

AFRL-IF-RS-TM-2007-5
Final Technical Memorandum
February 2007

HIGH ORDER NON-STATIONARY MARKOV
MODELS AND ANOMALY PROPAGATION
ANALYSIS IN INTRUSION DETECTION SYSTEM
(IDS)

Advanced Technical Concepts

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Rome
Research Site Public Affairs Office and is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information
Center (DTIC) (http://www.dtic.mil).

AFRL-IF-RS-TM-2007-5 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

ANNA L. LEMAIRE IGOR G. PLONISCH, Chief
Work Unit Manager Strategic Planning & Business Operations Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

FEB 2007
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

May 06 – Sep 06
5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA8750-06-1-0176

4. TITLE AND SUBTITLE

HIGH ORDER NON-STATIONARY MARKOV MODELS AND
ANOMALY PROPAGATION ANALYSIS IN INTRUSION DETECTION
SYSTEM (IDS)

5c. PROGRAM ELEMENT NUMBER
62702F

5d. PROJECT NUMBER
558B

5e. TASK NUMBER
II

6. AUTHOR(S)

Victor A. Skormin

5f. WORK UNIT NUMBER
RS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Advanced Technical Concepts, Inc.
352 Ford Hill Road
Berkshire NY 13736-2135

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFB
26 Electronic Parkway
Rome NY 13441-4514

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-IF-RS-TM-2007-5

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 07-074

13. SUPPLEMENTARY NOTES

14. ABSTRACT
A new concept targeted to decrease false positive rates of anomaly based intrusion detection operating in the system call domain is
proposed. To mitigate false positives, network based correlation of collected anomalies from different hosts is suggested, as well as
a new means of host-based anomaly detection. The concept of anomaly propagation is based on the premise that false alarms do not
propagate within the network. Unless anomaly propagation is observed, alarms are to be treated as false positives. The rationale
behind the concept lies in the fact that the most common feature of worms and viruses is self-replication. As replication takes place,
a malicious code propagating through the network would carry out the same activity resulting in almost identical system call
sequences and triggering the same alarm at different hosts. The alarm propagation effect can be used to distinguish “true alarms”
from “false positives”. At the host-level, a new anomaly detection mechanism operating that employs non-stationary Markov
models is proposed.
15. SUBJECT TERMS
False positive rates, intrusion detection, anomaly detection, worms, viruses, self-replication, malicious code, non-stationary Markov
models

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Anna L. Lemaire

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

13
19b. TELEPHONE NUMBER (Include area code)

 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

HIGH ORDER NON-STATIONARY MARKOV MODELS AND ANOMALY
PROPAGATION ANALYSIS IN IDS

Victor A. Skormin vskormin@binghamton.edu

Final Report on Grant FA8750-06-1-0176

ABSTRACT
A new concept targeted to decrease false positive

rates of anomaly based intrusion detection operating
in the system call domain is proposed. To mitigate
false positives, network based correlation of collected
anomalies from different hosts is suggested, as well as
a new means of host-based anomaly detection.

 The concept of anomaly propagation is based on
the premise that false alarms do not propagate within
the network. Unless anomaly propagation is observed
alarms are to be treated as false positives. The
rationale behind the concept lies in the fact that the
most common feature of worms and viruses is self-
replication. As replication takes place, a malicious
code propagating through the network would carry out
the same activity resulting in almost identical system
call sequences and triggering the same alarm at
different hosts. The alarm propagation effect can be
used to distinguish “true alarms” from “false
positives”.

At the host-level, a new anomaly detection
mechanism operating that employs non-stationary
Markov models is proposed. Many applications or
services have different operating modes, which have
different dynamics with respect to system call
issuance. Therefore, an application or service can be
treated as a non-stationary stochastic process and be
modeled with a non-stationary Markov chain, which
significantly improves model consistency compared to
stationary Markov chain.

INTRODUCTION

The first Intrusion Detection System (IDS) utilizing
system calls was proposed in [1]. Today, these
systems utilize two main approaches, misuse detection
and anomaly detection. Misuse or signature-based

detection systems utilize descriptions of known attack
expressed in terms of system calls. Although
signature-based systems can provide high level of
accuracy, they fail to detect previously unknown
attacks. Anomaly detection systems utilize models of
normal behavior of legitimate processes, especially
privileged ones. These systems check the consistency

between the invoked system calls and the profile of
normality for a given process and have the potential to
detect unknown attacks, though they frequently suffer
from a high rate of false positives.
 This research targets anomaly-based IDSs that in
spite of their advantages are impractical due to high
rate of false positives. The limited success of known
research aimed at the alleviation of this problem [2, 3,
6, 8] is due to it being primarily aimed at the
improving the accuracy of the normality models
(profiles) rather than achieving high confidence in
classifying the detected anomaly.
 Two major contributions of this paper are as
follows. First, a novel host-level anomaly detection
mechanism is proposed. Second, having efficient host-
level anomaly detection, the unique but rather simple
principle, false positives do not propagate, is
suggested as the basis for establishing, with high
degree of confidence, whether detected anomaly is a
false positive or a true positive.
 The anomaly detection mechanism utilizes non-
stationary Markov models. While many shell codes
and exploits (in buffer overflow attack) may use only
20-30 system calls, which would certainly be
concealed in a histogram, Markov models are clearly
preferable to other order insensitive techniques (such
us frequency histograms) used to model normality
profiles [1, 3]. However, the common assumption that
the source (application or service) is a stationary
stochastic process generally may not by true. Any
application or services utilize high level functions
intended to solve different tasks. When an application
realizes several related tasks or group of tasks which

1 of 10

mailto:vskormin@binghamton.edu

condition each other, it is supposed to operate in one
of its distinct phases (modes). For example, our
preliminary experiments have identified the following
major operation modes of Internet Explorer:
application loading, browsing (loading pages from the
Internet) and downloading (retrieving large files).
 These operation phases are distinguished by
functionality and achieve different goals. Since
different operation modes would have their own
realization with respect to system calls, it can be
assumed that operation phases have different
unconditional as well as conditional distribution of
system calls. Hence, the system calls profile of an
application or service should be modeled as a non-
stationary stochastic process.
 The so-called “moving omnibus” method is used to
distinguish bifurcation points (points of sudden
change in dynamics) in observed data, which would
confine its stationary phases, then use obtained phases
to train Markov models. As a result each process
would have set of Markov models corresponding to
each operation phase, which would certainly increase
model consistency.
 It is expected to dramatically decrease false
positives by correlation of anomaly reports from
different hosts in the network. The main
distinguishable feature of viral software is self-
replication. It is differently implemented in viruses
and worms and can be revealed by the detection of
specific (abnormal) sequences of system calls [4]. As
the self-replication continues, the propagation of the
same abnormal activity pattern could be observed
within the network. We call it the anomaly
propagation.

The utilization of system call attributes provides
unambiguous representation of the connectivity
between various computers and processes within the
network. Then, if the anomaly propagation pattern is
consistent with the process connectivity pattern, it
could be declared with a high degree of certainty that
the detected anomaly is true positive, otherwise it is
false positive.

The proposed IDS approach has two levels of
implementation, the host-level anomaly detection, and
the network-level attack detection.

RELATED WORK
Signature-based IDS utilizing system call data are

known in literature. The feasibility of anomaly
detection using system calls is shown in [1], [2], [3].
The efficiency of this approach can be enhanced
further by the analysis of system call attributes as
shown in [5], [6], [7], [8] and [9]. Additional
improvement of this approach was demonstrated in
[4]. The misuse detection-based IDS approach could
be best exemplified by [10], [11].

PROPOSED ANOMALY DETECTION
Traditionally, anomaly detection consists of

recognizing process behavior deviation from a profile
of normalcy. In the system calls domain an IDS
compares sequences of system calls against a model
and consider abnormal traces as anomalous. The
efficiency of the anomaly detection depends on model
accuracy. The best way to model an application in the
system calls domain is to derive a system call
execution graph, which would explicitly reflect all
possible braches in algorithms. However, it is
impossible to process all possible branches of initial
algorithms from the binary code due to the implicit
logic transitions (jumps). Thus one can only derive
only approximate model, which adds some degree of
uncertainty in the application description. To reflect
such uncertainty, it can be assumed that system calls
are emitted by a stochastic source (an application)
with categorical state space represented by system
calls.

Any application or services utilize high level
functions these functions are intended to solve
different tasks. When an application realizes several
correlated tasks or group of tasks that condition each
other, it is supposed to operate in one of its distinct
phases (modes). These operation phases are
distinguished by functionality and achieve different
goals. Since different operation modes would have
their own realization with respect to system calls, it
can be assumed that operation phases would have
different unconditional as well as conditional
distribution of system calls. Hence, system calls
profile of an application or service can not be modeled
as stationary stochastic process, but as non-stationary
stochastic process.

Operation phases consist of many system calls and
implement some strictly prescribed high-level tasks.
This consideration assumes the source to be stationary
over each operation phase. Since dynamics of the

2 of 10

stochastic process are appeared to be invariant over an
operation phase, we can model operation phases by
Markov chains. Therefore, the source would be
modeled by set of Markov models corresponding to
each operation phase.

In this context, the trace of system calls is
considered to be anomalous if it is not likely to
happen according to current Markov model
(corresponding to current operation phase). The
sequence is not expected to happen if it was not
predicted by Markov model. Therefore, the anomaly
score can be chosen as prediction performance of the
Markov model over the observed sequence. Prediction
performance can be represented by chi-square
likelihood ratio of the observed sequence of certain
window. If chi-square likelihood ratio exceeds
specified threshold we declare observed sequence as
anomalous.

OPERATION PHASE DETECTION
Before deriving Markov models, operation phases

must be distinguished automatically in unsupervised
fashion. We have to apply a method which for the
given sequence of observations (system calls) to
determine bifurcation points (moments of dramatic
change in process dynamics). These bifurcation points
would certainly correspond to moments of operation
phase switching.

One of the most efficient techniques for detecting
bifurcation points is moving “omnibus” method [15].
The method is simple extension of rather classical
“omnibus” method. The latter one uses Pearson’s
hypothesis test. The observed sequence of states
(system calls) () is partitioned by two
contiguous subsequences
() for some
dividing point k . Then, every subsequence () is
used as training set to compute corresponding
transition matrix (). We can state the following
test to check if k is bifurcation point:

2χ

},...,{ 1 nssS =

},...,{},...,{ 1211 nkk ssSandssS +==

21, SS

21,TT

),(),(:),,(),(: 2,112,10 jiTjiTHversusjiTjiTH ≠= (1)
where, T is global transition matrix computed

over the entire sequence S
If the null hypothesis is rejected then transitional

probabilities are time variant due to dynamic change

in point k. Therefore, rejection of points out that
k is bifurcation point with some degree of confidence.
To implement the test (1) we can compute test statistic
in the following way:

0H

() ()∑∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

−
=

2

1 1,

2
2

2

2
1

1),(
),(),()(

),(
),(),()(

k

m

ji jiT
jiTjiTiN

jiT
jiTjiTiNW

 where - marginal observed frequency
of i-th state derived form first and second
subsequences respectively.

)(),(21 iNiN

 By central limit theorem, statistic W is
asymptotically distributed as with 2χ ()212 −m degree
of freedom under null hypothesis. Hence, we can
compute p-value of the test in the following
way:)(1 WFpvalue χ−= , where . If p-
value lower than chosen test size

cdfF 2χχ −

α , we reject and
claim non-stationarity with

0H

valuep−α significance.
Moving “omnibus” method consists of deriving p-

value for test (1) with respect to center point of the
window sliding over the observed sequence (trace).
The sliding window must be long enough to derive
local Markov models from the left and right halves of
the window. The points rejecting null hypothesis
would be declared as bifurcation points. Having set of
bifurcation points we can chose the most appropriate
ones according to constraints for phase minimum
length and number of phases. The algorithm for
selecting such points is proposed below.

Input constraints:
 –number of locally stationary phases n

minl – minimum length of a phase
Algorithm:

1. Form list L of sorted bifurcation points in
decreasing order with respect to significance.

2. Take first points from list L and compute
length of phases enclosed by these points

n

3. For every phase, which length is less than
delete from the list L less significant boundary
point.

minl

4. Continue step 2 until all constrained are met or
there is no enough points left in the list.

If the process has enough locally stationary periods,
the algorithm will determine bifurcation points
enclosing these periods in the observed sequence.

To demonstrate the efficiency of the algorithm on a
real process, the sequence of system calls was

3 of 10

observed during two operation phases of the Internet
Explorer. The first phase consists of browsing
different sites without downloading large files and the
second phase was downloading large files. Figure 1
depicts results of the algorithm. The plot shows p-
value for every separated point moved from 5000
instance to the end of the sequence (40000). The size
of hypothesis testing was 5 percent. It could be seen
that the test was rejected only once in the separating
point 15000 what shows high accuracy of bifurcation
point detection. P-value changed dramatically in
earlier points (13000-14000), but never reached
significance level. The results of the experiment show
the high efficiently of the moving “omnibus” method.

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0
0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Index of the separating point

P
-v

al
ue

Browsing
phase

Downloading
phase

Figure 1 Bifurcation point detection

Having facility to recognize stationary operation

phases in observed sequence of system calls, these
segments (subsequences) of states (system calls) can
be used to derive Markov models in offline.
Nevertheless, in testing regime, it is necessary to
recognize (in real time) which phase the monitored
application operates in to apply corresponding
Markov model. The problem of matching current
outcomes to set of models was addressed in several
publications (eg Stolfo [3]). Many authors use simple
approach consisting in trying different models form
the set and choosing the one which best fits according
to some distance metric. We used the similar method,
if current Markov model is not consistent according to
predicting performance metric (likelihood ratio), the
system searches for the model having the greatest
performance. To avoid undesired frequent model
change we introduced a constraint on minimum
number of system calls before model switching is
allowed.

MARKOV MODELS ORDER DETECTION

System calls are invoked according some
algorithms which have logical structure and solves its
own tasks which constitute operation phases. Since
system calls are issued in consecutive logic order, the
probability of occurrence of system calls depends on
not only one previous system call, but several
preceding system calls (prefix of system calls). These
considerations lead to necessity of using high order
Markov models.

The order of the Markov chain corresponding to an
operation phase is not known, hence has to be
determined. There are several approaches to
determine order of Markov model consistent with
observed sequence. These methods include: transition
correlation based method, chi-square statistics of the
transition frequency, index of transition complexity
and information theoretic approach.

We used information theoretic approach to
determine proper order of Markov model. The
rationale beside the approach is the fact that if
probability of occurrence of a state highly depends on
n previous states then mutual information of the
current state and n preceding states must be greater
than information based on less than n past states. The
criteria for defining best order of the Markov model
can be formally presented in the following way:
1. Starting from 1=n
2. Compute n-gram transition probabilities:

),...,|(1 niiip

where,),...,,(1 niiip probability of occurring state

 given past prefix of states (order preserving
prefix)
i nii ,...,1

3. Compute n+1 and n order mutual information:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+

+

∈
++ ∑

+
),...,()(

),..,(log),..,(),...,;(
11

11

..1,..,
1111

11
iipip

iipiipXXXI
nn

n

Nii
nnn

n

) - to be computed analogically ,...,;(11 −nn XXXI
4. D= -),...,;(11 nn XXXI +),...,;(11 −nn XXXI
5. If τ<D then stop, otherwise 1+= nn and go to step

2
This algorithm will derive the maximum order of

the model which still provides specified mutual
information increase. In reality mutual information
rate is decreasing function of the model order for
given observation sequence. Our preliminary

4 of 10

experiments showed that phases have at most third
order models.

ANOMALY REPLICATION DETECTION
 The main distinguishable feature of activity
perpetrated by such malicious software as worms or
viruses is self-replication. Viruses have to create file
containing its copy or attach itself to some victim file.
In contrast, worms may not even create any files,
residing in memory space of the victim process and
performing some activity on behalf of victim,
legitimate process. Thus, worms may not leave any
file “traces”, which can be used to detect the fact of
self replication. Nevertheless, to perform some
activity, injected malicious code must utilize system
resources trough system calls what will certainly
reflect in process behavior and detected as anomaly.
Replication assumes that worm will copy itself to
memory space of the remote process. Thus, every
copy of the worm would carry out the same activity
what would result in the same system calls trace and
almost the same detected anomaly in the victim
process. Therefore, self-replication can be revealed by
propagation of system calls traces (detected anomaly
sequences of system calls) from process to process
residing in different hosts. We call this approach
anomaly propagation.

The detected abnormal subsequence issued by the
same worm may contain also legitimate system calls,
which can be explained by inertia of the anomaly
detector. Thus abnormal sequences may loose some
(not many) “alien” system calls in the prefix and have
short suffix of legitimate system calls invoked by
victim process after getting the execution control
back.

To distinguish real propagation from set of
coincidences (meaningless occurrence of the same
anomaly in different nodes of the network)
connectivity pattern of the nodes (processes) is
analyzed. If propagation pattern is consistent with
connectivity pattern between processes, anomaly
replication takes place, which is a result of malicious
activity. If anomaly propagation is not consistent with
connectivity pattern, a false positive is declared.

Anomaly propagation analysis requires
distinguishing similar abnormalities to consider them
as single anomaly. Anomalous sequences of system
calls detected on the hosts are reported to the server

provided with time stamp and source process ID. In
the server the anomalies are stored and grouped.
Anomaly sequences in one group represent the same
anomaly. When server receives the abnormal
sequence it searches for the closest group. The
distance between two anomalies is reciprocal of
similarity measure which is represented by length of
the longest common factor. We can formalize the
distance between a sequence (S) and a group of
sequences (G) in the following way:

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=

∈)~,(
min),(~

SSc

S
GSd

GS
 (2)

where,)~,(SSc - the longest common factor
(substring) of and S S~ , S - length of the sequence
S. If the distance to the closest group is less than
specified threshold, we consider the new anomaly the
same as anomalies from the group and add it to the
group. If the distance is exceeds the threshold, we
treat new anomaly as previously unseen and
contribute it to a new group as the first member.

The rationale behind using the proposed distance
lies in the fact that processes may be attacked and
subverted at any time. Thus we can expect that
anomaly sequences would have different short
suffixes (segment of legitimate system calls).
Subsequence from the beginning to the legitimate
suffix would be large segment forming the pure
sequence of system calls actually invoked by worm’s
payload. Hence, anomalous sequences cased by the
same worm will have large common factor which
would constitute some segment of “malicious” system
calls.

Longest common factor between two strings (with
length n, m) can be found through dynamic
programming with computational
complexity. Hence, determining the closest group by
one to one search would exhibit

)(mnO ⋅

)(mNO ⋅
complexity, where N – sum of the length of strings in
the cumulated anomaly dictionary. However, we do
not need to know the longest common factor itself to
compute the distance , but only the length of
the factor. The length of the can be
approximated by length of longest common
subsequence which can be found trough weighted
Levenshtein (edit) distance for the case when

),(GSd
)~,(SSc

)~,(SSc

5 of 10

constitutes significant part in both sequences. The
longest common subsequence is not necessary
contiguous, but due to high performance of the
proposed anomaly detector, we can expect that “alien”
part in anomaly substring (common factor) would be
much longer than the rest (legitimate) what justifies
approximation. The edit distance is weighted so
that, deletion operations would not constitute any
penalty score. Formally, the length of the longest
common factor of sequences S and S~ can be
represented in the following way:

⎪
⎪
⎩

⎪⎪
⎨

⎧

++=

−=

−=

deleteinsertsub

deleteW

W

LLLSSL

LSSLSSL

SSLSSSc

)~,(

)~,()~,(

)~,()~,(
 (3)

where,)~,(SSL - Levenshtein (edit) distance
between S and S~ , - number of
substitution, insertion and deletion operations
respectively. Here

deleteinsertsub LLL ,,

insertsubW LLSSL +=)~,(represent
weighted edit distance with zero penalty of deletion
operation.
 Expressions 2 and 3 shows that minimizing

)~,(SSLW we will minimize the distance . The
problem of finding the closest anomaly group can be
reformulated in the following way: given the
dictionary of strings (sequences) D and a pattern
string S find the string from dictionary which is the
closest to S with respect to weighted edit distance

),(GSd

Ŝ

)~,(SSLW . Having the closest string , we consider

the distance (2) as distance to the group the string
belongs to.

Ŝ

Ŝ

Such problem is called approximate dictionary
querying and is addressed in several papers [12, 13,
14]. Yates and Navarro [12] use metric property of
edit distance (triangular inequality) to neatly organize
vocabulary as a metric space. Such data structure
reduces dictionary query complexity to .
Brodal and Gasieniec [13] utilized cell-probe model to
achieve very low complexity. Nevertheless the
method handles only one mismatch queries
(

)log(NNO

1)~,(≤SSLW) what is not applicable to our problem
(length of the suffix could be more than 1). We
suggest using method presented by Cole and
Lewenstein [14] which uses so called longest common
prefix data structure to organize vocabulary. The

method can handle cases with edit distance more than
one and has query complexity

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ N

k
dcmO

k

loglog
!

)log(which is less than

 and)log(NNO)(mNO ⋅ for nmk <<, , where d –
number of strings in the dictionary, k – specified
maximum (preferred) distance in the query, c – some
constant. Since, legitimate prefix is expected to be
small in anomalous sequence, preferred edit distance k
would be also small. The only modification in the
algorithm [14] concerns objective function, which
must be changed to weighted edit distance depicted in
expression (3).

After defining the closest group of anomalies, the
system must analyze the pattern of propagation of
anomalies in the group to reveal replication feature.
Replication property is determined through processes
connectivity pattern. Connectivity pattern (or
connectivity graph) is represented by weighted
directed graph with nodes being processes in
different hosts and edges presenting last interaction. If
one process sends some data to the port another
process listens to, we assume that sender process
interacted to the second one. Thus, if one process 1
interacted to the process 2, the system adds edge (or
upgrades if there is already one) with weight equal to
relative interaction time.

),(EVC

Anomaly propagation is considered to have
replication pattern if it is consistent with connectivity
graph in both topological and time sense. In other
words, if anomaly is replicating, it must propagate
according to simple rules:

• Each new instance of anomaly (except the first
one) must occur in the process which has
recently been interacted by another suspicious
process (which already issued anomaly)

• The time elapsed from last interaction and
anomaly occurrence must not be longer than
prescribed threshold (active window)

For the multipartite attack (coordinated multi source
malicious activity) the first rule must tolerate several
sources. Iterative algorithm verifying if anomalies
propagation in the group has replication pattern would
be straightforward:

Input
New anomaly being added to the group AV

},..,{ 1 nVVG =

6 of 10

Weighted adjacency matrix T of the
connectivity graph C)),((),(ji VVEweightjiT =

• Get the subset of group members connected to
anomalous process:

 () (}0),(&:{ >∈= AVVTGVVS)
• Check if the last connection time is less than

threshold: max),((min tVVT ASV
<

∈

• Increase counter of the group members
participating in the replication 1+= kk

• If the normalized counter is more than threshold

(τ>
G
k), arise attack alarm

• If group size is more than prescribed value and
normalized counter is less than tolerance value

(max& sGtol
G
k

>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<), declare false positive.

This algorithm provides score which is compared to
threshold to decide if anomaly propagation is indeed
replication. The score takes into account the relative
number of instances matched to replication pattern
and shows how much the propagation similar to
replication pattern. If the size of the group exceeded
some size threshold and score is still pretty low
system will declare false positive. Since only false
positive may have many instances (unknown
operation phase massively turned in many hosts) and
not have propagation pattern.

EXPERIMENTAL RESULTS

We performed trace based simulation using
recorded system calls were from legitimate processes
as well as malicious software. As malicious agent, we
choose forth generation of Sasser worm – Sasser.D
worm. Simulated legitimate processes include
Microsoft Internet Explorer and CCAPP. We do not
claim comprehensive monitoring in these preliminary
experiments, however size of records constituted tens
of thousands. For instance, we used 50000 system
calls issued by Internet Explorer for crating Markov
models. We also recorded 24 contiguous system calls
invoked by victim process executing Sasser worm
payload.

Using the system call records, we obtained non-
stationary models for three chosen processes. Figure 2
depicts call prediction performance for CCAPP

process based on stationary Markov model versus
non-stationary model. Non-stationary model contains
three dynamic invariant chains. The trends present chi
square likelihood ratio statistic which formally
reflects prediction performance, the lower statistic the
better prediction. Examining the curves we can see
that non-stationary Markov model (solid line) totally
outperforms stationary model (dashed line).

8420 8440 8460 8480 8500 8520
0

2

4

6

8

10

System call index

Li
ke

lih
oo

d
χ2

Non-stationary Markov model
Stationary markov model

Figure 2 Predicting performance for CCAPP

After obtaining Markov models, we performed

discrete time simulation in MATLAB. In the
beginning of the simulation, 100 fictitious
homogenous processes, running on 100 imaginary
hosts, are assigned random starting index of system
call in the trace (pool) of the recorded calls from some
fixed legitimate process. Now we assume that
processes start execution form that assigned position.
For sufficiently large trace, it is reasonable to assume
that any starting point distribution may happen in real
life. In other words, if the trace of a process is really
long, then this process in any host will eventually pass
through some segment in the trace during
corresponding operation phase in real life.

Simulated processes running in 100 assumed hosts
virtually invoke system calls from the general trace
one after one starting from assigned position. Delay
period between two subsequent invoked calls is
randomly generated after every invoking. This helps
to reflect different delays of system calls execution
due to operation system overload, what frequently
happens in real life especially during massive viral
attack. Moreover, to simulate connectivity between
processes every process establishes connection to
randomly chosen another process with some
stochastically changed periodicity.

Attack is simulated through inserting Sasser’s
segment in front of the current trace position of target

7 of 10

process. The target process virtually invokes the
worm trace and continues invoking system calls from
the legitimate trace, what reflects normal execution
return in real life. Attack pattern is specified prior and
is performed with corresponding virtual inter-process
connections.

Sasser.D worm is indented to attack LSASS
process, but today the vulnerability is well known and
any antivirus software can detect it. Since system calls
invoked in the penetrated process does not reflect
exploit itself, but payload, we assumed that the same
payload may be used in other attacks for different
process. Thus, we decided simulate attack to Internet
Explorer. On the other hand, we choose Internet
Explorer for simulation because it the most
complicated process with respect to modeling it in
system call domain. It uses many system calls and
have several operation phases, moreover it is
multithread application what presumably decrease
model accuracy making it the most challenging for
attack detection.

We simulated slow worm attack, which is difficult
to detect. Attack pattern had tree-like shape. 30
different attacks were performed. All of them were
detected in early stages and no false positive (falsely
declared attack) observed.

We present results of detection of one of the attacks.
Propagation score of the attack is depicted in the
figure 3. Figure shows 12 groups arranged in score
descending order. First group contain indexes of
attacked hosts. One can see that other “normal”
groups have score five times lower than the score of
the first group. The attack was detected on fourth
instance of process subverting, what shows agility of
the detection scheme in spate of the lots of noise

1 2 3 4 5 6 7 8 9 101112
0

0.2

0.4

0.6

0.8

1

Figure 3 Propagation score

caused by random connectivity simulation and
legitimate anomalies.

Figure 4 shows local false positive rate of those four
processes which participate in attack pattern. This
false positives shows host based detection without
propagation analysis, decision made on hosts before
sending anomaly to server. One can see that for
threshold less then 20 all of the hosts have high local
false positive. We repeated in offline the same attack
but with local thresholds ranging from 10 to 20. In all
cases, attack was successfully detected and no global
false positive observed, what shows robustness of the
anomaly propagation detection.

Figure 4 False positive rate for different thresholds

Figure 5 shows predicting performance of one of the

attacked hosts. The big wide spike is due to Sasser
trace. In this case of course worm anomaly has high
score, but likelihood ratio depends on model quality
what may end up in good prediction for worm trace
(in case of bad model) and as a result in false negative
of host based detection. One can see that for threshold
15 stride dashed line, even if the statistic would be
truncated down to shaded region (small dashed) what
is three times less, the worm trace would anyway be
detected locally and sent to the server. And as it was
mentioned above attack for local threshold from 10 to
20 (including 15) was successfully detected. This
result shows that even for bad model the network
level detection can still reveal the attack

8 of 10

.
20 40 60 80 100 120 140 160

0

10

20

30

40

50

60

70

System call index

χ2 li
ke

lih
oo

d
ra

tio

Figure 5 Anomaly score (predicting performance)

CONCLUSION
We have demonstrate that anomaly propagation

concept along with non-stationary Markov models can
provide a high level of confidence in detection; no
misdetections were observed in preliminary
experiments. Non-stationary Markov models
uniformly outperform stationary Markov models.
Anomaly replication is detected for wide range of
local threshold. Low threshold for local anomaly
score (chi square likelihood ratio) leads to large
number of detected local anomalies what constitutes
impending noise for propagation detection.
Nevertheless, even for low thresholds, anomaly
propagation was reliably detected in all experiments,
what points out high robustness and dependability of
the proposed concept.

Future work will be focused on problems white list
application and extensions for multipartite (many
sources) attack detection. White list means that
declared false positive anomalies will be transmitted
to the hosts to make filters of false positive. The main
question is how big the white list would be until it
saturates. Which distance threshold we should choose
to declare if a new anomaly is indeed contained in the
list.

Multipartite attack must be treated in the little
different way and may not have tree-like propagation
pattern. Propagation concept will be generalized to
handle multi source attack patterns.

REFERENCES
[1] S. A. Hofmeyr, S. Forrest, and A. Somayaji,
“Intrusion detection using sequences of system calls,”

Journal of Computer Security, vol. 6, no. 3, pp. 151–
180, 1998.
[2] A Durante, R Di Pietro, LV Mancini. “Formal
Specification for Fast Automatic IDS Training”.
Lecture Notes in Computer Science, 2629:191-204,
2003
[3] SJ Stolfo, W Lee, E Eskin. “Modeling system
calls for ID with Dynamic Window Sizes”, In
Proceedings of the DISCEX II. June 2001.
[4] V. Skormin, A. Volynkin, D. Summerville, J.
Moronski, “Run-Time Detection of Malicious Self-
Replication in Binary Executables” Journal of
Computer Security, 2006 in appearing
[5] Alexander Liu, Cheryl Martin. “A Comparison of
System Call Feature Representations for Insider
Threat Detection”, In Proceedings of the 6th IEEE
Information Assurance Workshop, 2005
[6] Gaurav Tandon, Philip K. Chan. “Learning Useful
System Call Attributes for Anomaly Detection”. In
Proceedings of the FLAIRS Conference, 2005
[7] Bowen, T., Segal, M., and Sekar, R. “On
preventing intrusions by process behavior
monitoring”. In Proceedings of the Workshop on
Intrusion Detection and Network Monitoring, 1999
[8] Xu M, Chen C, Ying J. “Anomaly detection based
on system call classification”. Journal of Software,
15(3): 391~403, 2004
[9] Christopher Kruegel, Darren Mutz, Fredrik Valeur
and Giovanni Vigna. “On the Detection of Anomalous
System Call Arguments”. 8th European Symposium
on Research in Computer Security (ESORICS),
Lecture Notes in Computer Science, Springer Verlag
Norway October 2003.
[10] Bernaschi, M., Grabrielli, E., Mancini, L.
"Operating System Enhancements to Prevent the
Misuse of System Calls", In Proceedings of the ACM
Conference on Computer and Communications
Security, 2000
[11] Kang, D.-K., Fuller, D., and Honavar, V.
“Learning classifiers for misuse and anomaly
detection using a bag of system calls representation”.
In Proceedings of 6th IEEE Systems Man and
Cybernetics Information Assurance Workshop (IAW).
2005
[12] R. Baeza-Yates, G. Navarro. “Fast approximate
string matching in a dictionary”, In Proceedings of the
SPIRE’1998 IEEE Computer Press, 1998

9 of 10

http://scholar.google.com/url?sa=U&q=http://www.springerlink.com/index/JJWMFWKGADEYVR53.pdf
http://scholar.google.com/url?sa=U&q=http://www.springerlink.com/index/JJWMFWKGADEYVR53.pdf
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/t/Tandon:Gaurav.html
http://www.informatik.uni-trier.de/~ley/db/conf/flairs/flairs2005.html#TandonC05

[13] G. S. Brodal and L. Gasieniec. “Approximate
dictionary queries”. In Proceedings of the Symposium
on Combinatorial Pattern Matching, 65-74, 1996.
[14] R. Cole, Lee-Ad Gottlieb, M. Lewenstein.
“Dictionary Matching and Indexing with Errors and
Don't Cares”, Annual ACM Symposium on Theory of
Computing, 2004
[15] J. M. Gottman, Roy A Kumar. “Sequential
analysis. A guide for behavioral researchers”,
Cambridge: Cambridge University Press, 1990
[16] V. Skormin, A. Volynkin, D. Summerville, J.
Moronski, “Prevention of Information Attacks by
Run-Time Detection of Self-Replication in Computer
Codes,” Acepted for publication in Computer Security
Journal
[17] A. Volynkin, V. Skormin, D. Summerville, J.
Moronski, "Evaluation of Run-Time Detection of
Self-Replication in Binary Executable Malware," 7th
Annual IEEE Information Assurance Workshop, West
Point, NY, June 6, 2006

10 of 10

	06-1-0176.pdf
	ABSTRACT
	RELATED WORK
	PROPOSED ANOMALY DETECTION
	OPERATION PHASE DETECTION
	 MARKOV MODELS ORDER DETECTION
	ANOMALY REPLICATION DETECTION
	CONCLUSION
	REFERENCES

