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ABSTRACT 
A new concept targeted to decrease false positive 

rates of anomaly based intrusion detection operating 
in the system call domain is proposed. To mitigate 
false positives, network based correlation of collected 
anomalies from different hosts is suggested, as well as 
a new means of host-based anomaly detection.    

 The concept of anomaly propagation is based on 
the premise that false alarms do not propagate within 
the network.  Unless anomaly propagation is observed 
alarms are to be treated as false positives. The 
rationale behind the concept lies in the fact that the 
most common feature of worms and viruses is self-
replication. As replication takes place, a malicious 
code propagating through the network would carry out 
the same activity resulting in almost identical system 
call sequences and triggering the same alarm at 
different hosts. The alarm propagation effect can be 
used to distinguish “true alarms” from “false 
positives”. 

At the host-level, a new anomaly detection 
mechanism operating that employs non-stationary 
Markov models is proposed. Many applications or 
services have different operating modes, which have 
different dynamics with respect to system call 
issuance. Therefore, an application or service can be 
treated as a non-stationary stochastic process and be 
modeled with a non-stationary Markov chain, which 
significantly improves model consistency compared to 
stationary Markov chain.  

 
INTRODUCTION 

The first Intrusion Detection System (IDS) utilizing 
system calls was proposed in [1]. Today, these 
systems utilize two main approaches, misuse detection 
and anomaly detection. Misuse or signature-based 

detection systems utilize descriptions of known attack 
expressed in terms of system calls. Although 
signature-based systems can provide high level of 
accuracy, they fail to detect previously unknown 
attacks. Anomaly detection systems utilize models of 
normal behavior of legitimate processes, especially 
privileged ones. These systems check the consistency  

 
 

between the invoked system calls and the profile of 
normality for a given process and have the potential to 
detect unknown attacks, though they frequently suffer 
from a high rate of false positives. 
 This research targets anomaly-based IDSs that in 
spite of their advantages are impractical due to high 
rate of false positives. The limited success of known 
research aimed at the alleviation of this problem [2, 3, 
6, 8] is due to it being primarily aimed at the 
improving the accuracy of the normality models 
(profiles) rather than achieving high confidence in 
classifying the detected anomaly. 
 Two major contributions of this paper are as 
follows. First, a novel host-level anomaly detection 
mechanism is proposed. Second, having efficient host-
level anomaly detection, the unique but rather simple 
principle, false positives do not propagate, is 
suggested as the basis for establishing, with high 
degree of confidence, whether detected anomaly is a 
false positive or a true positive.  
 The anomaly detection mechanism utilizes non-
stationary Markov models. While many shell codes 
and exploits (in buffer overflow attack) may use only 
20-30 system calls, which would certainly be 
concealed in a histogram, Markov models are clearly 
preferable to other order insensitive techniques (such 
us frequency histograms) used to model normality 
profiles [1, 3]. However, the common assumption that 
the source (application or service) is a stationary 
stochastic process generally may not by true. Any 
application or services utilize high level functions 
intended to solve different tasks. When an application 
realizes several related tasks or group of tasks which 
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condition each other, it is supposed to operate in one 
of its distinct phases (modes). For example, our 
preliminary experiments have identified the following 
major operation modes of Internet Explorer: 
application loading, browsing (loading pages from the 
Internet) and downloading (retrieving large files).
 These operation phases are distinguished by 
functionality and achieve different goals. Since 
different operation modes would have their own 
realization with respect to system calls, it can be 
assumed that operation phases have different 
unconditional as well as conditional distribution of 
system calls. Hence, the system calls profile of an 
application or service should be modeled as a non-
stationary stochastic process.  
 The so-called “moving omnibus” method is used to 
distinguish bifurcation points (points of sudden 
change in dynamics) in observed data, which would 
confine its stationary phases, then use obtained phases 
to train Markov models. As a result each process 
would have set of Markov models corresponding to 
each operation phase, which would certainly increase 
model consistency.  
 It is expected to dramatically decrease false 
positives by correlation of anomaly reports from 
different hosts in the network. The main 
distinguishable feature of viral software is self-
replication. It is differently implemented in viruses 
and worms and can be revealed by the detection of 
specific (abnormal) sequences of system calls [4]. As 
the self-replication continues, the propagation of the 
same abnormal activity pattern could be observed 
within the network. We call it the anomaly 
propagation.   

The utilization of system call attributes provides 
unambiguous representation of the connectivity 
between various computers and processes within the 
network. Then, if the anomaly propagation pattern is 
consistent with the process connectivity pattern, it 
could be declared with a high degree of certainty that 
the detected anomaly is true positive, otherwise it is 
false positive.  

The proposed IDS approach has two levels of 
implementation, the host-level anomaly detection, and 
the network-level attack detection. 

RELATED WORK 
Signature-based IDS utilizing system call data are 

known in literature. The feasibility of anomaly 
detection using system calls is shown in [1], [2], [3].  
The efficiency of this approach can be enhanced 
further by the analysis of system call attributes as 
shown in [5], [6], [7], [8] and [9]. Additional 
improvement of this approach was demonstrated in 
[4].  The misuse detection-based IDS approach could 
be best exemplified by [10], [11].    

PROPOSED ANOMALY DETECTION 
Traditionally, anomaly detection consists of 

recognizing process behavior deviation from a profile 
of normalcy. In the system calls domain an IDS 
compares sequences of system calls against a model 
and consider abnormal traces as anomalous. The 
efficiency of the anomaly detection depends on model 
accuracy. The best way to model an application in the 
system calls domain is to derive a system call 
execution graph, which would explicitly reflect all 
possible braches in algorithms. However, it is 
impossible to process all possible branches of initial 
algorithms from the binary code due to the implicit 
logic transitions (jumps). Thus one can only derive 
only approximate model, which adds some degree of 
uncertainty in the application description. To reflect 
such uncertainty, it can be assumed that system calls 
are emitted by a stochastic source (an application) 
with categorical state space represented by system 
calls. 

Any application or services utilize high level 
functions these functions are intended to solve 
different tasks. When an application realizes several 
correlated tasks or group of tasks that condition each 
other, it is supposed to operate in one of its distinct 
phases (modes). These operation phases are 
distinguished by functionality and achieve different 
goals. Since different operation modes would have 
their own realization with respect to system calls, it 
can be assumed that operation phases would have 
different unconditional as well as conditional 
distribution of system calls. Hence, system calls 
profile of an application or service can not be modeled 
as stationary stochastic process, but as non-stationary 
stochastic process.  

Operation phases consist of many system calls and 
implement some strictly prescribed high-level tasks. 
This consideration assumes the source to be stationary 
over each operation phase. Since dynamics of the 
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stochastic process are appeared to be invariant over an 
operation phase, we can model operation phases by 
Markov chains. Therefore, the source would be 
modeled by set of Markov models corresponding to 
each operation phase.  

In this context, the trace of system calls is 
considered to be anomalous if it is not likely to 
happen according to current Markov model 
(corresponding to current operation phase). The 
sequence is not expected to happen if it was not 
predicted by Markov model. Therefore, the anomaly 
score can be chosen as prediction performance of the 
Markov model over the observed sequence. Prediction 
performance can be represented by chi-square 
likelihood ratio of the observed sequence of certain 
window. If chi-square likelihood ratio exceeds 
specified threshold we declare observed sequence as 
anomalous. 

OPERATION PHASE DETECTION 
Before deriving Markov models, operation phases 

must be distinguished automatically in unsupervised 
fashion. We have to apply a method which for the 
given sequence of observations (system calls) to 
determine bifurcation points (moments of dramatic 
change in process dynamics). These bifurcation points 
would certainly correspond to moments of operation 
phase switching. 

One of the most efficient techniques for detecting 
bifurcation points is moving “omnibus” method [15]. 
The method is simple extension of rather classical 
“omnibus” method. The latter one uses Pearson’s  
hypothesis test. The observed sequence of states 
(system calls) ( ) is partitioned by two 
contiguous subsequences 
( ) for some 
dividing point k . Then, every subsequence ( ) is 
used as training set to compute corresponding 
transition matrix ( ). We can state the following 
test to check if k is bifurcation point: 

2χ

},...,{ 1 nssS =

},...,{},...,{ 1211 nkk ssSandssS +==

21, SS

21,TT

),(),(:),,(),(: 2,112,10 jiTjiTHversusjiTjiTH ≠=   (1)
where, T is global transition matrix computed 

over the entire sequence S 
If the null hypothesis is rejected then transitional 

probabilities are time variant due to dynamic change 

in point k.  Therefore, rejection of  points out that 
k is bifurcation point with some degree of confidence. 
To implement the test (1) we can compute test statistic 
in the following way: 
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  where  - marginal observed frequency 
of i-th  state derived form first and second 
subsequences respectively.   
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 By central limit theorem, statistic W  is 
asymptotically distributed as with 2χ ( )212 −m  degree 
of freedom under null hypothesis. Hence, we can 
compute p-value of the test in the following 
way: )(1 WFpvalue χ−=   , where .  If p-
value lower than chosen test size

cdfF 2χχ −

α , we reject  and 
claim non-stationarity with 

0H

valuep−α  significance.    
Moving “omnibus” method consists of deriving p-

value for test (1) with respect to center point of the 
window sliding over the observed sequence (trace). 
The sliding window must be long enough to derive 
local Markov models from the left and right halves of 
the window.  The points rejecting null hypothesis 
would be declared as bifurcation points. Having set of 
bifurcation points we can chose the most appropriate 
ones according to constraints for phase minimum 
length and number of phases. The algorithm for 
selecting such points is proposed below.  

Input constraints: 
  –number of locally stationary phases n

minl  – minimum length of a phase  
Algorithm: 

1. Form list L of sorted bifurcation points in 
decreasing order with respect to significance.           

2. Take first   points from list L and compute 
length of phases enclosed by these points 

n

3. For every phase, which length is less than  
delete from the list L less significant boundary 
point.   

minl

4. Continue step 2 until all constrained are met or 
there is no enough points left in the list.        

If the process has enough locally stationary periods, 
the algorithm will determine bifurcation points 
enclosing these periods in the observed sequence.  

To demonstrate the efficiency of the algorithm on a 
real process, the sequence of system calls was 
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observed during two operation phases of the Internet 
Explorer. The first phase consists of browsing 
different sites without downloading large files and the 
second phase was downloading large files. Figure 1 
depicts results of the algorithm.  The plot shows p-
value for every separated point moved from 5000 
instance to the end of the sequence (40000). The size 
of hypothesis testing was 5 percent. It could be seen 
that the test was rejected only once in the separating 
point 15000 what shows high accuracy of bifurcation 
point detection. P-value changed dramatically in 
earlier points (13000-14000), but never reached 
significance level. The results of the experiment show 
the high efficiently of the moving “omnibus” method.  
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Figure 1 Bifurcation point detection 

 
Having facility to recognize stationary operation 

phases in observed sequence of system calls, these 
segments (subsequences) of states (system calls) can 
be used to derive Markov models in offline. 
Nevertheless, in testing regime, it is necessary to 
recognize (in real time) which phase the monitored 
application operates in to apply corresponding 
Markov model. The problem of matching current 
outcomes to set of models was addressed in several 
publications (eg Stolfo [3]). Many authors use simple 
approach consisting in trying different models form 
the set and choosing the one which best fits according 
to some distance metric. We used the similar method, 
if current Markov model is not consistent according to 
predicting performance metric (likelihood ratio), the 
system searches for the model having the greatest 
performance. To avoid undesired frequent model 
change we introduced a constraint on minimum 
number of system calls before model switching is 
allowed.  

MARKOV MODELS ORDER DETECTION 

System calls are invoked according some 
algorithms which have logical structure and solves its 
own tasks which constitute operation phases. Since 
system calls are issued in consecutive logic order, the 
probability of occurrence of system calls depends on 
not only one previous system call, but several 
preceding system calls (prefix of system calls). These 
considerations lead to necessity of using high order 
Markov models.  

The order of the Markov chain corresponding to an 
operation phase is not known, hence has to be 
determined. There are several approaches to 
determine order of Markov model consistent with 
observed sequence. These methods include: transition 
correlation based method, chi-square statistics of the 
transition frequency, index of transition complexity 
and information theoretic approach.  

We used information theoretic approach to 
determine proper order of Markov model. The 
rationale beside the approach is the fact that if 
probability of occurrence of a state highly depends on 
n previous states then mutual information of the 
current state and n preceding states must be greater 
than information based on less than n past states. The 
criteria for defining best order of the Markov model 
can be formally presented in the following way: 
1. Starting from 1=n  
2. Compute n-gram transition probabilities: 

),...,|( 1 niiip   

where, ),...,,( 1 niiip  probability of occurring state 

 given past prefix of states  (order preserving 
prefix)  
i nii ,...,1

3. Compute n+1 and n order mutual information:  
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+

+

∈
++ ∑

+
),...,()(

),..,(log),..,(),...,;(
11

11

..1,..,
1111

11
iipip

iipiipXXXI
nn

n

Nii
nnn

n

 

 )  - to be computed analogically   ,...,;( 11 −nn XXXI
4. D= -  ),...,;( 11 nn XXXI + ),...,;( 11 −nn XXXI
5. If τ<D then stop, otherwise 1+= nn and go to step 

2  
This algorithm will derive the maximum order of 

the model which still provides specified mutual 
information increase. In reality mutual information 
rate is decreasing function of the model order for 
given observation sequence. Our preliminary 
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experiments showed that phases have at most third 
order models. 

ANOMALY REPLICATION DETECTION 
 The main distinguishable feature of activity 
perpetrated by such malicious software as worms or 
viruses is self-replication. Viruses have to create file 
containing its copy or attach itself to some victim file. 
In contrast, worms may not even create any files, 
residing in memory space of the victim process and 
performing some activity on behalf of victim, 
legitimate process. Thus, worms may not leave any 
file “traces”, which can be used to detect the fact of 
self replication. Nevertheless, to perform some 
activity, injected malicious code must utilize system 
resources trough system calls what will certainly 
reflect in process behavior and detected as anomaly. 
Replication assumes that worm will copy itself to 
memory space of the remote process. Thus, every 
copy of the worm would carry out the same activity 
what would result in the same system calls trace and 
almost the same detected anomaly in the victim 
process. Therefore, self-replication can be revealed by 
propagation of system calls traces (detected anomaly 
sequences of system calls) from process to process 
residing in different hosts. We call this approach 
anomaly propagation.  

The detected abnormal subsequence issued by the 
same worm may contain also legitimate system calls, 
which can be explained by inertia of the anomaly 
detector. Thus abnormal sequences may loose some 
(not many) “alien” system calls in the prefix and have 
short suffix of legitimate system calls invoked by 
victim process after getting the execution control 
back.  

To distinguish real propagation from set of 
coincidences (meaningless occurrence of the same 
anomaly in different nodes of the network) 
connectivity pattern of the nodes (processes) is 
analyzed. If propagation pattern is consistent with 
connectivity pattern between processes, anomaly 
replication takes place, which is a result of malicious 
activity. If anomaly propagation is not consistent with 
connectivity pattern, a false positive is declared.       

Anomaly propagation analysis requires 
distinguishing similar abnormalities to consider them 
as single anomaly. Anomalous sequences of system 
calls detected on the hosts are reported to the server 

provided with time stamp and source process ID. In 
the server the anomalies are stored and grouped. 
Anomaly sequences in one group represent the same 
anomaly. When server receives the abnormal 
sequence it searches for the closest group. The 
distance between two anomalies is reciprocal of 
similarity measure which is represented by length of 
the longest common factor. We can formalize the 
distance between a sequence (S) and a group of 
sequences (G) in the following way:  

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=

∈ )~,(
min),( ~

SSc

S
GSd

GS
 (2) 

where,  )~,( SSc  - the longest common factor 
(substring) of  and S S~ , S  - length of the sequence 
S. If the distance to the closest group is less than 
specified threshold, we consider the new anomaly the 
same as anomalies from the group and add it to the 
group. If the distance is exceeds the threshold, we 
treat new anomaly as previously unseen and 
contribute it to a new group as the first member. 

The rationale behind using the proposed distance 
lies in the fact that processes may be attacked and 
subverted at any time. Thus we can expect that 
anomaly sequences would have different short 
suffixes (segment of legitimate system calls). 
Subsequence from the beginning to the legitimate 
suffix would be large segment forming the pure 
sequence of system calls actually invoked by worm’s 
payload. Hence, anomalous sequences cased by the 
same worm will have large common factor which 
would constitute some segment of “malicious” system 
calls. 

Longest common factor between two strings (with 
length n, m) can be found through dynamic 
programming with  computational 
complexity. Hence, determining  the closest group by 
one to one search would exhibit 

)( mnO ⋅

)( mNO ⋅  
complexity, where N – sum of the length of strings in 
the cumulated anomaly dictionary. However, we do 
not need to know the longest common factor itself to 
compute the distance , but only the length of 
the factor. The length of the  can be 
approximated by length of longest common 
subsequence which can be found trough weighted 
Levenshtein (edit) distance for the case when 

),( GSd
)~,( SSc

)~,( SSc  
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constitutes significant part in both sequences. The 
longest common subsequence is not necessary 
contiguous, but due to high performance of the 
proposed anomaly detector, we can expect that “alien” 
part in anomaly substring (common factor) would be 
much longer than the rest (legitimate) what justifies 
approximation.        The edit distance is weighted so 
that, deletion operations would not constitute any 
penalty score. Formally, the length of the longest 
common factor of sequences S and S~ can be 
represented in the following way:  

⎪
⎪
⎩

⎪⎪
⎨

⎧

++=

−=

−=

deleteinsertsub

deleteW

W

LLLSSL

LSSLSSL

SSLSSSc

)~,(

)~,()~,(

)~,()~,(
 (3) 

where, )~,( SSL  - Levenshtein (edit) distance 
between S and S~ ,  - number of 
substitution, insertion and deletion operations 
respectively. Here 

deleteinsertsub LLL ,,

insertsubW LLSSL +=)~,(  represent 
weighted edit distance with zero penalty of deletion 
operation.  
 Expressions 2 and 3 shows that minimizing 

)~,( SSLW  we will minimize the distance . The 
problem of finding the closest anomaly group can be 
reformulated in the following way: given the 
dictionary of strings (sequences) D and a pattern 
string S find the string  from dictionary which is the 
closest to S with respect to weighted edit distance 

),( GSd

Ŝ

)~,( SSLW . Having the closest string , we consider 

the distance (2) as distance to the group the string  
belongs to.  

Ŝ

Ŝ

Such problem is called approximate dictionary 
querying and is addressed in several papers [12, 13, 
14]. Yates and Navarro [12] use metric property of 
edit distance (triangular inequality) to neatly organize 
vocabulary as a metric space. Such data structure 
reduces dictionary query complexity to . 
Brodal and Gasieniec [13] utilized cell-probe model to 
achieve very low complexity. Nevertheless the 
method handles only one mismatch queries 
(

)log( NNO

1)~,( ≤SSLW ) what is not applicable to our problem 
(length of the suffix could be more than 1). We 
suggest using method presented by Cole and 
Lewenstein [14] which uses so called longest common 
prefix data structure to organize vocabulary. The 

method can handle cases with edit distance more than 
one and has query complexity  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ N

k
dcmO

k

loglog
!

)log(  which is less than  

 and )log( NNO )( mNO ⋅  for nmk <<, , where d – 
number of strings in the dictionary, k – specified 
maximum (preferred) distance in the query, c – some 
constant. Since, legitimate prefix is expected to be 
small in anomalous sequence, preferred edit distance k 
would be also small. The only modification in the 
algorithm [14] concerns objective function, which 
must be changed to weighted edit distance depicted in 
expression (3).  

After defining the closest group of anomalies, the 
system must analyze the pattern of propagation of 
anomalies in the group to reveal replication feature. 
Replication property is determined through processes 
connectivity pattern. Connectivity pattern (or 
connectivity graph) is represented by weighted 
directed graph with nodes being processes in 
different hosts and edges presenting last interaction. If 
one process sends some data to the port another 
process listens to, we assume that sender process 
interacted to the second one. Thus, if one process 1 
interacted to the process 2, the system adds edge (or 
upgrades if there is already one) with weight equal to 
relative interaction time.   

),( EVC

Anomaly propagation is considered to have 
replication pattern if it is consistent with connectivity 
graph in both topological and time sense. In other 
words, if anomaly is replicating, it must propagate 
according to simple rules: 

• Each new instance of anomaly (except the first 
one) must occur in the process which has 
recently been interacted by another suspicious 
process (which already issued anomaly) 

• The time elapsed from last interaction and 
anomaly occurrence must not be longer than 
prescribed threshold (active window)   

For the multipartite attack (coordinated multi source 
malicious activity) the first rule must tolerate several 
sources. Iterative algorithm verifying if anomalies 
propagation in the group has replication pattern would 
be straightforward: 

Input  
New anomaly  being added to the group AV

},..,{ 1 nVVG =  
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Weighted adjacency  matrix T of the 
connectivity graph C   )),((),( ji VVEweightjiT =

• Get the subset of group members connected to 
anomalous process: 

   ( ) ( }0),(&:{ >∈= AVVTGVVS )
•  Check if the last connection time is less than 

threshold:   max),((min tVVT ASV
<

∈

•  Increase counter of the group members 
participating in the replication   1+= kk

• If the normalized counter is more than threshold 

( τ>
G
k ), arise attack alarm  

• If group size is more than prescribed value and 
normalized counter is less than tolerance value 

( max& sGtol
G
k

>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
< ), declare false positive.               

This algorithm provides score which is compared to 
threshold to decide if anomaly propagation is indeed 
replication. The score takes into account the relative 
number of instances matched to replication pattern 
and shows how much the propagation similar to 
replication pattern. If the size of the group exceeded 
some size threshold and score is still pretty low 
system will declare false positive. Since only false 
positive may have many instances (unknown 
operation phase massively turned in many hosts) and 
not have propagation pattern. 

 
EXPERIMENTAL RESULTS 

We performed trace based simulation using 
recorded system calls were from legitimate processes 
as well as malicious software. As malicious agent, we 
choose forth generation of Sasser worm – Sasser.D 
worm. Simulated legitimate processes include 
Microsoft Internet Explorer and CCAPP. We do not 
claim comprehensive monitoring in these preliminary 
experiments, however size of records constituted tens 
of thousands. For instance, we used 50000 system 
calls issued by Internet Explorer for crating Markov 
models. We also recorded 24 contiguous system calls 
invoked by victim process executing Sasser worm 
payload.  

Using the system call records, we obtained non-
stationary models for three chosen processes. Figure 2 
depicts call prediction performance for CCAPP 

process based on stationary Markov model versus 
non-stationary model. Non-stationary model contains 
three dynamic invariant chains. The trends present chi 
square likelihood ratio statistic which formally 
reflects prediction performance, the lower statistic the 
better prediction.  Examining the curves we can see 
that non-stationary Markov model (solid line) totally 
outperforms stationary model (dashed line).  
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Figure 2 Predicting performance for CCAPP 

 
After obtaining Markov models, we performed 

discrete time simulation in MATLAB. In the 
beginning of the simulation, 100 fictitious 
homogenous processes, running on 100 imaginary 
hosts, are assigned random starting index of system 
call in the trace (pool) of the recorded calls from some 
fixed legitimate process.  Now we assume that 
processes start execution form that assigned position. 
For sufficiently large trace, it is reasonable to assume 
that any starting point distribution may happen in real 
life. In other words, if the trace of a process is really 
long, then this process in any host will eventually pass 
through some segment in the trace during 
corresponding operation phase in real life.   

Simulated processes running in 100 assumed hosts 
virtually invoke system calls from the general trace 
one after one starting from assigned position. Delay 
period between two subsequent invoked calls is 
randomly generated after every invoking. This helps 
to reflect different delays of system calls execution 
due to operation system overload, what frequently 
happens in real life especially during massive viral 
attack. Moreover, to simulate connectivity between 
processes every process establishes connection to 
randomly chosen another process with some 
stochastically changed periodicity.  

Attack is simulated through inserting Sasser’s 
segment in front of the current trace position of target 
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process. The target process virtually invokes the 
worm trace and continues invoking system calls from 
the legitimate trace, what reflects normal execution 
return in real life. Attack pattern is specified prior and 
is performed with corresponding virtual inter-process 
connections.  

Sasser.D worm is indented to attack LSASS 
process, but today the vulnerability is well known and 
any antivirus software can detect it. Since system calls 
invoked in the penetrated process does not reflect 
exploit itself, but payload, we assumed that the same 
payload may be used in other attacks for different 
process. Thus, we decided simulate attack to Internet 
Explorer. On the other hand, we choose Internet 
Explorer for simulation because it the most 
complicated process with respect to modeling it in 
system call domain. It uses many system calls and 
have several operation phases, moreover it is 
multithread application what presumably decrease 
model accuracy making it the most challenging for 
attack detection.     

We simulated slow worm attack, which is difficult 
to detect. Attack pattern had tree-like shape. 30 
different attacks were performed. All of them were 
detected in early stages and no false positive (falsely 
declared attack) observed.  

We present results of detection of one of the attacks. 
Propagation score of the attack is depicted in the 
figure 3.  Figure shows 12 groups arranged in score 
descending order. First group contain indexes of 
attacked hosts. One can see that other “normal” 
groups have score five times lower than the score of 
the first group. The attack was detected on fourth 
instance of process subverting, what shows agility of 
the detection scheme in spate of the lots of noise  
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Figure 3 Propagation score 

caused by random connectivity simulation and 
legitimate anomalies.   

Figure 4 shows local false positive rate of those four 
processes which participate in attack pattern. This 
false positives shows host based detection without 
propagation analysis, decision made on hosts before 
sending anomaly to server. One can see that for 
threshold less then 20 all of the hosts have high local 
false positive. We repeated in offline the same attack 
but with local thresholds ranging from 10 to 20. In all 
cases, attack was successfully detected and no global 
false positive observed, what shows robustness of the 
anomaly propagation detection.      

             
Figure 4 False positive rate for different thresholds 

 
Figure 5 shows predicting performance of one of the 

attacked hosts. The big wide spike is due to Sasser 
trace. In this case of course worm anomaly has high 
score, but likelihood ratio depends on model quality 
what may end up in good prediction for worm trace 
(in case of bad model) and as a result in false negative 
of host based detection. One can see that for threshold 
15 stride dashed line, even if the statistic would be 
truncated down to shaded region (small dashed) what 
is three times less, the worm trace would anyway be 
detected locally and sent to the server. And as it was 
mentioned above attack for local threshold from 10 to 
20 (including 15) was successfully detected. This 
result shows that even for bad model the network 
level detection can still reveal the attack 
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Figure 5 Anomaly score (predicting performance) 

CONCLUSION 
We have demonstrate that anomaly propagation 

concept along with non-stationary Markov models can 
provide a high level of confidence in detection; no 
misdetections were observed in preliminary 
experiments. Non-stationary Markov models 
uniformly outperform stationary Markov models. 
Anomaly replication is detected for wide range of 
local threshold. Low threshold for local anomaly 
score (chi square likelihood ratio) leads to large 
number of detected local anomalies what constitutes 
impending noise for propagation detection. 
Nevertheless, even for low thresholds, anomaly 
propagation was reliably detected in all experiments, 
what points out high robustness and dependability of 
the proposed concept.  

Future work will be focused on problems white list 
application and extensions for multipartite (many 
sources) attack detection. White list means that 
declared false positive anomalies will be transmitted 
to the hosts to make filters of false positive. The main 
question is how big the white list would be until it 
saturates. Which distance threshold we should choose 
to declare if a new anomaly is indeed contained in the 
list.  

Multipartite attack must be treated in the little 
different way and may not have tree-like propagation 
pattern. Propagation concept will be generalized to 
handle multi source attack patterns.     
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