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Feedback Control for Aerodynamics

R. Chris Camphouse∗, Seddik M. Djouadi †, and James H. Myatt ‡

1. Abstract

The two-dimensional Burgers equation is used as a sur-

rogate for the governing equations to test order-reduction

and control design approaches. This scalar equation is se-

lected because it has a nonlinearity that is similar to the

Navier-Stokes equation, but it can be accurately simulated

using far fewer states. However, the number of states re-

quired is still well above that for which a controller can be

designed directly. Two approaches for order reduction are

used. In both approaches, proper orthogonal decomposi-

tion (POD), also know as Karhunen-Loève decomposition

or principal component analysis, is used with Galerkin pro-

jection. In the first method, the traditional POD approach

of selecting the modes to be retained in the reduced-order

model is based on the energy content of the modes. In the

second method, balanced truncation is used to select the

appropriate modes. Both approaches capture the dynamics

of the input-output system and are used for control design.

2. Introduction

Aerodynamic flow control is a research area of great in-

terest to the United States Air Force and the fluid mechan-

ics community in general. Recent advances in actuators,

sensors, simulation, and experimental diagnostics bring ap-

plications such as suppression of acoustic tones in cavi-

ties, separation control for high lift, and trajectory control

without moving hinged surfaces within reach. However,

many applications require the integration of feedback con-

trol because of the need for robustness to flight condition

and vehicle attitude, precision tracking, overcoming low-

fidelity models, or moving a system away from a stable

solution or limit cycle as efficiently as possible. Feedback

control strategies in which the bandwidth of the controller

∗This is a work of the federal government and is not sub-

ject to copyright. R. Camphouse is with the U.S. Air Force Re-

search Laboratory, Wright-Patterson Air Force Base, Ohio 45433
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‡J. Myatt is with the U.S. Air Force Research Lab-

oratory, Wright-Patterson Air Force Base, Ohio 45433

james.myatt@wpafb.af.mil

is commensurate with the time scales of the aerodynamics

are attractive because they offer the possibility of improved

performance and reduced control power required through

control of unstable structures in the flow field. Unfortu-

nately, models that capture the relevant dynamics of the

input-output system and are amenable to control design are

difficult to develop.

The governing equations for a compressible fluid are

partial differential equations - 1) the Navier-Stokes equa-

tion for momentum, 2) the continuity equation, and 3) the

energy equation. As an illustration of the complexity of

the governing equations, the dimensionless Navier-Stokes

equation for momentum [1] for an incompressible, New-

tonian fluid with a few simplifying assumptions such as no

body force is

∂�u

∂ t
+(�u ·∇)�u+∇p =

1

Re
∆�u, (1)

where �u = �u(t,x,y,z) is the velocity, p = p(t,x,y,z) is the

pressure, and the dimensionless Reynolds number Re is a

measure of the ratio of inertia forces to viscous forces. As

Re increases with vehicle size and speed, the effect of the

linear terms is diminished and the nonlinear terms become

more dominant. This greatly increases challenges of both

the modeling and control problems for vehicles at realistic

flight conditions.

Computational fluid dynamics (CFD) simulations can

provide solutions to a discretized form of the Navier-

Stokes. However, accurate simulations for simple shapes

such as two-dimensional airfoils can require several thou-

sand states and therefore are not directly useful for con-

trol design due to the extremely high order of the system.

Simulations for a full vehicle can require over one million

states. The large number of states is necessary to capture

important flow features that occur at extremely small spa-

tial scales. Another challenge for designing control laws

for flow control is that the Navier-Stokes equations in tra-

ditional form are not affine. Therefore, it is necessary to

separate the portions of the discretized system where the

control input enters the system for control design. In ad-

dition, the location of the actuator is often limited to the

boundary. This eliminates the possibility of full-state feed-

back.
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3. Model Problem

3.1. Motivation: Boundary Feedback Control

Reduced order modelling has received significant atten-

tion by the research community in recent years. Proper or-

thogonal decomposition (POD) has been investigated ex-

tensively [2]-[10] as a potential technique due to its signif-

icant order reduction capability. Full order system model

behavior described by thousands of states can often be cap-

tured with a POD model composed of dozens of states or

less. The implications for control law design are obvious.

Applications requiring exceedingly large systems for accu-

rate simulation result in intractable feedback control prob-

lems. A particular example is feedback control of aerody-

namic fluid flows. Accurate simulations done with com-

putational fluid dynamics typically require discretized flow

models describing thousands of states, usually millions in

the case of three-dimensional turbulent flow. The system-

atic development of feedback control laws from systems of

such large dimension is currently an intractable problem.

Reduction of system order must be done if feedback con-

trol law design for these systems is to be feasible.

In many practical applications, boundary actuation is a

requirement. For example, control of flow separation over

an airfoil requires that actuation and sensing be done on the

airfoil surface. The possibility of unmodelled dynamics in

the system, or dynamics lost in the order reduction process,

make feedback control a requirement. Systematic develop-

ment of boundary feedback control laws from POD models

has remained an elusive problem. Controls are often in-

cluded in the reduced model in an ad-hoc way, specified to

be distributed over a subregion of the domain interior, or

simply specified through open-loop forcing.

In this paper, we utilize the weak formulation of reduced

order models obtained via POD and Galerkin projection.

Use of the weak form permits separation of the boundary

input in the reduced model, allowing the boundary control

to enter the reduced model equations explicitly. We present

these concepts using a nonlinear convective system defined

over an obstacle geometry. The resulting model problem

captures many of the difficulties associated with feedback

control of fluid flows with a greatly reduced computational

workload.

3.2. Distributed Parameter System

Let Ω1 ⊆R
2 be the rectangle given by (a,b]×(c,d). Let

Ω2 ⊆ Ω1 be the rectangle given by [a1,a2]× [b1,b2] where

a < a1 < a2 < b and c < b1 < b2 < d. The problem domain,

Ω, is given by Ω = Ω1 \Ω2. In this configuration, Ω2 is the

obstacle. Dirichlet boundary controls are located on the ob-

stacle bottom and top, denoted by ΓB and ΓT , respectively.
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Figure 1. Problem Geometry.

The dynamics of the system are described by the two-

dimensional Burgers equation

∂
∂ t

w(t,x,y)+∇ ·F(w) =
1

Re
∆w(t,x,y) (2)

for t > 0 and (x,y) ∈ Ω. In (2), F(w) has the form

F(w) =
[
C1

w2(t,x,y)
2

C2

w2(t,x,y)
2

]T

, (3)

where C1, C2 are nonnegative constants. This system has

a convective nonlinearity like that found in the Navier-

Stokes partial differential equations modeling fluid flows.

The quantity Re, a nonnegative constant, is analogous to

the Reynolds number in the Navier-Stokes equations.

To complete the model of the system, boundary condi-

tions must be specified as well as an initial condition. For

simplicity, boundary controls are assumed to be separable.

With this assumption, we specify conditions on the obsta-

cle bottom and top of the form

w(t,ΓB) = uB(t)ΨB(x), (4)

w(t,ΓT ) = uT (t)ΨT (x). (5)

In (4)-(5), uB(t) and uT (t) are the controls on the bottom

and top of the obstacle, respectively. The profile functions

ΨB(x) and ΨT (x) describe the spatial influence of the con-

trols on the boundary. A parabolic inflow condition is spec-

ified of the form

w(t,Γin) = f (y). (6)

At the outflow, a Neumann condition is specified according

to
∂
∂x

w(t,Γout) = 0. (7)

For notational convenience, denote the remaining boundary

as ΓU . We require that values be fixed at zero along ΓU as

time evolves. The resulting boundary condition is of the

form

w(t,ΓU ) = 0. (8)

The initial condition of the system is given by

w(0,x,y) = w0(x,y) ∈ L2(Ω). (9)

2



3.3. POD Basis Construction

The snapshot method [11] is used to construct a low or-

der POD basis for the distributed parameter system. An

ensemble of solution snapshots {Si(x)}N
i=1 for system (2),

(4)-(9) is generated by numerical simulation. In (3), we set

C1 = 1 and C2 = 0 in order to obtain solutions that con-

vect from left to right for positive inflow condition f (y). In

addition, we specify that Re = 300. Finite-difference spa-

tial discretization is done as in [12]. A uniform Cartesian

grid is constructed with spatial step-size h. The resulting

discretized system describes roughly 2,000 states. As it is

desired that the POD basis spans dynamics introduced by

a time-varying boundary control input, nontrivial boundary

conditions are specified during ensemble generation. In-

puts specified are of the form

uB(t) = Dsin(0.25t2.25) uT (t) = 0, (10)

uB(t) = 0 uT (t) = Dsin(0.25t2.25), (11)

for D = −3, -2, -1. The steady solution arising from a pos-

itive parabolic inflow condition is taken as the initial con-

dition in each simulation. For each case of control input

listed in (10) - (11), snapshots are taken in increments of

∆t = 0.1 starting from t = 0 and ending at T = 15. The

snapshots resulting from each case are combined into an

overall snapshot set. The resulting ensemble consists of

roughly 900 snapshots.

With the snapshot ensemble in hand, the N ×N correla-

tion matrix L defined by

Li, j =
〈
Si,S j

〉
(12)

is constructed. In this work, we utilize the standard L2(Ω)
inner product 〈

Si,S j

〉
=

∫
Ω

SiS
∗
j dx, (13)

where S∗j denotes the complex conjugate of S j, in the con-

struction of L.

With M denoting the number of POD modes to be

constructed, the first M eigenvalues of largest magnitude,

{λi}M
i=1, of L are found. They are sorted in descending or-

der, and their corresponding eigenvectors {vi}M
i=1 are cal-

culated. Each eigenvector is normalized so that

‖vi‖2 =
1

λi
. (14)

The orthonormal POD basis set {φi(x)}M
i=1 is con-

structed according to

φi(x) =
N

∑
j=1

vi, jS j(x), (15)

where vi, j is the jth component of vi.

With a POD basis in hand, the solution w(t,x) of the dis-

tributed parameter model is approximated as a linear com-

bination of POD modes, i.e.,

w(t,x) ≈
M

∑
i=1

αi(t)φi(x). (16)

3.4. Weak Galerkin Model

We now develop a reduced order model for the system

described by (2), (4)-(9). Using the weak formulation of

the governing equation allows us to extract boundary con-

dition information prior to Galerkin projection. Galerkin

projection of the weak system onto the POD basis results

in a system of ordinary differential equations for the tem-

poral coefficients {αi}M
i=1 with explicit control input.

Taking the inner product of both sides of (2) with the i-th

POD mode φi(x,y) and utilizing Green’s identities results

in the weak formulation∫
Ω

∂
∂ t

w(t,x,y)φi(x,y)dx =
∫

Ω
F ·∇φi(x,y)dx−

∫
∂Ω

(F(w) ·n)φi(x,y)dA(x)

+
1

Re

[∫
∂Ω

(∇w(t,x,y) ·n)φi(x,y)dA(x)
]

− 1

Re

[∫
Ω

∇w(t,x,y) ·∇φi(x,y)dx
]
,

(17)

where n denotes the unit outward normal.

As seen in (15), each POD mode is a linear combination

of solution snapshots. From (8), snapshot values along ΓU

are specified to be zero. As a result, POD modes are zero

along ΓU . Thus, the second boundary integral in (17) is

decomposed as∫
∂Ω

(∇w(t,x,y) ·n)φi(x,y)dA(x) =
∫ a2

a1

(
∂
∂y

w(t,x,b1)φi(x,b1)− ∂
∂y

w(t,x,b2)φi(x,b2)
)

dx

−
∫ d

c

∂
∂x

w(t,a,y)φi(a,y)dy,

(18)

where condition (7) has been used to specify that

∫ d

c

∂
∂x

w(t,b,y)φi(b,y)dy = 0. (19)

In a similar fashion, the remaining boundary integral in

(17) is decomposed as∫
∂Ω

(F(w) ·n)φi(x,y)dA(x) =

1

2

∫ d

c

(
w(t,b,y)2φi(b,y)− f (y)2φi(a,y)

)
dy,

(20)

3



where (6) has been used to incorporate the inflow condition

f (y).

Control inputs and the Dirichlet inflow condition are not

explicit in (18). They can be made explicit by approximat-

ing partial derivatives along the boundary. For h > 0, we

see that

∂
∂y

w(t,x,b1) ≈ uB(t)ΨB(x)−w(t,x,b1 −h)
h

, (21)

∂
∂y

w(t,x,b2) ≈ w(t,x,b2 +h)−uT (t)ΨT (x)
h

, (22)

∂
∂x

w(t,a,y) ≈ w(t,a+h,y)− f (y)
h

. (23)

These expressions are substituted into (18). Approxi-

mating w(t,x,y) as a linear combination of POD modes

in (17), (18), and (20) results in a reduced order system

model. By defining µ as

µ =
1

hRe
, (24)

the reduced order model is of the form

α̇ = Aα +Bu+N(α)+F, (25)

where

A(i, j) =

−µ[
∫ a2

a1

(φ j(x,b1 −h)φi(x,b1)+φ j(x,b2 +h)φi(x,b2))dx

+
∫ d

c
φ j(a+h,y)φi(a,y)dy+h

∫
Ω

∇φi(x,y) ·∇φ j(x,y)]dx,

(26)

B =

µ

⎡
⎢⎢⎢⎢⎣

∫ a2
a1

φ1(x,b1)ΨB(x)dx
∫ a2

a1
φ1(x,b2)ΨT (x)dx

. .

. .

. .∫ a2
a1

φM(x,b1)ΨB(x)dx
∫ a2

a1
φM(x,b2)ΨT (x)dx

⎤
⎥⎥⎥⎥⎦

M×2

,

(27)

N(α) =

1

2

⎡
⎢⎢⎢⎢⎢⎢⎣

∫
Ω

(
∑M

j=1 α jφ j(x,y)
)2 ∂

∂ x
φ1(x,y)dx

.

.

.∫
Ω

(
∑M

j=1 α jφ j(x,y)
)2 ∂

∂x
φM(x,y)dx

⎤
⎥⎥⎥⎥⎥⎥⎦

M×1

− 1

2

⎡
⎢⎢⎢⎢⎢⎢⎣

∫ d
c

(
∑M

j=1 α jφ j(b,y)
)2

φ1(b,y)dy

.

.

.∫ d
c

(
∑M

j=1 α jφ j(b,y)
)2

φM(b,y)dy

⎤
⎥⎥⎥⎥⎥⎥⎦

M×1

,

(28)

F =

⎡
⎢⎢⎢⎢⎣

∫ d
c (µ f (y)+ 1

2
f (y)2)φ1(a,y)dy

.

.

.∫ d
c (µ f (y)+ 1

2
f (y)2)φM(a,y)dy

⎤
⎥⎥⎥⎥⎦

M×1

. (29)

Projecting the initial condition w0(x,y) onto the POD

basis results in an initial condition for the reduced order

model of the form

α(0) = α0. (30)

3.5. Model Validation

Before using the reduced order model in (25) to design

feedback control laws, we first verify agreement between

the reduced and full order systems. We utilize the ratio

100

(
∑M

i=1 λi

∑N
i=1 λi

)
(31)

to determine how many POD modes to include in the re-

duced model. The POD basis is optimal in an energy sense

[13]. It captures the mean square energy of the snapshot

ensemble better than any other basis. The quantity in (31)

provides a measure of the ensemble energy that is cap-

tured by the POD basis. By requiring that 99.9% of the

energy contained in the snapshot ensemble be contained in

the POD basis, we calculate the smallest value of M such

that the quantity in (31) is greater than or equal to 99.9. For

our snapshot ensemble, the smallest value of M satisfying

this relationship is 15. Thus, we include 15 POD modes

in the construction of the reduced model in (25). The first

nine modes are shown in Figure 2.

We now compare the solution obtained from the re-

duced and full order models using different boundary in-

puts that those used during ensemble creation. Boundary

4



Figure 2. 9 POD Modes.

inputs specified are of the form

uB(t) = min
( t

3
,1

)
, (32)

uT (t) = sin

(
3

2
πt

)
. (33)

We first verify boundary condition agreement between the

full order system and the linear combination of POD modes

given by (16) with the modes restricted to the boundary.

By specifying characteristic functions for the control pro-

file functions ΨB(x) and ΨT (x) in (4)-(5), we see that

M

∑
i=1

αi(t)φi(ΓB) ≈ w(t,ΓB) = uB(t), (34)

M

∑
i=1

αi(t)φi(ΓT ) ≈ w(t,ΓT ) = uT (t), (35)

We construct the linear combinations given on the left of

(34)-(35) and compare them to the boundary inputs given

by (32)-(33). The results are shown in Figure 3. In Fig-

ure 3, dashed lines denote the linear combination of POD

modes restricted to the boundary. Solid lines denote the

boundary inputs defined by (32)-(33). As can be seen in

Figure 3, there is very good agreement between the bound-

ary conditions specified for the full order system and the

linear combination of POD modes restricted to the bound-

ary. To further validate the reduced model, we project the

solution from the full order simulation at each time step

onto the POD basis. The resulting temporal coefficients are

compared to those predicted from the reduced order model.

The results obtained for the first five temporal coefficients

are shown in Figure 4. In that figure, solid curves denote

values of temporal coefficients obtained from the projec-

tion. Dashed curves denote the solution of the reduced or-

der model. As seen in Figure 4, very good agreement is
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Figure 3. Boundary Condition Accuracy.
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Figure 4. Projected And POD Model Coefficients.

seen between the full and reduced solutions even though

the open-loop input considered was not specifically incor-

porated in the snapshot ensemble.

3.6. Linear Quadratic Control

The system given by (25), (30) is linearized about the

origin yielding a state-space equation of the form

α̇(t) = Aα +Bu, (36)

α(0) = α0. (37)

We consider the tracking problem for (36)-(37). A fixed

reference signal wre f (x) is specified for the full order sys-

tem. Projecting wre f (x) onto the POD basis yields tracking

coefficients for the reduced order model, denoted by αre f .

5



The dynamics of the linearized model under tracking con-

trol are given by

˙[
α

αre f

]
=

[
A 0

0 0

][
α

αre f

]
+

[
B

0

]
u (38)

= ĀX + B̄u, (39)

where we have defined the augmented state X as

X(t) =
[

α(t)
αre f

]
with X0 =

[
α0

αre f

]
. (40)

To formulate the control problem, we consider the γ-

shifted linear quadratic regulator (LQR) cost function

J(α0,u) =
∫ ∞

0

{
(α −αre f )T Q(α −αre f )+uT Ru

}
e2γtdt.

(41)

In (41), Q is a diagonal, symmetric, positive semi-definite

matrix of state weights. R is a diagonal, symmetric, pos-

itive definite matrix of control weights. The quantity γ , a

nonnegative constant, is an additional parameter that pro-

vides added robustness in the control [15]. The optimal

control problem we consider is to minimize (41) over all

controls u ∈ L2(0,∞) subject to the constraints (38)-(40).

For a controllable system, the LQR problem has a

unique solution of the form

uopt = −KX (42)

= −[K1 K2]X (43)

= −[
R−1BT Π11 R−1BT Π12

]
X , (44)

where Π11 is the unique symmetric, non-negative solution

of the algebraic Riccati equation

(A+ γI)T Π11 +Π11(A+ γI)−Π11BR−1BT Π11 +Q = 0.
(45)

The matrix Π12 in (44) satisfies the equation

[
(A+ γI)T −Π11BR−1BT

]
Π12 = Q. (46)

The feedback control obtained from the linearized

model is placed into the nonlinear state-space equation. As

discussed in [14]-[15], the resulting closed-loop nonlinear

system is of the form

Ẋ = (Ā− B̄K)X +[N(α) 0]T +[F 0]T , (47)

X(0) = X0. (48)

3.7. Closed-Loop Results

The tracking LQR problem requires the specification

of the reference signal wre f (x). In the results that follow,

wre f (x) is defined as the unactuated steady solution for the

case Re = 50. To obtain the reference function for the
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Figure 5. Reference Signal.

reduced model, we project wre f (x) onto the fifteen POD

modes. The values obtained are used as tracking coeffi-

cients in the reduced order control problem. The reference

signal obtained by projecting wre f (x) onto the POD basis

is shown in Figure 5.

The values specified in the control formulation are Q =
3500I15×15, R = I2×2, and γ = 0.41. We specify w0(x) to be

the steady-state solution for the case of Re = 300. There-

fore, the solution will remain at w0(x) until the boundary

condition at the actuator location is altered by the con-

troller. The controlled reduced order model is shown in

Figure 6. By comparing the controlled solution of Figure 6

Figure 6. Controlled POD Model.

to the reference function in Figure 5, it is apparent that the

reduced order control satisfies the control objective quite

well. Significant tracking is achieved.
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4. Balanced Truncation and H∞ Control

4.1. Balanced Truncation

Balanced truncation is a simple and popular model re-

duction technique, which can be described as follows [20,

21, 22, 23]: Suppose we have a stable linear time invari-

ant (LTI) system described by the following n-dimensional

state space equation

ẋ(t) = Ax(t)+Bu(t) (49)

y(t) = Cx(t)

where x(t) is the n×1-state vector of the system, u(t) is an

m×1-input vector, and y(t) is an p×1-output or measure-

ment vector. A, B, and C are constant matrices of appropri-

ate dimensions.

The underlying idea of balanced truncation is to take into

account both the input and output signals of the system

when deciding which states to truncate with appropriate

scaling. The latter is performed by transforming the con-

trollability and observability gramians, denoted Wc and Wo

respectively, so that they are equal and diagonal.

The controllability and observability gramians satisfy the

following Lypaunov equations [21]

AWc +WcAT +BBT = 0 (50)

ATWo +WoA+CTC = 0 (51)

The controllability and observability gramians can be rep-

resented as

Wc =
∫ ∞

0
eAtBBT eAT tdt

Wo =
∫ ∞

0
eAT tCTCeAtdt (52)

Computing a state balancing transformation M is achieved

by first calculating the matrix [21, 22]

Wco = WcWo (53)

and determining its eigenmodes

Wco = MΛM−1 (54)

Let

z(t) := M−1x(t) (55)

then the resulting transformed state space is

ż(t) = Ãz(t)+ B̃u(t) (56)

y(t) = C̃z(t)

where

Ã := M−1AM

B̃ := M−1B

C̃ := CM

The transformation M is chosen such that the controllabil-

ity and observability gramians for the transformed system

satisfy

W̃c = W̃o = M−1WcM−1T = MTWoM =: Σ (57)

where Σ is a diagonal matrix that satisfies Σ2 = Λ, and the

diagonal elements of Σ, σi’s, are known as the Hankel sin-

gular vales of the system, i.e.,

Σ = diag{σ1, σ2, · · · , σn} (58)

where σi are the Hankel singular values of the system G

arranged in non-increasing order

σ1 ≥ σ2 ≥ ·· · ≥ σn ≥ 0 (59)

In balanced truncation only states corresponding to large

Hankel singular values are retained. Small Hankel singular

values correspond to states which are deemed weakly con-

trollable and weakly observable, and therefore deleted from

the state-space model. For instance, if the first nr states are

retained then the resulting transformation is given by

Mr = [Ir 0]M (60)

where Ir is the nr × nr identity matrix. The reduced order

model is obtained by letting

xr = [Ir 0]Mx (61)

as follows

ẋr(t) = [Ir 0]M−1AM

[
Ir

0

]
xr(t)+ [Ir 0]M−1Bu(t)

yr(t) = CM

[
Ir

0

]
xr(t) (62)

Let

Ar := [Ir 0]M−1AM

[
Ir

0

]

Br := [Ir 0]M−1B

Cr := CM

[
Ir

0

]
(63)

The error bound for the output is given by

‖y(t)− yr(t)‖2 ≤ 2

n

∑
nr+1

σi‖u(t)‖2, ∀u ∈ L2 (64)
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Balanced truncation is optimal in a precise sense [26]. To

see this define a causal bounded input-output operator G

acting on L2(−∞, ∞) into L2(−∞, ∞) described by the con-

volution [22, 23]

(Gu)(t) :=
∫ t

−∞
CeA(t−τ)Bu(τ)dτ (65)

Now, define the Hankel operator

ΓG : L2(−∞, 0] 	−→ L2[0, ∞)

of G by

ΓG := P+G|L2(−∞, 0] (66)

where G
∣∣
L2(−∞, 0] denotes the restriction of G to L2(−∞, 0],

and P+ is the orthogonal projection acting from L2(−∞, ∞)
into L2[0, ∞), i.e., P+ is the truncation operator

P+ f (t) =
{

f (t) if t ≥ 0

0 if t < 0
, f (t) ∈ L2(−∞, ∞) (67)

Then, the Hankel operator ΓG can be written as

ΓGu(t) =
∫ 0

−∞
CeA(t−τ)Bu(τ)dτ, for t ≥ 0 (68)

The Hankel operator ΓG maps past inputs to future outputs.

Expression (68) shows that the Hankel operator ΓG is an

integral operator mapping L2(−∞, 0) into L2[0, ∞), with

kernel the impulse response k(t, τ) defined by

k(t, τ) := CeA(t−τ)B, τ < 0, t ≥ 0 (69)

The Hankel operator ΓG has finite rank k ≤ n, that is, its

range has finite dimension k ≤ n [21, 23], and therefore be-

longs to the Hilbert-Schmidt class of operators acting from

L2(−∞, 0] into L2[0, ∞) [25]. Its Hilbert-Schmidt norm is

defined as

‖ΓG‖2
HS :=

∫ ∞

0

∫ 0

−∞
|k(t,τ)|2 dτdt (70)

Next, consider the optimal distance minimization µnr de-

fined in (71), which consists of optimally approximating in

the Hilbert-Schmidt norm the Hankel operator ΓG by an-

other Hankel operator ΓGnr
of lesser rank, say nr < k, in

other words

µnr := min
nr<k

‖ΓG −ΓGnr
‖HS (71)

It turns out that the minimizer in (71) is the Hankel oper-

ator with kernel the impulse response of the reduced order

model (62) [26], i.e.,

Cre
Ar(t−τ)Br (72)

More explicitly [26],

ΓGnr
u(t) =

∫ 0

−∞
Cre

Ar(t−τ)Bru(τ)dτ, for t ≥ 0 (73)

and the optimal index is given by

µnr = ‖ΓG −ΓGnr
‖HS (74)

Optimality of balanced truncation seems to be missing

in the literature. In fact, it has been widely claimed that

balanced truncation is not optimal in any sense [20, 23, 24].

In terms of kernel approximation, balanced trunca-

tion is a particular case of POD in the sense that the kernel

we want to approximate is the impulse response of the

system k(t, τ) defined in (71). The optimization index µnr

can then be written as in POD [26]

µ2
nr

= min

{∫ ∞

0

∫ 0

−∞

∣∣∣k(t, τ)−
nr

∑
i=1

fi(t)gi(τ)
∣∣∣2

dτdt

: fi ∈ L2[0, ∞); gi ∈ L2(−∞, 0]
}

(75)

=
∫ ∞

0

∫ 0

−∞

∣∣∣k(t, τ)−Cre
Ar(t−τ)Br

∣∣∣2

dτdt (76)

Expressions (74) and (76) show that balanced truncation

is optimal in the sense of optimal approximation in the

Hilbert-Schmidt norm of the Hankel operator ΓG, and

optimal in the sense of the ‖ · ‖2-norm of kernels corre-

sponding to impulse responses of linear time-invariant

systems defined over [0, ∞)× (−∞, 0].

The linear time-invariant system framework allows

the exact computations of the optimal lower order model

approximation. This contrasts with POD which uses

simulation data and particular open-loop inputs to generate

snapshots.

4.2. Application to the Weak Galerkin Model

Our approach is to construct an approximately balanced

realization to (25). This is carried out by first linearizing

(25) around α0. The state space and output equations have

the form

α̇(t) = Âα(t)+ B̂u(t), α(0) = α0 (77)

y(t) = α(t) (78)

where Â is a matrix having the same dimension as A, and is

given by

Â =
∂
(
Aα +Bu(t)+N(α)+F

)
∂α

∣∣∣∣∣
α=α0

(79)

B̂ =
∂
(
Aα +Bu(t)+N(α)+F

)
∂u

∣∣∣∣∣
u

= B (80)
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In this model the dimension of the state vector α is 40

which corresponds to 40 POD modes. A balanced realiza-

tion is first computed and 27 states truncated, i.e., only the

states corresponding to the 13 largest Hankel singular are

kept in the model. This results in a 13-dimensional state-

space model

ż(t) = Ãz(t)+ B̃u(t) (81)

y(t) = C̃z(t)

where z(t) ∈ R
13, B̃ ∈ R

13×2, and C ∈ R
40×13.

The first 8 POD modes corresponding are shown in

Figure 7. We project the solution from the full order

Figure 7. 8 POD Modes.

simulation at each time step onto the POD basis. The

resulting first 5 temporal coefficients of the full order

model are compared to those predicted from the 13-th

order reduced order model output.

In Figure 8, dashed lines denote the linear combination of

POD modes restricted to the boundary. Solid lines denote

the boundary inputs defined by

uB(t) = sin

(
3

4
πt

)
(82)

uT (t) = sin

(
3

2
πt

)
(83)

As can be seen in Figure 8, there is very good agreement

between the boundary conditions specified for the full order

system and the linear combination of POD modes restricted

to the boundary.
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−0.5
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1

t

u 1(t
)

The top control

0 2 4 6 8 10
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−0.5
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1

t

u 2(t
)

The bottom control

Figure 8. Boundary Condition Accuracy.

The results obtained for the first five temporal coefficients

are shown in Figure 9. In that Figure, solid curves denote

values of temporal coefficients obtained from the projec-

tion. Dashed curves denote the output of the reduced or-

der model. As seen in Figure 9, very good agreement is

seen between the full and reduced solutions even though

the open-loop input considered was not specifically incor-

porated in the snapshot ensemble.

0 1 2 3 4 5 6 7 8 9 10
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 9. Projected and POD Model Coefficients.

In Figure 10, we compare the full order solution w(t,x) of

the Burgers’ equation with the solution based on the 13-th

order model wr(t,x), i.e.,

wr(t,x) =
40

∑
i=1

yi(t)φi(x) (84)
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Note that despite the fact that only a 13-th order model is

used the agreement between the two responses is good.

4.3. H∞ Control

In this section we consider the design of an H∞ con-

troller for the tracking problem for (77)-(78). The moti-

vation behind our choice is that H∞ controllers are robust

against unmodeled or neglected dynamics, and unknown or

unmeasurable disturbances [21, 22, 23]. As in section 3.6,

a fixed reference signal wre f (x) is specified for the full or-

der system. Projecting wre f (x) onto the POD basis yields

tracking coefficients for the reduced order model, denoted

by αre f . The tracking problem is depicted in Figure 11,

where C is the controller and P the plant represented by

the dynamical equation (25). The computation of the H∞ is

based on the 13-th order reduced model (81). From Figure

11, for tracking purposes the controlled output is chosen to

be the error signal e which is defined to be the difference

between the reference αre f and the actual output y(t), i.e.,

e(t) := αre f − y(t) (85)

The dynamics of the reduced model for tracking control

represented in Figure 11 are then given by the state space

equation

ż(t) = Ãz(t)+ B̃1αre f + B̃2u(t) (86)

y(t) = C̃z(t)+D11αre f +D12u(t)
e(t) = −C̃z(t)+D21αre f +D22u(t) (87)

The objective of the H∞ controller C is to stabilize the

closed-loop system and minimize the effect of αre f on the

error e by viewing αre f as an unknown disturbance in L2

of unit ‖ · ‖2-norm. From Figure 11, in terms of transfer

function matrices of P and C, the transfer matrix from αre f

to e is given by the sensitivity function Teαre f
defined by

e = (I +PC)−1αre f (88)

=: Teαre f
(89)

We compute the worst-case disturbance transmission error

_
PC

ref ( )y t( )e t

Figure 11. Block Diagram of the Closed-Loop Sys-
tem.

due to αre f , i.e.,

sup
‖αre f ‖2≤1

‖e‖2 (90)

which is given by [21, 22, 23]

sup
‖αre f ‖2≤1

‖e‖2 = ess sup
0≤ ω <∞

σ
(

Teαre f
( jω)

)
(91)

=: ‖Teαre f
‖∞ (92)

where esssup denotes the essential supremum, and σ(·)
the maximum singular value of its argument.

The H∞ control design reduces to the following opti-

mization: Find C such that the closed-loop system is

robustly stable and

µ := min
C

‖Teαre f
‖∞ (93)

The solution of (93) is textbook material. There are

Riccati-based and linear matrix inequalities (LMIs) based

techniques to solve (93) [21, 22, 23, 27]. In this work, we

10



use the LMI approach because of its numerical robustness

and stability. The H∞ problem (93) is directly optimized

by solving the following LMI problem [27, 28]:

Minimize γ over R = RT and S = ST such that

(
N12 0

0 I

)T
⎛
⎝ ÃR+RÃ RC̃T B̃1

C̃R −γI D11

B̃T
1 DT

11 −γI

⎞
⎠

(
N12 0

0 I

)
< 0

(
N21 0

0 I

)T
⎛
⎝ ÃS +SÃ SB̃1 C̃T

B̃T
1 S −γI DT

11

C̃ D11 −γI

⎞
⎠

(
N21 0

0 I

)
< 0

(
R I

I S

)
≥ 0

where N12 and N21 denote the bases of the null spaces

of
(
B̃T

2 , DT
12

)
and

(−C̃, D21

)
, respectively, and I is the

identity matrix.

Solving the LMI optimization result in an optimal

µ = 1 and an optimal controller C of order 13. Closing the

loop on the full order Galerkin model using this controller

results in the responses for the temporal coefficients α
shown in Figure 12, where we have plotted the first 8 α’s.

In that Figure, solid curves represent the values of the 8

temporal coefficients α , and dashed lines represent the

reference αre f . Note that excellent tracking is achieved

with virtually zero steady state error.

5. Conclusions

For the two-dimensional Burgers equation, traditional

proper orthogonal decomposition and balanced truncation

using POD modes are solid approaches for order reduc-

tion with the goal of control design. Each method has par-

ticular strengths that make it well-suited for this class of

problems. Traditional POD maintains nonlinearities and

therefore allows the use of the reduced-order model to as-

sess the impact of the nonlinearities on the performance of

the controller in reduced-order simulations. It also permits

the use of nonlinear control, although that was not a part

of the current study. Balanced truncation provides much

needed insight into which modes should be maintained in

the reduced-order model. Each method also presents chal-

lenges. Traditional POD, while providing modes that are

physically meaningful, does not always provide modes that

are observable or controllable. Balanced truncation re-
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Figure 12. Full Order Closed-Loop System Tracking
Response

quires linearization and is only valid in the vicinity of the

equilibrium for which it was developed. Nonetheless, given

the success using traditional POD and balanced truncation

for the Burgers equation, both methods show promise for

use with the Navier-Stokes equations.

6. Future Work

Application of the order-reduction methods will be ap-

plied to a two-dimensional, simply-hinged airfoil with mul-

tiple synthetic jets in the vicinity of and on the flap to elim-

inate separation and generate high lift. A well-designed

control law is expected to provide the correct phase of the

actuators with respect to each other and the flow field dy-

namics.
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