

Rattapoom Tuchinda, Snehal Thakkar, Yolanda Gil, and Ewa Deelman, Artemis: Integrating Scientific Data on the Grid, To Appear In the
proceedings of the Sixteenth Innovative Applications of Artificial Intelligence, San Jose, CA, July 2004.

Artemis: Integrating Scientific Data on the Grid
Rattapoom Tuchinda, Snehal Thakkar, Yolanda Gil, and Ewa Deelman

USC Information Sciences Institute
4676 Admiralty Way, Suite 1001

Marina Del Rey, CA 90292
{pipet, thakkar, gil, deelman}@isi.edu

Abstract
Grid technologies provide a robust infrastructure for
distributed computing, and are widely used in large-scale
scientific applications that generate terabytes (soon
petabytes) of data. This data is described with metadata
attributes about the data properties and provenance, and is
organized in a variety of metadata catalogs distributed over
the grid. In order to find a collection of data that share
certain properties, these metadata catalogs need to be
identified and queried on an individual basis. This paper
introduces Artemis, a system developed to integrate
distributed metadata catalogs on the grid. Artemis exploits
several AI techniques including a query mediator, a query
planning and execution system, ontologies and semantic
web tools to model metadata attributes, and an intelligent
user interface that guides users through these ontologies to
formulate queries. We describe our experiences using
Artemis with large metadata catalogs from two projects in
the physics domain.

Introduction
 Scientific data analysis is quickly moving to realms that
require efficient management of data repositories in the
petabyte scale [National Virtual Observatory project
(NVO)1; Laser Interferometer Gravitational Wave
Observatory (LIGO)2; Earth System Grid (ESG)3;
Southern California Earthquake center (SCEC)4]. Grid
technologies [Foster and Kesselman 99; Foster et al 01] are
used to manage distributed resources: compute, data,
instruments etc across organizational boundaries.
Middleware, such as the Globus Toolkit5, enable the
discovery of remote resources and access to them in a
secure fashion. Grids support the distributed management
of large data sets through secure and efficient data transfer,
storage resource management, and data replica
management. Grids also enable distributed, large-scale,
computation and data intensive analysis. Grids are very

Copyright © 2004, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

1 http://www.us-vo.org
2 http://ligo.caltech.edu
3 http://www.earthsystemgrid.org
4 http://www.scec.org/cme
5 http://www.globus.org

dynamic: the availability of the resources may vary
significantly over time.
 Although grids make many large data repositories
available, integrating them in a highly dynamic distributed
environment is a challenge. Metadata catalogs address
some of these problems by supporting queries to data
based on metadata attributes of the files and managing
collections of data as well as versioning and provenance
information [Moore et al 01, Singh et al 03]. Mediator
techniques can be used to integrate diverse data sources
[Levy 2000] but have not been used in grid environments
that are extremely dynamic. Data sources can appear, be
temporarily unavailable or disappear, change contents or
access mechanism, and migrate to different locations.
These changes are not only at the implementation and
installation level, but also at the conceptual level in terms
of the metadata used to describe and index their contents.
As scientists model scientific phenomena and analyze large
data sets, they generate new data products that need to be
described using possibly new metadata that needs to be
incorporated in the repository. In addition to operating in
this very dynamic environment, scientific applications
need to support a high degree of heterogeneity in the data.
This is because they are often multidisciplinary efforts that
integrate results from complementary observations and
analysis of the same underlying phenomenon. That
phenomenon may be described in different ways in
different disciplines or modeling environments.
 This paper describes Artemis, a query formulation and
planning system that enables users to easily query
metadata catalogs on the grid. It includes a query mediator
based on planning techniques that dynamically updates its
domain model, and an ontology-based query formulation
system that helps a user create and refine queries
interactively based on the current contents of the
repositories. Artemis is integrated with an existing
Metadata Catalog Service (MCS), which is based on the
widely used Globus toolkit for grid computing. We have
evaluated Artemis with data from two different scientific
domains.
 Artemis illustrates the potential of Artificial Intelligence
techniques for data integration on the grid, and
complements prior work on Pegasus, a workflow
generation and mapping system for grid computing [Blythe
et al 03; Deelman et al 03 Gil et al 04]. As Pegasus
continues to be used in a variety of scientific domains to

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUL 2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
Artemis: Integrating Scientific Data on the Grid

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Southern California,Institute for Creative
Technologies,13274 Fiji Way,Marina del Ray,CA,90292

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

map, manage and execute workflows with hundreds of
thousands of jobs and terabytes of data products [Deelman
et al 04], the need to provide grids with a system like
Artemis becomes more immediate.
 The paper begins by outlining the key problems to be
addressed in dynamic heterogeneous query planning.
After describing Artemis in detail, we discuss our
experiences to date integrating data from real scientific
applications and the future extensions that are needed to
support data integration on the grid.

Motivation
 Science today is conducted in a collaborative fashion. In
order to enable scientific discovery, collaborations
encompass numerous researchers sharing computation,
data and network resources, and instruments. Additionally,
scientists share their applications and data not only in the
raw form, but processed in some fashion.
 Because of the size of the data, terabytes today, and
petabytes in the near future, data is often distributed and
replicated in the environment. Additionally, metadata—
descriptive data about particular data products—is often
stored and queried separately from the data itself. The
metadata may be distributed as well. For example, in the
case of the LIGO scientific collaboration that encompasses
scientists from the US LIGO as well as the GEO6 efforts (a
British-German gravitational-wave detector experiment)
scientists share the data collected independently in the US
and in Europe. Each of the experiments: LIGO and GEO
publish their data and their metadata to the Grid
independently of the other experiments. Additionally, even
after publication, the LIGO and GEO metadata may evolve
independently of each other.
 In order to conduct cross-correlation studies between the
LIGO and GEO data, scientists need to discover the
necessary data products in distributed metadata catalogs.
However, it may be difficult for a LIGO researcher to fully
understand the GEO metadata. After identifying the
desired data products through the metadata queries,
researchers can locate and access the corresponding data.
 The metadata being published by experiments is often
not the definitive set of descriptive attributes. As the
understanding of the data collected increases, the attributes
may change or may be augmented to include the new
information. For example, it is often the case that raw data
is of no scientific value unless it is carefully calibrated.
Calibration is not an easy process and is often iterative.
Consequently, the metadata changes as the calibrations are
updated.
 The LIGO/GEO metadata integration problem is in
some sense simple, because the metadata comes from the
same discipline. More complex issues arise when the
metadata crosses discipline boundaries. For example, a
gravitational wave scientist may want to identify potential
objects in the sky based on a hypothesis that these

6 http://www.geo600.uni-hannover.de/

particular objects (such as pulsars for example) can be a
potential source of gravitational waves. In order to identify
these sources, the scientist may want to search astronomy
databases. Astronomy data sets are published by different
entities (representing a particular telescope or mission for
example) and include diverse metadata. Thus, a
gravitational-wave scientist needs to be able to locate,
query, and interpret these astronomy-specific distributed
metadata sources.

 In summary, three key problems need to be addressed:
• Dynamic updates of sources: A given metadata

catalog may change over time not only in content,
but also in the definitions and structure of the
metadata. Each time a scientist processes data or
runs a simulation, new data is generated that may
need to be described with attributes that did not
exist before in the catalog. New metadata types are
continually being incorporated.

• Integrating multiple sources: Answering a single
user request may require a sequence of queries to
various catalogs as well as integrating intermediate
results.

• Bridging user requirements and system
metadata across disciplines: Users that are expert
in a certain scientific discipline may need to access
data in other sciences but may be unfamiliar with
the terms and structure of the metadata. Metadata
for different scientific disciplines or groups are
naturally defined or structured differently, and are
continuously and asynchronously redefined or
restructured as scientific advances take place. This
accentuates the already challenging problem of
mapping a user’s terms to the terms that are known
to the system.

 The next section describes our approach to address these
challenges integrating several Artificial Intelligence
techniques that include query mediation, planning,
ontologies, semantic web languages and tools, and
intelligent user interfaces.

Artemis: An Interactive Query Mediator for
Distributed Metadata Catalogs

 We developed Artemis, an interactive query planning
system that integrates metadata catalogs available on the
grid. Figure 1 shows the architecture of the Artemis
system. The goal of the Artemis system is to enable the
user to easily query various objects stored in different data
sources. Metadata catalogs, such as the Metadata Catalog
Service (MCS) [Singh et al 03] store the metadata about
different objects in different data sources on the grid.
Artemis utilizes data integration techniques in conjunction
with an interactive query builder to enable the user to
easily create complex queries to obtain objects that match
user criteria.

 In this section, first we briefly discuss the MCS. Next,
we describe the process of dynamically generating various
data models based on the information from the Metadata
Catalog Services. Then, we show how the Prometheus
mediator is used in the Artemis system. Finally, we explain
an interactive query building component of the Artemis
system termed MCS Wizard.

Figure 1. The Architecture of Artemis. The components in the
lighter boxes are pre-existing modules, while the components in
the darker boxes are developed specifically for Artemis. Note

that Artemis is capable of integrating an arbitrary number of data
sources

Metadata Catalog Services
 Artemis utilizes the Metadata Catalog Service (MCS)
[Singh et al 03] that has been developed as part of the Grid
Physics Network (GriPhyN)7 and NVO projects. The aim
of these projects is to support large-scale scientific
experiments. MCS is a standalone catalog that stores
information about logical data items (e.g., files). It also
allows users to aggregate the data items into collections
and views. MCS provides system-defined as well as user-
defined attributes for logical items, collections and views.
One distinguishing characteristic of MCS is that users can
dynamically define and add metadata attributes. MCS can
also provide the names of the user-defined attributes. As a
result, different MCS instances can be created with
alternative contents. In our implementation, we assume
that different MCS instances contain disjoint information.
This assumption is not necessary for Artemis as it can
handle replicated metadata, rather, it is dictated by the
difficulty of maintaining the consistency of updates in a
wide area network, which is typically part of a grid’s
networking infrastructure. For example, if two MCS
instances contain the same information, when one MCS is
updated the second one should be updated at the same
time. Guaranteeing this level of consistency is very

7 http://www.griphyn.org/index.php

expensive in the wide area network and is beyond the
scope of this work. Each data item in an MCS is described
with a set of metadata expressed as attribute-value pairs.
Some attributes are common metadata, such as creation
date, name, author, etc (see for example, the Dublin
Core8). Other attributes represent user-defined metadata
and are typically specific to the domain and the contents of
the files. Additionally, the set of attributes can be different
for each item.
 An MCS can be queried for files by specifying values
for any attribute. In addition to items, the MCS can be
queried for collections and views. Collections are usually
created to group related items together. For example, if one
experiment results in ten items, a collection can be created
for those items. All items in the collection may have their
own metadata. In addition, a collection can have its own
metadata as well. Collections usually represent an
organization of the data imposed by the data publisher and
may carry authorization information. Views are similar to
collections but rather than being defined by the data
publisher, they are defined by users based on their own
grouping of items. As such, views do not impose
authorization constraints on the items they contain. Both
collections and views may have a hierarchical structure.
 The MCS architecture is very flexible because it easily
supports the addition of new content with novel metadata
that was not previously defined in the MCS. This
flexibility presents a challenge to the problem of
integrating multiple MCS sources for two reasons:
• Rapidly changing metadata: Since new items,

views and collections can be added to an MCS at
any time and each may contain a new type of
attribute, it is not possible to define a model of the
contents of an MCS a priori. This is one of the
novel issues addressed in our work in integrating
the mediator. Although mediators have
mechanisms to handle dynamic data sources, MCS
content varies more rapidly.

• Lack of semantic specifications of metadata
attributes: the current MCS architecture does not
include mechanisms to attach semantic information
to the metadata attributes within an MCS (other
than their type—string, integer, etc.,) or to indicate
definitions shared across multiple MCS instances.
Metadata such as the time interval for an
observation with an instrument may be expressed in
a variety of ways such as a start and end times, or as
a start time and duration, or duration, etc. The same
attribute may also be stored with different names.
When several MCS instances are available, a user
has to analyze their metadata attributes by hand and
formulate different queries as appropriate for each
of them.

8 http://dublincore.org/documents/dces

 We address the first issue by dynamically creating
models of the information available in various Metadata
Catalog Services. We address the second issue by using
ontologies to describe, map, and organize metadata
information. The next section describes the process of
dynamically generating models of the metadata.

Dynamic Model Generation
 The dynamic model generator creates a relational model
of the entities available in the metadata catalogs. As we
described earlier the Metadata Catalog Service utilizes an
object-oriented model to allow the user to associate
different metadata with each item in the catalog. While
the object-oriented model provides user with a greater
flexibility by allowing them to define arbitrary metadata
attributes for any item, the data integration techniques
target mainly relational models. Thus, in our work, the
dynamic model generator first needs to create a relation
domain model for the mediator by querying various
metadata catalogs specified in the metadata layer.
 Domain models are generated dynamically in four steps:

1. For each entity type supported by the MCS
instances (e.g. items, collections, and views)
Artemis queries all the MCS instances and finds
all the attribute types.

2. For each entity type Artemis creates a domain
predicate and sets its arguments to the list of
attributes found in the previous step.

3. For each MCS and entity type Artemis creates a
source predicate whose arguments are the list of
attributes for the given entity type in that MCS. It
also adds the Itemname attribute to the source
arguments. The Itemname attribute is returned to
the user, so the user can obtain the item from the
Grid using the Itemname.

 The original MCS did not support the queries described
in step 1 above. As a result of the Artemis project, the
MCS API was extended to accommodate this functionality.
 Artemis creates domain rules for the mediator to relate
the source predicates from step 3 to the domain predicates
from step 2. If the MCS does not have some attributes in
the attribute list Artemis uses a constant “empty” to denote
the missing attribute.
 For example, consider two simplified Metadata Catalog
Services shown in Table 1.9

Table 1: Example of two MCS instances.

9 For simplicity, we assume just one entity type. Both MCS
and Artemis can support multiple entity types.

 MCS 1 contains metadata for objects of type item. The
metadata is described by the following attributes: keyword,
starttime, endtime. Similarly MCS 2 also contains metadata
for objects of type item. However, the metadata in MCS 2
is described by different attributes. The dynamic model
generator creates the following domain model for the
mediator.

items(keyword, starttime, endtime,ci,about, sttime, etime)
:-
 Mcs1items(keyword, starttime, endtime)^
 (ci = "empty")^
 (about = "empty")^
 (sttime = "empty")^
 (etime = "empty")

items(keyword, starttime,endtime,ci, about, sttime, etime)
:-
 Mcs2items(ci, about, sttime, etime)^
 (keyword = "empty")^
 (starttime = "empty")^
 (endtime = "empty")

 The domain model states that objects of type item can be
queried based on the following attributes: keyword,
starttime, endtime, ci, about, sttime, and etime. The
attribute list is a combination of attributes of both MCS
instances. Furthermore, to obtain information about the
objects of type item, Artemis needs to query both MCS
instances and then it needs to construct the union of the
resulting objects.
 In general, MCS catalogs can be updated at any time.
The frequency of updates can depend on the type of
application and/or situation. For example, astronomy
metadata may not vary too frequently once it is curated and
published by the collaboration to the broad astronomy
community. However, it may change often soon after the
data is collected by a telescope, when it is made available
to the researchers that are part of the initial collaboration.
 Currently, Artemis regenerates the domain model for
each query. However, as the number of metadata catalogs
grows, it may become very expensive to regenerate the
domain model for each query. In the future, Artemis may
query individual MCS instances to find out whether there
have been new attributes added and only then regenerate
its model. Alternatively the MCS can be augmented with
the capability to send out notifications to subscribed
systems when changes to the attribute definitions are made.

Mapping Models to Ontology
 The model mapping module shown in Figure 1 is used
to attach semantics to the models generated by the dynamic
model generator. This step is very important as it enables
the user to compose the query using the terms in the
ontology. This module generates the mappings between the
terms defined in the metadata catalogs and the concepts
represented in an ontology by interactively asking the user
to map different terms from the model to the concepts in

MCS Object
Type

Attributes

MCS 1 Item keyword, starttime,
endtime

MCS 2 Item ci, about, sttime, etime

the ontology. The model mapping module is currently
limited in scope. Much research is still needed to fully
support semantic interoperability and semantic data
integration, but we believe that current technology may
already have a great impact by improving the current state
of the art of metadata services on the grid.
 The model mapping module can include several
alternative ontologies, each with its own scope and
expressive power. Each ontology contains a set of
associated mappings of the attributes in each MCS to the
terms in that ontology. For each primitive type in an
ontology, there exist predicates that specify the types of
constraints that can be used in queries for that type. For
example, a query over a numeric type can specify
comparison or range constraints. If an attribute is mapped
to a numeric type in the ontology then only such queries
are semantically valid.
 In our current implementation, we create the mappings
and the predicates manually. An important area of future
work is to create them dynamically. As users add new
metadata attributes to an MCS, they should be required to
provide additional information that can be used to create
the necessary mappings. This will require a tighter
integration of the model mapping module with the MCS
architecture, and will require modifications to the API
specification of the current MCS. We anticipate that this
will be a complex process but one that could have
significant impact for the scientist utilizing the grid system.
We can illustrate the process using the example shown in
Table 1. The user may elect to use an ontology that
contains the concepts: keyword, city, and time-range. The
user then needs to specify that the concept keyword maps
to the keyword attribute in MCS 1 and the attribute about
in MCS 2. Similarly, the city concept maps to the ci
attribute in MCS 2. Finally, the starttime, endtime, sttime,
and etime attributes map to the time-range concept.
 We have used semantic web languages and tools to
develop the model mapping component. The ontologies
are expressed in OWL10. We use Jena’s11 RDQL to query
the ontology about its contents, for example for the
hierarchical structure of the ontology. The interactive
query formulation system described next generates
questions for users based on the contents of the ontologies,
and helps them formulate queries for the Prometheus
mediator based on the mappings between the models and
the ontologies.

Data Integration using Prometheus
 Artemis uses Prometheus, a mediator system that
supports uniform access to heterogeneous data sources,
including web services, web sources, and databases
[Thakkar et al 03]. Prometheus uses planning techniques
to expand a given query into a set of operations that
specify how to access the appropriate data sources.

10 http://www.w3.org/TR/2002/WD-owl-guide-20021104/
11 http://jena.sourceforge.net/

 The Prometheus mediator receives the user’s query in a
form of a query on the domain predicates. This query is
received from the user interface. The mediator utilizes the
given query and the domain model generated by the
dynamic model generator to obtain a datalog program to
answer the user query. As various metadata catalogs may
be widely distributed in the wide area, some catalogs may
take a long time to respond to the query. Therefore, it is
important to query the metadata catalogs in parallel. The
Prometheus mediator utilizes the Theseus execution engine
[Barish and Knoblock 03] to efficiently execute the
generated datalog program. The Theseus execution engine
has a wide variety of operations to query databases, web
sources, and web services. Theseus also contains a wide
variety of relational operations, such as, selection, union,
or projection. Furthermore, Theseus optimizes the
execution of an integration plan by querying several data
sources in parallel and streaming data between operations.
 In the original MCS, the user had to query each
individual MCS in turn and combine the results by hand.
With Artemis, the user can seamlessly query across the
various MCS catalogs and obtain combined results. The
desired result set can be further refined through the
Artemis interface. For example, if the first query returns
too many objects, the user may want to add additional
constraints on the attribute values. In the original MCS the
user would have to again query all the catalogs with the
new query. However, with Artemis, the constraint can be
directly applied to the initial results. The burden of issuing
the new queries is shifted from the user to the system.
 Using this domain model, the mediator system can
answer queries to obtain items, views, or collections that
satisfy the query. However, the mediator requires that the
queries are formulated in terms of its domain model and
therefore in terms of the MCS metadata attributes that will
be unfamiliar to users. The interactive query formulation
system that we describe next addresses this problem.

Interactively Composing Queries using MCS
Wizard
 Artemis includes the MCS Wizard, an interactive query
builder based on the idea in the Agent Wizard [Tuchinda
and Knoblock 04]. The Agent Wizard allows users to
build a complex agent by guiding users through a list of
questions. The MCS Wizard follows a similar approach.
To generate a set of simplified questions to pose to the
user, the MCS Wizard takes the model generated by the
dynamic model generator and exploits the previously
created ontology.
 Figure 2 shows the sequence of steps in the MCS
Wizard. The MCS Wizard begins its interaction with the
user by asking what ontology they would like to use and
what type of object (items, collections, views) they would
like to query. Based on the response, it helps the user
formulate the query by navigating through the class
hierarchy and the predicates that can be used to define the
query expressions. The user is guided through the classes
until the query is specified in terms of the classes that have

mappings to attributes that exist in the MCS instances.
 The MCS Wizard then queries the mediator and presents
the user with the answers. The MCS Wizard allows the
user to refine the query if the results retrieved are not
satisfactory. This is an important capability since queries
are likely to return empty results because users will
typically be unfamiliar with the contents of the MCS
catalogs. An important area for future extension of the
MCS Wizard is to generate guidance to the user in terms of
how to reformulate or relax the query in order to find
relevant contents by analyzing the intermediate results
generated by the mediator.
 To illustrate the user interaction with MCS wizard we
use an example scenario where the user would like to find
all objects present in the two MCS instances described in
Table 1 that contain atmospheric data. In the first step, the
user picks the ontology containing the concepts: keyword,
city, and time-range. Next, the user picks the object type
item and specifies the mapping between the attributes and
the concepts in the ontology. Next, the MCS Wizard asks
which concepts the user wants to query on. The user picks
for example the concept keyword and specifies that the
keyword must contain the term atmospheric data. The
MCS Wizard generates the following queries for the
Prometheus mediator:

Q1(keyword, starttime,endtime,ci, about, sttime, etime):-
items(keyword, starttime,endtime,ci, about, sttime, etime)^
(keyword contains ‘atmospheric data’)

Q1(keyword, starttime,endtime,ci, about, sttime, etime):-
items(keyword, starttime,endtime,ci, about, sttime, etime)
(about contains ‘atmospheric data’)

 The query states that the mediator should find all items
that have an attribute keyword containing atmospheric data
or an attribute about atmospheric data. The Prometheus
mediator queries both MCS instances and finds the
relevant objects. The MCS Wizard shows the relevant
objects to the user.

Figure 2. Building a query using MCS Wizard

Experiences to Date with Scientific Data
Sources

 We evaluated the effectiveness of our system by
integrating 12 MCS services. These MCS catalogs
contained information from three different systems: ESG,
LIGO, and National Imagery and Mapping Association
(NIMA)12 Feature Vector data information covering
different areas of the world. The NIMA Feature Vector
data consists of 17,000 files that provide information about
different feature vectors, such as road networks and
railroad networks in different areas. We added this data to
increase the complexity of the system. In total, the 12
MCS services contained information about 30,000
different files. On an average, each file had 50 attributes.
Our goal was to be able to allow users to easily query for
different files with different metadata using a simple
interface.
 We created our own ontology in OWL to define domain
specific attributes as well as spatial attributes. We used an
existing time ontology [Pan 2004] to map temporal
attributes. This ontology mapped attribute names from
different MCS instances with attribute names more
familiar to users. Once the ontology and the mappings
were created, Artemis users were able to build queries
using terms from the ontology.
 To test that Artemis would work even when metadata in
MCS instances were updated or one of the services went
down, we manually added metadata to one of the MCS
services as Artemis was running. Then, we used the
Artemis system to build a new query. During the dynamic
model generation Artemis recognized the addition of the
new MCS and built a domain model that included the new
metadata.

 Figure 3. User interaction with MCS wizard

 Figure 3 shows an example interaction aimed at finding
a set of items that has “atmospheric data” in the keywords
attribute, contains “model CCSM” in the description

12 http://www.nima.mil

attribute, and has starttime and endtime of the data
between 900000 and 1000000. First, the user picks item as
the type of entity from the list of entity types (e.g., items,
views, and collections). Next, the user selects terms from
the ontology on which the user wants to put conditions.
Next, the user is presented with a set of options to create
filters on selected terms (e.g., keywords with filter
operation “contains” on “atmospheric data”, description
with filter operation “contains” on “model CCSM”) as
shown in Figure 3. The time range query component is
specified through the starttime’s operation “After” and the
endtime’s operation “Before.” The MCS wizard then
formulates and sends the corresponding query to the
mediator. The resulting list of items returned from the
mediator is shown to the user. The user then has the
option to either save the list of item names or to further
refine the query.
 If a user were to query the items based on three terms in
the ontology, the user would need, on average, twelve
simple mouse clicks in the MCS wizard interface to obtain
the results. If the user were to perform these queries
without using the Artemis system, the user would have to
formulate separate query expressions to each of the MCS
services. Furthermore, using Artemis, the user only needs
to know the terms in the ontology instead of having to
know attribute names from each of the 12 MCS instances.
Overall, our experiences have shown that Artemis is able
to cope with the three challenges outlined in the paper.

Related Work
 The myGrid project [Wroe et al 03] is developing and
exploiting semantic web technology to describe and
integrate a wide range of services in a grid environment.
Data sources are modeled as semantic web services, and
are integrated through web service composition
languages. The result is a workflow that may include not
only steps to access to data sources as in Artemis, but also
as simulation or other data processing steps. The
workflows are generated by instantiating pre-defined
workflow templates, while Artemis generates the entire set
of access queries to the different data sources
automatically and dynamically.
 In [Ludäscher et al 03], the authors describe a mediator-
based system that utilizes the semantics of the data
exported by the data sources to integrate the data. A key
assumption in that work is that the data sources export the
semantics of the data. However, as we showed earlier, the
MCS contains very weak semantic information. Thus,
Artemis is not only responsible for integrating data from
various MCS instances, but also assigning semantics to
data from various MCS instances.
 Recently, view integration researchers have developed
various systems to integrate information from various data
sources. A good survey of the view integration techniques
is available in [Levy 2000]. Traditionally, view integration
systems assume that a domain model is given by domain
experts to the mediator system. In our case, the Artemis

system automatically generates the domain model by
reading information from various MCS instances.

Conclusions and Future Work

 We described Artemis, a system that integrates
distributed metadata catalogs in grid computing
environments. Artemis exploits several AI techniques
including a query mediator, a query planning and
execution system, as well as ontologies and semantic web
tools, and intelligent user interfaces. Artemis can
automatically generate models of the data sources in order
to dynamically incorporate new metadata attributes as they
appear in the catalogs when new data items are added to
the collection. Artemis isolates the users from the
complexity of using distributed heterogeneous catalogs. It
does so by providing interactive assistance to formulate
valid, integrated queries using a single ontology that is
automatically mapped to the particular metadata of each
catalog.
 We also plan to convert the existing system into a
service. The Prometheus mediator and the Agent Wizard
are already available as web services. The MCS is also
implemented as either a web or grid service. Once Artemis
is converted to the grid service, the user will be able to
check status of their requests, by checking status of the
service. This feature would be very useful when the
number of MCS is very large as the user queries may take
a long time to execute.
 Another important improvement would be to add query
reformulation capabilities to the mediator, so that it will be
able to exploit the ontologies to reformulate queries.
 An interesting test for Artemis will be the National
Virtual Observatory (NVO) project, where a diversity of
catalog services exist or are being created to store data
collected from various telescopes. The catalog services
will include not only MCS-based services but also other
catalogs that will have a different structure. The
architecture of Artemis and its mediator system are well
suited to support heterogeneity of data sources. A single
access point to such a large heterogeneous collection of
data would enable rapid analysis of astronomy
observations.
 Scientific end-to-end workflows should integrate both
data retrieval and data analysis steps. Artemis could
provide the former, while the Pegasus system [Deelman et
al 04] could provide the latter. The Artemis mediator
already has mechanisms for robust execution of queries,
while these capabilities are still being incorporated into
Pegasus. Combining the capabilities of both systems to
generate complete workflows will be an important area of
future research.
 Ideally, end users would want to query the collection
using their own ontologies and definitions. The grid has
much need for semantic web technology to support
individual and community-based descriptions of data in a
distributed setting. With systems like Artemis illustrating
the added value and ultimate potential of Artificial

Intelligence techniques for data integration, the grid
community is more likely to embrace this technology.
This adoption would satisfy the requirements posed by
complex and ambitious applications, scientific and
otherwise.

Acknowledgements
 We would like to thank Gurmeet Singh for the
development and setup of MCS and Craig Knoblock for
useful comments on the paper.
 This material is based upon work supported in part by
the National Science Foundation, under Award No. IIS-
0324955, in part by the Air Force Office of Scientific
Research under grant number F49620-01-1-0053, in part
by a gift from the Microsoft Corporation, and in part by
the National Science Foundation under grants ITR-
0086044 (GriPhyN), AST0122449 (NVO) and EAR-
0122464 (SCEC/ITR). The views and conclusions
contained herein are those of the author and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of any of the
above organizations or any person connected with them.

References
Annis, J., Zhao, Y., Voeckler, J., Wilde, M., Kent, S. and Foster,

I., Applying Chimera Virtual Data Concepts to Cluster
Finding in the Sloan Sky Survey. in Supercomputing. 2002.
Baltimore, MD.

Barish, G. and C.A. Knoblock. An Expressive and Efficient
Language for Information Gathering on the Web.
Proceedings of the Sixth International Conference on AI
Planning and Scheduling (AIPS-2002) Workshop: Is There
Life Beyond Operator Sequencing? - Exploring Real-World
Planning. 2002. Toulouse, France.

Berners-Lee, T., James Hendler and Ora Lassila. "The Semantic
Web" Scientific American, May 2001.

Blythe, J., Deelman, E., Gil, Y., and Kesselman, C. "Transparent
Grid Computing: A Knowledge-Based Approach".
Proceedings of the Fifteenth Annual Conference on
Innovative Applications of Artificial Intelligence (IAAI),
August 2003, Acapulco, Mexico.

Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil,
S., Su, M., Vahi, K. Pegasus: Mapping Scientific
Workflows onto the Grid. To appear in the Proceedings of
across Grid EU Conference, 2004.

Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G.,Vahi,
K., Blackburn, K., Lazzarini, A., Arbree, A., Cavanaugh, R.,
and Koranda, S. Mapping Abstract Complex Workflows
onto Grid Environments, Journal of Grid Computing, Vol.1,
no. 1, 2003, pp. 25-39.

Foster, I. and C. Kesselman, Eds. The Grid: Blueprint for a New
Computing Infrastructure. 1999, Morgan Kaufmann.

Foster, I., C. Kesselman, and S. Tuecke, The Anatomy of the
Grid: Enabling Scalable Virtual Organizations. International

Journal of High Performance Computing Applications,
2001. 15(3): p. 200-222.

Gil, Y., Deelman, E., Blythe, J., Kesselman, C., and
Tangmunarunkit, H., Artificial Intelligence and Grids:
Workflow Planning and Beyond. IEEE Intelligent Systems
Special Issue on E-Science, Vol. 19, No. 1, Jan/Feb 2004.

Gil, Y., De Roure, D., and Hendler, J. (Eds) Guest Editor’s
Introduction to the IEEE Intelligent Systems Special Issue
on E-Science, Vol. 19, No. 1, Jan/Feb 2004.

Levy, A., Logic-Based Techniques in Data Integration, in Logic
Based Artificial Intelligence, J. Minker, Ed. 2000, Kluwer
Publishers.

Ludäscher, B., Gupta, A., and Martone M. E. A Model-Based
Mediator System for Scientific Data Management, B. In T.
Critchlow and Z. Lacroix, editors, Bioinformatics:
Managing Scientific Data. Morgan Kaufmann, 2003.

Moore R. W., Boisvert, R., and Tang, P, Data Management
Systems for Scientific Applications. "The Architecture
of Scientific Software," pp. 273-284, Kluwer Academic
Publishers, 2001.

Pan, F. and J.R. Hobbs. Time in OWL-S. To Appear In
Proceedings of the AAAI Spring Symposium, 2004.

Singh, G., S. Bharathi, A. Chervenak, E. Deelman, C. Kesselman,
M. Manohar, S. Patil, and L. Pearlman. A Metadata Catalog
Service for Data Intensive Applications. Proceedings of the
Supercomputing Conference, November 2003.

Thakkar, S. and C.A. Knoblock. Efficient Execution of Recursive
Integration Plans. Proceeding of 2003 IJCAI Workshop on
Information Integration on the Web. 2003. Acapulco,
Mexico.

Thakkar, S., J.-L. Ambite, and C.A. Knoblock. A view
integration approach to dynamic composition of web
services. In Proceedings of 2003 ICAPS Workshop on
Planning for Web Services. 2003. Trento, Italy.

Tuchinda, R. and C.A. Knoblock. AgentWizard: Building
Information Agents by Answering Questions. Proceedings
of the 2004 International Conference on Intelligent User
Interfaces. 2004. Portugal.

Wroe, C., R. Stevens, C. Goble, A. Roberts, and M. Greenwood.
(2003). "A Suite of DAML+OIL ontologies to describe
bioinformatics web services and data". To appear in Journal
of Cooperative Information Science.

