susbsystem is now
abstracted. The DeviceCommander subsystem is shown in Figure 24, and the abstracted

commanding environment is shown in Figure 25.

ndDone_FCNA&CmdSet

; Ao e
imeinState =0~

gg%ev?ctetle ~& fimer<1
t=0, TimelnState,=a, Hrer: =0
SetCommand_dz

e ADOT?

Figure 24: DeviceCommader module

DeviceDone?

Start Idle SettingDevice

Figure 25: Driver for DeviccCommander module in UPPAAL

Queries for DeviceCommander module is as given below.

A[] not deadlock

81

82

/*Does there exist a deadlock*/

E<> DeviceCommander P.SetCommand_ds and DeviceCommander P.timer<lI

/* s 1t possible for time to be greater than 1 at state setcommand*/

E<> DeviceCommander P.DeviceCommander DeviceCmdDone FCN
DeviceCommander P.CmdSet imply DeviceCommander P.Idle ds

/*Is device set successfully*/

E<> DeviceCommander P.DeviceCommander TimeOut FCN
DeviceCommander P.SetCommand_ds imply DeviceCommander P.1dle ds

/* Is it possible to time out when going to set a device*/

E<> DeviceCommander P.SetCommand_ds and DeviceCommander P.timer>1

&&

&&

/* Is it possible to remain at state SetCommand without updation for more than 1

second*/

C.9 Verification of Pause module

The value of level i remains 2. The next module selected is the PayloadDelivery

subsystem at level 2. The environment for PayloadDelivery susbsystem is now

abstracted. The PayloadDelivery subsystem is shown in Figure 26, and the abstracted

commanding environment is shown in Figure 27.

Gtar us
\ WatDong!
\\ T|m[j nstates ;}”{:?itl]rd_vvaﬂmw £

\ e
e Wail?

Timeinbtate =0 ¢
Iie o WaitOrd_ watTime»Bual dy

Anai
Figure 26: Pause module in UPPAAL

wat!
e
@ 4 Aho

\\-/

waithone?

TN Wanting
au

82

83

Figure 27: Driver for pause module in UPPAAL

Queries to verify properties satisfied by the Pause subsystem
A[] not deadlock

/*Does there exist a deadlock®/

Pause_P.Idle_ds and WaitOrd_WaitTime>0 --> Pause_P.Wait_ds

/* Is it possible to go to wait state to keep the coordinator waiting */

E<> Pause_ P.Wait_ds and Pause_ P.TimelnState>=WaitOrd_WaitTime imply
Pause_P.Idle ds

/* Is it possible to successfully complete pause operation*/

C.10 Verification of Sequential coordinator module

The value of level i changes to level 3. The next module selected is the Sequential
Coordinator subsystem at level 2. The environment for sequential coordinator susbsystem
is now abstracted. The Sequential Coordinator subsystem is shown in Figure 28, the
abstracted commanding environment is shown in Figure 29 and the abstracted

commanded environment is shown in Figure 30.

83

84

Apart!
l(‘?\:qCMroHPr Suspended)
%quntmNer Susperded =

Coracedndo o0

@ o R P
telh_efxl=0 L t.=0, Surpendahle =0 g
Vo DeviceDore?
Setlwedo!

t"\l Setleor SeqContiotler__Susp

WoatF orvC Cotams i 4 =0, Suspendahle=0, Suspendahle =0, 1~O

=10 .,eq(‘omm!lar . M[r1 =0 o | i Susrnﬁnd’

Rezume? | ' i ', =0, Suspendable: =0
©oten, ¢u_nq1r1ﬁ)‘-{e

W 'Dor_vf_[!

Rt Su“pewiah(c

t=0, MisdonTime =0, Suspendakie =
{ =0, Suspendable =0

Procesgvel- -4
) Smn dahle L1'r\'ayr\nll‘lt Mavicedo_ds
] ‘“qunnt Her ldfe‘*ﬂ

T [Suspcnd“
It t: bwspendable =0

[=O '\'ugpend"bk ¢ ,/'/ . o >
1 Seqperioller a0/t i Frniable: g‘ Eescbr ;f;’fof""m#
1 NonSeqC arfraller '1dl 1 y 0 “wp’mdﬁb[p =0
o e, Botase “f mmé‘;n Sra(ontrollﬂ Mlp=0
i C |SeqContrillel _| ""r'ﬁ“’””‘ r .
i) E
b / /o \Rmdez\«t‘u:ﬂonp?
4 A:)Lug) K /oprot? g . 1,20, Suspendable:=G -
2 tm? S Ahof? =0 Pmdmnud *,4‘-

“Sumpendable. =1, i1

Na«____Depth:=Ju'fact—T|m:'>l'orr3‘
SeqCartmller] lrﬂrs =0

B&DevCiel_ MastCmed=UP

CienStite MartSfdt oot 10

Figure 28: Sequential coordinator module in UPPAAL

Fesume!

= N susnend_State

Y Suspend!

RN A t /,’
\phortt

Figure 29: Driver for sequential coordinator module in UPPAAL

GRIF State
A
Ty Ju"f;‘»'w .
Waypor_state

Ap, aet S
\Ahmpcr%xtlm\;ﬁljfly@ /D

,,mer’s AW
Abortt

s State

vait?
wait Wa

85

Figure 30: Stub for Sequential coordinator module in UPPAAL

Queries to verify properties satisfied by the Sequential Coordinator subsystem
A[] not deadlock

/*Does there exist a deadlock*/

E<> Controller P.EndMission_ds
/*Is it possible to finally reach the end state*/

E<> Controller P.WaitForVCComms_ds and Controller P.t>10

/*Does the sequential controller wait for 10 seconds before it goes to run state*/

E<> Controller P.run_ds and Controller P.t<=]
/*Does the controller check the missionqueue every 1 second to check for pending

requests™/

E<> Controller P.GPSFixer_ds and Stub. GPSFix_State

/*Does the controller pass control to GPSfixer operation controller when the order is to

perfom GPSFix*/

E<> Controller_P.GPSFixer_ds and Controller_P.Suspendable==0
/*Is it that GPSFixer is non suspendable(Yes indicating the design is correct as it should

not be suspendable)*/

E<> Controller_P.GPSFixer_ds and SeqController _Idle==
/*1Is it possible for sequential coordinator to transfer control to waypoint navigator and

wait*/
E<> Controller_P.run_ds imply Stub.Run

/*1s it possible that when controller is in run state GPSFixer is in idle state indicating that

GPSFix has been done*/

85

86

E<> Controller P.WaypointNavigator _ds and Stub. Waypoint_State

/*Does the controller pass control to WaypointNavigator operation controller when the

order is to perform Waypoint navigation*/

E<> Controller P.WaypointNavigator ds and Stub.Run

/*Does the WaypointNavigator perform the operation successfully*/

E<> Controller P.WaypointNavigator _ds and Controller P.Suspendable==1
/*1s 1t that WaypointNavigator is suspendable(Yes indicating the design is correct as it

should be suspendable)*/

E<> Controller P.WaypointNavigator ds and SeqController _Idle==0

/*1Is it possible for sequential coordinator to transfer control to waypoint navigator and

wait*/

E<> Controller P.Pause_ds and Stub.Pause_State

/*Does the sequential controller pass control to pause*/

E<> Controller P.Pause_ds and SeqController _Idle==

/*1Is the Secontroller idle when it passes control to Pause*/

E<> Controller P.Pause ds and Controller P.Suspendable==0

/*1s the pause operation suspendable*/

E<> Controller P.Launcher_ds and Stub.Launch_State

/*Does the controller pass control to Launcher module */

E<> Controller_P.run_ds and Stub.Run

/*Is Launch command completed successfully*/

E<> Controller P.Launcher_ds and SeqController _Idle==0

86

87

/*Is the Seqcontroller idle when it passes control to Launcher*/

E<> Controller P.Launcher ds and Controller P.Suspendable==

/*Is the Launch operation suspendable*/

E<> Controller P.Rendezvous ds and Stub.Rendezvous _State

/*1s it possible to pass control to Rendezvous*/

E<> Controller P.run_ds and Stub.Run

/*1s the Rendezvous mission completed successfully */

E<> Controller P.Rendezvous ds and SeqController _Idle==

/*Is the Seqcontroller idle when it passes control to Rendezvous*/

E<> Controller_P.Rendezvous_ds and Controller P.Suspendable==1

/*1s the Launch operation suspendable*/

E<> Controller P.DeviceOrder_ds and Stub.Device State

/*1s it possible to pass control to DeviceCommander module*/

E<> Controller _P.DeviceOrder ds and SeqController _Idle==

/*1s the Seqcontroller idle when it passes control to Devicecommander*/

E<> Controller_P.DeviceOrder_ds and Controller_P.Suspendable==

/*1s the DeviceCommander operation suspendable*/

E<> Controller P.Payload ds and SeqController _Idle==

/*1Is the Seqcontroller idle when it passes control to Payload*/

E<> Controller_P.Payload_ds and Controller P.Suspendable==0

/*1Is the Payload operation suspendable*/

87

88

E<> Controller P.Suspend_ds and SeqController _Suspended==

/*Is there a method to test whether the seq.Controller is suspended*/

E<> Controller P.Suspend ds imply Controller P.run_ds or
Controller P.EndMission_ds

/*1s it possible to return back to normal operation or end the mission after suspension*/

E<> Nav_ Depth<=Controller P.SurfaceThreshold && DevCmd MastCmd !=
Controller P.UP

/*1s it possible to come to surface of water and raise mast to indicate end of mission*/

E<> Controller P.EndMission_ds and DevState _MastState==Controller P.UP

/*Is it possible to raise mast at end of state*/

E<> Controller P.run_ds && NonSeqController Idle==0 && NoMission==0 imply
Controller P.EndMission_ds

/*Does the Seq. Controller check for the status of other controllers before ending the

mission™/

E<> Controller P.EndMission_ds and Controller P.Suspendable==0

/*1s the end mission state suspendable*/

E<> Controller P.EndMission_ds and SeqController _Idle==

/*1Is the Seq. Controller idle at end mission state*/

E<> Driver.Suspend_State imply Controller P.Suspend ds
/*1s it possible to suspend Seq. Controller by Non Seq. Controller*/

E<> Driver.Run and Controller P.run_ds

/*1s it possible for both the Seq. and Non Seq. Controller to be ready at the same time*/

88

89

C.11 Verification of Timed Coordinator module
The value of level i remains at level 3. The next module selected is the Timed

Coordinator subsystem at level 2. The environment for Timed coordinator susbsystem is
now abstracted. The Timed Coordinator subsystem is shown in Figure 31, and the

abstracted commanded environment is shown in Figure 32.

ar_1z
Wow\CTura?
Hangenlenzcler_ ik

o0, YashrMmeRe, wan§eaConmoler__ ke

HarGeoConmlel it WarScaCeomoler_ RIS g sCum TiNgaCra_Thve
SeaCcagolkt_ SuTenact P B (MInerh:gons Theckuspena_RCHAL BkoContolkr —hk)8A I5eaConadid _ Suspataca
38 UL donTIigeCu TivgaCirg ﬂm .

o=TMeaOmemorii~4

Rgpmal - ""‘”" 7 “é-‘mwnram‘o = Bsganal
SRCorTile_Sumknaed Rl . ..

L MmeIAciIns ChediSiapens :cum alsccowuol«

T MmhnTesE i , i
Nyt df%g@%mmwm _TiveL& Mncasotons_Chockispena_FOH|BeuContoler_WRIiSe:Contalks_Sugenaen)

y Eﬂgoﬂs?« ukf m ’ \f(LEg WD Ears |

CM:MRJ& - | IM:UIQM a
Dzdo.nmo? /j\mowmm suwa#

evan o2 {"“
: [4
Vklll’)qle) -

bl

: uun(hnmw
C ; uwhl
Wat_o; R

iy 0 W\fg LA "Abzw;? GPER 03

Ay /'
Erg s

Figure 31: Timed coordinator module in UPPAAL

89

90

“LamhLne, _
S Nt b Stane
NI

/

Suspenﬁ‘{‘
Riatme?

| \WAQgne! e

MR s Dol -

Rl oy
\ ﬁgxxrjt R, Noaer Stee
W ol i k

Do W\P ‘ *.\“.‘)

Figure 32: Stub for timed coordinator module in UPPAAL

Queries to verify the the properties satisfied by the Timed coordinator

A[] not deadlock

/*Does there exist a deadlock*/

E<> TimedActions P.End ds

/*1Is it possible to reach the final state*/

E<> TimedActions P.Device ds imply Stub.Device_State

/*Does the Timed action pass the control to Device commander when it needs to set or

start a device®/

E<> TimedActions P.Launch_ds and Stub.Launcher_State

/*Does the Timed action pass the control to launcher when it needs to comeoffsurface or

act with the mast*/

E<> TimedActions _P.Wait_ds imply Stub.Pause_State

/*Does the Timed action pass the control to pause when it needs to wait*/

E<> TimedActions P.GPSFix_ds imply Stub.GPSFix_State

/*1s it possible to execute a timed GPSFix*/

90

E<> TimedActions _P.Wait4Suspend _ds and TimedActions _P.t =
TimedActions P.TimedOrderTO/3+1

/*Does the timed actions try to suspend the seq. coordinator every desired time*/

E<> TimedActions_P.Wait4Suspend_ds imply TimedActions P.t <=
TimedActions P.TimedOrderTO/3+1

/*Does the timed actions try to suspend the seq. coordinator every desired time*/

E<> TimedActions_P.CheckOrders ds && TimedActions P.MissionTime >=
CurrTimedOrd_Time&&(TimedActions_P.InterruptCoordinator CheckSuspend FCN&
&SeqCoordinator__Suspendable&&!SeqCoordinator _Idle) & &
ISeqCoordinator__Suspended imply TimedActions_P.Wait4Suspend_ds

/*1s it possible to suspend the seq. controller*/

E<> TimedActions_P.MissionTime>=CurrTimedOrd_Time &&
TimedActions_P.TimedActions_CheckSuspend FCN && !NonSeqController _Idle imply
TimedActions P.CheckOrders_ds

/*Does the Timed action check for orders when the mission time is greater than the
current time (indicating timed mission

can be accomplished) and does Timed action check the need to suspend seq controller or

not and timed actions is not idle*/

E<> TimedActions_P.Check4Resume_ds and !SeqController _Suspended imply
TimedActions_P.CheckOrders_ds
/*1s it possible for the timed action to chekc for orders when the sequential controller

doesnt need to be suspended*/
E<> TimedActions_P.Check4Resume_ds and SeqController _Suspended and

TimedActions P.MissionTime<CurrTimedOrd _Time imply
TimedActions_P.CheckOrders_ds

91

92

/*Does the Timed action controller check timed orders when Seq. Controller is suspended
and Mission time is greater than

current time for timed order*/

E<> TimedActions P.Check4Resume _ds and SeqController _Suspended && not
TimedActions P.TimedActions _CheckSuspend FCN ||

NonSeqController _Idle imply TimedActions P.CheckOrders_ds

/*Does the Time action controller check timed orders when seq. controller is suspended

and timed action doesn’t need suspension or timed controller is idle*/

E<>TimedActions P.CheckOrders_ds and !NonSeqController _Idle &&
TimedActions P.MissionTime>=CurrTimedOrd _Time && (not
TimedActions P.TimedActions CheckSuspend FCN || SeqController _Idle ||
SeqController _Suspended) imply TimedActions P.Decide ds

/*Does the timed action become ready to execute orders when the timed controller is not
idle and mission time is greater than current timed order time and timed action doesnt

need suspension or sequential controller is idle or sequential controller is already

suspended™/

E<> TimedActions P.Wait _ds imply not Stub.Pause_State

/*1s it possible to transfer control to Pause moduel*/

E<> TimedActions P.Decide_ds imply TimedActions P.End ds

/*1s it possible to go to the final state from the decide state*/
E<> TimedActions P.Wait_ds imply TimedActions P.End ds
/*1s it possible to go to the final state from the situation where control is passed to the

pause controller*/

E<> TimedActions _P.Launch_ds imply TimedActions P.End ds

92

93

/*Is it possible to go to the final state from the situation where control is passed to the

launch controller*/

E<> TimedActions P.GPSFix_ds imply TimedActions P.End_ds
/*Is it possible to go to the final state from the situation where control is passed to the

GPSFix controller*/

E<> TimedActions_P.Device _ds imply TimedActions P.End_ds
/*Is it possible to go to the final state from the situation where control is passed to the

Device controller*/

E<> TimedActions P.CheckOrders ds imply TimedActions P.End ds and
TimedActions P.Idle==

/*Is it possible to go to the final state from state to check orders*/

A<> TimedActions_P.Decide_ds imply (TimedActions P.End_ds I
TimedActions _P.Wait_ds || TimedActions P.Launch_ds || TimedActions P.GPSFix_ds ||
TimedActions _P.Device_ds)

/*All paths eventually lead to final state or pause or launcher or GPSFixer or Device from

the decide state in timed actions*/

E<> TimedActions P.End_ds imply TimedActions P.Idle==1

/*1s it possible for Non Seq. Controller to be idle at end of mission*/
E<> TimedActions P.CheckOrders ds imply TimedActions P.ldle== &&
TimedActions P.Done

/*1s it possible for Non Seq.Controller to be idle at CO state®/

E<> TimedActions P.CheckOrders_ds imply TimedActions P.MissionTime==0

/*Is the mission time zero at CO state*/

93

94

C.12 Verification of Safety Coordinator module
The value of level i remains at level 3. The next module selected is the Safety

Coordinator subsystem at level 2. The Safety Coordinator checks the voltage, depth of

water and the functioning of other devices from the common database. The Safety

Coordinator is as shown in Figure 33.

(ﬁ \-———————————(@:
/yﬁ- et ‘-11.?;‘13: ‘
te 10 /—'
///l U
-
o) {\“‘;”guminwc Voltageshon FCN[{Safeties waterOeptiabort_FCON

, N
‘Ia:\/\nlludp .Sateties, Mg@wﬁgfff&v‘fﬂl‘ﬁa%pq WaterDepiibart FON || Nav__ Alttudes =LowAltitude Tid

owAtkude Timer =3,
3 _93\'L_77Aum'jriw>:Mm\mw,.wmfx.mi»mr

Levi At s

Figure 33: Safety coordinator module in UPPAAL

Queries to verify the properties of the safety module
Af] not deadlock

/*Does there exist a deadlock*/

E<> Safeties P.CheckSafeties ds && Nav__Altitude < Safeties P.MinimumAltitude
imply Safeties P.LowAltitude ds
/*1s there method a to check water depth safety*/

E<> Safeties P.CheckSafeties ds && Safeties P.Safeties VoltageAbort FCN ||
Safeties P.Safeties WaterDepthAbort FCN) imply Safeties P.SafetyAbort _ds
/*Is tehr method to check voltage safety*/

E<> Safeties P.LowAltitude ds && Nav__Altitude >= Safeties P.MinimumAltitude
imply Safeties P.CheckSafeties _ds

/*1s it possible to correct the altitude*/

94

95

E<> Safeties P.LowAltitude ds && Safeties P.Safeties VoltageAbort FCN
||Safeties P.Safeties WaterDepthAbort FCN [l Nav__Altitude >=
Safeties P.LowAltitudeTO imply Safeties P.SafetyAbort ds

/*1s there a method to abort mission if safety is violated*/

95

96

Appendix D: OpenGL Code for Animation/Simulation

Open GL Code available in the following citation :
“Modeling, Verification, and Synthesis of Hierarchical Hybrid Mission Controller for

Underwater Vehicles”,Siddhartha Bhattacharyya, PhD Dissertation, Department of
Electrical and Computer Engineering, University of Kentucky. July 2005.

96

