
A Uni�ed Cryptographic Protocol Logic�

Paul F. Syverson
Code 5543

Naval Research Laboratory
Washington, DC 20375 USA
(syverson@itd.nrl.navy.mil)

Paul C. van Oorschot
Nortel Secure Networks
P.O. Box 3511, Station C
Ottawa, Canada K1Y 4H7

(paulv@nortel.ca)

Abstract

We present a logic for analyzing cryptographic proto-
cols. This logic is based on a uni�cation of four of
its predecessors in the BAN family of logics, namely
those given in [GNY90], [AT91], [vO93b], and BAN it-
self [BAN89]. The logic herein captures the desirable
features of its predecessors and more; nonetheless, as
a logic it is relatively simple and simple to use. We
also present a model-theoretic semantics, and we prove
soundness for the logic with respect to that semantics.
We illustrate the logic by applying it to the Needham-
Schroeder protocol, revealing that BAN analysis of it
may lead to inappropriate conclusions in some settings.
We also use the logic to analyze two key agreement pro-
tocols, examining an attack on one of them.

Introduction

In the late eighties Burrows, Abadi, and Needham de-
veloped BAN logic [BAN89], which quickly became the
most widely used and widely discussed formal method
for the analysis of identi�cation/authentication proto-
cols, particularly authenticated key distribution proto-
cols. There have since been a number of papers not-
ing BAN's inability or limited ability to reason about
some features of both protocols and attacks on pro-
tocols. This has led several authors to propose alter-
natives to BAN. Many of these proposed alternatives
are essentially extensions. These extensions yield an
increase in reasoning power; however, collectively they
accomplished this via a large number of linguistic and
logical additions. As a result, one may be left unsure
about the assumptions and meanings implicit in the ap-
plication of these logics. Perhaps more signi�cantly, one
becomes increasingly unsure about the soundness of the
reasoning that results. Relatedly, the simplicity that
was part of BAN's basic appeal is lost.

�Parts of this paper appeared in prelimary form in [vO93] and
[SvO94].

This paper presents a logic that encompasses three of
these logical expansions, those presented in [GNY90],
[AT91], and [vO93b]. (Henceforth these logics will be re-
ferred to as `GNY', `AT', and `VO', respectively.) And,
since these are essentially expansions, this logic encom-
passes BAN itself as well. GNY and AT add to and re-
formulate BAN to better reason about the same class of
protocols. VO adds rules to reason about key-agreement
protocols. Our logic captures the desirable features of
those logics. However, rather than simply tacking to-
gether the notation and rules from all of these we adopt
an integrated approach, designed to yield a logic that is
sound with respect to a single, relatively simple model
of computation. Thus, this paper also presents a seman-
tics underlying these logical expansions.1 This will be of
manifold advantage. First, some of these logics, includ-
ing BAN itself, have been questioned before for lacking
an independently motivated semantic foundation. (Cf.,
e.g., [Syv91].) Amongst other things, such a foundation
can give us assurance that the reasoning in the logic is
sound (i.e., false conclusions cannot be derived from true
premises.) BAN was essentially given such a semantic
foundation by Abadi and Tuttle in [AT91]. The model
of computation and semantics herein is motivated by
Abadi and Tuttle's but di�ers from it in fundamental
ways. Second, having a fairly detailed model eliminates
much of the confusion that can arise over the meaning
of formal expressions and/or the applicability of logi-
cal rules. That is, since we can look at the semantic
interpretation of an expression, we can make better de-
cisions about whether that expression really says what
we intend to say in a given circumstance. This helps
in the protocol idealization step of a BAN or BAN-like
analysis. (Analysis in this paper does not include ideal-
ization per se. More on this at the appropriate point.)
Third, by serving as a common semantics, it allows us to

1We refer here to a model theoretic semantics for a logic. This
is not to be confused with a semantics for computer programs,
which is generally any mathematical interpretation (formal or in-
formal) of programming constructs.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1996 2. REPORT TYPE

3. DATES COVERED
 00-00-1996 to 00-00-1996

4. TITLE AND SUBTITLE
A Unified Cryptographic Protocol Logic

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Code 5543,4555 Overlook Avenue,
SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

31

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

view the extensions from a single perspective. Contrary
to �rst appearances, this need not result in an overly
complex logic. For, as a unifying model for comparison,
it allows us to see what aspects of each logic can be
captured by others and what not. There is thus a fair
amount of syntactic reduction since primitives of one
language are often de�nable in another. On the logical
level there is a similar amount of axiom chopping. The
result is a logic that is surprisingly simple.

In the next section of the paper we present a formal lan-
guage and logic, and we describe the procedure whereby
these are to be applied in protocol analysis. (Henceforth
this logic will be called `SVO'.) In x2, we give a basic
description how to analyze protocols using the logic.
We then analyze the well known Needham-Schroeder
Protocol, henceforth `NS', as an example [NS78]. This
analysis demonstrates our analysis technique. It also al-
lows us to compare our approach to that in [BAN89], in
particular to examine a new observation, a misleading
result that can be derived by using BAN analysis on the
NS protocol. This highlights some of the advantages of
SVO. In x3 we present a model of computation and a se-
mantics for the language presented in x1, and we prove
that the logic is sound with respect to the semantics.
In x4 we apply SVO to two key agreement protocols,
one from [MTI86] labelled `A(0)', and the STS protocol
from [DvOW92]. We derive that the protocols satisfy
certain desirable goals and examine a potential attack
on A(0). Finally, we present our conclusions and some
directions for future work in x5.

The appendices give our arguments that SVO captures
the expressive and deductive powers of GNY and VO.
In appendix A we look at the language and logic of
GNY in comparison to SVO. In appendix B we look at
the language and logic of VO in comparison to SVO. In
particular we consider in these sections how to capture
in SVO the linguistic expressibility and logical derivabil-
ity of GNY and VO. In so doing we also give de�nitions
in SVO of useful expressions from the languages of those
logics. We do not present a separate section for compar-
ative discussions of AT. AT is the only previously given
logic with a model-theoretic semantics. Comparisons
between AT and SVO syntax require a semantic con-
text as well, and, in the interest of brevity, we will not
give a presentation of the full Abadi-Tuttle semantics.
We therefore make comparative comments at appropri-
ate points throughout xx1 and 3. (The rules and axioms
of AT, GNY, and VO are summarized in appendices C{
E for handy reference.)

1 Syntax

We will now present a logic capturing the desirable prop-
erties of BAN, AT, GNY, and VO that is both sound
and relatively easy to use. Our presentation follows the
structure of [AT91], with some important di�erences.

1.1 The Language

We begin with a de�nition of our language. Follow-
ing Abadi and Tuttle, we reect that we are looking at
abstract protocols and are hence representing the send-
ing of messages composed of expressions in a language
rather than mere bitstrings. However, we expand the
language slightly to cover, e.g., public keys, functions,
and message comprehensibility. We also contract the
language by doing away with separate syntax for for-
warded messages and for binding messages to shared
secrets. (The �rst is eliminated because we have no
current use for it. The second is eliminated because
its contributions are captured in our language by other
means.)

We assume the existence of a set of primitive terms, T ,
containing a number of sets of constant symbols rep-
resenting principals, shared keys, public keys, private
keys, numerical constants, etc. We also include a set
of symbols, f�1; �2; : : :g to represent unrecognized re-
ceived messages (or message fragments). We actually
require two formal languages, one for messages and one
for formulae. Only formulae can be true or false or have
a principal's belief attributed to them. On the other
hand, some messages are not formulae, e.g., a message
consisting of a name and a nonce. In particular, no term
is a formula, and vice versa. References to the language
of SVO are meant to encompass both languages.

Messages and formulae of the language are built from T
by mutual induction. The language of messages,MT ,
is the smallest language over T satisfying:

� X is a message if X 2 T ,

� F (X1; : : : ; Xn) is a message if X1; : : : ; Xn are mes-
sages and F is any function (including, e.g., or-
dered n-tuples, (X1; : : : ; Xn), encryptions, fXgK,
and signed messages [X]K),

� ' is a message if ' is a formula.

The language of formulae, FT , is the smallest language
satisfying:

� P
K
$ Q, PK (P;K), PK�(P;K), and PK�(P;K)

are formulae when P and Q are principals and K
is a key.

2

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

� SV(X;K; Y) is a formula when X and Y are mes-
sages and K is a key.

� P sees X , P received X , P says X , P said X , and
fresh(X) are formulae when X is a message and P
is a principal,

� :' (not-') and ' ^ (' and) are formulae if '
and are formulae (other connectives are de�nable
in the usual manner)2,

� P believes ' and P controls ' are formulae when '
is a formula and P is a principal.

Most of the expressions just given either are standard
usage in BAN and its derivatives or should be intu-
itively clear. We give a brief intuitive description here
for those that may not be. `P controls '' indicates that
P is a trusted authority on '. If P says ', then '

is so. `P
K
$ Q' indicates that K is a symmetric key

shared exclusively by P and Q. No one other than P
or Q will ever encrypt messages using K, and only P ,
Q, and those they trust (e.g., a server who might gener-
ate it) know K. `PK(P;K)' is used similarly for public
keys. K is P 's public key, and `K�1' is used exclusively
to refer to the corresponding private key. `PK (P;K)',
`PK�(P;K)', and `PK�(P;K)' are for encryption, signa-
ture, and key agreement keys, respectively. Keys them-
selves may or may not have subscripts.3 Typically, keys

and nonces have mnemonic subscripts, e.g., A
Kab ! B.

`SV(X;K; Y)' refers to signature veri�cation. It says
that, given signed message X , applying K to it as a sig-
nature veri�cation key veri�es Y as the message signed
with the corresponding private key. The meaning in our
semantics of all expressions will be discussed below in
x3.2.

A few more notes on notation: Typically `fXgK' is
meant to refer to transformations of X using K. We
mean speci�cally to include shared and public key en-
cryption under this notation. We �nd the following no-
tation useful for giving a uniform presentation of the
axioms. eK is the complement of key K. In public key
ciphering schemes, K�1 is the complement of K, and
K is the complement of K�1. In shared key schemes

2We will use `�' (pronounced \horseshoe") rather than `!'
to represent the conditional to avoid confusion with the stan-
dard notation for sending a message in protocol description, e.g.,
`A �! B'. (In our primitive notation, ' � is of course :' _
[Men87].)

3In [BAN89], the public key and shared key notations for indi-
cating key appropriateness were more similar. We have followed
the notational conventions of [GS91] and [vO93b]. In the presence
of three types of public keys, we �nd this to be the best compro-
mise between familiarity and readibility. Further issues that lead
to this choice of public key notation are discussed in appendix B.

K = eK. Unless restricted, either explicitly or implic-
itly by context, `K' will refer below to any symmetric,
private, or public key. We can always treat encryption
and decryption as functions parameterized by the rele-
vant key. Thus, we can generalize this notation to ` eF ',
expressing the complement of a function F . This nota-
tion assumes that we are referring to an e�ectively one-
one (injective) function, that is, a function such that
it is computationally di�cult to �nd pairs of arguments
mapping to the same value, whether or not that value is
given. It does not assume that either the function or its
complement (inverse) is feasibly computable in practice.

Some previous BAN logics have used expressions such
as `fXgK' to represent digital signatures as well as en-
cryptions. If one uses simple RSA exponentiation with
a private key for signatures, then it is possible to treat a
digital signature as simply the inverse of public key enci-
phering. Thus, given the public key, eK, one can recover
X from fXgK, and the notational choice is somewhat
natural. We instead use `[X]K ' to represent message X
digitally signed using key K. In most modern signa-
ture schemes it is not possible to recover X from the
signature itself, even if one possesses eK. Thus, signing
is not in any reasonable sense the inverse of encryp-
tion. To make clear that we are assuming a standard
signature scheme (without message recovery) we have
adopted this notation. `[X]K ' refers to the signed mes-
sage, not just the signature. Therefore, anyone in pos-
session of [X]K is automatically in possession of X .

Throughout the paper ' and are metalinguistic sym-
bols used to refer to arbitrary formulae. � is a metalin-
guistic symbol referring to sets of formulae.

1.2 The SVO Logic

Our logic is a modal logic [Che80]. It has two inference
rules:

Modus Ponens: From ' and ' � infer .

Necessitation: From ` ' infer ` P believes '.

``' is a metalingusitic symbol.4 `� ` '' means that '
is derivable from the set of formulae � (and the axioms
as stated below). `` '' means that ' is a theorem, i.e.,
derivable from axioms alone. We describe derivability
(i.e. proofs) below in x2. Axioms are all instances of
tautologies of classical propositional calculus [Men87],
and all instances of the following axiom schemata5:

Believing For any principal P and formulae ' and ,

4The symbol ``' is usually pronounced \turnstile". The symbol
`j=', to be introduced, is pronounced \double turnstile".

5Some of the following are proper axioms, logically. Those con-
taining metavariables for formulae are actually axiom schemata.

3

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

Ax1. P believes ' ^ P believes (' �) � P believes

Ax2. P believes ' � P believes (P believes ')

Axiom Ax1 says that a principal believes all that logi-
cally follows from his beliefs. Axiom Ax2 says in e�ect
that a principal can tell what he believes.

Source Association Keys are used to deduce the iden-
tity of the sender of a message.

Ax3. (P
K
$ Q ^ R received fXQgK) �
(Q said X ^ Q sees K)

Ax4. (PK�(Q;K) ^ R received X ^ SV(X;K; Y)) �
Q said Y

Recall that `PK�(Q;K)' says that K is the public sig-
nature veri�cation key for Q, and `SV(X;K; Y)' says
that given signed message X , applying K to it as a sig-
nature veri�cation key veri�es Y as the message signed
with eK. In saying `PK�(Q;K)' we assume enough re-
dundancy in the signature scheme to preclude attackers
possessing only K from producing a valid signature for
Q on any message, meaningful or otherwise. This fea-
ture is designed into most modern signature schemes.
Precise meaning is set out in x3.2.

By de�nition, all symbols in the axioms are symbols of
the languages speci�ed above, FT and MT . Thus, in
particular, the X in these axioms is a message not a
bitstring. But, a key can be applied (by anyone who
has it) to any bitstring to yield another bitstring. This
apparent incongruity is handled in our language by the
unrecognized message symbols f�1; �2; : : :g, which will
be discussed more below. The superscripted Q in ax-
iom Ax3 indicates that the message is from Q (rather
than P). Honest principals possessing the key K are
assumed to be able to correctly indicate message ori-
gin, and others possessing K are assumed to be able to
evaluate correctly indicated message origin. Principals
not possessing K are assumed to be unable to so in-
dicate or evaluate origin. (This notation is admittedly
an inelegance. There is no standard mechanism to indi-
cate who a message is from. Even if a message contains
an encrypted who from �eld there is no standard place
it need occur in an authentication protocol message.
Further, some contextual mechanisms do not explicitly
indicate the sender at all. For example, consider the
handshake at the end of the Needham-Schroeder proto-
col, discussed in x2.1. Leaving redundancy issues raised

We will generally ignore this distinction, referring to all as
`axioms'.

in x2.1 aside, message 4 indicates that it is from B sim-
ply by being the �rst use of the distributed key Kab.
Message 5 is indicated to be from A by varying the (un-
predictable) plaintext contents of message 4 in a pre-
dictable way and then reencrypting with Kab. Whether
such mechanisms are appropriate in context to justify
use of the superscript notation is something that should
be evaluated extralogically.)

Key Agreement Session keys that are the result of
good key-agreement keys are good.

Ax5. ((PK�(P;Kp)) ^ (PK�(Q;Kq))) � P
F0(Kp;Kq)

 ! Q

Ax6. ' � '[F0(K;K
0)=F0(K

0;K)]

Recall that `PK�(R;K)' says that K is the public key-
agreement key for R and implies that K�1 remains
secret. Precise meaning is set out in x3.2. Here
`F0(Kp;Kq)' implicitly indicates a key agreement func-
tion as in Di�e-Hellman key exchange [DH76]. The in-
dication is implicit because the explicit arguments of
F0 are both public keys. Key agreement is a func-
tion of one public and one private key. The function
implied by F0 is a key agreement function using the
public key in the �rst argument of F0 with the pri-
vate key corresponding to the second argument. In Ax6
`'[F0(K;K

0)=F0(K
0;K)]' indicates the same formula as

' except that F0(K;K
0) is substituted everywhere that

F0(K
0;K) occurs in '. The axiom says that the two

formulae are logically equivalent. In other words, the
logic respects the symmetry of key agreement.

Receiving A principal receives the concatenates of re-
ceived messages and decryptions with available keys, as
well as the message contained in any received signed
message.

Ax7. P received (X1; : : : ; Xn) � P received Xi

Ax8. (P received fXgK ^ P sees eK) � P received X

Ax9. P received [X]K � P received X

Seeing A principal sees anything he receives. A prin-
cipal also sees all components of every message he sees
and any message he can compute from what he sees.
The di�erence in meaning between seeing and receiving
is made precise in x3.2.

Ax10. P received X � P sees X

Ax11. P sees (X1; : : : ; Xn) � P sees Xi

4

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

Ax12. (P sees X1 ^ : : : ^ P sees Xn) �
(P sees F (X1; : : : ; Xn))

Here F is meta-notation for any function feasibly com-
putable in practice by P , for example, X1 + : : : +Xn.
There is no axiom for seeing corresponding to axiom
Ax8 for receiving, i.e., (P sees fXgK ^ P sees eK) �
P sees X . Such an axiom is a special case of axiom
Ax12, where F is the application of eK to fXgK .

Comprehending If a principal comprehends a mes-
sage and sees a function of it (of the appropriate type),
then he understands that this is what he is seeing.

Ax13. P believes (P sees F (X)) � P believes (P sees X)

Here F is meta-notation for any e�ectively one-one func-
tion such that either F or eF is computable in practice
by P . F may represent encryption or decryption where
the relevant key is treated as a parameter.

This axiom is fairly subtle. It might appear to imply
that P can invert F , i.e., can readily �nd X given the
value of F (X). Actually, if P can calculate F but not
invert it, then axiom Ax13 says that he only knows he
has F (X) if he already knows that he hasX . This axiom
captures what we want of GNY's recognizability. Note
that the converse of axiom Ax13 is a theorem, following
from axiom Ax1 and axiom Ax12 by necessitation and
modus ponens.

Saying A principal who has said a concatenated mes-
sage has also said and sees the concatenates of that mes-
sage. A principal who has recently said X has said X .
A principal sees what he says.

Ax14. P said (X1; : : : ; Xn) � (P said Xi ^ P sees Xi)

Ax15. P says (X1; : : : ; Xn) �
(P said (X1; : : : ; Xn) ^ P says Xi)

Jurisdiction This axiom in e�ect says that P 's word
is law for the ' in question.

Ax16. (P controls ' ^ P says ') � '

Freshness A concatenated message is fresh if one of its
concatenates is fresh, and any e�ectively one-one func-
tion F (including encryption and decryption) of a fresh
message is fresh.

Ax17. fresh(Xi) � fresh(X1; : : : ; Xn)

Ax18. fresh(X1; : : : ; Xn) � fresh(F (X1; : : : ; Xn))

The function F in axiom Ax18 must be genuinely de-
pendent on the fresh component. For example, if X2

is fresh, then (X1; X2; X3) is fresh; however, the value
of X1 + (0 �X2) +X3 is not. Speci�cally, a function is
genuinely dependent on an argument if computing the
value of the function is infeasible without the value of
that argument.

Nonce-Veri�cation Freshness promotes a message
from having been said (sometime) to having been said
during the current epoch.

Ax19. (fresh(X) ^ P said X) � P says X

Symmetric goodness of shared keys A shared key
is good for P and Q i� it is is good for Q and P .

Ax20. P
K
$ Q � Q

K
$ P

2 Protocol Analysis

In this section we give a brief description of our syn-
tactic protocol analysis technique, which is somewhat
similar to the techniques associated with previous BAN
logics. A major di�erence is that we do not idealize the
protocol. (What `idealize' means will be explained in
the next subsection.)

Syntactic analysis comes in two main steps. First, we
set out premises that reect assumptions based on the
protocol description. Second, we prove desired goals us-
ing those premises together with the axioms and rules of
the logic. These steps are typically carried out against
a background of goals the protocol is intended to meet.
Should we fail to prove one or more of these goals, we
may want to add the step of considering why the proto-
col fails to meet its goals. This may include looking for
possible attacks. Relatedly, we may semantically ana-
lyze our premises to see if any of them can be false in
a run of the protocol. (Semantics is discussed below in
x3.)

Premises can typically be grouped into four types. First
are initial assumptions, those things assumed to be true
at the start of the protocol. Examples include each prin-
cipal's belief in the freshness of nonces it generates, the
goodness of long term keys principals share with servers,
the jurisdiction of a server over the quality and freshness
of keys it sends, etc. Also included are premises reect-
ing a principal's comprehension of terms it simply has
without receiving them during the current protocol run
and premises reecting a principal's comprehension of
relevant signature veri�cations. For a speci�c example,
consider a protocol step in which a key server S dis-
tributes a key to principal A for the purpose of talking
with B:

5

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

S �! A: fTs; B;KabgKas

This means that S has sent the following to A (all en-
crypted with Kas, a symmetric key shared by A and
S): a timestamp, Ts, B's identi�er, and the session
key Kab. Premises of the �rst type that would play a
role in analyzing this message would include fresh(Ts),

A believes fresh(Ts), A
Kab ! B, and A believes A

Kas ! S.

Second are premises reecting the receipt of messages
sent in a protocol run. These can be taken directly from
the protocol speci�cation. The corresponding reception
premise for the protocol step just presented would be

A received fTs; B;KabgKas
:

These are often unused in proofs, but they help in the
formation of later premises.

Third are premises reecting what is comprehended by
each principal of the messages he receives. Even if A
receives fTs; B;KabgKas

, she might not understand all
of the message. For example, the random nature of
distributed keys makes them inherently unrecognizable
(in themselves by those who did not generate them).
Assuming timestamps and names are recognizable, a
premise of this type corresponding to the above protocol
step would be

A believes A received fTs; B; �sgKas

. In practice, it is generally clear how to produce such
premises from the premises of the second type in con-
sideration of the submessages that are comprehended
by the receiving principal.

Fourth are premises reecting the interpretation that a
receiver attaches to a received message. (This is the
primary replacement for idealization.) These indicate
what the receiver assumes the sender meant by a given
message. For the above protocol step, a reasonable can-
didate would be

A believes (A received fTs; B; �sgKas
�

A received fTs; B;A
Kab ! B; fresh(Kab)gKas

)

This is only a candidate since the actual premise ap-
propriate for this protocol might depend on features of
the protocol that our simple example does not capture,
such as other messages A has sent or received. We will
be analyzing an actual protocol presently and will then
further illustrate and discuss premises of various types.

With the premise set established we attempt to derive
various goals concerning the protocol. A proof is a se-
quence of formulae in the logic. Each line of a proof is
either a premise, an axiom, or derivable from preceding

lines via modus ponens or necessitation. Our notion of
proof di�ers from Abadi and Tuttle's since they only
allow modus ponens to apply to theorems of the logic.
This would preclude premises as legitimate lines in a
proof.6

In AT and SVO necessitation must always be restricted
to theorems. This is a crucial point about proofs, which
may be missed by those unfamilar with logic per se.
Theorems are formulae provable from axioms alone.
The rule of necessitation cannot be applied to any of
the above premise examples nor to any line in a proof
that depends on a premise. Otherwise we could use
necesitation to show that any principal believes any-
thing that we have assumed. This is a mistake, even if
what we have assumed is true. For example, suppose

that A
Kab ! B is true. We do not want to therefore

conclude that C believes A
Kab ! B.

Syntactic analysis of the type just described is all that is
available using BAN, GNY, and other logics without an
independent semantics. AT and SVO add another level
to this by providing an independently motivated model-
theoretic semantics. In addition to other values, this
allows one to do semantic analysis of the protocol. One
advantage of this is a rigorous means of assessing the
truth of initial assumptions and other premises. Prob-
lems arising from initial assumptions, as in the Nessett
protocol [Nes90], are thus addressible using these logics.
(Cf. [Syv92] for a detailed discussion.) We now look at
a speci�c example to illustrate our analysis technique.

2.1 The Needham-Schroeder Protocol

NS is a typical protocol for key distribution to two prin-
cipals via an on-line authentication and key distribution
server [NS78]. It is also a standard example for analysis
because it is subject to an attack that has long been
well known [DS81]. The protocol is as follows:

1. A �! S : A;B;Na
2. S �! A : fNa; B;Kab; fKab; AgKbs

gKas

3. A �! B : fKab; AgKbs

4. B �! A : fNbgKab

5. A �! B : fNb � 1gKab

In the �rst message A tells the server that she would like
to obtain a session key for talking with B, and she in-
cludes a nonce, Na, for S to include in his response thus

6Our choice to characterize proofs in this way has important
repercussions for other features of the logic. In AT, since every
line of a derivation must be a theorem of the logic, it is necessary
for analysis to restrict consideration to\good" runs where, e.g.,
negations do not occur within belief operators in initially held
beliefs. We need place no such restrictions. (These restrictions
are not present in [AT91] simply to make derivations sound; they
have other motivations as well, which we will not discuss.)

6

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

identifying it as a response. In the second message, S
sends A the session key, Kab, B's name indicating that
it is for a session with B, and A's nonce. He also in-
cludes a message encrypted with a key S shares with
B consisting of the session key and A's name to show
that the key is for talking with A. The whole second
message is encrypted with a key that S shares with A.
A decrypts the message, and, if the nonce and B's name
agree with the message she sent, she forwards the por-
tion encrypted for B to B in message 3. B decrypts this
to obtain the session key. He then generates a nonce and
encrypts it withKab and sends this to A. A decrypts the
nonce and subtracts one from it (to distinguish the �-
nal message from a simple reection of message 4, which
could be from anyone). She then encrypts this with Kab

and sends it to B.

2.2 Analysis of the NS protocol

The �rst step in analyzing the protocol is to set out the
assumptions that we make based on the protocol spec-
i�cation. These will serve as premises, which we will
use together with the axioms and rules of the logic to
derive conclusions. Generic assumptions include each
principal's belief that the nonces it generates are fresh,
belief that the server has jurisdiction over the freshness
and goodness of session keys it sends, and belief that
the long term key it shares with the server is good. For-
mally, these are

P1 A believes fresh(Na)
B believes fresh(Nb)

P2 A believes S controls (A
Kab ! B)

B believes S controls (A
Kab ! B)

P3 A believes S controls (fresh(Kab))
B believes S controls (fresh(Kab))

P4 A believes (A
Kas ! S)

B believes (B
Kbs ! S)

We also assume that each of the principals received the
messages they were sent. (Since we do not use the �rst
message in our analysis, we do not bother with a corre-
sponding premise.)

P5 A received fNa; B;Kab; fKab; AgKbs
gKas

P6 B received fKab; AgKbs

P7 A received fNbgKab

P8 B received fNb � 1gKab

Received messages are not necessarily understood. We
must explictly include in the premise set what messages
are understood by the principals and what those mes-
sages mean. Thus, we include A believes A received X
for each message X that A is assumed to comprehend
based on redundancy or an expectation, e.g., a nonce
A sent out|and similarly for B. (We have not in-
cluded any premise corresponding to P7 (message 4)
since there is nothing in that message that is compre-
hensible to A.)

P9 A believes A received fNa; B; �1; �2gKas

P10 B believes B received f�3; AgKbs

P11 B believes B received fNb � 1g�3

Finally, we include premises corresponding to the as-
sumed meaning that principals attach to received mes-
sages. (These correspond to the assumptions implicit in
idealizing a protocol as in [BAN89].)

P12 A believes (A received fNa; B; �1; �2gKas
�

A received fNa; B;A
Kab ! B; fresh(Kab); �2gKas

)

P13 B believes (B received f�3; AgKbs
�

B received fA
Kab ! B; fresh(Kab)gKbs

)

P14 B believes ((B received f�3; AgKbs
^

B received fNb � 1g�3) �
B received fNb � 1gKab

)

These premises preclude automated analysis because
they typically vary from protocol to protocol even for
a message with the same speci�cation. Mao and Boyd
have a BAN-like formal method that does allow for full
automation [MB93]. They accomplish this by requiring
that the protocol be speci�ed in their own language, at
a much greater level of detail than usual. In a sense,
they thus incorporate the idealization into the speci-
�cation. GNY does something similar in its message
interpretation rules.

Note that, in P14, for B to believe he has received
fNb�1gKab

it is not enough that he receive the message
that he interprets to say this; he must also believe he
has received the previous message in which S told him
Kab. Without the previous message, he would not have
the key and could not recognize it as a (candidate) key
for speaking with A.

We can now proceed with our formal derivation of goals
using SVO. In the interests of brevity, we will compress
many of the proof steps together, and we will not cite
the use of propositional reasoning used in giving the

7

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

justi�cation for derivation lines. The �rst derivation is
of goals for A. We will discuss some typical goals for
protocols in x4.1. The goals we derive here are that A
believes the distributed key is good for talking with B
(line 5) and that A believes the distributed key is fresh
(line 6). In the justi�cation of each line in any deriva-
tion, `Axn' refers to axiom Axn of our logic, `Nec' to
the Necessitation rule, and `MP' to the Modus Ponens
rule.

1. A believes

A received fNa; B;A
Kab ! B; fresh(Kab); �2gKas

by P9, P12, Ax1, MP

2. A believes S said (Na; B;A
Kab ! B; fresh(Kab); �2)

by 1, P4, Ax3, Ax1, Nec, MP

3. A believes fresh(Na; B;A
Kab ! B; fresh(Kab); �2)

by P1, Ax17, Ax1, Nec, MP

4. A believes S says (Na; B;A
Kab ! B; fresh(Kab); �2)

by 2, 3, Ax19, Ax1, Nec, MP

5. A believes A
Kab ! B

by 4, P2, Ax15, Ax16, Ax1, MP

6. A believes fresh(Kab)
by 4, P3, Ax15, Ax16, Ax1, MP

We now derive goals for B. These are rather di�erent
than for A. B can only conclude that S once said that
the key is is good for talking to A and that it is fresh
(lines 3 and 4 below). He cannot conclude that the key
is good or fresh. He can also con�rm the existence of
some currently active, far end party who knows the key
(line 5 below).

1. B believes B received fA
Kab ! B; fresh(Kab); AgKbs

by P10, P13, Ax1, MP

2. B believes S said (A
Kab ! B; fresh(Kab); A)

by 1, P4, Ax3, Ax1, Nec, MP

3. B believes S said A
Kab ! B

by 2, Ax14, Ax1, Nec, MP

4. B believes S said fresh(Kab)
by 2, Ax14, Ax1, Nec, MP

5. B believes B received fNb � 1gKab

by P10, P11, P14, Ax1, MP

2.2.1 SVO vs. BAN analysis of the NS protocol

We now discuss the results of our analysis and contrast
them with those of the analysis of NS in [BAN89]. We
feel that the above analysis is about as simple as the one
in [BAN89]. While there can be no objective measure
of this, we emphasize that the proofs in [BAN89] are

sketchier than the above. This may lead to an appear-
ance of greater simplicity. We now turn to the premises
of each analysis.

P1{P4 constitute a subset of the assumptions given in
[BAN89]. The BAN assumptions also include assump-
tions about the server's belief in the quality of the long
term keys and the quality and freshness of distributed
session keys. While reasonable, they are unnecessary for
the analysis given in [BAN89] or the one herein, so we
have left them out. It is interesting to note that, even
if unnecessary, these assumptions are more natural in
the context of BAN analysis since it is there necessary

to derive that A believes S believes A
Kab ! B in or-

der to derive A believes A
Kab ! B. These assumptions

thus attest to the consistency of such a second order
belief with the �rst order belief that is its object. In
other words, if these assumptions of �rst order belief
are true, then the corresponding second order beliefs
cannot be incorrect. In our analysis, this second order
belief is replaced with the more conservative formula

A believes S says A
Kab ! B. Nonetheless, note that as-

sumptions such as P2, which are common in such anal-
ysis, can be somewhat dangerous [vO93a].

The assumptions in [BAN89] also include the assump-
tion that B believes the session key to be fresh. As
noted by Burrows et al., this is a dubious assumption
that overlooks the possibility of attacks in which an
old, compromised session key is used, such as in the
Denning-Sacco attack. It is included in [BAN89] not
because the authors think it is justi�able, but to illus-
trate that a desirable protocol goal cannot be reached
without it.

P5{P8 reect the messages that each principal receives.
These directly reect the speci�ed protocol without any
interpretation of message contents, as would occur in
idealization. They correspond to premises based on
the protocol annotation step of analysis in [BAN89]; al-
though in a BAN analysis, protocols are annotated only
after idealization. As would typically be the case, these
premises play no role in our proofs; however, they do
play a role in our analysis by helping us to see what the
following premises should look like.

P9{P11 do not directly correspond to anything in BAN
analysis, except perhaps to global assumptions about
the recognizability of messages. They reect which
parts of received messages receivers can tie back to orig-
inally understood message components or to each other.

P12{P14 reect how receivers interpret received mes-
sages in the context of the given protocol. They are
typically the hardest premises to produce, sometimes
requiring awareness of intended application and con-

8

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

text in addition to the protocol speici�cation. These
correspond roughly to idealization and annotation in
[BAN89]. There, idealization interprets the meaning of
messages, and annotation allows the assumption of a
premise expressing that the receiver received the ideal-
ized message he was sent. The BAN approach is typi-
cally a little less explicit. This lack of explicitness nat-
urally engenders less detail of expression (hence greater
simplicity in appearance).

The idealization of NS from [BAN89], expressed in our
notation, is as follows:

2. S �! A : fNa; (A
Kab ! B); fresh(Kab);

fA
Kab ! BgKbs

gKas

3. A �! B : fA
Kab ! BgKbs

4. B �! A : fNb; (A
Kab ! B)gKab

from B

5. A �! B : fNb; (A
Kab ! B)gKab

from A

We will now illustrate the signi�cance of one important
di�erence between our receiver's interpretation premises
and BAN's idealization and annotation in the context
of what is provable from them.

Derived Goals of the analysis in [BAN89] include that

A believes that B believes A
Kab ! B. Nothing compa-

rable is provable in the above analysis. Since this is a
desirable result, the above analysis might be too weak.
Whence the di�erence?

Idealization attaches one meaning for both the sender
and the receiver; whereas receiver's interpretation
premises attach only the meaning for the receiver. Thus,

in [BAN89], the inclusion of A
Kab ! B in the idealization

of messages 4 and 5 is to assure \each principal that the
other believes the key is good. These statements can
be included because neither message would have been
sent if the statements were not believed." [BAN89], p.
19. The inclusion is thus based on the intended mean-
ing of a message on the part of the sender. However,
BAN annotation based on this idealization allows us to
derive that A believes that B once said A

Kab ! B. And,
based on this we can prove that A believes that B be-

lieves A
Kab ! B. In other words, BAN analysis allows

us to prove things about the receiver's interpretation of
a message based on the interpretation intended by the
sender. Unfortunately, it is possible to slip an attack
between these two interpretations.

We hasten to emphasize that what we are about to
look at is not an attack on NS per se. Rather it is
an analysis of NS that shows it is incorrect to conclude
based on the speci�cation that A believes that B be-

lieves A
Kab ! B. There is nothing in [NS78] to indicate

that NS was meant to achieve mutual belief in shared
keys or even entity authentication of B to A. (It was
intended to achieve key freshness for B via entity au-
thentication of A to B, and, if we assume session keys
can be obtained by adversaries within the lifetime of
long term keys, then it did not succeed in this [DS81].)
Thus the following reveals a limitation of the BAN anal-
ysis technique, rather than a aw in the NS protocol.

Suppose that the NS protocol runs properly through the
sending of the third message, but an attacker intercepts
this message so it is never received by B. In place of
message 4, the attacker simply sends a random string
of the appropriate length. A then `decrypts' this string
using Kab. Since there is nothing in the message that is
recognizable to A, she cannot tell whether the result is a
nonce sent by B. So, she subtracts one from the result,
reencrypts it with Kab, and sends it to B as message 5.
This is also intercepted by the attacker.

According to the analysis in [BAN89], after a run of
NS A believes that B has expressed faith in the qual-
ity of Kab. But, in this attack B is not even present.
Thus, the derivation is misleading with respect to both
entity authentication and mutual belief in the quality
of a shared key. This attack is much easier to imple-
ment than the Denning-Sacco attack since it does not
require any key compromise in order to succeed. As al-
ready noted, however, it is not an attack on intended
protocol goals. We also hasten to note that it falls ex-
plicitly outside the scope of the analyses in [BAN89]. In
[BAN89], there is a blanket assumption that \[e]ach en-
crypted message contains su�cient redundancy to allow
a principal who decrypts it to verify that he has used
the right key." (pp. 5{6) There is thus no aw in the
analysis of NS therein.

Further, the blanket assumption is frequently, if not uni-
versally, a reasonable assumption to make. In particu-
lar, the attack would not be possible in many modern
implementations of the protocol. In practice encryp-
tion often contains a mechanism to check that when de-
crypted the correct decryption key was used, for exam-
ple, including a hash of the message content along with
that content inside the encryption. This is not repre-
sented in the NS protocol speci�cation; though it would
be trivial to do so. Even though the blanket assump-
tion pushes protection against such attacks outside the
scope of [BAN89], it is certainly possible to represent the
protection mechanisms in question at the speci�cation
level of [BAN89]. And, there are protocols for which it
is inadvisable to include the redundancy generally as-
sumed in [BAN89]. (For example, cf. [BM92, BM93].)
Thus, it is better to represent such mechanisms in the
speci�cation whenever they are actually intended.

9

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

We have focussed on equating sender's and receiver's
meaning in a BAN analysis as opposed to an SVO anal-
ysis. There is another feature of SVO analysis that is
equally important to uncovering the limited applicabil-
ity of NS for entity authentication of B to A: our re-
quirement that premises explicitly set out what princi-
pals comprehend. This immediately brought out that
A does not comprehend Nb in this protocol. Thus, a re-
sult showing that A understood anything by receiving
message 4 would have to be incorrect.

Note also that our logical derivations do not themselves
lead to our discovery. Rather we are only able to prove
limited results because the relevant premises make as-
sumptions only about a receiver's interpretation of a
message. The inability to prove desired goals in this
case is one factor in uncovering the inapplicability of NS
for entity authentication of B to A. As noted by the
philosopher of mathematics Imre Lakatos, sometimes
the virtue of logical proof is not that it compels belief
but that it suggests doubt. (We discuss some typical
goals that protocols might be intended to meet in x4.1.)

Finally, though we have entirely replaced idealization,
we do not claim to have removed the possiblility of er-
ror in interpreting the meaning of messages. What we
have replaced idealization with is further assumptions
(premises) for each protocol. And, though the latter
may seem more complicated, we are simply being ex-
plicit where analogous reasoning was done implicitly in
BAN analysis. It is still possible to incorrectly assume
that receipt of a given message in a given context implies
that a certain content has been received. Relatedly, our
model-theoretic semantics can be used to rigorously, al-
beit informally, evaluate the truth of all premises.

3 Semantics for SVO

3.1 Model of Computation

Computation is performed by a �nite set of principals,
P1; : : : ; Pn, who send messages to one another. In ad-
dition there is a principal Pe representing the environ-
ment. This allows modelling of any penetrator actions
as well as reecting messages in transit.

Each principal Pi has a local state si. A global state
is thus an (n + 1)-tuple of local states. Principals can
perform three actions: sending a message, receiving a
message, and generating new data, such as keys. These
are denoted by send(X;G), receive(), and generate(X)
respectively. One can send and receive any message,
but one can only generate primitive terms, i.e., mem-
bers of T . Other than generating new data, internal
computations are not represented as actions. They are
represented implicitly. Each action produces a transi-

tion from one state to the next. Note that receiving is
an action, performed by the principal Pi who receives
a message. The action itself is viewed as the nondeter-
ministic choice of some message from Pi's bu�er. This
is why it is listed as having no argument. Once per-
formed, however, the resulting local state reects which
message was received, e.g., receive(X). Sending is al-
ways directed to a set of principals, G. If only one
principal is the intended recipient, G is a singleton. If
a message is indiscriminantly broadcast, G is the set of
all principals.

A run is an in�nite sequence of global states indexed
by integral times. The �rst state of a given run r is
assigned a time tr � 0. The initial state of the current
authentication is at t = 0. The global state at time t in
run r is r(t), and the corresponding projection to Pi's
local state is ri(t). We may also write r(t) as `(r; t)'.
We will also occasionally refer to global states thus rep-
resented as points or (possible) worlds. (Cf. x3.2 under
Believing.)

The local state of each principal includes a local history
of all the actions the principal has performed up to that
point and a set of available transformations. These are
the computations that are feasibly computable by that
principal. Typically, for a given principal, Pi, the avail-
able transformations, Ai, consists of arbitrary numbers
of applications of the message formation rules (including
term formation rules and formula formation rules) in the
de�nition of the language of messages,MT , up to the
computational complexity limitations of that principal.
These include encryptions and decryptions with avail-
able keys as well as other functions the principal may
perform, e.g., hashes, signatures, arithmetical functions,
etc. While the number of messages known to a princi-
pal may increase over time, his computational ability to
form new messages, i.e. Ai, is assumed to stay �xed. All
principals are assumed to be able to decide the equality
of any messages they can produce from what they have.
For example suppose a public key ciphering scheme is
being used in which encryption and decryption are com-
mutative, such as RSA. If Pi has message X and Kj ,
the public encryption key of Pj , then Pi can verify, given
fXgK�1

j

, that X = ffXgK�1
j

gKj
even if he cannot form

fXgK�1
j

.

The environment's state consists of a global history, a
set of transformations available to the environment, and
a message bu�er mi for messages sent to Pi and not
yet received. We limit the set of runs to those where
a given message can only be received after it is sent.
Thus, if receive(X) is in the local history at ri(t), then
send(X;G) is in the local history at some rj(t

0), where

10

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

t0 < t.

As mentioned, transformations on a message are im-
plicitly made when that message is sent or received.
For example, if a principal receives an encrypted mes-
sage fXgK and he has eK, then he has also received X .
Speci�cally, the set of explicitly received messages for a
principal Pi at a point (r; t) contains the following: (1)
all messagesX such that receive(X) appears in the local
message history at or prior to t, (2) the concatenates of
any concatenated received message, (3) any message X
for which fXgK is a received message and appropriate

application of eK is an available transformation for Pi,
and (4) any message X for which [X]K is a received
message for some K. Note that under this de�nition, if
Pi receives an encrypted message and later acquires the
decryption key, the decryption is a received message at
that later point in the run.

For a given principal Pi, the collection of all messages
that are explicitly received, newly generated, or initially
available to Pi implicitly de�nes a set of seen messages

for him at that point.7 This consists of the messages
just mentioned plus all the messages he can recursively
produce from those messages via his available transfor-
mations (up to the limits of his computational capabil-
ities).

Rather than being explicit, some received messages
are highly contextual. For example, we saw in the
Needham-Schroeder protocol that receiving a random
number in a certain context could be interpreted as im-
plying receipt of a session key and even of statements
about the session key. In fact the received message need
have no explicit connection to the implicit message at
all. The full set of received messages for a principal
Pi at a point (r; t) includes the explicitly received mes-
sages plus any such implicitly received messages. While
anything might be implied by a message, the implic-
itly received messages for Pi at (r; t) are limited to the
seen messages for Pi at (r; t). Similarly, our model is
restricted to runs where principals can only send what
they see. Thus, if send(X;G) is in the local history at
ri(t), then X is in the seen messages at ri(t).

The said messages are also a subset of the seen mes-
sages; we cannot hold a principal responsible for say-
ing everything that is derivable by him from things
he said. For example, if A sends fTa;K;CgKab

to B,
we should infer that A said (Ta;K;C). However, even
though we can infer that A sees C sees K from this ac-
tion, we should not infer that A said C sees K based on

7The set of seen messages, and the sets of received and said
messages to be de�ned presently, will be slightly expanded below.
Cf. the discussion under Believing in x3.2.

it. Given a message M that Pi sends at (r; t), we de-
�ne the said submessages ofM by recursively adding to
fMg the following: (1) the concatenates of all concate-
nated submessages of M , (2) the unencrypted message
of any encrypted submessage of M for which Pi has the
encryption key and for which he sees the unencrypted
message, (3) the unsigned message in any signed sub-
message of M for which Pi has the signature key and
sees the unsigned message, and (4) the unhashed mes-
sage in any hashed submessage of M for which he sees
the unhashed message. (5) any message M 0 such that
Pi sees M

0 and Pi meant to imply M
0 by saying a sub-

message of M . Implicit in saying that Pi has the key or
hash function in the above is that Pi also possesses an
algorithm that is feasibly computable in practice by him
and that produces the relevant transformation. The set
of said messages for Pi at (r; t) is the union of the sets
of said submessages of all messages that P has sent in
r through time t.

3.2 Truth Conditions

We now set out the conditions under which a formula
is assigned to be true. We begin by �xing a system, i.e.
a set of runs, R. Truth of a formula ' at a point (r; t),
written `(r; t) j= '', is inductively de�ned below. `j= ''
means that ' is valid (true at all points).

Logical Connectives

(r; t) j= ' ^ i� (r; t) j= ' and (r; t) j=

(r; t) j= :' i� (r; t) =j= '8

Receiving
(r; t) j= P received X

i� X is in the set of received messages for P at (r; t), as
de�ned in x3.1.

Seeing
(r; t) j= P sees X

i� X is in the set of seen messages for P at (r; t), as
de�ned in x3.1.

Saying
(r; t) j= P said X

i�, for some messageM , at some time t0 � t in r, P sent
M and X is a said submessage of M for P at (r; t0).
This gives the truth conditions for P having said X
at some point in the past. We also characterize what
in means for P to have said X in the current epoch
(typically taken to mean since the initial point of the
current protocol run).

(r; t) j= P says X

8`(r; t) =j= '' means it is not the case that (r; t) j= '.

11

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

i�, for some message M , at some time 0 � t0 � t in r,
P sent M and X is a said submessage of M for P at
(r; t0).

Jurisdiction
(r; t) j= P controls '

i� (r; t) j= P says ' implies (r; t0) j= ' for all t0 � 0.
Note that jurisdiction constitutes authority at all points
in the current epoch, not just at the time P says '.
This makes it a very strong property. Attributions of
jurisdiction are typically part of initial assumptions and
should be made sparingly and judiciously.

Freshness A message is fresh if it has not been part of
a message sent prior to the current epoch. It is su�cient
but not necessary for freshness that a message be unseen
prior to the current epoch. A principal might generate
a message earlier and not send it until the epoch begins.
Truth conditions are thus in terms of the what has been
said rather than what has been seen.

(r; t) j= fresh(X)

i�, for all principals P and all times t0 < 0, (r; t0) =j=
P said X .

Keys We will give truth conditions with respect to four
types of keys: shared keys, public ciphering keys, public
signature keys, and public key-agreement keys. Truth
conditions for a shared key to be good for communica-
tion between P and Q is a variant of that in [AT91]:

(r; t) j= P
K
$ Q

i�, for all t0, (r; t0) j= R said fXQgK implies ei-
ther (r; t0) j= R received fXQgK , or R = Q and
(r; t0) j= R said X and (r; t0) j= R sees K. If
(r; t0) j= R said fXgK (instead of the stronger (r; t0) j=
R said fXQgK), then R 2 fP;Qg (instead of the
stronger R = P).

`PK(P;K)' means both that K is a public key associ-
ated with principal P and that the corresponding pri-
vate key, K�1, is good. (We refer here to all three types
of public keys.) The truth conditions below are thus for
both good public key binding and private key secrecy.
(We do not mean to imply each principal has only one
of any type of public key; however, our notation does
assume a unique private key associated with any public
key.) Signing and ciphering (encryption) may be sep-
arated in the case of public keys. Thus, the two sets
of truth conditions for these two types of public keys
separate out those features from the shared key truth
conditions. The �rst truth conditions for public keys
are for signature keys. Because a principal may come
to have beliefs based on a signed message that he cannot

produce himself, we need a way to refer to the result of
verifying the origin of that message.

(r; t) j= SV(Y;K;X)

i� there exists a eK such that it can be veri�ed using K
that Y = [X]

eK
.

Note that the truth conditions for SV(X;K; Y) are not
contextual. They hold at one point i� they hold at all
points. Thus, we are implicitly assuming that the rel-
evant signature veri�cation algorithm is in Ai for all
principals Pi at all points. With this in place we can
give the truth conditions associated with public key sig-
nature keys.

(r; t) j= PK�(P;K)

i�, and all t0, (r; t0) j= Q received Y ^ SV(Y;K;X))
implies (r; t0) j= P said X .

Next we give truth conditions for public ciphering keys.

(r; t) j= PK (P;K)

i�, for all t0, (r; t0) j= Q sees fXgK implies (r; t0) j=
Q sees X only when Q = P .

Truth conditions for key-agreement keys are a bit more
complicated:

(r; t) j= PK�(P;K)

i� for all t0,

(1) for some Q and Kq, (r; t
0) j= P

F0(K;Kq)

 ! Q; and,

(2) for all R;Kr, if (r; t
0) =j= R

F0(Kr ;K)

 ! P , then, for all

U;Ku, (r; t
0) =j= R

F0(Kr;Ku)

 ! U . (Here F0 refers to some
agreement function such as that in Di�e-Hellman key
agreement that takes the key referred to by the �rst
argument of F0 and the private cognate of the second
argument as its arguments. The �rst clause guaran-
tees that there is someone with whom P (using K)
can form a good key. The second clause guarantees
that anyone with whom P using K cannot form a good
key cannot form a good key with anybody (at least
not using that public key). The truth conditions for
PK�(P;K) may seem overly complex. But, we cannot
simply require that a session key P produces via agree-
ment with the public key of any Q is good. This is
because, even if K were still secret, any given Q's pri-
vate key-agreement key may have been compromised,
compromising F0(K;Kq). On the other hand, we can-
not simply require that if P cannot produce a good
session key by agreement with Q, then Q has a bad
private key-agreement key. That would lead us into a

12

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

circularity in determining whether truth conditions are
satis�ed. The above characterization achieves what is
needed while avoiding circularity.

These truth conditions are admittedly complex. One
might try to decompose the logic into elements with
simpler semantics. However, key agreement is compli-
cated stu�. What our current logic and semantics al-
low us to do is ignore much of that complexity in our
syntactic analysis while knowing that what we have is
nonetheless sound. Decomposition would just lead us
into algorithm or protocol speci�c details that should
be avoided on the logical level.

Believing Our characterization of belief is based on
possible worlds. This approach to characterizing belief
was �rst given by Hintikka in [Hin62]. Since the early
eighties it has been applied to distributed computing
(one example of such application being that in [AT91]).
The idea is that a principal's beliefs in a given state are
determined by which worlds (global states) are consid-
ered to be possibly the state he is in. From his perspec-
tive these worlds are indiscernible from one another. For
each principal Pi we can thus de�ne a relation �i that
indicates for each world (r; t) which worlds are possible
in this manner for Pi. Not surprisingly, this is closely
tied to the messsages that are comprehended by Pi at
each world, those that he can discriminate to be what
they are.

The messages that a principal can comprehend are those
that he can ultimately tie back to cleartext he has seen
and those that he can relate to previously seen messages.
The local state for a principal includes a set of seen
messages; however, some of these he will see without
comprehension. For example, if he sees a hash H(X)
but not X , then he does not comprehend what he's
seeing to be H(X). Similarly, if he sees fXgK, but
does not have the relevant decryption key, then he does
not comprehend what he is seeing even if X is available
plaintext. Nonetheless, we account for the possibility
of, e.g., a principal recognizing that a received message
is the encryption with his public key of a message he
had previously forwarded without comprehending.

We will now de�ne the comprehension of principal Pi
in a run r. Note that while principals necessarily de-
compose received messages top down, it will facilitate
understanding if comprehension of messages is set out in
a bottom up manner. Since public keys are assumed to
be generally available and since principals can therefore
verify the structure of messages signed by others even
if they cannot form those messages, we must somehow
account for this. We therefore de�ne a set A+

i to be Ai
together with the formation of messages that Pi can ver-

ify (such as signatures by other principals). Henceforth
`Cl i(�)' refers to the closure of the set � under the rules
in A+

i . Let compi(r; 0) consist of the closure under A
+
i ,

of all plaintext that Pi has at the start of the protocol
in run r. We assume that each principal Pi receives at
most one message at a time. If Pi receives no messages
at time t in r, then compi(r; t) = compi(r; t� 1).

Suppose that Pi receives M at (r; t). Let � be the set
of all hereditary submessages of M that Pi can form or
verify at (r; t). In other words � includes the (imme-
diate) submessages of M , the submessages of submes-
sages, and so on, down to the atomic terms contained
in M that are contained in Cl i(fMg [compi(r; t� 1)).
Some of the members of � will not be understood by Pi.
We will now proceed through an iterative construction
that will replace any X 2 � that is not understood by
Pi with �x.

Consider all the X 2 � that are atomic (X 2 T). If X 2
compi(r; t� 1), then let X 2 �0. If X =2 compi(r; t� 1),
then let �x 2 �0. Also, let compi(r; t � 1) � �0. Let �0
be the result of substituting �x for X in any submessage
of a member of � if �x 2 �0.

Now, consider all the X 2 �0 such that X is the result
of a single message formation rule (as given in x1.1) and
where the components of the X are members of �0. If Pi
can form or verify X with A+

i using those components,
then let X 2 �1. If Pi cannot form or verify X with
A+
i using those components, then let �x 2 �1. Also, let

�0 � �1. Let �1 be the result of substituting �x for X
in any submessage of a member of �0 if �x 2 �1.

Consider all the X 2 �1 such that X is the result of
a single message formation rule (as given in x1.1) and
where the components of theX are members of �1. If Pi
can form or verify X with A+

i using those components,
then let X 2 �2. If Pi cannot form or verify X with
A+
i using those components, then let �x 2 �2. Also, let

�1 � �2. Let �2 be the result of substituting �x for X
in any submessage of a member of �1 if �x 2 �2.

Continuing in this way, we will eventually arrive at a
stage n for which the only X 2 �n�1 under considera-
tion is M itself, with asterisks substituted for appropri-
ate submessages. Either this message is replaced by an
asterisk expression at stage n or �n = �n�1. In either
case, this is the terminating stage for the construction.

We can then de�ne

compi(r; t) = Cl i�n

Note that this construction determines what is compre-
hended not just for hereditary submessages of a message

13

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

M just received but also previous messages. For exam-
ple, suppose P received fXgK at (r; t) but only acquired
K at some point (r; t0) where t < t0. fXgK would be
replaced by an asterisk expression in compP (r; t). But,
assuming X were comprehended, fXgK would appear
in compP (r; t

0).

We can use this construction to form a local message

Mi(r; t) for any message M and any principal Pi and
point (r; t). Note that in this construction each submes-
sage of M , including M itself, occurs in �. And, each
�j contains a unique element corresponding to each ele-
ment of �. Thus, given any messageM (received or not,
seen or not) we can construct the local messageMi(r; t)
for Pi at (r; t) by following the above construction to
form the relevant substitutions for subexpressions of M
until we construct �n. Mi(r; t) is simply the element
of �n corresponding to M in �. This construction is
only relevant to compi(r; t) when M is a message newly
received or generated by Pi.

We now expand the sets of seen, received, and said
messages to include the locally understood messages.
Henceforth, if M is in the set of seen (said, received)
messages for Pi at (r; t), then so is Mi(r; t).

For any given run r and principal Pi we now de�ne the
locally comprehended run r�i to be the same as ri except
that wherever any messageM occurs in ri(t), for any t,
Mi(r; t) replaces M .

The possibility relation �i for a principal Pi in state
(r; t) is de�ned by

(r; t) �i (r
0; t0)

i�, r�i (t) and r
0
i
�
(t0) can be produced one from the other

by a uniform substitution of subscripts on asterisks. For
example, r�i (t) might be the same as r

0�
i (t

0) except that
�j occurs in the former everywhere that �k occurs in the
latter, and vice versa.

We can now give truth conditions for belief formulae:

(r; t) j= Pi believes '

i� (r0; t0) j= 'i(r
0; t0) for all (r0; t0) such that (r; t) �i

(r0; t0), and ' = 'i(r
0; t0) for some such (r0; t0).

In the sequel we may occasionally write `�p' and
`compp' respectively for the possibility relation and com-
prehension of principal P . Similarly we may write
`Mp(r; t)' to represent the local message corresponding
to M for P at (r; t).

It is obvious that �i is an equivalence relation. By a
standard result of modal logic this means that all of
the axioms of the system S5 are valid in this semantics

[Che80, Gol92]. Readers familiar with the use of logics
of knowledge and belief will recognize this as the most
standard logic for representing knowledge. And, such
readers may therefore wonder why we have chosen to
take this as a logic of belief and why we have included
only two of the axioms of S5 in our axiom set. We see
no need to include the other axioms for the applications
we envision. It is a simple matter to add them should
it be necessary. The subtleties of intuitions regarding
knowledge and belief in the context of protocol analysis
have been discussed elsewhere [Syv91, Syv92], and we
will not delve into that issue here.

This completes the conditions necessary to assign truth
values to all formulae in the logic.

3.3 Soundness

Theorem 3.1 SVO is sound: if � ` ', then � j= '.

In words, the theorem says that, for a set of formulae
� and a formula ', if ' is derivable from �, then '
is true at any world making all of � true. Thus, in a
typical protocol analysis, if � refers to the premise set,
as described in x2, then the e�ect of this theorem is
that if all our assumptions (�) are true, then so is any
protocol goal (') proved from those assumptions. (The
truth of the assumptions must be evaluated by means
outside the logic, e.g., by evaluating their status in the
model of computation via the semantics.)

Proof: This is a typical tedious soundness proof
[Che80]: show that the axioms are valid (true at all
worlds) and that derivation preserves truth. Proof of
validity for all axioms is direct by inspection of the truth
conditions given in x3.2. We �ll in details for those ax-
ioms where the result is neither immediate nor standard.
Note that all the axioms for which the validity proof is
spelled out below are conditionals. By the truth condi-
tions for `�', it therefore su�ces to show in each case
that the consequent of the conditional is true at any
world at which the antecedent is true.

Ax1{Ax2. As noted above�i is an equivalence relation,
and axioms Ax1 and Ax2 are thus valid by a standard
result of modal logic [Che80].

Ax3. (P
K
$ Q ^ R received fXQgK) �
(Q said X ^ Q sees K)

Suppose that (r; t) j= (P
K
$ Q ^ R received fXQgK).

By the de�nition of a run, there is a t0 < t such
that (r; t0) j= R0 said fXQgK for some R0. Then,

by the truth conditions for P
K
$ Q, either (r; t0) j=

R0 received fXQgK or (r; t0) j= R0 said X , (r; t0) j=

14

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

R0 sees K, and R0 = Q. In our model of compu-
tation each run is assumed to have an initial state.
Thus, each sent message must be sent a �rst time
(without being previously received). So, there exists a
t00 < t and R00 such that (r; t00) j= R00 said fXQgK and
(r; t00) =j= R00 received fXgK . So, (r; t00) j= R00 said X ,
(r; t) j= Q sees K, and R00 = Q.

Ax4. (PK�(Q;K) ^ R received X ^ SV(X;K; Y)) �
Q said Y

This is immediate from the truth conditions for
PK�(Q;K), and SV (X;K; Y).

Ax5. ((PK�(P;Kp)) ^ (PK�(Q;Kq))) � P
F0(Kp;Kq)

 ! Q

Suppose that (r; t) j= (PK�(P;Kp) ^ PK�(Q;Kq)) but

that (r; t) =j= P
F0(Kp;Kq)

 ! Q. Thus, P using Kp can-
not form a good shared key with Q using Kq. By
clause (2) of the truth conditions for key agreement,
if PK�(P;Kp), this would mean that, for all times t0 at
(r; t0), Q cannot make a good session key with anyone
using Kq. But, this contradicts our initial assumption
that (r; t) j= PK�(Q;Kq)).

Ax6. ' � '[F0(K;K
0)=F0(K

0;K)]

This is immediate from the de�nition of F0.

Ax7{Ax12. The validity of axioms Ax7{Ax12 is imme-
diate from the de�nitions of received and seen messages.

Ax13. P believes (P sees F (X)) � P believes P sees X

(where F is any e�ectively one-one function such that

either F or eF is computable in practice by P). Sup-
pose that (r; t) j= P believes (P sees F (X)). Let
(r0; t0) be such that (r; t) �p (r0; t0). Then, (r0; t0) j=
(P sees F (X))p(r

0; t0) by the truth conditions for be-
lief. Since principal names are assumed to be generally
known, and since, by de�nition, `F ' denotes a function
in A+

p , (P sees F (X))p(r
0; t0) = (P sees F (Xp(r

0; t0))).
Thus, (r0; t0) j= (P sees F (Xp(r

0; t0))). So, by de�nition
of the seen messages and since F 2 A+

p , this is true i�
(r0; t0) j= (P sees Xp(r

0; t0)).

Again, by the truth conditions for belief, for some
(r0; t0) such that (r; t) �p (r0; t0), P sees F (X) is
(P sees F (X))p(r

0; t0). And, by the above argument,
(P sees F (X))p(r

0; t0) = (P sees F (Xp(r
0; t0))). So,

X = Xp(r
0; t0), and P sees X = P sees Xp(r

0; t0). This

completes the truth conditions for belief, so (r; t) j=
P believes (P sees X).

Ax14{Ax20. The validity of these axioms are all im-
mediate from the relevant truth conditions.

Note that axiom Ax18 says that a function of fresh ar-
guments is itself fresh, provided that the function gen-
uinely depends on the fresh argument. Without this
provision the axiom is not valid. To see this note that
X = X + 0 � Y . So, if P said X before the current
epoch, without the provision the freshness of Y allows
us to conclude that P says X . (We refer here to the val-
ues of X and X +0 � Y . Obviously the character string
`X ' does not equal the character string `X+0�Y ', which
does depend on `Y ' to be produced.)

All that remains to be shown for soundness is that all
the ways that ' can be derived from � preserve truth.
There are three cases. (1) If ' is a theorem or member
of �, then � j= ' trivially. (2) If ' is obtained by modus
ponens, then it occurs in a derivation from � in which
some and � ' occur earlier. Then by induction on
the structure of the derivation and de�nition of truth
conditions, � j= '. (3) Also by a trivial induction, if
' is obtained by necessitation, then ' is P believes
for some P and some such that ` . By inductive
hypothesis, j= . So, by the truth conditions for belief,
j= P believes . Thus, a fortiori, � j= P believes . 2

4 More Sample Applications

In this section we look at two key agreement protocols.
These protocols are often subtler in many ways than
standard key distribution protocols. Thus, while these
analyses are commensurately subtler than those of, e.g.,
[BAN89], they also illustrate the relative strength of
SVO. Some expressions from VO are useful in these
analyses. Whenever notation from VO is encountered
it should be read as a syntactic abbreviation as de�ned
from SVO primitives in appendix B.1.

Before beginning analysis of the protocols themselves
we set out some generic formal goals that any authen-
tication protocol might be intended to meet. Similarly,
we set out some generic assumptions. In our analysis,
we prove that each of the protocols meets some of the
generic goals presented.

4.1 Generic Formal Goals and Assump-
tions

We list �rst some generic goals that protocols to be
discussed below will be shown to meet. This is not
meant to be taken as a de�nitive list of the goals that a
key agreement or key distribution protocol should meet.

G1. Far-end operative: A believes B says X

15

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

A Computations messages sent B Computations

generate x, Ra = �x generate y, Rb = �y

Certa = (Ra; IDa; stfRa; IDag) Certb = (Rb; IDb; stfRb; IDbg)
generate x, Ra = �x �! Certa; Ra generate y, Rb = �y

verify Certb; K = (Rb)
x � (Rb)

x Certb; Rb � verify Certa; K = (Ra)
y � (Ra)

y

Figure 1: The MTI Protocol A(0)

G2. Entity authentication:
A believes B says F (X;Na)

G3. Secure key establishment: 9

A believes A
K�
 ! B

G4. Key con�rmation:

A believes A
K+
 ! B

G5. Key freshness: A believes fresh(K)

G6. Mutual understanding of shared key:

A believes B says B
K�
 ! A

The intuitive meaning and reasons for each of these
should be clear for the most part. G1 says that A be-
lieves B has been online during the current epoch. In
G2, Na is A's nonce, and F is assumed to be an e�ec-
tively one-one function such that F is computable in
practice by B and F or eF is computable in practice
by A. The idea is that A is assured that B has re-
cently o�ered the response `X ' to A's challenge of Na.
(No other understanding of `entity authentication' is in-
tended.) Note that it is still possible for G3 to hold if B
has not participated in the protocol and even if B does
not possess session key K.

We now collect some generic formal assumptions, some
of which will be made in the analysis of the protocols
considered below. They are stated for a principal A
and a trusted authority T . In a protocol involving two
principals A and B, they may be assumed for either or
both principals.

A1. T 's signature key: A believes PK�(T;Kt)

A2. T 's signature key jurisdiction:
A believes T controls PK�(B;Kb)

A3. T 's agreement key jurisdiction:
A believes T controls PK�(B;Kb)

9As mentioned above, notation from VO is de�ned from SVO
primitives in appendix B.1.

A4. Own agreement key quality:
A believes PK�(A;Ka)

A5. Nonce freshness: A believes fresh(Na)

The meaning of all these assumptions should be self ev-
ident: principals believe they have good signature keys
for trusted authorities, that trusted authorities have ju-
risdiction over statements concerning the public keys
of other principals, that their own agreement keys are
good, and that nonces they generate themselves are
fresh. As noted in x2.2.1, jurisdiction assumptions are
rather strong and should be made with caution. When
issuing a certi�cate, it is generally important that the
relevant authority con�rm not only the authenticity of
the request but also that the requesting principal pos-
sesses the corresponding private key. If this were not
true for signature or key agreement certi�cates, then
the relevant juridiction assumption would not be true
either. The signi�cance of this will become apparent
presently. This is not meant to be a comprehensive list
of assumptions for any type of protocol.

4.2 The MTI Protocol A(0)

The key agreement protocol A(0) of Matsumoto,
Takashima, and Imai [MTI86] results in the establish-
ment of a shared secret key; two Di�e-Hellman ex-
ponentiations are used, combining �xed and (per-run)
variant parameters, allowing the creation of a unique
key for each protocol run while reusing certi�ed pub-
lic key-agreement keys. A publicly known appropriate
prime p and primitive element � in GF (p) are �xed.
The parties A and B and the trusted authority T use
a common signature scheme in association with certi�-
cates; sUf�g denotes the signature of party U . In a
preliminary, one-time process, A selects a secret ran-
dom number x, computes Ra = �x, and gives this to
T ; T veri�es A's identity and returns a certi�cate Certa
consisting of Ra, a distinguishing identi�er IDa for A,
and T 's signature over their concatenation. Ra serves
as A's �xed public key-agreement key, which can now be

16

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

made available to others by certi�cate. Similarly, B ob-
tains a secret number y, computes Rb = �y , and obtains
Certb. The protocol between A and B then consists of a
single message in each direction, as outlined below and
as summarized in Figure 1:

1. A generates a random positive integer x, computes
Ra = �x and sends Ra to B along with Certa.

2. B generates a random positive integer y, computes
Rb = �y and sends Rb to A along with Certb.

3. A and B establish the authenticity of each other's
certi�cates by verifying the signature of T thereon
using T 's known public key, and establish a com-
mon key K by respectively computing K = (Rb)

x �
(Rb)

x and K = (Ra)
y � (Ra)

y.

This protocol is also discussed in [Yac90], where calcu-
lations are with respect to an RSA modulus n rather
than modulo p as above. Another very similar protocol
was given in [Gos90].

4.2.1 Analysis of A(0) protocol

We �rst specify the protocol in our notation:

A �! B : (A;Ra; [A;Ra]K�1
t
); Ra

B �! A : (B;Rb; [B;Rb]K�1
t
); Rb

We next turn to the formation of the set of premises
to be used in formal derivations of protocol goals. The
generic assumptions we make correspond to A1, A3,
A4, and A5 above. Speci�cally we assume that each
principal A and B believes that Kt is the signature ver-
i�cation key for the trusted authority, T (A1), that each
principal believes his own agreement key is good (A4),
and that each principal believes that the key parame-
ters he generates for the protocol are fresh (A5). We
assume that principals each accept the jurisdiction of T
over the agreement key of the other; however, A3 is not
adequate to express this assumption for two reasons.
First, by virtue of the semantics for controls , it grants
jurisdiction only to statements made by T during the
current epoch. This protocol relies on statements made
by T with no freshness indicators included. Second,
the session key is formed by two public pieces of data
from principals, but the statement from the trusted au-
thority only concerns one of these. Fortunately, for the
purposes of this protocol analysis we can replace A3
with the more speci�c assumptions that

A believes ((T said PK�(B;Rb)^
A received ((B;Rb; [(B;Rb)]K�1

t
); Rb)) �

PK�(B; (Rb; Rb)))

and similarly for B. We include all these initial as-
sumptions in the premise set. Other initial assump-
tions reected in the premise set are that each principal
comprehends his own agreement key components and
that each principal correctly assesses the result of the
verifying T 's signature on the other's certi�cate. The
premise set also reects the messages that each princi-
pal receives. Also, recall that any premise set reects
A's comprehension of messages received by including
A believes A received X for each message X that A is
assumed to comprehend (and similarly for B). Finally,
the set includes premises reecting the receiver's inter-
pretation of message content for each received message.
We now enumerate the premise set.

P1 A believes PK�(T;Kt)
B believes PK�(T;Kt)

P2 A believes A sees (Ra; Ra; x; x)
B believes B sees (Rb; Rb; y; y)

P3 A believes SV ([(B;Rb)]K�1
t
;Kt; (B;Rb))

B believes SV ([(A;Ra)]K�1t
;Kt; (A;Ra))

P4 A believes ((T said PK�(B;Rb)^
A received ((B;Rb; [(B;Rb)]K�1t

); �b)) �

(PK�(B; (Rb; �b))))

B believes ((T said PK�(A;Ra)^
B received ((A;Ra; [(A;Ra)]K�1

t
); �a)) �

(PK�(A; (Ra; �a))))

P5 A believes PK�(A; (Ra; Ra))
B believes PK�(B; (Rb; Rb))

P6 A believes fresh(Ra)
B believes fresh(Rb)

P7 A received ((B;Rb; [B;Rb]K�1
t
); Rb)

B received ((A;Ra; [A;Ra]K�1
t
); Ra)

P8 A believes A received ((B;Rb; [B;Rb]K�1
t
); �b)

B believes B received ((A;Ra; [A;Ra]K�1
t
); �a)

P9 A believes (T said (B;Rb) � T said PK�(B;Rb))
B believes (T said (A;Ra) � T said PK�(A;Ra))

We now turn to formal derivations. In the interest of
brevity, we will compress many of the steps together,
and we will not cite the use of propositional reasoning

17

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

in giving the justi�cations for derivation lines. Since
there is nothing in the protocol to authenticate either
principal to the other in any way, there is no hope of
deriving the generic goalsG1, G2, G4, orG6. We give
formal derivations of goals G3 and G5 beginning with

G3 (A believes A
K�
 ! B).

1. A believes A received ([PK�(B;Rb)]K�1
t
)

by P8, Ax1, Ax7, Nec, MP

2. A believes T said (B;Rb)
by 1, P1, P3, Ax1, Ax4, Nec, MP

3. A believes T said PK�(B;Rb)
by 2, P9, Ax1, MP

4. A believes PK�(B; (Rb; �b))
by 2, P4, Ax1, MP

5. A believes PK�(A; (Ra; Ra))
by P5

6. A believes (A
K
$ B)

by 4, 5, Ax1, Ax5, Nec, MP,
where K = F0((Ra; Ra); (Rb; Rb))

7. A believes A sees (Rb; �b)
by P8, Ax1, Ax10, Ax11, Ax12, Nec, MP

8. A believes A sees K
by 7, P2, Ax11, Ax12, Ax1, Nec, MP

where K = F0((Ra; Ra); (Rb; Rb))

9. A believes (A
K�
 ! B)

by 6, 8, Ax1, MP, and def. of A
K�
 ! B.

The derivation of G3 for B is virtually identical.

As Burrows et al. found in their analyses in [BAN89],
it is often instructive to look at the assumptions neces-
sary to derive a goal. We have noted before that juris-
diction assumptions are powerful and should be made
judiciously. We thus delve more deeply into premise
P4. First note that the quality and binding of the en-
tire agreement key is assumed based only on the trusted
authority's assertion concerning the long term part (and
the comprehensibility of the fresh part). This is an un-
avoidable assumption since the fresh part of each public
agreement key is sent only in the clear. If this cleartext
were attacked it could result in principals believing that
they share a good session key. This attack in no way
invalidates the above result since A does have K, and
K is a session key good for at most A and B (though
in actuality good for nobody, if the attacker tampers as
indicated above).

Another assumption implicit in P4 is, however, more se-
rious. Speci�cally, P4 (and more generallyA3) assumes
that the trusted authority has jurisdiction over the bind-
ing and quality of a principal's agreement key. This is

the danger we alluded to above if the trusted authority
issues a certi�cate without checking both that the cer-
ti�cate matches an authenticated request and that the
requesting principal has the corresponding private key.
In this protocol, should T issue certi�cates without this
con�rmation, it would be possible for a principal E to
trick another principal B into thinking he has formed
a session key with E when B has in fact formed a ses-
sion key with A. In this case the above result would be
spurious. Here is an account of the attack. (A slightly
more complicated attack having similar results is given
in [MQV95].)

Attack on the A(0) Protocol

1. E obtains Ra, A's public long term agreement
key, perhaps by legitimate sessions of this proto-
col. E requests and receives a certi�cate, Certe =
(Ra; IDe; stfRa; IDeg). Note that E does not ob-
tain x.

2. A initiates a legitimate session with B. That is,
A generates a random positive integer x, computes
Ra = �x and sends Ra to B along with certi�cate
Certa.

3. E intercepts A's message, substitutes Certe for
Certa and forwards (Ra;Certe) to B.

4. B generates a random positive integer y, computes
Rb = �y and sends Rb to E along with certi�cate
Certb.

5. E forwards (Rb;Certb) to A.

6. A and B establish the authenticity of received cer-
ti�cates by verifying the signature of T thereon us-
ing T 's known public key, and establish a common
keyK by respectively computing K = (Rb)

x �(Rb)
x

and K = (Ra)
y � (Ra)

y. While A correctly believes
that K is a session key for communication with B,
B erroneously believes that this key is for commu-
nication with E.

Next we give a formal derivation of goal G5,
A believes fresh(K).

1. A believes fresh(Ra)
by P6

2. A believes fresh(K)
by 1, Ax18, Ax1, Nec, MP, and def. of K

Note that while we are able to formally derive key fresh-
ness, we must implicitly assume that B is competent in
his choice of short and long term agreement keys. For
example, if he were to choose y � 0 (mod p � 1), then

18

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

A Computations messages sent B Computations

Certa = (Ka; IDa; stfKa; IDag) Certb = (Kb; IDb; stfKb; IDbg)
generate x, Ra = �x �! Ra generate y, Rb = �y; K = (Ra)

y

K = (Rb)
x; verify Certb;Tokenba Rb;Certb;Tokenba; � Tokenba = EK(sbfRb; Rag)

Tokenab = EK(safRa; Rbg) �! Certa;Tokenab verify Certa;Tokenab

Figure 2: The STS Protocol

the K would not depend on Ra, and the derivation of
freshness would be spurious.

4.3 The STS Protocol

We next review the authenticated key agreement pro-
tocol of Di�e, van Oorschot and Wiener called the
\Station-to-Station" (STS) protocol [DvOW92]. A pub-
licly known appropriate prime p and primitive element
� in GF (p) are �xed for use in Di�e-Hellman key ex-
change. Parties A and B use a common signature
scheme: sUf�g indicates the signature on the speci�ed
argument using the private signature key of party U .
EK(�) indicates the symmetric encryption of the spec-
i�ed argument using algorithm E under key K. Public
key certi�cates are used to make the public signature
keys of A and B available to each other. In a one-time
process prior to the exchange between A and B, each
party must present to T his true identity and public key
(e.g., IDa, Ka), have T verify his true identity by some
(typically non-cryptographic) means, and then obtain
from T his own certi�cate. The protocol is as follows.

1. A generates a random positive integer x, computes
Ra = �x and sends Ra to a second party.

2. Upon receiving Ra, B generates a random positive
integer y, computes Rb = �y and K = (Ra)

y.

3. B computes the authentication signature
sbfRb; Rag and sends to A the encrypted signature
Tokenba = EK(sbfRb; Rag) along with Rb and his
certi�cate Certb. Here `,' denotes concatenation.

4. A receives these values and from Rb computes K =
(Rb)

x.

5. A veri�es the validity of B's certi�cate by verify-
ing the signature thereon using the public signature
veri�cation key of the trusted authority. If the cer-
ti�cate is valid, A extracts B's public signature key,
Kb from Certb.

6. A veri�es the authentication signature of B by de-
crypting Tokenba, and using Kb to check that the

signature on the decrypted token is valid for the
known ordered pair Rb; Ra.

7. A computes safRa; Rbg and sends to B her certi�-
cate Certa and Tokenab = EK(safRa; Rbg).

8. Analogously, B checks Certa. If valid, B extracts
A's public signature key Ka and proceeds.

9. Analogously, B veri�es the authentication signa-
ture of A by decrypting Tokenab, and checking the
signature on it using Ka and knowledge of the ex-
pected pair of data Ra; Rb.

The protocol is successful from each party's point of
view if signature veri�cation succeeds on both the re-
ceived certi�cate and authentication signature. In this
case, the protocol provides assurance that a shared se-
cret has been jointly established with the party identi-
�ed in the received certi�cate.

Figure 2 provides a summary of the messages ex-
changed, and actions taken, by each of the parties in
this protocol.

4.3.1 Analysis of STS protocol

The speci�cation of the STS protocol in our notation is
as follows:

A �! B : Ra
B �! A : Rb; (B;Kb; [B;Kb]K�1

t
); f[Rb; Ra]K�1

b

gK

A �! B : Ra; (A;Ka; [A;Ka]K�1
t
); f[Ra; Rb]K�1a

gK

We include in the premise set generic assumptions corre-
sponding toA1 (trusting the authority's signature key),
A2 (trusting the authority's jurisdiction over signature
keys), A4 (trusting the quality one's own agreement
key), and A5 (trusting the freshness of one's own agree-
ment key). As with the MTI protocol A(0), in the STS
protocol it is assumed that the trusted authority has
timeless jurisdiction over signatures; thus, we cannot

19

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

use A2 as stated above. The appropriate variant is
trivial to determine and appears as premise P3 below.

We saw in analyzing the A(0) protocol the subtlety of
jurisdiction assumptions. For reasons similar to the ones
discussed in connection with the attack on A(0) above
we cannot allow principals to have jurisdiction over the
quality and binding of their own agreement keys. (That
is, we cannot unless other protections are in place, e.g.,
in the case of STS a signature or keyed hash.) However,
some related assumption is necessary if we are to derive
any results about the quality of the session keyK. Con-
sequently, we record as one of our formal assumptions

A believes ((A received f[�b; Ra]K�1
b

gK ^

PK�(B;Kb) ^ PK�(A;Ra)) �
PK�(B; �b))

the legitimacy of which we now proceed to justify.

First, we may assume that honest principals are com-
petent enough to not encrypt or sign messages blindly,
i.e., without any understanding of the message content.
So, if A did not recognize Ra within [�b; Ra]K�1

b

, then

A would not encrypt [�b; Ra]K�1
b

with K. If A did rec-

ognize Ra in [�b; Ra]K�1
b

, then she may be assumed to

be competent to recognize it as only to be used within
this protocol and again would not encrypt this with K.
Thus, if A believes (A received f[�b; Ra]K�1

b

gK) then A

believes that someone other than herself said it. Given
that A believes PK�(A;Ra), A can also con�rm that
K = �b

x, hence that �b is a public agreement key.

We will independently, formally derive below that A
believes B's signature key to be good for B. Thus,
A can infer that B signed Ra together with either his
own agreement key or someone else's. If �b is his own,
then PK�(B; �b). Assume that �b is not B's agreement
key. Thus, he can only have signed blindly, i.e., with-
out knowing the signi�cance of Ra or �b. But, this vi-
olates competency if B is honest. If B is dishonest,
then either he has broken the private agreement key
corresponding to �b or the principal corresponding to
�b has been tricked into encrypting [�b; Ra]K�1

b

with K.

The �rst possibility is implicitly assumed not to have
occurred. (Similarly, it is assumed that no one other
than B has B's private signature key.) And, the sec-
ond possibility is ruled out by an argument similar to
that in the last paragraph. Hence A is justi�ed in infer-
ring that B produced the received message and there-
fore that PK�(B; �b). A similar argument justi�es the
corresponding assumption for B.

We also assume that honest principals are competent
to use the public keys they generate for a protocol run

only within that run and to properly execute the proto-
col. In practice this allows us to assume a principal can
recognize the message(s) sent by the other principal in
the protocol as not having originated with herself. This
is reected in the premise set as P10.

Finally, the premise set includes the usual assumptions
about what principals received, what they comprehend,
and how they interpret received messsages.

We now enumerate the premise set.

P1 A believes PK�(T;Kt)
B believes PK�(T;Kt)

P2 A believes SV ([B;Kb]K�1
t
;Kt; (B;Kb))

A believes SV ([�b; Ra]K�1
b

;Kb; (�b; Ra))

B believes SV ([A;Ka]K�1
t
;Kt; (A;Ka))

B believes SV ([�a; Rb]K�1a
;Ka; (�a; Rb))

P3 A believes ((T said PK�(B;Kb)) � PK�(B;Kb))
B believes ((T said PK�(A;Ka)) � PK�(A;Ka))

P4 A believes PK�(A;Ra)
B believes PK�(B;Rb)

P5 A believes fresh(Ra)
B believes fresh(Rb)

P6 A believes A sees (Ra; x)
B believes B sees (Rb; y)

P7 A received

Rb; (B;Kb; [B;Kb]K�1t
); f[Rb; Ra]K�1

b

gK
B received

Ra; (A;Ka; [A;Ka]K�1
t
); f[Ra; Rb]K�1a

gK

P8 A believes A received

�b; (B;Kb; [B;Kb]K�1
t
); f[�b; Ra]K�1

b

gK
B believes B received

�a; (A;Ka; [A;Ka]K�1
t
); f[�a; Rb]K�1a

gK

P9 A believes ((A received f[�b; Ra]K�1
b

gK ^

PK�(B;Kb) ^ PK�(A;Ra)) �
PK�(B; �b))

B believes ((B received f[�a; Rb]K�1a
gK ^

PK�(A;Ka) ^ PK�(B;Rb)) �
PK�(A; �a))

P10 A believes :(A said f[�b; Ra]K�1
b

gK)

B believes :(B said f[�a; Rb]K�1a
gK)

P11
A believes (T said (B;Kb) � T said PK�(B;Kb))
B believes (T said (A;Ka) � T said PK�(A;Ka))

20

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

We now derive formal goals G1{G5 for the STS proto-
col.

1. A believes A received [(B;Kb)]K�1
t

by P8, Ax1, Ax7, Nec, MP

2. A believes T said PK�(B;Kb)
by 1, P1, P2, P11, Ax1, Ax4, Nec, MP

3. A believes PK�(B;Kb)
by 2, P3, Ax1, MP

4. A believes A received f[�b; Ra]K�1
b

gK
by P8, Ax1, Ax7, Nec, MP

5. A believes PK�(B; �b)
by 3, 4, P4, P9, Ax1, MP

6. A believes A
K
$ B

by 5, P4, Ax1, Ax5, Nec, MP
(where K = F0(Ra; �b))

7. A believes A sees K
by P8, P6, Ax1, Ax10, Ax11, Ax12, Nec, MP

(where K = F0(Ra; �b))

8. A believes A
K�
 ! B

by 6, 7, Ax1, MP, and def. of A
K�
 ! B

9. A believes fresh(K)
by P5, Ax18, MP (where K = F0(Ra; �b))

10. A believes �con�rmA(K)
by 4, 9, P10, Ax1, MP,

and def. of �con�rmA(K)

11. A believes A
K+
 ! B

by 8, 10, Ax1, MP, and def. of A
K+
 ! B

12. A believes A received [�b; Ra]K�1
b

by 4, 7, Ax1, Ax8, Nec, MP

13. A believes B said (�b; Ra)
by 3, 12, P2, Ax1, Ax4, Nec, MP

14. A believes B says (�b; Ra)
by 13, P5, Ax1, Ax19, Nec, MP

GoalG1 is a special case of G2, which is derived in line
14. G3 is derived in line 8, G4 in line 11, and G5 in
line 9. A similar proof shows that all of these goals are
formally derivable for B from the same premise set.

There is no possibility of deriving G6 (mutual under-
standing of shared key) for A. However, it would be
possible to derive G6 for B with a minimally revised
premise set. It is a standard part of BAN idealization
to interpret the �rst message from a principal employing
appropriate use of a shared encryption key as including
the assertion that the key is good for the relevant prin-
cipals. Thus, we might add a premise allowing B to
interpret receipt of f[�a; Rb]K�1a

gK as implying receipt

of f[�a; Rb; A
K
$ B]K�1a

gK . This would be su�cient to
allow the derivation of G6 for B. But, as always with
such interpretations, we must be very careful. (Recall
the earlier discussion regarding problems hidden by as-
sumptions in the idealization of NS.) It would be in-
correct to so interpret the message from B to A. By
the end of a successful protocol run B believes he has a
good key for communication with A; nonetheless, until
he receives the last message he has no guarantee that
it is A with whom he is establishing a key. He has re-
ceived nothing from A when he sends his message except
a cleartext number that should appear random to him.
(Presumably he also has an indicator of who sent the
number, but this is not assumed to be protected in any
way.) Thus, it would be wrong for A to interpret B's

message as including an assertion from him that B
K
$ A.

This could only be reasonably stated by B in a further
message, subsequent to the last one he receives in this
protocol.

In [Low96] Lowe constructs an \attack" on STS. It is an
attack because \A believes that B thought that he (B)
was talking to A." (p. 165) The above discussion shows
that such could not constitute an attack on STS because
this was never a goal of the protocol, nor was it stated to
be in [DvOW92]. In fact, in [vO93b] it was noted that
such an \eager belief" on A's part should be taken as
unveri�ed since it assumes B's reception and processing
of the third message. But, in the Lowe attack on STS,
B does not complete the protocol. A is entitled to infer
entity authentication of B (G2), and this remains true
in the attack Lowe constructs. But, A is not entitled
to conclude that she has mutual understanding with B
(G6) or anything similar.

5 Conclusions and Further Study

In this paper we have presented a logic that encom-
passes four of its predecessors in the BAN family. We
have also presented a model-theoretic semantics for our
logic with respect to which it is sound. Despite adding
expressiveness and axioms su�cient to reason about all
the properties of cryptographic protocols to which these
four predecessors are addressed, it is no more syntacti-
cally complex than any of them. In fact, measured by
the number of rules or axioms and their relative sim-
plicity, it is less complex than GNY, AT, and VO. And,
it has about the same number as BAN. In sum, we be-
lieve this logic to be about as simple to use as any of
those from which it is derived; yet it is more expressive
than any of them. Indeed, our analysis of the Needham-
Schroeder protocol compares favorably in simplicity to
the one in [BAN89]. It also uncovers a previously un-
noticed feature of the NS protocol. This led us to more

21

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

precisely delimit application context assumptions and
goals for the protocol than did either the original [NS78]
or the analysis in [BAN89].

We have also analyzed two key agreement protocols.
The structure of these is rather subtle and analysis
commensurately more complex than for simple key dis-
tribution protocols of the type analyzed in [BAN89].
Nonetheless, we used the logic to derive a number of
desirable goals for the protocols analyzed. And, by tak-
ing a closer look at the assumptions necessary to derive
those goals, we were lead to �nd an attack on one of
them. We reiterate that one of the virtues of formal
protocol analysis is that it forces one to fully set out
the formal assumptions necessary for a derivation. And,
one of the virtues of a model-theoretic semantics is that
it presents a mathematically rigorous setting in which
to evaluate the truth of those assumptions.

We have not looked at all the logics that have been de-
rived from BAN, e.g., [MB93]. (That logic is a contrac-
tion rather than an expansion of BAN. It is designed
to allow much that is informal in the analysis process
to be automated.) In particular we have not discussed
logics that express either time or message ordering. The
goals of these logics are somewhat more ambitious than
those discussed above. One of those goals is to address
more types of replay attacks. BAN is only directed at
classic replays, i.e., replays of messages originally sent
before the current protocol began. GNY, with its not-
originated-here syntax, adds the ability to reason about
some replay attacks using messages from within the cur-
rent protocol run but still does not address interleav-
ing attacks, that is attacks involving replay of messages
from at least two contemporaneous protocol runs. (Cf.
[BGH+92], [DvOW92], [Sne92], [Car93].) Indeed, none
of the logics discussed in this paper generally addresses
interleavings at all. (One might, nonetheless, uncover
an interleaving attack by coincidence in the course of
analysis using one of these logics. The point is that
there are no features of these logics that address such
attacks.)

Failure of methods such as BAN logic to address inter-
leaving attacks has led some to focus on the notion of
current protocol run rather than on freshness. However,
this still leaves some types of replays unaddressed (e.g.,
the �rst attack presented in [Syv93b]). We also have
not explored the relationship between di�erent BAN-
like logics that reason about time (e.g., [GS91]) or the
relationship they have to logics that allow reasoning
about message ordering (e.g., [KG91]). Our suspicion
is that the logics of [GS91] and [KG91] can be captured
by the logic of this paper with the temporal additions
of [Syv93a].

Finally, we have not looked at the still more ambitious
project of unifying the BAN family with other types of
logics. Nonetheless, we have produced a uni�ed BAN-
like logic that captures the features of four other BAN-
like logics. We have approached this from the perspec-
tive of having an integrated model. The result is more
than a collection of tools. Indeed, we believe it to be a
better instance of all the tools it contains.

References

[AT91] Mart��n Abadi and Mark Tuttle. A Seman-
tics for a Logic of Authentication. In Pro-

ceedings of the Tenth ACM Symposium on

Principles of Distributed Computing, pages
201{216. ACM Press, August 1991.

[BAN89] Michael Burrows, Mart��n Abadi, and Roger
Needham. A Logic of Authentication. Re-
search Report 39, Digital Systems Research
Center, February 1989. Parts and ver-
sions of this material have been presented
in many places including ACM Transactions

on Computer Systems, 8(1): 18{36, Feb.
1990. All references herein are to the SRC
Research Report 39 as revised Feb. 22, 1990.

[BGH+92] Ray Bird, Inder Gopal, Amir Herzberg, Phil
Janson, Shay Kutten, Re�k Molva, and
Moti Yung. Systematic Design of Two-
Party Authentication Protocols. In Joan
Feigenbaum, editor, Advances in Cryptol-

ogy | CRYPTO `91, volume 576 of Lecture
Notes in Computer Science. Springer Ver-
lag, Berlin, 1992.

[BM92] S.M. Bellovin and M. Merritt. Encrypted
Key Exchange: Password-based Protocols
Secure Against Dictionary Attacks. In Proc.
IEEE Computer Society Symposium on Re-

search in Security and Privacy, pages 72{84.
IEEE Computer Society Press, Los Alami-
tos, California, May 1992.

[BM93] S.M. Bellovin and M. Merritt. Augmented
Encrypted Key Exchange: a Password-
based Protocol Secure Against Dictionary

22

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

Attacks and Password File Compromise. In
Proc. First ACM Conference on Computer

and Communications Security, pages 244{
250, November 1993.

[Car93] Ulf Carlsen. Using Logics to Detect
Implementation-Dependent Flaws. In Pro-

ceedings of the Ninth Annual Computer Se-

curity Applications Conference, pages 64{
73. IEEE Computer Society Press, Decem-
ber 1993.

[Che80] Brian F. Chellas. Modal Logic: An Intro-

duction. Cambridge University Press, Cam-
bridge, 1980.

[DH76] Whit�eld Di�e and Martin Hellman. New
Directions in Cryptography. IEEE Transac-

tions on Information Theory, IT-22(6):644{
654, November 1976.

[DS81] D. E. Denning and G. M. Sacco. Time-
stamps in Key Distribution Protocols. Com-
munications of the ACM, 24(8):533{536,
August 1981.

[DvOW92] Whit�eld Di�e, Paul C. van Oorschot, and
Michael J. Wiener. Authentication and
Authenticated Key Exchanges. Designs,

Codes, and Cryptography, 2:107{125, 1992.

[GNY90] Li Gong, Roger Needham, and Raphael Ya-
halom. Reasoning about Belief in Cryp-
tographic Protocols. In Proceedings of the

1990 IEEE Computer Society Symposium

on Research in Security and Privacy, pages
234{248. IEEEComputer Society Press, Los
Alamitos, California, 1990.

[Gol92] Robert Goldblatt. Logics of Time and Com-
putation, 2nd edition, volume 7 of CSLI Lec-
ture Notes. CSLI Publications, Stanford,
1992.

[Gos90] K.C. Goss. Cryptographic Method and Ap-
paratus for Public Key Exchange with Au-
thentication, 1990. U.S. Patent 4,956,863
(granted Sept. 11, 1990).

[GS90] Klaus Gaarder and Einar Snekkenes. On
the formal analysis of PKCS authenti-
cation protocols. In J. Seberry and
J. Pieprzyk, editors, Advances in Cryptology
| AUSCRYPT `90, volume 453 of Lecture
Notes in Computer Science, pages 106{121.
Springer-Verlag, 1990. These are the pro-
ceedings of AUSCRYPT'90, Jan. 8-11, 1990.

[GS91] Klaus Gaarder and Einar Snekkenes. Ap-
plying a Formal Analysis Technique to the
CCIT X.509 Strong Two-Way Authentica-
tion Protocol. Journal of Cryptology, 3:81{
98, 1991. A preliminary version of this paper
appeared as [GS90].

[Hin62] Jaakko Hintikka. Knowledge and Belief:

An Introduction to the Logic of Two No-

tions. Cornell University Press, Ithaca,
N.Y., 1962.

[KG91] Rajashekar Kailar and Virgil D. Gligor. On
Belief Evolution in Authentication Proto-
cols. In Proceedings of the Computer Secu-

rity Foundations Workshop IV, pages 103{
116. IEEE Computer Society Press, Los
Alamitos, California, 1991.

[Low96] Gavin Lowe. Some New Attacks upon Se-
curity Protocols. In Proceedings of the

9th Computer Security Foundations Work-

shop, pages 162{169. IEEE Computer Soci-
ety Press, Los Alamitos, California, 1996.

[MB93] Wenbo Mao and Colin Boyd. Towards a
Formal Analysis of Security Protocols. In
Proceedings of the Computer Security Foun-

dations Workshop VI, pages 147{158. IEEE
Computer Society Press, Los Alamitos, Cal-
ifornia, 1993.

[Men87] Elliott Mendelson. Introduction to Mathe-

matical Logic. Wadsworth Publishing Co.,
1987.

[MQV95] Alfred Menezes, Minghua Qu, and Scott
Vanstone. Some New Key Agreement Pro-
tocols Providing Implicit Authentication,
1995. Preprint.

[MTI86] T. Matsumoto, Y. Takashima, and H. Imai.
On Seeking Smart Public-Key Distribution
Systems. Trans. IECE Japan, 69(2):99{106,
February 1986.

[Nes90] D. M. Nessett. A Critique of the Burrows,
Abadi, and Needham Logic. Operating Sys-
tems Review, 24(2):35{38, April 1990.

[NS78] R.M. Needham and M.D. Schroeder. Using
Encryption for Authentication in Large Net-
works of Computers. Communications of

the ACM, 21(12):993{999, December 1978.

23

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

[Sne92] Einar Snekkenes. Roles in Cryptographic
Protocols. In Proceedings of the 1992 IEEE

Computer Society Symposium on Research

in Security and Privacy. IEEE Computer
Society Press, Los Alamitos, California,
1992.

[SvO94] Paul F. Syverson and Paul C. van Oorschot.
On Unifying Some Cryptographic Protocol
Logics. In Proceedings of the 1994 IEEE

Computer Society Symposium on Research

in Security and Privacy, pages 14{28. IEEE
Computer Society Press, Los Alamitos, Cal-
ifornia, 1994.

[Syv91] Paul F. Syverson. The Use of Logic in the
Analysis of Cryptographic Protocols. In
Proceedings of the 1991 IEEE Computer So-

ciety Symposium on Research in Security

and Privacy, pages 156{170. IEEE Com-
puter Society Press, Los Alamitos, Califor-
nia, 1991. A corrected discussion of many of
the issues in this paper appeared in [Syv92].

[Syv92] Paul F. Syverson. Knowledge, Belief, and
Semantics in the Analysis of Cryptographic
Protocols. Journal of Computer Security,
1(3):317{334, 1992.

[Syv93a] Paul F. Syverson. Adding Time to a Logic of
Authentication. In Proceedings of the First

ACM Conference on Computer and Com-

munications Security, pages 97{101. ACM
Press, New York, November 1993.

[Syv93b] Paul F. Syverson. On Key Distribution Pro-
tocols for Repeated Authentication. Oper-

ating Systems Review, 27(4):24{30, October
1993.

[TMN90] Makoto Tatebayashi, Natsume Matsuzaki,
and David B. Newman, Jr. Key Distribu-
tion Protocol for Digitial Mobile Commu-
nication Systems. In G. Brassard, editor,
Advances in Cryptology | CRYPTO `89,
volume 435 of Lecture Notes in Computer

Science. Springer Verlag, Berlin, 1990.

[vO93a] Paul C. van Oorschot. An Alternative Ex-
planation of two BAN-logic \failures". In
Tor Helleseth, editor, Advances in Cryptol-

ogy | EUROCRYPT `93, volume 765 of
Lecture Notes in Computer Science, pages
443{447. Springer-Verlag, 1993.

[vO93b] Paul C. van Oorschot. Extending Crypto-
graphic Logics of Belief to Key Agreement
Protocols (Extended Abstract). In Proceed-

ings of the First ACM Conference on Com-

puter and Communications Security, pages
232{243, November 1993.

[Yac90] Y. Yacobi. A Key Distribution Paradox. In
Advances in Cryptology | CRYPTO `90,
volume 537 of Lecture Notes in Computer

Science, pages 268{273. Springer Verlag,
Berlin, 1990.

A Relation to GNY extensions

In [GNY90], Gong, Needham, and Yahalom presented
GNY. This logic is noteworthy for making one of the
largest additions to both the notation and logical rules
of BAN. It is therefore interesting to see how much of
it is easily accomodated in SVO. This is investigated in
this appendix. Similar investigation is made of VO in
the next one.

A.1 GNY Notational Additions

P / X : P is told X . This is expressed in our syntax as
`P received X '.

P 3 X : P possesses , or is capable of possessingX . This
is expressed in our syntax as `P sees X '.

P j� X : P once conveyed X . This is expressed in SVO
as `P said X '.

#(X): X is fresh. This is expressed in SVO as
`fresh(X)'.

�(X): Recognizability of X . In GNY rules this only
occurs in the context of someone's belief. This is con-
sistent with the reasonable requirement that recogniz-
ability be tied to an individual, rather than considering
what is recognizable to everyone. We will express this
relativization in SVO by translating expressions of the
form P j� �(X) in GNY as P believes P sees X . This
is relativization is discussed below when we look at GNY
recognizability rules.

P / �X : P is told a formula that he did not convey
previously in the current run. This is captured in SVO
as `(P received X) ^ :(P says X)'. Note that the SVO
expression is actually broader than the GNY expression.
It says that P did not sayX since the start of the current
run, whether within the run or not.

X ; C: These are called message extensions. They are
used in conveyed messages to indicate conditionality of
an assertion. They are only used logically in connection
with GNY J2, one of the jursdiction rules. We defer
comment to the section below where we discuss this rule.

24

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

It is interesting that we were unable to give translations
for some of the GNY formulae without referring to the
corresponding logical rules. This is because, beyond a
minimal intuitive explanation, any technical meaning
that GNY expressions hold is tied up with the logic.

A.2 GNY Logical Rules

We will look at these rules with the following question
in mind. Once we have made an appropriate trans-
lation to SVO syntax, is there a logical derivation (in
SVO) of the conclusion of a rule from its premises? If
so, then the rule expresses a result that is syntactically
captured in SVO. (Hence, we know that it is also seman-
tically captured by our model of computation because of
soundness.) When we say that a GNY rule is derivable
in SVO below we mean that the answer to the question
just asked is yes.

GNY Rationality Rule
This rule says that whenever we can infer C2 from C1,
we can also infer P j� C2 from P j� C1. It falls out of
the modus ponens rule and axiom Ax1.

GNY Being Told and Possession Rules
All of these rules are obviously derivable in SVO except
T5. T5 says that P / Y follows from P / F (X;Y) and
P 3 X . F is taken to be a many-to-one computationally
feasible function that is one-to-one computationally fea-
sible if either X or Y is held constant, as is its inverse.
([GNY90], p. 235.) It is di�cult to assess such a rule
in general, but Gong et al. do provide one example of
the type of function they have in mind, viz: exclusive-
or. Our discussion of T5 thus follows their example.
If we view exclusive-or as encryption, then T5 can be
viewed as a general statement of T3, which says that
P /Y follows from P /fY gX and P 3 X . However, care
must be taken in such cases because, when exclusive-or
is used for encryption, fXgY = fY gX . Strictly speak-
ing, in our language this is only true when both X and
Y are keys since fXgY is only well-formed when Y is a
key. Nonetheless, according to T5 in GNY, if P receives
X�Y and P possesses both X and Y , then, P has been
told X and been told Y . There may be applications for
which this is a reasonable inference, but the example
shows why we might not want to have T5 as a logical
rule. Often, if not virtually always, we would like to
distinguish a message sent from attendant parameters,
such as keys used to encrypt the message. However, T5
obliterates this distinction by treating the arguments
of F symmetrically. Furthermore, such symmetry can
serve as the basis of attacks that allow a penetrator to
deduce keys from chosen, known, or guessed plaintext|
for example, the Simmons attack on the TMN protocol
discussed in [TMN90]. This example does not serve as

a similar basis for criticism of T3. The symmetry in the
encryption algorithm subjects it to direct attack. This
violates the general assumption of all logics discussed
herein that encryptions are not breakable by direct at-
tack (to reveal either the plaintext or the key).

GNY Freshness Rules
All of these rules are derivable in SVO except F5 and
F6. F5 says that a principal's belief in the freshness of
a private key follows from his belief in the freshness of
its public cognate. F6 expresses the converse inference.
There is no reason in practice to question these rules;
however, there is also no harm in practice in leaving
them out since public keys are usually long term and
not distributed on line. They thus do not generally play
a role in freshness considerations. F11 is only derivable
in SVO assuming R6, which will be discussed shortly.

GNY Recognizability Rules
All of these rules are derivable in SVO except R6. This
rule says that P j� �(X) follows from P 3 H(X). But,
from the mere possession of H(X), P should not form
any beliefs about X ; without X , he may not know that
he is seeing H(X) rather than some other message or
even just a random bitstring. R6 as given in GNY is
thus too strong, although perhaps only with respect
to this intuition. If we replace the statement that P
believes X is recognizable with a claim that X is rec-
ognizable by P we get a more reasonable conclusion.
However, we have no formal means to directly repre-
sent this in either SVO or GNY. SVO does have the
expressive capability to indicate that a principal recog-
nizes a given bitstring as the same one that yielded the
hash he received in a previous message, which appears
to be the intended e�ect of R6. Recall that GNY only
expresses recognizability in the context of belief, e.g.,
P j� �(X), and this is the GNY formula for which we
have provided an SVO translation. Indeed, as the above
discussion shows, our treatment allows us to capture the
e�ects of GNY recognizability with weaker logical rules.

GNY Message Interpretation Rules
We do not attempt to handle all of these, on general
grounds of logical unwieldiness and inelegance. We
make an admittedly arbitrary division by addressing
only those rules containing less than �ve premises. Once
appropriate translations have been made, these are
derivable in SVO except for the second conclusion of I4:
P j� Q j� fXg�K. We saw no practical value of such
a conclusion. Should this be incorrect, Q said [X]K�1
can be added to the consequent of axiom Ax4. Similar
addition can be made to axiom Ax3. This logic remains
sound with respect to the semantics given in x3. As
mentioned earlier, some BAN logics assume message re-
covery from signatures. GNY does not actually even

25

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

explicitly discuss signatures. I4 and I5 are meant to be
used with public key encryption schemes such as RSA,
where ffXgK�1gK = X . In claiming that we can cap-
ture the reasoning of these rules, we are assuming in
our translation that a more common scheme (for which
message recovery is not possible) is being used rather
than one such as they describe.

GNY Jurisdiction Rules
Like AT, SVO separates belief from everything else, in-
cluding trust. This is useful (and perhaps the only way
one is likely to maintain a model-theoretic semantics).
The only jurisdiction rule (actually axiom) in SVO is
the same as in AT, viz: P controls ' ^ P says ' � '.

GNY J1 is taken directly from BAN's jurisdiction rule.
BAN also has only one rule in this category. Nonethe-
less, BAN's rule is not derivable from the above nor
valid in the semantics. This is no great loss since the
only iterated beliefs we generally care about are derived
from things that one principal says to another. In other
words, the above axiom captures what we need from
J1. BAN and GNY must express jurisdiction in terms
of belief since that is their only way to capture a prin-
cipal's actions in the current epoch. A more detailed
discussion of this is given in [AT91], x3.2.

As Gong et al. say (p. 240) that J3 is just a special case
of J2, we focus on J2.
(From P j� Q j) Q j� �, P j� Q j� (X ; C), and
P j� #X , infer P j� Q j� C.) This rule introduces new
notation not discussed elsewhere. `P j� Q j) Q j� �'
captures the idea that P believes Q to be honest (Q only
says what he believes) and competent (Q understands
the implications of what he says). This can be trans-
lated directly to the following SVO syntax expression:
P believes (((Q says X) ^ (X � C)) � (Q believes C)).
The second premise of the rule can also be translated
directly to SVO: P believes ((Q said X) ^ (X � C)).
And, the third premise is the same in GNY and SVO,
except for an irrelevant notational di�erence. Similarly,
the conclusion of the rule is the same in GNY and SVO.
So, the rule is entirely expressible within the SVO syn-
tax. Furthermore, it is not only sound but an easy log-
ical derivation in SVO.

B Relation to VO extensions

The �rst paper to introduce the capability to reason
about key agreement, e.g., Di�e-Hellman exchanges, to
a BAN-like logic is [vO93b]. Some of the notation and
rules intoduced therein arise naturally in such protocols,
but they are also applicable to shared and private key
protocols as discussed in the above papers.

B.1 VO Notational Additions and Logical
Rules

A
K�
 ! B: K is A's uncon�rmed secret suitable for

B. No one aside from A and B and those they trust
knows or could deduce K. This construct emphasizes,
however, that while A knows K, B may or may not.
This notation arises quite naturally when looking at
key agreement protocols, such as Di�e-Hellman type
key distributions, and is actually easy to capture in our

semantics. Since `A
K
$ B' simply means that K is a

good key for A and B regardless of whether either of

them knows this, we can actually de�ne A
K�
 ! B in

the SVO syntax: (A
K
$ B) ^ (A sees K).

A
K+
 ! B: K is A's con�rmed secret suitable for B. A

knows K, and has received evidence con�rming that B
knows K. No parties other than A and B and those
they trust know or can feasibly deduce K. This is a
little trickier to capture in our semantics. For we must
decide what it means for A to receive con�rmation that
B knows K. Let us consider a typical example of such
con�rmation in a protocol. Suppose B has just received
the session key K and wants to con�rm this to A. If
she has sent him a nonce Na earlier in the protocol run,
a typical way for B to send con�rmation is by encrypt-
ing Na (or perhaps Na � 1) with K and his own name
and sending this to A. VO reasons about the key con-
�rmation B sends to A in this example by introducing
con�rmation axioms, which we will discuss below when
we come to the con�rm(K) notation.

How would this key con�rmation be handled using ex-
isting constructs in SVO? Consider an SVO analysis of
a key distribution protocol where the above con�rma-
tion occurs. The standard practice in [BAN89] would
be to idealize this in the protocol analysis by B sending

to A fNa; (A
K
$ B); BgK . In other words, the protocol

idealization of B's sending such a message incorporates
B saying that K is a good key for A and himself. But,

notation of the form A
K
$ B is BAN's only way to ex-

press statements about a key. Using SVO notation we
can make the more accurate interpretation of this mes-
sage as fNa; (B sees K); BgK . Thus our premise set
would include A believes (A received fNa � 1; BgK �
A received f(Na � 1; (B sees K); BgK). Given that A
has the necessary beliefs about the freshness of Na and
the (uncon�rmed) goodness of K we can derive the con-
clusion of the VO key con�rmation rule (R32) within

SVO. Thus, if we translate the syntax A
K+
 ! B as

A believes ((A
K�
 ! B) ^ (U says U sees K)), where

U 6= A, reasoning about key con�rmation can be cap-
tured entirely within SVO. (Translating this fully back

26

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

to the SVO syntax we get A believes ((A
K
$ B ^

A sees K) ^ (U says (U sees K))), where U 6= A.)10

The technique of the last paragraph allows us to capture
key con�rmation entirely without adding explicit con-
�rmation syntax to SVO. However, there is a hidden
informal assumption in such an approach. We can only
use it if we systematically employ meta-rules for premise
formation. Instead of explicitly using the con�rmation
axioms (C1{C3) of [vO93b] we must, in e�ect, always
employ those axioms in premises of this type (i.e., re-
ceiver's interpretation premises). On the other hand, if
we add the VO notation and rules, there is no need to
give, e.g., A's interpretation of receiving fNagK . We
thus have a choice. On the one hand is a more stream-
lined logic and semantics accompanied by more assump-
tions about message interpretation, while on the other
is a more complex logic and semantics accompanied by
fewer such assumptions. By far the greatest source of
confusion and misapplication of BAN to date has come
from slipping dubious assumptions in (or leaving neces-
sary assumptions out) during protocol idealization. The
more formally explicit approach is thus safer, but either
can be rigorously followed to the same practical e�ect.
In the next paragraph we will discuss a proposal that
combines the advantages of explicit axioms and a sim-
pler logic.

con�rm(K): Current knowledge of K has been demon-

strated. We have been discussing the relative merits
of capturing key con�rmation via axioms and via di-
rect translation to the syntax of SVO. If we choose to
follow the latter route, then `con�rm(K)' becomes ir-
relevant notation. The con�rmation axioms make use
of recognizability in the sense of GNY. Thus, if we
wish to follow the former route, we will have to rela-
tivize `con�rm(K)' in just the way that we relativized
`�(X)' in appendix A.1. For convenience in the fol-
lowing discussion we introduce the syntactic shorthand
�P (X) � P believes P sees X . (This would be intu-
itively too strong if �P (X) were understood as X is
recognizable to P . The intuitive reading in what fol-
lows might better be rendered as P recognizes X , for
which P believes P sees X is a more acceptable approx-
imation. In any case, the following discussion will ul-
timately obviate this notation.) The relativization is
thus trivial notationally. For example, VO axiom C3
becomes

fresh(K) ^ �P (H(K)) � con�rmP (K)

We could use this to try to treat con�rmP (K) as a de-

10For reasons that will soon become apparent, we will give a

revised de�nition of `A
K+
 ! B' below.

�ned term following the axioms. But this raises some
problems. Suppose we introduce the following de�nition
(which encompasses C1, C2, and C3):

con�rmP (K) �
(fresh(X) ^ �P (fXgK))_
(fresh(X) ^ �P (MACK(X))_
(fresh(K) ^ �P (H(K)))

If we were then to try to apply this in VO rule R32,
we would need to verify that A received �con�rmA(K).
(Recall that VO follows GNY in using `�' to indi-
cate that a message orginated elsewhere, rather than
to indicate a message that may not be understood|
as in SVO.) Unpacking the syntactic de�nition this
would mean that A received �((fresh(X) ^ �P (fXgK))_
(fresh(X) ^ �P (MACK(X))_(fresh(K) ^ �P (H(K)))).
But, since receiving does not distribute across disjunc-
tions, this would never actually be satis�ed. Actually
this problem exists for R32 even before we attempt
to give a de�nition: it is clear that in the condition
A received �con�rmA(K), A is not meant to see a state-
ment regarding freshness. Rather she is supposed to see
a statement that contains a fresh component. In addi-
tion there is the open endedness of the axiom list. These
axioms were meant to capture three common ways of es-
tablishing key con�rmation in practice, but others are
possible. A fourth would simply involve sending the
key K itself in a message; the message would have to
be fresh somehow itself if the key K was not known to
be fresh. (Note that in Di�e-Hellman key agreement,
it is.) So, another axiom would be

C4. �P (K) ^ fresh(K) � con�rmP (K)

These and similar possibilities can all be represented in
SVO by a single syntactic de�nition:

con�rmP (K) �
((P received F (X;K) ^ �P (F (X;K))^

(fresh(X) _ fresh(K)))

Here F is a feasibly computable function, that is ef-
fectively one-one. This means it is infeasible to �nd
any two pairs (X;K) mapping to the same value. F
is required to be one-way (in the sense that encryp-
tions, MACs, and cryptographic hash functions would
be) if and only if it is important that K not be re-
vealed by the con�rmation process itself.11 This also

11In con�rming knowledge of K, the intention is that the key K
itself is not revealed. However, in terms of formal de�nition, this
is irrelevant|what is of import is con�rmation only. If a key K
is somehow compromised, whether in relation to key con�rmation
or otherwise, this may violate an assumption about key quality,
but that should be treated distinctly from key con�rmation.

27

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

allows a more general de�nition of (data) con�rmation
(rather than key con�rmation). Restricting con�rma-
tion to keys seems unnecessary, and it should not be a
general constraint that data are not revealed through
the con�rmation process. Ways of con�rming knowl-
edge of information without revealing the information
itself is the subject of a large area of research, namely
zero-knowledge; this subject is beyond the scope of the
present work. Note X can be null, and F could be
the identity function, as in C4, the above axiom. We
have incorporated `P received F (X;K)' into the de�ni-
tion because con�rmation is only relevant if someone
receives it. Bringing this into the axiom itself avoids
the problem of distributing received raised above. We
can provide a similar de�nition to indicate that P has
received con�rmation from someone other than herself:

�con�rmP (K) �
(P believes P received F (X;K))^
:(P said F (X;K)) ^ (fresh(X) _ fresh(K))

The de�nition just introduced has a number of ad-
vantages. It makes con�rmation criteria explicit but
constitutes no addition to SVO since it is eliminable,
i.e., it can always be replaced by the longer expression
that is purely in the language of SVO. (We have al-
ready dropped in this de�nition the notational short-
hand of �P (F (X;K)).) As just indicated, its applica-
tion goes beyond the current context. It still requires
that informal work be done, but the interpretation of
protocol messages is as direct as it would be were we
to use the axioms from [vO93b]. (As in our exam-
ple of returning an encrypted nonce above, A's receipt
of fNa � 1; BgK need not be interpreted as receipt of
fNa � 1; (B sees K); BgK .) The informal step is in de-
termining whether or not this constitutes a function
and functional arguments as stipulated in the axiom.
But, this question is not subject to the same di�culties
as when determining the intended meaning of a mes-
sage. Here we need only make a determination based
on mathematically rigorous criteria|up to the limits of
the usual cryptographic assumptions made in protocol
analysis.

Given the considerations of the last several paragraphs,

we revise our de�nition of `A
K+
 ! B'.

A
K+
 ! B � ((A believes A

K�
 ! B) ^ �con�rmA(K))

We now turn to notation for reasoning about public
and private keys. The BAN notation to represent that

K is A's public key is `
K
7! A'. It is simply assumed

in BAN that the corresponding private key is kept se-
cret. Notation for the private key, `K�1', is only used
to indicate encryption using the key, e.g., fXgK�1 . A's

posession of K�1 is meant to be implicitly inferred from

A believes
K
7! A. GNY introduces syntax for explic-

itly representing and reasoning about possession of pri-
vate keys. Nonetheless, goodness of a private key is still
meant to be inferred from a statement about the public

key as in BAN, i.e., from
K
7! A. In [GS91], Gaarder and

Snekkenes separate statements representing that A has
associated a good public key K, viz: PK(A;K), from
those representing that A has associated some good pri-
vate key, viz: �(A). Thus the judgement about the
quality of the private key is now associated with a state-
ment about the private key, rather than being implied
by a statement about the public key. In e�ect, this sep-
arates statements about the binding of a public key to
a principal from statements about the quality of a prin-
cipal's private key. Gaarder and Snekkenes separated
these to reason about certi�cates binding a principal
to a public key in the X.509 protocol separately from
evaluating trust that the corresponding private key is
kept secret. VO follows the developments of Gaarder
and Snekkenes and also introduces distinct notation for
public keys for signing, enciphering, and key agreement.

PK�(A;K): K is the public signature veri�cation key

associated with principal A.
PK�1

� (A): A's private signature key K�1 is good. Here
K�1 corresponds to the public key K in PK�(A;K).12

Analogous de�nitions are made for enciphering
(PK (A;K), PK�1

 (A)) and key agreement

(PK�(A;K), PK�1
� (A)). Unfortunately in the seman-

tics of x3 we were unable to give truth conditions for
all of these individually. We have reverted to grouping
the binding of a public key together with the quality
(secrecy) of the private key. We thus use `PK(A;K)' to
mean both thatK is the public key associated with prin-
cipal A and that the corresponding private key, K�1,
is good. If this is a loss, it is logically speaking a mi-
nor one. There are good reasons for separating the two
notions. For, there are two distinct kinds of protocol
failures here. On the one hand, the secrecy of a pri-
vate key might be compromised. On the other hand,
a principal A might be tricked into thinking that the
wrong public key is bound to principal B. The distinc-
tion introduced by Gaarder and Snekkenes allows us to
di�erentiate these failures. Nonetheless, the only logical
use of the corresponding expressions occurs in their rule
R13, where both proper binding and good private keys

12We are following convention here by using `K�1' to refer to
a private signature key. Some schemes such as RSA can be used
for both enciphering and signatures because of invertibility. This
makes the notational choice quite natural. However, some signa-
ture schemes are not invertible, and for those schemes the notation
is slightly deceptive.

28

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

are premises of the rule. (Actually, what is required is
belief therein, but this is aside.) This is similarly true
for VO's rules. Thus, since both good public binding
and good private keys are required for any logical use
of these notions, it is su�cient to have notation that
captures them together. (Nevertheless, we acknowledge
that it would be nice to have the requirements syntacti-
cally separated for a more direct reection of the nature
of potential failures.)

Aside from the key con�rmation axioms already dis-
cussed, VO introduces three new logical rules. (These
are presented in appendix E.) They are all derivable in
SVO, with the translations discussed above.

C GNY Rules

We present these GNY rules without any explanation
of the rules or notation therein. Readers are referred to
[GNY90] for details.

C.1 Rationality Rule

If
C1

C2
is a rule, then for any principal P , so is

P j� C1

P j� C2
.

C.2 Being-Told Rules

T1
P / �X

P /X

T2
P / (X;Y)

P / X

T3
P / fXgK; P 3 K

P /X

T4
P / fXg+K; P 3 �K

P /X

T5
P / F (X;Y); P 3 X

P / Y

T6
P / fXg�K; P 3 +K

P /X

C.3 Possession Rules

P1
P / X

P 3 X

P2
P 3 X;P 3 Y

P 3 (X;Y); P 3 F (X;Y)

P3
P 3 (X;Y)

P 3 X

P4
P 3 X

P 3 H(X)

P5
P 3 F (X;Y); P 3 X

P 3 Y

P6
P 3 K; P 3 X

P 3 fXgK; P 3 fXg
�1
K

P7
P 3 +K; P 3 X

P 3 fXg+K

P8
P 3 �K; P 3 X

P 3 fXg�K

C.4 Freshness Rules

F1
P j� #(X)

P j� #(X;Y); P j� #F (X)

F2
P j� #(X); P 3 K

P j� #(fXgK); P j� #(fXg�1K)

F3
P j� #(X); P 3 +K

P j� #(fXg+K)

F4
P j� #(X); P 3 �K

P j� #(fXg�K)

F5
P j� #(+K)

P j� #(�K)

F6
P j� #(�K)

P j� #(+K)

F7
P j� �(X); P j� #(K); P 3 K

P j� #(fXgK); P j� #(fXg�1K)

F8
P j� �(X); P j� #(+K); P 3 +K

P j� #(fXg+K)

F9
P j� �(X); P j� #(�K); P 3 �K

P j� #(fXg�K)

F10
P j� #(X); P 3 X

P j� #(H(X))

F11
P j� #(H(X)); P 3 H(X)

P j� #(X)

C.5 Recognizability Rules

R1
P j� �(X)

P j� �(X;Y); P j� �(F (X))

R2
P j� �(X); P 3 K

P j� �(fXgK); P j� �(fXg�1K)

R3
P j� �(X); P 3 +K

P j� �(fXg+K)

R4
P j� �(X); P 3 �K

P j� �(fXg�K)

R5
P j� �(X); P 3 X

P j� �(H(X))

R6
P 3 H(X)

P j� �(X)

29

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

C.6 Message Interpretation Rules

We present only I4, I6, and I7.

I4
P / fXg�K; P 3 +K; P j�

+K
7! Q; P j� �(X)

P j� Q j� X; P j� Q j� fXg�K

I6
P j� Q j� X; P j� #(X)

P j� Q 3 X

I7
P j� Q j� (X;Y)

P j� Q j� X

C.7 Jurisdiction Rules

J1
P j� Q j) C; P j� Q j� C

P j� C

J2
P j� Q j) Q j� �; P j� Q j� (X ; C); P j� #(X)

P j� Q j� C

J3
P j� Q j) Q j� �; P j� Q j� Q j� C

P j� Q j� C

D AT Rules and Axioms

We present these AT rules and axioms without expla-
nation. Readers are referred to [AT91] for details.

There are two rules:

R1. Modus Ponens: From ` ' and ` ' � infer ` .

R2. Necessitation: From ` ' infer ` P believes '.

Axioms are all instances of tautologies of classical
propositional calculus, and all instances of the follow-
ing axiom schemata:

Believing

For any principal P and formulae ' and ,

A1. P believes ' ^ P believes (' �) � P believes

A2. P believes ' � P believes (P believes ')

A3. :(P believes ') � P believes (:(P believes '))

Message Meaning

If P 6= S, then

A5. P
K
$ Q ^ R sees fXSgK � Q said X

A6. P
Y
*) Q ^ R sees hXSiY � Q said X

Seeing

A7. P sees (X1; : : : ; Xn) � P sees Xi

A8. P sees fXQgK ^ P has K � P sees X

A9. P sees hXQiS � P sees X

A10. P sees `X ' � P sees X

A11. P sees fXQgK ^ P has K �
P believes (P sees fXQgK)

Saying

A12. P said (X1; : : : ; Xn) � P said Xi

A13. P said hXQiS � P said X

A14. P sees `X ' ^ :P sees X � P said X

If ` says ' is substituted for ` said ' throughout in A12,
A13, or A14, the result is also an axiom.

Jurisdiction

A15. P controls ' ^ Psays' � '

Freshness

A16. fresh(Xi) � fresh(X1; : : : ; Xn)

A17. fresh(X) � fresh(fXgK)

A18. fresh(X) � fresh(hXiS)

A19. fresh(X) � fresh(`X 0)

Nonce-Veri�cation

A20. fresh(X) ^ P said X � P says X

Shared Keys and Secrets

A21. R
K
$ R0 � R0 K$ R

A22. R
K
*) R0 � R0

K
*) R

E VO Rules

We present the three rules introduced in [vO93b] (in the
original notation).

R30
A has PK�1

� (A); A has PK�(U)

A has K
where K = f(PK�1

� (A);PK�(U)).

30

\A Uni�ed Cryptographic Protocol Logic" by P. Syverson and P. van Oorschot. NRL CHACS Report 5540-227, 1996.

R31
A j� PK�1

� (A); A j� PK�(B); A j� PK�1
� (B)

A j� A
K�
 ! B

where K = f(PK�1
� (A);PK�(B)).

R32
A j� A

K�
 ! B; A sees �con�rm(K)

A j� A
K+
 ! B

31

