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Robust Stability Under Mixed Time Varying, Time 
Invariant and Parametric Uncertainty 

Fernando Paganini * 

Abstract 

Robustness analysis is considered for systems with structured uncertainty involving a com- 

bination of linear time-invariant and linear time-varying perturbations, and parametric uncer- 

tainty. A necessary and sufficient condition for robust stability in terms of the structured singular 

value p is obtained, based on a finite augmentation of the original problem. The augmentation 

corresponds to considering the system at a fixed number of frequencies. Sufficient conditions 

based on scaled small-gain are also considered and characterized. 

1 Introduction 

A substantial amount of research in recent years has been devoted to  analysis and synthesis of 

control systems t o  achieve robust stability and performance in the presence of structured uncer- 

tainty. This implies a decentralized nature of the uncertain perturbation, which is a reasonable 

modeling choice for complex systems, where uncertainty may be introduced a t  the subsystem level 

(see Safonov [17] and Doyle [5] for early treatments of this). 

In addition t o  this "spatial" structure, different assumptions can be made on the dynamic 

properties of the uncertainty: real parametric, linear time invariant (LTI), linear time varying (LTV) 

or nonlinear perturbations. All these uncertainty classes arise naturally in modeling. Parametric 

uncertainty appears frequently in first principles models; LTI perturbations are well suited when 
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there is frequency domain information about the system, to be "covered" by a suitable ball of LTI 

uncertainty. Time-variations can be captured by LTV uncertainty; more generally, an arbitrary 

LTV operator is equivalent to  a norm constraint between signals, and therefore provides very crude 

uncertainty information which may be used to  cover a contractive nonlinearity in the system. 

In [5], robustness analysis for structured uncertainty was focused on constant, complex matrices, 

and led to  conditions in terms of the structured singular value p;  an evaluation of (complex) p across 

frequency captures the case of LTI perturbations [Il l .  Subsequent work [7, 191 has considered a 

combination of uncertain parameters and LTI perturbations, and leads to  mixed (real/complex) 

p-analysis. These conditions are exact, although their evaluation is computationally hard (see 

[4]) and is therefore usually approached by means of bounds. In particular, a class of sufficient 

conditions for robust stability can be stated in terms of a scaled small-gain theorem, which can be 

evaluated via convex optimization. The scales are chosen to commute with the spatial structure of 

the uncertainty, and can either be constant or varying in frequency. 

Robustness analysis under LTV uncertainty has seen major progress in recent years, since it 

was discovered that the above mentioned convex tests apply exactly to  this case. It was found in 

[8] for the 1, setting, and later in [18], [9] for the l2  case, that the constant scales condition is 

necessary and sufficient for robust stability under structured LTV perturbations. In reference to  

the frequency-varying scales test, it was shown in [14] (see also [15]) that this condition is necessary 

and sufficient for robust stability against arbitrarily slowly varying (a slightly larger class than LTI) 

uncertainty. 

This paper considers the situation where a mixed structure of LTV, LTI and parametric per- 

turbations affects the system. This is a very natural problem since the same reasons which lead 

to  "decentralized" uncertainty will often produce uncertain models involving a combination of the 

above mentioned classes. 

The inclusion of time-varying uncertainty precludes a straightforward frequency domain p- 

analysis as in mixed LTI/parametric problems. For this reason, we propose an augmentation 



procedure across a number of frequencies, which is related to  a lifting technique for p analysis by 

Bercovici et. al. [2], and to  a power distribution Lemma from Poolla and Tikku [14]. The main 

result in this paper is t o  show that a p test in the augmented structure is necessary and sufficient for 

robust stability under mixed LTV/LTI/parametric uncertainties. The augmentation also provides 

an alternative for the formulation of convex upper bounds, and leads to  an exact characterization 

of these tests. 

The paper is organized as follows. In Section 2 we review in more detail the background 

material described above. In Sections 3 we focus on the combined LTV/LTI problem, and obtain 

the complex p test for analysis. In Section 4 we analyze the properties of the corresponding convex 

upper bounds. In Section 5 parametric uncertainty is also introduced in the problem, and an 

augmented mixed-p test is derived. Section 6 contains examples which demonstrate the results, 

and conclusions are given in Section 7. Preliminary versions of these results were presented in [13]. 

2 Preliminaries 

Robust stability and performance analysis under structured uncertainty has been the focus of 

a substantial research effort in recent years. This section contains a (by no means exhaustive) 

summary of previous work related to this paper. 

A standard setup for robustness analysis is depicted in Figure 1. This picture represents a 

robust stability problem, where M is the nominal system, which is assumed stable (often, M is 

finite-dimensional LTI), and A is a perturbation, which is assumed to  have spatial structure 

In (1) and throughout this paper, the notation diag[D1, . . . , D,] refers to a block diagonal 

matrix with blocks Dk. The blocks in A can in general represent real parameters or dynamic (LTI, 

LTV, nonlinear) perturbations. 

In this paper we consider linear, discrete-time systems, but the results extend with minor 



Figure 1: Robust stability 

changes t o  the continuous time case. The l2 norm is used for signals: IT is the set of Cn valued 

square-summable sequences over the positive integers. Cc(l;) denotes the set of linear, bounded 

and causal operators in 1;. All our perturbation structures will therefore be a subset of the class of 

structured LTV operators of the form (1) with 5; E Cc(ll), AL+j E (l?),  1 5 i 5 L, 1 5 j 5 F. 

Some of the blocks will additionally be specialized to be LTI operators, or further to  be real 

parameters. The uncertainty is normalized to  a ball BA = { A  : llAll 5 I} in the la-induced norm. 

Assuming M ,  A are causal, the standard notion of stability of the interconnection of Figure 

I is that the map between injected disturbances dl, d2 and the signals z ,  w is causal, and it is a 

bounded operator when restricted to  12. If M ,  A are themselves stable, this reduces to  testing for 

the invertibility of I - A M .  This is captured in the following: 

Definition 1 Assume that M  E C(12). The system of Figure 1 is robustly stable i j  I - A M  : 12+12 

has a causal, bounded inverse for all A E Bp. Robust stability is uniform if 

This paper is concerned with tests for robust stability under various assumptions on the un- 

certain perturbations. An important comment is that these tests can also be used for analyzing 

robust disturbance rejection: a performance specification in terms of a bound on the induced norm 

of a transfer function can under fairly general circumstances (see [8, 181) be converted to  a robust 

stability problem with an additional uncertainty block. 



2.1 Constant Matrix Analysis 

The effect of the structure of the perturbation in the robustness analysis is apparent when we 

consider the constant matrix version of the interconnection of Figure 1. Now M , A are matrices 

in Cnxn, A still has the spatial structure (1). The invertibility of I - A M  is captured by the 

structured singular value p [5, 11, 7, 191, defined as follows (where a denotes maximum singular 

value) : 

Definition 2 The structured singular value p a ( M )  of a matrix M with respect to a structure A 

is defined as pn(M) := 0 if no A E A makes I - A M  singular, otherwise 

pA(M)  := (min {a (A) : det[I - AM] = 0))-' 

Thus I - A M  is invertible for all A E BA if and only if pA(M) < 1. Two different cases are 

of interest: complex p [11] for complex A, and mixed p [19], where some of the blocks in A are 

restricted to be real (see (8) below). In this paper we shall use a common generic notation p; the 

distinction will be made explicit whenever is necessary. The following basic property of p is known 

as the main loop theorem [l l]:  

Lemma 1 Given a block structure A = diag[Al ,  A2] and a C-valued matrix, suitably partitioned 

as M := [ 2: 2; 1, then pa(M) < 1 if and only if 

~Az(M22) < 1, max pa, ( M  * A,) < 1 
@ ( A z ) l l  

where M * A2 is  the Linear Fractional Transformation ( L F T )  

Since exact computation of the structured singular value is hard, it is usually approximated by 

upper and lower bounds. For lower bound algorithms refer to [ll, 191. A computationally tractable 

upper bound is obtained by considering scaling matrices which commute with the elements in A. 

The matrices with that property are of the form 



Let XI be the set of positive matrices of the form ( 5 ) ,  define 

jIA(iM) := inf ii (XMX-I) 
X E X  

Then pA(M) < jIA(M). Equivalently, the Linear Matrix Inequality (LMI) condition 

is sufficient for pA(M) < 1. This convex feasibility condition is attractive for computation (see 

[3]). It can also be refined for the case of mixed uncertainty structures. If A is of the form 

A = diag [61IT1, . . . ,SL,I, 6~,+1I.  . . , SL,+L~,  ~ L + I ,  ., AL+F] (8) 

where 61 . . . SL, E R (i.e. the first LR scalar times identity blocks correspond to real parameters), 

then condition (7) can be tightened (see [7, 191) to 

where the matrices G are of the form G = diag[G1,. . . , G L ~ ,  0 , .  . . ,0] with G; = G;*. 

2.2 Robust Stability Tests 

With the notation developed from the constant matrix case, we now summarize known conditions 

for analysis of the robust stability question in Figure 1, where M(ejw) is assumed to be always a 

finite dimensional LTI system. 

The first result (see [ l l ] )  is that if A is LTI uncertainty, robust stability is equivalent to the 

complex p-test across frequency 

m a x p A ( ~ ( e ~ ~ ) )  < 1 
W (10) 

An analogous condition holds if the uncertainty structure consists of a combination of real para- 

metric and LTI perturbations, the only difference being that complex p is replaced by mixed p. 



Convex conditions for robust stability analysis follow from the p-upper bound. The scalings X 

can be chosen either to  be constant, or frequency varying, giving the following two tests: 

inf x I I X M ( ~ ~ ~ ) X - ' I I _  < I 

m a x j i a ( ~ ( e j w ) )  w = inf I I ~ ( w ) ~ ( e j ~ ) X ( w ) - ' l l _  < 1 * ( w )  
(12)  

Clearly, (11)  implies (12)  which in turn implies ( l o ) ,  so both conditions (11-12) are sufficient for the 

case of LTI uncertainty. Also, for mixed real parametric/LTI perturbations, (12)  can be tightened 

by use of frequency dependent G-scales as in (9). 

Recent results have provided an exact characterization of conditions (11)  and (12) .  It was shown 

independently by Shamma [18] and Megretski [9] that the constant scales test (11)  is necessary and 

sufficient for robust stability under structured LTV perturbations. In the frequency varying case, 

Poolla and Tikku [14] have recently shown that (12)  is necessary and suficient for robust stability 

against the class of arbitrarily slowly varying structured perturbations. The following definition is 

from [14]. 

Definition 3 A n  operator A E C c ( l z )  has time variation slower than v i f  llAA - AAll < v IlAll, 

where X is the delay operator. The set of such operators is denoted by F ( v ) .  

The norm llXA - AAll is a natural way to capture the rate of time variation of an operator. If this 

norm is zero, A commutes with X and the operator is time invariant. Therefore small values of v 

in Definition 3 correspond to  operators which vary "slowly". A value v = 2 includes all "arbitrarily 

fast" operators on 1 2 .  The result from [14] is that the (12)  holds if and only if the system is robustly 

stable under perturbations in F ( v )  for some v > 0. 

It may be argued from these results that p-analysis should be abandoned in favor of these upper 

bounds which appear more tractable, especially in the case of (12)  which has mild conservatism. 

There are still good reasons, however, to  formulate a problem in terms of p. In the first place, 

although the upper bounds have guaranteed polynomial-time computation, the size of the problems 

can be very large and render the computation impractical. In these cases one often relies heavily on 



the availability of efficient lower bound algorithms [ll, 19, 11 (which have no guarantees but appear 

to  behave well in practice) to compute the analysis. Secondly, if there is parametric uncertainty 

in the problem, the upper bounds may be substantially conservative (there is no corresponding 

slowly-varying interpretation). Lower bound algorithms provide a fast method to obtain "bad" 

parameter values, and can be further employed to assess this conservatism and, if desired, pursue 

a more refined analysis by branch and bound techniques [lo]. 

2.3 A Power Distribution Lemma 

The following Lemma from Poolla and Tikku [14] provides a useful characterization of time varying 

perturbations, which will be used in this paper. 

Lemma 2 Let 0 < wl < . . . < wT 5 n be distinct frequencies. If the vector valued signals 

satisfy the power inequality llzk112 2 llwkl12, then there exists a linear time-varying, 

causal operator A such that 

( i i )  A E .F(v), v = 2 sin( WT - (J1 

2 1 
(iii) A x  = w + wtT, wtT E l2 

Heuristically, this lemma says that provided that the total power of z is greater than that of w, a 

contractive LTV operator can rearrange the power between frequencies, mapping x to w in steady 

state. The time variation v required is a function of the amount of "frequency shifting" performed. 

In contrast, a contractive LTI operator will always decrease the power at every frequency. 



3 A p-Test for Mixed LTVILTI Analysis 

Sections 3 and 4 refer to  the system of Figure 1, where we now set 

In (14), M is a finite dimensional LTI discrete time system, which can also be given a state-space 

representation 

Equivalently, M is obtained from the LFT M(X) = X I  * S = D f CX(I - XA)-'B, where X is the 

delay operator (or a frequency variable in the unit disk) and S is the constant state-space matrix. 

Q, is a causal LTV operator on IT, and 0 is a causal LTI operator on 1:. Each has a spatial 

structure analogous to  ( I ) ,  denoted respectively by <P and 0. Bq, and Be denote the unit balls of 

uncertainty. x', W' will denote the sets of scaling matrices corresponding to  each structure. The 

consideration of real parametric uncertainty is deferred to Section 5 .  

An important integer parameter determined by the structure is the dimension d of the space of 

hermitian scaling matrices which commute with the LTV structure a. (x' is the positive cone in 

this space). When consists only of full blocks, d is the number of blocks. 

The main result in this section is an extension of the exact p-test ( lo),  for LTI analysis, to the 

case of mixed LTVILTI perturbations. 

Since LTV structures are usually characterized by tests in terms of fi, rather than p ,  it is not 

obvious that a p-test can capture the mixed LTV/LTI case (and in particular, the LTV case). The 

main idea to  obtain this p-test is inspired in work by Bercovici et .al. [2], where an augmentation or 

lifting in the structure converts the upper bound fi to  p of a larger matrix. The results in [2] apply 

to  constant matrices and are based on operator-theoretic methods, but can also be obtained as a 

corollary of the more general dynamic results to  be presented in this paper, which will be proved 

by convex analysis methods. 



We first consider the augmented matrix 

which amounts to considering the system A4 at a fixed number d of frequencies. Next we introduce 

the following augmented structures in the space of complex matrices: 

The augmented structures 6, A, are d times larger than the corresponding 9 ,  A. For the case 

of 6, it is obtained simply by considering d2 copies of 9, in matrix form. A, which contains (1, 

as a subrnatrix, is obtained in a similar fashion, the only difference being that the time invariant 

blocks 0 are only "copied" along the diagonal, and the rest of the entries are set to zero. As an 

illustration, Figure 2 (a) contains the augmented configuration (k, A) for the case d = 2. 

(a) ( b )  

Figure 2: Augmented representations 



This structure has a "frequency shifting" interpretation which relates to the remarks made 

in regard to  Lemrna 2: the augmentation corresponds to considering a system at a number d of 

frequencies, and the different treatment of LTI and LTV blocks is due to  the fact that only the 

time-varying perturbations are allowed to "shift energy between frequencies"; this is represented in 

6 by the off-diagonal terms. 

It is also convenient to consider the configuration of Figure 2 (b), where the LTI portion is 

included with the dynamics. Define 

For this LFT to be well defined for 0 E Be, the following condition must hold: 

Under this condition, G(w, 0) is continuous for w E [-n, n], 0 E Bo. For given (wk, Oh), k = 1..  .d,  

the matrix G ( W ~ ,  . . . , wd, e l , .  . . , od) := diag[G(wl, 0'). . .G(wd, od)] is obtained by LFT between the 

8 portion of A and the matrix M(wl, . . . ,wd), as shown in Figure 2 (b). 

We now state the main result: 

Theorem 3 In reference to the system (14), the following are equivalent: 

(a) The system is uniformly robustly stable. 

(b) Condition (20) holds, and with wk varying in  [-n, n], and ok E Be,  

max p6 ( ~ ( w l ,  . . . , wd, dl, . . . , o d ) )  < 1 
W l  ,... rWd,el ,..., e d  

(c) With wk varying in [-n, n] 

max I"L\ (M(w1, . . . , wd)) < 1 
w 1  ,...,wd 

(22) 

Proof: The equivalence of (b) and (c) is a simple consequence of the main loop theorem (Lemma 

1). In fact, for each wl, . . . , wd, Lemma 1 implies that 



Taking maximum over wl, . . . , wd, the right hand side of (23) gives (20) and (21). 

The equivalence of (a) and (b) follows from a more technical convex analysis argument, and is 

covered in the Appendix. 

Theorem 3 provides a necessary and sufficient test for robust stability in terms of a p-condition 

(22) which involves a search in d frequency variables. Using a state-space realization as in (15), a 

state-space test in terms of p of a constant matrix can be derived, in an analogous way as in the 

standard LTI problems involving one frequency variable ([Ill): 

Corollary 4 The system has uniform robust stability if and only if pd,(S) < 1, where S = 

diag[S, . . . , S], and 

Proof: M(X) (with X a complex variable in the closed unit disk D), is the transfer function of 

the stable state-space system given by S. The main loop theorem (Lemma 1) implies that 

pa,(S) < 1 u max - pA(fi(X1, . . . , Ad)) < 1 
A 1  , . . . ,Ad@ 

where &(XI, . . . , Ad) := diag[M(X1), . . . , M(Xd)]. The maximum modulus-like property [ll] of 

complex p implies that the maximum in (26) occurs at the boundary of the disk, and therefore (26) 

coincides with (c) in Theorem 3. 



4 Convex Tests for the Mixed LTVILTI Problem 

The previous tests have the theoretical advantage of being exact, but as remarked before, exact p 

computation is hard, so practical use of these conditions will involve employing bounds as those in 

standard software packages such as p-Tools [I]. 

In particular, we analyze in this section the upper bounds for this problem (sufficient conditions 

for robust stability) which lead to  convex optimization. For this purpose, the p conditions obtained 

in Section 3 can be bounded by use of the constant matrix upper bound @. We focus here on the 

upper bound j i i ( ~ )  over the frequencies w l ,  . . . , wd, which follows from (22). An examination of 

the augmented structure A shows that the corresponding commuting matrices x are of the form 

where X@ E x@, X[ E xB. 
An alternative is to  directly apply scaled small-gain conditions to the original problem. In the 

case of mixed LTV/LTI analysis as in (14), the natural scaling set is of the "mixed" form 

where the portion XB which corresponds to the LTI blocks 8 is allowed to  vary in frequency, and 

the portion X' corresponding to  the LTV blocks is constant. X, will denote the set of such scaling 

functions; without loss of generality they are assumed to be continuous over frequency. 

We now show that the two approaches are equivalent. 

Proposition 5 Given the system (14), the following are equivalent: 



Proof: If an X satisfying (30) is found, then for any choice of frequencies wl, . . . , wd, setting 

will result in 8 X M ( W ~ ,  . . . , wd)x-') < 1, and therefore ,Gd (@ < 1, implying (29). ( 
The converse implication is covered in the Appendix. 

As a corollary of Proposition 5 and Theorem 3, condition (30) is suficient for robust stability 

under mixed LTVJLTI perturbations; this could also be shown via standard small-gain arguments. 

From a computational point of view, (30) has the advantage of involving a search over only one 

frequency variable. A direct approach would be to  grid the frequency axis and convert (30) to  an 

LMI condition. Note, however, that the common scale X@ introduces a coupling in the problem, so 

one is left with a large LMI condition, with size growing with the number of frequency grid-points. 

In comparison, (29) tells us that in fact, d frequency values suffice, and we must only solve a 

coupled LMI problem of this size. However, since these frequencies are not known a priori, one has 

to  grid a d dimensional space of frequencies. Therefore (29) reduces the size of the coupled LMI at 

the expense of more gridding. For low values of d,  this alternative may be convenient. 

We now consider the question of the conservatism of these conditions. The results of [14] 

reviewed in Section 2 suggest that the conditions become necessary if the LTI perturbations are 

enlarged to  include arbitrarily slowly varying uncertainty. This is the content of the following 

statement; the proof involves an extension of the techniques of [14], described in the Appendix. 

Theorem 6 The conditions in Proposition 5 are satisfied i f  and only i f  there exists u > 0 such that 

the system (14) has uniform robust stability for A = diag[Qi, 01, Qi arbitrary structured operator, 0 

structured operator in  .F(u). 

'Another approach would be to parametrize x e ( w )  by basis functions. 



5 Combination with Real Parametric Uncertainty 

In this section we take a further step in the analysis under combined uncertainty structures; in 

addition t o  LTV and LTI blocks, we include real parametric perturbations. We will consider the 

robustness analysis setup of Figure 3: 

Figure 3: Robust stability problem 

In (31), ~ ( e j , )  is a stable system. @ and 8 are structured LTV and LTI perturbations as before. 

A is defined as in (14). The additional structured perturbation S consists of real parametric blocks 

(e.g. S = diag[Sll,. . . , S,I], S; E R). The notation (q, H instead of A, M) is chosen to  clarify the 

proofs below. 

We wish to  obtain a necessary and sufficient condition for robust stability in this class, extending 

the results in Section 3. Since real parameters are a special case of time invariant uncertainty, 

a t  first sight it would appear that Theorem 3 applies directly, yielding a mixed-p condition on 

fi = diag[~(ejW1),  . . . , ~ ( e j ~ d ) ] ,  analogous t o  (22) but with the copies of S in the augmented 

structure constrained to  be real. 

This augmentation would not capture, however, an additional property of real parametric uncer- 

tainty: in addition to  taking real (rather than complex) values, a real parameter has no dynamics 



and therefore is constrained to be constant across frequency2. This suggests a modification of 

the augmented uncertainty structure for the case of real parameters, where they are forced to  be 

constant across the augmentation. Consider the structure 

where aij E and 0; E O as before, but we constrain the copies of S to be repeated across the 

augmentation. The d = 2 case is depicted in Figure 4 (a). 

(a> ( b )  

Figure 4: Augmented systems for the real parametric case 

It will also be useful to "close the loop" on the real parametric part, which will reduce the 

'This fact does not come into play in standard mixed p with LTIIparametric uncertainty, where only one frequency 

is involved in the destabilization. 



problem to the situation of Section 3. Assume that the real p condition 

holds, then for any fixed S E B 6  we can define 

which is a stable time invariant system for each S E Bs .  

For fixed 6 ,  and given w l ,  . . . , wd, the matrix M(w1,.  . . , wd, 6 )  := diag[A4(ejw1, 6 ) .  . .A4'(eiwd, S ) ]  

(which corresponds exactly to the augmentation (16) )  is obtained by LFT between the S portion 

of \?I and the matrix H ( w l , .  . . , wd) .  The uncertainty structure corresponding to M is A as in (18), 

which is depicted in Figure 4 (b )  for the case d = 2. 

We now provide the extension of Theorem 3. 

Theorem 7 In reference to the system (31) ,  the following are equivalent: 

(a) The system is uniformly robustly stable. 

(b) Condition (33) holds, and with wr, varying in  [ -n ,  n] ,  6 E B 6  

max p A ( i @ ( w l , . . . : w d , S ) ) < l  
wl i  ... twd, 6 

(c) With wr, varying in  [ -n ,  n], 

where p is the mixed (real/complex) structured singular value with respect to the structure (32) .  

Proof: The equivalence of (b) and (c) is a direct application of Lemma 1. 

Also, ( a )  implies condition (33) ,  otherwise the real parameters S would destabilize by themselves. 

Given (33) ,  we observe that for fixed S E B 6 ,  



It follows that the (uniform) robust stability of system (31) is equivalent to  the fact that for 

every S in Bs, the system (hI(ejw, S), A) is (uniformly) robustly stable. Since A has the mixed 

LTV/LTI structure of Theorem 3, this is in turn equivalent to  condition (35) in (b). 

The previous result has reduced the robust stability problem under LTV, LTI and parametric 

uncertainties to  a mixed-p condition across d-frequencies. We remark the following: 

In analogous manner to  Corollary 4, a state-space condition can be derived from (36), which 

is equivalent to  a single mixed p problem. 

As usual, practical computation of a p-condition such as (36) must be approached by upper 

and lower bounds, and possibly branch and bound techniques. Upper bounds will have the 

form given in (9); analogously to  the situation in Section 4, we have the choice of writing 

these conditions in the original problem or in the augmented problem. In this case, however, 

these are not equivalent: since the augmentation introduces repetition in the real uncertainty, 

this increases the freedom of the scaling matrices x6, G~ corresponding to  these blocks, 

which provides a way of imposing the condition that S is constant across frequency. Without 

augmentation, this condition is not imposed so the bound is weaker. 

6 Examples 

In this section we illustrate the results of this paper with a series of examples. These have been 

deliberately constructed so that there is a direct way to answer and interpret the robust stability 

question, thus providing more insight into the conditions given in the previous sections. 

6.1 A system with LTV uncertainty 

We consider the interconnection of Figure ( 5 ) ,  where GI, G2 are LTI SISO systems, and @I, @2 

are uncertain perturbations with llQiill 5 1. 



Figure 5 :  Example of analysis of LTV uncertainty 

If Q1, Q2 were LTI perturbations, then they would commute with GI, G2 and from the 

small-gain theorem the robust stability condition would be 

From now on we consider the more interesting case when iD1, Q2 are arbitrary LTV pertur- 

bations. It turns out that in this simple configuration, the necessary and sufficient condition 

for robust stability is 

This condition is in general stricter than (38), since the two transfer functions Gl(ejw) and 

G2(ejw) need not achieve their peak gain at the same frequency. 

The sufficiency of (39) is clear from small-gain. To explain why it is also necessary, let us 

particularize in the example (where X is the delay) 

Here both systems have Z, norm equal to one, achieved respectively at frequencies 0, n. Their 

magnitude frequency response plots are depicted in Figure 6 below. Condition (39) is therefore not 

satisfied. Let us show that the system can be destabilized by contractive LTV operators. In this 

case it suffices to  consider the time-varying gains Ql(t) = Q2(t) = (-l)t. 



Figure 6: Frequency response of GI, G2 

In reference to  Figure 5, consider a constant signal v(t) 1 at the input of GI. Since the transfer 

function GI is 1 at w = 0, the steady state output will be the same signal. The time-varying gain 

Ql(t) modulates this signal t o  w(t) = (-l)t, which has all its frequency content at w = n, where 

Gz has value 1. This implies the steady state output of G2 is w(t), which is demodulated back 

to  v(t) by a2(t) .  We have a steady state signal in the loop, which violates robust stability. This 

informal argument can be formalized and extended to  arbitrary GI,  G2, and it illustrates strongly 

the "frequency-shifting" properties of LTV perturbations. 

We should recover the same answer if we do the analysis using the results in Section 3. For this 

purpose, we first rearrange Figure 5 to an M-A setup, where A contains in this case only the LTV 

portion @ 

Since d = 2, we must compute the augmentation of Theorem 3 over two frequency variables wl, 

w2. Figure 7 contains the resulting function pA(fi(wl, uz)), computed using the software package 

p-Tools [I]. We find that the maximum is 1, achieved when the two frequencies take the values 0, T ,  

which is consistent with the previous analysis. Similar results can be obtained using the state-space 

condition in Corollary 4. 



Figure 7: I c A ( ~ )  as a function of w l ,  wa 

6.2 Including LTI uncertainty 

We now modify the previous setup to  include LTI uncertainty; GI, Gz are replaced by 

which are LF'Ts G; = Ti * 8; on the LTI perturbations 0;, as depicted in Figure 8. 

Figure 8: System with LTV and LTI uncertainty 



From (39), it is clear that the worst-case 6; are those which achieve m a x ~ ,  11G;II,. The values in 

(41) have been chosen so that the worst-case perturbations are el = 1, O2 = -1 , which produce G; 

as in  (40). From the previous analysis the smallest destabilizing perturbation is of norm 1: dl = 1, 

(92 = -1, <PI = a2 = ( -q t .  

These results are verified when we do the analysis of Theorem 3. After rearranging Figure 8 

in the standard setup, and performing the augmentation, we obtain m a x ,  ,, pA ($(wl, wz)) = 1 

(achieved at wl = 0, w2 = n). 

If the 6; in (41) correspond to real parameters instead of LTI perturbations, we still obtain the 

same answer from the robust stability analysis, since the worst-case values obtained above happen 

to be real. This can also be verified by computing the mixed-p condition on the augmented system. 

6.3 Real parametric vs LTI perturbations 

To produce an example where real and LTI perturbations give a different answer, one can use the 

same structure as in (41), but impose 61 = $2 = 0 (repeated perturbation). In other words, 

If 6 is LTI, the repetition does not alter the results in Section 6.2, since an LTI perturbation can 

take the values 1 at w = 0 and -1 at w = n. An example is 6(ejw) = ejw (6 is the delay operator 

A), which turns the G; into second order systems with ((GI 11, = IIG211m = 1. 

The same answer is obtained from the augmented p test (22) which gives 

max pA(h(wl ,  wg)) = 1 
Wl rW2 

(43) 

achieved at wl = 0, w2 = n, and a destabilizing perturbation with d1 = 1, O2 = -1, as expected. 

We now change 6 for a real parameter 6 E [-I, 11, repeated in GI, Gz. Since it is constant across 

frequency, it cannot maximize both JIG;((, simultaneously. In fact, straightforward calculations 

show that 



which has a maximum of for S E [-I, 11. This implies by (39) that the overall system is stable 

for IJ@;IJ < 1, 6 E [-I, I]. 

Proceeding by augmentation, (36) gives a value 

max pS( l? (~ l ,  ~ 2 ) )  = 0.7906 < 1 
"4 rW2 

(45) 

In this case we can show directly that the smallest destabilizing perturbation for S E R and 

cP; LTV, has norm & = 1.2649. For this purpose, choose S E [-y, y] and I/@; 1 1  < y. The full 

system will be stable as long as 

Condition (46) is equivalent to  y < = 1.2649, as expected. 

7 Conclusions 

This paper shows that a combination of different classes of uncertain perturbations (LTV,LTI, para- 

metric) can be analyzed with the same mathematical tools as non-mixed problems. A structured 

singular value condition was obtained, applicable to  any combination of these uncertainty classes. 

These results allow a totally decoupled approach to  uncertainty modeling in complex systems: 

one can choose the most adequate uncertainty description (LTV, LTI, parametric) at the subsystem 

level, and obtain an exact condition for robustness analysis of the overall system under the combined 

uncertainty structure. The price paid in terms of complexity of these conditions is the size of the 

corresponding augmentation. 

From a computational point of view, a number of equivalent conditions have been obtained, 

and further research is required to  determine the most efficient approach for practical problems. 

In regard to  the convex upper bounds which lead to  coupled LMI problems across frequency, two 

alternatives (29) and (30) have been discussed and should be further explored. In relation to  lower 

bound computation, the repeated structure of the augmented systems may be exploited to  improve 

the algorithms. 



Finally, scaled small-gain conditions such as (30)  can naturally lead to the extension of "D-K 

iteration" methods for controller synthesis. In the author's opinion, however, synthesis should be 

based on simpler and more heuristic methods, and these tools with very specialized uncertainty 

structures are best employed for analysis validating the resulting designs. 

Appendix 

Convex Analysis Lemmas 

The following results from convex analysis will be used in the proofs. 

For a set K C lWd, c o ( K )  will denote the convex hull of K ,  i.e. the set of all convex combinations 

of elements of K. If K is compact, so is co(K) .  

Lemma 8 (Helly) Let {I<w},En be family of convex closed sets in !Xd, of which at least one is 

bounded. If nu,, 1; = 0 then there exist d $. 1 sets Kwi, i = 1 . . .d + 1 with empty intersection. 

Lemma 9 Let K , L  be disjoint convex sets in lWd, where K is compact and L is closed. Then there 

exists a vector x E lWd, and a, P in  1W such that 

Lemma 10 If K C !Xd, every point in  c o ( K )  is a convex combination of d + 1 points in  K ;  for K 

compact, every point in  the boundary of c o ( K )  is a convex combination of d points in  K .  

Proofs: Lemmas 8 and 9 can be found in [16]. The first part of Lemma 10 is a result of 

Caratheodory (see [16]), and implies that for every v E co( I i ) ,  there exists a simplex of the form 

with vertices vk E K ,  which contains v. If the vk are in a lower dimensional hyperplane, then 

d points will suffice to generate v. If not, then every point in S ( v l ,  . . . , corresponding to 



cuk > 0 VL will be interior to S(vl,. . . , vd+1) c co(K). Therefore for points v in the boundary of 

co(Ir'), one of the ak 's  must be 0 and a convex combination of d points will suffice, completing 

Lemma 10. 

Proof of Theorem 3 

We now show the equivalence of (a) and (b) in Theorem 3. For simplicity we will write the proof 

for the case where the structure <P contains only full blocks, i.e. 9 = diag[al, . . . ad], E C( l r l ) .  

The same arguments can be extended to the case of SI blocks in the uncertainty <P, in a similar 

style as in [12]. The following Lemma gives an interpretation of the uncertainty structure 6. 

Lemma 11 Assume (20) holds. Given wl , . . . , wd, 01, . . . , od the following are equivalent: 

( i )p@(6(~ l , . . . ,Ud ,81 , . .  . ,od)) 2 1. 

(ii) 3 vl , .  . . , vd E Cm, not all zero such that 

Proof: (i) is equivalent to the existence of 6 ,  u(6)  5 1 and a vector v = col(vl,. . . , vd) $: 0 

such that (I - ~ G ( W I ,  . . . , wd, 01, . . . , od))v = 0, or 

Each @ij has in turn d subblocks, which will henceforth indexed by the subindex 1, and impose 

a partition on the vk, G(wk, ok)vlc. The equations and variables in (49) can be reordered, to put 

together the vt,  . . . , vld and (G(wl, ~ l ) v l ) ~ ,  . . . , (G(wd, Od)vd)l for each I, which reduces the structure 

of & to  d full blocks in this new order. Now a ( 6 )  5 1 is equivalent to the norm inequalities (48). 



(a)-+) 

Condition (20) is clearly necessary for robust stability; if it did not hold, the standard results 

(10) imply that the system could be destabilized by LTI perturbations alone. Therefore G(w, 0) is 

well defined and continuous. 

Assume there exist wl, . . . , wd E [-T, A], dl , .  . . , dd E Be with P ~ ( G ( W ~ , .  . . , wd, dl , .  . . , dd)) > 1. 

We can use Lemma 11 to obtain vl, . . . , vd satisfying (48). 

Fix E > 0; by continuity of G we can perturb the d l , .  . . , dd to have @(dk) < 1 (strict inequality), 

and the wl, . . . , wd to make them distinct, satisfying 

We are now in the conditions of an interpolation result given in [6], which states that there exists 

a causal, stable, rational LTI perturbation d(ejw) E Be 3, satisfying d(ejwk) = 0'. Now define 

Then G(w, O(ejw)))v(t) = z ( t )  + e(t), where e(t) is a transient term. For any 1, (50) implies that 

the power of the I-lth component of z(t), is greater than the power of the I-lth component of v(t), 

times (1 - E). We can invoke Lemma 2 to show the existence of a causal time-varying operator 

Q1 which maps z(t)i to (1 - ~ ) v ( t ) ~ ,  up to a transient term. Constructing @ = diag[@l..  .@dl ,  we 

obtain 

(I - @G(w, d(ejW)))v(t) = tv(t) + e(t) (52) 

where e(t) E 12 is transient. This implies that 

Referring to  (14), it can be verified that 

3[6] constructs a perturbation in the disk algebra A(T) interpolating a countable number of frequencies; in the 

case of a finite number of frequencies it can be chosen to be rational 



This implies that 
I - @ ( M * O )  

I - - I  
I 

As € 4 0 ,  the numerator in (55) tends to infinity from (53), and the denominator is bounded using 

(20). This implies that supa 1 1  (I - AM)-'I~ = m, violating uniform robust stability. 

(b)*(a): 

For this direction we introduce some notation. For w E [-n, x], 0 E Bo C C P x P p ,  v E Cm, define 

V = {Aw,o(v) : w E [-n, n], 9 E Be, v E Cm, IlvII = l} (58 )  

From (20), AWl6(v) is continuous in its 3 variables, therefore V is compact in JRd, and so is co(V). 

Claim: 

CO(V) n (IW:)~ = Q) 

where JRof is the set of nonnegative real numbers. 

In fact, if (59) does not hold, then we can find a point y in the boundary of co(V), which falls 

inside Invoking Lemma 10, y is a convex combination of d points in V. Therefore there 

exist wl, . . . , wd, O1,. . . , Od, vl , .  . . , vd such that 

Recalling (56) ,  (57), then (60) implies that (48) holds for the corresponding G(wk,Ok) and ijk = 

6 v k .  This violates (b) by Lemma 11, so the claim is proved. 



eo('C7) and (1~:)~ are disjoint closed convex sets in Rd, and co(V) is compact. Therefore, by 

Lemma 9 there exists x = (21,. . . , xd) E Rd, a,p E R such that 

Given the special structure of the cone ( R $ ) ~ ,  we can choose ,h' = 0 and XI > 0,.  . . , xd > 0. Using 

(57), we have 

Let X = diag[xlIml . . . xdImd] which belongs to x@, then (56) and (62) give 

It follows that y := maxw,o a ( x * G ( ~ ,  6)~-f ) < 1. For any LTI fl(ejw) taking values in Be, and 

any LTV @ in BG, we obtain 

This implies 

which leads to a uniform bound on ( 1  (I - @(M * @))-I 11. This, together with (55) and assumption 

(20) gives a uniform bound on 1 1  ( I  - AM)-lll. 

7.1 Proof of Proposition 5 

It remains to prove that (29) implies (30). (29) implies that 

max inf B ( X  M (wl, . . . , wd)x-l) < 1 
Wlr...,wd X 



For fixed wl, . . . , wd, clearly there exists ~ ( w l , .  . . , wd) > 0 such that 

inf u(X&.J(w1, . . . , w~)x-') < 1 
~ I ~ X > C I  

Since the wl, . . . , wd vary in a compact set, and &f is continuous, it follows that a fixed E can be 

found satisfying (67) across wl, . . . , wd. Now assume that (30) does not hold. This means that the 

LMI condition across frequency 

does not have a solution X E X,, i.e. it cannot be satisfied with the X' part constant across 

frequency. As a consequence, the family of sets over w 

have empty intersection for w ranging in [-n,n]. These sets are convex and compact, and by 

normalizing the last block of X@ to I, they are in a d - 1 dimensional space. From Lemma 8, there 

exist d such sets with empty intersection. 

Therefore there exist d frequencies wl, . . . , wd such that u (XM(jwk)X-l) < 1 cannot be sat- 

isfied with EI < X < $ and a common x'. This contradicts the fact that c satisfies (67) for all 

frequencies wl , . . . , wd. 

7.2 Proof of Theorem 6 

The sufficiency of condition (30) for uniform robust stability over F(v)  can be proved with very 

minor modifications to the proof given in [14]; the details are omitted. We now outline the necessity 

proof, which is essentially a combination of the methods applied in [14] to  deal separately with slowly 

varying perturbations and "arbitrarily fast" perturbations. 



Necessity:. For simplicity we assume the structures 43 and @ consist only of full blocks, 

E C(t!yl) ,  ed+f E ~ ( t ! ; ~ ) .  We have = diag[al,. . . , @d,fld+l , .  . . , f l d + ~ ] .  

Assume now that the system does not satisfy (30); we will show uniform robust stability is 

violated for every v > 0. 

Step 1: We first use Proposition 5 to  show the existence of d frequencies wl, . . . ,wd such that 

At this point, we will perform a second finite augmentation of the problem in the style of Section 3. 

For notational simplicity a matrix form will not be written, but it follows from [2] (or also from the 

proof in Section 3) that there exists a finite horizon N and vectors lil, . . ., liN E ~ ( ~ + p ) ~ ~  which 

"destabilize" an augmentation of the matrix d in the following sense. 

For each n E 1 . .  . N, partition the vector lin as (vk)% in accordance to  the blocks of d ;  let 

M (ejWk )(vk)" = (gk)n; the following inequalities hold: 

Note that all "energy can be shared" between the repetitions n of this second augmentation. As for 

the first augmentation in I;, only the Q, blocks "transfer energy" as before. Heuristically, this second 

augmentation will be used with frequencies close t o  the wkls. The transfer of energy between these 

frequencies can be achieved by slowly varying operators. 

Step 2: Fix v > 0 and E > 0. For S to  be chosen below, construct 

By continuity of ~ ( e j ~ )  around wk, gk = .Mvk + ek + w" where wk is a transient term in 1 2 ,  

and ek is a sum of sinusoids such that its power 1 1  . ] I p  satisfies I(ekllp < ~ l l v ~ l ~ p ,  for small enough S. 



Also choose 6 small enough so that 2 sin(:) < v, and so that the intervals [wk, wk + S] are pairwise 

disjoint. 

k k  From (72) and Lemma 2, for each f ,  k we can find t F(v)  such that Bd+fyd+f = v;+~. 

Since the Fourier supports of (yk,vlC) are disjoint for different k, with the same methods as in 

Lemma 2 it can be shown that there is a single Od+f E .F(v), satisfying 

k k ed+fydSf Vd+f,  f = 1.. .& k =  1 . . . d  (74) 

Now define v(t) = ~ t = ~  vk(t), y(t) = ~ f , ~  yk(t). We have y = Mv + e + w, w E 12, //ellp = 

O(E) JIvJJp, and the definition of the vk, y k ,  implies from (71) that 

This implies we can construct contractive LTV operators GI, I = 1..  .d (with no prescribed rate 

of variation, since v, y are not confined to a "thin" frequency band) such that @lyl = vl. Setting 

= diag[Gl, . . . , Qd, ed+l, . . . , ed+F] gives, using (74), a y  = v. Therefore 

Since E is arbitrary, uniform robust 12-stability is violated within the class A = diag[<fr, 01, O E 

F(v) .  Since v is arbitrary, this completes the proof. 
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