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Abstract 
Grid technologies provide a robust infrastructure for 
distributed computing, and are widely used in large-scale 
scientific applications that generate terabytes (soon 
petabytes) of data.  This data is described with metadata 
attributes about the data properties and provenance, and is 
organized in a variety of metadata catalogs distributed over 
the grid.  In order to find a collection of data that share 
certain properties, these metadata catalogs need to be 
identified and queried on an individual basis.  This paper 
introduces Artemis, a system developed to integrate 
distributed metadata catalogs on the grid.  Artemis exploits 
several AI techniques including a query mediator, a query 
planning and execution system, ontologies and semantic 
web tools to model metadata attributes, and an intelligent 
user interface that guides users through these ontologies to 
formulate queries.  We describe our experiences using 
Artemis with large metadata catalogs from two projects in 
the physics domain. 

Introduction   
 Scientific data analysis is quickly moving to realms that 
require efficient management of data repositories in the 
petabyte scale [National Virtual Observatory project 
(NVO)1; Laser Interferometer Gravitational Wave 
Observatory (LIGO)2; Earth System Grid (ESG)3; 
Southern California Earthquake center (SCEC)4].  Grid 
technologies [Foster and Kesselman 99; Foster et al 01] are 
used to manage distributed resources: compute, data, 
instruments etc across organizational boundaries. 
Middleware, such as the Globus Toolkit5, enable the 
discovery of remote resources and access to them in a 
secure fashion. Grids support the distributed management 
of large data sets through secure and efficient data transfer, 
storage resource management, and data replica 
management. Grids also enable distributed, large-scale, 
computation and data intensive analysis. Grids are very 
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1 http://www.us-vo.org 
2 http://ligo.caltech.edu 
3 http://www.earthsystemgrid.org 
4 http://www.scec.org/cme 
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dynamic: the availability of the resources may vary 
significantly over time. 
 Although grids make many large data repositories 
available, integrating them in a highly dynamic distributed 
environment is a challenge. Metadata catalogs address 
some of these problems by supporting queries to data 
based on metadata attributes of the files and managing 
collections of data as well as versioning and provenance 
information [Moore et al 01, Singh et al 03].  Mediator 
techniques can be used to integrate diverse data sources 
[Levy 2000] but have not been used in grid environments 
that are extremely dynamic.  Data sources can appear, be 
temporarily unavailable or disappear, change contents or 
access mechanism, and migrate to different locations. 
These changes are not only at the implementation and 
installation level, but also at the conceptual level in terms 
of the metadata used to describe and index their contents.  
As scientists model scientific phenomena and analyze large 
data sets, they generate new data products that need to be 
described using possibly new metadata that needs to be 
incorporated in the repository.  In addition to operating in 
this very dynamic environment, scientific applications 
need to support a high degree of heterogeneity in the data.  
This is because they are often multidisciplinary efforts that 
integrate results from complementary observations and 
analysis of the same underlying phenomenon. That 
phenomenon may be described in different ways in 
different disciplines or modeling environments. 
 This paper describes Artemis, a query formulation and 
planning system that enables users to easily query 
metadata catalogs on the grid. It includes a query mediator 
based on planning techniques that dynamically updates its 
domain model, and an ontology-based query formulation 
system that helps a user create and refine queries 
interactively based on the current contents of the 
repositories.  Artemis is integrated with an existing 
Metadata Catalog Service (MCS), which is based on the 
widely used Globus toolkit for grid computing.   We have 
evaluated Artemis with data from two different scientific 
domains.  
 Artemis illustrates the potential of Artificial Intelligence 
techniques for data integration on the grid, and 
complements prior work on Pegasus, a workflow 
generation and mapping system for grid computing [Blythe 
et al 03; Deelman et al 03 Gil et al 04].  As Pegasus 
continues to be used in a variety of scientific domains to 
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map, manage and execute workflows with hundreds of 
thousands of jobs and terabytes of data products [Deelman 
et al 04], the need to provide grids with a system like 
Artemis becomes more immediate. 
 The paper begins by outlining the key problems to be 
addressed in dynamic heterogeneous query planning.  
After describing Artemis in detail, we discuss our 
experiences to date integrating data from real scientific 
applications and the future extensions that are needed to 
support data integration on the grid. 

Motivation 
 Science today is conducted in a collaborative fashion. In 
order to enable scientific discovery, collaborations 
encompass numerous researchers sharing computation, 
data and network resources, and instruments. Additionally, 
scientists share their applications and data not only in the 
raw form, but processed in some fashion.  
 Because of the size of the data, terabytes today, and 
petabytes in the near future, data is often distributed and 
replicated in the environment.  Additionally, metadata—
descriptive data about particular data products—is often 
stored and queried separately from the data itself. The 
metadata may be distributed as well. For example, in the 
case of the LIGO scientific collaboration that encompasses 
scientists from the US LIGO as well as the GEO6 efforts (a 
British-German gravitational-wave detector experiment) 
scientists share the data collected independently in the US 
and in Europe. Each of the experiments: LIGO and GEO 
publish their data and their metadata to the Grid 
independently of the other experiments. Additionally, even 
after publication, the LIGO and GEO metadata may evolve 
independently of each other.  
 In order to conduct cross-correlation studies between the 
LIGO and GEO data, scientists need to discover the 
necessary data products in distributed metadata catalogs. 
However, it may be difficult for a LIGO researcher to fully 
understand the GEO metadata. After identifying the 
desired data products through the metadata queries, 
researchers can locate and access the corresponding data.  
 The metadata being published by experiments is often 
not the definitive set of descriptive attributes. As the 
understanding of the data collected increases, the attributes 
may change or may be augmented to include the new 
information. For example, it is often the case that raw data 
is of no scientific value unless it is carefully calibrated. 
Calibration is not an easy process and is often iterative. 
Consequently, the metadata changes as the calibrations are 
updated.  
 The LIGO/GEO metadata integration problem is in 
some sense simple, because the metadata comes from the 
same discipline. More complex issues arise when the 
metadata crosses discipline boundaries. For example, a 
gravitational wave scientist may want to identify potential 
objects in the sky based on a hypothesis that these 
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particular objects (such as pulsars for example) can be a 
potential source of gravitational waves. In order to identify 
these sources, the scientist may want to search astronomy 
databases. Astronomy data sets are published by different 
entities (representing a particular telescope or mission for 
example) and include diverse metadata. Thus, a 
gravitational-wave scientist needs to be able to locate, 
query, and interpret these astronomy-specific distributed 
metadata sources. 
 
 In summary, three key problems need to be addressed: 
• Dynamic updates of sources:  A given metadata 

catalog may change over time not only in content, 
but also in the definitions and structure of the 
metadata.  Each time a scientist processes data or 
runs a simulation, new data is generated that may 
need to be described with attributes that did not 
exist before in the catalog.  New metadata types are 
continually being incorporated. 

• Integrating multiple sources:  Answering a single 
user request may require a sequence of queries to 
various catalogs as well as integrating intermediate 
results. 

• Bridging user requirements and system 
metadata across disciplines:  Users that are expert 
in a certain scientific discipline may need to access 
data in other sciences but may be unfamiliar with 
the terms and structure of the metadata.  Metadata 
for different scientific disciplines or groups are 
naturally defined or structured differently, and are 
continuously and asynchronously redefined or 
restructured as scientific advances take place.  This 
accentuates the already challenging problem of 
mapping a user’s terms to the terms that are known 
to the system. 

 
 The next section describes our approach to address these 
challenges integrating several Artificial Intelligence 
techniques that include query mediation, planning, 
ontologies, semantic web languages and tools, and 
intelligent user interfaces. 

Artemis: An Interactive Query Mediator for 
Distributed Metadata Catalogs  

 
 We developed Artemis, an interactive query planning 
system that integrates metadata catalogs available on the 
grid.  Figure 1 shows the architecture of the Artemis 
system. The goal of the Artemis system is to enable the 
user to easily query various objects stored in different data 
sources. Metadata catalogs, such as the Metadata Catalog 
Service (MCS) [Singh et al 03] store the metadata about 
different objects in different data sources on the grid. 
Artemis utilizes data integration techniques in conjunction 
with an interactive query builder to enable the user to 
easily create complex queries to obtain objects that match 
user criteria.  



 In this section, first we briefly discuss the MCS. Next, 
we describe the process of dynamically generating various 
data models based on the information from the Metadata 
Catalog Services. Then, we show how the Prometheus 
mediator is used in the Artemis system. Finally, we explain 
an interactive query building component of the Artemis 
system termed MCS Wizard. 
 
 
 

 
 

Figure 1.  The Architecture of Artemis.  The components in the 
lighter boxes are pre-existing modules, while the components in 
the darker boxes are developed specifically for Artemis.  Note 

that Artemis is capable of integrating an arbitrary number of data 
sources 

Metadata Catalog Services 
 Artemis utilizes the Metadata Catalog Service (MCS) 
[Singh et al 03] that has been developed as part of the Grid 
Physics Network (GriPhyN)7 and NVO projects. The aim 
of these projects is to support large-scale scientific 
experiments.  MCS is a standalone catalog that stores 
information about logical data items (e.g., files). It also 
allows users to aggregate the data items into collections 
and views.  MCS provides system-defined as well as user-
defined attributes for logical items, collections and views. 
One distinguishing characteristic of MCS is that users can 
dynamically define and add metadata attributes. MCS can 
also provide the names of the user-defined attributes.  As a 
result, different MCS instances can be created with 
alternative contents. In our implementation, we assume 
that different MCS instances contain disjoint information. 
This assumption is not necessary for Artemis as it can 
handle replicated metadata, rather, it is dictated by the 
difficulty of maintaining the consistency of updates in a 
wide area network, which is typically part of a grid’s 
networking infrastructure. For example, if two MCS 
instances contain the same information, when one MCS is 
updated the second one should be updated at the same 
time. Guaranteeing this level of consistency is very 
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expensive in the wide area network and is beyond the 
scope of this work. Each data item in an MCS is described 
with a set of metadata expressed as attribute-value pairs.  
Some attributes are common metadata, such as creation 
date, name, author, etc (see for example, the Dublin 
Core8).  Other attributes represent user-defined metadata 
and are typically specific to the domain and the contents of 
the files.  Additionally, the set of attributes can be different 
for each item.  
 An MCS can be queried for files by specifying values 
for any attribute. In addition to items, the MCS can be 
queried for collections and views. Collections are usually 
created to group related items together. For example, if one 
experiment results in ten items, a collection can be created 
for those items. All items in the collection may have their 
own metadata.  In addition, a collection can have its own 
metadata as well. Collections usually represent an 
organization of the data imposed by the data publisher and 
may carry authorization information. Views are similar to 
collections but rather than being defined by the data 
publisher, they are defined by users based on their own 
grouping of items. As such, views do not impose 
authorization constraints on the items they contain. Both 
collections and views may have a hierarchical structure. 
 The MCS architecture is very flexible because it easily  
supports the addition of new content with novel metadata 
that was not previously defined in the MCS.  This 
flexibility presents a challenge to the problem of 
integrating multiple MCS sources for two reasons: 
• Rapidly changing metadata: Since new items, 

views and collections can be added to an MCS at 
any time and each may contain a new type of 
attribute, it is not possible to define a model of the 
contents of an MCS a priori.  This is one of the 
novel issues addressed in our work in integrating 
the mediator.  Although mediators have 
mechanisms to handle dynamic data sources, MCS 
content varies more rapidly. 

• Lack of semantic specifications of metadata 
attributes: the current MCS architecture does not 
include mechanisms to attach semantic information 
to the metadata attributes within an MCS (other 
than their type—string, integer, etc.,) or to indicate 
definitions shared across multiple MCS instances.  
Metadata such as the time interval for an 
observation with an instrument may be expressed in 
a variety of ways such as a start and end times, or as 
a start time and duration, or duration, etc.  The same 
attribute may also be stored with different names.  
When several MCS instances are available, a user 
has to analyze their metadata attributes by hand and 
formulate different queries as appropriate for each 
of them.  
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 We address the first issue by dynamically creating 
models of the information available in various Metadata 
Catalog Services.  We address the second issue by using 
ontologies to describe, map, and organize metadata 
information.  The next section describes the process of 
dynamically generating models of the metadata. 

Dynamic Model Generation 
 The dynamic model generator creates a relational model 
of the entities available in the metadata catalogs.   As we 
described earlier the Metadata Catalog Service utilizes an 
object-oriented model to allow the user to associate 
different metadata with each item in the catalog.   While 
the object-oriented model provides user with a greater 
flexibility by allowing them to define arbitrary metadata 
attributes for any item, the data integration techniques 
target mainly relational models.  Thus, in our work, the 
dynamic model generator first needs to create a relation 
domain model for the mediator by querying various 
metadata catalogs specified in the metadata layer. 
 Domain models are generated dynamically in four steps: 

1. For each entity type supported by the MCS 
instances (e.g. items, collections, and views) 
Artemis queries all the MCS instances and finds 
all the attribute types. 

2. For each entity type Artemis creates a domain 
predicate and sets its arguments to the list of 
attributes found in the previous step. 

3. For each MCS and entity type Artemis creates a 
source predicate whose arguments are the list of 
attributes for the given entity type in that MCS.  It 
also adds the Itemname attribute to the source 
arguments.  The Itemname attribute is returned to 
the user, so the user can obtain the item from the 
Grid using the Itemname. 

 The original MCS did not support the queries described 
in step 1 above.  As a result of the Artemis project, the 
MCS API was extended to accommodate this functionality. 
 Artemis creates domain rules for the mediator to relate 
the source predicates from step 3 to the domain predicates 
from step 2. If the MCS does not have some attributes in 
the attribute list Artemis uses a constant “empty” to denote 
the missing attribute. 
 For example, consider two simplified Metadata Catalog 
Services shown in Table 1.9 
  

Table 1: Example of two MCS instances. 

                                                 
9 For simplicity, we assume just one entity type. Both MCS 
and Artemis can support multiple entity types.  

 MCS 1 contains metadata for objects of type item.  The 
metadata is described by the following attributes: keyword, 
starttime, endtime. Similarly MCS 2 also contains metadata 
for objects of type item.  However, the metadata in MCS 2 
is described by different attributes.  The dynamic model 
generator creates the following domain model for the 
mediator. 
 
items(keyword, starttime, endtime,ci,about, sttime, etime) 
:- 
 Mcs1items(keyword, starttime, endtime)^ 
 (ci = "empty")^ 
 (about = "empty")^ 
 (sttime = "empty")^ 
 (etime = "empty") 
 
items(keyword, starttime,endtime,ci, about, sttime, etime) 
:- 
 Mcs2items(ci, about, sttime, etime)^ 
 (keyword = "empty")^ 
 (starttime = "empty")^ 
 (endtime = "empty") 
 
 The domain model states that objects of type item can be 
queried based on the following attributes: keyword, 
starttime, endtime, ci, about, sttime, and etime.  The 
attribute list is a combination of attributes of both MCS 
instances.  Furthermore, to obtain information about the 
objects of type item, Artemis needs to query both MCS 
instances and then it needs to construct the union of the 
resulting objects. 
 In general, MCS catalogs can be updated at any time. 
The frequency of updates can depend on the type of 
application and/or situation. For example, astronomy 
metadata may not vary too frequently once it is curated and 
published by the collaboration to the broad astronomy 
community. However, it may change often soon after the 
data is collected by a telescope, when it is made available 
to the researchers that are part of the initial collaboration. 
 Currently, Artemis regenerates the domain model for 
each query.  However, as the number of metadata catalogs 
grows, it may become very expensive to regenerate the 
domain model for each query.  In the future, Artemis may 
query individual MCS instances to find out whether there 
have been new attributes added and only then regenerate 
its model.  Alternatively the MCS can be augmented with 
the capability to send out notifications to subscribed 
systems when changes to the attribute definitions are made. 

Mapping Models to Ontology 
 The model mapping module shown in Figure 1 is used 
to attach semantics to the models generated by the dynamic 
model generator. This step is very important as it enables 
the user to compose the query using the terms in the 
ontology. This module generates the mappings between the 
terms defined in the metadata catalogs and the concepts 
represented in an ontology by interactively asking the user 
to map different terms from the model to the concepts in 

MCS Object 
Type 

Attributes 

MCS 1 Item keyword, starttime, 
endtime 

MCS 2 Item ci, about, sttime, etime 



the ontology.  The model mapping module is currently 
limited in scope.  Much research is still needed to fully 
support semantic interoperability and semantic data 
integration, but we believe that current technology may 
already have a great impact by improving the current state 
of the art of metadata services on the grid.  
 The model mapping module can include several 
alternative ontologies, each with its own scope and 
expressive power.  Each ontology contains a set of 
associated mappings of the attributes in each MCS to the 
terms in that ontology.  For each primitive type in an 
ontology, there exist predicates that specify the types of 
constraints that can be used in queries for that type.  For 
example, a query over a numeric type can specify 
comparison or range constraints.  If an attribute is mapped 
to a numeric type in the ontology then only such queries 
are semantically valid.   
 In our current implementation, we create the mappings 
and the predicates manually.  An important area of future 
work is to create them dynamically.  As users add new 
metadata attributes to an MCS, they should be required to 
provide additional information that can be used to create 
the necessary mappings.  This will require a tighter 
integration of the model mapping module with the MCS 
architecture, and will require modifications to the API 
specification of the current MCS.  We anticipate that this 
will be a complex process but one that could have 
significant impact for the scientist utilizing the grid system. 
We can illustrate the process using the example shown in 
Table 1. The user may elect to use an ontology that 
contains the concepts: keyword, city, and time-range.  The 
user then needs to specify that the concept keyword maps 
to the keyword attribute in MCS 1 and the attribute about 
in MCS 2.  Similarly, the city concept maps to the ci 
attribute in MCS 2.  Finally, the starttime, endtime, sttime, 
and etime attributes map to the time-range concept.  
  We have used semantic web languages and tools to 
develop the model mapping component.  The ontologies 
are expressed in OWL10.  We use Jena’s11 RDQL to query 
the ontology about its contents, for example for the 
hierarchical structure of the ontology.  The interactive 
query formulation system described next generates 
questions for users based on the contents of the ontologies, 
and helps them formulate queries for the Prometheus 
mediator  based on the mappings between the models and 
the ontologies. 

Data Integration using Prometheus 
 Artemis uses Prometheus, a mediator system that 
supports uniform access to heterogeneous data sources, 
including web services, web sources, and databases 
[Thakkar et al 03].  Prometheus uses planning techniques 
to expand a given query into a set of operations that 
specify how to access the appropriate data sources.  
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 The Prometheus mediator receives the user’s query in a 
form of a query on the domain predicates. This query is 
received from the user interface.  The mediator utilizes the 
given query and the domain model generated by the 
dynamic model generator to obtain a datalog program to 
answer the user query.  As various metadata catalogs may 
be widely distributed in the wide area, some catalogs may 
take a long time to respond to the query. Therefore, it is 
important to query the metadata catalogs in parallel.  The 
Prometheus mediator utilizes the Theseus execution engine 
[Barish and Knoblock 03] to efficiently execute the 
generated datalog program. The Theseus execution engine 
has a wide variety of operations to query databases, web 
sources, and web services.  Theseus also contains a wide 
variety of relational operations, such as, selection, union, 
or projection.  Furthermore, Theseus optimizes the 
execution of an integration plan by querying several data 
sources in parallel and streaming data between operations. 
 In the original MCS, the user had to query each 
individual MCS in turn and combine the results by hand. 
With Artemis, the user can seamlessly query across the 
various MCS catalogs and obtain combined results. The 
desired result set can be further refined through the 
Artemis interface. For example, if the first query returns 
too many objects, the user may want to add additional 
constraints on the attribute values. In the original MCS the 
user would have to again query all the catalogs with the 
new query. However, with Artemis, the constraint can be 
directly applied to the initial results. The burden of issuing 
the new queries is shifted from the user to the system.  
 Using this domain model, the mediator system can 
answer queries to obtain items, views, or collections that 
satisfy the query.  However, the mediator requires that the 
queries are formulated in terms of its domain model and 
therefore in terms of the MCS metadata attributes that will 
be unfamiliar to users.  The interactive query formulation 
system that we describe next addresses this problem.  

Interactively Composing Queries using MCS 
Wizard 
 Artemis includes the MCS Wizard, an interactive query 
builder based on the idea in the Agent Wizard [Tuchinda 
and Knoblock 04].  The Agent Wizard allows users to 
build a complex agent by guiding users through a list of 
questions.  The MCS Wizard follows a similar approach.  
To generate a set of simplified questions to pose to the 
user, the MCS Wizard takes the model generated by the 
dynamic model generator and exploits the previously 
created ontology.   
 Figure 2 shows the sequence of steps in the MCS 
Wizard.  The MCS Wizard begins its interaction with the 
user by asking what ontology they would like to use and 
what type of object (items, collections, views) they would 
like to query.  Based on the response, it helps the user 
formulate the query by navigating through the class 
hierarchy and the predicates that can be used to define the 
query expressions.  The user is guided through the classes 
until the query is specified in terms of the classes that have 



mappings to attributes that exist in the MCS instances. 
 The MCS Wizard then queries the mediator and presents 
the user with the answers.  The MCS Wizard allows the 
user to refine the query if the results retrieved are not 
satisfactory.  This is an important capability since queries 
are likely to return empty results because users will 
typically be unfamiliar with the contents of the MCS 
catalogs.  An important area for future extension of the 
MCS Wizard is to generate guidance to the user in terms of 
how to reformulate or relax the query in order to find 
relevant contents by analyzing the intermediate results 
generated by the mediator. 
 To illustrate the user interaction with MCS wizard we 
use an example scenario where the user would like to find 
all objects present in the two MCS instances described in 
Table 1 that contain atmospheric data.  In the first step, the 
user picks the ontology containing the concepts: keyword, 
city, and time-range.  Next, the user picks the object type 
item and specifies the mapping between the attributes and 
the concepts in the ontology.  Next, the MCS Wizard asks 
which concepts the user wants to query on.  The user picks 
for example the concept keyword and specifies that the 
keyword must contain the term atmospheric data.  The 
MCS Wizard generates the following queries for the 
Prometheus mediator:  
 
Q1(keyword, starttime,endtime,ci, about, sttime, etime):- 
items(keyword, starttime,endtime,ci, about, sttime, etime)^ 
(keyword contains ‘atmospheric data’) 
 
Q1(keyword, starttime,endtime,ci, about, sttime, etime):- 
items(keyword, starttime,endtime,ci, about, sttime, etime) 
(about contains ‘atmospheric data’) 
 
 The query states that the mediator should find all items 
that have an attribute keyword containing atmospheric data 
or an attribute about atmospheric data. The Prometheus 
mediator queries both MCS instances and finds the 
relevant objects. The MCS Wizard shows the relevant 
objects to the user. 
 

Figure 2. Building a query using MCS Wizard 

Experiences to Date with Scientific Data 
Sources 

 We evaluated the effectiveness of our system by 
integrating 12 MCS services.  These MCS catalogs 
contained information from three different systems: ESG, 
LIGO, and National Imagery and Mapping Association 
(NIMA)12 Feature Vector data information covering 
different areas of the world.  The NIMA Feature Vector 
data consists of 17,000 files that provide information about 
different feature vectors, such as road networks and 
railroad networks in different areas. We added this data to 
increase the complexity of the system.  In total, the 12 
MCS services contained information about 30,000 
different files.  On an average, each file had 50 attributes.  
Our goal was to be able to allow users to easily query for 
different files with different metadata using a simple 
interface.   
 We created our own ontology in OWL to define domain 
specific attributes as well as spatial attributes.  We used an 
existing time ontology [Pan 2004] to map temporal 
attributes.  This ontology mapped attribute names from 
different MCS instances with attribute names more 
familiar to users.   Once the ontology and the mappings 
were created, Artemis users were able to build queries 
using terms from the ontology.   
 To test that Artemis would work even when metadata in 
MCS instances were updated or one of the services went 
down, we manually added metadata to one of the MCS 
services as Artemis was running.  Then, we used the 
Artemis system to build a new query.  During the dynamic 
model generation Artemis recognized the addition of the 
new MCS and built a domain model that included the new 
metadata.   

 
 Figure 3. User interaction with MCS wizard  

 
 Figure 3 shows an example interaction aimed at finding 
a set of items that has “atmospheric data” in the keywords 
attribute, contains “model CCSM” in the description 
                                                 
12 http://www.nima.mil 
 



attribute, and has starttime and endtime of the data 
between 900000 and 1000000.  First, the user picks item as 
the type of entity from the list of entity types (e.g., items, 
views, and collections).  Next, the user selects terms from 
the ontology on which the user wants to put conditions.  
Next, the user is presented with a set of options to create 
filters on selected terms (e.g., keywords with filter 
operation “contains” on “atmospheric data”,  description 
with filter operation “contains” on “model CCSM”) as 
shown in Figure 3.  The time range query component is 
specified through the starttime’s operation “After” and the 
endtime’s operation “Before.” The MCS wizard then 
formulates and sends the corresponding query to the 
mediator.  The resulting list of items returned from the 
mediator is shown to the user.  The user then has the 
option to either save the list of item names or to further 
refine the query.  
 If a user were to query the items based on three terms in 
the ontology, the user would need, on average, twelve 
simple mouse clicks in the MCS wizard interface to obtain 
the results.  If the user were to perform these queries 
without using the Artemis system, the user would have to 
formulate separate query expressions to each of the MCS 
services. Furthermore, using Artemis, the user only needs 
to know the terms in the ontology instead of having to 
know attribute names from each of the 12 MCS instances.  
Overall, our experiences have shown that Artemis is able 
to cope with the three challenges outlined in the paper.   

Related Work 
 The myGrid project [Wroe et al 03] is developing and 
exploiting semantic web technology to describe and 
integrate a wide range of services in a grid environment.  
Data sources are modeled as semantic web services, and 
are integrated through web service composition 
languages.  The result is a workflow that may include not 
only steps to access to data sources as in Artemis, but also 
as simulation or other data processing steps.  The 
workflows are generated by instantiating pre-defined 
workflow templates, while Artemis generates the entire set 
of access queries to the different data sources 
automatically and dynamically.   
 In [Ludäscher et al 03], the authors describe a mediator-
based system that utilizes the semantics of the data 
exported by the data sources to integrate the data.  A key 
assumption in that work is that the data sources export the 
semantics of the data.  However, as we showed earlier, the 
MCS contains very weak semantic information.  Thus, 
Artemis is not only responsible for integrating data from 
various MCS instances, but also assigning semantics to 
data from various MCS instances.  
 Recently, view integration researchers have developed 
various systems to integrate information from various data 
sources.  A good survey of the view integration techniques 
is available in [Levy 2000].  Traditionally, view integration 
systems assume that a domain model is given by domain 
experts to the mediator system.  In our case, the Artemis 

system automatically generates the domain model by 
reading information from various MCS instances.  

Conclusions and Future Work 

 We described Artemis, a system that integrates 
distributed metadata catalogs in grid computing 
environments. Artemis exploits several AI techniques 
including a query mediator, a query planning and 
execution system, as well as ontologies and semantic web 
tools, and intelligent user interfaces.  Artemis can 
automatically generate models of the data sources in order 
to dynamically incorporate new metadata attributes as they 
appear in the catalogs when new data items are added to 
the collection.  Artemis isolates the users from the 
complexity of using distributed heterogeneous catalogs.  It 
does so by providing interactive assistance to formulate 
valid, integrated queries using a single ontology that is 
automatically mapped to the particular metadata of each 
catalog.   
 We also plan to convert the existing system into a 
service.  The Prometheus mediator and the Agent Wizard 
are already available as web services.  The MCS is also 
implemented as either a web or grid service. Once Artemis 
is converted to the grid service, the user will be able to 
check status of their requests, by checking status of the 
service.  This feature would be very useful when the 
number of MCS is very large as the user queries may take 
a long time to execute. 
 Another important improvement would be to add query 
reformulation capabilities to the mediator, so that it will be 
able to exploit the ontologies to reformulate queries. 
 An interesting test for Artemis will be the National 
Virtual Observatory (NVO) project, where a diversity of 
catalog services exist or are being created to store data 
collected from various telescopes.  The catalog services 
will include not only MCS-based services but also other 
catalogs that will have a different structure. The 
architecture of Artemis and its mediator system are well 
suited to support heterogeneity of data sources.  A single 
access point to such a large heterogeneous collection of 
data would enable rapid analysis of astronomy 
observations.   
 Scientific end-to-end workflows should integrate both 
data retrieval and data analysis steps.  Artemis could 
provide the former, while the Pegasus system [Deelman et 
al 04] could provide the latter.  The Artemis mediator 
already has mechanisms for robust execution of queries, 
while these capabilities are still being incorporated into 
Pegasus.  Combining the capabilities of both systems to 
generate complete workflows will be an important area of 
future research.    
 Ideally, end users would want to query the collection 
using their own ontologies and definitions.  The grid has 
much need for semantic web technology to support 
individual and community-based descriptions of data in a 
distributed setting.  With systems like Artemis illustrating 
the added value and ultimate potential of Artificial 



Intelligence techniques for data integration, the grid 
community is more likely to embrace this technology.  
This adoption would satisfy the requirements posed by 
complex and ambitious applications, scientific and 
otherwise. 
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